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Abstract

Part 1: The redshift-space bispectrum (three point statistics) of galaxies can be used

to measure key cosmological parameters. In a homogeneous Universe, the bispectrum is a

function of five variables and unlike its two point statistics counterpart – the power spectrum,

which is a function of only two variables – is difficult to analyse unless the information is

somehow reduced. The most commonly considered reduction schemes rely on computing

angular integrals over possible orientations of the bispectrum triangle thus reducing it to sets

of functions of only three variables describing the triangle shape. We use Fisher information

formalism to study the information loss associated with this angular integration. We find that

most of the information is in the azimuthal averages of the first three even multipoles. This

suggests that the bispectrum of every configuration can be reduced to just three numbers

(instead of a 2D function) without significant loss of cosmologically relevant information.

Part 2: One way of enhancing the cosmological information extracted from the clustering

of galaxies is by weighting the galaxy field. The most widely used weighting schemes assign

weights to galaxies based on the average local density in the region and their bias with respect

to the dark matter field. They are designed to minimize the fractional variance of the galaxy

power-spectrum. We demonstrate that the currently used bias dependent weighting scheme

can be further optimized for specific cosmological parameters.

Part 3: Choice of the box-size of a cosmological simulation involves a crucial trade-off

between accuracy and complexity. We use Lagrangian perturbation theory to study the

effects of box size on the predicted power spectrum and Baryon Acoustic Oscillation ruler.

We find that although the optimal size depends on the final redshift of evolution, in general

the 2-point statistics of relevant scales is fairly accurate for a simulation box-size of length

greater than 1000 Mpc.
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Chapter 1

Overview

One of the biggest goals of cosmology is to understand the large scale structure of the

Universe. The current understanding of the energy budget of the Universe is that about 27%

and 68% of the total are dark matter and dark energy1, respectively, both of which remain

elusive for direct experimental detection. Thus, we need indirect methods of detection and

this is one of the reasons for the excitement in large scale structure (LSS).

Our theoretical understanding and modeling of the LSS has seen some rather dramatic

leaps and revisions in the past few decades. Arguably, the major driving force for these

advancements is the ever increasing astronomical data made available by galaxy surveys

like the Sloan Digital Sky Survey2 (SDSS), who have probed the local Universe with an

unprecedented level of precision. Moreover, with the next generation of surveys like the

Dark Energy Spectroscopic Instrument3;4 (DESI) project and the Large Synoptic Survey

Telescope5 (LSST), we will see a many-fold increase in the amount as well as precision of

the available data.

Clearly, the large data sets need to be processed before any meaningful conclusions can

be drawn from them. For this, cosmologists employ statistical methods like calculating n-

point correlation functions6 of the data, which can be predicted by theory. The first part

of this thesis looks at how the bispectrum, equivalent to a 3-point correlation function, can

be calculated more efficiently from large data sets. To optimize the calculations, we employ
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several physically motivated approximations and averagings, the robustness of which is also

demonstrated in the work7.

Another crucial aspect of data analysis involves optimizing the already available methods

to maximize signal-to-noise ratio. In the second part of this thesis, we look at how differ-

ent weighting schemes affect the variance of specific cosmological parameters measured and

provide an optimal solution for the same. The complete details can be found in Pearson et

al.8.

Computer simulations are a powerful and important way of understanding the Universe.

However, owing to the infinite nature of the universe, it is impossible to simulate it beyond

a level of precision. In the third part of the thesis, we look at how the simulation box size

affects the results one obtains from them and its closeness to the actual Universe. We provide

a theoretical analysis and lower bound on the simulation box size one needs to accurately

describe the length scales of the order 100 Mpc.

Though seemingly distinct, the nature of our work has been to develop or optimize

techniques used in understanding large scale structure of the Universe.
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Chapter 2

Part 1: Information Content of the

Angular Multipoles of Redshift-Space

Galaxy Bispectrum

2.1 Introduction

The statistical properties of the matter distribution in the Universe depend on its expansion

and growth history and can be used to measure key cosmological parameters describing the

composition of the Universe, the nature of dark energy, and gravity.

The power spectrum (or its Fourier conjugate, the correlation function) is currently the

most widely used statistical measurement for the purposes of cosmological analysis of galaxy

surveys. The power spectrum of matter is defined as a two point statistic of a Fourier

transformed overdensity field δ(r),

P (k) ≡ 〈|δ(k)|2〉
Vs

, (2.1)
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where

δ(k) =

∫
dr δ(r)e−ikr (2.2)

brackets denote ensemble average, δ(r) is defined in Eq. 2.5, and Vs ≡
∫

dr is the observed

3-D volume.

For a statistically isotropic field the power spectrum would only depend on the magnitude

of the wavevector, k = |k|. The observed galaxy field is however anisotropic with respect

to the line-of-sight direction to the observer, mainly due to the redshift-space distortions

(RSD),9 and the Alcock-Paczinsky effects (AP)10. Because of this anisotropy, in addition

to the magnitude of the wavevector k, the power spectrum also depends on its angle with

respect to the line-of-sight θ, making it a function of two variables.

To make the cosmological analysis numerically less demanding the power spectrum is usu-

ally reduced to the coefficients of the Legendre-Fourier expansion with respect to µ=cos(θ)11

P`(k) ≡ 2`+ 1

2

1∫
−1

dµP (k, µ)L`(µ), (2.3)

where L` are Legendre polynomials of order `.

Recent studies showed that the first three even Legendre coefficients contain almost all

of the information on key cosmological parameters. This suggests that for the purposes of

cosmological analysis the power spectrum at each wavevector can be replaced by just three

numbers (instead of a function of µ) without a significant loss of information12–14.

The bispectrum (or its Fourier conjugate, the three-point correlation function), defined

as,

B(k1,k2,k3) ≡ 〈δ(k1)δ(k2)δ(k3)〉
Vs

(2.4)

is more difficult to measure and to model, and is not currently used as frequently as the

power spectrum to derive cosmological constraints15–18. The bispectrum measurements have

mostly been considered as a means of estimating the primordial non-Gaussianity in the
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matter field19;20, but a number of recent studies used them for Baryon-Acoustic Oscillations

(BAO) and RSD constraints21–24.

If the statistical properties of the Universe are homogeneous (a key assumption in the

standard model of cosmology) the bispectrum is non-zero only for k1 + k2 + k3 = 0 (k

vectors must make a triangle) reducing the number of variables from nine to six. From now

on we will write B(k1,k2) assuming the third vector to be equal to k3 = −k1 − k2. The

partial isotropy with respect to rotations around the line-of-sight axis removes one more

variable, making the bispectrum a five dimensional function. One possible choice of these

five variables is a triplet k1, k2, k3 (ki ≡ |ki|), describing the shape of the bispectrum triangle

and two angles describing its orientation, e.g. θ1 - the angle of k1 vector with respect to the

line-of-sight direction, and ξ - azimuthal angle of k2 around k1 (see Sec. 2.2.1 for a formal

definition).

An obvious extension of the Legendre-Fourier decomposition of the power spectrum is a

spherical harmonics decomposition of the bispectrum for angles θ1 and ξ 25. Unlike the power

spectrum, this double angular multipole expansion of the bispectrum does not truncate at

finite order (see Sec. 2.3.2). The main objective of this work is to identify the expansion

coefficients that contain the most cosmologically relevant information (see Sec. 2.4).

Galaxies provide a biased, discrete sampling of the underlying matter field and along with

the cosmic microwave background experiments currently provide one of the best estimates

of the clustering of matter in the Universe26;27. Our Fisher information based computations

suggest the five dimensional bispectrum with no reduction can deliver up to factor of 1.2

better constraints on the growth rate parameter f compared to the power spectrum, from

a sample of emission line galaxies (ELG) expected from future surveys such as the Dark

Energy Spectroscopic Instrument survey (DESI;4) and Euclid satellite surveys28 at a redshift

of z ∼ 1 (see Sec. 2.5). For a sample of Luminous Red Galaxies (LRG) at lower redshifts

the improvement could be as large as a factor of 3.

We show that most of this information is contained in the first three even multipoles in

angle θ1 averaged over ξ. Constraints on key cosmological parameters from these multipoles

are weaker compared to the constraints derived from the full bispectrum by no more than 10
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per cent at all redshifts and for all tracer types we studied. This suggests that a bispectrum

of each triangular configuration can be replaced by just three numbers (as opposed to a two

variable function) for all practical purposes (see Sec. 2.6).

2.2 Review of Power Spectrum and Bispectrum

2.2.1 Leading Order Model

We will start with a standard assumption that galaxies form a Poisson sample of a biased

matter density field6,

n(x) = n̄

[
1 + b1δ(x) +

b2

2
δ(x)2

]
, (2.5)

where b1 and b2 are the first and second order bias parameters and we ignore higher order

bias terms as well as non-local contributions of δ(x) to the number density of galaxies.

To the leading order in δ the power spectrum is given by9,

P (k) = (b1 + fµ2)2Pm(k), (2.6)

where f is a growth rate and Pm is a one dimensional matter power spectrum function that

can be numerically computed for any cosmological model∗. Also in the leading order of

perturbation theory and assuming local bias the bispectrum of galaxies is given by29,

B(k1,k2,k3) =2Z1(µ1)Z1(µ2)Z2P (k1)P (k2) (2.7)

+ cyclic terms,

∗The bias and the growth rate can not be decoupled from the amplitude parameter σ8 when using only
the galaxy clustering data on linear scales at a single redshift. For brevity, we will continue using b and f to
denote parameter combinations bσ8 and fσ8.
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where

Z1(µ) =
(
b1 + fµ2

)
, (2.8)

Z2 =

{
b2

2
+ b1F2(k1,k2) + fµ2

3G2(k1,k2)

− fµ3k3

2

[
µ1

k1

(b1 + fµ2
2) +

µ2

k2

(b1 + fµ2
1)

]}
, (2.9)

F2(k1,k2) =
5

7
+

k1.k2

2k1k2

(
k1

k2

+
k2

k1

)
+

2

7

(
k1.k2

k1k2

)2

, (2.10)

G2(k1,k2) =
3

7
+

k1.k2

2k1k2

(
k1

k2

+
k2

k1

)
+

4

7

(
k1.k2

k1k2

)2

, (2.11)

and cyclic terms can be derived by replacing indexes 1 and 2 in the first term by 2 and 3,

and 1 and 3 respectively.

The AP effect induces distortions in the measured power spectrum and the bispectrum

that can be modeled by substituting

k → k

α⊥

√
1 + µ2(A−2 − 1) (2.12)

µ→ µ√
A2 + µ2(1− A2)

(2.13)

and renormalizing the power spectrum by a factor of 1/α2
⊥α‖ and the bispectrum by the

square of the same factor. A = α‖/α⊥ in the above equations and the α parameters can be

linked to properties of dark energy30–32.

A standard practice when analysing galaxy power spectrum is to assume that the shape of

the matter power spectrum is well determined from external cosmological data sets (e.g. the

cosmic microwave background experiments) and to treat it as a function of four cosmological

parameters b1, f, α⊥, α‖ The bispectrum in addition will depend on the second order bias

parameter b2. For simplicity we ignore the commonly included σFOG
33 parameter here. Its

effect is to reduce information content on small scales. Since we are interested only in the

7



relative constraining power of the power spectrum, the bispectrum, and their multipoles,

this omission does not affect our main results. ∗ These parameters then can be estimated

from the measured power spectrum and the bispectrum. We will adhere to this standard

assumption and will ignore other cosmological parameters that may be relevant (e.g. fNL

describing primordial non-Gaussianity, or Neff number of neutrino species).

2.2.2 Variance of the Measurements

If a power spectrum is measured from an observed volume Vs using optimal estimators34 the

variance of the measurement is

〈[∆P (k)]2〉 =

(
P (k) +

1

n̄

)2

, (2.14)

where ∆P is the difference between the true power spectrum and the one estimated from

finite (and noisy) data and n is the average number density of galaxies. In an analogous

way, for the bispectrum measured with an optimal estimator the variance is29;35

〈[∆B(k1,k2)]2〉 = Vs

(
P (k1) +

1

n

)(
P (k2) +

1

n

)(
P (k3) +

1

n

)
. (2.15)

2.3 Bispectrum Multipoles

2.3.1 Parameterization of the Bispectrum

Eq. (2.6) shows that the power spectrum can be expressed as a function of only two variables

– k and µ. This results from the azimuthal symmetry of the field and is true even when the

linear theory expression in Eq. (2.6) is replaced by its non-linear equivalent.

Similarly, even though the bispectrum in Eq. (2.7) is written in terms of three vectors

k1, k2 and k3, as discussed in Sec. 2.1, because of various symmetries, only five variables

∗When fitting real data more “nuisance” parameters are required to effectively describe the shortcomings
of theoretical modelling. We ignore the effect of these “nuisance” parameters here as well since they depend
on the specifics of modelling and do not effect our main results anyway.
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are in fact independent. Following25 we choose these variables to be the lengths of three

wavevectors k1, k2, k3 – describing the shape of the bispectrum triangle, and two angles

describing its orientation – the angle θ1 of wavevector k1 with respect to the line-of-sight

direction, and the azimuthal angle ξ of vector k2 around k1. The first four variables are

trivially obtained from the original wavevectors while the ξ can be computed from

µ2 = cos(θ1) cos(φ12)− sin(θ1) sin(φ12) cos(ξ), (2.16)

where φ12 is the angle between k1 and k2,

φ12 = cos−1

(
k1k2

k1k2

)
. (2.17)

2.3.2 Series Expansion of Bispectrum

The power spectrum can be decomposed into a Legendre-Fourier series in angle µ

P (k) =
∑
`

P`(k)L`(µ) (2.18)

where L` are Legendre polynomials of order ` and the coefficients of decomposition can be

found using Eq. (2.3). In linear theory only the first three even coefficients are nonzero and

they contain most of the information on key cosmological parameters.

Since 0 ≤ θ1 < π and 0 ≤ ξ < 2π, the bispectrum can be decomposed in spherical

harmonics of θ1 and ξ

B(k1, k2, k3, θ1, ξ) =
∑
`

∑̀
m=−`

B`m(k1, k2, k3)Y m
` (θ1, ξ). (2.19)

Subsequently,

B`m(k1, k2, k3) =

1∫
−1

d cos(θ)

2π∫
0

dξB(k1, k2, k3, θ1, ξ)Y
m∗
` (θ1, ξ). (2.20)

9



Unlike the power spectrum, the bispectrum multipole expansion does not terminate at

finite `. Neither does it have zero odd multipoles. Reducing bispectrum to a finite number

of its angular multipoles significantly simplifies the cosmological analysis. This reduction

however will inevitably result in a loss of information.

From the practical point of view, computing multipoles with m = 0 is especially simple25.

It is therefore interesting to see by how much the information degrades further if we only

use m = 0 multipoles in the analysis. We will show that the loss of information associated

with ignoring m larger than zero is negligible.

We will also show that almost all of the information on key cosmological parameters

(compared to using the full bispectrum) is contained within the first three even multipoles

(` = 0, 2, 4 with m = 0) of the bispectrum.

2.3.3 Covariance of Bispectrum Multipoles

The bispectrum multipoles from real data can be computed by summing over all triangles

with fixed values of ki and angular weights of Eq. (2.20). This corresponds to

B`m(k′1, k
′
2, k
′
3) ≡

1

2π

∫
dk1dk2

δ(k1)δ(k2)δ(k3)

Vs

Y m∗
` (θ1, ξ)

× δD(k1 − k′1)

k1

δD(k2 − k′2)

k2

δD(k3 − k′3)

k3

=

1

2πVs

∫
dθ1dξdφ1δ(k

′
1)δ(k′2)δ(k′3)Y m∗

` (θ1, ξ), (2.21)

where we used the transformation of coordinates

dk1dk2 = k2
1dk1d cos(θ1)dφ1k

2
2dk2d cos(θ2)dφ2

= 2πk1k2k3dk1dk2dk3d cos θ1dφ1dξ, (2.22)

10



and the factor of 2π is to ensure that the expectation value of the estimator matches the

definition in Eq. (2.19).

The variance of the bispectrum multipoles is then

〈∆B`m(k1, k2, k3)∆B`′m′(k1, k2, k3)〉 =

Vs

2π

∫
d cos(θ) dξY m∗

` (θ, ξ)Y m′∗
`′ (θ, ξ)

×
[
P (k1) +

1

n

] [
P (k2) +

1

n

] [
P (k3) +

1

n

]
(2.23)

The derivation of this result is analogous to the power spectrum multipole covariance de-

scribed in Yamamoto et al. 36 .

Since we work in the limit of infinitely small k-bins only the multipoles with all ki identical

are correlated, but in general there is a correlation between multipoles with different values

of ` and m.

2.4 Constraining Cosmological Parameters

For brevity we will use the following notation:

VarPk ≡ 〈[∆P (k)]2〉 (2.24)

VarBk1k2 ≡
〈[∆B(k1k2)]2〉

Vs

(2.25)

VarB`m`′m′

k1k2k3
≡ 2π

Vs

〈∆B`m(k1, k2, k3)∆B`′m′(k1, k2, k3)〉 (2.26)

2.4.1 Information Content of the Full Bispectrum

We use a Fisher information formalism37;38 to derive expected constraints on cosmological

parameters θ ≡ (b1, b2, f, α⊥, α‖).

11



For the power spectrum we follow the well established procedure of computing

Fij =
Vs

(2π)3

∫
dk
∂P (k)

∂θi
(VarPk)−1 ∂P (k)

∂θi
. (2.27)

Since the Fourier transform is computed over a finite volume the δ(k) measurements are

independent only at discrete points in k space. The density of these points is Vs/(2π)3. The

factor in front of Eq. (2.27) renormalizes the continuous integral over all k which would

otherwise overestimate the available information.

We numerically compute the integral

Fij =
Vs

(2π)2

∫
d cos(θ) k2∂P (k)

∂θi
(VarPk)−1 ∂P (k)

∂θi
, (2.28)

where the power spectrum derivatives are obtained by numerically differentiating Eq. (2.6)

and the power spectrum variance is given by Eq. (2.14). The integration limits are 0 <

k < 0.2 h/Mpc and 0 ≤ cos(θ) ≤ 1. The first restriction reflects the fact that the statistical

properties of the galaxy field are difficult to model at high wavenumbers because of the effects

of nonlinear evolution and baryonic physics and are usually omitted from the analysis. The

second restriction reflects the fact that a Fourier transform of a real field obeys δ(k) = δ∗(−k)

symmetry, which implies that the power spectrum estimates (which are proportional to

|δ(k)|2) are not independent above and below the z axis. Eq. (2.28) has one less factor of

2π compared to Eq. (2.27) because we integrate over azimuthal angle 0 ≤ φ < 2π on which

neither the power spectrum nor its variance depend.

For the full bispectrum we similarly numerically integrate over all possible triangles (both

the shape and the configuration) and propagate the information to the cosmological param-

eters. The Fisher matrix of cosmological parameters in this case is given by

Fij =
V 2

s

(2π)6

∫
dk1dk2

∂B(k1k2)

∂θi
(VsVarBk1,k2)

−1 ∂B(k1,k2)

∂θj
, (2.29)

where the factor of V 2
s /(2π)6 accounts for the density of points on a k-grid due to finite
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volume of the survey, as before. The integral can be reduced to five dimensions

Fij =
Vs

(2π)5

∫
dk1dk2dk3d cos(θ1)dξ

× ∂B(k1k2)

∂θi
(VarBk1,k2)

−1 ∂B(k1,k2)

∂θj
, (2.30)

as the integration over φ1 azimuthal angle is simply 2π.

We use Eq. (2.7) to compute the bispectrum (and its derivatives) and Eq. (2.15) to

compute the covariance matrix of the bispectrum. A permutation of vectors ki corresponds

to the same bispectrum measurement. In order to account for this symmetry and not double

count the data we impose a condition k1 > k2 > k3 on the integration volume in addition to

ki < 0.2 h/Mpc restriction on each wavevector. We also impose the triangularity condition

k1 − k2 < k3.

2.4.2 Information Content of the Multipoles

The Fisher matrix of cosmological parameters from bispectrum multipoles is given a three

dimensional integral over a sum

Fij =
V 2

s

(2π)6

∫
dk1dk2dk3 k1k2k3 (2.31)

×
∑
``′mm′

∂B`m(k1, k2, k3)

∂θi

(
Vs

2π
VarBk1k2k3

``′mm′

)−1
∂B`′m′(k1, k2, k3)

∂θj
,

where the integration is over all possible triangle shapes. Similarly to the bispectrum, to

avoid double counting, we impose a restriction that k1 > k2 > k3 and that the three sides

satisfy the triangularity condition k1 − k2 < k3. We also restrict ourselves to triangles with

k1 < 0.2h/Mpc.

We use Eq. (2.20) to compute numerical derivatives of the multipoles and Eq. (2.23) to

compute the variance of the multipoles (and covariance between them). The constraints

on parameters can be found using the diagonal entries of the inverse of the Fisher matrix

σθ = F−1
θθ . We evaluate the sum for increasing values of `max. To check the effects of higher

13



order terms in m we either take all values of −` ≤ m ≤ ` or only the m = 0. We also try

only m = 0 modes for increasing even values of `max as that seemed to have most of the

information.

2.5 Results

Results in this section are derived assuming a spatially flat ΛCDM cosmological model with

Ωm = 0.28, ΩΛ = 0.72. We consider LRG and ELG samples expected from DESI. For the

number density profile and the bias as a function of redshift we use the same numbers as19

Tellarini et al.

Fig. 2.1 shows the expected cosmological constraints on θ from the bispectrum multipoles

for increasing values of `max. These results are for the LRG sample in the redshift range

0.6 < z < 0.7, We compute this for all ` and m values, all ` values with only m = 0, and

for only even ` modes with m = 0. We show expected constraints from the power spectrum

and the bispectrum on the same plots for comparison.

Fig. 2.1 shows that the full (unreduced) bispectrum is capable of providing better con-

straints compared to the power spectrum if we use all information from scales up to kmax =

0.2 h/Mpc. This is especially true for the growth rate parameter f where the improvement

is almost a factor of 2 in the statistical errors. For the α parameters the constraints de-

rived from the full bispectrum are still a factor of about 1.5 better compared to the power

spectrum, but become slightly worse for the multipoles. In all cases the information in the

multipoles seems to be mostly in the first three even ` modes with m = 0.

The behaviour seems to be qualitatively similar for other redshifts and tracers. Fig. 2.2

shows similar results over a wider redshift range. This means that the first even multipoles

averaged over azimuthal angle are as good as the full bispectrum for the purposes of deriving

cosmological constraints.

The bispectrum provides significantly larger improvement over the power spectrum at

low redshifts. This is due to a high number density of galaxies and the higher amplitude of

fluctuations.
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Figure 2.1: Cosmological constraints expected from the bispectrum multipoles as a function
of maximum ` used in the analysis for a sample of DESI LRGs in 0.6 < z < 0.7. The
constraints from power spectrum and the full bispectrum for kmax = 0.2 h/Mpc are also
displayed for comparison. The results are normalized to the expected power spectrum con-
straints so that the ordinate axis is an improvement factor over the power spectrum. The
multipole constraints can never be stronger than the full bispectrum constraints. Our top
right panel is consistent with this within the numerical error associated with monte carlo
integration.
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Figure 2.2: Improvement on derived errors of cosmological parameters compared to the
power spectrum for different redshifts and tracer types if we consider all the modes up to 0.2
h/Mpc. Red symbols (on top) represent the constraints derivable from the full bispectrum,
while the blue symbols (on the bottom) represent constraints from first three even multipoles
with m = 0. For some redshifts the multipole constraints are slightly better than the full
bispectrum constraints, but they are consistent within the numerical errors associated with
the monte carlo integration.
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2.6 Conclusions

We developed a Fisher information matrix based method of computing the expected con-

straints on cosmological parameters from the bispectrum and the angular multipoles of the

bispectrum of a given galaxy sample. Since the full bispectrum is difficult to analyse, some

kind of data reduction will inevitably have to be applied to the measurements. We computed

the information loss associated with the commonly proposed reduction schemes that rely on

angular integration of the bispectrum.

We find that the full bispectrum alone can deliver cosmological constraints that are a

factor of upto 3 better than the ones derivable from the power spectrum at low z. This

improvement steeply scales with kmax considered in the analysis. For kmax = 0.1 h/Mpc the

information content of the Bispectrum is already comparable with the power spectrum (as

shown in App. A), while for kmax = 0.2 h/Mpc it exceeds the power spectrum by a factor

of 2 to 3. The improvement is especially large for the growth rate parameter f where the

improvement on the measurement error is almost a factor of 3. The improvement is the

largest at lower redshifts where the number density of galaxies in the sample is the highest.

Most of the information is in the first three even multipoles with m = 0, which means

that just three numbers per bispectrum shape are enough for the purposes of obtaining

cosmological constraints.

Our results at first may seem to contradict previously published results that claim a

more modest improvement when adding the bispectrum to the power spectrum18;39–41. This

is due to a number of reasons. Many previous works have looked at the monopole of the

bispectrum which will obviously contain much less information on f . The bispectrum infor-

mation increases more steeply compared to the power spectrum with the number density of

galaxies, therefore this large improvement will only result in future dense surveys and will

not necessarily show in current and past surveys that have a lower galaxy number density.

Finally, many past claims refer to “amplitude like” parameters (e.g. primordial amplitude

of fluctuations) for isotropic fields. The f parameter is not really “amplitude like” since it

describes the angular variation in the statistics, and the 5D shape of the bispectrum turns
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out to be more sensitive to this parameter than it would be to a mere change in amplitude.

Our results are consistent with the ones reported in15 if we only consider strictly linear

scales of ki < 0.1 Mpc/h. This is expected since the bispectrum signal to noise scales better

with increasing kmax compared to the power spectrum. Their model includes the Finger of

God effects and therefore the forecasts are more conservative and realistic. Since our main

goal was not to produce accurate forecasts but rather to study the effects of the multipole

reduction we decided to sacrifice the realism of constraints for clarity. We explicitly checked

that our main conclusions are robust with respect to the choice of kmax and do not change

when we include σFOG.

In this work we do not consider a cross correlation between the power spectrum and

the bispectrum measurements and it is difficult to say how big the overall improvement

in the errors is when the two are properly combined (see15 Song et al. for correlated full

bispectrum DESI forecasts). We know however that the improvement will be at least as

big as the improvement from the bispectrum (or the bispectrum multipoles) alone. Recent

studies indicated that the cosmological constraints from power spectrum and bispectrum are

not very strongly correlated21;22;24, so the improvement may actually be much larger.

The main conclusions from our work are as follows:

• The bispectrum measurements from future surveys have a potential of improving the

growth rate measurements by at least a factor of 2.5 at low redshifts (this is a very

conservative estimate assuming that the bispectrum information is perfectly correlated

with the power spectrum).

• When expanding the bispectrum in angular multipoles, the three numbers correspond-

ing to the first three even terms with m = 0 in the multipole expansion contain most

of the information relevant for the derivation of cosmological constraints.
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Chapter 3

Part 2: Optimal Weights For

Measuring Redshift Space Distortions

in Multi-tracer Galaxy Catalogues

Note: The text and figures have been used with permission from David Pearson. These

appear in Pearson, Samushia, Gagrani, 20168.

3.1 Introduction

Future galaxy redshift surveys, such as the Dark Energy Spectroscopic Instrument survey

DESI;4, the Extended Baryon Oscillation Spectroscopic survey eBOSS;42, the Euclid satellite

surveys28, and the Wide Field Infrared Survey Telescope surveys WFIRST;43 will cover vast

cosmological volumes with a high number density of galaxies. Since the available cosmic

volume is fundamentally limited a lot of effort is going into developing optimal ways of

analysing galaxy clustering data.

One way of improving the variance of measured 2-point statistics is to weight the galaxy

field to achieve the optimal signal-to-noise. The most commonly used weighting scheme

is the one developed by34 Feldman et al. (FKP), which is used in all analyses employing
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2-point statistics. The FKP weights,

wFKP(r) ∝ 1

1 + n(r)P (k)
, (3.1)

where n(r) is the average number density of galaxies at a position r and P (k) is the power-

spectrum at a wavelength of interest k, are straightforward to apply and reduce the variance

of the measured power-spectrum when the completeness of the galaxy sample is significantly

non-uniform.

Percival, Verde, Peacock44 (PVP) further optimized the FKP scheme for samples that

include galaxies with a range of biases with respect to the dark matter. If the number density

is uniform the PVP weights are

wPVP ∝ b, (3.2)

where b is the bias with respect to the dark matter, and will minimize the fractional variance

in the measured power-spectrum.

In this work we generalize the PVP weighting scheme to minimize the variance of specific

cosmological parameters measured from the power-spectrum (section 3.2).

3.2 Optimal Weighting

For simplicity, we will assume that galaxies of two types with densities n1(r) and n2(r) are

present in an overlapping volume and the average number densities n1 and n2 do not vary

significantly within the volume. The formalism is easy to generalize for more than two tracers

and varying number densities. If we assign weights w1 and w2 to these galaxies, then the

number density of the combined field is

n(r) = w1n1(r) + w2n2(r) (3.3)
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and the overdensity field is

δ(r) ≡ n(r)− n
n

= A1δ1(r) + A2δ2(r), (3.4)

where the overdensities are defined by

δi(r) =
ni(r)− ni

ni
, (3.5)

and

Ai =
wini

w1n1 + w2n2

(3.6)

is the weighted fractional density. We will assume the weights to be normalised by w1 +w2 =

1. This will shorten some of our formulas, although in practice only the ratio of weights is

relevant. The power-spectrum of the overdensity field,

P (k) ≡
∣∣∣δ̃(k)

∣∣∣2 , (3.7)

can be estimated from the squared modulus of the Fourier transform,

δ̃(k) =

∫
dr e−ikrδ(r), (3.8)

We will assume that the overdensity fields are Gaussian (this is a common assumption

when deriving optimal weights) with

〈
δ̃i(k)δ̃?j (k)

〉
=

[(
bi + µ2f

) (
bj + µ2f

)
Pm(k) +

δCij
ni

]
Vs, (3.9)

where the angular brackets denote the expectation value, δC is a Kronecker delta function,

Vs is the survey volume, and Pm(k) is the matter power-spectrum that can be computed in

any given cosmological model9. The last term in equation (3.9) is the shot noise term due

to the sampling of the overdensity field with a finite number of galaxies34.∗ For the weighted

∗The power-spectrum estimators are usually defined after subtracting the shot noise term, but this is
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field in equation (3.4) this results in

P (k) =
[(
bw1w2

eff + µ2f
)2
Pm(k) + Sw1w2

]
Vs, (3.10)

with the weighting dependent effective bias,

bw1w2
eff = A1b1 + A2b2, (3.11)

and the shot noise term,

Sw1w2 =
A2

1

n1

+
A2

2

n2

. (3.12)

Since we assumed the overdensity field to be Gaussian, the variance of the galaxy power-

spectrum estimator is simple to compute and is

Var [P (k)] ∝
[(
bw1w2

eff + µ2f
)2
Pm(k) + Sw1w2

]2

(3.13)

34 FKP;44 PVP. The fractional variance in the galaxy power-spectrum is then

P (k)

Var [P (k)]
∝ (bw1w2

eff + µ2f)
2
Pm(k)[

(bw1w2
eff + µ2f)2 Pm(k) + Sw1w2

]2 . (3.14)

This expression is minimized† by

w1 =
b1

b1 + b2

,

w2 =
b2

b1 + b2

,

(3.15)

which, for constant number densities, is equivalent to PVP weighting.‡

The minimum fractional variance in the power-spectrum, however, does not necessarily

correspond to the minimum variance in the cosmological parameters derived from the power-

spectrum. The power-spectrum is most sensitive to the bias – beff , growth rate – f , and

irrelevant for our results.
†This can be verified by simply equating the partial derivatives of equation (3.14) with respect to the

weights to zero along with the Legendre multipliers to enforce the condition w1 + w2 = 1.
‡For a more rigorous derivation also accounting for the number density variations see44.
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the Alcock-Paczinsky parameters α‖ and α⊥ 10. The dependence on b and f is already in

equation (3.10), and the dependence on α⊥ and α‖ can be introduced by replacing

k −→ k

α⊥

[
1 + µ2

(
α2
⊥
α2
‖
− 1

)]1/2

, (3.16)

µ −→ µα⊥
α‖

[
1 + µ2

(
α2
⊥
α2
‖
− 1

)]−1/2

, (3.17)

and dividing the power-spectrum by a factor of α‖α2
⊥

32. The Fisher information matrix of

these parameters is

Fij =

∫
dk

∂P (k)

∂θi

1

Var [P (k)]

∂P (k)

∂θj
, (3.18)

where θ = (beff , f, α‖, α⊥) is a parameter vector, and the integration is over all wavevectors,

the power-spectrum measurements of which were used in the analysis. The inverse of the

Fisher matrix gives a covariance matrix

C = F−1 (3.19)

and the diagonal elements of the covariance matrix correspond to the expected variance of

the parameters measured from the power-spectrum. Because of the presence of the deriva-

tive terms (that also depend on the weights) in equation (3.18) the weighting scheme that

minimizes the variance of the power-spectrum does not necessarily minimize the diagonal

elements of the covariance matrix in equation (3.19).

A simple analytic solution for the optimal weights in this case does not exist, but they are

relatively straightforward to find numerically. To find the optimal weights we numerically

compute the variance and the derivatives in equation (3.18) and take the integral over the

wavevectors of interest. We then numerically find the weights that minimize the diagonal

elements of the inverse Fisher matrix of equation (3.19).§ These weights will in general be

different for each parameter. In the tradition of FKP and PVP, we refer to these as PSG

§Since we adopt the normalization w1 + w2 = 1 this turns into a simple one parameter minimization
procedure.
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weights in the work.

3.3 Conclusion

As can be seen in fig. 3.1, PSG weights are more optimal for ’f ’ and ’b’ than PVP and FKP

weights. For α⊥ and α‖, the variance is flat for a broad range of weights leading all weighting

schemes to perform equally well. This shows advantage of using the PSG weighting scheme

in practice.
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Figure 3.1: Variance of each parameter versus the relative weight of the LRGs for the first
redshift bin of the DESI mocks. The points associated with the FKP, PVP, and PSG weights
have been labelled. The solid lines are the theoretical predictions for the variance. In general,
the points follow the shapes of the theoretical curves. For b and f , the PSG weights are
clearly optimal, while for α⊥ and α‖ the variance is flat for a broad range of weights leading
all weighting schemes to perform equally well.
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Chapter 4

Part 3: Optimal Simulation Box Size

4.1 Introduction

In cosmology, simulations are a very useful tool to understand the dynamics of evolution in a

given theoretical framework. In principle, cosmological simulations have the impossible task

of simulating an infinite universe. In practice however, one fixes a size of the simulation box

and imposes periodic boundary conditions. The following question then arises- for a given

scale of interest, what should be the minimum simulation box-size that one needs to consider

so as to leave the predictions from the simulation consistent with that from observation? This

is the question that we will try to address in this part of the thesis.

By fixing a box-size, we naturally fix the lowest mode in the Fourier space for the sim-

ulation. Let us refer to this Fourier mode as kmin where kmin = 2π
Lbox

. Consequently, to

investigate the effects of fixing a box-size, it is sufficient to look at how the choice of kmin

affects the predictions of the simulation. We use Lagrangian Perturbation Theory (LPT),

which is easily expressed in Fourier space, to model the results of the simulation and probe

the consequences of using a particular box-size. In particular, we look at the effects of chang-

ing kmin on the scale dilation factor which essentially captures the relative position of the

BAO peak in the simulation compared to the true peak.
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4.2 Methodology

In fluid mechanics, Eulerian and Lagrangian specifications are related by the material deriva-

tive, which is interpreted as total rate of change of flow as experienced by a specific flow

parcel. Analogously in structure formation, the Lagrangian description relates the Eulerian

position to its initial, or Lagrangian, position through a displacement vector field.

As shown in45 Padmanabhan et al., in LPT the power spectrum is of the form

P (k) = Plin(k) + Pmc(k) (4.1)

Pobs(k) = e−k
2Σ2/2Plin(k) + Pmc(k) + ... (4.2)

where Σ = [
∫∞

0
dkP (k)/(6π2)]1/2 and Pmc are the mode coupling terms45;46 the explicit form

of which is relegated to App. B.

The exponential damping of the linear power spectrum by Σ or equivalently the smooth-

ing of the correlation function reduces the precision with which the size of BAO ruler may be

measured. Thus if we incorrectly calculate Σ by raising kmin, it will affect our measurements

of the standard ruler. Σ with a raised kmin is defined as Σmin as can be seen in Eq 4.3.

Our power spectrum model is given by:

Σ2
min =

∫ ∞
kmin

dkP (k)/(6π2) (4.3)

Ptrue(k) = e−k
2Σ2/2Plin(k) (4.4)

P fit
min(α, k) = e−(αk)2Σ2

minPlin(αk) (4.5)

χ2(α, kmin) =
∑
i=kmin

(Ptrue(ki)− P̄ fit
min(αki))

2

σ2(ki)
(4.6)

where σ2(k) ∝ k2 dk and Ptrue(k) = Pobs(kmin = 0, k).

The scale dilation factor α, similar to the one used in Anderson et al.47, in Eq 4.5

captures the k-mode distance constraints. It measures the relative position of the BAO peak

as predicted by Ptrue versus the model, thereby characterizing any observed shift.
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Figure 4.1: The plot shows the effect of increasing kmin on Σ2 which is referred to as Σ2
min.

The reasons for deviations in Σ2
min become obvious once one observes the contribution to

power from mode-coupling terms in App B.

We obtain the best fit value of α by computing χ2 goodness-of-fit indicator as defined in

Eq 4.6 for 0.9 < α < 1.10 and define the best-fit value αopt as the value that minimizes χ2.

The deviation of αopt from 1 clearly indicates a significant loss of information from the low

k-modes.

4.3 Results and Conclusion

Results in this section are derived assuming a spatially flat ΛCDM cosmological model with

Ωm = 0.28, ΩΛ = 0.72. We get the linear power spectra at various redshifts using Code for

Anisotropies in the Microwave Background (CAMB) created by Antony Lewis and Anthony

Challinor.48 For the analysis we look at 3 different redshifts, z = 0, 0.5, 1.

We notice that Σ2
min (Fig. 4.1) varies slightly as a function of kmin. However, since the

exponential damping term, as in Eq. 4.1 consists of k2Σ2, even slight changes can make a

considerable impact on large k-modes or equivalently small physical length scales.

These changes are evident in Fig. 4.2 where one can notice the deviation in the χ2

minimizing scale factor α as a function of kmin. The trend that seems to emerge is that

the deviation starts at higher kmin or equivalently smaller box-sizes for higher redshifts with
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Figure 4.2: Dependence of χ2 minimizing α on kmin and equivalently box size for various
redshifts.

the biggest box size needed to acccurately describe redshift of 0. This result can be easily

explained by studying the structure formation of the Universe and reminding oneself that a

significant portion of the non-linear evolution actually happens at lower redshifts. In other

words, at lower redshifts the small scale (physical distance) modes actually affect the large

scale modes (hence non-linearity), thus if one excludes the large scale modes (by increasing

kmin), one cannot expect to get accurate description of evolution of the small scale modes.

Thus, fig. 4.2 is consistent with our understanding of structure formation. From the

plots, we conclude that if the redshift of interest is 0, a box size of at least 1 Gpc3 should be

sufficient to capture the features of interest in a simulation. If one intends to study higher

redshifts, a smaller box size may be more optimal with each side 900 Mpc and 750 Mpc for

redshift 0.5 and 1 respectively.
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Chapter 5

Conclusion

In this thesis, we looked at different tools and techniques used in understanding the large

scale structure of the Universe.

• Bispectrum: Tool for constraining cosmological parameters

• Weighting Scheme: Technique for optimizing the analysis of data

• Cosmological Simulations: Useful for simulating and understanding the cosmological

models

In the thesis, we firstly develop a theory of angular multipoles of the bispectrum and

propose a significant optimization which makes it practical to use.

Secondly, we look at how different weighting schemes can provide better constraints

on cosmological parameters. Subsequently, we provide an optimal weighting scheme for

minimizing the constraints on any parameter of interest.

Lastly, we determine the minimum box length of a cosmological simulation required to

for the evolution up to the redshift of interest.

Thus, we looked at various aspects of understanding the LSS and inferring useful infor-

mation from vast amounts of cosmological data available.
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Appendix A

Robustness of Multipole

Decomposition

We find our main conclusion – that the first three even ` modes of the bispectrum contain

most of the cosmological information – to be robust with respect to various assumptions.

To show that this assumption is robust with respect to the choice of kmax we repeat the

computations of Sec. 2.5 for kmax = 0.1 h/Mpc. These results are presented on Fig. A.1

which is virtually indistinguishable from Fig. 2.1. The only thing that changes is the relative

constraining power of the bispectrum compared to the power spectrum which scales steeply

with the value of kmax. Even for kmax = 0.1 h/Mpc however, the bispectrum constraints on

f are as good as the ones resulting from the power spectrum.
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Figure A.1: Cosmological constraints expected from the bispectrum multipoles as a function
of maximum ` used in the analysis for a sample of DESI LRGs in 0.6 < z < 0.7 considering
strictly linear scales of k < 0.1 Mpc/h. The constraints from power spectrum and the full
bispectrum are also displayed for comparison.
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Appendix B

Mode Coupling Terms

In the Zeldovich approximation, assuming azimuthal symmetry, the second order contribu-

tion to P (k) i.e. Pmc(k) takes the following form:

P (2,2)(k) =
k3

2π2

∫
∞

0

drP (kr)

∫
+1

−1

dµP (k
√

1 + r2 − 2rµ)
µ2(µ− r)2

4(1− 2µr + r2)2
(B.1)

P (1,3)(k) = −k2PLin(k)

∫
∞

0

dp

6π2
PLin(p) (B.2)

Pmc(k) = P (2,2)(k) + P (1,3)(k) (B.3)

These equations are the same as in46 White 2015. The detailed derivation can be found in49

Grinstein et al.
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Figure B.1: 2nd order non linear contributions to the power spectrum
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