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1. INTRODUCTION

Quality is of utmost importance in any sophisticated system,

It is more so in the case of life support systems whose reliability,
which is vitally important, depends on the quality of the components
that go to make the system, Modern technology has developed to
ensure high precision and quality in the manufacture of products.
Due to increased specialization of technology of production, it is
not economical for any industry, however large, to manufacture all
the parts needed for the final product, This has necessitated ob-
taining certain parts from outside suppliers. Also, even for the
parts made within the industry, raw materials are received from
outside sources., Since the-quality of the final product, to a very
great extent, will depend on that of the parts received from the
supplier as well as the raw material received, a very strict vigilance
on the quality of incoming goods is warranted. Sampling inspection
at this stage could be stated as the starting point of a quality
control program in the whole project.

An attempt has been made to design an optimal sampling plan with
the total cost of inspection as the main consideration. The total
cost of inspection includes two elements, namely, the cost of inspection
and the cost of undetected defective articles going out of the inspection
department. The process average or the probability of defect of the
incoming lot is an important aspect in optimization of sampling. In
general, this process average is taken as fixed and the sampling scheme
is calculated to give the optimal results for that fixed process

average (3). The approach used in this report is to consider the



process average as being largely caused by the sampling scheme
adopted (3,6).

Hwang, Fan and Tillman [4] have formulated such a sampling
problem and solved a five variable problem by the application of the
discrete version of Pontryagin's maximum principle. In this report
the same numerical example of allocating a resource for sampling
inspection among five products has been formulated and solved using
the sequential unconstrained minimization technique [SUMI]. Both
these methods yield identical optimal sample sizes.

The stratified sampling, which has the advantage of higher pre-
cision has been discussed in the nexf section. A numerical problem
with four strata and two variates taken from Cochran [2] has been
formulated in the form of SUMT general formulation, The problem is
to find the sampling plan with minimum cost where the variances for
the two variates are equal to or less than the specified value,
Assuming the cost of inspection to be linearly related to the sample
size, the above mentiﬁned problem is one of minimizing a linear
objective function subjected to nonlinear constraints. The problem
is solved using SUMT and the results are presented in section 4 of
this report. Assuming a nonlinear cost function, which is more
realistic in some cases, the problem becomes one of minimizing a
nonlinear objective function subject to nonlinear constraints. The
results of such a problem obtained by using SUMT has also been
presented.

Finally, parameter estimation has been carried out on the model

which is used in preventative sampling where the probability of defect



is assumed to be a function of the fraction of sampling. Marquardt's
method [5], one of the most powerful techniques available for the
nonlinear parametric estimation is used to estimate the three
parameters involved using a set of assumed data points, Even with
the initial guesses which are 100%Z more or less of the correct

value, the method estimates the parameters to an accuracy of about

"+ 3%, The same data points were used for the parametric estimation
by Bard's method [1] for a comparitive study. It was found that

Marquardt's method takes less computation time than Bard's method,
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2. ACCEPTANCE SAMPLING

2.1 INTRODUCTION

One of the problems faced by industry is the design of a proper
acceptance sampling procedure., Since the quality of the final
product will depend on the quality of the parts and raw materials
received, it is very important to have a proper acceptance sample
plan to get the desired quality level of imput,

One of the problems in a sampling inspection procedure is to
decide the sample size. The problem can be solved in various ways.
The approaches are as follows [5]:

(1) By applying one of the standard sampling inspection tables
such as the Dodge and Romig Tables [4], the Military Standard 105-D
[9], or the Philips SSS Tables [6].

(2) By choosing numerical values for a suitable set of parameters
(AOQL, Producer's or Consumer's Risk point, etc), and constructing a
corresponding sampling plan,

(3) On the basis of an economic theory which takes into con-
sideration various costs [7,8,10]. |

Methods (1) and (2) are more commonly used due to the simplicity
of calculation. Though these two methods are convenient for use in
industry, one can never be certain that they will lead to what must be
considered as an optimum sample size. They may in certain cases lead
to sample sizes which are not the best from cost point of view [5].
The third method based on the economic theory has much less doubt as

to the optimality of the decision. The main draw back with the cost



basis is that it depends on various costs such as cost of accepting a
defective sample etc, which cannot be estimated with reasonable
degree of precision. A very good approach to estimate the cost of
accepting defective material based on the theory of probability has

been given by Stacy et al [10].

2.2 PLANS FOR ACCEPTANCE SAMPLING BY ATTRIBUTES

Whenever there is material transactions between the producer and
customer or two departments within a single organization, there is
always the problem of acceptance of goods. Sampling inspection is
preferred to 100 per cent inspection for two reasons. First it
saves money since only a fraction of the lot is to be tested and
second, in cases which involve destructive testing, it is absolutely
necessary, Since acceptance sampling is desirable and often necessary,
we ought to make sure that we choose the right plan for our purposes
and that we use it properly.

For a sampling plan, we decide the sample size n which is to
be choosen without bias from a lot size N. Then the sample is inspected
and, if it contains say c or fewer defectives, the lot is accepted,
while if there are more than c¢ defectives in the sample, the lot is
rejected. Deciding the numbers n and ¢ constitute the sampling plan
choosen., This method is known as single sampling.

The desire to give a lot a second chance leads to double sampling.
The main advantage of this method is that the average number of articles
inspected is much less than the single sampling method. A sample of
n, pieces is chosen at random, Then if it contains ¢y defectives or

fewer, the lot is accepted, or if it contains more than c, defectives,



the lot is rejected. If, however, the first sample contains more
than ¢, defectives but not more than c, defectives, a second sample
of n, pieces is drawn. Then the total number of defectives in the
two samples is compared with Cye If the total is equal to or less
than Cys then the lot is accepted; otherwise it is rejected.

The development of various standard acceptance sampling plans was
and is a group project as in the case of many other industrial and
scientific achievements. The early work was largely concentrated in
the Bell Telephone Laboratories, beginning about 1923 [3]. The famous
Dodge-Romig Tables were due to work done at Bell Telephone Laboratories
[4].

Early in 1945, the statistical research group of Columbia University
was asked by the United States Navy to prepare a manual of tables,
procedures and principles for sampling inspection. Subsequently the
attribute tables were adopted for use by both the United States Army
and United Stated Navy [5].

In general it is best to use one of the sampling plans already
worked out, This is the most convenient, since it saves the industrial
worker a great amount of calculation, trouble and time.

The various standard plans provide adequate flexibility and
variety of approach to take care of most of the industrial sampling
problems. However, if a particular situation warrents, it is possible
to design a specific plan to suit to the specific requirement [3].

Many authors have discussed the use of optimization in the decision
of samplinglsize [1,5,7,10]. The basic principle involved is the

minimization of the total cost of inspection. The first cost to be



considered is the cost of inspecting the sample. This is calculated
by multiplying the sample size by the unit cost of inspection, The
other element of the cost arises due to the fact that in any sampling
plan there is always a possibility of accepting bad articles, A

cost of accepting a defective article is assumed and the cost of
accepting bad articles is calculated., The objective is to minimize
this total cost subject to certain conditions like total number of
articles etec,

The quality of the incoming material, the probability of defect
of the lot, is an important factor that has to be considered in the
design of the sampling plan. Most of the authors assume a constant
probability of defect and, based on this, they have proceeded to the
optimization of sampling size. The next chapter presents a different
approach for the optimization of sampling size. This approach assumes
that the probzbility of defects is influenced by the sample size choosen

for inspection.
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3. PREVENTATIVE SAMPLING

3,1 INTRODUCTION:

The two basic purposes of sampling inspection are: (1) to check
the quality level of the goods and (2) to help to maintain a certain
quality level in the goods. The former functiom is quite apparent
and the latter needs to be explained. The second purpose, though
unfortunately not very commonly recognized, justifies the establishment
of sampling rather than the first one. Maintenance of a quality level
is achieved since the very act of inspection produces a reaction which
improves the quality of the population [24]. 1In acceptance sampling
if the customer does not inspect the products received, the supplier
is likely to underestimate the importance of the quality and he may
relax his effort to maintain the quality at the best possible level
[13]., Thus a routine inspection progedure, more than serving the
purpose of discrimination of good lots from the bad, exerts a decided
influence on the quality of the lots received and may be desirable for
this reason alone [14]. The mere knowledge that a regular inspection
is being carried out encourages a sense of responsibility and makes
the producer more careful. It is natural that this reaction increases
as the sampling is intensified, and thus a more rigorous inspection
results in a smaller probability of defect [24]. The above advantage
will be more effective if the supplier is fully aware of the
inspection done by the customer [16]. Thus an effective feedback
information from inspector to producer or supplier is essential for the

success of this sampling inspection.
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Most of the authors [17,23,24] who have done work in the area of
optimization of the sample size, have based their approach on a constant
process average, As expressed by Hill in the discussion of a paper
by Horsnell [14], the influence of the sampling scheme on the process
curve is not taken into consideration when one assumes a constant
process curve, In this light, selecting a sample size is mainly a
task of deciding what plan will give the vendor an economic incentive
to offer the desired quality. As for practical examples, we can think
of random sampling of tax returns, or checking the drivers' license
of teenagers. Obviously one hundred percent checking in these
situations is cost-prohibitive, whereas no inspection will lead to
carelessness and dishonesty. Hence random sampling is the only
answer., Considering this human reaction mentioned above which results
in the prevention of future defects, we may refer to this as the
preventative sampling.

Based on the above considerations an attempt has been made to
allocate an effort or resource to obtain an optimal preventative
sampling. The problem has been formulated in the form of a non-linear
programming problem. The sequential unconstrained minimization
technique (SUMT), one of the most powerful nonlinear programming, has
been used to solve a numerical example of resource allocation among

five products. The results obtained have been presented,

3,2 FORMULATION OF THE PROBLEM:
Let us assume that a manufacturing company is producing N types

of products, each being different with respect to the value of the
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product, probability of being defective, quantity of production of each
type and so on. We are to find the optimum preventative sampling
procedure subject to some constraints. To decide the criterion for
optimality, let us consider the various costs involved.

n

*
Let a = the quantity of the nth type product.

8" = the sampling fraction of the nth type.

v = the value of each of the nth product.

the probability of a" being defective, a function

o
=)
~~
L]
—
[}

of 8%,

I = the inspection cost of each article at the nth stage.
pn(én) is a monotone decreasing function of e".

An essential assumption is that the probability of being defective,
pn, is a function of the fraction of sampling, 8%, The relation .
could be assumed to correspond to the one shown in Fig. 3.1 [24].
It can be seen that pn(e“) decreases very rapidly initially with small
increases in e“, but thereafter it tends to be constant. This constant
value of p“(e“) which cannot be reduced to zero even for very large
6" is called the residual "unavoidable defect".

The equation
n, n n n, \-c'0
p"(e™) = A" + B"(e) (3.1)

may be used as a fairly good representative of the pn(e“) function

where AP,Bn and C" are constants [24].

*
The superscript n indicates the stage numaer. The exponents are written

with parenthesis or brackets such as =M.
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AvB" .
P(e)
A"+8 exp ~<8")¢c").
A€
o) P X

RELATION BETWEEN
THE FRACTION OF SAMPLING, 6
& THE PROBABILITY OF DEFECT, P(6).

Flé. 3.1 .
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In equation (3.1), A" represents the proportion of articles
that are 'unavoidably' defective [13]. When 8" attains the maximum
possible value of unity, pn(en) will be nearly equal to A" since

n
Bne_cne becomes negligible, B® measures the proportion of defects
added to A" depending upon lack of inspection. c" measures the
weight or effect of sampling on the “avoidable" defects. Thus the
quantity c® can be looked upon as the "deterrent" effect of sampling
on the probability of being defective. It is also regarded as
"elasticity" of reaction to sampling. It may be pointed out here that
the idea of preventative sampling is based on the existence of the
quantity " [16]. The larger the value of Cn, the greater is the
scope of improvement by the use of preventative sampling.

The total cost of inspection, then, becomes 1%2"6". The other
cost to be considered is the cost of accepting defective articles.
ap(lrﬂn) represents the quantity of the products not sampled. Therefore
aFvnpn(Bn)(ern) is the value of the undetected defective quantity.

This is the cost of accepting defective articles. Thus, the combined
cost becomes

combined cost = cost of inspection +

cost of accepting defective articles
= 13" + a%vp7(e™) (1-0™) (3.2)

The criterion for optimality is the one that makes "the sum of the

total expected value of the undetected faulty articles, and the total

cost of inspection" as small as possible. The problem is then finding

an optimal sampling fraction 8" to minimize the objective

N
s = § [a%"p(e™) (1-6") + 1"a"e") (3.3)

=1
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subject to the constraints,

N

} a"e” = Da. (3.4)
n=1
and 0<6" <1, n=1,2, ..., N, (3.5)
¥ a
where Z a = D is the total quantity of N products and a is the
n=1

fraction sampling of the total quantity D, and therefore Da represents

the sampling capacity restricted by man power and/or equipment.

3.3 THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE [15]:

A number of constrained minimization techniques have been developed
recently for finding the minimum or maximum of a function with several
variables subjectrto certain constraints. A technique which was
originally proposed by Carroll [2,3] and further developed by Fiacco -
and McCorﬁick (6,7,8,9,10] is introduced here.

This technique, known as the sequential unconstrained minimization
technique (SUMT), is considered as one of the simplest and most efficient
methods for solving the constrained nonlinear optimization problem.
Transformation of a constrained minimization problem into an un-
constrained minimization problem enables us to use available techniques
without inventing a new technique to solve constrained minimization
problems, Many methods for minimizing an unconmstrained function are
known and newer ones are continually being developed.

The general nonlinear programming problem with nonlinear inequality

constraints is to choose x to
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minimize f(x)
subject to

g(x) >0, i=1,2,...,m

where x is an n-dimensional columm vector (xl, Xps eees xn)T. The
superscript T denotes transposition. If the variables are required
to be non-negative, such constraints are included in the gi‘s.
Functions f(x) and gi(x), i=1,2, ..., m, can take linear or nonlinear
form,

To solve this problem the following algorithm is presented
[6,7,9,10]. Define the function (called the P function)

T o1
P(x, 1) = £(x) + 1, 121 'E;G:T 3.7

where 1 is a positive constant. Subscript k indicates the number of
time P function has been set up to solve the problem given by equation
(3.6). The conditions imposed on the P function are as follows:

() =,
> +v. > 0, This indicates that {rk} is a strictly monotonic

k=1, 2, ..., is a positive real number and r, > 1, >

> ]‘_’k

decreasing sequence and T +0 as k> =,

(2) Rp = {x | gi(x) >0,1i=1, 2, ..., m} is non-empty. This
condition indicates that at least one point must exist within the
interior of the feasible region.

(3) The functions f(x), gl(x), S— gm(x) are twice continuously
differentiable,

(4) The function f(x) is convex.

(5) The functions gl(x), T gm(x) are concave,
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(6) For every finite K, {x | £(x) < K; xeR} is a bounded set,
where R = {x | gi(x) >0,i=1, 2, ..., m}.

(7) The function P(x, r ) f(x) + r, 121 EI%ET is, for each
r > 0, strictly convex for xERp. This also indicates that either f(x)
is strictly convex or one of 813 vev» B is strictly concave,

Practical experience indicates that the problems given by
equation (3.6) can be solved even when these conditions are not met.
The three conditions which are absolutely required to obtain any useful
results are conditions (1), (2), and (6). Condition (1) guarantees
that the sequential minimization of the P function will eventually
lead to the solution of minimization of function f(x). Condition (2)
eliminates problems with equality constraints. Condition (6)
eliminates problems having local minimum at infinite points.

The characteristics of the P function are as follows:

m

& iig'rk 121 gi(x)

=0,

(2) 1lim f[x(rk)] = u¥%

ko=

(3) lim P[x(r)), 1 ] = u¥,

(4) '{f[x(rk)]} is a monotonically decreasing sequence,

(5 { X g = }} is a monotonically increasing sequence.
i=1
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The proofs of these characteristics are presented in detail in
Fiacco and McCormick [6,7,8,9,10]. The proofs of  (4) and (5) will
be presented below since these proofs will help to clarify the

intuitive concept of the method.

Let
P(x, 1) = £(x) + 7, 1?;1 m = £(x) + 8(z) I(x)
where S(r,) = r,, and I(x) = % - Also let fk denote f[x(r, )]
W T e L@ k

and ¥ denote I[x{rk)]. Since each x(rk) is a global unconstrained
minimum in the interior of the compact set, the following relationships

must hold.

k+1 k+1

sy s 1 (3.8)

and

kt+l k

£ 4 s¢ ktl gk

) I < £ s, ) T (3.9)

Tyt

Adding inequality constraints, equations (3.8) and (3.9), one obtains

k _ cktl k _ . ktl
S(r (17 = T ) < 8(r @ - 177). (3.10)

Shifting the right-hand side to the left-hand side of inequality sign,

the inequality, equation (3.10), becomes

e+l

k
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Since {S(rk)} is a monotonically decreasing sequence,

[S(r) - s(r, ;)] > 0. This implies that the following relationship

exists,
¥ - T < g, (3.12)
that is,
<™ forannk=o,1,... (3.13)
m
Hence, { ] —F=} is a monotonically increasing sequence,

i=1 8 (®

Using the inequality, equation (3.13), in equation (3.9), one

obtains

k1l k k+1

k+1
£+ s(r )T T 2 £+ 8(r )T (3.14)
which implies
gorl . ¢F (3.15)

Hence, {f [x(rk)]} is a monotonically decreasing sequence.

INTUITIVE CONCEPT OF P FUNCTION

m
The term r Z — in P function of equation (3.7) can be

considered as a penalty factor attached to the objective function f(x).

By adding the penalty term, the minimization of P function will assure

a minimum to be in the interior of the inequality constrained region

by avoiding crossing the boundaries of feasible region. Since the

feasible boundary is defined by one or more of the gi(x) =0, i=1,...,m,
m

the value of r z P will approach to infinity as the value of x
k yop 8500
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approaches to one of the boundary lines. Hence the value of x will
tend to remain inside the inequality-constrained region.

The motivation behind this formulation of the P function is the
transformation of the original constrained problem into a sequence of
unconstrained minimization problem, The desirability of this trans-
formation lies in the fact that numerous methods for minimizing an
unconstrained function are known and newer methods are continually
being developed [4,5,11,12,19,22}, Thus, by this transformation it
becomes possible to solve the more formidable constrained problem

without inventing new techniques.

" COMPUTATIONAL PROCEDURE

The procedure for using SUMT is summarized below [6,7].
(1) Select the initial value of T4 arbitrarily or use the
, which is available in reference [7].

0
(2) Select a feasible starting point x0 = (xg, xg, Sawiy Kg).

formula for selecting r

If the feasible point can not be easily obtained, select xo arbitrarily.
The computer program will minimize the following P function and obtain

the feasible point.

P(x, ) = -g (x) + 1, ]

1
teT gt(x)

where gs(xo) <0and T = {t | gt(xp) > 0}, Note that the constraint

function of gs(x) > 0 is violated.
(3) Minimize the P function for the current value of T, by using
the second-order optimum gradient method.

(4) Check if a stopping criterion such as
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f[x(rk)]

ETET;ETT -1l<ege (11)

is satisfied. The solution is the optimal one if the criterion is
satisfied; otherwise go to step 5. The dual value, G[x(rk)], is defined

as [5]

G[x(rk)] = f[x(r)] - 1, Z gi[x(r g x(r)]

(5) Set k =ktl and r = rk/C, where C > 1, Repeat the

kt+1
iteration from step 3.

The procedures described above will have to satisfy two stopping
criteria before any meaningful optimal solution can be obtained.
Stopping criterion used for terminating minimization of P function

[Step 3] is in the following forms.

(1) [vxpT (x, 1) IgiP—%f-}-I VxP(x,r)l < gt

1

or

P(x,r ) -P{x,r )
P(x r)
(11) [V pT (x, 1) Iaxi ax I VXP(x,r)] < 5
or
(1i1) |VxP(x,r)| < el

The first stopping criterion was used throughout this study with
€' in the range of 10-3 to 10—5. The stopping criterion for terminating
overall minimization of f[x(rk)] may take the following form in addition

to the form given by equation (11).
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1

k 121 8, x(rT

£

Equation (11) was used in the numerical examples presented in this
work with € equal to 10™>. The procedure should not be terminated
until both criteria are satisfied. If these stopping criteria are
not satisfied within a specified time limit, the iterations will be
terminated by the given time limit.

A computer program entitled "RAC Computer Program Implementing
the Sequential Unconstrained Minimization Techunique for Nonlinear
Programming" is available. Its SHARE number is 3189 [18]. The
program is written in FORTRAN IV and can be used on IBM 360, With
minor modifications the program can be run on any sufficiently large

computer with a FORTRAN compiler.

3,4, SOLUTION BY THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE:
In the present problem, we have a non-linear objective function
and linear constraints. Lt is solved by the sequential unconstrained
‘ﬁinimization technique.
The problem formulated in section 3.2 is formulated in the general

form of the SUMT.

N
win S = ) [a™pR(e™)(a-8") + 17a"6")

n=1l

subject to the constraints

] nn
[Zaa]-mio,
n=1
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and 1 -8By mm Ly Ty oonn Ny

Let us consider a numerical example of N = 5. The data are
given in Table 3,1. The problem has been solved on the IBM 360/50
computer using SUMT, Table 3.2 gives the results of the optiﬁal
values obtained from various starting points. A very wide range
of starting points which include both feasible and nonfeasible
regions, have been used to study the power of the technique, and
the effect on the computational time taken to arrive at the optimal
value, As can be seen from the table even the very bad starting
points converged to the optimal very quickly. Hence this technique
could be used successfully in larger problems where it is mot possible
to guess a feasible starting point. The results compare very well
with the ones obtained by Hwang, Fan and Tillman [16] using a
discrete version of Pontryagin's maximum principle. These are
tabulated in table 3.3. Table 3.4 shows the detailed computer
output from the starting point [0.1, 0.1, 0.1, 0.1, 0.,1]. For

stopping criterion values of €' and ¢ were chosen to be 1 x 10—5.

3.5 DISCUSSION AND CONCLUDING REMARKS

A study of Table 3.2 shows that the number of iterations and
hence the computation time is not affected very much by the starting
points. The starting trial point [0.1, 0.1, 0.1, 0,1, 0.1] which
is fairly close to the optimum converged to the optimum with 14
jterations. The other starting point [50, 100, 800, 5, 0] which
is very far from the optimum value also converged to the optimum

in only 16 iterations, Convergence to the optimum even from such



Table 3.1 Data for numerical example

=5
A =A-=
Bn=B=
Cn=c=

2% unavoidably defective
20% avoidably defective

25 (incentive factor)

a = 10% overall inspection percent

24

Products Value ($/unit) Inspection Cost Quantity
n & ($/unit) (units)

i a"

1 5 0.05 - 400

2 10 0.20 250

3 15 0.40 100

4 20 0.80 © 150

5 25 1.25 100

D 1000
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Table 3.2 Optimal Sample Sizes from Different Starting Values

r, = 3000 c=4

0
Trial Starting Values Optimal Values No. of
No. for o° for 8% Iterations, k
1.00 0.07693
2.00 0.10305
(n 3.00 0.11722 26
4.00 0.12492
5,00 0.12995
0.0 0.07693
0.0 0.10305
(2) . 0.0 0.11722 12
0.0 0.12492
0.0 0.12995
50 0.07693
100 0.10305
(3) 800 0.11722 16
5 0.12492
0.0 0.12995
0.1 0.07693
0.1 0.10305
(&) 0.1 0.11722 13
0.1 0.12492
0.1 0.12995




Table 3.3 Comparison of Results

26

Inspection Results by Results by
Fraction to Maximum Nonlinear
Different Principle [8] Programming
Articles (SUMT)
1
8 0.0771 0.0769
o2 0.1026 0.1031
63 0.1170 0.1172
o* 0.1251 0.1249
0> '~ 0.1301 0.1300
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a bad starting point shows the power of the technique. In cases where
the number of products is very large and where the feasible region

is difficult to guess, this technique could be very successfully
employed. It was observed that the computer time for this five
dimensional problem was only 15 seconds on the average., The results
obtained by SUMT are identical to the ones obtained by the application
of maximum principle. The minimum cost of inspection is $388.69.

From Table 3.4 we can see that this optimum is reached in 14 iteratioms.
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4, STRATIFIED SAMPLING

4,1 INTRODUCTION

In sampling practice we find that if the population is very
heterogeneous and considerations of cost limit the size of the sample,
it is impossible to get a sufficiently precise estimate by taking a
simple random sample from the entire population [10]. Populations
encountered in practice are generally very heterogeneous. To cite
an example, suppose we wish to estimate the average percent defective
of products in a certain factory. It is known that the majority of
the products are good or fair quality, and there are only a few béd
quality products, It is also known that these very bad quality
products account for a substantial amount of total sales, In other
words, the sales distribution of products is highly skewed. When simple
random sampling procedure is applied to such a dis;rihution, there is a
chance that either too many of the very bad products will be included
in the sample or none at all, As a result, the sample may not adequately
represent the population. In such cases, stratification is used to in-

crease the precision of estimationm,

4.2 DESCRIPTION

In stratified sampling, the population of N units is first divided
into subpopulations of Nl, NZ’ e NL units, respectively. The sub-
populations are nonoverlapping, and together they comprise the whole

population, so that,

+ N, + ... + N =N.

N+ H, L
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The subpopulations are called STRATA, To obtain the full benefit

from stratification, the values of the Nh must be known, where the
subscript 'h' denotes the h-th stratum, The process of breaking

down the populations into strata, selecting simple random samples

from each stratum, and combining these into a single sample to

estimate population parameters is called stratified random sampling
[2]. The sample sizes within the strata are denoted by n;, n,, +eny By
respectively.

Stratification is a common technique. From the strict statistical
point of view, the primary cause for stratified sampling is to increase
efficiency [3]. This increase in efficiency is achieved because of
the reduction in standard deviations of the strata over the standard
deviation of the total unstratified population. We may list the
advantages as follows [2,3,10,11]:

(1) 1If data of known precision are wanted for certain subdivisions
of the populatio;, it is advisable to treat each subdivision as a
"population" in its own right. For example we might want to know not
only the overall company's failure rate of a product, but also the
failure of the product in each factory of the nation-wide company.

When this is the case, stratified sampling offers a means of regulating
the accuracy with which we estimate these failure rates. The accuracy
of a sample estimate depends upon the sample size, If we draw an
unrestricted random sample from the total population, we cannot control
the sample size within each stratum, If we draw a stratified sample,
we can control the sample size in each stratum and thus control the

accuracy of the estimate for that stratum.
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(2) Administrative convenience may dictate the use of
stratification. In many situations it is less difficult to sample
strata than to treat the whole population as a single unit, Suppose
we wish to estimate the probability of defects of a product manu-
factured by a company, in many locations all over the nationm. In such
a case, drawing an unrestricted sample from the total population of
products, scattered across the country would present a difficult
problem., Thus the convenience of drawing a stratified sample often
makes it worthwhile.

(3) Sampling problems may differ in different parts of the
population. With human populatiomns, people living in institutions
(e.g., hotels, hospitals, prisons) are often placed in a different
stratum from people living in ordinary homes because a different
approach to the sampling is appropriate for the two situations. In
sampling business we may posses a list of the large firms, which are
placed in a separate stratum.

(4) Stratification may produce a gain in precision in the estimates
of characteristics of the whole population. It may be possible to
divide a heterogeneous population into subpopulations, each of which
is internally homogeneous, This is suggested by the name strata, with
its implication of a division into layers. If each stratum is homogeneous,
in that the measurements vary little from one unit to another, a precise
estimate of any stratum mean can be obtained from a small sample in
that stratum, These estimates can be combined into a precise estimate
of the whole population.

The theory of stratified sampling deals with the properties of the

estimates from a stratified sample and with the best choice of the sample
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sizes o to obtain maximum precision., In this development, it is taken

for granted that the strata have already been constructed.

4,3 PROPERTIES OF THE ESTIMATES
Let the suffix h denote the stratum and i the unit within the
stratum. The following symbols all refer to stratum h.

Nh = total number of umnits, in a stratum

o = number of units in the sample of the stratum
Ypi = value obtained for the ith unit,
Wh = stratum weight,

fh = —— sampling fraction in the stratum,

h
Iy .
¥ _i=1 i
e L true mean,
h
"
Yhi
y -2 sample mean
h n'h 3 »
N
h = .2
I Gy - Y
2 i=1
5 = , true variance,
h N -1
h
2 _ . 2
sh = estimate of Sh .

For the population mean per unit, the estimate used in stratified

sampling is ;st, where [1]
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L —
I My,
v = .1’_1.-—_-.1‘—— (4 1)
st N '
where
N = Nl + NZ + ses t+ NL
The sample mean, y, 1s given by the equation, [2],
E -
Y
_ halnhtl
S “anic (4.2)

n

From equations (4.1) and (4.2) it can be seen that ; coincides with

§st provided that in every stratum .

m [P

- E% or ;E-= %- or fh = f

o

The above condition implies that the sampling fraction is the same in
all strata. This stratification is called as stratification with
proportional allocation of the n, .

It can be shown that* with stratified random sampling, an unbiased

estimate of the variance of §st is, [2]

2
V(§St) = sz(§st) = li‘ % Hh(Nh - nh) fh' (4.3)
N° h=1 ™
A more convenient form would be [2]
22 2
L W.s L UWs
26, = ] ER- ] (4.4)

h=1 "h h=1

x
See Appendix I for the proof.
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4,4 OPTIMAL ALLOCATION

In stratified sampling, the values of the sample sizes, o in the
respective strata are chosen by the sampler. They may be selected to
minimize the variance V(;st) for a specified cost of taking the sample,
or to minimize the cost for a specified value of V(}st)[S]. The

simplest cost function is of the form {2,10]

cost = C=c_ + Ichnh. (4.5)

The above equation implies that within any stratum, the cost is
proportional to the size of the sample, but the cost per unit, ¢, » may
vary from stratum to stratum, The term, ot represents an overhead
cost, This is justified when the major item of the cost is that of
taking the measurement on each unit. Certain types of sampling may
have costs that are not linearly related to the number of units in
the sample in the various strata [2]. To start with let us consider
the linear cost function given by equation (4.5).

It was proved* that in stratified sampling with the above cost
function, the variance of the estimated mean §st is a minimum when

o is proportional to Nhsn//E; such as, [1]

NS, / /{

g T | - (4.6)
LNy S /o)

n =n

From the above equation, it can be seen that

(1) n will be .larger if Nh, the stratum size is larger

*
See Appendix II for the proof,
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(2) o, will Be larger if Sh’ the standard deviation of that
stratum is larger.
(3) n will be larger if L the unit cost of inspection in that
stratum is smaller.
Equation (4.6) gives us the value of n in terms of n, but it
does not indicate the actual value of n, the total sample size. The
answer depends on whether the sample is chosen to meet a specified
total cost C or to give a specified variance V for §st' If the cost
is fixed, the optimum values of n is substituted in the cost function,

equation (4.5), and solved for n., This gives,

(e - c) fays /)
105,75

. (4.7)

If the cost per unit is the same in all strata, the cost becomes
C= <, + cn, and optimum allocation for fixed cost reduces to optimum
allocation for fixed sample size.

In stratified random sampling, V(;st) is minimized for a fixed
total size of sample n if,

W5 o5

=0 .

. . (4.8)
v, s, INy Sy

n =n

This allocation is sometimes called the Neyman allocation, after Neyman
whose proof gave the result prominence [2]. Hess et al [6] concluded
that Neyman allocation gave the highest precision, when compared with
other types of allocation. It should be pointed out that if

intelligently used, stratification nearly always results in a better
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estimate as compared to the estimate obtained by the simple random

sample [2]. It is not to be taken for granted that any stratified

random sample gives a smaller variance than a simple random variable,

if the values of the sample sizes allocated to different strata are

far from the optimum, stratified sampling may have a higher variance.

This shows the importance of finding suitable techniques for optimum

allocation of sample size in order to utilize this useful tool of

stratification. Optimal allocation is very easy when we are dealing

with only one variate, When two or more variates are involved,

optimization could be achieved through the use of nonlinear programming [8].
The use of linear and nonlinear programming in approaching this

type of problem has been discussed by several authors [2,6,8]. The

use of linear programming in sample surveys to determine allocationms

when several characters are under study was first suggested by Dalenius [4]

and Nordbotten [9] illustrated this approach by a numerical example.

For problems with two strata and several variates, a graphical solution

has been proposed by Dalenius [5]. A general mathematical approach

useful for problems with a small number of strata and variates is given

by Yates [12]. Bracken and McCormick [1] have formulated such a problem

as a nonlinear programming problem.

4.5 EXAMPLE PROBLEM

Let us consider an example problem formulated by Cochran [2], with
four strata and two variates. The index h denotes the stratum and j the
variate, where h = 1, ..., L and j =1, ..., K. From equation (4.1)

we see that the estimate of the population mean of the jth variate is
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L -
z"hy L
N L2 3R

E(§j) = (4.9)

where §jh is the hth stratum mean of the jth variate, From equation

(4.4) the variance of the estimate §j is

st L W 82
v(y,) = Z B ) —~3— (4.10)
|
el % b=l Th

where Sih is the known sampling variance for the jth variate in the hth
stratum,

The optimal sampling problem is to minimize sampling cost subject
to the constraints that the variance of the estimate of the population

mean must be equal to or less than a specified value for all the K

variates. Thus the constraints could be written as follows [8]:

L W s2

L'Wﬁszjh 1% jh
Z 5 -h£1 K SV 3=1, .., K (4.11)

where Vj is the upper limit on the variance of the estimate of the mean
of the jth variate, In the above constraint, everything except the
gtratum sample sizes nh(h =1, ..., L) are known. The other obvious
constraints are that the sample size n must be nonnegative, and it

must be equal to or less than the total number of units in the stratum.

Thus the upper and lower limits may be speéified as
0 <n j_Nh, h=1, .e., L (4.12)

Since the minimization of the total cost is being considered, the

total cost becomes the objective function. This could be a function
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as stated in equation (4.5). The nonlinear programming model for
obtaining optimal sample sizes with respect to this cost function is
as follows:

Choose nh(h =1, «os, L) to minimize the linear cost function
given by equation (4.5) subject to the nonlinear constraints, equation
(4.11), and to the nonnegativity restrictions and upper bounds given
by equation (4.2).

The example that is being considered here is with four strata
and two variates [1] and the problem is to find the sampling plan with
minimum cost where the variances of the estimates of the popula;icn
mean for the two variates are equal to or less than the specified
values., The total cost equation is of the form

4
1 +.h£1 n ., (c0 =1, cl=c2=c3=c4=1). Table 4.1 gives the data of the
problem, including the population sizes in the strata, known variances
of 'the two variates in the four strata and unit cost in sampling in
the four strata, The upper limits on the variances of estimateé of the

population means of the two variates are

The nonlinear programming problem is as follows., Choose Ny, Oy, Do,

and n, to minimize the linear criterion function

(D) + (D) + (D) + (Diny + (Dny)

subject to
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Table 4,1 Data for Stratified Sampling Problem [1]

Stratum Stratum Stratum S — jth Variate Cost per
h Population Weight ; =2 == Unit of
Nh Wh Sjl sz Sample
%
1 400,000 0.4 25 1 1
2 300,000 0.3 25 4 1
3 200,000 0.2 25 16 1

4 100,000 0.1 25 64 1




ahes) |, (3Hes |, (2Hes |, 1Hes

—.

_[(Gay@2s) 325 , (.2)(25) . (.1)(25)
{400,000 * 300,000 ' 200,000 100,000] 2 0%

CAHW , (3H@ , 2DHae | (12 e
nl 'ﬂz n3 'IJ.A

_ (e () (.3)(4) , (.2)(16) (.1) (64)
(400,000 + 350,000 * 200,000 " 100,000 ) = *%s

0 < n, < 400,000,

1

o
A
=]
A

< 300,000,
0 < n, < 200,000,

0<nmn,

| A

100,000.

The above nonlinear programming problem is solved by the sequential
unconstrained minimization technique (SUMT) and optimal sample sizes
and costs are given in Table 4.2,

4

The total cost is 1 + E chnh = 728, The results are identical
h=1

to the ones obtained by Bracken and McCormick [1].
Table 4.3 gives the total number of iterations taken to converge

to the optimum from various initial guesses. Starting points were

43



Table 4.2 Results of the Problem

44

Stratum Optimal Sample Size Cost
h "h “hn
1 193 193
2 180 180
3 185 185
4 169 169
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choosen from both the feasible and nonfeasible regions. A study of the
Table 4.3 indicates the power of this technique. It could be observed
that even when the initial points were much away from the optimum, the
program did not take too many iterations to converge to the optimum,
The program was written in FORTRAN and run on IBM 360/50 computer in
FORTRAN G LEVEL, The average execution time for this four dimensional
problem was 40 seconds.

Certain types of sampling may have costs that are not linearly
related to the number of units in the sample in the various strata,

A more general cost function might be [1]

L
C=c'+ 'nP (4.13)
o* L %

Though lineaf cost function may be taken as a gooé approximation in
many cases, equation (4,13) with p < 1 may be more realistic in some
cases. For this more general cost function, the following nonlinear
programming problem would arise:

Choosen nh(h =1, ..., L) to minimize the nonlinear criterion
function given by equation (4.13) subject to constraints of equations
(4.11) and (4.12). The numerical problem given by Cochran [2] has
been modified to have a nonlinear cost function as given by equation
(4,13) with a value of p = 0.5. Thus this becomes a problem with
nonlinear objective function with non-linear comstraints, This problem
has also been solved by SUMT and Table 4,4 gives the optimal sample
sizes.

Tables 4.5 gives the detailed output of the computer program

for the linear cost function. Initial value of r is selected as 3000,
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Table 4.3 Results of the Problem of Linear Cost Function with Various

Starting Points

r,, = 3000

No, of
No. Starting Values Optimal Values Iterations, k
' for Sample Sizes ‘for Sample Sizes
100 193
100 180
(D
100 185 20
1000 169
40 193
100 180
(2)
800 185 20
,,,,, 5 169 .
0.1 193
0.1 180
(3)
0.1 185 20
0.1 ‘169 0
0,0 193
0.0 180
(4)
0.0 185 20
0.0 169
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Table 4.4 Results of the Problem with Nonlinear Cost Function with

Various Starting Points

No. Starting Values Optimal Values g:;rziions, k
of the Sample of the Sample
Sizes o Sizes '
200 84315
200 96063
(D 200 120134 12
200 0 97402
0 84298
0 96116
(2) 0 120132 12
0 - ' 97402
100 84289
100 96094
(3) 100 120137 12
100 ' 97402
300 84286
300 96087
(4) 300 120125 12

300 B 97402
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Values of £' and ¢ are choosen to be 1 x 10_5. Table 4.6 gives the
detailed output of the computer program for the nonlinear cost
5

function. T, was taken as 3000 while €' and € are selected as 1 x 10 .

4,6 DISCUSSION AND CONCLUDING REMARKS

As seen from Table 4,3, a wide range of starting points yield
the same optimal values, The average computation time was observed
to be 30 seconds. In the second problem we have a nonlinear objective
function with nonlinear constraints. Even in this case various
starting points were used to study the reaction. Again it was found
that convergence to the optimum is independent of the starting points.
The average computational time was observed to be 40 seconds.

From Table 4.5 we can see the minimum cost of inspection with
the linear cost function to be $726.7. This optimum is attained in
19 iterations. The starting point choosen was infeasible and hence
the program locates a starting point which is feasible. In this case
it is the point [3655, 4021, 4750, 4584] with an objective function
of 17011. By observing the rate of reduction of this objective
function, we can see that the starting value of 17011 reduces to a
near optimal value of 730 in 13 iteration. After 19 iterations this
converges to the optimal value of 726.7, The same value is obtained
by all the four starting points selected.

Table 4.5 gives similar results for the nonlinear cost function,

the minimum cost of inspection being $1259.
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5, PARAMETER ESTIMATION OF THE PREVENTATIVE SAMPLING MODEL

5,1 INTRODUCTION

Engineers frequently propose mathematical models or equations which
attempt to describe the relationship between physically measured
variables. Such equations may be derived from physical laws directly
or they may be simply convenient forms for summarizing tabulated data
obtained by what is known as 'curve fitting'. These models usually
contain parameters or coefficients whose values are unknown. The
object of parameter estimation is to find the values of these parameters
that cause the proposed equation to give the best possible fit to the
data, The closeness of fit depends on the differences between the
observed values of certain variables, and the values predicted by the
equations. There are various criterions as to what constitutes the .,
"best fit". The simplest and hence the most common is the sum of
squares of the differences between the cbserved values from the
data and the predicted values from the model,

We characterize the models we shall deal with by specifying the
kinds of variable that appear, and the forms of the equations relating
them. Thus a mathematical model may be a differential equation or an
algebraic one. Also we speak of linear or nonlinear models which
refers to the manner in which the unknown parameters enter the equation.

A mathematical model can explicitly written in the form:

y = £(x;,0,), (5.1)
where y is the measured variable, X i=1, ..., n are the measured
independent variable, and Py j=1, «.., P are parameters to be

estimated.
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Then, if equation (5.1) can be represented as
¥ = py% + P29 + ... t PpZps (5.2)

where, ZysZys wees Ky 8TE functions of xi's only, the model is said
to be linear with respect to the parameters., Models which cannot be
expressed in the form given by equation (5.2) are classified as non-
linear model., Here we deal with algebraic nonlinear models.

Ideally speaking, one would like to find values of pj‘s of
equation (5.1) that will satisfy equations exactly for each experiment.,
Due to errors in measurement and inaccuracies in the model, we camnot,
however, hope for an exact fit. Thus in equation (5.1) there exists

a difference between y and f(xi,pj). We may write,

u=£(xg, py) -
where u, often referred to as the residual, represents the departure
of the predicted values f(xi, pj) from the observed values y. The task
of parameter estimator is to find values of pj which minimizes some
appropriate function of the u. We shall confine ourselves with the
least square method of parametric estimation.

In the least square method, the sum of squares of deviatioms of pre
dicted values from measured values is minimized.

It may be pointed out, here, that the least square is not very valid
if several variables are observed at each experiment. It does not make
sense to add together sums of squares of say pressures and temperatures,
This problem may be overcome by assigning a weight factor to each
variable and minimizing the weighted sum of squares. However, in
general, when several variables are measured, it is preferable to

resort to other methods,
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We minimize the objective function ¢ given by

N -~ 2
6= 1 G,-7v)
u=1

where, ¥ ™ measured value of the dependent variable

-~

y

u estimated value of the dependent variable

u=1, ..., N, denotes the number of data points
The contours for the above objective function for a 2-parameter model
can be visualized as in Fig. 5.1. We observe that in the case of
nonlinear models, these contours are highly distorted except in

regions near the minimum, where they may be approximately circular.

5.2 METHODS OF PARAMETER ESTIMATION

Most algorithms for estimating least squares for nonlinear
models are centered around two basic approaches. On the one hand,
the function may be expanded in terms of the Taylor's series and
corrections on several parameters calculated on the assumption of
local linearity. On the other, modifications based on the steepest
descent methods have been used, The first method is known for its
slow convergence if the initial guess is poor, but has the advantage
of quick convergence in the vicinity of optimum. The second method
has rapid convergence when the starting point is far from the optimum,
but converges very slowly in the neighborhood of the minimum,

Marquardt's method is an optimum interpolation between these two
methods. The mathematical basis for the Gauss and steepest descent

method are given before presenting Marquardt's modification,
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 CONTOURS OF
TWO - PARAMETER MODEL .

Fra. 5.7 .



(a) Gauss Method.

This is an iterative approach based on the linearization of a
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function, f{Eu, p) = : 9 by a truncated Taylor series expansion about

-n -n
P . The vector p represents the parameter vector after the n

iteration: subscript u refers to a specific data point.

An expansion around (Eu, En) gives

P of
- =+l - e
f(xu, pn+ ) = f(xu, pn) + E
=1
where,
6n+ - nt+l _.n
t5  P3 Py *
Then,

N P . 3f
d

6= ) Iy, - £G, ) - I'(—;‘;‘ §

u=l j=1
At the minimum,

36 _
Bpj

Differentiating equation (5.5) with respect to pj we get,

3 B - -n =
op kel z [Yu - f(xu’ p) - Z
i u=1 j=1

u, N
(3;;9 th

(5.3)

(5.4)

(5.5)

(5.6)

(5.7

TSubscript 't' on 6 refers to the direction given by Taylor's series
expansion. Subscript ' ' refers to the steepest descent method, non
subscripted §, to be used later, refers to the Marquardt's method.
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Equation (5.7) is linear in Gt?'
Bfu
By defining Buj = 355, u=1,2, ..., Ny j=1,2, ..., P, and
(. = -n,] [ n+l n]
f(xlsp ) Pl = pl
= =-n nt+l n
. f(lep ) a pz = p2
£ = : y  Bg* :
- =7 ntl n
7o) LA

the correction vector 6: can be found from equation (5.7) as given below

62 = B a1t BT G- (5.8)
a1 g (5.8a)
where,
A= BTB
T - —
g = B (y-I")

Assuming initial parameter values, we determine the correction vector
5t’ which is used for getting a better parameter value for the next

. ntl n n . .
iteration. Thus we have, pj = pj + th. The iterations are carried

on until the correction vector, &_, becomes small enough. This method

tl
converges rapidly in the vicinity of the minimum, However if the
initial guess is far from the minimum, the method may converge slowly,

oscillate widely or even diverge.
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(b) Steepest Descent Method.

The method of steepest descent simply moves from the current
trial value, in the direction of the negative gradient of ¢. The
components and direction of the correction vector at successive
iterations is given by
P 2 1/2

5=—[§4L,...,5L] [):(E-L)]
g 9P, 3Pp j=1 °Py

Thus, a search is made in the directioﬁ of the negative gradient
of ¢. The step size is so chosen as to give the minimum ¢ in the
direction of Gg. In effect this method seeks to calculate corrections
such that at each iteration the value of ¢ will decrease most rapidly.

This method is successful for highly nonlinear contours of ¢.

The method converges very rapidly initially. However, in the vicinity

of the minimum the convergence is very slow,

5.3 MARQUARDT'S MODIFICATION (2,4,6)

Gauss method has the advantage of quick convergence in the vicinity
of optimum and its main draw back is its failure to converge when the
initial guess is poor, On the other hand, gradient method has rapid
convergence when the starting point is far from the optimum, but once
the near optimum value is obtained, the convergence to the optimum is
extremely slow. Marquardt's method represents a compromise between
the linearization (or the Gauss) method and the steepest descent method,
and combines the best features of both, while avoiding their most
serious limitations, Marquardt has devised an algorithm in such a

manner as to take advantage of the fast convergence of the steepest
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descent method in the early stages and that of the Gauss method as
the search gets closer to the minimum (4).

The idea of this method can be explained briefly as follows.
Suppose we start from a certain point in the parameter space. If the
method of steepest descent is applied, a certain vector direction
Gg' where g stands for gradient, is obtained for movement away from
the initial point. By the nature of the contours of the objective
function, this may be best local direction in which to move to
attain smaller values of the objective function, ¢, but may not be
the best overall direction (2). However, the best direction to move
should be within 90° of the negative gradient of ¢. Otherwise, ¢
will increase successively. The Gauss (or the Taylor series) method
leads to another correction vector ﬁt' where t stands for the Taylor
series, which is given by equation (5.8). Marquardt found that
for a number of practical problems he studied, the angle between §
and Gt fell in the range of 80° and 900, and thus these two directions
are at right angles to each other as depicted in Fig. 5.2. From these
considerations, it would seem reasonable that any improved method will
in some sense interpolate between Gg and Gt. The vector, §, in Fig. 5.2
represents the correction vector of Marquardt's method. The algorithm
is so constructed that its position will depend on the value of a
constant A, By a proper choice of A at each stage the best direction
§ is obtained.

The theoretical basis for the algorithm is based on the following

three theorems (4).

Theorem 1, Let X > 0 be arbitrary and let 60 satisfy the equation



D i. weEN A—>0, V—>390°.
k ii. WHEN A >, Y —>O"
d
Y
(@),

'\ RELATIVE POSITIONS OF
CORRECTION VECTORS OF GAUSS
AMD STEEPEST DESCENT METHODS.

Fla. 5.2.
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(A + 11)60 =g (5.9)

Then, &, minimizes ¢ on the sphere whose radius ||§|| satisfies

0

g 2
16112 = 1151
Recall that A and g are defined in equation (5.8a).

Theorem 2. Let 8(A) be the solution of equation (5.9) for a given
value of A, Then [I&(A){Iz is a continuous decreasing function

of A, such that as A + =, !IS(l)liz + 0

Theorem 3., Let y be the angle between 60 and Gg. Then v is a
continuous monotone decreasing funcéion of A such that as A + =,
y + 0. Since Gg is independent of A} it follows that Gg rotates
towards Gg as A +» =,

The broad outline of the appropriate algorithm is as follows.

Specifically at the nth iteration the equation

n

@W+2r2"1n "=¢g (5.10)

is constructed and solved for Gn. The new trial vector

pn+1 - pn + Gn

will lead to a new sum of squares ¢n+1. Since our objective is

to minimize this objective function, A is chosen so that

¢D.+1 < ¢n.

The key element which changes the nature of approach of Marquardt's

method is the value of the constant, A. The two important properties of
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A are (1) its effect when it has a low value, and (2) its effect when
it attains larger values, To study the effect of A attaining a low
value, let us rewrite the equation (5.8), for the correction vector

for the Gauss method,
62 = 3TB) BTG - £ (5.8)
The corresponding relationship in Marquardt's method is

® = 878 + a0t BTG (5.11)

By comparing equation (5.8) with equation (5.,11), we find that as A
tends to zero, equation (5.11) approaches the value of equation (5.8).
Thus low values of A make the Marquardt's method similar to that of
Gauss. When the starting point is very near the optimum, Gauss method
is more efficient and at such cases we have to emsure to use low
values for A.

To study the effect of larger values of A, we find from Theorem
3, that as A +», y + 0, From Fig., 2, we can see that larger values
of ) essentially makes the Marquardt's method similar to that of
steepest descent method., Thus by reducing or increasing the value of
A, the basic equation (5.10) is made to be an optimal interpolation
between the Gauss and the steepest descent methods. The problem
reduces to finding a methodical procedure which makes X to attain
smaller values near the optimal value and to increase A while the
optimum value is far away. The procedure of the selection of A is
given below, Procedure for the selection of A [4]:

Let v > 1,

Let Anﬁl denote the value of A from the previous iteration, Initially



let A(O) = 10_2, say.

compute ¢ L) and $* LG /0.
(@) 1f 67T < 6, ler AT = APy,

(1) 1£ "™ L) > 6B, and ¢FTIOTY) < ¢P, et AR = AL,
(111) 1f o™ 1) > 6%, and ¢™TT0™ ) > 47, increase A by

successive multiplication by v until for some smallest w,
+ -
IOy < 6B Let a = APTL LY,

In practice, v = 10 has been found to be a good choice.

Stopping Criterion:

The solution is said to be converged when

—d_ < for aml1 3,
for some suitably small ¢ > 0, say 10" and T, say 1073,

As stated above let us consider a low value of 10_2 for A, If
the starting point is near the optimum, either condition (i) or
(ii) will be satisfied, and thus X will be kept at a low value,
operating the Marquardt's method as Gauss method. On the contrary,
if the starting value is far from the optimum, condition (iii) will

be satisfied, and this will result in an increase of A, Higher
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value of ) transforms Marquardt's method to have the steepest descent

approach which is the better approach when the optimum is far away.

A computer program entitled "Nonlinear Least Squares by D. W.

Marquardt" is available. Its SHARE number is 309401 [5]. The program

is written in FORTRAN IV, With some minor modifications this was

run on an IBM 360/50 computer.
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5.4 MATHEMATICAL MODEL:

The relation between the fraction of sampling, a“, and the prob-
ability of defect p“(e“) as given by equation (3.1) is taken as the
mathematical model for the parametric estimation. Considering only

one product equation (3.1) can be written as:

p(8) = A + Be °°, (5.12)

where A, B and C are the parameters to be estimated in the above

nonlinear equation, As no experimental data are available, data

points were generated using random numbers and the standard deviation

of errors, Values of A, B and C were taken from the data of the

numerical example solved in Section 3, to generate the data points.

50 data points were generated using varying standard deviationms.
Parametric estimation has been done using Marquardt's method.

Different initial guesses for the parameters were used to study the

effect. The program was written in FORTRAN and was run in IBM 360/50

in FORTRAN IV G LEVEL. It was‘observed that with even high values of

standard deviation and very poor initial guesses, the convergence to

the correct values were obtained, which shows the power of the method.
Bard's method of nonlinear parameter estimation was also used

for parameter estimation of this model using the same data points. The

results compare well with the ones obtained by Marquardt's method.

Results obtained by these two methods indicating the number of jterations

taken to converge are tabulated in Tables 5.1, 5.2 and 5.3. It was

observed that Marquardt's method is better than Bard's method considering

the number of iterations and the computer time for execution.
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Table 5.1 Computer results of parametric estimation on preventative
sampling model by Marquardt's method.

[correct value of the parameters are A = 0.02, B = 0.2 and

c = 25,0].

No, Initial Mean of Std, Dev, Final No. of
Values ‘Error’ of Error’ ‘Values Iterations
A=0,025 A =0.0202

(1) B =10.25 0.001 0,002 B = 0,206 4
c = 20,0 C = 25,65

A=0,0198
(2) s n 0.003 B = 0,209 9
C = 25,99
A =0,0194
(3) % n 0.004 B = 0,212 13
C = 26,34
A=20,04 A= 0.020
(4) B=20,1 ” 0.002 B = (.205 18
c = 30,0 C = 25,65
A =0.019

{5) o " 0.003 B =0.204 19
C = 19.44
A=0,018

(6) " o 0.004 B =0,208 21
C = 19,54
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Table 5.2 Computer results parametric estimation on preventative sampling
model by Bard's method:

[correct values of the parameters are A = 0.02, B = 0.2 and

¢ = 25.,0]
No. Initial Mean of Std. Dev. Final No. of
Values Error of Error Values Iterations
A= 0,025 A =0,0202
(1) B =0.25 0,001 0.002 B = 0.206 31
c= 20,0 C = 25.64
A=0.0198
(2) L " 0.003 B = 0.209 31
C = 25,98
A= 0.0197
(3) " " 0.004 B = 0.2123 31
C= 26,33
A=0,04 A= 0,0202 .
B =0.,1 o 0.002 B = 0,205 26
(4) c = 30,0 C = 25,66
A =0,0198
(5) I " 0.003 B = 0,209 25
c= 26,0
A=0.0194
{6) " " 0.004 B =20,212 25
Cc= 26,35
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Table 5.3 Comparitive results of parametric estimation by Marquardt's
and Bard's method.

[correct values of the parameters are A = 0,02, B = 0,2 and

C = 25.0]
No Final Values of Parameters No. of Iterations
’ Marquardt's Bard's Marquardt's Bard's

A =0,0202 A= 0,0202

(1) B = 0,206 B = 0,206 4 31
C = 25.65 C = 25,64
A = 0,0198 A=0,0198

(2) B = 0,209 B = 0,209 9 31
C = 25,99 C = 25,98
A= 0,0194 A= 0,0197

(3) B =20,212 B = 0,2123 13 31
C= 26,34 C = 26,33
A = 0,0200 A= 0,0202

(4) B = 0,205 B = 0,205 18 26
C = 25,65 C = 25,66
A =10,019 A=0.,0198

(5) B =0,204 B = 0.209 19 25
C = 19,44 C = 26,0

A =0,019 A =0.,0194

(6) B = 0,208 B = 0,212 21 25

C = C= 26,35

19.54
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A study was made to find the effect of error on the parameter
estimation. Using a starting value of 0.04, 0.1, and 30, Bard's method
was used to estimate the parameters. Using the equation (5.12), the
probability of defect for various sampling fractions were calculated.
To this normally distributed error of a particular standard deviation
and 0,001 mean was added. This error was generated using the subroutine
GAUSS (1). The resulting numerical values were then considered as
experimental data and the nominal parameter values described by these
data are of course known, Table 5.4 shows the results for various
standard deviations, with 10, 20, 30, 40 and 50 data points and with
a mean of 0,001,

For each distribution, five sample populations were selected from
the same distribution to allow some consideration oh the effect of
different sample populations. In each run the value of the sample
fraction is allowed to vary from 0 to 1 by generating random numbers.
Accordingly, information based on the survey of the effect of error
and number of data points on this mathematical model for a normal

distribution of error can be obtained.

5.5 DISCUSSION AND CONCLUDING REMARKS

The set of data points consist of the independent variable, 0,
and the dependent variable, p(8). Random numbers are generated to
obtain various values of 6 whose value varies from 0 to 1. For each

value of 8, p(8) is calculated using the relation

p(8) = 0,02 + 0,2 g (250NE)

The error which is calculated using the mean and the standard

deviation is added to this calculated value of p(8) for the value of



69

£ [

0°62 ="ad *02'0="d ‘20°0 = T

d ~:vqep ajeisusf 073 pesn sisjewsasd a3 JO ssNTBA
%

- on $8°0 89°€¢€ 92" 0 £10°0 0§ 4 02
nLE £€9°0 16" 0T 10°0 600°0 of . 61
68 02°0 22" 9T 60°0 10" 0 o€ 3 QT
L2 ?T'0 06°¢2 ©2°0 710°0 oz g LT
nT 6€°0 nT* €2 0g* 0~ gE0'0 0T T 9T

20°0 = 0
6 12°0 9'ge £2°0 1100 0¢ S $T
12T $1°0 L-oz2 11°0 ¢10°0 on n 1T
6L 50°0 €61 2T°0 gT0°0 o€ € et
g€ $€0° 0 662 22" 0 LT0'0 02 z 2T
£2 92°0 g°22 €L 0~ - £0°0 0T T T
10°0 = ©
16 muoaxmm.o 9° 62 02°0 20°0 1[4 g 0T
LS °_0TXEg"0 Th he 9T’ 0  20°0 on N 6
LS °otx 20 9°€2 110 20°0 o€ £ 8
6N o.oTKT 0 ¢T° 62 02" 0 20°0 02 e L
g0z S _otx9T°0 90° T 10°0 20°0 0T T 9
200°0 = 0
€6 _0TX69" 0 00°§2 02°0 20°0 05 $ g
¢ “uoﬁumw.o 6" 42 6T°0 20°0 on q n
16 h-OTX 2°0 99° 42 6T°0 20°0 o€ € €
61 A_OTXHT*0 20" 62 02°0 20°0 02 2 2
6$ gotxl1°0  gE"€z 9T°0 20°0 ot T T
200070 = ©
*8TBAD m.m Nm H.AH
45 70N el SanTs) PaYEWTHSH A e uoﬁpwﬁmmmm ot

T00°0 = J0XI3 JO UBAW

*838(Q pa3BI2USN UO paseg TIPOW Surrdmeg 2ATIBIUIASII I935WBIBJ IAIYJ 3Y3 JI0J S29BWIST Isjauesed #°¢ STQBJ
»



70

the dependent variable, Errors of different standard deviations were
introduced in the data points, As can be seen from Tables 5.1 and 5.2,
smaller standard deviations converge to better estimations. Different
starting points were used to study the effect, From Tables 5.1 and
5.2, it could be concluded that a better initial guess results in a
better estimation of the parameters. The average computer time taken
by Marquardt's method was 40 seconds. The average computer time taken
for each problem by Bard's method was found to be about 80 seconds.
From Table 5.3 it could be seen that Marquardt's method is a better
method than the Bard's method,

Table 5.4 gives the cnmputér results of four different standard
deviations namely 0,0002, 0.002, 0,01, 0,02, The mean ﬁf the error
was kept at 0,001, For each standard deviation five sets of data
points namely 10,20,30,40 and 50 were used. When the standard
deviation was 0;0002, or in other words, when the error is smaller,
the value of parameters converges to the correct value, When the
standard deviation exceeds 0,01 convergence to the correct value was
not obtained. This may be taken as the limit for the experimental
error that could be allowed while collecting the data.

As to the number of data points, at the standard deviation of
0.0002, the results indicates that 10 data points are not enough to
obtain correct estimation of parameters, For this standard deviation,
20 data points gives a good estimation. Increasing the data points
beyond 20 points does not result in a better estimation. When the
standard deviation is 0,02, which represents larger error, the program
does not converge to the correct value whatever be the number of data

points,



: afu
uj=-3_P_’U=1s eeey Nj j=1’ seey P
J
g
g*=g;—‘(i)-
"%33

it SR

N = no. of data points
pj = parameter to be estimated

p = no, of parameters.

X, = Measurable independent variables
y = Measured dependent variable

= Measured value of the dependent variable

el

estimated value of the dependent variable.

g >
[}

u

y = angle between 60 and Gg ve, the directions between the
steepest descent direction and the Marquardt's direction

Gt = correction vector applied to parameters in the Gauss method

using Taylor's expansion

ﬁg = correction vector used in steepest descent method

§ or 60 = correction vector used in Marquardt
n .th
th = correction vector in Gauss method, for the j component

used in nth iteration of the process

71



72

63 =8 ~ VA,

s = objective function - term of the squares of the difference
between the value of labor and the value derived from the
model

% = value of the objective function at the nth iteration

[/}
n

v = a constant greater than 1 used in the calculation of A,
(normally = 10)

T = constant used in the calculation of stopping criteriom
(choosen as 10-3)

¢ = constant used in the calculation of stopping criterion

(choosen as 19_5)
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6. RECOMMENDATION FOR FURTHER STUDY

1. Including the Cost of Replacement in the Optimum Preventative Sampling

The total cost equation in the preventative sampling, takes into
consideration the two costs, namely, (1) the cost of inspection and
(2) the expected cost of the undetected defective quantity going out.
In calculating the second cost it is equated to apvnpn(en) (1—Bn) in
equation (3-_). This approach assumes that a defective article could
be replaced by a good one at a later stage without any additional
cost. In some cases, however, this may involve some additional cost,
nnn, n n

namely the cost of replacement. This can be equated to a rp (6 )(1-8),
where r" represents the cost of replacement for each unit of the nth
type. The total cost, in such a case, can be written as

A nn.n nnn, n n

s= ) [I"ae +arp(8)(1-0)+
=1
a™vpt (e (1-e™ 1.

The optimal policy based on this cost function can be obtained with out

difficulties.

2, Additional constraint on Each Product on the Preventative Sampling
Problem
The constraint that is considered in the formulation of the
preventative sampling, is one which an upper limit for the total number
of products inspected is given. In this case, it is assumed that all
the products need the same equipment for inspection. But in some cases,

each product may be tested in a different equipment. Therefore, each
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and in that equipment may has the upper limit of the testing capacity,

and this becomes the constraint for each product. In the numerical

N
example, instead of a single constraint Z a?en.i 100, we will have
n=1
ale1 < 3282 < k, etc where k., k 111 represent the
=< 2k e ky, 2,...,kNw P

capacities of testing different products.

3. Statistical Analysis on Parameter Estimation

In the Preventating Sampling Model, further amalysis on the effect
of varying the standard deviation on the final estimate of the
parameters could be carried out. Normal experimental errors vary
from 57 to 10%Z in practical cases. It is possible to find the effect
of such range of errors on the accuracy of the final results. Such
an analysis may show the relationship between the percentage of
error in expt., data and the percentage of error in the estimatioﬁ of
parameters. Additional statistical test such as 2 can be done on

this parameter estimationm,
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APPENDIX 1

The variance of the i in a finite population is usually defined
as
N
=, 2
I (Yi - Y)
1

N

2
(o] =

As a matter of notation, results are presented in terms of a
slightly different expression, in which the divisor (N-1) is used

instead of N, We have

We now consider the variance of y. By this, we mean E(y - §)2

taken over all NCn samp les.

For an unbiased sampling, by definition

E(y) = T,
E[(y; - T),z + (y, - i)_z oo+ Gy - D2
=§ [(yq - D2+ (y, - D2+ ...+ by = 2 (1)

It follows that

(2)

n(n-1)

SRR 5 - D, - D+ 4, - DG, - D

+--.+(YN_1"?)(YN'§)] (3)

Squaring (3), we get,
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2h it gy - D2+ HED 5, - D, - D+

nEG - B2 =2y, - D o

+ (g - Dy - DI

2

5G - D2 =2 -EhiG, - DX+ e g - DA+ (G - D

1
e+ (g - D1

The second term inside the curly bracket vanishes, since the sum of the

v equals NY. Division by n2 gives,

N

V) = EG - D = ;g%ﬁ%iy . izl (v4 - 9?2
2
‘N-n 2_ 8
-m's ='—E(1-f)- (4)

Now we have,

_oN ey, N - X
st N N

th‘(gh - §h)
= N

2

2 .- -
G -9 N, Gp - Y
Vst ~ N2

2JN, “ No Gy - ENICAER R

N2

+

(§j - ﬁj) = 0 since §j is unbiased.



_ Zui E(y, - fh)z
Viy_) =
st N2

= {wﬁ R (CHRE

Substituting in equation (4), we get,

e
V(Yst) = T . (l—fn).
2 2
_ E wﬁ_. S % W s
b=l %, p=1 ¥
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APPENDIX II
The problem is to minimize

2 2 2
VG, - E " %h § thh
=1 "h o=l h

S

subject to the restriction

¢4 + czn2 + ... T cn =C - L
Using the calculus method of Lagrange multipliers, we select the n and

the multiplier A to minimize
v(yst) * l(Zchuh - &~ co)

2.2 2.2
% Sk

) -1
h LY

+ )\(clnl + Czn2 b PP + anL - C+ co)l

Differentiating with respect to n, gives the equation,

2 2
% 5y
7

+i, =0 (h=1,2, ..., L)

that is,

W S
nh . /7= h h (1)

Y

Summing over all the strata, we get,
a/x = § 21 (2)

Finally, the ratio of (1) and (2) gives
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This report concerns the optimal allocation of resources in sampling
inspection among different products. The sampling inépection is con-
sidered to produce a reaction which prevents the occurance of faults
in the future, so that it could be termed as the preventative sampling.
The criterion for optimality is the minimization of the sum of the
expected cost of undetected defective articles and the total cost of
inspection. The problem is formulated in the form of a nonlinear pro-
gramming problem. The sequential unconstrained ﬁiuimization technique
(SUMT), which is considered as one of the simplest and most efficient
method for solving the constrained nonlinear optimization problem, is
used to obtain an optimal sample plan for five pfoducts.

 Parameter estimation is carried out on the preventative sampling
model which assumes that the probability of defects is affected by the
sample size selected, Two methods, namely, Marquardt's method and Bard's
method are used for the parameter estimation and the results obtained
by the two methods are compared.

Problems of optimal sample size allocations in stratified saméling
is formulated., The problems are fo find the sampling plan which minimizes
the inspection cost subject to the comstraints that the variances for
the two variates are equal to or less than the specified values. Two
numerical problems which have four strata and two variates are solved

by using the sequential unconstrained minimization technique (5UMT).



