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Abstract — Propagation of transient pressure waves in nonhomogeneous viscoelastic media with
a cylindrical hole of circular cross section is investigated by employing the theory of propagating
surfaces of discontinuities. The non-homogeneities are assumed to depend on the radial distance
from the axis of the cylindrical hole. The solutions for the normal stress components and the radial
particle velocity are expressed as Taylor series expansions about the time of arrival of the wave

front. Two types of boundary conditions are considered. The wall of the cylindrical hole is either

subjected to uniform pressure or to uniform radial particle velocity both of which have arbitrary
dependence on time. Then the solutions are reduced to the special case of homogeneous
viscoelastic media. Numerical computations are carried out for a homogeneous standard linear
solid and for a uniform pressure with a step distribution in time applied at the wall of the hole.
These numerical results are compared with those obtained previously by other investigators who
have employed the method of characteristics. Copyright © 2013 Praise Worthy Prize S.r.l. - All

rights reserved.
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Nomenclature
u Displacement vector
& Infinitesimal strain
o Cauchy stress tensor

G (i’. ! ) Shear relaxation functions

G,(r.t)  Bulk relaxation functions
o, ,} Stress deviators
&) Strain deviators
55] Kronecker delta
P Mass density material
t Time
I.  Introduction

The  propagation of transient waves in
nonhomogeneous elastic media has recently attracted the
attention of many researchers. Sternberg and

Chakravorty [1] investigated the propagation of shock
waves in a nonhomogeneous isotropic plate of infinite
extent with a cylindrical hole at the wall of which
uniform shearing tractions were suddenly applied and
there, after steadily maintained.

The Laplace transform technique was employed in
their research in obtaining the solution. Later, Chou and
Schaller [2] applied the method of characteristics to solve
the same problem. The latter method, of course, involved
numerical integration and was suitable for wider class of
non-homogeneities.
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Reddy and Marietta [3] investigated an analogous
problem of radial propagation of axial shear waves in a
nonhomogeneous elastic medium with a cylindrical
cavity by employing the theory of propagating surfaces
of discontinuity. Longitudinal wave propagation in non-
homogenous elastic rods of finite and semi-infinite
lengths was also investigated in considerable detail by
several authors [4]-[7].

Transient wave propagation in nonhomogeneous
viscoelastic media has received less attention. An
important contribution in this field was made by Sun [§]
who examined axi-symmetrical transient rotary shear
waves in nonhomogeneous viscoelastic media with a
cylindrical hole.

Sun [8] employed the theory of propagating surfaces
of discontinuity which, previously, was applied by
Achenbach and Reddy [9], Reddy and Marietta [3] to
investigate the longitudinal wave propagation in a
homogeneous semi-infinite viscoelastic rod, in a
nonhomogeneous semi-infinite elastic rod and the axial
shear wave propagation in a nonhomogeneous elastic
medium, respectively.

The work of Avtar Singh and Kishan Chand Gupt [10]
who used studied the propagation of one — dimensional
stress discontinuities in one-dimensional propagation of
discontinuities in non-homogeneous linear viscoelastic
semi-infinite media should also be mentioned.

In this study, the propagation of transient cylindrical
pressure waves in a nonhomogeneous viscoelastic
medium with a cylindrical cavity is investigated.

The theory of propagating surfaces of discontinuity, as
used by Sun [8] and others such as Achenbach and
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Reddy [9] is employed. The solutions for the radial and
circumferential stresses and the radial particle velocity
are expanded as Taylor series about the time of arrival of
the wave front. Two types of boundary conditions are
considered. The wall of the cylindrical hole is either
subjected to uniform pressure or to uniform radial
particle velocity both of which have arbitrary dependence
on time. By employing the equation of motion, the stress-
strain relations and the kinematical condition of
compatibility, the coefficients of the Taylor series for the
radial particle velocity are obtained as the solutions of
linear ordinary differential equations of the first order.

Using the solution for the radial particle velocity
together with the constitutive equations and the
kinematical condition of compatibility, the solutions for
the radial and circumferential stresses are computed.

The solutions are reduced to the special case of
homogeneous viscoelastic media by disregarding the
nonhomogeneous. In the numerical examples, for
purposes of comparison, stress prescribed boundary
condition is considered and the time variation of the
pressure applied on the wall of the cylindrical cavity is
assumed to be stepwise. Furthermore, the homogeneous
viscoelastic medium is modeled as a standard linear
solid.

In the special case of the homogeneous viscoelastic
medium, the wave profiles for radial particle velocity and
radial stress distributions at two stations are obtained and
are compared with those of MeNiven and Mengi [11]
who employed the method of characteristics in their
analyses. Good agreement is found over the time range
that is close to the time of arrival of the wave front by
taking only a few terms in the Taylor series expansions.

IL

We consider a nonhomogeneous, linearly viscoelastic
infinite  medium with an infinitely long circular
cylindrical cavity of radius a. The medium is initially at
rest and the material properties are assumed to depend
solely on the radial distance from the center of the
cavity. A uniform pressure or a uniform radial particle
velocity with arbitrary dependence on time is applied on
the wall of the cylindrical hole.

The body is referred to a cylindrical coordinate

system (r,0,z) in which the z axis coincides with the

Formulation of the Problem

axis of the hole. In the development that follows, indicial
notation and all of the rules associated with it are used
when it is appropriate. Due to the axi -symmetry of the
problem, the displacement field can be written as:

=u,(rt);

Using the strain — displacement relations in a
cylindrical coordinate system, we get:

u uy =0, =0

(M

r

u" .
oo =/ €
r

Epp = ur,r ; =& =&, =&, = 0 (2)
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If the medium is at rest prior to ¢ =0, the stress-strain
relations for a linear isotropic non-homogeneous
viscoelastic material can be expressed as

Gi( t)= Gloe + G1 rt—7) (rz')dr 3

o —_—~

) rt— rgkk(rr)dr

4

t
O —Gzogkk rt + _[ Gg
0

where G, (r,t) and G,(r,) are the shear and bulk

relaxation functions, respectively, and oy, ¢/ are the

components of the stress and strain deviators defined as:

o =

ij 5 O kk

(©)

1
& =&;—=06,&4

y g 3 g

where §; is the Kronecker delta. From Eq. (2) the

second of Egs. (5), we can write:

200 Lu,
T 3or 3r
2u. 10u
r __r__ r 6
“o6 3r 3o0r ©
ou, u,
Eppy =&, tEgg +E, = +—
or r
In Egs. (3)-(4) we also define:
" 0"G, (rt
Gip =G (r,0); Gl( )(”’t)z#
ot
"G (r,
ot o
0"G,(r,t @
Gy =Gy (r,0); ng)(r't)z zgr’ )
ot
"G, (r,t
ofp - T%)
ot o

In view of Eqs. (1)-(4), it is clear that only o,,,0
and o,, are non-vanishing and that they are functions of

r and ¢t only. Then, the stress equation of motion
becomes:
oo,, Lo
or

ou,
ot

“Oo0 _
r

44

®)

where p(r) is the mass density of the medium. In terms

of stress deviators Eq. (8) can be written as:
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oo’

rr

or

ou,
ot

100y
3 or

’
O — %00 _
r

(€

The other two stress equations of motion are satisfied
identically. In this study, two types of boundary
conditions are considered:

a) Attime =0 atime — dependent uniform pressure is
applied at » =a, i.e. on the surface of the cylindrical
hole, and it is assumed that this pressure can be
represented by a Maclaurin series:

0

)=> 0, i (10a)
=0 "n!
b) The radial particle velocity at r=a, v(ar), is
prescribed and can be expanded as:
Zv” (10b)

n!

In Eq. (10b), we have used the notation v =0u, /0t .

As for the initial condition, the medium is assumed to be
at rest priorto t=0.

Thus, the problem, which is completely described
now, is to determine the solutions of Egs. (8) and (2)-(4)
subject to quiescent initial conditions and boundary
condition as give by Egs. (10a), (10b). It should be noted
that the constitutive Egs. (3)-(4) are expressed in terms
of the components of the stress and strain deviators for
simplicity.

The solutions, however, will be found for the stress
components o,,,0y, and o,..

1.

The theory of propagating surfaces of discontinuity
will be employed here in obtaining the solutions. A basic
equation in the study of propagating discontinuities is the
kinematical condition of compatibility which is discussed

in general by Thomas [12]. Consider a function f'(r,f)

Solution of the Problem

which is discontinuous and has radial discontinuous
derivatives across the wave front that moves in the radial
direction with velocity c.

The kinematical condition of compatibility for this
function takes the form:

Boiy1-| L+ Z

where finite jumps across the wave front are denoted by
square brackets and the notation d,/dt is introduced

o

or b

for the time — rate of change of a quantity as observed by
an observer who moves with the propagating surface.
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In this paper, it is assumed that the displacement
remains continuous throughout the process and
therefore:

[u,]zO (12)

Across the wave front. If the kinematical condition of
compatibility given by Eq. (11) is applied to the
displacement u,, with Eq. (12) in consideration, we

arka

Conservation of liner momentum, which is discussed
in a general form by Thomas [12], can be expressed for
the present problem in the form:

ou, }

s

obtain:

Ou,
or

Ou,
ot

(13)

P (14)

o 1==rc|

In terms of the components of the stress deviator, Eq.
(14) can be written as:

for 1+ o] =-pe| 2
Since the integrals in Egs. (3) and (4) are continuous
at the wave front, we have the relations:
[O-;i‘] =Gy [g;r ] [Uée] =Gy [gée]
[O'kk] =Gy [gkk]

ou,
ot

(15)

(16)

Now, substituting Egs. (16) together with Egs. (6)
into Eq. (15) and taking into account Eq. (12), we get:

(2Gyo+Gy)[ ou, ou,
— —pc| —= 17
3 o] P 7
Comparing Egs. (13) and (17), we obtain:
(,’2 _ 2G10 + GZO (18)
3p

Thus, the wave front propagates with a velocity
which, depends on Gy,,G,, and the mass density, and
may very as it penetrates into the medium.

At a cylindrical surface defined by a fixed r, the
material is at rest until the wave front arrives. The time it
takes for the wave front to arrive at this position can be
computed as:

(19)

where a is the radius of the cylindrical cavity and ¢ is
the wave velocity given by Eq. (18).
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Now following Sun [8], and also [9], we seek the
solutions for the radial particle and the stress
components o,,,0y and o, as Taylor's expansions

about the time of arrival of the wave front:

_6”\/}
. t> ¢(r) (20)
L ot r=¢(r)

onr)-S oo | 22| zete
n=0 : =4(r)
> o] &
Gge(rt):z()%{t—(ﬁ(r)} %} t>¢(r)(22)
n=0"" L t=¢(r)
& n_é"c
= (1t — -9 —= t>¢(r) (23)
’ (r ) n=0n'/{ (r)} L or" i|t—¢(r) (r)

The coefficients of expansions in Egs. (20)-(23)
represent propagating discontinuities and the problem
reduces to the determination of these coefficients.

We shall first find the solutions for the coefficients in
the expansion for radial particle velocity given by Eq.
(20).

Then, using the solutions for these coefficients
together with the constitutive equations and the
kinematical condition of compatibility, the coefficients
of the expansions given in Egs. (21)-(23) will be
computed.

For this purpose, we first differentiate Eqs. (3) and (4)
n+ p times with respect to time to obtain:

an+p0;r 3 an+p8;r n+pG( ) an+p i ;r
w0 +2.Gyg i T
ot ot i
t 24)
+'[G1("+p)(r,t—r)8;,.dr
0
aHerO-ée B anergée +riG( ) aner 1899
atn+p 10 at71+p pr 10 atn+p i
t (25)
+J.G1("+P) (rt—7)epdr
0
an+po_kk B a pgkk n+p G([) an+p—18
athrp - 20 athrp a 20 atn+p—1 (26)

where for p we shall consider only the values 0 and 1.
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Since the integrals in Eqgs. (24)-(26) are continuous at
the wave front, we have the following relations between

i
{ }:Gm[ }* { }(28)
gl

e on
for 1o - /{ ](30)

From Eq. (9) we have:
S
+ p—
3
By writing the kinematical condition of compatibility
given by Eq. (11) for o,,,0y and Ou, /0t , we get:

n+p

2, Gl

an+p 187
a n+p—i

an+p6
a n+p

n+p __r
0" Po,

n+p

> Giy

i=l

n+p—l ’
0 Eho

atrler i

n+p __r
0" Popy

atﬂer

n+p .t
0" Peyy
atrHrp

+p

* 2,0

n+p n+p— 1
"oy 0

at11+p

n+p
0" ey

atVler

an+pl

1

[+

r

6u
o’

o,
or

00
or

dp oo, oo,
Ll |=] —L |+ | —L 31
il [ o } C{ or } 1)
dp 00 004
—= 32
alowl= {(% T ¢
2 2
dp | du, _ o7u, e 0u, 33)
dt| ot or’ orot

Employing relations (31)-(32) in Eq. (30) and
rearranging the terms, we get:
+
ks

{[ o]+ [Gkk]}‘_[

1d, oo}, 004

c dt ot ot
(34)
o1 1-op)=o| 22
” " ” 00 P 6t2
For n=0 and p =1, Egs. (27) and (29) become:
oo, og (1)
=G T1+G 35
|G e le] 09
oo oe
[#}Gm[ a];k}fGéo ] GO)
From Egs. (6) and their time derivatives, the

following relations between the discontinuities can be
written:
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v 2\ 0u. | ., q_ 1] 0u,
[8’7]_3{&}’ L5io] = 3[&}
(37
oul-| 3 |
ke or
r 2
[ag_rr] - E{M} _i{%} (38)
ot 3| orot | 3r| ot
)
[ag—kk}{a ”r}l[a”’} (39)
ot orot | r| ot

In writing Egs. (37), Eq. (12) is taken into account.
Now substituting Egs. (15), (16), (35)-(36) into Eq.
(34) and then employing Eqgs. (37)-(39), we obtain:
_pdp| 0 | 1dp

dt| ot | cdt

{62%‘

ou,

(po)| % |+

_ 26+ Gy _ 26}y + G/ [aﬂ} + (40)
orot or
_Gxn

) s o

Ou,
ot

Now, using Egs. (13), (33) and (18) in Eq. (40), we

get, after some manipulation:

Ou,
or

2
0°u,

GIO
+_
atz

r

L G0
3cr

dp | ou, Ou
ol e d ey ) 41
dt[@t}ra(t)[ az} “1)
where:
C 1 dD ml
D R N Y I N 42
@(t) {2r+2pc i PO) 2} “2)
and:
— M (43)
') 2Gy +Gy

Eq. (41) is a liner ordinary differential equation of the
first order whose solution give [v]=[du, /ét], the

coefficient corresponding to n=0 in the Taylor's
expansion in Eq. (20). To determine the coefficients for
n>1, we differentiate the equation of motion (9) with
respect to time for n times to obtain:

1 an+1 o

1 kk i

(AR
_1{ }:p{amur]

r atn+2
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n+l __r
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7

n__r
0"o,,

ot"

(44)
0 " O ég
o"
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By writing the kinematical condition of compatibility
for 0"c,,./0t" and 0"cy, /ot", and employing these
relations in Eq. (44), we obtain:

1dy| "y, | 1|00y, |, 1 dp| "0y |,
cdt| ot" c| ot 3¢ dt| ot"
n+l n__r n__r
_i 0 Ok +1 0 Oy _l 0 Oop — (45)
e et | orl e | | a"

an+2u

Differentiation of the strain — displacement relations
(6) with respect to time for n+ p times yields between
- 1

3r
B an+ Pe é

} (46)
o | ) 1 6r1+p+lu
op 2, _g

s 47
3r orot™P } “7
r

where, again, only the values 0 and 1 will be considered
for p.

the discontinuities the following relations:

B n+p .t
0 Err

atn+p

2
3

an+p+lur

orot"tP

|

6r1+p+lur

orot™P

n+p
0" u,

atn+p

n+p
0" Pu,

atn+p

n+p
0" ey,

atn+p

n+p
0" Pu,

atn+p

Applying the kinematical condition of compatibility
by Eq. (11) to 0"Pu./0""  and

"y, /a"™P", we obtain:

given

dD an+pur an+p+1ur an+p+lur
T n+p = n+p+l1 te n+p (49)
dr| ot ot orot
dD an+p—iur an+p+1—iur an+p+1—iur
I n+p—i = n+p+l-i te n+p—i (50)
dt| ot ot oror

Now, substituting Egs. (27-29) into Eq. (45) and then
employing first Egs. (46)-(48) then Egs. (49)-(50) and
(18) with the values 0 or 1 chosen appropriately for p,
we get, after some manipulations:

o

122t 220

nx1
where « (1) is defined by Eq. (42) and:

o'
atn

o"v
ot"

(61
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1d*, | "y dp| oy
F (t +o(t)— +
()= 2 4r {aﬂ“} a()dt ot
1 c d
50 o (_D(Gzo—Glo)j+ -l
212G,y + Gy \ dt {a v}
+ — |t
< me o
2kt 2r
m; d2 an—i—lv
— [+
2 dt atn—l—z
n [ An—1-i
+ +(—d—D(micp)+mic)d—D a_]v ++ (52)
ey 2pc dt 2r )dt | o
lmic2 1 c
127 2r( 26y +Gy {8"_1_iv}
d ; 6tn—1—i
(o)
f dt | o 2pc dt 2r
) anfiv _ﬁ an+lfiv
atn—i 2 atn+l—i
In eq. (52), m; is defined as:
2G + Gy

and m, is given by Eq. (43). It should be noted once
again that in writing Eqs. (51) and (52), the relation
v=0u, /ot is used. If we define F,(¢)=0 for n=0,
the general solutions for the linear ordinary differential

Egs. (41) and (51) can be written in a single expression
as:

Bﬂf}_ {JF (s)e’ ds+A} n>0 (54)
where:
t
B(1)=[a(s)ds (55)
0
and A4,(n>0,) are integration constants to be

determined from the boundary conditions.
Before we determine the integration constants, 4, ,

we shall proceed to determine, [6”0,,/ 8t"}, the

coefficients of the Taylor's expansion for radial as give
by Eq. (21).
Since the solutions for the coefficients, [6”\// ét"],

have been obtained, Eq. (54), we shall attempt to express
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(0", /o™ ] in terms of [8"v/ar" | and their time
derivatives. Form Eq. (14), we have:

[o-rr] = —pC[V] (56)
where, of course, the relation v =0u, /0t is used.

For n>1, we make use of the constitutive equation
for the radial stress written at the wave front, Eq. (27).
Employing Egs. (46)-(48) in Eq. (27), with p taken as
0, and considering Egs. (5) together with eq. (29), we

find:
anarr _ % an+1 + an .
ot" 3 or at" r

2, G

i=1 3

o

+z 10

i=1

an+l i an—l

at}'l 1

V

e
5

TERE

Now, applying Eqs. (49) and (50), with p =0, in Eq.

]
-2
)

I

6Vl+17i

(57

an+1u

orot”

‘|
=)

an+l i
orot"™!

orot o

(57) and using the relation v =0du, /0t , we get:

oo _cpd "y ep v,
atn atn —1 atn
1 oy

+—(Gyg =Gy )| —= |+ 58
3r( 20 10){&,,_1] (58)

an—l—iv:| ~ |:

atn—l—i
an—l—iv

atn—l—i

an—iv:|]
+

dp
) cpm{ ” [ py=
+
1 i i
(Ggg ~GY ){ }

i=1
+_
3r
In view of Egs. (56) and (58), the Taylor's expansion
for the radial stress o,, can be written as:
1 n d
O',,.(r,t)=2—/{t—¢(r)} {cp—D{ }+
1 an—lv
+—(G — |+
} 3r( 20 o' }
an —1-i (59)
:| |:atn—i
(ngz szﬁ)[ }H 240
t=¢(r)

—n! dt
—cp { ~Gy ){
oy
o —1-i +
t
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In which we set:

F

The two types of boundary conditions as described by
Egs. (10a) and (10b) are now employed to determine the
integration constants 4, which appear in the solutions
through Eq. (54).

For type A4 of the boundary conditions the radial
stress is prescribed at » = a

Noting that the relation t=¢(r) at the wave front

becomes #=¢(r)=0 at the surface of the cylindrical

cavity, we compare in this case Eq. (59) with Eq. (10a)
at » =a to obtain:

oy
atn—l

=0

=0 if n=0 (60)

3r
) 61
i . ( an —1—, l an—tv . ( )
pn pm dt atn 1-i at”‘i
(g _g) @
+37(Gzo _GIO) p==g
t=0
From Eq. (54), we have:
4, {a ! } (©)
o’ |_,

Substituting Eq. (62) in Eq. (61) give:

L2l "v| o, cf Gy-Gy || @V .
" dt| o' | cp r\2Gi+Gyy )| 0"
< oy | e

(63)

z{m =

It is noted that Eq. (60) should be considered when
Eq. (63) is used to compute A4, . It is observed from eq.

(54) together with Eq. (52) that the solution for
[6”"1\»/ at”"l] involves only the constants 4, (i <n—1).

all—l—l v
6tn—l—i

&)~

Therefore, all the constants 4, can be determined
successively from Eq. (63) once the first constant 4, is

known. This completes the solutions for the radial

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved
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particle velocity and radial stress when boundary
conditions of type A are considered.

For type B of the boundary conditions the radial
particle velocity is prescribed at the cylindrical surface
r =a as given by Eq. (10b).

A comparison between Eq. (10b) and Eq. (20) in
conjunction with Eq. (54) yields:

4,=v, (64)

The coefficients of the Taylor's expansions for the

stress components o, and o, as given by Egs. (22)-

(23) can be computed in terms of [a"v/ at”] in an

exactly analogous manner by employing the constitutive
equations, the strain-displacement relations and the
kinematical condition of compatibility. We give here the
result for the circumferential stress oy :

00

699 I"t zn }
n=0
2G10+G20 oy
atn 1
1 dy| 0" | | 8"
+=—(Gyo =Gy )| 2 - + 65
36( 20 10)[ dt[at”‘l} {at” D (65)

N1 () (i))(dD oy | | 8y
+ —| Gy -G — | — || — | |+
P 3¢ ( 20 10 dt atn—l—l at"_’
2(6l) -G ) gy
+ -
3 atn—l—z

1=4(r)

For the special case of homogeneous viscoelastic
medium the shear and bulk relaxation functions and the
mass density are independent of the spatial coordinate
r,ie.:

G =G (1), G,=G,(t); p=const (66)

The solutions for this special case can be derived
from the solutions obtained above for the
nonhomogeneous viscoelastic medium by considering
relations (66). The propagation velocity becomes

¢® =(2G,y+Gy)/3p = constant and the time it takes
for the disturbance to arrive at a position r is computed
as t= ¢(r): (r—a)/c in this case.

The radial particle velocity, the radial stress and the

circumferential stress are computed Egs. (20), (59) and
(65), respectively, in view of Eqs (66). The coefficients

[6”v/ Gt”] have the same form as in equation (54), but

B(t) and

F, () for this case are obtained from Egs.

International Review of Mechanical Engineering, Vol. 7, N. 5



Shahin Nayyeri Amiri, Asad Esmaeily

(55) and (42), and Eq. (52), respectively, in the forms:

ﬁ(t)zj%[%—mljds (67)

0
2 n—1 n—1
F (=190 J{i_mljd_D I,
24 ot | \2r dt| o™
2 n-1 n 2 n—i—1
& me )| 0"y m;d | 0"y
- =+ Y =2 — |+
[Zr2 2r j|:6t"_l} ;{ 2 ar {at”‘l‘l
n—l1-i 2 n—1-i
pedp| O v me | O v, (68)
2r dt atn—l—t 2}"2 atn—l—t
n n—i n—i
+y —ml.d—D O vl me\ o v,
= dt | o' 2r | o
m, an+l—iv
+—L .
2 8tn+1—z

where m; and m; are given by Egs. (43) and (53),

respectively, and they, of course, should be interpreted
in view of Egs. (66).
The integration constants 4, are determined from Eq.

(63) or (64) depending upon whether stress or particle
velocity is prescribed at the boundary surface with
necessary considerations given for homogeneity.

For simplicity and for purposes of comparison with
McNiven and Mengi [11], standard liner solid is chosen
as the specific viscoelastic model and radial stress is
prescribed at the wall the cylindrical cavity »r =a .

The shear and bulk moduli for the standard liner solid
are:

G\ (t)=Gp +(Go Gy )e '™

(69)
Gy ()= Gop +(Gyy — Gy )e '™
respectively. In Eqs. (69), the constants 7; and 7, are

the relaxation times of the shear and bulk moduli,
respectively, and:

Gip =G (®) ; Gy =Gy (%) ; G =G(0)

(70)
GZO = Gz (O)
For material constants and relaxation times, we take
the same numerical values as considered by McNiven
and Mengi [11] for what they called "material one".
These are:

Gir _ 0.40 ; O _ 2.28571
Gl() Gl() (71)
Gor 1140850 - S =30 2250

10 a a
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The coefficients [6”\// 6t"} of the Taylor's

expansion for radial particle velocity as given by Eq.
(20) can be obtained from Eq. (54) together with Egs.
(66)-(68). The integration constants A, can be

n
computed from eq. (63) with Eq. (66) taken in to
account.

As for the boundary condition, we assume specifically
that a radial pressure of magnitude F) is suddenly

applied at » = a and maintained constant thereafter.
The boundary condition, then, is given by eq. (10a)
with:
op=—-F ,;0"=0
(72)
for n>1

Now, to compute the coefficient [v], we carry out the
integration of Eq. (67) to obtain:

a

B(t)=1In (1)1/2 ~2(r—a) (73)

where m, is given by Eq. (43), and the wave front
t=¢(r)=(r—a)/c From Eq. (63) we obtain, in view of
Eq. (72):

4y =R /(pe) (74)

For n=0, Eq. (54) gives:
[V] = dye P (75)

Substituting Eqs. (73) and (74) into Eq. (75) and
using the numerical values given by Eq. (71), we get:

1/2 r_
[V] _ (%) %6—0,0733(0 1) (76)

The integrations to be carried out in obtaining

[6”\»/ 6t"] for n>1 are simple and these coefficients

can be calculated as described above in a straightforward
manner without difficulty. We give here only the next
two coefficients:

-3/2 12
{@] _ {o.m(lj —0.012826(£j +
ot a a

N2 -0.0733 L1
—0.4888(’—) }ﬁe ()
a apc

(77
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2 -5/2 \3)2
{a—:} -0.117712(1) -0.21032(’-) +
ot a a

A2 V2
—0.00604(—) ln(—)+0.003376(—j +

a a a
e (78)
+0.00018(—j +
a
-2 2 ~0.0733| L1
—0.011623(£j ch, ( j
a a” pc

In obtaining Egs. (77) and (78), the numerical values
given in Eq. (71) are employed.
The first seven coefficients thus computed, we have

plotted the dimensionless radial velocity against

o/ pc

. . . ct . r
the dimensionless time — for two stations —=1 and
a a

L-25in Figs. 1 and 2. For comparison, the solution
a

obtained by MeNiven and Mengi [11] is also plotted. In
the same figures. It is seen from the figures that the
present solution with seven terms taken compares well
with the solution of McNiven [11] over the time range
that is close to the time of arrival of wave front.

In an analogous manner, the coefficients

[6”6,, / at”J of the Taylor's expansion for radial stress

can be calculated in terms of the already computed
coefficients [6”v/ at"] according to Eq. (58) which

should be interpreted in view of Eqgs. (66). The first
seven coefficients thus found, the radial stress o,, is

computed from Eq. (59), with Egs. (66) taken into
consideration, and the dimensionless radial stress

. . . . . ct
o,, / Fy is plotted against the dimensionless time — at
a

. . . .
station —=2.5, together with the solution obtained by
a

McNiven and Mengi [11], in Fig. 3. It is found that the
present 7-term solution agrees favorably with the
solution of McNiven [11] up till the dimensionless time

ct ct . .
—=4. As — increases, the discrepancy between the
a a

two solutions increases and the convergence of the series
solution presented here slows down considerably. Thus
for long times after the time of arrival of the wave front
the present method loses its effectiveness and
advantages.

IV. Conclusion

The theory of propagating surfaces of discontinuity
was employed to study the propagation of transient
pressure waves in an extended non-homogenous
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viscoelastic medium with a cylindrical cavity.

The solutions were obtained for viscoelastic materials
with in homogeneities depending arbitrarily on the radial
coordinate », only, and satisfying, otherwise, the most
general linear stress-strain relations. Both stress-
prescribed and velocity-prescribed boundary conditions
were considered. By disregarding the non-
homogeneities, the solutions for the homogeneous
viscoelastic medium were, then, obtained. The solutions
for the special case of non-homogenous elastic media
can also be found easily by neglecting the viscoelastic
effects in the solutions already obtained for the non-
homogenous viscoelastic media. It was shown that the
method presented here yielded good results for short
times after the time of arrival of the wave front.

This makes the method useful for transient wave
propagation problems. However, over the time range
that is far to the time of arrival of the wave front, the
method loses its advantages.

The present method may also prove to be useful for
solving nonlinear wave propagation problems in
nonhomogeneous viscoelastic materials.

Continuous line- McNiven
Dashed line- present solution (7 terms)

Fig. 1. Radial velocity as a function of a time at the station r=a

Continuous line- McNiven
Dashed line- present solution (7 terms)

I —
1 z ’

(] 1 N 5

Fig. 2. Radial velocity as a function of time at the station »=2.5a

Continuous line- McNiven
Dashed line- present solution (7 terms)

Fig. 3. Radial stress as a function of time at the station »=2.5a
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