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CHAPTER 1
Introduction

Infrasound is the portion cf the acoustic spectrum which lies between
0.001 Hz and 50 Hz, and is generallv below the acoustic threshold of man,
There are several types of waves in the infrasound range. These waves are
"acoustic”, "gravity" and "acoustic gravity'" waves. Infrasound comsists
primarily of accustic waves, The terminology depends on what is the
restoring force to an initial displacement, If the restoring force depends
on the incompressibility of air, it is an acoustic wave; and if it depends
on a gravitational field, it is a gravity wave. Acoustic gravity waves are
those in which both restoring forces are approximately equal, Acoustic
waves are associated with the higher end of the spectrum, gravity waves
with the lower end. Acoustic gravity waves reside between these two
extremes.

There are a variety of sources for infrasound, both natural and
man-made, The natural sources are occurrences such as volcanic eruptions,
earthquakes, exploding meteors, aurora, severe storms, the surface of the
gea in stormy conditions and air flow over rugged mountaincus areas,
Man-made sources of infrasound include atomic/nuclear explosions, large
chemical 2xplosions and sonic booms. Each of these various sources has its
own distinguishing features. Thus differentiation of the events based on
the different features should be possible. Also, one would like to
distinguish events from the ambient noise. The two above problems of
detection are obviously intertwined. Several tvpes of filtering have been
used in the past to solve the problem [Gossard, 1973] and are as follows:

(1) Frequency filtering. Infrasound occurs in the nigh-frequency btand of

the atmospheric spectrum so that it must compete with turbulence 'noise".



(2) Directional filtering. Infrasonic signals are usually distant from

the detector system and so approximate nearly plane waves from a source.

(3) Wavelength filtering. Because sound travels at high speeds compared

with local winds and turbulence, acoustic waves are relatively large in
scale compared with the corresponding scales at the same frequency in the
wind and turbulence spectrum.

(4) Velocity filtering. If the apparent velocity of the signal wave is

known, those disturbances travelling at different speeds may be rejected,
This thesis deals with some aspects of signal enhancement and
detection of infrasound events. An initial theoretical discussion of the
propagation of infrasound will be followed by a discussion of a class of
signal enhancement and detection schemes. Since the data statistics change
continually with time, adaptive digital filtering techniques are

considered,



CHAPTER II

Some Theoretical Considerations

In the study of wave propagation problems, there are in general two
methods of attack. One is the normal mode approach and the other is ray
tracing., The ray tracing method is an approximate approach that can be
used to give answers with a minimum of computation, [Tolstoy, 1973, Budden,
1961]. This approximation is valid if the characteristics of the medium
remain constant over the distance of a wavelength [Pearson, 1966, Tolstoy,
1959]. Our discussion will center on the "normal" mode approach, since it
appears to hold the most promise for a filtering scheme.

A simple example will illustrate the approach used previously in
studying infrasound. We consider the vibrating string problem. A problem
that is an illustrative analogy of the methods used in acoustive wave
propagation is that of a semi-infinite string, which has a continuous,
variable density. One end is fixed, while after a certain length, the
density of the string is constantly increasing. The "normal' modes are
calculated numerically after the string has been subdivided into many small
segments cof constant density. The constant density distributien
approximates the continuous distribution, The term "normal" is used
advisedly since the frequency of oscillation for each sub-segment will be
different due to the different densities. Hence the modes so determined
will not necessarily form a closed and complete set of functions by which
any given source function can be represented in the form of an expansion.
However, the modes are characterized by relationships that exist between
frequency and phase velocity and between frequency and group velocity.

Assuming an impulse displacement of the string takes place at a

particular time, the response is the Green's function, that may be



synthesized from the "normal" mndes, with the amplitude of each normal mode
being determined by a Fourier transform relationship. This part of the
infrasound analysis will not be examined here.

The actual theoretical development is as follows: we start with the
linearized hydrodynamic equations of motion. These have been derived else-
where [Lamb, 1945, Pierce, 1967] and are the following:

QO{Dtﬁ + (g-V)3] ==Y p - gpgz
Do+ uT(p ) +p T+ (Q) = 4mE(t)6(F-T )

-+ 2 >
Dptu V(po) = C (Dtp + u-:po)

&= T "%

The symbols are defined as follows:

3 -

Dt = Stokes operator Dt b7 + (v-grad)

2
C = gpeed of sound squared C2 = YpO/pO
e = ratio of specific heats
0, = initial unperturbed density distribution
p = first-order pertubation to Py
P, = initial unperturbed pressure distribution
P = first-order perturbation to Py
-
v = initial unperturbed velocity
- -
u = first-order perturbation to v
-
rO = source location
-*
r = radius vector
f(t) = time model of the blast waveform
Y = unit vector in the z direction (up)

The first equation represents the comservation of momentum, the second
the conservation of mass and the third the conservation of energy. The

last equation is the hydrostatic equation. Note that the source term



appears on the right in the equation for the conservation of mass. Thus
the source 1s modelled as an instantaneous introduction of mass into the
atmosphere. An alternative formulation would be an instantaneous
introduction of energy into the atmosphere., Pierce [Pierce, 1968] has
compared the two formulations. Theyv are equivalent if the source is at
ground level,

The homogeneocus equations without the source term will be considered
first. The governing equations can be simplified from five equations with
five unknowns to two equations with two unknowns. The five unknowns are p,
By U. The two unknowns are "potentials" Ql and QZ and are given by the

following formulas:

o] =

veu=p D Q
o t 2
In analogy with the vibrating string problem the atmosphere is divided into
a number of sublayers of constant temperature, wind direction and speed.
The mathematical manipulations necessary to obtain the system of two
equations, with two unknowns (also known as the residual equations) are
given in Appendix 1., The initial wind distribution shows up in terms
besides the Doppler-shifted frequency, in contrast to what had previously
been reportad by Hines [Hines, 1974].
The Fourler transform of the residual equation is taken, i.e.,

solutions of the form.

Ql = Vl exp{-i(wt - kxx - kyy)]

Q2 vz exp[-1i(wt - kxx - kyy)]

are assumed. Vl and V2 are functions of z only. We now are at the point

of determining the normal mcde solutions., A discussion of how the normal



mode dispersion function 1s obtained starting from the residual equations
is given in Appendix 2, Knowledge of the group velocity versus frequency
curves from the dispersion function provides an estimate of the frequencies
to be expected in the signal.

The next step is to determine the Green's function for an impulsive

"nermal" mode solutions.

source, and to synthesize this function using the
This part of the analysis has been carried to the full by Pierce and Posey
[Pierce and Posey, 1971] and so will not be considered further. An
alternative formulation has been given by Weston [Weston, 1961].

Thus the final goal of much of the previous theoretical analysis was
to syﬁthesize a waveform as close as possible to the observed waveform that
emanated from an event,

Another line of investigation may be pursued however, This approach
would seek to improve the parameters of the theoretical formulation from
data gathered experimentally, while the experimental data would be inter-
preted more accurately using better theoretical models. The basic tools
needed would be a computer program that produces the dispersion relation, a
computer program for calculating the group velocity and bearing and a

program for bandpass and LMS filtering (to be described in the next

chapter). The approach centers on the concept that large amplitude waves

are associated with stationary values of the group velocity {i.e., %%— =
2. 2 2 x
L = 0, and S B ¢ }2 > 0) [Tolstoy and Clay, 1966]. Thus
ok 2 2 ok_ 3k
v ak 3k x 'y

one would expec§ the ¥requencias determined experimentally to coincide with
the frequencies at the extrema of the group velocity. This will be the
case 1f what is detected is actually an event and if the theoretical model
and parameters are correct. Thus if one knows an event has cccurred and

the frequencies do not coincide with the frequencies from the theorstical



model, suitable adjustments can be made. Another check would be to examine
the velocity and bearing of the event and determine if they are in the

expected range.

7



CHAPTER III

Signal Identificaticn Using Prediction-Errer Filtering and Power Ratios

Prediction—-error filtering is based on the assumption that successive
noise samples in each channel are correlated. An adaptive filter can be
used to filter out the correlated noise, which is equivalent to saying that
the filter adapts to the noise spectrum and attempts to make the resulting
output "white." The signal of interest is considered to be a transient
which stands out with little change when the input is passed through the
adaptive filter. Prediction-error filtering has achieved a level of
success in seismic work [Claerbout, 1964]. Our approach will be based on
Widrow's LMS (least mean square) algorithm for Wiener filters [Widrow,
1971, Widrow, et. al, 1976]. The LMS filter output is then examined for a
signal based on a power ratic between the "signal" window and the
"background" window.

The actual processing of the received waveforms is as follows: an
initial bandpass filter is applied which passes frequencies from 0.5 Hz to
5 Hz. The output of the bandpass filter is then filtered using an
individual LMS filter for each channel, A power ratioc using a "signal' and
"background" window is computed. The final power ratio is the arithmetic
average of the individual power ratios.

The bandpass filter is an FIR (finite impulse response) filter with
768 weights, and linear phase function. The large number of weights is
necessary to insure a sharp cutoff of 0.5 Hz, due to the contamination of
the received waveform by microbaroms. Microbaroms are caused by stormy
conditions at sea. The surface of the sea acts as a giant piston moving

against the atmosphere, propagating acoustic waves, Micrebaroms can have



large amplitudes and their frequency is centered at around 0.18 Hz. The
other reason that the received waveform is heavily filtered is that in this
intitial analysis we want to focus on acoustic waves and remove gravity
waves from the signal., Figure 3.1 shows the amplitude response for the
bandpass filter.

The bandpass filtered waveform is then filtered with an individual LMS
filter for each channel; 64 filter weights are used and the relevant
parameters are 5,0 x l('}_5 for convergence parameter alpha, and 5 x lO_4 for
the minimum variance., If the variance of the signal falls below the
minimum variance there is nc update of the filter coefficients. The

relevant equations are as follows:

W() + -2§ e(j) X , if oi > min, var,

W) = { * 5
W(3) if o, < min. var.
2 XX
X N-1

W(i+l): the j+1th update of the LMS filter vector.
o: convergence parameter
e(j): prediction error
X: data vector
o_“: wvariance of X vecter (in this case the power since the mean is
assumed to be zero)
N: number of filter coefficients
The reason for the large number of weights is to provide adequate
frequency resclution [Griffiths, 1975]. The signal we are interested in
occurs at 0.& Hz, while there is a component at 0,75 Hz present. The 0.75

Hz component may or may not be considered part of the signal depending on
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what physical process is under consideration. A basic property of the LMS
filter is its ability to adjust itself to the background noise, which will
be commented upon later in connection with the experimental results. Once
the filter has adjusted to the background noise (i.e., ''steady-state" has
been obtained) then any event with different frequencies from the back-
ground noise will stand out sharply upon being passed through the filter,
0f course, an event must have a large enough amplitude to be "seen" by the
filter. How large the amplitude must be (or equivalently, the signal-to-
noise ratio (SNR)) is a critericn that has been examined by several workers
for narrow-band signals in white gaussian noise [Anderson, et. al, 1983].

The power ratio attempts to magnify any sharp increases in power from
the LMS filter output. Such a sharp increase would be indicative of a
transient signal. A power ratio is formed by dividing the power in a
"signal" window by the power in a "noise" window, where the noise window
lags the signal window for each channel, The length of the signal window
is 100 points, the noise window is 200 points loug and the delay between
the two windows is 100 points. A threshold power setting determines the
amount of power necessary for an event to be labelled as such,

A set of data files for several SNR's was constructed} The sampling
rate for all the data was 30 samples per second. The signal is a damped,
truncated sine wave 300 points long (Figure 3.2). The signal arrives at
point 1990 for channel 1, at point 2000 for chamnel 4 and at point 2010 for
channel 2 (Figure 3.3). The time delays used insure that the signal has
acoustic speed. An initial SNR of 0.0208 was chosen, and the amplitudes
were scaled appropriately. Other SNR's used were 0.0 (noise only), 0.0416
and 0.0832. TFor each SNR {(and for each channel) the following information

lThe SNR was calculated by dividing the variance of the scaled signal (300
points long) by the variance of the noise (3,000 points long).
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was plotted: the received waveform, the bandpass filter output , the
Widrow LMS filter output and the LMS transfer function at point 2100. A
power ratio plot for each SNR was made using the Widrow LMS filter output
for all three channels, as has been previously described. Figure 3.4
shows, for the 0.0 SNR case, the received waveforms and the bandpass filter
outputs. Channel one's received waveform and bandpass filter output are
denoted by a) and b), respectively. Channel two's received waveform and
bandpass filter output are denoted by c¢) and d), respectively., e) and f)
are channel three's received waveform and bandpass filter output,
respectively. The same format is used for figures 3.5, 3.6, and 3.7, onlv
the SNR's are 0.028, 0.0416 and 0,0832, respectively. Figure 3.8 shows the
IMS filter output, the amplitude response of the LMS filter at point 2100
and finally the power ratio plot using the LMS filter output from all three
channels for the 0.0 SNR case. The following system of labelling is used
for figure 3.8; a) is channel one's LMS filter outﬁut, b) is the amplitude
response of the LMS filter at point 2100 for channel one, c¢) is channel
two's LMS filter output, d) is the amplitude response of the LMS filter at
point 2100 for channel two, e) is channel four's LMS filter output, f) is
the amplitude response of the LMS filter at point 2100 for channel four and
g) is the power ratio plot. The same labelling system is used for figures
3.9, 3.10 and 3.11 where the SNR's are 0.0208, 0.0416 and 0,0832,

respectively.
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CHAPTER IV

Cenclusions

A discrepancy in the develcopment of the normal mode seolutions due to
wind was found. This may alter somewhat previous theoretical results,
Adaptive filtering using Widrow's LMS algorithm appears to be justified in
its ability to detect a signal superimposed on microbarom noise. A large
number of weilights was necessary (64) and a 3NR of 0.0416 appears to be
adequate to detect an event. More detailed conclusions were:

1) The large number of filter weights used was necessary to achieve
adequate frequency resolution, Difficulty was experienced with 8 and 16
weight filters since their spectral resclution was poor for this data set,
i.e., cenvergence to a stable filter was difficult to obtain and once
convergence was obtained little actual filtering was accomplished since the
filter weights were sa small,

2) The amount of power at point 2000 actually decreases when the
signal is added. (Compare Figures 3.8g and 3.9g). Thus the initial effect
is one of destructive interference. However comparing the plots of Figures
3,10g and 3.11g for the 0.0416 SNR case and the 0,0832 SNR case, respec-
tively, we see that the power ratio increases by almost exactly 2 at data
point 2,000, This should appear to indicate that the noise '"rides” on top
of the signal, i.e., the signal predominates very much over the noise for
both cases.

3) More than one event is present in the record as shown by the other
power peaks in the power ratio plots (Figures 3.8g, 3.9z, 3.10g, 3.1lg).
Data point 2,000 appears to he just inside such an event, The signal was
thus superimposed on top of an already existing event; this gives us a
rough idea as to what SNR's are needed for an event to be detected when

laced on another event,
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Appendix 1
Derivation of the Residual Eguations from the Linearized

Hydrodynamical Equations of Motiom.

We follow Pierce's derivation [Pierce, 1967] and numbering of equa-

tions to facilitate comparison, since we obtain a different result from

his. 5 _ 4 &
pD[Dtu + (u=V)v] = -vp - gre, la)
D o + E’-r;'po # pov-ZI =0 1b)
D.p + K-Vpo - Cz(Dtp + G’-voo) lc)
D, = g—t+ ") 2)

Dt is the Stokes operator. The variables are defined on page 4 of Chapter
IT and sco will not be repeated here. A Cartesian coordinate system is
used. The effects of the earth's curvature are included in a multiplica-
tive correction factor that can be found in Pierce, Posy, and Iliff's paper
[Pierce, Possey, and I1iff, 1971]. Other important equations in the
following derivation are the hydrostatic equation and the speed of sound
expressed in terms of the ambient pressure and demsity. The hydrostatic

dp

equation is = -gp _ and the speed of sound is given by C2 = vyp /o_.
dz o} o' "o

Pierce [Pierce, 1967] defined two potentials, as follows;

(Q1 and Q, have been substituted for wl and wz for typing ease) where u, is
the vertical component of u. (The subscript variable indicates the
component. )

The following assumptions are made:

A) The ambient variables P, po and v are independent of time t and

of the horizontal coordinates x and y,.
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B) The ambient wind v is horizontal (vz = (). Note that the Stockes

operator ig therefore

_ 3 0 J
Dt T3t + Vx 3% * vy oy

C) The only variation in the ambient wind is with height.

v av v IV
- = 2 = J = =0

9% Y £hs oy

The actual derivation is as follows: first we eliminate Dtp from 1b) and

lc) and substitute in 4a) and 4b).

> -+
Dtp = = (u-Vpo + pov-u)
S Fou + 0oy
Dtp usvp = -usVp - o Veu +u DO)
D p=~u-? 62 5 o
L P Oy 8
dpo -+ =
also, we need V(poj =378, = "%,
- 2 >
Dtp = gpouz C oov u
1 P
_ T2 2 T2
= BP4P, Dth - C P, D%
1
_ R 2
a FJopc (g DtQI & DtQ2)
-1
2 2
= -DO PO Dt(C Qz - ng)
1
B .
D.p=-D.lpp, = (C7Q, - 8Q;)]
since D = ﬁ----i~ v -a—+ 8

t at X 0% Vy E;
Since equation 4a) and 4b) define Ql and Q2 only to within an additive

constant, we can choose that constant to be O and thus obtain
1

2 2
p=-o,p, =~ (CTQ, - Q) 53

Next, o, U, and uy are eliminated from equation 1). Both sides of la) are
> 3

a e

X 3y ¥

3

cperated on with the horizontal divergence, Vh =

e+ 12

e + 3 >
3x X vy vy 7x °x Iy %y

P

)+0,[D,8 + @DV = ( )+ [-V(p) - goe,]
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We examine the different

terms separately, starting with the left hand

side.
3 = 5 = - 3 - 3 - -+
PRS, + — . = —_— — .
(3 e, 5y ey) Dtu Dt[(ax e, + Ty ey) u]
Buw Ju
=Dt (Bx +3y)
8u‘ du Buz Buz
= S -
Dt[(ax 3y +Bz) Bz]
Ju
=D _[Veu = =—2]
c
The next term on the left hand side is
- - - -
- - = L] v v. L]
Vh ((a*V)v) V (u )vxex -+ h (u V)V.EY
= 3_* L RNt (g B> dheove o
= (ax e, + 57 'y) (u V)vxex + (Bx o + 5y Ey) {(u J)vyey
3 3 (.o
= e (u V)vx + p (u V)vy
Now E-V =y 2-—-+ u E-—-+ u 2—-. Therefore
X 9x y 3y z 9z
] ] 3 3 g 0 a
. _— _ _— — == L, —
V (u V)V) x(ux oxX +u oy ! Yz az) Vx ¥ ay (ux 9x % uy ay Yz Bz)v,
5 BVK v Bvx avv avy oV
T Tx Uk ox uy 3y Yz 3z )+ BJ:ux 3xL7+ u4 3y t Yz 3z )
av av
" T
2
auz Bvx ] vx auz va 8"v§
= +
dx 2oz * Y, 3xoz oy 3z + Yz aydz
de 3 oV
In general, we are considering atmospheres where —— (+—) = —— ) and
= dz 92 3x ‘oz
n av Bv v V.
J ¥ s &
3;- } ( ). Since o Bx 0, we have:
du_ dv du_ v -
Z v

- -
Vh-(u-v)v =

= — «aYu .,
A z

On the right hand side we have:

Wr[=Vi{p) = ngz] =

3 = - 3 - 3 = -+
G ex+ M ) [- (5; e T3y 8y +5-e )p - gre ]
2 2
]

2 +—p

dx 3y

2 2
2 3 3

- V,p where V2 = (——§-+ )
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et auz 33 2
"y = — —_— . 7 = -7°
We now have po[Dt(V u = )+ = «uz] v

5 P which is Pierce's [Pierce,

1967] equation 6).
We follow Pierce by "operating on both sides of the z-component of (la)

with Dt and then eliminating Dtp by use of (1b)." The z-component of (la)

> 3
st + @ ) I
is o, D  u, + (u-¥) v ] 3, = 8P
. ap ;
Since v. = 0, we have p D,u_ = - == - gp. This leads to
z otz dz
2 _ 9
s D¢ Yy = =Bz Dt P -8 Dt B
B D _ -)-r_ v—)—
ut £ p = =u*y po - po u .
2. = ap x 1
Thus we have e, Dt u, = Dt o + g(u-?v oy, t o, ou) 7)

which is Pierce's equation 7). Pierce goes on and substitutes 4a), 4b) and

5) into 6) and 7). For 6) we have

auz 33 2
oy (D t(“'u i ) & = Vuz] =-Y,p
_1 L ., .1
2 3 2 v 2 :
oo[Dt(po Dth) - D 357 (b, " D.Q )+ 5 ey Dth)]
l
-2 2,2
_1 - 1
3 2 _ 1 2 0 2 3
g B3z (po Dth) ST 7P dz thl * Py 3z Dth'
We therefore have:
1 3 1 1
o, 20k, -0 2p Za2nq +p 2L pa 4 2. 9 q)]
Ps £2 t Z Po dz Py 3z "t~l Ps z £*1
S
_ o2 2
o = VZ (C Q2 - ng)
Q
Since PP —gpo we have:
1 1
_ 2 [, = B2 Py, w s + T amapt =0, 2 P2k, - 50
Py e P 1 "3z 2t £ Py Vp(CQy - 80
&r,, >
2 1 3 2 v Ll gl

[0:Q - 3 o 5. 2 Ql 37 DeQy T3z 0 V(P = T5(CTQ, - 8Qy)

Rearranging terms, we have:



go >
2 1 o .2 v 2.2 3 2
[0, - 5 R T TD.Q) ] - V5 (€T, - 8Qp) = 57 DOy
2p >
3 2 2 18, 2 2 2 2 3y
3z 2¢y = &7 - F o D@y + (D = € V)Qy + 75+ V(D.Q).

The above equation corresponds to Pierce's equation 8), [Plerce, 1967], if
%% . V(Dth) = 0, However, this is the "wind" term and setting this term
equal to zero would defeat much of the purpose of the preceeding analysis.
Pierce [Pierce, 1967] takes the wind into account by using a Doppler
shifted frequency, & = w = i . ;, which will be developed in Appendix 2.
IContinuing with the derivation of the residual equations, we

substitﬁte 4a), 4b) and 5) into 7). Equation 7) is shown below.

o, Do u_ = - D, (32) + gld-To_ + o 7+1] 7)

Substituting the potentials defined above, we have

-1 1 do _ i
2 2 _ 8 2.2 o 2
QODt(PD Dth) = _Dt az [ DOPO (C Q2 ng}] + g[uz dz 3 QO(PO Dth)]
_ 1 21 _1
2 .3 2,09 ) : 3 2 2
4, e -3
g[(po Dth)(EE_'+ °.P, Dth)]
1 3 1
Now o (o p D = p (- Lp 200y, 20
3 popo po 2 pc dz o] dz
S kg i
R 2 2
= =5 PP, (-goo) =W e SR S g
-1 _1 _2 _ 1 dp
2.3 . 2 3 n2 1 2 2 2 "o 2. _
PPy DiQp = P.p, T DL 3 (c Q2~ng) +* (2 g8p, P, Tt P, EE—JDt(C Q,-8Q;)
b e, -3
*8lp, "Dy Tz T %P, DiQyl
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32

-1 _ 1 _3
2 3. 203 2 1 272 2.
PoPo Dth = PoPy Dt 3z (c Q2 ng) * (2 8PPy ) Dt(c QZ ng)
1 1
& dzﬁdponczq Py _ED
po dz t 2 gpopo tQ?.
pq, = p_ 2= (c%q,-ga.) + & ’l)n(czq-q)+l—dpcn + gD
21 = D 53 280 7 BP,P, 009780 T o T ¢ + 80,0
a2 3 _ 1 .2 s, 12 1
=k Dt 3z (QZ) t Bz (Ql) 2 gt popo DtQZ 2 g Dopo Dth
dp
1 o 2
+ .5; dz ¢ DtQZ + thQZ
1 g 3 -1 lg2 -1
Pz 2T 2PN T 2P N T2 8P Pl YT 7 %% P
o} dz t~2 C?. £
g 5 lg_z_ 1
(_ZD + 2 tE?-l-f 2p0p0 Dt)Ql
C C c
dp
B o _ -l L "o
+ CZ Dt 2 gpopo Dt p dz Dt)QZ
23 1 4 133 1.2 e 23
Peaz QT 7P 7 7% DUt Tl Y
do
1 1.8 1 Py g, g 3B
- (5 8o, Dt+po 3z Qe T U7 DY,
2 3
We now use 7) to substitute for Dt 5 Ql
02 2-q, = 5! + Lg 152 g
t Az 2 7 2 "2 P5P0 1
¢ c
gp o
3
5 (@@ - 320D q + 0 - c? 7HQ, + L - 7(.0)]
P 1 2 £°1
C 0
do
1 -1.2,1 Po2 o 2
- (2 8P 4Ps Dt+p z Ok T ZDt)Q2



52

1 4 52 3
v
= 5D+ %5 5+ VDI
& '
dp
2 L -1 .2 1 o .2
-(3‘72+5gpop0 DT + — ——D)Q 8)

t po dz £t 2

This result is also different from Pierce's equation 8) [Pierce, 1967].
The further substitution of C2 = Ypolpo has been made in Pierce's result,
but the discrepancy is in the number of terms.

The matix formulation of the residual equations (Equatioms 7) and 8))

is as follows:

23 . _ 18 2 3 2 _ .2 2
Dt—?;:_Ql-(EVZ_ZpD Dy + 55 " VDR + D - T VI,
DZLQ—(LD4+§Ev2+i(3‘i-VD))Q + (- vz-l ‘102
£0 2 g2 bt 2 2 42 9z £/ /81 & Vo T 7 8PP, t

de
1 o 2.
T 5 dz Dt)QZ
(8]
.
23 %] | M A2 %
t %9z
Q, Ba1 f90] 1%

A

Args A12’ A21, AZZ are apparent from the above equations,



Appendix 2
Derivation of the Normal Mcde Dispersion Function from the Residual

Equations

]

If we assume that Ql Vl exp [-i(wt - kxx - kyy)}

Q2 VZ exp [-i(wt - kxx - kyy)}

2
Then D; becomes -(w - v . k = k )2

2
v and 7, becomes —(k2 + kz). We want to
XX 7y 2 X y .

express the residual equations (Appendix 1) using the above definitions.

To that end we have the following intermediate caculations:

-+ -
ov _ ov ;
e U(Dth} " V(Dtvl exp[-i{wt - kxx - kyy)])

But DtVl exp[-i(mt—kxx-kyy)} = Vl{—i(m—kxvx—kyvy}]exp[—l(wt—kxx—kyy)}
5 7  ; . -
V(Dth) = [ikx(—i(m—kxvx—kyvy)}]\l exp[-1i(wt kxx kyy)}ex +

[iky(-i(m—kxvx—kyvyj)]vl exp[—i(mt—kxx—kyy)jg& +

dav N
e exp[—l(mt-kxx—kyy)]ez
- av av

oV X o
Then 57 + 7(D,Q)) = 57~ (V(D.Q), + 57= (F(DQ)),

avx BVV
= {EE—-' kx(m-kxvx-kyvy) + T " ky(w_kxvx_kyvy>] .

Vl exp[-i(wt - kxx - kyy)}

The residual equations can be written as (after the additional substitution

of = w-kv -k v and k2 = k2 + kz):
xXx vy Xy
) - &P, avx kt sz Ez c 21
2— = - — —— —_— —_— 4 . -
57 1 [sz g et sk S ¥ 1 - 251N,
2 2 .2 ov k v K y= 2 gp
GRS N - . S X, X, _ ¥, Iy 4 |-8_ _170o
3z "2 2 2 2 2 |3z £ 3z Q 1 Q2 2 Bi
Lfﬂz}v
poﬂ dz| 2

The equivalent matrix form is:
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a Y1) _ P )N
o Wl Thal ag| (Y%
gp ev. k av k
-8 2 _l70, x x, ¥, ¥
where All == k 27 + P + Fy. 5
§ o]
2
c 2
A, =1--<k
2
12 02
2 2 k2 r v k v k )
AL =S Bk L8 | X, S~
21 2 2 .2 2 13z £ 3z 0
2 ¢ R c
A = - gkz _ ;_gpo - doo
22 QZ 2 P, oOQ dz

%; becomes %; since V1 and V2 depend only on z.

The atmosphere is divided up into a number of isothermal layers, where
the coefficients in the matrix differential equation are constant for that
layer. The topmost layer is taken as extending out to infinity, while the
boundary of the lowest layer is the earth's surface. Certain boundary
conditions have to be satisfied for the results to be physically meaning-
ful, These conditions are that Vl and V2 vanish as z goes to infinity and
that Vl vanish at the earth's surface, which implies no vertical displace-
ment at the earth's surface.

The analysis depends heavily on the concept of the state transition
matrix. The solution for the topmost layer is obtained first. The
solution in any other layer can then be found since Vl and V2 are constant
across the interface and the coefficients of the matrix differential
equation are counstant. The calculations embodying the above statements are

as follows:

We start with the matrix differential equaticn
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]

where All’ AlZ’ A21’ A22 are constant for each sublayer. The state
transition matrix T is then calculated. (The state transition matrix
relates the state within a layer tc the values of the variables at the top

interface of the layer). Thus

v, (2+6) Pk(zq
= T(Z+8) §d <0
v, (2+8) LYZ(Z)

The state transition matrix is defined as

T = L_l{(sI—A)_l}

where L—l is the inverse Laplace transform and I is the identity matrix,

s—A il
sI-A = il I%J

a1 STy
(s1-8)"T = k |FS'A22 12
(s=4; ) (s-A,,) = A, A, t?ZI s-4,,
2
(s-Ayp) (8-8pp) = Ayg Agy =87 = (Aphappds + A1) Ay - Ay 4y
= 52 - Js + K
where J = A v Ay KAy Ayt Ay
A3 P i
(5-A. ) (soho.) - A A, = [g - IFAI=4R){ T - /124
i e L ] |-

(1]

(s = L) (s = Ly

s ¢52~4K . wﬁzﬁax
1 2 d 2 2

Computing the elements of the T matrix, we have

where L
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o
Lydos  Lgrdoy
o ol Ay | T e B
11 (s-Ll)(s—Lz{J s—Ll s—L2
) (Ll_AZZ) ele i (LZ—AZZ) eLzz o (J2_4K)1/2
Ll_LZ Ll-L2 172
L.z L
1 [ i 2
=2 —— (L. -A..} e - (L.=-4& )ez]
(J2-4K)l/2 1 722 2 722
L 1
S Ap ] T e B
12 (s-L,) (s~L2)_J 12 s-L, s-L,
_ A12 ele eLzz-l
- - 4
(32_4K)l/2
A L.z L
Similarly, Tzl = ——72—15'%75 [e L. e 22:[
(J7=4K)
L,z L
1 [ 1 2
Ton = = | (L,~A..) & - (L,-4A..) e é]
2 1
22 (J2—4K)l/2 1711 2711
For the first boundary condition (exponential decrease of Vl and V2 as

z goes to infinity) to be fulfilled, we must have Re(Ll} <D, Re(Lz) < 0.
This condition is necessary to trap the energy from the source near the
surface of the earth. Francis [Francils, 1973] has shown that a variety of
other conditions will accomplish the same effect.

Following Pierce, [Pierce, 1967] we assume that one exponentially

decaying term suffices to describe V, in the topmost layer.

1

vy = Cy expl-b(z-2 )] z >z

m



av,
dz - M1 Vit e

Therefore, for the top layer extending to infinity, where z_ is the height

of the top interface,

Vl C AlZ
vz = Sk exp[-b (z-zm) 1.

11

We want to obtain the solution for Vl and V2 at the surface, knowing the

values at the top layer. This 1s easily obtained since

] u
AL S P 1 A ST I L5 Rlz.jl- Clapy)
= u
Va]  Ra1 Rag) V2l [Raa P“zz_J l_c (=b-A;y)

where u stands for the top interface and s stands for surface values. The
matrix R is the product of all the transition matrices for the layers. For

5 _ u u _ u 1 S
V. = 0 we have R V1 + R12 v 0 or R,,A R12(b+All) 0.

1 11 2 11712 ©

The last equation defines the normal mode dispersion function, i.e.,

+ Rlz(b—A (A2.1)

u u
11412 11
F(m,kx,ky) is also a function of the height profiles of C,vx,vy and Pye If

F(m,kx,ky) = R

the group velocity direction is held constant (as it will be for a single
array) then another dispersion function can be obtained, which Pierce

[Pierce, 1967] calls the auxiliary dispersion function P(m,k,kv,ﬂ).

oF IF
P(w,kx,ky,ej {ka} sin 8 - [Eky] cos 6,
Here & is the angle between the group velocity vector and the x-axis. The

group velocity may be calculated from the equations:

3F 3F| _
vgx =% (———akx] f(aw] = Vg cos 3

__ [E]),fe
ng = = (Bky]/[aml Vg sin 8
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The phase velocitv may be calculated from the equations Vp = (mszz)l/2
and cos Sk = kx/k
sin ek = ky/k

Gk is the direction of the phase velocity and is defined by the above

equations. The "normal" mode solutions are the solutions of the residual

equations when F(m,kx,ky) =0 or P(w,kx,ky,e) =0 for a fixed direction of

~

=

aF oF ¥

— , —=— , = are ccmputed as follows (P can be substituted for F and
dw okx ok

the same general analysis holds). Let g denote w, kx or ky. Then from

equation (A2.1) we have

u 3 u
oF _ {aRll JRCR e | R e | IS T S 51
3q | 9q |12 3q 117 11| 3aq 12{2q 3q

The derivatives of the matrix terms may be obtained from the equation

M , .
[%5 ) [G(l)] [aT(l)/aq] [H(i)] (M is the total number of
q Tl layers)

where

c® o @@ E®7 . p4
G TG I 1y I

(1)

The differentials of the transition matrix rBTaq j, may be calculated,

-

after some algebra, since the transition matrix is made up of known

3AY Yy
- 3b 11 12
functions of w, k_ and k_. The same holds true for — , and -
X aq 3q 3q

i.e., b, and A"  are known functions of w, kx and ky.

u
By 12
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Listing of Computer Programs
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IMPLEHENTATION OF WIENER’S LME ALGORITHMN

41

ODIMENSION CVSUM(I)YsA(L128,3),VAR(Z) M2 (3) W (3} »SUM(IT)SQUARE(S)

DIMENSION X(22764:3) Y (32766,27

CHARACTERXZ20 IN1,IN2,IN3,IN4,QOUTI,0UT2:0UT3»0UT4,0UTS,0UTS

INFUT FARAMETERS

FORMAT(A)
FORMAT(IZ2)
FORMATI(F?.9)

TYFPE 1, ‘$NUMBER DF FILTER WEIGHTS:
ACCEFT %xr NUNMFC

TYFE 1+ “$VALUE OF TIME DELAY (DELTA)!
ACCEFT %, IDELTA

TYPE 1s “$TYPE IN INITIAL FILTER CODEFF
TYFRE Ly “8S(1=YESr2=ND} ~

ACCEFT %+INFC

IFCINFC.NEW LD

GOTC &8

ACCEFPT %y (A{Jr1)sJd=1sNUMFC)

TYFE 1, “sCONVERGENCE PARAMETER ALFHA
ACCEFT %y alPHa

E=1.0-ALPHA

TYPE 1y "SMINIMUM VARIANCE: '/

ACCEPT %» VARM

TYFE 1+ ‘$ITERATION #%# FOR CODEFF. DUNP
ACCEFPT %+ IDP

TYFPE iy ‘SINPUT FILEMNAME #1:! °

ACCEFT 1+ INL

CALL GETLENCINL,ISIZED

OFEN {UNIT=1y NAME=IN1; STATUS='0LL’.
TYPE 1, “SINFUT FILENAME #2% ~

ACCEFRT 1+ INZ

OFEN (UNIT=2+ NAME=IN2y» STATUS=-0LD‘»
TYFE 1, "$INPUT FILENAME #3:

CCEFPT 1y IN3

OFEN (UNIT=3» NAME=INI, STATUS='0LD’,

NFTS=(ISIZE~((ISIZE+2044)/2048)%4)/4
TYPE ¥, NPTS

TYPE 1:$0UTFPUT FILENAME #1! ~
ACCEFT 1,0UT1

OPEN (UNIT=10> NAME=QOUTIL.
TYPE 1,/3QUTPUT FILENAME $2:
ACCEPT 1.,0UT2

OFEN (UNIT=11l, NAME=0UTZ2,
TYPE 1,"$0UTPUT FILENAME #3: *
ACCEFT 1,0UT3

OFEN (UNIT=12, NAME=0QUT3.
READ (1) (X(I,1)sI=1NFPTS)
READ (2) (X(I,2)s131NPTE)
READ (3) (X(Ir3)rI=1,NPTS)
TYPE 1:/$0UTPUT FILTER COEFF.
ACCEPT %» IANS2

IF (IANS2Z.NE.1) GOTO 99
TYPE 1.’$COEFF. FILE NAME?
ACCEFPT 1,0UT4

TYPE 1s/$COEFF. FILE
ACCEPT 1.0U7S5
TYFPE 1, ’$CREFF.
ACCEFT 1,0UTS

TC FILET

(18T FILE?

NAME? (2ND FILE)D

FILE NAMET (3RD FILE)?

4

FOR 1ST CHANNELT ~

FORM=’UNFORMATTEDR"?
FORM="UNFORMATTED '}

FORM="UNFORMATTEL ")

STATUS='NEW’ s FORK="UNFORMATTED ")

STATUS='NEW’ »FORM="UHFORMATTED")

STATUS='NEW’FORM="UNFORMATTED )

{1=YES22N0O)

s

4

k4



QFEN (UNIT=13, NAME=0UT4, STATUS=’MNEW’,
OFEN (UNIT=14, NAME=CUTS, STATUS='NEW’:
OFEN (UNIT=15, NAME=0UTés, STATUS='NEW’,

c

C INITIALIZE VARIAERLES

c

0 5S4 L4=1,3
SUM(L4)=0.0
SQUARE(L4)=0,0

00 &6 Mé=1,IDELTA
Y(NFTS-ILELTA+1,L4)=0,0
CONTINUE

O S5 LS=1,NUNFC
AL LAY=0.0
CONTINUE

CONTINUE

o~
o~

o

g LOOF OVER THE ARRAY OF FOINTS

~0

00 51 Li=i»NPTS-ILELTA

CONVOLVE DATA WITH FILTER

OoOowOOOuad

K=NUMFC
IF(L1.LT.NUNFC) KsL1
ng 33 L3=1,3
CVYSUM(L3)=0.0
Do S2 L2=1/,K

FORM=/UNFOEMATTED "
FORM=‘UNFORMATTED’)
FORM='UNFORMATTEL ">

CUSUM(L3Y=CVUSUMILIY+X(L1-L2+1,L3IXAL(L2,LD)

38

CONTINUE

(&)

Y(L1sL3)=X(L1+IDELTA,L3)-CVSUM(LTI)

2]

CONTINUE

aoOo00wm

IF(IDF,.NRE,.LL1) GOTOD 108
TYPE %, IDF
WRITE (13) (A(KKs1)sKK=1,NUMFC)
WRITE (14) (AC(KK»2)rKK=1,NUMFC)?
WRITE (135) (A(KK»3)sKK=1,NUMFC)
00 108 K8=1:NUMFC
TYPE X%y K8:4(KB8s1)

108 CONTINUE

c

C ESTIMATE THE VYALUE OF THE VARIANCE 0OF X

c
00 109 K9=1:3

SQRUARE(K?)=SQUARE (K?)+X (L1 /K?) kX (L1+K?P)

VAR(K?)=SQUARE(K?)

IF(K.NE,1) VAR(K9)=VAR(K?)/REAL(K~1)

DO LOOP FOR OUTPUTTING FILTER COEFFICIENTS

IFCLL.GT . NUMFC) SQUARE(K®)=SQUARE(K?)=X(L1=-K/K?)¥X(L1-K/K?)

YIK?)I=0.0

IF(VAR(KS) .8T,VARM) V(K?!)=(1.,0-B)/VAR(K?)

c
C UPDATE FILTER COEFFICIENTS
C

D0 107 K7=1»K

A(K71K2)=A(KZyKPI+V(KPIRY (L1 KPIEX(LI-K+K7,KP)

107 CONTINUE
109 CONTINUE
S1 CONTINUE
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WRITE
WRITE
WRITE
CLOSE
CLOSE
CLOSE
CLOSE
CLOSE
CLOSE
CLOSE
CLOSE
CLOSE
STOF
END

(10) (Y(L:1)»L=1,NPTS)
C11) (Y(L»2)L=1,HFTS)
(12) (Y(L»3)sL=1sHPTS)
(1)

(2

(23

(10)

(11

(12)

(13

(14}

(13)
YENDl OF RUN’
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COMFUTE THE FPOWER RATIO USING 4 RECTANGULAR FILTER

coOo

REAL NSUM

ODIMENSION PNSUM(I)»PSSUM(3)

DIMENSION X(327646+3),Y(32765)

CHARACTERX20 IN1,IN2,INI»IN4»OUTL,0UTZ,0UT3,0UTA4

INITIALIZE VARIAERLES

oNeNe]

SSUM=0.0
NSUM=0,0

INFUT FARAMETERS

FORMAT(A)

FORMAT(IZ)

FORMAT(F?.9)

TYFE 1, “$LENGTH OF RACKGROUND WINDQW: -

ACCEPT x» LWI

TYFE 1, “$LENGTH OF SIGNAL WINDOW:

ACCEFT x» LW2

TYFE 1, ‘sS$DISTANCE BETWEEN WINDOWS: 7

ACCEFT x» LD

TYFE 1, ‘$TOLERANCE FOR NOISE WINDOW: ~

ACCEFRT Xx,TOL

NNi=LD+4LW1

NN2=NN1+LW2

DO 102 M2=1sNN1

Y{M2)=0.0

CONTINUE

TYFE 1» “S$INFUT FILENAME #1: 7

ACCEFT 1, IN1

CaLL GETLEN(IN1,ISIZE)D

CFEN (UNIT=1, NAME=IN1, STATUS=‘0LD’, FORM=’UNFORMATTEL’)
TYFE 1r ‘$INFUT FILENAME #2: °

ACCEFT 1, INZ

OFEN (UNIT=2, NAME=IN2, STATUS=/0LD’, FORM=‘'UNFORMATTELD")
TYFE 1+ “$INPUT FILENAME #3: -

ACCEFPT 1, IN3J

OFEN (UNIT=3s NAME=IN3, STATUS=’0OLD’, FORM=’UNFORHMATTED’)
NFTS=(ISIZE-((ISIZE+2044)/2048)%4)/4

TYFE X5 NPTS

TYFE 1,’$0UTPUT FILENAME #1: 7

ACCEPT 1.,0UTL

OFEN (UNIT=10s NAME=QUT1s STATUS=‘NEW’FORM=’'UNFORMATTED’)
READ (1) (X(I»1)rI=1:NPTS)

READ (2) (X(Is»2)sI=1,NFTS)

READ (3) (X(1+3)sI=1sNPTS)

W= 0O000

-
(o]
18]

C FPROCESS THE DATA

g S3 L3=1,3
00 Sé6 Lé=1sLUL
FNSUM(LI)=PNSUM(L3I)+X(L&sLIIXX(LELD)
o6 CONTINUE
00 57 L7=NN1,NN1+LW2
FSSUM(LI)=PSSUM{LII+X(LZsLIIAX(L7+L3)
57 CONTINUE
00 S2 L2=NN1yNFTS~-LW2-1
SSUM=SSUM+PSSUM(LI)



5
NSUM=NSUHM+FNSUM(LI)
IF((L3ILER+3) ,AND, (NSUM,GT.TOL) ) Y(L2)=SSUM/MSUM
IF(L3.EQ.3) SSUM=0.0
IF(L3I.EQ.3) NSUM=0.0
FSSUM(LI)=FSSUM(LI)+X(L2+LW2+1 L3I %xX2-X(L2,L3)x%2
FNSUM(LI)=PNSUM(LI) +X(L2-LD+1sL3) XxX2-X(L2-NN1+1,L3)%x2
CONTINUE
CONTINUE

WRITE (10) (Y(LYrL=1,/NPTS]
CLOSE (1)

CLOSE (10)
STOF “END OF RUN’
END

o
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Abstract

This thesis examines signal enhancement and detection schemes for
detecting infrasound events, A theoretical review of the normal mode
analysis of infrasound as made by previous authors was examined, with a
veiw toward frequency filtering. Actual frequency filtering was accomp-
lished using Widrow's (least mean square) LMS filter. The data sets used
for the LMS filter consisted of a gignal superimposed on microbarom noise.
The signal strength was altered to obtain various signal-to-noise ratios.
A power ratic based on the output of the LMS filters was used to examine

the effect of changing the signal to noilse ratic on detectiocn.



