COMPARISON OF THE EFFECTS OF
CODING TECHNIQUES
ON SIMULATION CCNCEPTS
IN PASCAL

by
BRIAN JOHN FERGUSON

B.S., University of California, Davis 1974

A MASTER'S REPCRT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Xansas

1980

Approved by:

)o Wulb T

VirgiY|E. Wallentine
Major| professor

ES EC.CDH.

LD
26605
R4

1480 TABLE CF

w2

1.0 Introductiol.eceescronaens

1.1 Simulation Concepts....

1.2 Concepts Implemented..

2.0 ObjectiveSoonooo-.----.-

CONTENTS

¢ ¢ 2 8 8 5 8B 4 ¢ PO L e T S s s P eSS

S s 8 T 8 8 45 89 B e * s 4 8 2

® & " 2 8 8 s P 8 4wt 8T s e oW * 0 @

3.0 Concurrent Pascal ADDrOACN. ccctsssssasssrostoncsas

3.1 Implementation of Simulation ConceptS.....e.

3.2 Program Structure......

4.0 Sequential Pascal ApDpProach....eseose-. R

4.1 Program Structure...

4.2 Previous ApproachesS..... et s e s e n e s e s e
5.0 Comparison o0f MethodS.:.eeeissvessnssanscnssnnnnsns

.9 Portablldtyees,ss 5 W

502 Per‘forlﬂanCE--c-..-. ------- LI I I S I LA A A A] e & e

5.3 Ease of Us@.cvn.s o SR W SRRV IR SRR e

6.0 Conclusion...eeoeeons ‘e

Bibliography.seeerosoccnnnnccesa - u e o e e o Wi w o e e v i
ADDERTI M v wowvw s w s O E S &5 8 % 65 O R G R E S e e
Sample Concurrent SCENAri0. .. eeeeeesaaess T

Sequential Program Code...

',.l.

11

12

15

.20

21

.29

FIGURE 1..

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 3.

FIGURE 9..

FIGURE 10..

FIGURE 11

® e s 2 88888 80

LI I 3 B B I Y Y

LIST OF FIGURES

LI I I IR)

ii

L]

@ ® e 8 60 s e e . LN)
. - . e LA e s s
LR S RO DR R A I B R I I B) .
e s e ® s & 8 s 8 2 9 LRI)
e @ 8 8 8 s e 0w .. .
e e o 8 * s o .9 . .
* 5 8 e ® 8 8 0 ¢ 8 a8 v e
LI T I I L O .
. T 4 8 8 8 B e e e e P e

4 9 8 8 8 " e e

e 8 s e 0 e

4 8 8 ¢ 8 8 8 3 e

¢ & 8 ¢ 3 8 ® 5 0 88

.. 19

.22

.33

1.0 INTRODUCTION

In this Master's Report, we will compare the effects of
two ching techniques on simulation concepts in Pascal. The
first technique is the use of monitors and Concurrent Pascal
to implement simulation concepts. The second will use
Sequential Pascal to implement the same simulation concepts

using a co=routine approach.

A comparison of performance between these two techniques
has been conducted. This comparison was achieved by
implementing and running experiments using both technigques.
The concurrent technique was previously implemented by Rich
McBride at Kansas State University Computer Science
Department [13]. The sequential approach was implemented by

the author.

An examination has been made of other factors that
affect the decision-making process in deciding between these
two techniques. Examples of these factors are portability
and ease of use, Each will be examined and discussed as to
its impact on an intelligent <choice between these two

techniques.

The author's assumption will ©pe that the reader is
familiar with the Pascal 1language, both Sequential and
Concurrent, as defined by Brinch Hansen { 3 I1,[32 1. The

PAGE 1

technical reports [10],[20] will familiarize the reader
with the Pascal implemented at Kansas State University.
This paper will cover those areas of simulation needed to

understand the processes involved.

PAGE 2

1.1 SIMULATION CONCEPTS

A brief overview of Simulation Concepts is necessary tc
understand the ideas implemented in this report. This
overview will include the use and purpose of simulation, the
process approach to simulation, other approaches to
simulation, and a description of the facilities implemented

in the simulation package described in this report.

Simulations have many wuses and are used for many
purpocses. Simulation studies are an attempt to examine a
model of the real world and real situations. The analysis
of these models wusing simulation gives information that
could not be obtained from the real world or which would be
impractical to acquire. An example would be a model of
aircraft performance; information which might be impossible
to acquire with a real plane, or only at a high cost, could
possibly be acquired with a simulation. Simulations are
used for performance evaluations, as a design aid, for
structural investigation, and for project planning. The
accuracy of a simulation is directly related to how <closely
the model represents reality. This must be remembered when

examining the results of any simulaticen.

There are many simulation languages. A general
dichotomy can be made between those that are extentions of

programming languages, and those that are a separate

PAGE 3

language. The method we will examine is an extension of the
Pascal Programming Language. This approaci has advantages
in that a programmer does not need to learn a new, distinct
language, but can instead build upon his/her prior
programming ability in the 1language to use the T™pnew"

simulation concepts.

Simulation languages are implemented in several ways.
The implementation utilized in this report is the process
approach. The process approach is one in which the
simulation is written in terms of the flowing of an entity
through various processes. An example of the ©process
approach is described in Figure 1, the Simulation of a Car

Assembly Plant.

This model. follows a ecar as it is processed or
assembled. The simulation code describes the various
processing steps of assembly until the entire process is
finished and a completed car rolls off the assembly line.
Each step is described and coded in this light. Physical
resources (ex, welding machines, trollies, ete.) have
specific properties such as speed or number of actions they

can do. Each process can itself be a simulation model.

The key in this approach is that accuracy is dependent
upon how <close the model describes reality. The process

approach is the method used for the languages examined in

PAGE &

this report.

Other simulation methods include the Activity-Scanning
Approach and the Event-Scheduling Approach [21]. Both
methods are quite useful in some sSituations. The
activity-scanning approach looks at actions to perform at a
certain time or when another action occurs. The
event-scheduling approach also performs actions wupon the
meeting of criteria for an action. Both of these methods do
not have the idea of an entity that flows through the model,
but rather of a series of actions to be taken when
specified. In the view of activity-scanning or
event-scheduling, the auto assembly plant would be a series
of steps to be taken as the previous step or action is
finished. This means the simulation program would be
written in terms of a partial assembly: i.e., the partial
assembly of the object which causes the successive step or

action to occur.

PAGE 5

FIGURE 1

START

\:/

ASSEMBLE FRAME

\Ns/

INSTALL BODY

\:/

INSPECT

FINISH

SIMULATION OF CAR ASSEMBLY PLANT

PAGE 6

1.2 CONCEPTS IMPLEMENTED

The mechanisms developed to implement simuiation
concepts in any language are similar. Each must implement
some representation of simulation time. This internal time
or clock is incremented in various fashions, but the idea is
to increment the time when everything that would happen at
this instant has occurred. The clock is then advanced and
the actions that would occur at this instant of time are

executed. This is continued until the simulation ends.

A scenario in this report refers to a section of the
simulation model which deals with one aspect of the object
modeled. In the example, Appendix : Sample Concurrent
Scenario, the scenario describes a queue of jobs competing
with other queues of jobs for CPU time and I/0 time,.
Another mechanism that must be created is the idea of
resources that are used and of 1limited quantity. Such
resources are acquired by a simulation scenario, used for a
period of time, and then returned to the resource pool and
made available ¢to any requestor. This use of resources
neccessitates the idea of a scenario waiting for the clock
to advance before an action can take place. The resource
must be controlled so that no conflicts for resources can
cause deadlock within the language. Note that deadlcck can
be modeled, but that we cannot allow deadlock within the

modeling language. This is where the ideas of seizing and

PAGE 7T

releasing resources comes from. Information about resource
usage and iadleness is very important to a simulation. The
mechanisms that allow waiting for the cldck, acquisition
of a resource and release of a resource also cause
information to be stored about the performance of a
simulation. A more detailed description of the actual

mechanisms used will be made later in this report.

A complete description of the simulation activities
that have been implemented for this report can be found in
the Annotated Prefix in Wallentine et. al. [13]. Some of

these activities follow:

WAIT-TIME(amount)
This allows a process to wait a specified

amount of simulation time before execution resumes.

SEIZE(type , number) , RELEASE(type , number)
This allows processes to engage physical
resources. If a resource is in use then
the précess will wait until it is free,
The release does just that, it enables another

process to use the resource,

PAGE 8

WAIT_EVENT(event list) , SIGNAL{(event)
These procedures allow processes to interact

by allowing processes to wait until another

process signals it to continue.

INC_COUNT(counter , amount) , ASSIGN_COUNT{counter , amount)

These allow processes to use counters and

to keep track of the number of various actions

taken.

PAGE 9

2.0 OBJECTIVES

The objeetives of this study are to conduct a
performance comparison between Concurrent Pasecal and
Sequential Pascal simulations, to identify the other
differences in the <coding methods used in the report, to
test +the utility and wusefulness of having simulation
facilities added to the Pascal language, and to have
available the means (i.e. programs) to test the effect of
computer architecture on Concurrent Pascal and Sequential

Pascal simulatiorn programs.

PAGE 10

3.0 CONCURRENT PASCAL APPROACH

The Concurrent Pascal program which implements the
simulation facilties was written by Richard MeBride,
Department of Computer Science, KEansas State University.
The methods used to impiement the simulation concepts will
be covered in this report. This discussion will be to
familiarize the reader with the structures and ideas used in
implementing the simulation facilities, and will be useful
for both the Sequerntial Paseal and Concurrent Pascal
approaches. A general overview of the method will be

discussed; for a more detailed examination, consult the

Report by Wallentine et. al. [13 1.

PAGE 11

.1 IMPLEMENTATION OF SIMULATION CONCEPTS

All simulations have sSeveral things which they musat
have done in order to be simulations. These functions are
usually a part of the simulation language itaelf. This
section of the report will relate the simulation concepts
described in the introduction to how they are implemented in

both of the approaches examined,

The first essentiazl idea is the keeping of internal
time. This internal simulation <c¢lock 1s manipulated by
events that are waiting on the time list. The time list
consists of those scenarios which have delayed themselves
for a specified length of time. When an event is delayed it
is placed into the 1linked structure of the NCTICE array.
Each member of the array, when placed into or removed from
the array, has several pieces of information updated or
accumulated, Thus, at the end of a simulation, it can be
determined how long and for what percentage of the time the
event was waiting in the time list. This information plays
an important part in the statistics generated by the
simulation., The statistics are the wmain means by which
Judgements can be rendesred about the performance of the

simulation.

Another very important idea in s simulation is the need

for some event to wait for another event to occur. This is

PAGE 12

implemented with the EVENT_NOTICE variable (a record) which
is placed into a data structure, and allows events to wait
until an event happens or o¢ne of a list of events occurs.
In either case, the record that is manipulated and placed
into the event list has information concerning the length of
time it waits, as well as other information which will be

reported in the final statisties.

The allocation of resources 1is one of the major
activities that a simulation must do. This is taken c¢care of
by the declaration of the characteristics of the rescurces
available before the start of the simulation, Later when a
scenario wants to use a resource it must request to use it.
The SEIZE statement accomplishes this request. At the time
a SEIZE is made the resource may be in use and the scenario
must wait until it 1iIs free. Again the collection of
information for statistical purposes neccessitates much
unseen bookkeeping. This allows scenarios to use resources
without having to explicitly collect statistical
information. The scenario may wait for a resource for a
long time, Any other scenario whi¢h requests the same
resource 1s gqueued up and allocated +the resource on a
first-come, first-served basis. When the scenario has
finished its use of a resource, it is returned it to the
system with the RELEASE statement. The resource is then
free to be allccated to another scenario. The information

about how 1lecng a scenario waits for a resource, the

PAGE 13

utilization of a resource, and the number of scenarios
waiting for a resource are maintained by the language with

built-ir and user transparent functions.

The meth¢ds described here appiy to the implementation
of both the Concurrent and Sequential approaches., This is
because the methods used are easily adapted from the
concurrent versicn to the sequential version, and because
the structure of the concurrent method is very clean and
understandablie. The main difference hetween the two
versions is that in the concurrent approcach, the scheduling
of scenarios is done in part by the concurrent mechanisms
involved in the monitor concept. In the sequential approach

this must be done explicitly in the actual program.

PAGE 14

3.2 PRCGRAM STRUCTURE

The Concurrent Pascal program c¢onsists of a monitor
which interfzces with the file system of the host operating
system, a simulation monitor which <contains all of the
simulation procedures and internal variables o¢f the
simulation, and an array cof Jjob processes which take a
Sequential Fascal program and execute it. The simulation
monitor contains all of the actual simulation procedures.
The data structures needed to keep track of each process and
other internal variables, such as internal time, are the
monitor locecal variables, Each simulation scenario, which 1is
in a job process with a =simulation prefix, can call the
entry procedures of the simulation monitor. The simulaticn
monitor and file monitor both access the user's console for
the typing of various messages. All printed output for the
job processes and scenarios are processed through a portion
of the simulation monitor. A diagram of the system

components and their irteraction is contained inm Figure 2.

The job processes are an array of identical code. Each
process loads a sequential program from the file system and
then executes 1it. The first job process 1is the master
process which specifies and declares counters, facilities,
and ending time. All the other processes are user scenarios
with each job process containing one scenario. The scenario

is a user written Sequential Pascal program. Any Sequential

PAGE 15

Pascal program may be wused as a scenario. The change to
make the program into a simulation program is to include
calls to the entry procedures of the simulation monitor.
This is accomplished with a prefix added to each program.

(See Figure 3).

The coding technique and wusage is quite similar to
other languages. This simulation language <consists of
additions to the standard Sequential Pascal language. A
programmer familiar with Sequential Pascal should have
little difficulty in acquiring an understanding of the "new"
statements needed. These statements are interspersed in the
code, and except for these new statements (calls to the
Simulation monitor) and the prefix, the code is identical to
normal Sequential Pascal. These Sequential Pascal programs
are then inserted into the Concurrent Pascal version and
executed., A sample scenario from the Concurrent Pascal
approach is included in Appendix: Sample Concurrent

Scenario.

The approach needed to understand the model and to code
the model is straightforward. In the example of the car
assembly plant, the model revolves arcund a car that is
processed through the assembly plant. A scenaric in the
assembly plant would be a trelly that begins by having a car
frame assembled on it. This trolly woculd then request

resources (workers, welding, ete.} and wait at specific

PAGE 16

stages in the assembly for actions to occur. The aspect of
engine assembly could be another scenario and the car trolly
would wait until the engine scenario signaled that an engine
was available to be assembled to the car. This ability to
tie other processes into the simulation with minimal effort
makes this one of the easier simulation languages to use and

expand.

For futher information and a complete description of

the simulation system consult Wallentine et. al. [13]

PAGE 17

PRINTER

FIGURE 2

H CONSOLE

&« a4s 8s

SIMULATION
MONITOR

FILE SYSTEM

FILE
MONITOR

JOB PROCESS

JOB PROCESS

a #s ss @

CONCURRENT COMPONENTS

PAGE 13

JOB PROCESS

FIGURE 3

.
*

s #4 o

Be B8 se ee me

JOB_PROCESS
: SIMULATION SCENARIO
: : SIMULATION PREFIX
: : SEIZE
) H RELEASE
: 5 WAIT_TIME
: : INC_COUNT
: 5 SIGNAL
: . ASSIGN_COUNT
s 2 SEQUENTIAL
3 : PROGRAM

CONCURRENT JOB PROCESS

PAGE 19

4.0 SEQUENTIAL PASCAL APPROACH

A Sequential Pascal program which implements the same
simulation features described in Seetionm 1.1 Simulation
Concepts was written by the author. The greater portion of
the code is a modification of the code written by McBride [
13]. The major changes were in implementing the scheduling
and scenario interactions portions, The techniques for
using this simulation language are quite different from the
Concurrent Pascal approach and will be discussed in detail.
The physical makeup of the program will also be discussed.
The approaches to the problem that did not work will also

be described.

PAGE 20

4.1 PROGRAM STRUCTURE

The general organization of +the Sequential Pascal
program is divided into four general pieces (See Figure 4),
The first part consists of the simulation procedures, which
are almost identical to the Concurrent Fascal simulation
monitor procedures. The second portion of the Sequential
Pascal code is the scenarios that will be executed. Their
purpose is the same as the scenarios in the Concurrent
Pascal program. They will be discussed, 1in that tﬁere are
several unique ideas involved in their construction. The
third and fourth areas of the Sequential Pascal approach are
inside a repeat statement which continues until the
Simulation is cancelled. These last two sections comprise
the Procedure GO. The third portion is the code which calls
the scenario to be executed and then calls the appropriate
simulation procedure 1in the first section. This 1is
implemented as a large case statement, The fourth and last
section contains the scheduling procedure. This 1is an
interesting area because of the changes required. The
Concurrent Pascal approach relied on the implicit scheduling
done by the language itself; however the Sequential Pascal

program must implement this scheduling explicitly.

PAGE 21

FIGURE 4

SIMULATION
CODE

o

.

SCENARIO
CODE

oy

(2]

s se

(1] .

" oeR be e8

PROCEZDURE GO
REPEAT

: CASE
SCENARIOC
CALLS

CASE

z SIMULATION

7 CALLS

: SCHEDULING CODE

UNTIL CANCELLED

SEQUENTIAL COMPONENTS

PAGE 22

The simulation code has within it all of the procedures
of Brinch Hansen's Class Fifo. These were needed to allow
the procedures in the code to use a fifo queue to keep track
of records internally. The procedures from the Concurrent
Pascal simulation monitor were used with very few
modifications. The only changes were that Concurrent
Pascal's process control (DELAY, CONTINUE, and EXCHANGE)
statements had to be replaced with the Sequential Pascal
Scheduling used in this program. Some of these alterations
resulted in the splitting of procedures, =so as to comply
with the Sequential Pascal language constraints. The use of
the procedures in this section 1s identical in function to
the Concurrent Pasca; version's usage. Scenarios call these
procedures to accomplish some simulation activity. The
difference is that such <calls are not made directly but

rather, are made through another level of software.

The second area is the =scenarios themselves, The
Concurrent Pascal version 1loaded the =scenarios from the
file systemn. In the Sequential Pascal Language, the
scenarios must be internal to the program as the language
does not allow for external code to be inserted into a
program at run time, The method of writing scenarios and,
the scenarios wuse of the simulation facilities is quite

different from normal coding methods.

Each scenario has the overall structure of a case

PAGE 23

statement. Each scenario is called by the scheduling code
when it is to execute, The scenario executes until it must
use a simulation facility, at which time it places the
parameters for such an action into the SIM_INSTR_REC
variable, places the code for the action desired into the
SIM_MON_INSTR variable, and then increments its INSTR_PTR
variable. The scenario returns control to the scheduling
code which in turn calls the appropriate simulation
facility. When a scenario is recalled, it resumes
execution in the next case of the case structure (See Figure
5). Control flow within the scenarios is complicated by
this arrangement. The programmer, in effect, controls
execution by manipulating the INSTR_PTR wvariable. The
IF-THEN-ELSE statement becomes a change 1in the INSTR_PTR
variable when the flow of control in a scenario was to be
modified by the statement. This <c¢losely resembles the use

of low-level language contructs.

Another difference, and possible problemn, in the
Scenario is caused by the possibility of multiple copies of
& 3cenario. This is corrected by requiring that there are
no local wvariables in a scenario. They must be defined
globally in an array. This allows multiple copies of a
scenario to exist by increasing the size of the variable
array thus, each call t¢ a scenario requires an index to be
passed to the scenaric so that the correct element of the
array of variables is used.

PAGE 2%

FIGURE 5

CASE INSTR_PTR [XX , XX] OF

T2 BEGIN;
SIM_INSTR_REC = XXXIXX ;
SIM_MON_INSTR = XXXXXX ;

INCR (INSTR_PTR [XX , XX 1)
END;

e

2: BEGIN;

SIM_INSTR_REC 1= IXXXIXX ;
SIM_MON_INSTR = XXXXXX ;
INCR (INSTR_PTR [XX , XX 1) ;

END;
3: BEGIN;
SIM_INSTR_REC = XXXXXIL ;
SIM_MON_INSTR = YXXXXX ;

INCR (INSTR_PTR [XX , XX 1) ;

END;

b: BEGIN;
SIM_INSTR_REC = XIXXXXX ;
SIM_MON_INSTR := XXXXXX ;
INCR (INSTR_PTR [XX , XX 1) 3

END;

5 BEGIN;
SIM_INSTR_REC = XXXXXX ;
SIM_MON_INSTR = XXXXXX ;

INCR (INSTR_PTR [XX , XX 1) ;
END;
END "CASE";

SEQUENTIAL SCENARIC CONSTRUCTION

PAGE 25

The third section of the Sequential Pascal version is
in the procedure GO (See Figure 4). It consists of two case
statements inside a repeat statement. The first case
statement calls the active scenario, which is recorded in
the SCENARIO_NUM wvariable. Upon return from the scenario
the second case statement is executed. This case statement
calls the appropriate =simulation procedure, described in
the first section. It executes this call with the
appropriate parameters placed in the PARAM variable by the
s¢cenario. Upon return from the simulation procedure,

control passes to the scheduling portion of the code.

The scheduling code, the fourth =section, is the last
half of the procedure GO. It 1is contained in the same
repeat statement as the third section. A4 brief description
of how a scenario would delay or c¢continue is needed to

understand the scheduling algorithm.

If a =scenario delays itself, it places the current
value of the SCENARIO_NUM variable 1nto a NOTICE variable
and correctly links the NOTICE into the data structure used
(there are two possible data structures, the time list and
event list). The scenario then sets the boolean variable

DELAY to true and returns to the third section of the code.

If a scenariec 1s to CONTINUE another scenario, it
places its own number into the ACTIVE_PROCESSES fifo queus.

PAGE 26

It then replaces the scenario number in the SCENARIC_NUM
variable with the rnumber <cf the continued scenario, alter
delinking the data structure correctly. Control returns to
the third section and it is the continued process whieh is

called next.

The EXCHANGE statement is implemented by performing the
actions of a DELAY as detailed above, except that the DELAY
variable is noet changed. A CONTINUE 1is then done on the

other scenario.

The code for the scheduling works in a straight forward
manner, If a Delay has occured, then scheduling is done.
If there was no delay, then control is given back to the
first case statement and the scenario is recalled. If the
current scenario has delayed itself, then the
ACTIVE_PRQOCESSES queue is checked for an active scenario
number. If there is arn active scenario in the queue, then
the scenario number is placed into the variable SCENARIO_NUM
and control is returned to the third section. If no
scenarios are active, then the next scenario on the time
list must be found. The procedure TIME_MOVES_ON does this.
The scenaric number is found in the time notice. The
current simulated time is updated by the ©procedure
UPDATE_TIME. The correect scenario is then ez2lled by the

first case statement in the third section.

PAGE 27

The technigues used in programming in this approach are
somewhat unique. The Pascal language is usually considered
a structured language with high level programming very much
in evidence, This is true of this implementation; however,
there are also areas where this has Dbeen intertionally
modified to low=-level programming structures. Of particular
interest is the methed of wusing the INSTR_PTR variable in
the scenarios to keep track of the point of execution. This
is a step backwards almost to the assembler-level of
programming. In this implementation, I found it very easy
to initially write the scenarios as segquential programs and
to call the simulation procedures needed with the name of
the function wanted. I then inserted the c¢case form,
instruction pointer incrementation, and setting the c¢orrect
values into the parameter passed. This re-writing could be
handled in part by a pre-=processor, but that was not

examined by this report.

PAGE 28

4.2 PREVIOUS APPROACHES

There were other earlier attempts by the author to
implement this approach. They were not successful, yet they
did contribute knowledge that helped to find an
implementation that worked. The first few attempts were to
try to shift the Concurrent Pascal code to the Sequential
Pascal code with no real change in the program. The
problems in the handling of process control (DELAYs and
CONTINUEs) very quickly resulted in these methods being
abandoned. The major attempt that seemed to work was to use
a Kansas State University Department of Computer Scilence
implementation of a CLASS in Sequential Pascal ¢to
encapsulate the data of the scenarios. The approach was to
have a small sequential program with several classes that
would contain the =scenario code and variables, as well as
one which would <contain the simulation <¢ode from the

Concurrent Pascal simulation monitor (See Figure 6).

PAGE 29

FIGURE b6

CALLS TO SIMULATION CODE
CALLS TO SCENARIO CODE
SCHEDULING

SIMUOLATION
CLASS

SCENARIQ
CLASS

& a3y a

SCENARIO
CLASS

ORIGINAL APPRCACH

PAGE 30

This approach made sense in thaf the class would allow
the encapsulation of the local variables and data of the
scenarios and simulation. The problem which was to prove
too difficult to handle was the need for certain information
in the simulation e¢lass to be available to the scenario
classes while at the same time, for scenario information to
be available to the simulation c¢lass in order to correctly
schedule scenarios. A solution attempted was to remove the
simulation class and to just encapsule the scenarios (See
Figure 7). This solved the problem of scheduling

information.

The next problem discovered was involved with the
implementation of the CLASS «concept. The CLASS local data
space was removed from the memory when not in use and 1loecal
variable contents would be 1lost. On entry, the 1local
variables would be reset to initial values and nothing would
be accomplished. The solution to this problem was to

declare the variables as global to the CLASS.

Another problem with the CLASS c¢oncept was that the
internal structure of the c¢lass would create problems in
allowing execution to continue after a return to the main
routine,. The solution picked was to construct a case
structure in the scenario code 30 that execution could
continue after a return by using the case variable to point

to where execution should resume. The case variable would

PAGE 31

need to be global to the CLASS to allow a value to be saved

from call to call.

PAGE 32

FIGURE 7

CALLS TO SCENARIO CODE

SCHEDULING

SIMULATION CODE

SCENARIO
CLASS

SCENARIO
CLASS

TRIAL SOLUTION

PAGE 33

The end result of all these problems, and their
solutions, was that all the advantages of using the CLASS
concept were removed, Everything except the code has been
removed to the global procedure and is thus unprotected. The
last change was to drop the CLASS 1idea altogether for
greater portability, as the CLASS concept is not widely

known or recognized in Sequential Pascal.

A partial solution for the protection problem was
identified. This was more of a coding technique than a
formal protection. All variables in a scenario are prefaces
with a S_. This allows scenarios to be gquickly checked for
using only local variables. Local procedures are also named
the same way. This convention «could possibly be checked
with some kind of preprocessor, but this was not dealt with

by this report.

PAGE 34

5.0 COMPARISON OF METHODS

The two methods wused in this repcrt have been
presented. Each method and its physical structure has been
explained. In this section of the report, we will compare
the twe methods. There are many Ffacets of each approach
that are similar and many that are different. We will
examine these facets by dividing them generally into three
areas (portability, performance, and ease of use), and
discuss each in detail. Portability is the idea of being
able tec move these facilities to other computers with 1little
or no modification, and the idea of compatability with
other Pascal languages. Performance will deal with the
comparison of the actual performance between the Concurrent
Pascal and Sequential Pascal versions., Ease of Use includes
other facets of the program structure. Understandability,
elarity of concepts, and software engineering practices are
examples of the topies discussed in the Ease of Use
section. The result of these discussions should be an
understanding of the differences and trade-offs involved

between these two approaches.

PAGE 35

5.1 PORTABILITY

Portability is the ability to transfer a proegram from
one computer to another with little modification. The idea
of portability is one of the basic reasons for the
standardization of computer languages., The progranms
developed and used to implement this report contain nothing
which is a strietly local variation of Pascal. It should be
noted that there is, at present, no standard Pascal, though
there has been some movement toward standardizing Pascal [
30 J. The literature available indicates that the
implementation of Pascal at Kansas State University contains
nearly all of the features of the standard being
considered. The language implemented here also contains
some features not in the proposed standards. Both programs
contain only the tentative standard Pascal, whieh should

allow future porting of these simulation techniques.

The Sequential Pascal version contains only one machine
dependent activity, the writing of the output. The
Sequential Pascal version outputs an operating-system call
to initiate output. This call 1is the instruction to the
operating system to perform an cutput operation. This code
is very isolated and would be quite easy to modify for a
different operating systen. The proposed standard Pascal
would eliminate this code as the standard includes output

mechanisms,

PAGE 36

The Concurrent Pascal version has the same mechanism
for output, whiech is well isolated from the rest of the
prograﬁ. The Concurrent Pascal version uses the
implementation of Brinch Hansen's [32] Class, Monitor, and
Process. These <constructs are well known but may involve
some problems inm porting to other Pascal compilers. The
Concurrent Pascal version also reads the scenario's code
into the JOB_PRGCESS from the Operating System File
Subsystem. This code is isolated in the FILEMON Monitor and

should be relatively easy to modify.

The points listed above are the probable problems in
attempting to port this simulation code. The report by Neal
and Wallentine [2] gives some more points to consider in
the porting of Concurrent Pascal programs from one machine
to ancother, These problems are not great and should be
easily handled by a competent systems programmer, since they
involve the communication with the operating system. I feel
the portability of either system is a very strong peint in
favor of 1its greater use and acceptance. The problems
involved in the porting of the Concurrent Pascal version
stem mainly from the faet that there is currently no
standard for Concurrent Pascal. Work has been deone for a
Standard for Sequential Pascal but little has been done on

Concurrent Pascal.

PAGE 37

5.2 PERFORMANCE

The performance of the two versions was tested on an
Interdata 8/32 computer, and was measured by implementing
identical problems wusing both methods. Each method was
¢xecuted and the time neccesary to execute the program was
recorded. Each program was run three times and the average
time was used for the comparisons (See figure 8). It should
be noted that this average was very simple to calculate as
in all cases two of the run times were identical with the

third time differing by a maximum of one second.

The test programs simulated a computer operating
system. The models were relatively simple and were identical
to the model example in Wallentine et. al. [13]. The
simulations were run for various lengths of time, those
chosen being 10,000, 20,000, 40,000, and 80,000 units of
time. The programs were only run when there were no other
programs executing on the computer. This measure of
performance is c¢rude but does allow valid comparisons to be
made between the twoe approaches. A better measure of
efficiency could be made by the insertion of a measurement
package on the computer system used. At present there is no
operational measurement package on the computer used in this

report at Kansas State University.

PAGE 38

FIGURE 8

COMPARISON OF RUN TIMES WITH NORMAL KERNEL

TIME SEQUENTIAL CONCURRENT % DIFFERENCE
UNITS SECONDS SECONDS IN PERFORMANCE
10000 : ug : 83 73 :
20000 : 93 : 160 72 :
40000 : 185 314 T2 &
80000 y 367 : 618 68

AVERAGE RUN TIMES

PAGE 39

The performance of the two systems relative to each
other shows marked differences, the sequential code running
considerably faster than the concurrent code. There are
Several possible reasons for this difference. The
Concurrent Pascal v?rsion is implemented using a program
called KERNEL to interpret the concurrent operations into
code suitable for a register machine. The Interdata 8/32
computer, on which both versions were tested, has a register
architecture., The Segquential Pascal version does not use
the same XERNEL program. The Sequential Pascal compiler
generates code suitable for a register machine. The KERNEL
for the Sequential Pascal version is a run time library for
system support. The concurrent KERNEL is an actual program
that records neccessary information in order to implement
the concurrent concepts involved in the language. The
concurrent KERNEL also <contains the run time library, but

the routines differ from the sequential routines.

The approximate 70% increase in run time seemed to be
excessive, A second test was undertaken using a different
KERNEL program. This KERNEL program had removed from it
certain features (time=-slicing) that normally were
present. The removal of these features in no way impaired
the language as these <features were user transparent and
were used as system support. The results of the tests run
Wwith these changes are listed in Figure 9. The removal of
the features from the KERNEL did <improve the run times but

PAGE 40

not as much as was expected.

A simpler KERNEL, such as the kernel of the semantics
of MODULA, is expected to improve performance in the
Concurrent Pascal version [33 1]. This is a large effort

and is therefore the subject of a separate report.

Since the results of the c¢omparison of the run times
with the altered KERNEL also seemed ¢to be too high, it was
decided to test the Concurrent Pascal versicn again. This
test was to code the entire program using Concurrent Pascal
and not to use the Sequential Pascal programs in the
scenarios. The scenarios were physically c¢oded into a
Process and not read 1in as were the normal concurrent
version scenarios. This approach allows the slowing effects
of prefix calls, file acecess, and locading times to be
removed. It also does away with the ability to modify the
simulation by simply changing scenarios. The entire code,
including the simulation monitor, must be recompiled with
each run. The tests were conducted with the same method
used for the previous tests. The effects of the £two
different KERNEL programs were also checked. The results
were tabulated (See Figure 10) with the times recorded as
the average of three separate runs at each simulation time
length. Each of these times is the result of two times
being identical with the third time being within one
second.

PAGE M1

FIGURE 9

COMPARISON OF RUN TIMES WITH MODIFIED KERNEL

TIME SEQUENTIAL CONCURRENT % DIFFERENCE
UNITS SECONDS SECONDS IN PERFORMANCE
10000 : 48 : TT s 60 x
20000 ! 93 : 152 s 63 5
4ooo0 ¥ 183 g 300 ¥ 64 :
80000 : 367 3 595 ¢ 62 :

AVERAGE RUN TIMES

PAGE 42

FIGURE 10

NORMAL KERNEL

TIME SEQUENTIAL CONCURRENT % DIFFERENCE
UONITS SECONDS SECONDS IN PERFORMANCE
10000 : 48 : 55 : 15

20000 : 93 : 105 : 13 *
40000 i 183 - 203 : 1

80000 ¢ 367 : 4o2 $ 10

MODIFIED KERNEL

TIME SEQUENTIAL CONCURRENT % DIFFERENCE
UNITS SECONDS SECONDS IN PERFORMANCE
10000 > b3 < 52 H 8
20000 3 93 2 100 : 8
40000 : 183 : 196 : 7
80000 : 367 : 388 s 6

COMPARISON OF AVERAGE RUN TIMES WITH BOTH KERNELS

PAGE 43

This improvement of +the <concurrent running times is
very significant. The modification of coding the entire
Ssimulation in Concurrent Pascal results in very efficient
code. Part of this efficientcy is from the removal of the
Prefix code in the JOB_PROCESS code. This efficientey
however displaces some other important factors. There is
some loss of protection with the removal of the Prefix, and
the loss of rapid and easy modification. These factors
indicate that the ease of using the hybrid method,
concurrent version using sequential programs as scenarios,

is a major point in its favor.

PAGE 44

5.3 EASE OF USE

This section of the report will deal with other areas
of comparison between the two approaches, specifically
understandability, expeftise needed, clarity of concepts,
and software engineering practices. Each of these areas
will contribute to a greater understanding of which approach

is better.

The understanding and clarity of ccncept are related to
the fact that Pascal is the implementation language. The
Concurrent Pascal Version embodies simulation entities in
concurrent programming concepts. This results in a program
that is very easy to understand from a concurrent point of
view. The same level of understanding takes a little longer
in the Sequential Pascal version. Figure 11 contains the
code for a concurrent scenario with the equivalent code feor

a sequential scenario.

This understandability issue results from the problems
in implementing co-routines in a language that does not
support concurrency. The boncurrent Pascal code, with its
use of Sequential Pascal programs as scenarios in the job
processes, follows very closely the methods of other

simulation languages in coding a model [21].

PAGE 45

FIGURE 11

INC_COUNT(1,1);
SEIZE(DISK,JOB_INDEX);
WAIT_TIME{IO_TIME(.JOB_STEP.));
RELEASE(DISK,JOB_INDEX);
INC_COUNT(1,=1);

A. SAMPLE CODE FROM A CONCURRENT SCENARIO

12: BEGIN
SIM_MON_INSTR := 16;
E 3= 13 F %= 13

"INC_COUNT"
INCR (N);

END;
13: BEGIN
SIM_MON_INSTR := §;
E := ENUM_TO_INTEGER (S_DISK);
F := S_JOB1_INDEX ;
"SEIZE"
INCR (N);
END;
14: BEGIN
SIM_MON_INSTR := 5;
E := S_JOB1_IO_TIME [INSTANCE ,

S_JOB1_JOB_STEP [INSTANCE] 1;
"WAIT_TIME"

INCR (N);
END;
15: BEGIN
SIM_MON_INSTR := 10;
E := ENUM_TO_INTEGER (S_DISK);

F S_JOB1_INDEX ;
"RELEASE™"
INCR (N);
END;
16: BEGIN
SIM_MON_INSTR := 16;
E := 1; F :=2 =1;

"INC_COUNT"
INCR (N };
END;

B. EQUIVALENT CODE FROM A SEQUENTIAL SCENARIO

COMPARISON OF CONCURRENT AND SEQUENTIAL SCENARIO CODE

PAGE 46

The approach used for the sequential code is not as
understandable. This leads to the estimate that the
Caoncurrent Pascal version is easier to understand and seems

Simpler to the user.

Earlier in this report, the idea was mentioned that the
Concurrent Pascal version was easier to use, resulting from
the similarities of this to other simulation languages. A
programmer familiar with Concurrent Pascal should have
little difficulty in learning the additions to Concurrent
Pascal to use the concurrent version. This ease directly
relates the approach ¢to the simulation from the users
veiwpoint. The Concurrent Pascal approach is also cleaner

and simpler than the Sequential Pascal approach.

The ﬁethods used to develop the simulation model from
the real situations are the same for both approaches. Each
required that a limited resource be allocated and used over
a period of time, and that the c¢ompetition <for those
resources is the focus of the real activity being modeled.
This method for the Concurrent Pascal and Sequential Pascal
versions results in Sequential Pascal programs which
describe a portion o¢f the real activity. The concurrent
version scenarios are written with the actual procedure
calls to the simulation code, while the sequential version
Scenarios are written using a cumbersome process of setting
an instruction pointer, a parameter for which simulation

PAGE 47

ccde i1s to be executed, and a record with the information to
be passed to the simulation <c¢ode. The concurrent version
utilizes standard control statements. The sequential version
scenarios must directly manipulate the instruction pointer
variable in order to effect the flow of control in the

scenario.

The programs are written in Pascal, which is normally
considered a very structured language. It is also
considered a good language in the sense of software
engineering practices. The modularization of the code to
prevent unwanted or unintentional interaction 1s one idea of
software engineering. The concurrent version code fits this
concept very well. The scenarios are inside job processes
and are isolated from the simulation code. One idea behind
modularization is the monitoer concept of protecting the

monitor's variables and code space.,

The iscolation between the parts of the concurrent
version code provided by the Concurrent Pascal language and
its enforcement by the compiler is a point in favor of the
eoncurrent approach. The sequential version code does not
have this automatic protectiocon or compiler enforcement,
resulting in the necessity that the modularization that is

present be programmer-cenforced.

The variables in the sequential code are almost

PAGE 48

entirely global and only careful programming will insure
that acecidental manipulation does not occur, The sequential
version preogram has a problem with the flow of contrel in
the execution of its scenarios. The concurrent version <code
uses the standard control statements of Concurrent Pascal.
The sequential version code must do expliceit manipulation of
the instruction pointer in %he each scenario. This explict
contnl of execution is closer to the jump statement in
assembler programming than tc a high level language control
structure. The overall result is that from the aspect of
software engineering practices, the Concurrenft Pascal
version is much better. The sequential version code in some
ways seems to be almost a step backwards. The Concurrent
Pascal approach does have a disadvantage, irc that Concurrent
Pascal is not as widely wused and accepted as Sequential

Pascal.

PAGE 49

6.0 CONCLUSION

In this report, we have examined two simulation methods
and described the weaknesses and strengths of each. The
general conclusion that appears 1is that the Concurrent
Pascal approach has a better overall usefulness. The
Sequential Pascal approach 1is more efficient, but the
problems of understandability and maintainability make it
the less desirable method. The sacrifice of some efficiency
in order to have simplicity and generality in the

implementing of a language is of value [32].

The usefulness of an extension to the Pascal language
for simulation 1s significant. The combination of the
structured nature of Pasczl, with the inherent concurrency
of the Concurrent Pascal language, makes this a valuable
addition to the simulation disecipline. The programs which
implemented this report are comblete and, combined with the
report by Wallentine et., al. [13 1, will allow for the

testing of these programs on other machine architectures.

The performance of the Concurrent Pascal code versus
the Sequential Pascal code should improve when a computer
with an architecture that is amenable to concurrsant
processing becomes available. The current efficiency can
be attributed to the ©problems in implementing concurrent

processes on the +the architecture of the Interdata 8/32

PAGE 50

computer. The ability to develop simulation models using
Pascal extensions should make the language an even more

important tool in computer programming.

Further work that c¢ould be done for a more complete
examination of the extension of Pascal, to include
simulation features, comprise several areas. The first would
be to examire the Concurrent KERNEL program and to remove
all code that 1is not needed. This should improve the

execution times of the concurrent method.

The problems listed 1in the report dealing with the
Sequential Pascal method could be eased with a
pre=processor. This pre-processor could check that
variables and procedures within the scenarios are local, and
that no outside references to them are made. Another area
that +the pre-processor would simplify would be the
construction of the case structure in the scenario. This
pre-processor would accept a sequential program like a
concurrent scenario and <construct the instruction pointer
incrementing, case labels, parameter passing, and simulation
procedure calls needed, expanding a one statement call in
the concurrent scenario to three or more statements in the
sequential scenario. The three statements needed would be
that of putting the parameters into the PARAM record,
setting the SIM_MON_INSTR to the correct action, and

incrementing the instruction pointer.

PAGE 51

The major problem with the pre-processor idea deals
with the flow of execution inside the scenario. This
problem comes from the faect that control structures such as
WHILE, REPEAT, and IF-THEN-ELSE statements which effect the
"flow of execution cannot be used in a sequential scenario
because of the overall case statement structure. The
translation of these statements may be beyond the effort

that should be expended to construct such a pre-processor.

Another possible use of such a pre-=processor would
allow the general use of simulation ia the Sequential Pascal
language. This would be accomplished by having the
pre-processor insert external references to the code ocutside
the scenarios. Such a system with the rest of the code
except for the scenarios as library support, would allow for
the easy use of =simulation in the Sequential Pascal

Language.

Another area for further work would be to test the
utility and performance of these two methods against other
simulation languages. This comparison would give an idea as
to the usefulness of this extension to Pascal. My opinion
is that Pascal offers =20 much structured support, especially
the Concurrent Pascal method, that it would be an
improvement over most simulation languages. An advantage to

this extension is that it is easy to add new features to the

PAGE 52

extension that the simulator feels are needed.

A further examination that «could be done is the
teating of these methods on other computer architectures.
Since this report dealt only with one machine, an
examination of performance on other machines with differing
architectures should prove to be of value. This examination
could deal with the effects that architecture has on the

implementation of high-level semantics.

The final area of concern is that of future
performance. I feel that Pascal will continue to be a more
widely accepted area of computing. The ability to add
features will give an impetus to using Pascal in all areas,
ineluding simulation. I +fezel that the wuse of Pascal in
simulations should increase as time goes on. When the
concurrent method is tested on a machine architecture that
supports concurrency, then the concurrent method should
greatly out-perform the sequential method. This is because,
when applicable, the concurrent processing is normally
faster that sequential processing. concurrently. The
current non-availability of suech a machine architecture at
Kansas State University was the main reason this idea was

not tested.

PAGE 53

BIBLIOGRAPHY

1] Kaubisch, W., sPerrott R and Hoare C.,
"Quasiparallel programming”, §Q£LE£££.2£§£L1£§ and
Experiance, Vol 6, No. 4 (July-August 1976).

2] Neal, D. and Wallentine, V., "Experience in Porting

Concurrent PASCAL", Software Practice and Experience
Vol. 8, No. 3 (May=-June 1978).

3 1 Brinch Hansen, P., "The Programming Language
Concurrent Pascal"”, IEEE Iransactins of Software
Engipeering, Vol. 6, No. 2 (April - June 1976).

4] wallentine, V. et. al., "An QOverview of the MIMICS
Network", Technical Report (€S 77-05, Department of
Computer Science, Kansas State University, Manhattan
Kansas.

5] Knuth, D. and Mc¢Neley, J. L., "SOL--A Symbolic
Language for General Purpose System Simulation®", IEEE

Iransactions on Computers (Aug, 1964).

6§] Gordon, G., Ihe Applicatiopn of GPSS Y to Discrete

Systems Simulation, Englewood Cliffs, N.J.,
Prentis-Hall, 1975.

7 1 Kiviat, P., Villaneuoa, R., and Markowitz, H. M., The

Simscript Il Programming Language, Englewocod Cliffs,
N.J., Prentice-Hall, 1968.

8] Dahl, 0. J. and Nygaard, K., "SIMULA--An Algol-based
Simulation Language", Lommunications o3 the

Association of Computing Machinervy Vol. 9, No. 9
(Sept. 1966).

PAGE 54

C

9 1] 0S-32 Programmers Reference Manual, Publication
Number S29-613R02, Perkin Elmer Inc., Oceanport N.
J.

10 1 Neal, D., North, B., and Wallentine, V., "SOLO

Tutorials", Technical Report CS 77-20, Deprtment of
Computer Science, Kansas State University, Manhattan
Kansas.

11 1] Vaucher, J. G. and Dwal, P., "4 Comparison of
Simulation Event List Algorithms™, Communications of

the Association of Computinpg Machinery Vol. 18, No. 4
(April, 1975).

12] Hankley, W., Wallentine, V., and Skidmore, A.,
"Distributed Network Simulation: Preliminary Model™,
Technical Report T79-02, January 1979, Department of
Computer Science, Kansas State University, Manhattan
Kansas.

13] Wallentine, V., Hankley, W., and McBride, R., "SIMMON
- A Concurrent Pascal Based Simulation System",
Technical Report T79-05, Department of Computer
Science, Kansas State University, Manhattan, Kansas.

14] Bomball, M.R., Hallam S.F., Secriven, D.D., and
Hallam, J.A., "Five Practical Guidelines for
Successful Completion of Simulation Models", Data
Management Vol 13, No. 8 (August 1975).

15] Farrel, W., MeCall, C., and Russel, E.C.,
"Optimization Techniques for Computerized Simulation
Models", Technical Report TR=-1200-4-75, June 1975,
CACI INC. Los Angeles California

16] Quiney, R., "'Here and Now' vs. 'There and Then'™",

PAGE 55

17

18

19

20

21

22

23

24

25

26

]

Crosbie, R"., M"Language and Program Structure in
Simulation®, Proceedings of the 1978 Summer Computer
Simulation Conference,

Wirth, N., "On the Composition of Well Structured

Programs", Computing Surveys Vol. 6, No. 4 (December

Schnieder, G., "Pascal : An Overview", Computer April
1979.

Young, R., "PASCAL/32 Language Definition", CIS Inec.,
Manhattan Kansas 1978.

] Maryanski, F., Digital Computer Simulation,
Prentice-Hall, Englewood Cliffs N.J. 1979.

] Ivie, E., "The Programmers Workbench", Communications

of the Association of Computing Machipery Vol. 20,
No. 10 (October 1977).

] Zelkowitz, M., "Perspectives on Software

Engineering", Computing Reviews Vol. 10, No. 2 (June
1978).

Boehm, B., "Software Engineering®, IEEE Iransactions
on Computers December 1976.

Ross, D., Goodenough, J., and Irvine, C., "Software
Engineeering : Process, Principles, and Goals",

Computer May 1975.

Norlen, U., Sipulation Model Building, Halsted Press,
New York N.Y. 1975.

PAGE 56

28

29

30

31

32

33

]

1

]

Yourdan, E., Constantine, L., Structured Design,
Prentice-Hall Inc., Englewood Cliffs N.,J. 1979.

Osborne, M. and Watts, R., Simulation and Modeling,

University of Queensland Press, St. Lucia Queensland
1977.

Hibbard, P. and Schuman, 3., Constructing Quality
Software, North-Holland Publishing Company, New York

N-Y- 1977.

Ravenel, B g "Toward a Pascal Standard”™, Computer
April 1979.

Chandy, K. and Misra, J., "Distributed Simulation : 4
Case Study in Design and Verification of Distributed

Programs", IEEE Transactions op Software Engipeering
Vol. SE-5, No. § (September 1979).

Brinch Hansen, P., Ihe Architecture of Concurrent
Programs, Prentice-Hall Inc., Englewocod Cliffs N.J.
1977.

] Wirth, N., "™Modula : a Language for Modular

Multiprogramming", Software-Practice and Experience,
Vol. 7 No. 3 (April 1977).

PAGE 57

APPENDIX : CONCURRENT SCENARIO

NSRRI

SIMPREFIX *#
EEEFHEIRRIERIN

"PREFACE OF CONSTANTS, TYPES, AND PRIMITIVES FOR SIMULATION
PROCESSES"

"CONSTANTS™

CONST MAX_PROCESS = 25; "Max number of processes allowed"
MAX_PROG = 9; "maximum number of sequential programs"
MAX FTYPE = 3; "maximum number of kinds of facilities”
MAX_FACILITY = 19; "maximum number of facilities

allowed of any single type"
MAX_COUNTER = 10; "maximum number of integer counters"®
MAX_EVENT = 20; "maximum number of event variables™
MAX_TIME = 10000; ™maximum integer value"
MAX COND = 20 "maximum conditions ever allowed";
MAX MACHINE = 3;
MAX_MS_ENTRY = 32; "must be an even number™"

"TYPE DEFINITIONS"

ARRAY[1..132] OF CHAR;
TYPE REAL_STR ARRAY[1..20] OF CHAR;
TYPE INT_STR ARRAY[1..6] OF CHAR;
TYPE IDENTIFIER = ARRAY[1..8] OF CHAR;
TYPE ARGTAG = (NILTYPE,BOCOLTYPE,INTTYPE,IDTYPE,PTRTYPE);
ARGTYPE = RECORD
TAG: ARGTAG;
ARG: IDENTIFIER ENDTARGTYPE";
CONST MAXARG = 10;
TYPE ARGLIST ARRAY[1..MAXARG] OF ARGTYPE;
PROCESS_INDEX = INTEGER;
EVENT_INDEX = INTEGER;
FACILITY_INDEX = INTEGER;
COUNTER_INDEX = INTEGER;
STIME = 0,.MAX TIME;
FTYPE_INDEX = 0..MAX_FTYPE;
MAX_FAC = ARRAY [FTYPE_INDEX] OF INTEGER;
FTYPE_ENUM = (CPU,DISK);
"enumeration of facility types"
FNAME = (PRINTER,TAPE1,TAPE2,DISK1,DISK2,
DISK3,DISKY4,PRINTER1,PRINTER2);
FAC_STATS = ARRAY [FTYPE_INDEX,
1..MAX_FACTILITY, 1..4] OF REAL;
COUNTER_STATS = ARRAY [1..MAX COUNTER,1..4] OF REAL;
PROCESS_STATS = ARRAY [1..MAX PRCCESS,1..2] OF REAL;
PROC_VEC = ARRAY [1..MAX_PROCESS] CF BOOLEAN;
EVENT_VEC = ARRAY [1..MAX_EVENT] OF BCOLEAN;
CONDITION_VEC = ARRAY [0..MAX_COND] OF BOOLEAN;
MACHINE_INDEX = 1..MAX_MACHINE;
MS_ENTRY_INDEX = 1..MAX _MS ENTRY;

TYPE PRT_LINE

PAGE 58

APPENDIX : CONCURRENT SCENARIO
"SIM ENTRIES FOR CONTROLLING PROCESSES"

"Either ALIVE or CANCEL must be the first SIM call by
each process; it initializes a status table entry."

PROCEDURE ALIVE ;
"identifies the process with a unique number"”
PROCEDURE CANCEL(SIMULATION_END: BOOLEAN);
"terminates processing by failing the process"
PROCEDURE RENEW ;

"continues specified dormant process,
which was initially CANCELed"

PROCEDURE CLOSE(DEV: FNAME);

"Writes a file mark to 'DEV' and causes any subsequent
information to be written as a new file"™

"SIM ENTRIES FOR SIMULATED TIME"

PROCEDURE WAIT_TIME (T:INTEGER);

"delays calling process during specified time interval
T; requires CURRENT_TIME + T < MAX_TIME"

PROCEDURE WAIT_RAND (T1:INTEGER;T2:INTEGER);

"delays rally process for time interval T, where T1
LT <L T2"

FUNCTION TIME:REAL;

"returns value of current simulation time"

PAGE 59

APPENDIX : CONCURRENT SCENARIO
"SIM ENTRIES FOR FACILITIES"

PROCEDURE DCL_FACILITIES (N:FTYPE_INDEX;
MAXI:MAX _FAC);

" = maximum number of types of facilities to be
used; MAXI declares maximum number of facilities to
be wused, by type; must be called before any
facilities can be seized"

PROCEDURE SEIZE (NAME:FTYPE_ENUM;
I:FACILITY_INDEX);

"seizes faecility I of type NAME; if facility is
busy, calling process is delayed on a queue”

PROCEDURE RELEASE (NAME:FTYPE_ENUM;
I:FACILITY_INDEX);

"releases previously seized facility"
"STM ENTRIES FOR SYNCHRONIZATION BY EXPLICIT EVENTS"
PROCEDURE WAIT_EVENT (I:EVENT_INDEX);

"ecalling process waits on event I < N, it 1is
CONTINUEd when next event I occurs"

PROCEDURE WAIT VECTOR (VAR I:EVENT_INDEX;
VEC:EVENT_VEC);

"calling process waits on all events for which
VEC(I) = TROUE and I < N; upon return I = event which
first occurred”

PROCEDURE SIGNAL (I:EVENT_INDEX);

"signal event I £ N occurs"”

PAGE 60

APPENDIX : CONCURRENT SCENARIO

"SIM ENTRIES FOR SYNCHRONIZATION ON BOOLEAN CONDITIONS USING
COUNTER VARIABLES;

SEE ALSO STANDARD BOOLEAN EVALUATION FUNCTION.M
PROCEDURE WAIT_UNTIL (I:INTEGER);
"calling process is delayed if condition I,
0 £<I< C is currently false; if delayed, process is
continued when condition becomes true”
"NOTE: all conditions are Boolean expressions
involving counter variables and evaluated by the
standard Boolean evaluation function."”

"SIM COUNTER VARIABLE FEATURES"

"these are used for counting simulated quantities,
such as queues, and for Boolean conditions"

PROCEDURE DCL_COUNTERS (N:COUNTER_INDEX);

"declares maximum number of counters to be used;
must be set before any counters are set"

PROCEDURE INC_COUNT (I:COUNTER_INDEX;
AMOUNT : INTEGER) ;

"ecounter I £ N is incremented by AMOUNT;
NOTE: AMOUNT could be a negative quantity”

PROCEDURE ASSIGN_COUNT (I:COUNTER_INDEX;
VALUE: INTEGER) ;

"counter I £ N is set to VALUE; NOTE: this erases
all previous statisties for counter IM

FUNCTION TEST (I:COUNTER_INDEX):INTEGER;
"yvalue of counter I { N is returned"”

"BOOLEAN CONDITION EVALUATION FUNCTION: the following
function must be compiled into the CPASCAL program; it is
used within the SIM monitor™

"STOCHASTIC FUNCTIONS PROVIDED™

FUNCTION UNIFORM(I,J:INTEGER):INTEGER;

"if J < I then UNIFORM =I, otherwise it returns a
random value I £ UNIFORM < J"

PAGE 61

APPENDIX : CONCURRENT SCENARIO

"STATISTICS FEATURES PROVIDED:
Each entry below reports one set of statisties; For each
procedure. The parameter FNAME may be either

SIM_JOURNL => output statisties to journal tape

PRINTER => output statistics to printer without

formatting

The statistics are reported in a tabular format."
PROCEDURE REPORT_FACS(NAME :FNAME) ;

"reports TABLE of type FAC_STATS:

TABLE [I;J;1]

% time facility I,J was held

TABLE [I;J;2] = average of length (g) of processes
queued waiting for faecility I,dJ

TABLE [I;J:3] = maximum value of g
TABLE [I;J;4] = minimum value of q"

PROCEDURE REPORT_COUNTERS (NAME:FNAME);
"reports TABLE of type COUNTER_STATS:

TABLE (I;1) number of times counter I was set,

TABLE (I;2) average value of counter I,

TABLE (I;3)

maximum value of counter I,

TABLE (I;4)

minimum value of counter I"
PROCEDURE REPORT_PROCESSES (NAME:FNAME);
"reports TABLE of type PROCESS_STATS:

TABLE (I;1) = amount of simulation time process I
spent in wait_time,

TABLE (I;2) = amount of simulation time process I

spent waiting for events; facilities,
ete."

PAGE 62

APPENDIX : CONCURRENT SCENARIO
"TRACING FEATURES"™
PROCEDURE TRACE(FACILITIES,COUNTERS,EVENTS:BOOLEAN);
"inhibits or enables all tracing"
PROCEDURE TRACE_FILE (NAME:FNAME);
"specifies name of file or device to receive trace
information, may be any of PRINTR, TAPE1, DISK1, etc.;"
"This is also where all scenario output is sent."
PROCEDURE WRITE(TXT: PRT_LINE);
"write a line of text to the printer®
PROCEDURE INT_CHAR(NO: INTEGER; VAR STR: INT_STR);
"Converts a integer to characters of type INT_STR"
PROCEDURE REAL_CHAR(R: REAL; S,D: INTEGER; STR: REAL_STR);
"Converts a real number to characters of type REAL_STR"
PROCEDURE DISPLAY_TIME;
"Causes the current simulation time to be output™

PROGRAM P(VAR PARAM: ARGLIST);

PAGE 63

APPENDIX : CONCURRENT SCENARIO

"simprefix heren®

NEFRFERRFERERTRERE

® J0B1 EXECUTION #
HERSERRRERREESRREN

CONST JOB_INDEX = 1;
MAX_JOB_STEP = T;
SLICE = 25;

VAR EXEC_TIME:ARRAY[1..MAX JOB_STEP] OF INTEGER;
I0_TIME:ARRAY(1..MAX_JOB_STEP] OF INTEGER;
JOB_STEP, JOB_TIME,DELTA,I:INTEGER;

INT_TXT: INT_STR;
TEXT:PRT_LINE;
PROCEDURE WRITE_LINE;
VAR I:INTEGER;
BEGIN
TEXT(.131.):="(:13:)'; "CR"
TEXT(.132.):="(:10:)"'; "NL"
WRITE(TEXT);
FOR I:=1 TO 130 DO
TEXT(.I.}:=' ';
END;
PROCEDURE CENTER(LINE:PRT_LINE;START,COUNT:INTEGER);

VAR I,J:INTEGER;

BEGIN
FOR I:=1 TO COUNT DO
BEGIN
J:=START + (I - 1);
TEXT(.J.):=LINE(.I.);
END;
END;
BEGIN
ALIVE;
FOR I:=1 TO 130 DO TEXT(.I.):=' '; ™initialize print line"
EXEC_TIME(.1.):=300; IO_TIME(.1.):=25;
EXEC_TIME(.2.):=5; IO_TIME(.2.):=25;
EXEC_TIME(.3.):=5; IC_TIME(.3.):=25;
EXEC_TIME(.4.):=5; IO_TIME(.4.):=25;
EXEC_TIME(.5.):=5; IO _TIME(.5.):=25;
EXEC_TIME(.6.):=5; I0O_TIME(.6.):=25;
EXEC_TIME(.7.):=5; IO _TIME(.7.):=25;

PAGE 64

APPENDIX : CONCURRENT SCENARIO

JOB_STEP:=1;
JOB_TIME:=EXEC_TIME(.JOB_STEP. };

REPEAT
BEGIN
INC_COUNT(2,1);
SEIZE(CPU,1);

CENTER(' JOB1 STARTS SLICE AND JOB_TIME IS',10,34);;
INT_CHAR(JOB_TIME,INT TXT);

FOR T := 1 TO 6§ DO TEXT{43+I] := INT_TXT[I];
WRITE_LINE;

IF JOB_TIME <= SLICE THEN DELTA:=JOB_TIME
ELSE DELTA:=SLICE;

WAIT_TIME(DELTA);

JOB_TIME:=JOB_TIME - DELTA; "calculate remaining job time™"
INC_COUNT(2,=1);

CENTER(' JOB1 ENDS SLICE AND JOB_TIME IS',10,32);;
. INT_CHAR(JOB_TIME, INT_TXT);
FOR I := 1 TO 6 DO TEXT[41+I] := INT_TXT[I];
WRITE_LINE;
RELEASE(CPU,1);
IF JOB_TIME <= 0 "i.e,, if job step is done" THEN
BEGIN
INC_COUNT(1,1);
SEIZE(DISK,JOB_INDEX);

WRITE(' JOB1 STARTS I/O (:13:)');
WAIT_TIME(IO_TIME(.JOB STEP.));
WRITE(' JOB1 ENDS I/0 (:13:)');

RELEASE(DISK,JOB_INDEX);
INC_COUNT(1,-1);

JOB_STEP:=(JOB_STEP MOD MAX JOB_STEP) + 1;
JOB_TIME:=EXEC_TIME(.JOB_STEP.);
END;
END;
UNTIL 1 <> 13
END.

PAGE 55

APPENDIX : SEQUENTIAL VERSION CODE

"¢DEBUG := FALSE"
"EBUG := FALSE"
"¢BREAK := FALS3E"
" SVC CALL [1zMS MODIFIED FROM PATRICK IRELAND
FOR SIMMON BY BRIAN J FERGUSON AUG 79 KSU"

PROGRAM SEQPROJECT;

"™ This is the sequentizl code for Brian J Ferguson
Master's project"®

(®
This program has within it several sections of code

that are delimited by "4XXX" and "$END XXX".
These sections of code are modifiled by a pre-processor
used at Kansas State University. Conditions are defined
Wwith secial statements, such as the first three statements
of this program, as either TRUE or FALSE. If a condition
is TRUE then the code between a "$XX"™ and "%END XX" is
not modified and is functional. If a condition is FALSE
then the code between the delimiters is modified into a
comment. The pre-processcor 13 very easy to use and very
good at enabling diagnostiecs and tracing statements to be
left in production code and available for debugging at
a later time. The conditions used in this program are
used as follows:

DEBOG : This enables diagnostices to check on the
execution of the simulation.

BUG : This enables diagnostics on the trace of
execution to a more detailed degree than
DEBUG.

BREAK : This enables statements that generate external
breakpoints for an interactive debugger.

*)

PAGE 66

APPENDIX : SEQUENTIAL VERSION CODE

TYPE SVC1_CONTROL_BLOCK = RECORD
FUNCTICN_CODE : BYTE;

UNIT_NUMBER : BYTE;
STATUS : BYTE;
DEVICE : BYTE;
START_ADDRESS : INTEGER;
END_ADDRESS : INTEGER;
RANDOM_ADDR : INTEGER;
LENGTH_TRANS : INTEGER;
ITAM_USE : INTEGER;
END;

TYPE LINTEGER = INTEGER;

CONST

PAGELENGTH = 512;

IDLENGTH = 8;

READ_REQUEST = 634;
WRITE_REQUEST = 32;

WRITE FILE MARK_REQUEST - #88;
RANDOM_ACCESS = 4;
EXCLUSIVE_READ_ONLY = 32;
EXCLUSIVE_WRITE_ONLY = 96;
EXCLUSIVE_READ WRITE = 224;
SHARED_READ _ONLY = 0;
ASSIGN_REQUEST = 64;
CLOSE_REQUEST = 4;

CR
NL
EM
FF
NOLL = '(:0:)';
BLANK = '(:20:)';

wnonon
—
N
un
L]
L

TYPE

PAGE = ARRAY[1..512] OF CHAR;

IDENTIFIER = ARRAY[1..IDLENGTH] OF CHAR;

FNAME = (PRINTR, TAP1, TAP2, DISK1, DISK2, DISK3,
DISK4, PRINTR1, PRINTR2);

PRT_LINE = ARRAY[1..132] OF CHAR;

MINI_STR = ARRAY[1..4] OF CHAR;

INT_STR = ARRAY [1..6] OF CHAR;

REAL_STR = ARRAY[1..20] OF CHAR;

PAGE 67

APPENDIX : SEQUENTIAL VERSION CODE
CONST
MASTER_ID

SCENARIO1
MAX_PROCESS

nn
LI AN B
“e e

10; ™ = total number of scenarios
+ master timer + loader®™

FACILITY _TYPES = 3;

MAX_FACILITY = 19;

MAX_CNTR =10;

MAY_EVENT = 9;

PMAX_EVENT =5;

NOTICE_MAX = 30; ™>= max_process + n_intvls + 2"

DT = 10;

N_INTVLS = 3;

TYPE

LIFE = (LIVING,DEAD);
ATTRIBUTE_ARRAY = ARRAY [1..MAX_PROCESS] OF INTEGER;
MAX_FAC = ARRAY[0..MAX_FACILITY] OF INTEGER;
EVENT_VEC = ARRAY[1..MAX EVENT] OF BOOLEAN;
EVENT_PTRS = RECORD
PREV,NEXT: INTEGER; "back & forward pointers"
"Position of this event in other link records"
PREV_POS , NEXT_POS : INTEGER;
EVENT_NO: INTEGER;
END MEVENT_PTRS";

DELAY_ELEM = RECORD
LINK:ARRAY[1..PMAX_EVENT] OF EVENT_PTRS;
SLEEP:INTEGER:
WAIT_TIME, ACTIVE_TIME,REQ TIME: REAL;
LST_TIME: REAL;
STATUS: LIFE ;
END "DELAY_ELEM";

FACILITY_REC = RECORD
FREE: BOOLEAN;
Q_HEAD: INTEGER;
USE_TIME: REAL;
Q: INTEGER;
Q_AVE:REAL;
Q_MIN,Q MAX:INTEGER;
SEIZE_TIME, AVE _WAIT: REAL;
RLSE_CNT: REAL;
USE_CNT:REAL "= Q + number of successful SEIZEs"

END "FACILITY REC";

PAGE 68

APPENDIX : SEQUENTIAL VERSION CODE

CNTR_REC = RECORD
VALUE : INTEGER;
AVE_VALUE: REAL;
MIN_VALUE,MAX VALUE: INTEGER;
USE_CNT:REAL ;
END "CNTR_REC";

EVENT_REC = RECORD
DELAYED: BOOLEAN;
Q_HEAD: INTEGER;
NUM_SIGNALS, NUM_WAITS: REAL;
Q_AVE: REAL;
Q _MAX,Q:INTEGER;
AVE_WAIT: REAL ;
END "EVENT_REC";

NOTICE_REC = RECORD

ID: INTEGER;
PREV,NEXT:INTEGER;
OCCURRENCE: REAL;
DUMMY: BOOLEAN;
BEDTIME: REAL;
SLEEP: INTEGER ;

END "NOTICE_REC™ ;

TYPE SIM _INSTR_REC = RECORD

A, B, C : BOOLEAN;
1 FNAME;
: INTEGER;
: INTEGER;
: REAL;
¢ MAY FAC;
: EVENT_VEC;
: PRT_LINE;
: INT_STR;
: REAL_STR;

oy
OUROCRLHDIOmO

=

PAGE 69

APPENDIX : SEQUENTIAL VERSION CODE
"INSERT SCENARIO CONSTANTS AND TYPES HERE"
CONST
"JOB1TEST CONSTANTS"
S_JOB1_MAX_JOB_STEP

S_JOB1_SLICE
S_JOB1_INDEX

nonon
U e

"JOB2TEST CONSTANTS"

S_JOB2_MAX_JOB STEP
S_JOB2_SLICE
S_JOB2_INDEX

nun
N
. U] w

TYPE
"SCENARIO TYPES"™

S_FTYPE_ENUM = (S_CPU , S_DISK);
"Enumeration of facility types"

PAGE 70

APPENDIX : SEQUENTIAL VERSION CODE

VAR
CLOCK, OLD_TIMES : REAL;
DELAY LST : ARRAY [MASTER_ID..MAX PROCESS] OF DELAY_ELEM;
FREE_DELAYS : INTEGER;
FACILITY_ INDEXER : ARRAY [0..FACILITY_TYPES] OF INTEGER;
FACILITY : ARRAY [1..MAX_FACILITY] OF FACILITY_REC;
CNTR : ARRAY [1..MAX_CNTR] OF CNTR_REC;
EVENT : ARRAY [1..MAX_EVENT] OF EVENT_REC;
NOTICE : ARRAY [1..NOTICE_MAX] OF NOTICE_REC;
NFREE : INTEGER;
INTVL_PTR : ARRAY [0..N_INTVLS] OF INTEGER;
ICURRENT,CURRENT : INTEGER;
LOWERBOUND : REAL;
PROCS_DELAYED, ACTIVE_PROCS : INTEGER;
NO,M : INTEGER;
CDTN_LST, CDTN_PTR : INTEGER; "Head of condition list"
SM_TXT : MINI_STR;
LG_TXT : PRT_LINE;
INT_TXT : INT_STR;
REAL_TXT : REAL_STRH;
SIM_STARTED : BOOLEAN;
STALLED : INTEGER;
TRACE_FACILITY, TRACE_EVENT, TRACE_CNTR : BOOLEAN;
CNTR_LIMIT,FCOUNT : INTEGER;
TRACE_TABLE : ARRAY [1..MAX_PROCESS] OF FNAME;
SCENARIO_NUM : INTEGER;
SIM_MON_INSTR : INTEGER:
ACTIVE_PROCESSES : ARRAY [1..MAX_PROCESS] OF INTEGER;
SPEC1 , SPEC2 , SPEC3 : ARRAY [1..MAX PROCESS] OF INTEGER;
SPEC4 : ARRAY [1..MAX_PROCESS] OF BOOLEAN;
HEAD , LENGTH , LIMIT : INTEGER;
CANCELLED : BOOLEAN;
DELAY : BOOLEAN;
INSTR_PTR : ARRAY [1..MAX_PROCESS] OF INTEGER;
PARAM : SIM_INSTR_REC;

PAGE T1

APPENDIX : SEQUENTIAL VERSION CODE
"INSERT SCENARIO VARIABLE DECLARATIONS HERE"
"JOB1TEST VARIABLES"

S_JOB1_EXEC_TIME : ARRAY [1..1] OF
ARRAY [1..S JOB1_MAX_JOB_STEP] OF
INTEGER;
S_JOB1_IO_TIME : ARRAY [1..1] OF
ARRAY [1.. S_JOB1_MAX _JOB STEP] OF
INTEGER;
S _JOB1_JOB_STEP ,
S_JOB1_JOB_TIME ,

S_JOB1_DELTA : ARRAY [1..1] OF INTEGER;
S_JOB1_INT_TXT : ARRAY [1..1] OF INT_STR;
S_JOB1_TEXT : ARRAY [1..1] OF PRT_LINE;

"JOB2TEST VARIABLES"

S_JOB2_EXEC_TIME : ARRAY [1..1] OF
ARRAY [1..S_JOB2_MAX_JOB_STEP] OF
INTEGER;
S_JOB2_IO_TIME : ARRAY [1..1] OF
ARRAY [1..S_JOB2_MAX_ JOB_STEP] OF
INTEGER;
S_JOB2_JOB_STEP,
S_JOB2_JOB_TIME,
S_JOB2_DELTA : ARRAY [1..1] OF INTEGER;
S_JOB2_INT TXT : ARRAY [1..1] OF INT_STR;
S_JOB2_TEXT : ARRAY [1..1] OF PRT_LINE;

"MASTER_TIMER VRIABLES®
S_MAST_FAC_SET : MAX_FAC;
"LOOP COUNTER FOR ALL SCENARIOS™

III : INTEGER;

PAGE T2

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE SVC1 (S1: SVC1_CONTROL_BLOCK); EXTERN;

FUNCTION ATTRIBUTE_GET : INTEGER;
BEGIN
ATTRIBUTE_GET := SCENARIO_NUM;
END;

"¢TF BREAK"
PROCEDURE BREAKPNT (LINENUM : LINTEGER); EXTERN;
"¢ END BREAK"

"These functions are from the Class FIFQ 7

FUNCTION ARRIVAL : INTEGER;
BEGIN
ARRIVAL := HEAD;
HEAD := HEAD + 1;
LENGTH := LENGTH + 1;
END MARRIVAL";

FUNCTION DEPARTURE : INTEGER;
BEGIN
DEPARTURE := HEAD - 1;
HEAD := HEAD - 1;
LENGTH := LENGTH -1;
END "DEPARTURE";

FUNCTION EMPTY: BOOLEAN;
BEGIN

EMPTY := (LENGTH = 0)
END "EMPTY";

FUNCTION FULL: BOOLEAN;
BEGIN
FULL := (LENGTH = LIMIT);
END "FULL";

PAGE T3

APPENDIX : SEQUENTIAL VERSION CODE

NEREREER AR R SRR A R EIANAFERERNE

% START OF SIMULATION CODE #
HESEEEERERERIRRIERRNRTERAFBRAEN

PRCCEDURE XSTR(STRING: PRT_LINE; FIRST,COUNT: INTEGER);
VAR
I : INTEGER;
BEGIN
FOR I := 1 TO COUNT DO LG_TXT [PRED(FIRST+I)] :=STRING [I] ;
END"YSTR";

PROCEDURE CHAR_STR(I: UNIV INTEGER; VAR STRING: MINI_STR);
VAR
C , J : INTEGER;

STRING [2] := CHR(J+48);
STRING [3] := CHR(C + 48);
STRING [4] := ' 13

END ™CHAR_STR";

PAGE T4

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE DUMP_INT(NO : INTEGER ; VAR STR : INT STR);

VAR
I, Jd, K : INTEGER;
BEGIN
IF NO >= 0
THEN
BEGIN
BERL 1) 1= F ity
I := NO;
END
ELSE
BEGIN

STR[1] := tat;
I := ABS (NO);

END;
K := 03
WHILE I > 0 DO
BEGIN
J := I MOD 10;
I := I DIV 10;
STR [6-K] := CHR(J + u48);
K := SUCC(K);
END "WHILE";
FORI :=6-KDOWNTO 2 DOSTR[I] :=1' ';
IF STR [6] = 11
THEN STR [6] := 107;

END "DUMP_INT";

PAGE 75

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE WRITE_REAL(R: REAL; S,D: INTEGER; VAR STR: REAL_STR);

VAR
I, Is, ID, OUT , DIGIT : INTEGER;

NUMB , EXF : REAL;
NON_O : BOOLEAN;

BEGIN
NON_O :
ouT
IS
ID D;

NUMB ABS (R);
IF R < 0.0
]:

FALSE;
2;
S;

THEN STR [1
ELSE STR [1]
WHILE IS > 0 DO
BEGIN
EXP := 1.0;
FORI :=1T0O IS-1D0O EXP := EXP # 10.0;
DIGIT := TRUNC(NUMB/EXP);
NUMB := NUMB - (CONV(DIGIT) # EXP);
IF (DIGIT <> 0) & NOT NON_O
THEN NON_O0 := TRUE;
IF DIGIT > 9
THEN STR'[OUT] := '#!
ELSE IF NON_O ’
THEN STR [OUT] := CHR (DIGIT + 48)
ELSE STR [OUT] := ' ';
IS := PRED (IS);
OUT := SUCC (OUT);
END "ELIHW"™;
IF NOT NON_O
THEN STR [PRED (OUT)] := '0';
IFID >0
THEN
BEGIN
STR [OUT] := '.';
OUT := SUCC (OUT);
END"FI";
WHILE ID > 0 DO
BEGIN
DIGIT := TRUNC(NUMB ¥* 10.0);
NUMB := NUMB * 10.0 - CONV(DIGIT);
STR [OUT] := CHR(DIGIT + 48);
OUT := SUCC (QUT);
ID := PRED (ID);
END"ELIHW";
FOR I := OUTTO20DOSTR[I] := "' *;
END "WRITE_REAL™;

wou
-

PAGE 76

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE INT_CHAR(NO: INTEGER; VAR STR: INT_STR);
BEGIN
DUMP_INT(NO,STR) ;
END "INT_CHAR";

PROCEDURE REAL_CHAR(R: REAL; S,D: INTEGER; VAR STR: REAL_STR);
BEGIN

WRITE_ REAL(R,S,D,STR);
END "REAL_CHAR";

PAGE 77

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE WRITE(DEVICE: FNAME);

" This procedure writes a 132 character line to the logical
unit indicated by the device. The SVC1 call to the O S was
written by Brian J Ferguson®

VAR

UNIT : INTEGER;

SVC1_BLOCK : SVC1_CONTROL_BLOCK;

TEXT_TO_WRITE : PRT_LINE;

I : INTEGER;

BEGIN
CASE DEVICE OF
PRINTR : ONIT :=
TAP1 : UONIT :
TAP2 §
DISK1 : UNIT
DISK2 : UNIT :
DISK3 : UNIT :
DISKSY :
PRINTR1: UNIT :
PRINTR2: UNIT :
END "ESACT™;
LG_TXT [132] := CR;
WITH SVC1_BLOCK DO
BEGIN
UNIT_NUMBER := UNIT;
FUNCTION_CODE := WRITE_REQUEST;
START_ADDRESS := ADDRESS (LG_TXT);
END_ADDRESS := START_ADDRESS + 131:
END "HTIW";
SVC1 { SVC1_BLOCK)
FORI :=1TO130DOLGTXT[I] := 7" '3
END "WRITE™;

W o1 O0WUm W N —
My s ws We e we wu we We

WM wnuwnn

FUNCTION TRACE_DEVICE : FNAME;
" This function is used to identify what the trace device
of a particular job process is. "
VAR
I : INTEGER;
BEGIN
I := ATTRIBUTE_GET ;
TRACE_DEVICE := TRACE_TABLE [I];
END;

PAGE 78

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE WRITE_SIM (TXT : PRT_LINE);
"This procedure allows the job process to write a
132 character line

tc the device found by TRACE_DEVICE "

VAR
I : INTEGER;

BEGIN
FORI :=1TO130DOLGTXT [I] :=TXT[I J;
WRITE (TRACE_DEVICE);

END;

PROCEDURE WRITE_PREFACE;

VAR
I : INTEGER;

BEGIN
WRITE REAL(CLCCK,8,0,REAL_TXT);
XSTR(REAL_TXT,1,9);
XSTR (' PROCESS ',10,9);
I := ATTRIBUTE_GET ;
CHAR_STR(I ,SM_TXT);
XSTR(SM_TXT,19,4);

END "WRITE_PREFACE";

PROCEDURE NADD(N_PTR:INTEGER);
"Add a2 notice back to the free list"
BEGIN
NOTICE [N_PTR] .NEXT := NFREE;
NFREE := N_PTR;
END "NADDM;

PROCEDURE NGET{VAR N_PTR:INTEGER);
"Retrieve index of a free notice"
BEGIN
N_PTR := NFREE;
NFREE := NOTICE [N_PTR] - NEXT;
END "NGET";

PROCEDURE RAND(VAR R: REAL);
BEGIN

259 * NO;

<0

THEN NO := NO + 32767 + 1;

R := CONV(NO)/32767.0 ;
END "RANDT";

PAGE 79

APPENDIX : SEQUENTIAL VERSION COLE

PROCEDURE ALIVE;
BEGIN

DELAY_LST [ATTRIBUTE GET] .STATUS := LIVING;
END FALIVE™;

PROCEDURE RENEW;
BEGIN END;

PAGE 80

P APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE CLOSE(DEVICE: FNAME);
" Write closed by who to file,
if the device is the trace device write file mark"
" added by Brian J rerguson”

VAR

SVC1_BLOCK : SVC1_CONTROL_BLOCK;

UNIT : INTEGER;

I : MINI_STR;
BEGIN
I[1] := CHR(ATTRIBUTE_GET);

XSTR(' FILE CLOSED BY ',2,16);

XSTR(I,17,4);
WRITE(DEVICE);
CASE DEVICE OF
PRINTR
TAP1
TAP2
DISK1
DISK2
DISK3
DISKY
PRINTR1
PRINTR2
END "CASE";

UNIT := 1;
UNIT := 2;
: UNIT := 3;
: UNIT := 4;
UNIT := 5;
UNIT := 6;
UNIT := T;
ONIT := §;
UNIT := 9;

WITH SVC1_BLOCK DO
BEGIN

FUNCTION_CODE := WRITE_FILE MARK_REQUEST;
UNIT_NUMBER := UNIT;
END;
IF DEVICE = TRACE_DEVICE
THEN SVC1(SVC1_BLOCK);
END "CLOSE";
FUNCTION UNIFORM (I , J : INTEGER) : INTEGER;

VAR
R : REAL;
BEGIN
IF J <= 1
THEN UNIFORM := I
ELSE BEGIN
RAND(R);

UNIFORM := I + TRUNC(CONV(J + 1 = I) % R);

END ®FIT;
END "UNIFORM";

PAGE 81

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE TIME_MOVES ON;
VAR
Y : INTEGER;
BEGIN
WHILE NOTICE [CURRENT] .DUMMY DO
WITH NOTICE [CURRENT] DO
BEGIN
LOWERBOUND := LOWERBOUND + CONV(DT);
ICURRENT := SUCC(ICURRENT);
NOTICE [PREV] .NEXT := NEXT;
NOTICE [NEXT] .PREV := PREV;
Y := NOTICE [INTVL_PTR [N_INTVLS]] .PREV;
OCCURRENCE := LOWERBOUND + CONV(N_INTVLS # DT);
WHILE NOTICE [Y] .OCCURRENCE > OCCURRENCE DO
Y := NOTICE [Y] .PREV;
NEXT := NOTICE [Y] .NEXT;
NOTICE [NEXT] .PREV := CURRENT;
NOTICE [Y] .NEXT := CURRENT;
CURRENT := NOTICE [PREV] .NEXT;
PREV := Y;
END "ELIHW";
END "TIME_MOVES_ON™;

PAGE 82

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE CANCEL(CANCEL_SIMULATION : BOOLEAN);
VAR
I: INTEGER;
ACTIVE_UPDATED : BOOLEAN;
BEGIN
I := ATTRIBUTE GET ;
DELAY_LST [I'] .STATUS := DEAD;
"Write out statisties???"
ACTIVE_PROCS := PRED(ACTIVE PRCCS};
IF I = MASTER_ID
THEN
BEGIN
FOR I := 1 TO FCOUNT DO
WITH FACILITY [I] DO
IF SEIZE_TIME > 0.0
THEN USE_TIME :=USE_TIME + CLOCK - SEIZE TIME;
FOR I := SCENARIO1 TO MAX_PROCESS DO
IF DELAY_LST [I] .REQ_TIME > 0.0
THEN DELAY LST [I] .WAIT_TIME :=
DELAY LST [I].WAIT TIME + CLOCK =-
DELAY ILST [I].REQ_TIME;
I := CURRENT;
ACTIVE_UPDATED := FALSE;
REPEAT
IF NOT NOTICE [I] .DUMMY
THEN WITH DELAY_LST [NOTICE[I] .ID] DO
IF NOT ACTIVE UPDATED
THEN
BEGIN
ACTIVE_UPDATED := TRUE;
ACTIVE_TIME := ACTIVE TIME
+ CLCCK - QOLD_TIMES:
LST_TIME := LST_TIME + OLD_TIMES -
NOTICE [I].BEDTIME;
END
ELSE LST_TIME := LST_TIME + CLOCK -
NOTICE [I].BEDTIME;
I := NOTICE [I] .NEXT;
UNTIL I = CURRENT;
IF CANCEL_SIMULATION
THEN
BEGIN
XSTR(' SIMULATION TERMINATES AT TIME',1,30);
WRITE_REAL(CLOCK,10,0,REAL_TXT);
XSTR(REAL_TXT,31,11);
XSTR('(:0:)(:0:),82,2);
WRITE (TRACE_DEVICE);
"DISPLAY('SIMULATION FINISHED (:10:)}');:"
CANCELLED := TRUE;

END "FIn;
END "NEHT"
ELSE DELAY := TRUE;

END "CANCEL";

PAGE 83

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE UPDATE TIME;
VAR

T, ¥ : INTEGER;
BEGIN
WITH NOTICE [CURRENT] DO
BEGIN
T := ATTRIBUTE_GET ;
DELAY LST [T] .ACTIVE_TIME :=
DELAY_LST [T] .ACTIVE_TIME + OCCURRENCE - CLOCK;
DELAY_LST [T] .LST_TIME := DELAY LST [T] .LST_TIME +
CLOCK - BEDTIME;
IF MASTER_ID = T
THEN OLD_TIMES := CLOCK;
CLOCK := OCCURRENCE;
NOTICE [PREV] .NEXT := NEXT;
NOTICE [NEXT] .PREV := PREV;
T := CURRENT;
CURRENT := NEXT;
NADD(T);
END "HTIW";
END "UPDATE_TIME";

PROCEDURE DMP_NOTICE (HDR : INTEGER);

VAR
PTR : INTEGER;
BEGIN
PTR := HDR;
XSTR(' OCCUR DUMMY PTR ',1,20);
WRITE (TRACE_DEVICE);
IF PTR <> 0O
THEN "DUMP OCCURRENCE, DUMMY, & PTR "
REPEAT
WITH NOTICE [PTR] DO
BEGIN

XSTR(' ',1,2);
WRITE_REAL(OCCURRENCE,5,0,REAL_TXT);
XSTR (REAL_TXT,2,6);

IF DUMMY

THEN XSTR('TRUE ',11,6)

ELSE XSTR('FALSE ',11,6);
CHAR_STR(PTR, SM_TXT) ;
XSTR(SM_TXT,17,4);

WRITE(TRACE_DEVICE);
END"WITH";
PTR := NOTICE [PTR].NEXT;
UNTIL (PTR = HDR) OR (PTR = 0);
FOR PTR := 1 TO 4 DO WRITE (TRACE_DEVICE);
END"DUMP_NOTICE"™;

PAGE 84

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE DMP_CNT;

VAR
I : INTEGER;

BEGIN
XSTR(' PROCS DELAYED!,1,14);
DUMP_INT(PROCS_DELAYED, INT_TXT);
XSTR(INT_TXT,15,6);
XSTR(' ACTIVE PROCS=',21,14);
DUMP_INT(ACTIVE_PROCS, INT_TXT);
XSTR(INT_TXT,35,6);
WRITE(TRACE_DEVICE);

END; "DMP_CNT"

PAGE 85

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE INSERT_TIME(T1: INTEGER);
VAR
X,Y,I: INTEGER;
T : REAL;
BEGIN
T := CONV(T1) + CLOCK;
n¢IF DEBUG"
XSTR(' WAIT ',1,6);
WRITE_REAL(T, 5,0,REAL_TXT);
XSTR(REAL_TXT,T7,6);
WRITE(TRACE_DEVICE);
DMP_NOTICE(CURRENT);
"¢ END DEBUG"
NGET(X);
"¢IF BUG™
IF T = NOTICE [CURRENT].OCCURRENCE
THEN DMP_NOTICE (CURRENT);
"¢END BUGM
IF T <= NOTICE [CURRENT] .OCCURRENCE
THEN
BEGIN
Y := NOTICE [CURRENT] .PREV;
CURRENT := X;
END
ELSE
BEGIN

I := TRUNC(T - LOWERBOUND) DIV DT;

IF I >= N_INTVLS
THEN I := N_INTVLS

ELSE I := (ICURRENT + I) MOD M_INTVLS;
Y := NOTICE [INTVL_PTR [I]] .PREV;
WHILE NOTICE [Y] .OCCURRENCE > T DO Y

END "FI";

WITH NOTICE [X] DO

BEGIN

OCCURRENCE := T;
DUMMY := FALSE;
ID := ATTRIBUTE GET ;
BEDTIME := CLOCK;
NEXT := NOTICE [Y] .NEXT; PREV

= Y,

NOTICE [NOTICE [Y] .NEXT] .PREV :

NOTICE [Y] .NEXT := X;
I := ATTRIBUTE_GET ;
SLEEP := SCENARIO_NUM;
DELAY := TRUE;

END "HTIWT;

ng¢IF DEBUG"
DMP_NOTICE (CURRENT);

"2END DEBUG™

END "INSERT_TIME";

PAGE 86

X;

NOTICE [¥] .PREV;

APPENDIX : SEQUENTIAL VERSION

PROCEDURE WAIT_TIME(T : INTEGER);
BEGIN
INSERT_TIME(T);
END "WAIT_TIME";

PROCEDURE WAIT_RAND(T1 , T2 : INTEGER);
VAR
R : REAL;
T : INTEGER;
BEGIN
IF T2 > T1
THEN
BEGIN
RAND (R);
T := T1 + TRUNC(CONV(T2 - T1) ¥ R);
INSERT_TIME(T);
END "FI";
END "WAIT RAND";

PAGE 87

CODE

APPENDIX : SEQUENTIAL VERSICN CODE

PROCEDURE EV_DELINK(P , POS : INTEGER);
"Adjust an event list by removing an entry;
zero out the entry removed"
BEGIN
WITH DELAY_LST [P] LINK [POS] DO
BEGIN
IF PREV <> 0
THEN
BEGIN
DELAY LST [PREV] ,LINK [PREV_POS] .NEXT := NEXT;
DELAY_LST[PREV].LINK{PREV_POS].NEXT POS := NEXT_POS :
END ®FITW;
IF NEXT <> 0
THEN
BEGIN
DELAY_LST [NEXT] .LINK [NEXT_POS] .PREV := PREV;
DELAY _LST[NEXT].LINK[NEXT_POS].PREV_POS := PREV_POS;
END ®FIn;
WITH EVENT [EVENT_NO] DO
BEGIN
IF DELAYED & (Q _HEAD = P)
THEN
IF NEXT = 0
THEN DELAYED := FALSE
ELSE Q_HEAD := NEXT;
Q := PRED(Q);
END "WITH";
PREV := 0;
PREV_POS := 0;
NEXT := 0;
NEXT_POS :
EVENT_NO :
END "WITH";
END "EV_DELINK";

0
0

PAGE 88

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE WAIT_SCALAR(I : INTEGER; VAR J , K : INTEGER);
VAR
PAST,PAST_POS : INTEGER;
DCNE :; BOOLEAN;
BEGIN
PAST := 0;
PAST_POS := 0;
WITH EVENT [I] DO
BEGIN
IF NOT DELAYED
THEN BEGIN
DELAYED := TRUE;
Q_HEAD:= ATTRIBUTE_GET;
Jd := 0;
K 2= 0;
END
ELSE BEGIN
J := Q_HEAD;
DONE := FALSE;
K = 12
WHILE DELAY LST [J] .LINK [K] .EVENT_NO <> I DO
K:=SUCC(K) ;
REPEAT
IF DELAY. LST [J] .LINK [K] .NEXT = 0
THEN DONE := TRUE
ELSE BEGIN
PAST := J;
PAST_POS := K;
J :=DELAY_LST[PAST].LINK[PAST_POS].NEXT;
K:=DELAY_LST[PAST].LINK[PAST_POS]
«NEXT_POS;
END "FIV;
UNTIL DONE;
END "FI";
NUM_WAITS := NUM_WAITS + 1.0;
"Jpdate Q7
Q := SUCC(Q);
END "HTIW";
END "WAIT_SCALAR";

PAGE 89

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE AWAIT_SGNL(VAR P , EV : INTEGER);

VAR
K : INTEGER;
BEGIN
K := ATTRIBUTE_GET;
SPEC1 [K] := P;
SPEC2 [K] := EV;
DELAY := TRUE;
DELAY _LST [K].SLEEP := K;
H

END "AWAIT_ SGNL"

PROCEDURE SPECIAL_EVENT; FORWARD;

PROCEDURE SPECIAL_EVENT;
"This is needed to wake all scenarios waiting for an event"”
VAR
K, P, EV : INTEGER;
BEGIN
K := ATTRIBUTE_GET;
P := SPEC1 [K I;
EV := SPEC2 [K];
WITH DELAY._ LST [K] .LINK [1] DO
BEGIN
EV := EVENT_NO;
P := NEIT;
EV_DELINK(K , 1);
EVENT_NO := 0;

PREV := 0;
PREV_POS := 0;
NEXT := 0;

NEXT_POS := 0;
DELAY LST [K] .WAIT_TIME := DELAY. LST [K] .WAIT_TIME
+ CLOCK - DELAY_LST [K] .REQ_TIME;
DELAY LST [K] .REQ_TIME := 0.0;
END "HTIW"™;
IF PO
THEN BEGIN
ACTIVE_PROCESSES [ARRIVAL] := SCENARIO_NUM;
SCENARIO_NUM := DELAY_LST [P].SLEEP;
SPECIAL_EVENT;
END;
END "SPECIAL_EVENT";

PAGE 90

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE WAIT_EVENT(I : INTEGER);
VAR
PAST , PAST_POS , K : INTEGER;
BEGIN
WAIT_SCALAR(I,PAST,PAST_POS);
K := ATTRIBUTE_GET;
IF TRACE_EVENT
THEN BEGIN
WRITE_PREFACE;
XSTR('AWAITS EVENT ',24,14);
DUMP_INT(I,INT_TXT);
XSTR (INT_TXT,38,6);
XSTR('(:0:)(:0:)",44,2);
WRITE (TRACE_DEVICE);
END"FI™;
IF PAST <> 0
THEN WITH DELAY_LST [PAST] .LINK [PAST_POS] DO
BEGIN
NEXT := K;
NEXT_PCS := 1;
END "FI";
WITH DELAY_LST [K] .LINK[1] DO
BEGIN
DELAY_LST [K] .REQ _TIME := CLOCK;
EVENT_NO := I;
PREV := PAST;
PREV_POS := PAST POS;
END "WITH"; :
AWAIT_SGNL(K,PAST);
END "WAIT EVENT™;

PAGE 91

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE WAIT_VECTOR(VAR I : INTEGER ; VEC : EVENT_VEC);
VAR
PAST , PAST POS , J , K, L : INTEGER;
BEGIN
K := ATTRIBUTE_GET;
I :=1;
FOR J := 1 TO MAX_EVENT DO
IFVEC [J]
THEN BEGIN
WAIT_SCALAR(J,PAST,PAST_POS);
WITH DELAY LST [K] .LINK [I] DO
"Tf range error here then EVENT_VEC has >
PMAX_EVENT entries set"
BEGIN
EVENT_NO := J;
PREV := PAST;
PREV_POS := PAST_POS;
END;
IF PAST <> O
THEN WITH DELAY_LST [PAST] .LINK [PAST POS] DO
BEGIN
NEXT := K;
NEXT_POS := I;
END;
I := SOCC(I);
END "FIT™;
DELAY LST [K] .REQ_TIME := CLOCK;
IF TRACE_EVENT
THEN BEGIN
WRITE_PREFACE;
XSTR(' AWAITS EVENTS ',24,14);
L := 38;
FOR J := 1 TO MAX_EVENT DO
IFVEC [J]
THEN BEGIN
DUMP_INT(J,INT_TXT);
XSTR(INT_TXT,L,6);
XSTR(!' ',L+6,2);
L :=L + 8;

END"FI";
XSTR('(:0:)(:0:)',L,2);
WRITE(TRACE_DEVICE);

END "FI";
AWAIT_SGNL(K,I);
END "WAIT_VECTOR";

PAGE 92

APPENDIX : SEQUENTIAL VERSION CCDE

PRCCEDURE EV_RESET(EV : INTEGER);
VAR
P, K : INTEGER;

"An event has occurred; f[ollow that event list &
remove processes on it from any other event lists

they may be on"
BEGIN
P := EVENT [EV] .Q_HEAD;
REPEAT
WITH DELAY LST [P] DO
BEGIN
IF LINK [1] .EVENT_NO <> EV
THEN EV_DELINK(P,1);
K := 2;
WHILE (K <= PMAX_EVENT) DO
BEGIN
IFLINK [K] .EVENT_NO <> 0
THEN IF LINK [K] .EVENT_NO
THEN WITH LINK [K]
BEGIN
LINK [1]
PREV := 0;
PREV_PQOS :
NEXT := 0;
NEXT_POS :
EVENT_NO :
END "WITH"
ELSE EV_DELINK(P,K);
K := SUCC(K);
END"WHILE"™;
END "HTIW™;
P := DELAY. LST [P] .LINK [1] .NEXT;
UNTIL P = 0;
END "EV_RESET";

PAGE 93

= EV
DO

:= LINK[K] ;
0;

0;
0;

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE SIGNAL(EV : INTEGER);

BEGIN
IF TRACE_EVENT
THEN BEGIN
WRITE_PREFACE;
XSTR('SIGNALS ',24,8);
DUMP_INT(EV, INT_TXT);
XSTR(INT_TXT,32,6);
XSTR('(:0:)(:0:)1,38,2);
WRITE(TRACE_DEVICE);
END "FIT;
WITH EVENT [EV] DO
BEGIN

"update statistics”
NUM_SIGNALS := NUM_SIGNALS + 1.0;
"calculate average Q length at time of a SIGNAL"™
Q_AVE := (Q_AVE # (NUM_SIGNALS - 1.0) + CONV(Q))/NUM_SIGNALS;
IF Q > Q MAX
THEN Q_MAX := Q;
"average maximun delay time"
IF DELAYED
THEN BEGIN .
AVE _WAIT := (AVE_WAIT * (NUM_SIGNALS - 1.0) + CLOCK
- DELAY_LST [QHEAD] .REQ_TIME)/ NUM_SIGNALS;
EV_RESET(EV) ; .
ACTIVE_PROCESSES [ARRIVAL] := SCENARIO_NUM;
SCENARIO_NUM := DELAY LST [Q_HEAD] .SLEEP;
SPECIAL_EVENT;
END "FIT;
END "HTIW®;
END "SIGNAL";

PAGE 94

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE DCL_FACILITIES(N : INTEGER; MAXI : MAX_FAC);
VAR
FI , FJ , I : INTEGER;
STR : INT_STR;
BEGIN
FACILITY_INDEXER [0] := 1;
"¢IF DEBUGT
XSTR(' FACILITIES ',1,12);
WRITE(TRACE_DEVICE);
DMP_CNT;
"¢ END DEBUG"
FOR FI := 1 TO N=-1 DO
BEGIN
FACILITY INDEXER [FI] := 1;
FOR FJ := 0 TO (FI - 1) DO

FACILITY_INDEXER [FI] := FACILITY_INDEXER [FI]
+ MAXI [FJ 1;

END"FOR";
FOR FI := N TO FACILITY_TYPES DO FACILITY INDEXER [FI]
"¢IF DEBUG"
FOR I := 0 TO N DO
BEGIN
DUMP_INT(FACILITY_ INDEXER[I],STR);
XSTR(STR,(10%I + 1),6);
END;
WRITE (TRACE_DEVICE);
"¢ END DEBUG"
"initialize facility array"®
FCOUNT := FACILITY_INDEXER [N-1] + MAXI [N=-1] = 1;
FOR I := 1 TO FCOUNT DO
WITH FACILITY [I] DO
BEGIN
FREE := TRUE;
Q_HEAD := 0;
RLSE_CNT := 0.0;
USE_TIME := 0.0;
Q := 03
Q_AVE := 0.0;
Q_MIN := MAX_PROCESS;
Q_MAX := 0;
SEIZE_TIME := 0.0;
USE_CNT := 0.0;
AVE_WAIT := 0.0;
END "WITH FACILITY[I]";
END "DCL_FCLTS";

PAGE 95

APPENDIX : SEQUENTIAL VERSICN CODE

PROCEDURE SEIZE(NAME : UNIV INTEGER; I : UNIV INTEGER);

VAR

J , K, FINDEX: INTEGER;

NOT_DELAYED
BEGIN

: BOOLEAN;

FINDEX := FACILITY_INDEXER [NAME] + I =1;
FACILITY[FINDEX].USE_CNT:=FACILITY[FINDEX].USE_CNT+1.0;
K := ATTRIBUTE_GET;

DELAY_LST [

K] .REQ_TIME := CLOCK;

NOT_DELAYED := TRUE;
WITH FACILITY [FINDEX] DO
IF NOT FACILITY [FINDEX] .FREE
THEN BEGIN

FACILITY[FINDEX].Q := SUCC(FACILITY [FINDEX] .Q);
"Update Q_AVE, Q_MIN,Q MAX"
Q_AVE := ((USE_CNT - 1.0) * Q_AVE+CONV(Q)) / USE_CNT;
IF Q < QMIN
THEN Q MIN := Q
ELSE IF Q > QMAX
THEN Q MAX := Q;
IF TRACE_FACILITY
THEN BEGIN
WRITE_PREFACE;
XSTR('IS DELAYED UPON (:35:)',24,18);
DUMP_INT(I,INT_TXT);
XSTR (INT_TXT,42,6);
XSTR('OF FACILITY TYPE ',49,18);
DUMP_INT(NAME, INT_TXT);
XSTR(INT_TXT,67,6);
ISTR(*{ 102)(:02)%,73:2);
WRITE(TRACE_DEVICE);
END "FIM;
IF FACILITY [FINDEX] .Q_HEAD = 0
THEN FACILITY [FINDEX] .QHEAD := K
ELSE BEGIN
J := FACILITY [FINDEX] .Q_HEAD;
WHILE DELAY_LST [J].LINK [1].NEXT <> 0 DO
J := DELAY_LST [J] .LINK [1] .NEXT;
DELAY LST [J] .LINK [1] .NEXT := K;
END;
DELAY LST [K] .LINK [1] .EVENT_NO := FINDEX;

SPEC1 [K] := J;

SPEC2 [K] := I;

SPEC3 [K] := NAME;

SPEC4 [K] := NOT_DELAYED;

DELAY := TRUE;
DELAY_LST [K].SLEEP := K;

END "FI"™WITH";

PAGE 96

APPENDIX : SEQUENTIAL VERSION CODE

IF NOT DELAY
THEN
BEGIN
WITH FACILITY [FINDEX] DO
BEGIN
SEIZE_TIME := CLOCK;
"Update Q_AVE,Q MIN,Q MAX"
IF NOT_DELAYED
THEN Q_AVE := ((USE_CNT-1.0) ¥* Q_AVE+CONV{(Q))/ USE_CNT;
IF Q < QMIN
THEN Q MIN := Q
ELSE IF Q > Q MAX
THEN Q_MAX := Q;
AVE_WAIT := (AVE_WAIT # (USE_CNT = CONV(Q) = 1.0) +
CLOCK-DELAY_LST[X].REQ TIME)/(USE_CNT-CONV(Q));
FREE := FALSE;
END "WITH";
IF TRACE_FACILITY
THEN BEGIN
WRITE_PREFACE;
XSTR('SEIZES (:35:)',24,8);
DUMP_INT(I,INT_TXT);
XSTR(INT_TXT,32,6);
XSTR('OF FACILITY TYPE ',39,18);
DUMP_INT(NAME, INT_TXT);
XSTR{INT_TXT,57,6);
XSTR('(:0:)(:0:)',63,2);
WRITE(TRACE_DEVICE);
END "FI™;
DELAY LST [K] .REQ TIME := 0.0;
END; "DELAY IF"
END "SEIZE";

PAGE 97

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE SPECIAL_SEIZE;
"Split from SEIZE to allow for delaying processes®
VAR
J, K, I, NAME , FINDEX: INTEGER;
NOT_DELAYED : BOOLEAN;
BEGIN
K := SCENARIO_NUM;
J := SPEC1 [K 1;
I :=SPEC2 [K];
NAME := SPEC3 [K I;
NOT_DELAYED := SPECY [K I;
K := ATTRIBUTE_GET;
DELAY_LST [K] .WAIT_TIME := DELAY LST [K] .WAIT TIME
+ CLOCK - DELAY LST [K] .REQ TIME;
FINDEX := DELAY LST [K] .LINK [1] .EVENT_NO;
NOT_DELAYED:= FALSE;
DELAY LST [K] .LINK [1] .NEXT := 0;
DELAY ST [K] .LINK [1] .EVENT_NO := 03
WITH FACILITY [FINDEX] DO
BEGIN
SEIZE _TIME := CLOCK;
"Update Q_AVE,Q MIN,Q MAX"
IF NOT_DELAYED
THEN Q AVE := ((USE_CNT=-1.0) ¥ Q AVE+CONV(Q))/ USE_CNT;
IF Q < QMIN
THEN Q_MIN := Q
ELSE IF Q > QMaAX
THEN Q MAX := Q;
AVE _WAIT := (AVE_WAIT # (USE_CNT - CONV(Q) = 1.0) +
CLOCK-DELAY_LST[K].REQ _TIME)/(USE_CNT-CONV(Q));
FREE := FALSE;
END "WITHT;
IF TRACE_FACILITY
THEN BEGIN
WRITE_PREFACE;
XSTR('SEIZES (:35:)',24,8);
DUMP_INT(I,INT_TXT);
XSTR(INT_TXT,32,6);
XSTR('OF FACILITY TYPE ',39,18);
DUMP_INT(NAME, INT_TXT);
XSTR{INT_TXT,57,6):
XSTR('(:0:)(:0:)1,63,2);
WRITE(TRACE_DEVICE);
END "FI®;
DELAY_LST [K] .REQ _TIME := 0.0;
END "SPECIAL_SEIZE";

PAGE 98

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE RELEASE(NAME : UNIV INTEGER; I : UNIV INTEGER):
VAR
J , FINDEX : INTEGER;
BEGIN .
FINDEX := FACILITY_INDEXER [NAME] + I - 1;
WITH FACILITY [FINDEX] DO
BEGIN
USE_TIME := USE_TIME + CLOCK - SEIZE _TIME;
SEIZE_TIME := 0.0;
RLSE_CNT := RLSE_CNT + 1.0;
IF TRACE FACILITY
THEN BEGIN
WRITE_PREFACE;
XSTR('RELEASES (:35:)7,24,10);
DUMP_INT(I,INT TXT);
XSTR(INT_TXT,34,6);
XSTR('OF FACILITY TYPE ',41,18);
DUMP_INT(NAME, INT _TXT);
XSTR(INT_TXT,59,6);
XSTR(*(:0:)(:0:)',65,2);

WRITE(TRACE_DEVICE);
END "FI";
IF Q_HEAD <> 0
THEN BEGIN
J := Q _HEAD;
Q_HEAD := DELAY LST [QHEAD] .LINK [1] .NEXT;
Q := PRED(Q);

ACTIVE_PROCESSES [ARRIVAL] := SCENARIO_NUM;
SCENARIO_NUM := DELAY LST [J] .SLEEP;
SPECIAL_SEIZE;
END "FIM
ELSE FREE := TRUE;
END "HTIW";
END "RELEASE";

PROCEDURE EVAL(COND : INTEGER; VAR VALUE : BOOLEAN);
BEGIN

CASE COND OF
1,2,3 : VALUE := CNTR [COND] .VALUE > 0
END "ESAC";
END "MEVAL";

PAGE 99

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE CHK_CDTNS;
VAR
EOL , FOUND , VAL , ON_HEAD : BOOLEAN;
BEGIN
FOUND := FALSE;
EOL := FALSE;
ON_HEAD := TRUE;
REPEAT
IF CDTN_PTR = 0
THEN EOL := TRUE
ELSE EVAL(TRUNC(NOTICE [CDTN_PTR] .OCCURRENCE),VAL);
IF NOT EOL
THEN IF VAL
THEN FOUND := TRUE
ELSE IF (CDTN_PTR = CDTN_LST) & NOT ON_HEAD
' THEN EOL := TRUE
ELSE CDTN_PTR := NOTICE [CDTN_PTR] .NEXT;
ON_HEAD := FALSE;
UNTIL (EOL OR FOUND);
IF NOT FOUND
THEN CDTN_PTR := 0;
END "CHK_CDTNS";

PAGE 100

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE WAIT_UNTIL(C : INTEGER);
VAR
VAL: BOOLEAN;
I, K : INTEGER;
BEGIN
EVAL(C,VAL);
IF NOT VAL
THEN BEGIN
IF TRACE_CNTR
THEN BEGIN
WRITE PREFACE;
XSTR('IS DELAYED ON CONDITION ',24,24);
CHAR_STR(C, SM_TXT);
XSTR(SM_TXT,48,4);
ISTRL *(202)(:02)1,52,2);
WRITE(TRACE_DEVICE);
END"FI™,
NGET(K);
WITH NOTICE [K] DO
BEGIN
IF CDTN_LST <> 0
THEN BEGIN
NEXT := CDTN_LST;
PREV := NOTICE [CDTN_LST] .PREV;
NOTICE [CDTIN_LST] .PREV := K;
NOTICE [PREV] .NEXT := K;
END "THEN"
ELSE BEGIN
CDTN_LST := K;
PREV := K;
NEXT := K;
END "ELSE";
OCCURRENCE := CONV(C);
DELAY_LST [ATTRIBUTE GET] .REQ TIME := CLOCK;
END "WITH";
I:= SCENARIO_NUM;
SPECT [K] := K;
SPEC2 [K] := C;
SPECY [K] := VAL;
DELAY := TRUE;
DELAY LST [K] . SLEEP := K;
END "FI";
END "WAIT_UNTIL";

PAGE 101

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE SPECIAL UNTIL; FORWARD;

PROCEDURE SPECIAL_UNTIL;
"Split from WAIT UNTIL to allow for continuing processes™
VAR
VAL: BOOLEAN;
I, X, C: INTEGER;
BEGIN
= SCENARIO_NUM;
= SPEC1 [I];
= SPEC2 [I];
VAL := SPEC4 [I]1;
"This is where the condition in NOTICE [CDTN_PTR]
becomes true & is CONTINUED"
:= CDTN_PTR;
I := ATTRIBUTE GET;
- DELAY_LST [I].WAIT_TIME := DELAY LST [I].WAIT_TIME +
CLOCK - DELAY LST [I] .REQ_TIME;
DELAY LST [I] .REQ_TIME := 0.0;
WITH NOTICE [CDTN_PTR] DO
IF CDTN_PTR = NEXT
THEN BEGIN
CDTN_LST :
CDTN_PTR :
END
ELSE BEGIN
NOTICE [NEXT] .PREV :
NOTICE [PREV] ,.NEXT :
IF CDTN_LST = CDTN_PTR
THEN CDTN_LST := NEXT;
CDTN_PTR := NEXT;
END "FI™;

EG
I
K
c

0
0

-
]
.
]

PREV;
NEXT;

NADD(K) ;
IF CDTN_PTR <> 0
THEN BEGIN
ACTIVE_PROCESSES [ARRIVAL] := SCENARIO_NUM;
SCENARIO_NUM := NOTICE [CDTN_PTR] .SLEEP;
SPECIAL_UNTIL;
END;
END "SPECIAL_UNTIL";

PAGE 102

-

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE DCL_COUNTERS(CMAX : INTEGER);

VAR
I: INTEGER;
BEGIN
FOR I := 1 TO CMAX DO WITH CNTR [I] DO
BEGIN
VALUE := 0;
AVE_VALUE := 0.0;
MIN_VALUE := 32767;
MAX_VALUE := 0;
USE_CNT := 0.0;
END "HTIW";

CNTR_LIMIT := CMAX;
END "DCL_CNTRS™;

PROCEDURE CNTR_STATS(I : INTEGER);
BEGIN
WITH CNTR [I] DO
BEGIN
AVE_VALUE :=(USE_CNT # AVE_VALUE+CONV(VALUE))/(USE_CNT+1.0);
USE_CNT := USE_CNT + 1.0;
IF VALUE < MIN_VALUE
THEN MIN_VALUE := VALUE
ELSE IF VALUE > MAX_VALUE
THEN MAX_VALUE := VALUE;
END "HTIW";
END "CNTR_STATS";

FUNCTION TEST(C : INTEGER) : INTEGER;

BEGIN
TEST := CNTR [C] .VALUE;
END "TEST";

PROCEDURE ASSIGN_COUNT(I , VAL : INTEGER) ;
BEGIN
"Update statistics"®
CNTR_STATS(I);
"or write out statisties for CNTR [I] 272"
CNTR [I] .VALUE := VAL;
END "ASSIGN_CNT";

PAGE 103

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE INC_COUNT(I , AMT : INTEGER);
BEGIN
WITH CNTR [I] DO
BEGIN
VALUE := VALUE + AMT;
"Jpdate statistics®
CNTR_STATS(I);
IF TRACE_CNTR
THEN BEGIN
WRITE_PREFACE;
XSTR(' INCREMENTS COUNTER!,24,18);
DUMP_INT(I,INT_TXT);
XSTR(INT TXT,42,6);
XSTR (' BY ',48,4);
DUMP_INT(AMT,INT_TXT);
XSTR(INT_TXT,52,6);
XSTR(*(:0:)(:0:)1,58,2);
WRITE(TRACE_DEVICE);
END "FI";
CDTN_PTR := CDTN_LST;
CHK_CDTNS;
IF CDTN_PTR <> 0
THEN BEGIN
ACTIVE_PROCESSES{ARRIVAL] := SCENARIO_NUM;
SCENARIO _NUM := NOTICE [CDTN_PTR].SLEEP;
SPECIAL_UNTIL;
END;
END "HTIW";
END "INC_CNT";

FUNCTION TIME : REAL;
BEGIN
TIME := CLOCK;
END "TIME";

PROCEDURE TRACE(F1, C, E: BOOLEAN);

BEGIN
TRACE_FACILITY := F1;
TRACE_CNTR 1= C
TRACE_EVENT := E;
END "TRACE";

PROCEDURE TRACE_FILE(NAME: FNAME);
BEGIN

TRACE_TABLE [ATTRIBUTE_GET] := NAME;
END "TRACE_FILE"™;

PAGE 104

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE NEW_PAGE(DEV: FNAME);
BEGIN
ISTR('(:12:) ',1,2);
WRITE (DEV);
END "NEW_PAGE";

PROCEDURE WRITE_TIME(DEV: FNAME);

BEGIN
XSTR(' THE CURRENT TIME IS ',1,22);
WRITE_REAL(CLOCK,10,0,REAL_TXT);
XSTR(REAL_TXT,23,11);
XSTR { *Ca023L 40207, 30,2}
WRITE(DEV);

END "WRITE_TIME";

PROCEDURE DISPLAY_TIME;
BEGIN

WRITE_TIME(PRINTR) ;
END "DISPLAY_TIME";

PAGE 105

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE REPORT_FACS(DEV : FNAME);

VAR
KIND , INST , I : INTEGER;

BEGIN "Write out heading®
NEW_PAGE(DEV) ;
WRITE_TIME(DEV);
XSTR(! TYPE INSTANCE TIME HELD ',1,30);
XSTR(' AVE Q LENGTH MAX Q MINQ ',31,32);
ISTR('AVE DELAY TIME (:35:)SEIZES ',63,28);
XSTR('(:35:)RLSES(:0:)(:0:)',97,8);
WRITE(DEV);
KIND := 0;
INST := 1;
FOR I := 1 TO FCOUNT DO WITH FACILITY [I] DO

BEGIN
IF KIND <> (FACILITY_TYPES - 1)
THEN IF I = FACILITY_INDEXER [KIND + 1]

THEN BEGIN
KIND := SUCC(KIND);
INST := 1; '
END "FIM;

ISTR(' 1',1,2);
DUMP_INT(KIND, INT TXT);
XSTR (INT_TXT,3,6);
DUMP_INT(INST, INT_TXT);
XSTR(INT_TXT,12,6);
WRITE_REAL(USE_TIME,8,0,REAL_TXT);
XSTR(REAL_TXT,21,9);
WRITE_REAL(Q_AVE,3,2,REAL_TXT);
XSTR(REAL_TXT,36,7);
DUMP_INT(Q MAX,INT_TXT);
XSTR(INT_TXT,47,6);
DUOMP_INT(Q MIN, INT_TXT);
XSTR(INT_TXT,55,6 33
WRITE_REAL(AVE WAIT,6,3,REAL_TXT);
XSTR(REAL_TXT,66,11);
WRITE_REAL(USE_CNT,8,0,REAL_TXT);
XSTR(REAL_TXT,80,9) ;
WRITE_REAL(RLSE_CNT,8,0,REAL_TXT);
XSTR(REAL_TXT,94,9);
XSTR('(:0:)(:0:)7,103,2);
WRITE(DEV) ;
INST := SUCC{INST);
END"HTIW";
END "REPORT_FACS";

PAGE 106

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE REPORT_COUNTERS(DEV: FNAME);
VAR

I: INTEGER;
BEGIN "Write out heading®

NEW_PAGE(DEV) ;

WRITE_TIME(DEV);

XSTR(' COUNTER ',1,10);

XSTR('TIMES SET ',15,10);

XSTR('AVE VALUE ',30,10);

XSTR('MAX VALUE ',45,10);

XSTR('MIN VALUE (:0:)(:0:)',60,12);

WRITE(DEV);

FOR I := 1 TO CNTR_LIMIT DOWITH CNTR [I] DO

BEGIN
XSTR(' ',1,2);
DUMP_INT(I,INT_TXT);
XSTR(INT_TXT,4,6);
WRITE_REAL(USE_CNT,8,0,REAL_TXT);
XSTR(REAL_TXT,16,9);
WRITE_REAL(AVE_VALUE,7,3,REAL_TXT);
XSTR(REAL_TXT,28,12);
DUMP_INT(MAX _VALUE,INT_TXT);
XSTR(INT_TXT,47,6);
DUMP_INT(MIN_VALUE,INT TXT);
XSTR(INT_TXT,62,6);
XSTR('(:0:)(:0:)',68,2);
WRITE(DEV);
END "HTIW™;
END "REPORT_COUNTERS";

PAGE 107

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE REPQRT_EVENTS(DEV : FNAME);
VAR
I : INTEGER;
BEGIN ™Write heading"
NEW_PAGE(DEV);
WRITE _TIME(DEV);
XSTR(* EVENT ',1,8);
ISTR('(:35:) SIGNALS ',15,10);
XSTR('(:35:) WAITS ',30,8);
XSTR ('AVE Q LENGTH',45,12);
XSTR('MAX Q ',65,6);
XSTR('AVE DELAY TIME(:0:)(:0:)',75,16});
WRITE(DEV);
FOR I := 1 TO MAX_EVENT DO WITH EVENT [I] DO
BEGIN
XSTR(' ',1,2);
DUMP_INT(I,INT_TXT);
XSTR(INT_TXT,3,6);
WRITE_REAL({ NUM_SIGNALS,8,0,REAL_TXT);
XSTR(REAL_TXT,15,9);
WRITE_REAL(NUM_WAITS,8,0,REAL_TXT);
XSTR(REAL_TXT,29,9);
WRITE_REAL(Q_AVE,7,3,REAL_TXT);
XSTR(REAL_TXT,45,12);
DUMP_INT(Q_MAX,INT_TXT);
XSTR(INT_TXT,6U4,6);
WRITE_REAL(AVE_WAIT,6,3,REAL_TXT);
XSTR(REAL_TXT,80,11);
XSTR('(:0:)(:0:)7,91,2);
WRITE(DEV);
END "HTIW™;
END "REPORT EVENTS™;

PAGE 108

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE REPORT_PROCESSES(DEV : FNAME);
VAR
I : INTEGER;
BEGIN "Write heading"
NEW_PAGE(DEV) ;
WRITE_TIME(DEV);
XSTR(' ADVANCES(:0:)(:0:)',33,10);
XSTR(' UNITS SUSPENDED (:0:)(:0:)',41,18);
WRITE(DEV);
XSTR(' PROCESS',1,8);
XSTR('DELAY TIME',15,10);
XSTR('CLOCK BY(:0:)(:0:)',33,10);
XSTR(' ON TIME LIST (:0:)(:0:)'",41,16);
WRITE(DEV);
FOR I := SCENARIO1 TO MAX_PROCESS DO
WITH DELAY_LST [I] DO
BEGIN
DUMP_INT(I,INT_TXT);
XSTR(INT_TXT,1,6);
WRITE_REAL(WAIT TIME,10,0,REAL_TXT);
XSTR(REAL_TXT,14,11);
WRITE_REAL(ACTIVE TIME,10,0,REAL_TXT);
XSTR(REAL_TXT,30,11);
XSTR('(:0:)(:0:)',41,2);
WRITE_REAL(LST_TIME,10,0,REAL_TXT);
XSTR(REAL_TXT,41,11);
XSTRC "0 e)(209)",52,2);
WRITE(DEV);
END"HTIW™;
END "REPORT_PROCESSES"™;

PAGE 109

APPENDIX : SEQUENTIAL VERSION CODE
"™ INSERT SCENARIC PROCEDURES HERE "

PROCEDURE INCR (N : INTEGER);
BEGIN

INSTR_PTR [N] := SUCC (INSTR_PTR [N]);
END;

PROCEDURE NULLPROC(N : INTEGER ; VAR PARAM : SIM INSTR_REC);
BEGIN

WITH PARAM DO
CASE INSTR_PTR [N] OF

1: BEGIN
SIM_MON_INSTR := 1;
INCR (N);
END;
2: BEGIN
SIM_MON_INSTR := 2;
A := FALSE:
INCR (N);
END;
END "CASE";

END "NULLPROC";

PROCEDURE S_JOB1_CENTER (LINE : PRT_LINE;

START ,
COUNT ,
N : INTEGER);
VAR
I, J : INTEGER;
BEGIN
FOR I := 1 TO COUNT DO

BEGIN
J := START + (I -1);
SJOBI_TEXT [N, J]1:=LINE[I] ;
END;
END; "™ S JOB1_CENTER"

PROCEDURE S_JOB2_CENTER (LINE : PRT_LINE;

START ,
COUNT ,
N : INTEGER);
VAR
I, J : INTEGER;
BEGIN
FOR I := 1 TO COUNT DO

BEGIN
J 1= START + (I - 1) ;
SJOB2_TEXT [N, J] :=LINE[I] ;
END;
END; ™S _JOB2_CENTER"

PAGE 110

APPENDIX : SEQUENTIAL VERSION CODE

"This converts enumerations to integers "
FUNCTION ENUM_TO_INTEGER (N : UNIV SHORTINTEGER) : INTEGER;
BEGIN
ENGM_TO_INTEGER := N;
END;

PAGE 111

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE JOB1TEST(N : INTEGER; VAR PARAM : SIM_INSTR_REC;
INSTANCE : INTEGER);
BEGIN
WITH PARAM DO
CASE INSTR_PTR [N] OF
1: BEGIN
SIM_MON_INSTR := 1;
"ALIVE"
INCR (N);
END;
2: BEGIN
SIM_MON INSTR := 16;
E 2
F := 1;
“IN ,_COUNT™
(NJ;

.':UO.ll Il

END
3: BEGIN
SIM_MON INSTR := 9;
E ENUM_TO_INTEGER (S_CPU);
F: 1;
"SEIZE"
INCR (N);
END;
4: BEGIN
S_JOB1_CENTER (' JOB1 STARTS SLICE AND JOB TIME IS'
,10,34,INSTANCE);
SIM_MON_INSTR := 26;
E := S_JOB1_JOB _TIME [INSTANCE 1;
"INT_CHAR™
INCR (N);
END;
5: BEGIN
FOR III:= 1 TO 6 DO
S_JOB1_TEXT [INSTANCE , 43 + III] :=
L[III 1;
SIM_MON_INSTR := 25;
FOR III := 1 TO 130 DO
K[III] := S_JOB1_TEXT [INSTANCE , III];
"TWRITE"™
INCR (N);
END;
6: BEGIN
FOR IIT := 1 TO 130 DO
S_JOB1_TEXT [INSTANCE , III] := BLANK;
IF S _JOB1_JOB_TIME [INSTANCE] <= S_JOB1_SLICE
THEN S_JCB1_DELTA [INSTANCE] :=
S_JOB1_JOB_TIME [INSTANCE]
ELSE S_JOB1_DELTA [INSTANCE] := S _JOB1_SLICE;
SIM_MON_INSTR := 5;
E := S JOB1_DELTA [INSTANCE];

"WAIT_TIME"™
INCR (N);
END;

PAGE 112

APPENDIX : SEQUENTIAL VERSION CODE

7: BEGIN
"Calculate remaining job time"
S_JOB1_JOB_TIME [INSTANCE] := S_JOB1_JOB_TIME
[INSTANCE] - S_JOB1_DELTA [INSTANCE];
SIM_MON_INSTR := 30;
"NO OPERATION®™
INCR (N)3
END;
8: BEGIN
SIM_MON_INSTR := 16;
E := 2;
F = =1;
"INC_COUNT™
INCR (N)
END;
9: BEGIN
S_JOB1_CENTER (' JOBt ENDS SLICE AND JOBTIME IS !
»y10,32, INSTANCE) ;
SIM_MON_INSTR := 26;
E := S JOB1_JOB_TIME [INSTANCE };
"INT_CHAR"
INCR (N);
END;
10: BEGIN
FOR III := 1 TO & DO
S _JOB1_TEXT [INSTANCE , 43 + III] :=
L[III];
SIM_MON_INSTR := 25;
FOR III := 1 TO 130 DO
K[III] := S_JOB1_TEXT [INSTANCE , III];
"WRITE"™
INCR (N);
END;
11: BEGIN
FOR III := 1 TO 130 DO
S JOB1_TEXT [INSTANCE , III] := BLANK;
"Blank out print line"
IF S JOB1_JOB TIME [INSTANCE] <= 0
"i. e. if job step done "
THEN INCR (N) T"proceed to I-0O"
ELSE INSTR_PTR [N] := 2; "return to SEIZE™
SIM_MON_TINSTR := 10;
E :=ENUM_TO_INTEGER (S_CPU);
F = 1;
" RELEASE"
END;
12: BEGIN
SIM_MON_INSTR := 16;
B g= 1%
Foa= 14
"INC_COQUNT"
INCR (N);
END;

3
]

PAGE 113

13:

14:

15

16:

17:

18:

APPENDIX : SEQUENTIAL VERSION CODE

BEGIN
SIM_MON_INSTR := 9;
E := ENUM_TO INTEGER (S _DISK);
F := S_JOB1_INDEX ;
"SEIZE"
INCR (N)3
END;
BEGIN
S JOB1_CENTER ('JOB1 STARTS I/0'
,1,15,INSTANCE);
SIM_MON_INSTR := 25;
FOR III := 1 TO 130 DO
K[IIT] := S _JOBI_TEXT [INSTANCE , III];
"WRITE™
INCR (N) ;
END;
BEGIN
FOR III := 1 TO 130 DO
S_JOB1_TEXT [INSTANCE , III] := BLANK;
"Blank print line™
SIM_MON_INSTR := 5;
E := S JOB1_IO_TIME [INSTANCE , S JOB1_JOB_STEP
[INSTANCE] I;
"WATT TIME"™
INCR (N);
END;
BEGIN
S_JOB1_CENTER ('JOB1 ENDS I/0',1,13,INSTANCE);
SIM_MON_INSTR := 25;
FOR III := 1 TO 130 DO
K [III] := S JOB1_TEXT [INSTANCE , III];
"WRITE™
INCR (N);
END;
BEGIN
FOR III := 1 TO 130 DO
S_JOB1_TEXT [INSTANCE , III] := BLANK;
"Blank print line™®
SIM_MON_INSTR := 10;
E ;= ENUM_TO_INTEGER (S_DISK);
F := S JOB1_INDEX ;
"RELEASE"™
INCR (N);
END;
BEGIN
SIM_MON_INSTR := 16;
E := 13
F 1= =13
"INC_COUNT™
INCR (N);
END;

PAGE 114

APPENDIX : SEQUENTIAL VERSION CODE

19: BEGIN
S_JOB1_JOB_STEP [INSTANCE] :=
(S_JOB1_JOB_STEP [INSTANCE] MOD
3 JOB1_MAX_JOB_STEF) + 1;
S_JOB1_JOB_TIME [INSTANCE] := S_JOB1_EXEC TIME [
INSTANCE , S_JOB1_JOB_STEP [INSTANCE] 1;
SIM_MON_INSTR := 30;
"NO OPERATIONT
INSTR_ PTR [N] := 2;
END;
END "CASE"
END "JOB1TEST";

PAGE 115

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE JOB2TEST(N : INTEGER; VAR PARAM : SIM_INSTR_REC;
INSTANCE : INTEGER);
BEGIN
WITH PARAM DO
CASE INSTR_PTR [N] OF
1: BEGIN
SIM_MON_INSTR := 1;
mALIVE™
INCR (N);
END;
2: BEGIN
SIM_MON_INSTR := 16;
E :
F:
"IN

L‘ﬂﬂll {]

2;
13
_COUNT™
(§)
END-
3: BEGIN
SIM _MON_INSTR := 9;
E := ENUM_TO INTEGER (S CPU);
F = 1;
"SEIZE"
INCR (N);
END;
4: BEGIN
S _JOB2_CENTER (' JOB2 STARTS SLICE AND JOB TIME ISt
;10,34 , INSTANCE) ;
SIM MON_INSTR := 26;
E := S_JOB2_JOB_TIME [INSTANCE];
WINT_CHAR"
INCR (N);
END;
5: BEGIN
FOR III := 1 TO 6 DO
S_JOB2_TEXT [INSTANCE , 43 + III] :=
L[IIT 1;
SIM_MON_INSTR := 25;
FOR III := 1 TO 130 DO
K[III] := S_JOB2_TEXT [INSTANCE , IIT 1;
"WRITE"
INCR (N);
END;
6: BEGIN
FOR III := 1 TO 130 DO
S_JOB2_TEXT [INSTANCE , III] :
IF S_JOB2_JOB_TIME [INSTANCE] <=
THEN S_JOB2_DELTA [INSTANCE] :=
S_JOB2_JOB_TIME [INSTANCE]
ELSE S_JOB2_DELTA [INSTANCE] :=
SIM_MON_INSTR := 5;
E := S _JOB2_DELTA [INSTANCE 1;

= BLANK;
S_JOB2_SLICE

S _JOB2_SLICE;

"WAIT TIME™
INCR (N);
END;

PAGE 116

APPENDIX : SEQUENTIAL VERSION CODE

T: BEGIN
"Calculate remaining job time"
S_JOB2_JOB_TIME [INSTANCE] := S_JOB2_JOB_TIME
[INSTANCE] - S_JOB2_DELTA [INSTANCE];
SIM _MON_INSTR := 30;
"NO OPERATION™
INCR (N);
END;
8: BEGIN
SIM_MON_INSTR := 16;
E 1= 23
F 1= =1;
"INC_COUNT"
INCR (N);
END;
9: BEGIN
S_JOB2_CENTER (' JOB2 ENDS SLICE AND JOBTIME IS '
,10,32,INSTANCE) ;
SIM MON_INSTR := 26;
E := S JOB2_JOB_TIME [INSTANCE];
"INT_CHAR"
INCR (N);
END;
10: BEGIN
FOR III := 1 TO 6 DO
S_JOB2_TEXT [INSTANCE , 43 + III] :=
L[IiT 13
SIM_MON_INSTR := 25;
FOR IIXI := 1 TO 130 DO
K [III] := S_JOB2_TEXT [INSTANCE , III];
"WRITE"®
INCR (N):
END;
11: BEGIN
FOR III := 1 TO 130 DO
S_JOB2_TEXT [INSTANCE , III] := BLANK;
"Blank out print line™
IF S_JOB2_JOB_TIME [INSTANCE] <= 0
"i. e. IF jot step done "
THEN INCR (N) T"Proceed to I-Q7
ELSE INSTR_PTR [N] := 23 "Return to SEIZE"
SIM _MON_INSTR := 10;
ENUM_TO_INTEGER (S_CPU);
13

PAGE 117

APPENDIX : SEQUENTIAL VERSION CODE

: BEGIN

SIM_MON_INSTR := 9;
E := ENUM_TO_INTEGER (S _DISK);
F := S JOB2_INDEX ;
"SEIZE"
INCR (N);
END;
BEGIN
S_JOB2_CENTER ('JOB2 STARTS I/O0°'
»1,15,INSTANCE) ;
SIM_MON_INSTR := 25;
FOR III := 1 TO 130 DO
K[IIT] := S _JOB2_TEXT [INSTANCE , III];
"WRITE"
INCR (N) ;
END;

: BEGIN

FOR III := 1 TO 130 DO
S_JOB2_TEXT [INSTANCE , III] := BLANK;
"Blank print line"™
SIM_MON_INSTR := 5;
E := S_JOB2_IO_TIME [INSTANCE ,
S_JOB2_JOB_STEP [INSTANCE]];
"WAIT TIME"
INCR (N);
END;
BEGIN
S_JOB2_CENTER ('JOB2 ENDS I/0',1,13,INSTANCE);
SIM_MON_INSTR := 25;
FOR III := 1 TO 130 DO
K[III] := S _JOB2_TEXT [INSTANCE , III];
"WRITE™
INCR (N);
END;

: BEGIN

FOR III := 1 TO 130 DO
S_JOB2_TEXT [INSTANCE , III] := BLANK;
"Blank print line"

SIM_MON_INSTR := 10;

E := ENUM_TO_INTEGER (S_DISK);

F := S5 _JOB2_INDEX ;

"RELEASE"

INCR (N);

END;

: BEGIN

SIM_MON_INSTR := 16;
E = 1;
F = =1;
"INC_COUNT"
INCR (N);
END;

PAGE 118

APPENDIX : SEQUENTIAL VERSION CODE

19: BEGIN
S_JOB2_JOB_STEP [INSTANCE] :=
(S_JOB2_JOB_STEP [INSTANCE] MOD
S_JOB2_MAX JCB STEP) + 1;
S_JOB2_JOB_TIME [INSTANCE] := S_JOB2_EXEC_TIME |
INSTANCE , S JOB2_JOB_STEP [INSTANCE] 1;
SIM_MON_INSTR := 30;
"NO OPERATION™
INSTR_PTR [N] := 2;
END;
END "CASEM
END "JOB2TEST";

PAGE 119

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE MASTER_TIMER (N : INTEGER; VAR PARAM : SIM_INSTR_REC);
BEGIN
WITH PARAM DO
CASE INSTR_EFTR [N] GF
1:BEGIN
SIM_MON_INSTR := 1;
"ALIVE™
INCR (N) ;
END;
2: BEGIN
S_MAST FAC_SET [0]
S MAST FAC_ SET [1 1
FOR III := 2 TO MAX_F
S MAST FAC_SET [
SIM_MON_INSTR := 8;
E := 2;
I := S_MAST_FAC_SET;
INCR (N);
"DCL_FACILITIES"
END;
3: BEGIN
SIM_MON_INSTR :
E := 2;
"DCL_COUNTERS™
INCR (N);
END;
4 :BEGIN
SIM_MON_INSTR :
A := FALSE;
B := FALSE;
C := FALSE;
"TRACE"
INCR (N) ;
END;
S: BEGIN
SIM_MON_INSTR :
E := 60000;
"WAIT _TIME"
INCR (N);
END;
6: BEGIN
SIM_MON_INSTR :
A := FALSE;
"CANCEL"
INCR (N);
END;
7:BEGIN
SIM_MON_INSTR :
D := TAP1;
"REPORT_FACILITIES"
INCR (N)3
END;

-
*

= 1; "cpyn

= 2; "DISKS"
CILITY DO
T

Al
IIT] := 0;

153

23;

"

5;

"
M
L]

20;

PAGE 120

APPENDIX : SEQUENTIAL VERSION CODE

8 :BEGIN
SIM_MON_INSTR := 21;
D := TAF1;
"REPORT_COUNTERS"™
INCR (N);
END;
9: BEGIN
SIM_MON_INSTR := 22;
D := TAP1;
"REPORT_PROCESSES"
INCR (N);
END;
10: BEGIN
SIM_MON_INSTR := 2;
A := TROE;
"CANCEL"
INCR (N);
END;
END "CASE"™;

END "MASTER_TIMER";

~PAGE 121

APPENDIX : SEQUENTIAL VERSION CODE

PROCEDURE INITIALIZE;
VAR
NO , I : INTEGER;
BEGIN
FOR NO := 1 TO 130 DOLG_TXT [NO] := * r;

"Initialize time 1list"

FOR NO := 0 TO N_INTVLS DO
WITH NOTICE [NO + 1] DO

BEGIN
INTVL_PTR [NO] := NO + 1;
IF NO = O

THEN PREV := N_INTVLS + 1
ELSE PREV := (NO - 1) MOD (N_INTVLS + 1) + 1;
NEXT := (NO + 1) MOD (N_INTVLS + 1) + 1;
OCCURRENCE := CONV((NO + 1) * DT);
DUMMY := TRUE;
BEDTIME := 0.0;
END "WITH";
ICURRENT := 0;
CURRENT := 1;
LOWERBOUND := 0.0;

"Initialize notice free list™

FOR NO := N_INTVLS + 2 TO NOTICE_MAX DO
WITH NOTICE [NO] DO
BEGIN
PREV :=
NEXT :=
DUMMY :=
BEDTIME :
END ®QDT%;
NFREE := N_INTVLS + 2;

0;
(NO + 1) MOD (NOTICE_MAX + 1);
ALSE
= 0.0

"Injtialize events™

FOR NO := 1 TO MAXY_EVENT DO
WITH EVENT [NO] DO
BEGIN
DELAYED := FALSE;
Q _HEAD := 0;
NUM_SIGNALS :=
NUM_WAITS := Q.
QAVE := 0.0;
QMAX := 0;
Q := 05
AVE WAIT := 0.0;
END PHTIW";

0.0;
0;

PAGE 122

APPENDIX : SEQUENTIAL VERSION CODE
"Initialize processes'! delay list"

FOR NQ := MASTER_ID TO MAX_PROCESS DO
WITH DELAY_L3T { NC] DO
BEGIN
FOR M := 1 TO PMAX_EVENT DO
WITH LINK [M] DO
BEGIN
PREV :

PREV_POS

NEXT_POS

EVENT_NO

END "HTIW";

WAIT_TIME := 0.0;

ACTIVE_TIME := 0.0;
REQ TIME := 0.0;
LST_TIME := 0.0;
STATUS := DEAD;

END "HIIW";

0 ev ¢4 ws we

"Counters & facitlities are initialized via user calls "

CDTN_LST := 03
PROCS_DELAYED := 0;
ACTIVE_PROCS := MAX_ PROCESS;
CLOCK := 0.0;
NO := B66T;
TRACE_FACILITY := FALSE;
TRACE_CNTR := FALSE;
TRACE_EVENT := FALSE;
SIM_STARTED := FALSE;
STALLED := 0;
FOR NO := 1 TO MAX_PROCESS DO TRACE_TABLE [NO] := PRINTR;
HEAD := 1;
LENGTH := 0;
LIMIT := MAX PROCESS;
CANCELLED := FALSE;
DELAY := FALSE;
FOR NO := MAX_PROCESS DOWNTO SCENARID1 DO
ACTIVE_PROCESSES [ARRIVAL] := NO;
SCENARIO_NUM := MASTER_ID;
FOR NO := MASTER_ID TO MAX PROCESS DO
INSTR_PTR [NO] := 1;

PAGE 123

APPENDIX : SEQUENTIAL VERSION CODE

"INSERT SCENARIO INITIALIZATION HERE "

"INITIALIZE JOB1TEST"

FOR NO := 1 TO 1 DO
BEGIN
FOR I := 1 TO 130 DO
S_JOB1_TEXT [NO , I] := BLANK;
S_JOB1_EXEC_TIME [NO , 1] := 300;
FORI :=2 T0O T DO
S_JOB1_EXEC_TIME [NO , I] := 5;
FORI :=1TOT DO
S_JOB1_IO TIME [NO , I] := 25;
S_JOB1_JOB_STEP [NO] := 1;
3 JOB1_JOB TIME [NO] := S JOB1_EXEC_TIME [NO , 1];
END;

"INITIALIZE JOB2TEST"

FOR NO := 1 TO 1 DO
BEGIN
FOR I := 1 TO 130 DO
S_JOB2_TEXT [NO , I] := BLANK;

S_JOB2_EXEC_TIM=E [NO , 1] 103
S _JOB2_IN TIME [NC, 1] := 25;
=1
= 3

S_JOB2_JOB_STEP [NO] :
S _JOB2_JOB_TIME [NO] :
END;
"¢ IF BREAK"
BREAKPNT (LINENUMBER) ;
"¢ END BREAK™
END "INITIALIZE™;

;
, JOB2_EXEC_TIME [NO , 1];

PAGE 124

APPENDIX

: SEQUENTIAL VERSION CODE

NESASEE RSN SEEEEE SN RN NI ES AR ENERFERRARFRIERES

% scenario calls simulation calls and scheduling #
RN R RN AR AR RN RRF ARSI S SRR RS

PRCCEDURE GO;
BEGIN
REPEAT
"gIF BREAK"

BREAKPNT (LINENUMBER) ;

ngEND BREAK"

CASE SCENARIO_NUM OF
1:MASTER_TIMER (SCENARIQ_NUM , PARAM);

2:JOB2TEST
3:JOB1TEST
4 :NULLPROC
5:NULLPROC
6 :NULLPROC
T :NULLPROC
8 :NULLPROC
9:NULLPROC
10 :NULLPROC

END;

n¢IF BREAK"

P e e W W S S R P S

SCENARIO_NUM
SCENARIO_NUM
SCENARIO_NUM
SCENARIO_NUM
SCENARIQ_NUM
SCENARIO_NUM
SCENARIO_NUM
SCENARIO_NUM
SCENARIO_NUM

BREAKPNT (LINENUMBER);

"ZEND BREAK"
WITH PARAM DO

CASE SIM MON_INSTR OF
1:"ALIVE"

ALIVE;

2:"CANCEL"
CANCEL(4);
3:"RENEW"

RENEW;

4:"CLOSE"
CLOSE(D);
S5:"WAIT _TIME™
WAIT_TIME(E);
6 :"WAIT_RAND"

WAIT RAND (E, F);
7 : "TIME"

H 3= TD’IE;
8:"DCL_FACILITIES™

DCL_FACILITIES (E, I);
9:"SEIZE"

SEIZE (E , F);
10: "RELEASE"

RELEASE (E , F);
11:"WAIT_EVENT"

WAIT_EVENT (E);
12:"WAIT_VECTOR™

WAIT VECTOR (E , J);

PAGE 125

W W M WM WM WM W W

PARAM , 1);
PARAM , 1);
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM

ME we wp wa WE Ws ey

APPENDIX : SEQUENTIAL VERSION CODE

13:"SIGNAL"
SIGNAL (E);
14 :"WAIT_UNTIL"
WAIT UNTIL (E);
15:"DCL_COUNTERS"
DCL_COUNTERS (E);
16 : "INC_COUNTERS™
INC_COUNT (E, F);
17 :"ASSIGN_COUNT"
ASSIGN_COUNT (E , F);
18 : "TEST"
F := TEST (E);
19: "UNIFORM"
G := UNIFORM (E, F);
20 :"REPORT_FACS"
REPORT_FACS (D);
21:"REPORT_COUNTERS™
REPORT_COUNTERS (D);
22 :"REPORT_PROCESSES™
REPORT_PROCESSES (D);
23:"TRACE"
TRACE (A, B, C);
24 : "TRACE_FILE"™
TRACE_FILE (D);
25:"WRITE"
WRITE SIM (K);
26 :"INT_CHAR"
INT_ CHAR (E , L);
27 :"REAL_CHAR"™
REAL CHAR (H, E, F , M);
28 :"DISPLAY_TIME"
DISPLAY_TIME;
29:"REPORT_EVENTS"
REPORT_EVENTS (D);
30:"NO OPERATION";
END"CASE™ "WITH";
n¢TF BREAK"
BREAKPNT (LINENUMBER);
"¢ END BREAK"™

PAGE 126

APPENDIX : SEQUENTIAL VERSION CODE

" Check if process has DELAYed itself™
" Scheduling code "

IF DELAY
THEN
BEGIN
"g¢IF BREAK"
BREAKPNT (LINENUMBER);
"¢ END BREAK™
DELAY := FALSE;
IF NOT EMPTY
THEN
BEGIN
"¢IF BREAK" '
BREAKPNT (LINENUMBER);
"ZEND BREAK"™
"There is an active process in the queue®
SCENARIO _NUM := ACTIVE PROCESSES
[DEPARTURE 1;
END
ELSE
BEGIN
ngTF BREAK"
BREAKPNT (LINENUMBER);
"ZEND BREAK"
"Find next process to activate"
ngIF BUGM
OMP_NOTICE (CURRENT);
"ZEND BUG™
TIME MOVES_ON;
ngIF BUG"
DMP_NOTICE (CURRENT);
"4END BUG"
SCENARIC_NUM:=NOTICE [CURRENT] .SLEEP;
UPDATE_TIME ;

ngIF BOG"
DMP_NOTICE (CURRENT);
"gEND BUGY
END;
END;
UNTIL (CANCELLED);
END "GQOn;
BEGIN
INITIALIZE;
GO;
END.

PAGE 127

COMPARISON OF THE EFFECTS OF
CODING TECHNIQUES
ON SIMULATION CONCEPTS
IN PASCAL

by
BRIAN JOHN FERGUSON

B.S5., University of California, Davis 1974

ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KEANSAS STATE UNIVERSITY
Manhattan, Ransas

1980

ABSTRACT

This report examines the utility and performance of
extending the Pascal language to include simulation
mechanisms. Two different approaches are examined. The
approaches examined include the extension of the Concurrent
Pascal language and the Sequential Pascal language to
include simulation mechanisms. Method one was written in
Concurrent Pascal and used the concepts of Per Brinch
Hansen's Monitor, <Class, and Process. Method two was
written in Sequential Pascal. The two approaches are
compared against each othér to determine the utility,
performance and other factors which would influence the
decision to use one approach rather than the other. Each
method was implemented and tested by running actual
simulations. These results are used in comparing and
contrasting the two methods. The results of these two
methods indicate that the extension of Sequential Pascal has
a faster execution speed compared with the Concurrent Pascal
method. The Concurrent Pascal method 1is better defined,
easier to use, and has a better implementation structure

than the Sequential Pascal method.

