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Abstract 

Ozone, a triatomic form of oxygen with a Generally Recognized As Safe (GRAS) status 

from the U. S. Food and Drug Administration, is a strong antimicrobial and sanitizing agent with 

numerous potential applications in the food industry.  One of them is the improvement of wheat 

flour baking qualities, by replacement of the actual chlorination treatment. 

Following recent developments realized by the company Goëmar (France) which 

invented and patented an ozone treatment device for wheat grain and a method for making flour 

from ozone-treated grains, this study aims to determine the effect of ozone treatment on wheat 

grain and on wheat flour, and to compare them.  Three different ozone concentrations with 

different application times rendering three quantities of absorbed ozone have been investigated.  

Rheological, physicochemical and baking properties of soft wheat flours stemming from both 

treatments were evaluated and compared to untreated flour. 

Results were overall significant and showed that the treatment of flour gives more 

marked results than the treatment on grain for retention capacity in sucrose and volume of cakes 

but decreases the α-amylase activity. On the other hand, action of ozone on grain augments the 

maximum viscosity of the flour.  Bread volume was found to be increased by both treatments in 

similar proportions.  The treatments were also analyzed in particular and showed specific 

characteristics.  A single treatment has not been determined to enhance all characteristics of the 

flour.  Hence, the modification of precise features of the flour has to be related to a specific 

treatment. 
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Bibliography 

1. The Wheat, from kernel to flour 

Wheat, member of the Gramineae family, is among the oldest and most extensively 

grown of all crops.  Its world production as a cereal crop is ranked second behind corn.  Different 

species of wheat exist but the most widely used are Triticum aestivum (hexaploid), also called 

common wheat or bread wheat, and Triticum turgidum subsp. durum (tetraploid), also called 

durum wheat or macaroni wheat (Orth and Shellenberger 1988). 

1.1. Structure of the wheat grain (Hoseney 1994) 

From a botanical point of view, the wheat grain is a single-seeded fruit called a caryopsis 

but it commonly goes by the denomination of kernel.  It consists of a pericarp (or fruit coat), 

which surrounds the seed and adheres tightly to a seed coat.  This seed is composed of an 

embryo or germ and an endosperm enclosed by a nucellar epidermis and a seed coat (Figure 1). 

The caryopsis develops within modified leaves called glumes.  They are readily removed 

during threshing and the grain is said to be naked since it has an uncovered caryopsis. 

The color can vary from light buff or yellow to red-brown.  It is due to the absence or 

presence of red pigmentation in the seed coat and is genetically controlled (Freed et al 1976).  

Wheat has then been consistently classified as red or white.  Still, another variable affects the 

perception of grain color: the texture of the endosperm.  It corresponds to air spaces in the 

endosperm at the many air-starch and air-protein interfaces.  An absence of air results in a glassy 

appearance whereas a discontinuous matrix gives a chalky appearance (Evers and Bechtel 1988). 

The wheat grain averages 8 mm in length and weighs about 35 mg.  However, variations 

occur depending upon the cultivar and the location.  Likewise, disparity happens in endosperm 

texture (or hardness), appearing to be related to binding forces in the endosperm.  This point will 

be discussed later. 
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Figure 1: Parts of a wheat kernel (Hoseney 1994). 

The grain itself has a more or less oval shape, is rounded on the dorsal side (the same side 

as the germ) and has a longitudinal crease on its ventral side (opposite the germ).  It extends 

almost to the center of the grain and goes practically the entire length of the kernel.  Even though 

it may be hidden by the flanks that touch each other, it remains a good place for microorganisms 

and dust to deposit.  Both longitudinal and transverse sections are shown in Figure 2. 

1.1.1. The pericarp 

The pericarp is the first layer of the wheat grain.  It is dead at harvest time and surrounds 

the entire seed.  Most of the tissues are devoid of cytoplasm and have lignified walls.  The outer 

pericarp is also called beeswing and its removal helps water move to the seed.  The total pericarp 

represents about 5% of the kernel and consists of approximately 6% protein, 2% ash, 20% 

cellulose, and 0.5% fat, the remainder being nonstarch polysaccharides. 
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Figure 2: Longitudinal and transverse sections of a wheat kernel (Hoseney 1994). 
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1.1.2. The aleurone layer 

The aleurone layer is the outermost layer of the endosperm tissue.  It surrounds the grain 

over the starchy endosperm and the germ, and will be removed during milling, along with the 

nucellar epidermis, seed coat, and pericarp, being part of what millers call bran.  Largely 

cellulosic in composition, the aleurone layer is relatively high in ash, protein, total phosphorus, 

fat and niacin.  Moreover, the enzyme activity is high. 

1.1.3. The germ 

The germ lies on the lower dorsal side of the caryopsis.  It comprises 2.5-3.5% of the 

kernel.  Composed of the embryonic axis (rudimentary miniature living plant) and the scutellum 

(storage organ whose reserves are lipid droplets and protein bodies), the germ is relatively high 

in protein (25%), oil (16% of the embryonic axis and 32% of the scutellum are oil), and ash 

(5%). 

1.1.4. The starchy endosperm 

The cell walls of the starchy endosperm are made of pentosans, other hemicelluloses, and 

β-glucans but not cellulose.  The thickness of these cell walls varies within the kernel; they are 

thicker near the aleurone layer. 

The principal contents of endosperm cells, starch and protein, also vary with cell position.  

The peripheral cells have the lowest starch content and consequently have the highest protein 

content.  Values as high as 54% protein have been found in subaleurone cells present in a flour 

of 12.5% protein (Kent 1966).  These proteins in mature cells create a continuous matrix (the 

gluten) rather than a series of individual bodies.  From there, the association of starch and protein 

develops the grain texture, which is affected by the degree of fenestration within the matrix, 

softer endosperm being characterized by interruptions with air spaces. 

The denomination of soft and hard wheat has then been introduced.  It is mainly referring 

to the point of fracture when the kernels are broken (MacRitchie 1980).  In hard wheat kernels, 

the first point of fracture occurs at the cell wall rather than through the cell contents, and through 

some starch granules rather than at the starch-protein interface.  On the contrary, in soft wheat, 

the fracture occurs primarily through the cell contents, and between the protein and starch 
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(Barlow et al 1973).  Hardness was therefore related to adhesion between starch and protein 

matrix (Simmonds et al 1973).  Greenwell and Schofield (1986) later found the presence of a Mr 

15kD protein in markedly greater proportions in starch granules from soft wheat that may be 

responsible for preventing a closer association.  This protein was first called friabilin (Morris et 

al 1992, Morrison et al 1992) and then puroindoline (Blochet, J.-E. et al 1993).  A simple 

mutation in this protein causes the grain to be either soft or hard (Giroux and Morris 1997). 

The starch granules present in the starchy endosperm are primarily either large, lenticular 

(lens-shaped) granules of up to 40 µm across the flattened side (type A) or small near-spherical 

granules averaging 2 to 8 µm in diameter (type B). 

1.2. Production of flour 

1.2.1. History 

It is widely accepted that wheat has been a staple food for thousands of years, since 

people first began to settle in permanent communities.  Wheat was a wild cereal but still a food 

grain that civilizations learned to select in order to produce superior plants with higher yield and 

better characteristics.  The ultimate goal was the utilization for food and feed, a process still 

going on nowadays. 

The whole grain itself in its integrity is not very desirable as food.  For this reason, the 

idea of milling has been developed.  Described as an ancient art, its objective is to make the 

cereals more palatable.  It started with simple mortar and pestle or saddlestone, producing simple 

crushed grain, to be today modern electrically driven roller mills making the flour we know. 

1.2.2. Milling of wheat (Bass 1988) 

The milling is essentially a process of grinding and separating.  Grinding is done on break 

rolls, sizing rolls, and reduction rolls. Separation is made using machines called sifters and 

purifiers. 

The purpose of milling is to break open the grain, scrape off as much endosperm from the 

bran skin as possible and leave the germ (too high in oil that creates rancidity).  Thus, after each 

grinding, the stock (or material going to the sieve) is sifted to remove the flour.  The remainder 
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can then be classified as: 1) pure, or relatively pure, endosperm; 2) composites of endosperm and 

bran varying in size, shape and proportion of the two; and 3) pure, or relatively pure, bran.  This 

last part is definitely discarded whereas a judicious sequence of grinding, with corrugated and 

smooth rolls, sifting, and purification achieves an optimum separation of the endosperm and the 

bran (Figure 3).  All the endosperm fractions and the flours produced along the milling will be 

reduced in size to pass through the very fine apertures of the sieves and be, by definition, flour.  

The bran, shorts (finer branny material) and germ form the by-products of the milling process 

and are known as millfeeds. 

 

Figure 3: Schematic diagram of a simple mill flow. 

1.2.3. Flour treatment 

At the mill, flour may receive a number of treatments with a variety of additives to 

achieve any desired combination of the following objectives: 1) to bleach the flour, 2) to improve 

the bread-making quality of the flour, 3) to modify the gluten characteristics, 4) to supplement 

the natural amylase activity of the flour, or 5) to supplement the natural vitamin and mineral 
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content of the flour.  Since many chemicals exist and because they have multiple functions, only 

those specific to ensure a final flour with the desired functional properties are selected. 

Bleaching agents are the primary chemicals added to the flour.  Even though most of the 

pigment, giving freshly milled flour a creamy color, is bleached by natural oxidation, it requires 

a period of storage of three weeks.  Being impractical for the millers, accelerated bleaching is 

then achieved by the addition of chemicals such as benzoyl peroxide ((C6H5CO)2O2).  Chlorine 

gas (Cl2) or chlorine dioxide (ClO2) can also be used for the very white color it gives, but mostly 

on cake flour.  Although safety evaluation has failed to detect any hazard associated with the 

consumption of products made from chlorinated flour, there remains concern about the 

introduction of organo-chlorine into food, and many countries, especially in the European Union 

(EU), do not permit its use (Greenwell and Brock 1996). 

Flour improvers (also called maturing agents) are another type of chemical, used to 

improve the baking performance.  The United States and Canada use potassium bromate 

(KBrO3), azodicarbonamide ((H2NCON)2), acetone peroxide (C6H12O4) and chlorine dioxide.  In 

the EU, only ascorbic acid (C6H8O6) is permitted. 

Malted barley or malted wheat flour are added (2.5g/kg flour) to American wheat flours 

if they are low in amylase.  Sufficient fermentable sugar is then generated for the conversion by 

yeast into carbon dioxide, improving loaf volume and reducing the harshness (rough texture) of 

the crumb.  Vitamins (thiamin, riboflavin, niacin) and minerals (iron, calcium) supplementation 

also became popular, notably to replace the proportion lost during milling.  In the EU, additives 

allowed for flour are protease, cystine and cysteine. 

2. Chlorination, characteristics and effects 

2.1. Introduction 

From earliest recorded times, man has tried to secure a white flour, because it symbolized 

to him a pure and wholesome product.  The desire of the consumer for an improved flour lead 

the millers to develop applications of bleaching agents to flour.  The first bleaching agent used 

was nitrogen peroxide, introduced at the beginning of the 20th century.  Besides a slightly 

improved color, the flour was not modified as far as baking quality is concerned.  In 1912, the 

chlorine treatment was introduced (Harrel 1952).  This method has been found to improve color 
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but first Montzheimer (1931) and then Smith (1932) reported that chlorine-treated flour gave a 

finer, more even texture to the crumb of cakes.  Smith (1932) also noted an increase in volume 

and greater symmetry in treated cakes.  Finnie et al (2006) found similar results for the quality of 

pancakes (Figure 4).  Later, Bohn (1934) found that the use of chlorinated flour could prevent the 

decrease in cake volume occurring after removal from the oven.  Chlorination allows traditional 

formulations, such as layer, genoese, yellow, madeira, and fruit cakes, to have greater 

proportions of sugar and liquor, as so-called “high-ratio cakes”. 

 

Figure 4: Photographs of pancake crumb structure and gas cell formation from (A) pancakes 
made from chlorinated flour and (B) pancakes made from untreated flour. The bar in the lower 
right corner represents one centimeter. 

Nowadays, chlorine gas, whose role in effecting these important technological 

improvements is generally accepted, is widely used in the treatment of soft wheat flours and low-

protein flours.  The normal range of chlorination is 1,100-2,300 ppm (Hoseney et al 1988).  The 

method consists in continuously injecting the gas into a stream of freshly milled flour.  The 

production of hydrochloric acid (HCl) during the process induces a reduction in the pH of the 

flour, which is used as an analytical tool to monitor the extent of chlorination.  The final pH 
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found to be adequate is between 4.5 and 5.2 (Gough et al 1978).  However, some specialty 

products may require slightly higher or lower levels of chlorination. 

2.2. The modification induced by the chlorine 

2.2.1. Association with the major components of the flour 

Several workers have investigated the mode of action of chlorine in flour.  Early, James 

and Huber (1927) assumed that gluten and starch were the main recipients. However, Hanson 

(1932) suggested the unsaturated fatty acids to react predominantly.  In order to determine the 

distribution of chlorine in flour, Sollars (1961a) employed a fractionation technique in which the 

whole flour is chlorinated and then fractionated with subsequent analysis of the individual 

fractions.  Using a water/acetic acid fractionation procedure, he found almost half of the chlorine 

(40%) present in the water-soluble protein fraction, suggesting that ionic chloride had been 

“washed out” of the insoluble fractions, and one third was present in the lipid fraction.  Still, wet 

fractionation, known to transfer some free lipid to bound lipid (Olcott and Mecham 1947, Davies 

et al 1969), has been employed and may have induced the redistribution of the chlorine as well as 

changes in the flour fractions themselves.  This approach is then subject to criticism.  In an 

attempt to minimize the effects of sample preparation, Chamberlain (1962) air-classified 

chlorinated and unchlorinated flours into high-protein and low-protein fractions.  He reported 

that one third of the chlorine was taken up by the lipids, one half by proteins and one seventh to 

one fifth by carbohydrates.  Still using air-classification, Wilson et al (1964) found that the finer 

high-protein fractions would bind more chlorine (5 times in the experiment) than the coarse high-

starch fractions.  Results proved that the chlorine distribution was related to the size of the 

particles, chemical changes occurring being dependent upon their composition.  As far as 

chemical modification is concerned, Ewart (1968) observed the transformation of cysteine and 

methionine into cysteic acid and methionine sulfoxide respectively when reacting with chlorine, 

and the destruction of tyrosine and histidine. 

Consequently, it is clear that chlorine preferentially interacts with protein and lipid 

fractions.  However, Lamb and Bode (1963) wet-fractionated flour, chlorinated the fractions and 

recombined them with unchlorinated fractions.  Results from the cakes baked with recombined 

flours showed that chlorination of the starch was primarily responsible for the quality 
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improvement.  Likewise, Sollars (1958a) had indicated that both the starch and protein fractions 

were involved in the enhancement of the flour.  Therefore, no correlation can be made between 

the quantitative distribution of the chlorine after reaction and the critical changes important to the 

cake baking. 

2.2.2. Consequences on specific flour components 

From the distribution of chlorine in chlorinated flour aforementioned, significant effects 

on the lipid fraction are expected.  This idea is supported by the fact that the flour pigments 

(chiefly xanthophylls with small amounts of carotene), found in the lipid fraction, react with 

chlorine to form colorless addition compounds (Sollars 1961a, Sollars 1961b).  The carotene 

content of the flour was found to fall rapidly upon chlorination until a dose of 2.0 oz/cwt, but no 

further decrease happened past this point (Tsen et al 1971). 

Other research demonstrated substantial essential fatty acid destruction due to 

chlorination, at different levels of treatment (Coppock et al 1960, Daniels 1960, Daniels et al 

1960).  Further work using gas-liquid chromatography and infrared spectroscopy gave a more 

detailed analysis of the lipid products after chlorination (Daniels et al 1963).  A reduction of the 

essential fatty acids by 60% has been determined as well as the creation of several new fatty 

acids, one of them being thought to be dichlorostearic acid (Table 1).  It also appeared that 

chlorine preferred to react with monounsaturated oleic acid rather than with polyunsaturated 

linoleic and linolenic acids.  The reaction of chlorine with flour lipids has then been shown to be 

very important.  Changes in the lipid fraction could significantly modify the way starch and 

lipids interact (Gracza 1960, Youngquist et al 1969, Rees 1971, Seguchi 1984). 

 

  
% Fatty acids as methyl esters Chlorine treatment, 

g. per sack (280 lb.) Palmitic Oleic* Linoleic Linolenic Undetected 
None 18.9 12.5 64.4 4.3 Nil 

50 19.2 12.8 57.6 4.8 5.6 
150 22.5 10.0 41.4 3.2 22.9 
250 21.3 4.5 25.3 0.9 48.0 

 
*Including approximately 1% of stearic acid not separated on the chromatogram 

 

Table 1: Effect of different levels of chlorine treatment on the fatty acids (Daniels et al 1963). 
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The reaction may occur with the individual amylose and amylopectin molecules, or the 

granule, as a structural unit, may be affected.  Investigations have examined the action of 

excessively large doses of chlorine on semidry starch (Uchino and Whistler 1962, Ingle and 

Whistler 1964, Whistler et al 1966) and observed substantial oxidation of the glucose residues at 

C2 and C3, leading to depolymerization.  Later, Johnson et al (1980) and Huang et al (1982a, 

1982b) demonstrated that the oxidation damage at normal levels of chlorination was qualitatively 

similar.  Starch, being the major fraction, remained the primary site affected by chlorine and its 

reaction resulted in an improvement in cake-baking quality (Sollars 1958a, Sollars 1958b, Lamb 

and Bode 1963, Sollars 1964, Sollars and Rubenthaler 1971, Johnson and Hoseney 1979).  

Frazier et al (1974) established the greater strength of the crumb from chlorinated flour, 

supporting the concept that the greater crumb strength of chlorinated flour produces better cakes.  

This point of view has then later been confirmed by Ngo et al (1985).  However, chlorine does 

not appear to affect the crystallinity of the starch granule (Cauvain et al 1977, Huang et al 1982a) 

or the transition temperature and enthalpies of either flour or starch isolated from it by 

differential scanning calorimetry (DSC) (Jacobsberg and Daniels 1974, Allen et al 1982).  Since 

amylose and amylopectin do not show any significant changes, speculations emerged that the 

main effect of chlorination involves the lipids or the protein-lipid complex on the starch granule.  

Therefore, Gough and Pybus (1971) proposed that the chlorination reaction disrupts the lipid-

protein complex on the surface of the granule, allowing greater permeability by water.  Varriano-

Marston (1985) and Seguchi (1993) found evidence of changes on the surface of the starch 

granule suggesting that it should be rendered more hydrophobic after chlorination.  Seguchi and 

Matsuki (1977) and Seguchi (1987) emphasized that starch from chlorinated flour appeared to be 

more hydrophobic than starch from untreated flour.  Seguchi (1984) also found greater oil-

binding capacity, supposing greater hydrophobicity.  The increased hydration of the starch 

allows for even more total hydration (Kulp et al 1972), improved moisture retention during 

baking and a reduced tendency to collapse after baking. 

Flour, chlorinated at the high levels necessary for cake making, is unfortunately 

unsuitable for use in bread since the treatment prevents the formation of an extensible gluten 

(James and Huber 1927, Harrel 1952).  At the low pH attained on chlorination, the gluten is in a 

colloidal state which avoids dough formation (Alexander 1939) and the amount of water-

extractable proteins increases with chlorine treatment (Kissel 1971) while the amount of proteins 
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extractable in acetic acid decreases slightly with increasing levels of chlorination (Tsen et al 

1971).  Tsen also found evidence of chlorine reactions with tyrosine and sulphydryl groups.  The 

other amino acids of the gluten primarily affected by chlorination are the methionine, the 

cysteine and the histidine (Ewart 1968).  Such reactions are consistent with the increase in 

protein solubility observed with chlorination (Sollars 1958a, Kissel 1971).  Only limited 

chemical evidence therefore exists about the nature of the chlorine-protein reactions occurring in 

flour, but the fact that some change does take place is demonstrated by the unsuitability of 

chlorinated cake flour for bread making purposes.  This effect is presumably due to the loss of 

tertiary structure in the gluten, although chemical experiments alone are inadequate to determine 

what influence any such changes have upon cake quality (Gough et al 1978). 

3. Ozonation, an alternative to chlorination 

The world as we know it lives in a continuous evolution, scientifically, demographically, 

environmentally and many other ways.  Such problems as the increasing population density 

throughout the world and the development of new microbiological strains (Listeria, Escherichia 

coli, and Staphylococcus aureus) have been emphasized for their involvement in human 

illnesses.  Accumulation of chemicals in our environment have increased the international focus 

on the safe use of sanitizers, bleaching agents, pesticides, and other chemicals in industrial 

processing and other domains.  The increasing need for more sanitizers to control infection and 

disease concurrent with the need to reduce the accumulation of chemical residues to maintain 

safe air, water and food supplies is paradoxical.  Heavy metal salts, halogen compounds, 

reducing gases, oxidizers, and alcohols have been used as antimicrobial sanitizers in many 

specific applications. 

3.1. Context 

Chlorine in gaseous form and derivatives such as hypochlorite and chlorine dioxide are 

the most widely used sanitizing agents available for fresh produce, disinfection of food material, 

public water supplies and general sanitation.  In the fresh fruit and vegetable industry, chlorine 

improves microbiological quality and controls pathogens.  However, many research studies have 

indicated that it is limited in its ability to kill bacteria on fruit and vegetable surfaces (Rice et al 
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1982, Bott 1991, Graham 1997, Cena 1998).  Environmental and health organizations have 

expressed concerns with traditional sanitizing agents with respect to the transformation of by-

products, such as trihalomethanes (chemical compounds in which three of the four hydrogen 

atoms of methane are replaced by halogen atoms) and other chemical residues formed in the 

wastewater returned to the environment (Graham 1997, Cena 1998).  Also, recognizing that food 

may be contaminated anywhere along the production chain, even on products thought to be 

pathogen-free, U. S. food processors have realized that some form of intervention to disinfect 

food, perhaps at several steps, is necessary (Majchrowicz 1999). But continued outbreaks of 

foodborne illnesses even after using conventional hot-water sprays, chlorine washes, and 

chemical treatments, have led to the examination of new alternative technologies to help assure 

the safety of their products.  One of the approaches is to identify an alternative sanitizer to 

replace traditional sanitizing agents which can also be used to treat or recycle food processing 

wastewater.  Research and commercial applications have indicated that ozone can replace 

chlorine with more benefits. 

3.2. Presentation of the ozone 

The familiar, fresh, clean smell in air following a thunderstorm characterizes ozone 

freshly generated in nature’s environment.  Ozone (O3), or triatomic oxygen, is otherwise 

naturally produced by the action of UV irradiation on oxygen.  It is a bluish gas at ambient 

pressures and temperatures that readily dissolves in water at acidic pH values (Gordon 1995), 

and decomposes, producing numerous free radical species, the most predominant being the 

hydroxyl radical (OH–).  Synthetically, ozone is a relatively unstable allotrope of oxygen that can 

be manufactured at low concentration (0.3 ppm) from oxygen in the air by radiation of 185-nm 

wavelength emitted by high transmission UV lamps (Ewell 1946) or by corona discharge 

generators, most widely used (Kim et al 1999a).  The method consists in splitting the oxygen 

molecules, forming highly reactive free radicals that react with other oxygen molecules, forming 

ozone (Figure 5). 
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Figure 5: Formation of ozone molecules from oxygen radicals (Novak and Yuan 2007). 

Historically, ozone was discovered by Schonbein in 1840, followed by a U.S. patent 

issued to Fewson in 1888 for an apparatus to produce ozone for deodorizing sewer gases 

(Graham 1997).  In 1906, in Nice (France), the first commercial-scale disinfection of portable 

water with ozone was put into practice (Lebout 1959).  From this time, ozonation has been 

adopted as standard practice for water treatment and disinfection by numerous cities in France, 

the Netherlands, Germany, Austria, Switzerland and many other countries.  The United States 

would have to wait until 1940 to see the first potable water treatment plant to use ozone 

continuously, installed in Whiting, Indiana.  Nowadays, more than 350 municipal water 

treatment plants are running in this country (Overbeck 2000).  Most bottled water is treated with 

ozone as well, a practice stemming from a 1982 U. S. Food and Drug Administration (FDA) 

affirmation of ozone as Generally Recognized As Safe (GRAS) in this product (Majchrowicz 

1998).  As a gas, ozone is an alternative cleansing agent for water-sensitive products such as 

strawberries and raspberries, and was approved by the U.S. Department of Agriculture (USDA) 

for the storage of meat in 1957 (Majchrowicz 1999) and for the reconditioning of recycled 

poultry chilling water in 1997 (Güzel-Seydim et al 2004).  The same year, an independent panel 

of experts sponsored by the Electric Power Research Institute (EPRI) decreed that ozone was a 

GRAS substance for use as a disinfectant and sanitizer for foods when used in accordance with 
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good manufacturing practices (Graham 1997).  Since the FDA did not object to the expert 

panel’s findings, ozone has now been approved for use as a disinfectant or sanitizer in foods and 

food processing in the United States.  An example is the approval for use as an antimicrobial 

agent in the treatment, storage and processing of meats and produce, issued by the FDA in 2001 

(Novak and Yuan 2007). 

3.3. Applications 

3.3.1. Industrial wastewater treatment 

Many industrial wastewaters contain impurities/contaminants which are amenable to 

oxidative destruction by ozone.  Moreover, ozonation of some biorefractory organic materials 

can improve their biodegradability, thereby allowing an appropriate sequencing of ozone 

oxidation followed by an aerobic biological treatment step.  Ozone is also coupled with 

ultraviolet radiation and/or hydrogen peroxide (advanced oxidation) for organic contaminants in 

groundwaters (hazardous wastes) or with activated carbon adsorption to remove colors and 

organics. 

Ozone is the most powerful oxidizing agent available for the treatment of industrial 

wastewaters.  It is introduced into water or wastewater as a gas to maximize the mass transfer of 

ozone from the gas phase to the aqueous phase.  The chemical effects of ozone in water are a 

result of: 1) its direct reactions with dissolved compounds, 2) its decomposition into secondary 

oxidants, such as reactive free radicals (HO–, HO2
–), 3) the subsequent reactions of these 

secondary oxidants with solutes (Rice 1997).  All of these reactions may occur simultaneously.  

In practice, however, one or the other reaction will predominate, depending on the reaction 

conditions and the chemical composition of the water or wastewater being treated. 

3.3.2. Produce industry 

Over the past several years, there has been increasing evidence that process water used by 

the food industry is not as free of pathogens as previously thought.  Moreover, there is a certain 

level of pesticide and toxic compounds in the process water supply due to industrial activities.  

Normally, processing water is disinfected and sterilized with chlorine.  However, chlorine cannot 
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reduce the level of organic compounds and will produce chlorinated compounds.  Ozone has 

then been proven to be an ideal replacement for chlorine for disinfection and sterilization of 

process water (Geering 1999, Rice 1999).  Ozone can also destroy chlorine byproducts, 

pesticides, toxic organic compounds in the process water without any toxic residues, remove 

iron, manganese, sulfur, and control taste and color of fresh water.  The practical applications of 

ozone to process water range from 0.5 to 5 ppm (depending on the water source), with less than 5 

min contact time (Xu 1999). 

The feasibility of using ozone in meat processing has been the focus of several studies.  

Kaess and Weidemann (1968) reported that the count of Pseudomonas spp. and C. scottii on 

contaminated beef decreased significantly at >2 µg/l gaseous ozone.  The color of the muscle 

surface treated with < 0.6 µg/l ozone did not differ from that of the control.  Ozone has also been 

tested in the process of tenderizing meats to control surface microflora.  A simultaneous use of 

UV (0.2 µW/cm2) and ozone (0.5 µg/l) produced a synergistic inhibitory effect against 

Thamnidium spp. and Penicillium spp (Kaess and Weidemann 1973).  Spraying beef brisket fat 

with hydrogen peroxide (50 g/l) solution and ozonated water (5 g/l) was effective in reducing 

bacterial contamination, when compared to treatments with trisodium phosphate (120 g/l) and a 

commercial sanitizer (3 g/l) (Gorman et al 1995). 

The utilization of ozone can also be useful for fruits and vegetables.  One way is to wash 

with ozonated water to maintain or even improve the safety of those products.  Two types of 

washing systems, spray or flume, can be used to reduce microbial counts on the surface of 

produce.  Kim et al (1999b) used ozonated water to wash shredded lettuce and found a reduction 

of the microbial load by 1.5 to 1.9 logs in 5 min.  Black peppercorns, contaminated with 

Salmonella spp., S. aureus, B. cereus, Penicillium spp., or Aspergillus spp., were immersed in 

water and sparged with gaseous ozone (6.7 mg/l) for 10 min at a flow rate of 6 l/min (Zhao and 

Cranston 1995).  Ozone treatment decreased the microbial counts by 3 to 4 logs.  Another way is 

to use gaseous ozone to prevent microbial activity on food surfaces and extend the shelf-life of 

products.  It is mainly employed in cold storage to guard against mold and bacteria at a very low 

concentration, but also to destroy mold and bacteria present in the air and on the surface of 

produce, as well as to deodorize (Rice et al 1982).  Many studies have been conducted on many 

different products.  Ozone at 0.1 to 0.3 ppm in the atmosphere during blackberry storage 

suppressed fungal development for 12 days at 2°C and did not cause observable injury or defects 
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(Barth et al 1995).  Grapes exposed for 20 min to ozone (8mg/l) had considerably reduced counts 

of bacteria, fungi and yeasts (Sarig et al 1996).  Kuprianoff (1953) found that the shelf-life of 

apples could be increased by several weeks by applying 2-3 cm3 of ozone per m3 of air a few 

hours a day.  However, ozone concentrations of 10 cm3/m3 resulted in apple damage. 

Concerning the cereal grains, peas, beans and spices, Bacillus and Microccus are 

dominant bacterial genera that can be decreased by 1 to 3 logs by <50 mg/l ozone (Naito et al 

1988).  Naito et al (1987, 1988) studied the effects of ozone concentration (0.5 to 50 mg/l), 

exposure time (1 to 6 h), and temperature (5 to 50°C) on several cereal grains, cereal grain 

powders, peas, beans, and whole spices.  They reported higher microbicidal activity for longer 

exposure time and lower temperature.  A treatment of 0.5 to 50 ppm ozone for 6 h on wheat flour 

would inhibit microbial growth in namamen product and increase storage life two- to fivefold.  

Ibanoglu (2002) used ozonated water at a concentration of 1.5 mg/l to wash wheat grain during 

30 min.  The microbiological analysis showed that washing the kernels with ozonated water 

reduced the total and yeast/mould counts significantly (P=0.05) compared with washing with 

normal water.  He suggested that ozonated water can be successfully used for wheat washing to 

reduce microbial populations.  Besides the microbiological aspect, he indicated that washing 

flours from hard wheat samples with ozonated water did not significantly alter the chemical, 

physical or rheological properties and small but statistically significant differences were 

observed on extensograph values of flours milled from the soft wheat washed with ozonated 

water.  Naito (1990) treated wheat flour (medium and soft flour) with an ozone-oxygen stream 

(0.05 to 50 ppm ozone) at a flow rate of 100 l/min at 10°C for 1 to 6 h.  Physical dough testing 

properties showed 1) in a farinograph test, no significant change in the consistency of both flour 

doughs, 2) with an extensograph, an increase in the resistance to extension of both flours for the 

0.5 to 50 ppm ozone treatment and a decrease in extensibility for the 0.05 to 50 ppm (soft flour) 

and the 5.0 to 50 ppm (medium flour) treatments.  The intramolecular SH groups of wheat flour 

were decreased by about 30% by ozone treatment at 50 ppm for 1 hour, but intermolecular S–S 

bonds were increased by about 5% by the same treatment.  Mendez et al (2003) realized a 

treatment with 50 ppm ozone penetrating into a column of stored grains for 30 days.  He found 

no detrimental effect on popping volume of popcorn, fatty acid and amino acid composition of 

soybean, soft and hard red winter wheats and corn, milling characteristics of soft and hard red 

winter wheats and corn, bread-making characteristics of hard red winter wheat, and stickiness of 
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rice.  These data indicated that, if repeated ozone treatments are needed, such treatments should 

not decrease the quality of grain for end-users.  (Dubois et al 2006) evaluated the effect of a new 

process called Oxygreen (described later) on vitamins, ferulic acid, phytates, proteins, 

carbohydrates and lipids.  They used three treatments (5 g, 8 g, 12 g of ozone consumed per kg 

of grains) to compare with the control and concluded that there was no detectable substantial 

difference between ozone-treated grains and the untreated ones, although some quantitative 

differences can occur.  The more detectable differences concern concentration of free sugars, and 

inhibition of some oxidative enzymes. 

Nowadays, several patents utilizing ozone are currently available.  Cantelli (1988) 

developed a method based on holding the produce in a sealed container while maintaining an 

electrical discharge that forms ozone and nitrogen oxides, at concentrations of ca. 0.05 ppm and 

0.5 ppm, respectively.  Karg (1990) obtained a patent for sterilization of heavily contaminated 

foods such as herbs, spices, fruits, and vegetables by ozone treatment.  His process comprises an 

initial conditioning phase, treatment of gas mixture containing ozone, and elimination of residual 

ozone.  Mitsuda et al (1991) patented a method to sterilize foods such as fish, fruits, vegetables, 

and beef, in a processing room, packing receptacles, or a refrigerator using a gas mixture that 

includes O3, CO2, and/or N2.  Hurst (1993) developed a method for sanitizing food products by 

immersion of the product in a bath supplied with a continuous stream of ozone-containing 

bubbles.  Rosenthal (1995) obtained a patent for sanitizing fruits with an apparatus consisting of 

UV, infrared radiation, and ozone water.  Yvin et al (2001) created a method for making flour 

with high food safety level from ozone-treated grains, ozone being produced from a carrier gas in 

an amount ranging between 0.5 and 20 grams of O3 per kilogram of grain.  This equipment is 

part of the Oxygreen® process. 

3.4. The example of the Oxygreen® process 

The Oxygreen® process has been developed by Goëmar Laboratories, in France.  It 

enables the treatment of a batch of grain in five different ways, in one single operation: eliminate 

microorganisms, control mycotoxins, destroy pesticides (without producing metabolites) and 

eliminate insects during storage.  It may be used in flour production for human consumption 

(baking, industry, standard flours and technological flours) and animal consumption. 
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The flour decontaminated by the Oxygreen® process provides a high level of safety in 

food.  It also makes it possible to produce technological flour without having to add synthetic 

products. 

The Oxygreen® process works naturally in the transformation of grain to flour, without 

changing the intrinsic concept.  Grain treatment is carried out at the same output as that of a 

standard mill.  A minimum of two reactors alternately treat the grain (Figure 6). One reactor is 

filled and emptied alternately while the treatment phase takes place in the other (batch system).  

The ozone production necessary to the operation is made continuously in situ at .  It is obtained 

by passing a current of air and oxygen in variable proportions between two electrodes put under 

different high alternative potential.  The ozone is released into the reactors under light pressure 

by a perfectly adapted apparatus.  The ozone and its vector gas go through in an ascendant flow 

to the grain, the grain then follows a descendant trajectory.  This double transfer permanently 

assures the renewal of the reaction interface between the ozone and the grain to be treated.  The 

Oxygreen® process ensures a perfectly homogeneous treatment.  This way, every single grain is 

treated. 

3.5. Limitations of ozone 

An often-cited disadvantage of using ozone as a disinfectant is that, unlike chlorine, it is 

extremely unstable (Gordon 1995, Graham 1997, Rice 1997, Novak and Yuan 2007).  It is 

difficult to predict how ozone reacts in the presence of organic matter.  It can oxidize or ionize 

the compounds or spontaneously decompose to oxygen and free radicals. 

Surface oxidation of food may result from excessive use of ozone (Rice et al 1982).  The 

authors stressed that ozone is not universally beneficial and, in some cases, may promote 

oxidative spoilage.  Fournaud and Lauret (1972) detected discoloration and undesirable odors in 

ozone-treated meat.  Ozone also changed the surface color of some fruits and vegetables such as 

peaches (Badiani et al 1996) and carrots (Liew and Prange 1994).  Ozone had a negative effect 

on the sensory quality of other commodities such as grains (Naito et al 1988) and milk powder 

(Ipsen 1989) due to lipid oxidation.  However, other studies reported that ozone treatment 

improved the sensory quality in beef and eggs (Dondo et al 1992, Bailey et al 1996).  Therefore, 

alterations in the sensory attributes depend on the chemical composition of food, ozone dose and 

treatment condition. 
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Figure 6: The Oxygreen reactor (Yvin et al 2001). 

3.6. Conclusion 

There is great potential for using the reactive, antimicrobial properties of a natural 
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applications.  Studies are there to indicate that ozone can be used as a safe and effective 

antimicrobial agent in many food applications. When compared with chlorine and other 

disinfectants, lower concentrations of ozone and shorter contact times are sufficient in 

controlling or reducing microbial population.  Ozone does not produce significant toxic residues 

in the environment after treatment.  Ultimately system design and monitoring will enable this 

technology to succeed for future applications whether based on water purification recycling, air 

quality improvement, product extended storage and/or equipment surface sanitations. 

 



Objectives 

- 22 - 

Objectives 

The utilization of ozone for wheat in order to improve the technological properties of the 

flour is a process that needs consideration.  Few studies have been reported and more 

information is required to determine the exact mechanism involved and the repercussions on the 

flour.  Until now, the few researches made have been realized on soft and hard wheat flours, and 

compared with chlorinated flour. 

As seen previously, ozone is used in its gas phase.  The application on wheat can 

therefore be on either the kernel itself or on the flour. 

The objectives of this study are then to determine: 1) the effects of the ozone when 

applied on the wheat kernel, 2) the effects of the ozone when applied on the wheat flour, and 3) 

to compare the two ozonation treatments: ozone applied on the wheat kernel or on the wheat 

flour. 
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Materials and Methods 

1. Wheat samples 

For this experiment, soft white wheat samples given by the Agro-Physiology Laboratory 

(Toulouse, France) have been used. 

For one part of the experiment, nine samples were constituted with 500 g of grain each.  

The grains had been humidified 48 hours before treatment in order to have a kernel humidity of 

12 to 17%.  Ten minutes before ozonation, an additional water quantity of 3% has been mixed 

with the sample to increase the absorption of ozone by the kernel. 

For the other part, a 4 kg fraction free of treatment was kept aside.  After milling, one 

tenth of the flour was kept as a control whereas the remainder was divided in nine equal portions 

and ozonated. 

2. Ozone treatment 

Ozonation of the wheat grain has been realized by the Agro-Physiology Laboratory.  The 

conditions in the reactor were a debit of 0.4 m3 of ozone per hour, a pressure of 500 mbars and a 

humidity of 3%.  Temperature was the one of the room. 

Three different ozone concentrations were used (110, 95 and 80 g of ozone per m3) with 

different exposure time in order to obtain three different quantities of ozone (5, 10 and 20 g of 

ozone per kg of grain) for each concentration.  Nine ozonated samples were then produced 

besides the non-ozonated grain. 

The ozonation of the wheat flour stemming from the untreated grain has been realized 

with an ozone test setup (Figure 1) developed by O3Co. (Aberdeen, ID, United States), requested 

by Dr. Bhadriraju from the Grain Science and Industry Department of Kansas State University 

(Manhattan, KS, United States).  The ozone analyzer is a model IN2000 (In USA, Inc., 

Norwood, MA, United States). 

The ozonation has been made with the same conditions as the ozonation of the grain.  

The concentration was measured after the ozone generator using the ozone analyzer. 
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Figure 1: The ozone test setup 

3. Laboratory milling 

The wheat samples were milled in a Bühler Experiment Mill (Bühler Inc., Minneapolis, 

MN, USA) to short straight grade flour with an average extraction of 70%.  All flours were 

stored in air-tight plastic bags at room temperature. 

 

 

Figure 2: Diagram of the experiment 
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4. Analysis 

4.1. Water activity 

The water activity was measured with a water activity meter CX-1 updated CX-2 from 

Decagon Devices, Inc. (Pullman, WA, USA).  Temperature and water activity values were given 

by the display of the instrument. 

4.2. Physicochemical tests 

4.2.1. Solvent retention capacity 

The solvent retention capacity was determined according to AACC method 56-11 

(AACC 2000). The following four solvents were used: deionized water from a Barnstead 

deionizer (model D8971, Barnstead International, Dubuque, IA, USA); sucrose (Fisher 

Scientific, Fair Lawn, NJ, USA), 50% (w/w) solution; sodium carbonate (Fisher Scientific), 5% 

(w/w) solution; lactic acid (MCB Manufacturing Chemists, Inc., Cincinnati, OH, USA), 5% 

(w/w) solution. 

Due to the small quantity of flour, the test was run with 2.0 ml microfuge tubes and 0.2 g 

of sample.  A volume of 1.0 ml of appropriate solvent was added to each tube containing flour. 

4.2.2. Determination of Falling Number 

The falling number values were reported according to AACC method 56-81B (AACC 

2000) using a type 1800 falling number apparatus (Perten Inst., Huddinge, Sweden). No 

calculations were required since the instrument has a digital display. 

4.3. Starch 

Based on the AACC method 76-21 (AACC 2000) using a Brabender Micro Visco-

Amylo-Graph® (Brabender OHG, Duisburg, Germany), the maximum viscosity, breakdown and 

setback were evaluated.  The quantity of flour used in this case was 10 g (14% moisture basis) 
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with 71.4 ml of distilled water (14% moisture basis).  The test profile followed corresponds to 

the standard 1 profile of AACC method 76-21.  The total length of the test is 13 minutes. 

4.4. Baking quality 

4.4.1. Cake test 

The cake test is based on AACC method 10-90 (AACC 2000).  The difference is on the 

quantity of ingredients used.  The original formulation requires 200 g (14% moisture basis) of 

flour whereas only 100 g have been used due to the small quantity of flour available.  

Nevertheless, the proportions were kept (Table 1). 

 

Ingredients Amount (g) Bakers % 
Flour (14% moisture basis) 100 100 
Sugar 130 130 
Non-fat dry milk 12 12 
Dried eggs 18 18 
Salt 3 3 
Baking Powder 6 6 
Cake Shortening 50 50 
Water 135 135 

 

Table 1: Cake formula for the cake test, based on AACC method 10-90. 

The batter was mixed with a Hobart mixer model N-50 (The Hobart Mfg. Co., Troy, OH, 

USA).  All dry ingredients were sifted and mixed in first speed with 80% of the water for 30 

seconds.  Batter was scraped down and mixed a second time in second speed for 4 minutes.  10% 

of water was then added to the batter and mixed for 30 seconds in first speed.  Batter was scraped 

down and mixed in second speed for 2 minutes.  The 10% of water remaining was added to the 

batter and mixed in first speed for 30 seconds.  Batter was again scraped down and mixed in 

second speed for 2 minutes.  The mixed batter was finally placed into a 6 inch pan.  Each cake 

represented 200 g of batter.  Volume index, contour index and symmetry were calculated using a 

template (Figure 3) 2 hours after the cake was taken out of the oven.  Calculations were as 

follow: 
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A 

B 

C 

D 

E 

Volume index = B + C + D Contour index = 2C – B – D Symmetry = | B – D | 

 

Figure 3: Template used to measure the cakes 

4.4.2. Bread test 

The formula for the bake does not include any maturing agents, dough improvers or 

additive such as malt, ascorbic acid, potassium bromate, soy flour, non-fat dry milk and whey 

solids (Table 2) like other methods propose. 

 

Ingredients Amount (g) Bakers % 
Flour (14% moisture basis) 35.0 100.0 
Water Variable (optimum) Variable (optimum) 
Yeast 0.95 2.7 
Sucrose 2.10 6.0 
Salt 0.52 1.5 
Bread Shortening 1.05 3.1 

 

Table 2: Bread formula for the bread test 

The dough was mixed with a 35 g mixograph® (National Mfg. Co., Lincoln, NE, USA) 

to optimum dough development, according to AACC method 54-40A (AACC 2000).  The 

fermentation process is more a short time fermentation procedure.  The dough was sheeted at 

5/16 in, molded and transferred to greased pan.  After 20 minutes placed in a proofing cabinet 

(86°F and 85% humidity), the dough was re-sheeted, re-molded and transferred to a pan.  A 

second proofing time of 40 minutes was done before transferring to the oven.  Breads were 

baked at 200°C for 20 min.  Volume measurement was made by rapeseed displacement after 

breads had cooled down during 2 hours. 
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5. Colorimetry 

Color of flours was measured using a Minolta CR-210 colorimeter (Konica Minolta, 

Osaka, Japan) and refers to the L*a*b color space (also referred to as the CIELAB space) 

defined by the CIE (Commission Internationale de l’Eclairage) in 1976 (Oliver et al 1992).  The 

instrument was calibrated against a standard white tile (No: 17033201, L=97.83, a=–0.41 and 

b=1.90), where L indicates the lightness, –a to +a indicates green to red and –b to +b indicates 

blue to yellow. 

6. Statistical analysis 

The results were analyzed by pair using Tukey’s grouping after an analysis of variances 

with the SAS program. 
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Chapter 1 - Effect of ozone treatment on wheat grain 

 

 

Ozonation of wheat grain is a quick and easy process that could be realized during the 

storage.  The ozone is in direct contact with the grain and modifies immediately the properties of 

the wheat.  However, the ozone has to go through the pericarp and the seed coat to reach the 

endosperm, which represents the greater proportion of the short grade flour.  It is therefore 

expected that not all of the ozone will penetrate the endosperm and the flour that follows will 

have specific characteristics. 

1. Results from the analytical tests 

1.1. The effect of the ozonation on the water activity 

The results from the water activity test show that ozonation of the grain has a significant 

effect on the flour at both concentration and quantity levels (Table 1). 

 

      
Source d.f. Aw 

Concentration 2 628.20*** 
Quantity 2 57.85*** 

      
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares. 

 

Table 1: F-values from analysis of variance of the water activity for soft white wheat flour from 
ozonated grain using different concentrations and quantities of ozone. 

These results can be related to the fact that water has been added to the grain before the 

ozonation.  This excess amount of water has not been removed during the milling process and is 

found to increase the water activity (Table 2 and 3), and to differ from the control, which has not 

received any additional water.  More detailed results are displayed in Appendix A, Table I. 

 



Chapter 1 – Effect of ozone treatment on wheat grain 

- 30 - 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Aw 0.462 ± 0.004a 0.598 ± 0.003b 0.562 ± 0.029c 0.535 ± 0.024d 
     

Means with the same letter are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation. 

 

Table 2: Water activity results of soft white wheat flour from ozonated grain, at different 
average concentrations of ozone. 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Aw 0.462 ± 0.004a 0.571 ± 0.022b 0.554 ± 0.037c 0.570 ± 0.042b 
          

Means with the same letter are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation. 

 

Table 3: Water activity results of soft white wheat flour from ozonated grain, for different 
average quantities of ozone. 

It appears that the lower concentration induces a higher augmentation in water activity 

whereas the higher concentration induces a lower augmentation.  Also, a quantity of 10 g of 

ozone per kg of grain creates a higher water activity compared to the two other quantities. 

1.2. Influence on physicochemical tests 

1.2.1. The solvent retention capacity 

The ozonation process has been demonstrated to have a significant effect on the sodium 

carbonate, lactic acid and deionized water retention capacities (Table 4).  Only the retention in 

sucrose is not significantly driven by either the concentration or the quantity. 

 

            
Source d.f. 

Sucrose 
Retention 

Sodium Carbonate 
Retention 

Lactic Acid 
Retention 

Deionized Water 
Retention 

Concentration 2 1.48ns 12.48*** 2.12ns 1.20ns 
Quantity 2 1.70ns 9.64*** 12.97*** 7.98** 

            
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively.   

F-values were derived from Type III Sums of Squares.   

 

Table 4: F-values from analysis of variance of the solvent retention capacity test for soft white 
wheat flour from ozonated grain using different concentrations and quantities of ozone. 
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However, it is interesting to see that the concentration of 80 g/m3 impacts on almost all 

the solvent retention values (Table 5).  Both the sucrose and the sodium carbonate retention 

capacities are reduced whereas the retention in lactic acid is increased.  Only the deionized water 

retention is not modified.  On the other hand, the concentration of 95 g/m3 does not change any 

retention capacity except the one of lactic acid that is increased.  The retention of this last solvent 

is easily altered by the ozonation since all the concentrations are significantly different from the 

control.  All three concentrations augment the retention capacity of the lactic acid whereas none 

of them modifies the retention by deionized water. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Sucrose (%) 112.0 ± 2.6a 105.5 ± 4.8b 108.0 ± 3.5a 106.8 ± 3.7a 
Sodium Carbonate (%) 109.9 ± 2.4a 101.1 ± 3.1b 106.5 ± 4.0a,c 103.7 ± 3.4b,c 

Lactic Acid (%) 123.1 ± 3.5a 129.1 ± 3.6b 130.1 ± 2.9b 131.0 ± 4.6b 
Deionized Water (%) 81.8 ± 1.9a 82.3 ± 3.1a 83.6 ± 1.5a 83.4 ± 3.9a 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of quadruplicate measurements ± standard deviation. 

 

Table 5: Solvent retention capacity results of soft white wheat flour from ozonated grain, at 
different average concentrations of ozone. 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Sucrose 112.0 ± 2.6a 106.2 ± 3.2b 108.2 ± 4.8a,b 105.8 ± 3.6b 
Sodium Carbonate 109.9 ± 2.4a 101.2 ± 2.9b 105.9 ± 3.6a,c 104.2 ± 4.4c 

Lactic Acid 123.1 ± 3.5a 130.5 ± 3.2b 132.3 ± 3.2b 127.4 ± 3.4c 
Deionized Water 81.8 ± 1.9a 82.0 ± 2.4a 85.2 ± 1.8b 82.1 ± 3.4a 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of quadruplicate measurements ± standard deviation. 

 

Table 6: Solvent retention capacity results of soft white wheat flour from ozonated grain, for 
different average quantities of ozone. 

Table 6 shows that the quantities of 5 g/kg and 20 g/kg significantly modify the retention 

in sucrose, sodium carbonate and lactic acid.  In the two first cases, they decrease the capacity 

whereas for the lactic acid, they increase it.  Both quantities have no effect on the deionized 

water retention.  Only the quantity of 10 g/kg has.  It increases it as well as the one of lactic acid.  
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Once again, the lactic acid retention capacity is increased by all three quantities.  More detailed 

results are shown in Appendix A, Table II. 

1.2.2. Falling Number 

Table 7 clearly shows that neither the concentration nor the quantity of ozone has a 

significant effect on the Falling Number. 

 

      
Source d.f. Falling Number 

Concentration 2 1.34ns 
Quantity 2 0.29ns 

   
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares. 

 

Table 7: F-values from analysis of variance of the Falling Number determination for soft white 
wheat flour from ozonated grain using different concentrations and quantities of ozone. 

Likewise, Tables 8 and 9 show similar results.  It appears that this type of treatment is 

totally ineffective in modifying the falling number.  More detailed results are shown in Appendix 

A, Table III. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Falling Number (s) 404.0 ± 8.5a 385.3 ± 15.2a 374.3 ± 23.2a 372.2 ± 17.7a 
          

Means with the same letter are not significantly different (P=0.05).  
Results are average of duplicate measurements ± standard deviation.  

 

Table 8: Falling Number results of soft white wheat flour from ozonated grain, at different 
average concentrations of ozone. 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Falling Number (s) 404.0 ± 8.5a 380.8 ± 14.0a 374.3 ± 24.2a 376.7 ± 19.9a 
          

Means with the same letter are not significantly different (P=0.05).  

Results are average of duplicate measurements ± standard deviation.  

 

Table 9: Falling Number results of soft white wheat flour from ozonated grain, for different 
average quantities of ozone. 
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1.3. The change in viscosity 

The ozonation on grain has significant effects on the maximum viscosity and the setback 

(Table 10), measured by the micro visco-amylo-graph®.  However, the first samples that have 

been run encountered problems in the cooling phase.  Therefore, the setback, occurring during 

the cooling phase, is different from what it should be and gives questionable results.  On the 

other hand, the beginning of the gelatinization and the breakdown are not significantly modified. 

 

            
Source d.f. 

Beginning of 
Gelatinization 

Maximum 
Viscosity 

Breakdown Setback 

Concentration 2 0.33ns 15.84*** 2.13ns 14.69*** 
Quantity 2 1.40ns 4.62* 1.93ns 11.69*** 

            
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively.  

F-values were derived from Type III Sums of Squares.   

 

Table 10: F-values from analysis of variance of micro visco-amylo-graph® parameter for soft 
white wheat flour from ozonated grain using different concentrations and quantities of ozone. 

As said above, only the maximum viscosity and the setback are significantly different 

from the control (Table 11 and 12).  All three concentrations go the same way: the viscosity is 

increased and the setback is reduced.  The concentration of 80 g/m3 is the one to have the 

greatest difference compared to the control.  For the quantities, this tendency is also found.  In 

this case, it is the 5 g/kg that has the greatest difference with the control, followed by the 10 g/kg 

and the 20 g/kg.  More detailed results are shown in Appendix A, Table IV. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Begin Gelatinization (BU) 35.0 ± 7.2a 29.9 ± 7.7a 28.3 ± 3.7a 30.2 ± 5.9a 
Maximum Viscosity (BU) 816.3 ± 3.8a 873.7 ± 11.3b 846.0 ± 9.4c 860.7 ± 22.4b 

Breakdown (BU) 270.0 ± 3.0a 284.1 ± 10.3a 278.8 ± 14.5a 270.0 ± 23.5a 
Setback (BU) 235.3 ± 3.1a 133.4 ± 9.3b 138.0 ± 19.2b 176.3 ± 59.3c 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.  

 

Table 11: Micro visco-amylo-graph® parameter results of soft white wheat flour from ozonated 
grain, at different average concentrations of ozone. 
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Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Begin Gelatinization (BU) 35.0 ± 7.2a 31.0 ± 6.2a 27.1 ± 4.8a 30.3 ± 6.3a 
Maximum Viscosity (BU) 816.3 ± 3.8a 868.6 ± 18.3b 857.4 ± 18.3b,c 854.3 ± 18.9c 

Breakdown (BU) 270.0 ± 3.0a 283.3 ± 15.0a 279.4 ± 22.1a 270.1 ± 12.8a 
Setback (BU) 235.3 ± 3.1a 125.0 ± 27.8b 161.8 ± 47.1c 161.0 ± 35.1c 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.  

 

Table 12: Micro visco-amylo-graph® parameter results of soft white wheat flour from ozonated 
grain, for different average quantities of ozone. 

1.4. Effects on baking quality 

1.4.1. The cake test 

Table 13 shows that the concentration of ozone has very significant consequences on the 

volume and symmetry of the cake.  The quantity has a significant effect only on the symmetry. 

 

          
Source d.f. Cake Volume Cake Contour Cake Symmetry 

Concentration 2 10.99** 0.16ns 24.29*** 
Quantity 2 1.98ns 0.76ns 6.41* 

     
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares.  

 

Table 13: F-values from analysis of variance of cake test for soft white wheat flour from 
ozonated grain using different concentrations and quantities of ozone. 

The only concentrations that modify the properties of the flour are 80 g/m3 and 95 g/m3.  

They have a detrimental effect on the volume of the cake (Table 14).  The same trend is found 

with all three quantities (Table 15).  Like the two lowest concentrations, none of them 

significantly modifies the symmetry of the cake.  Overall, this treatment is not to be used for 

cake purposes.  More detailed results are shown in Appendix A, Table V. 
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Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Volume Index 96.0 ± 1.4a 69.3 ± 1.0b 72.0 ± 4.1b 85.7 ± 11.8a 
Contour Index 9.0 ± 11.3a 8.7 ± 3.4a 5.5 ± 3.8a 10.8 ± 2.0a 

Symmetry 3.0 ± 0.0a,b 1.0 ± 0.0a 2.5 ± 1.0a 5.2 ± 3.3b 
          

Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.  

 

Table 14: Cake test results of soft white wheat flour from ozonated flour, at different average 
concentrations of ozone. 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Volume Index 96.0 ± 1.4a 72.2 ± 5.3b 75.8 ± 10.2b 79.0 ± 13.5b 
Contour Index 9.0 ± 11.3a 6.8 ± 3.9a 8.7 ± 3.8a 9.5 ± 3.7a 

Symmetry 3.0 ± 0.0a,b 1.8 ± 1.0a 4.0 ± 3.5b 2.8 ± 2.5a,b 
          

Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.  

 

Table 15: Cake test results of soft white wheat flour from ozonated flour, for different average 
quantities of ozone. 

1.4.2. The bread test 

If the treatment has some very significant effect, the bread volume is one of them (Table 

16).  Both the concentration and quantity are sources of modification. 

 

      
Source d.f. Bread Volume 

Concentration 2 12.31*** 
Quantity 2 9.67** 

      
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares. 

 

Table 16: F-values from analysis of variance of bread test for soft white wheat flour from 
ozonated grain using different concentrations and quantities of ozone. 

To prove the action of this treatment, Table 17 and 18 show that the volumes are greater 

than the control.  The concentration of 80 g/ m3 is significantly different from the control and the 
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one of 95 g/m3 is not significantly different from either the control or the lowest concentration.  

The same is observed for the quantity of 5 g/kg and 10 g/kg.  Therefore, the lowest concentration 

and quantity have the best results.  More detailed results are shown in Appendix A, Table VI. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Bread Volume (cm3) 134.3 ± 4.0a,c 148.3 ± 4.0b 143.9 ± 8.5a,b 134.8 ± 9.8c 
          

Means with the same letter are not significantly different (P=0.05).  

Results are average of triplicate measurements ± standard deviation.  

 

Table 17: Bread test results of soft white wheat flour from ozonated grain, at different average 
concentrations of ozone. 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Bread Volume (cm3) 134.3 ± 4.0a 148.9 ± 3.6b 142.3 ± 9.5a,b 138.5 ± 10.0a 
          

Means with the same letter are not significantly different (P=0.05).  

Results are average of triplicate measurements ± standard deviation.  

 

Table 18: Bread test results of soft white wheat flour from ozonated grain, for different average 
quantities of ozone. 

2. Colorimetry 

The direct ozonation on the flour did not change in any way the color of the flour 

(Appendix A, Table VII). 

3. Conclusion 

This type of treatment has clearly modified the properties of the flour.  Besides the 

increase in water activity due to the preparation of the samples, it has been seen to decrease the 

retention in sodium carbonate and increase the one in lactic acid, which means that this flour 

would increase the spread of cookies and ameliorate long fermentation products such as sour 

dough, respectively.  Such a modified flour would also create bigger bread volumes but would be 

detrimental for use in cakes (reduced volume and bad symmetry).  In regard to this, the 

ozonation of grain confers to the flour a better viscosity that can be related to a reduction of the 
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α-amylase activity.  Therefore, the ozonation of grain would be useful for breads and sour dough, 

as well as in cookie formulas to develop the spread of cookies. 
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Chapter 2 - Effect of ozone treatment on wheat flour 

 

 

In regard to ozonation of the grain, ozonation of the flour seems to be better since its 

action is directly on the material.  However, the process is not as easy as the first one and 

requires a specific infrastructure to treat.  But the main interest is on the characteristics that the 

treatment can have on the flour. 

1. Results from the analytical tests 

1.1. The water activity 

Totally opposite to the treatment of the grain, this treatment does not influence the water 

activity (Table 1).  Nevertheless, since no water has been added before the treatment, contrary to 

the first treatment, this result may be normal.  More detailed results are shown in Appendix B, 

Table I. 

 

      
Source d.f. Aw 

Concentration 2 1.11ns 
Quantity 2 0.94ns 

      
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares. 

 

Table 1: F-values from analysis of variance of the water activity for ozonated soft white wheat 
flour using different concentrations and quantities of ozone. 

1.2. Effects on physicochemical tests 

1.2.1. Solvent Retention Capacity 
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The solvent retention capacity test is one of the tests that is really significant.  The 

capacity to retain sucrose and lactic acid are very significantly related to the concentration and 

quantity applied to the flour during this treatment (Table 2).  It also appears that the deionized 

water retention capacity is significantly dependent on the quantity. 

 

           
Source d.f. 

Sucrose 
Retention 

Sodium Carbonate 
Retention 

Lactic Acid 
Retention 

Deionized Water 
Retention 

Concentration 2 8.19** 1.51ns 4.58* 2.58ns 
Quantity 2 7.12** 2.31ns 105.38*** 4.71* 

            
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively.  

F-values were derived from Type III Sums of Squares.   

 

Table 2: F-values from analysis of variance of the solvent retention capacity for ozonated soft 
white wheat flour using different concentrations and quantities of ozone. 

Table 3 confirms the relationship.  All three concentrations are significantly different 

from the control for the sucrose and the lactic acid.  The retention capacity is clearly increased.  

Also, the deionized water retention capacity is significantly different from the control. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Sucrose (%) 112.0 ± 2.6a 125.3 ± 5.3b 122.5 ± 6.1b,c 120.5 ± 2.5c 
Sodium Carbonate (%) 109.9 ± 2.4a 98.8 ± 11.4b 102.5 ± 3.9a 103.1 ± 6.1a 

Lactic Acid (%) 123.1 ± 3.5a 125.7 ± 1.1b 126.8 ± 6.0b 127.0 ± 6.3b 
Deionized Water (%) 81.8 ± 1.9a 90.3 ± 3.8b 86.8 ± 6.2a,b 88.7 ± 5.8b 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of quadruplet measurements ± standard deviation.  

 

Table 3: Solvent retention capacity results of ozonated soft white wheat flour, at different 
average concentrations of ozone. 

The results in Table 4 are less notable.  All quantities increase the sucrose retention 

whereas only the 5 g/kg quantity increases the lactic acid retention capacity.  On the other hand, 

both 5 g/kg and 20 g/kg increase the retention in deionized water compared to the control.  The 

quantity of 10 g/kg increases only the sodium carbonate retention capacity.  More detailed results 

are shown in Appendix B, Table II. 
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Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Sucrose (%) 112.0 ± 2.6a 124.0 ± 5.0b 120.1 ± 4.6c 124.0 ± 5.0b 
Sodium Carbonate (%) 109.9 ± 2.4a 105.0 ± 3.8a 99.1 ± 1.8b 100.8 ± 12.2a 

Lactic Acid (%) 123.1 ± 3.5a 132.2 ± 4.8b 124.3 ± 2.4a 123.5 ± 1.4a 
Deionized Water (%) 81.8 ± 1.9a 89.5 ± 6.6b 85.8 ± 5.4a 90.7 ± 2.7b 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of quadruplet measurements ± standard deviation.  

 

Table 4: Solvent retention capacity results of ozonated soft white wheat flour, for different 
average quantities of ozone. 

1.2.2. The Falling Number 

Whereas the action of ozone on grain has no effect on the Falling Number, the ozonation 

of flour has a slightly significant effect between the quantity and the Falling Number (Table 5). 

 

      
Source d.f. Falling Number 

Concentration 2 2.33ns 
Quantity 2 5.78* 

      
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares. 

 

Table 5: F-values from analysis of variance for the Falling Number determination for ozonated 
soft white wheat flour using different concentrations and quantities of ozone. 

As shown in Table 6, all concentrations are significantly different from the control.  The 

increase in falling number follows the increase in concentration. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Falling Number (s) 404.0 ± 8.5a 487.2 ± 54.4b 499.5 ± 20.0b 517.3 ± 31.5b 
          

Means with the same letter are not significantly different (P=0.05).  

Results are average of duplicate measurements ± standard deviation.  

 

Table 6: Falling Number results of ozonated soft white wheat flour, at different average 
concentrations of ozone. 
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The falling number increases also with the quantity applied (Table 7).  Like the 

concentration, as the quantity increases, the Falling Number increases.  The treatment can then 

be related to a decrease in the amylase activity.  More detailed results are shown in Appendix B, 

Table III. 

 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Falling Number (s) 404.0 ± 8.5a 473.7 ± 37.1b 515.8 ± 29.6b 514.3 ± 35.7b 
          

Means with the same letter are not significantly different (P=0.05).  

Results are average of duplicate measurements ± standard deviation.  

 

Table 7: Falling Number results of ozonated soft white wheat flour, for different average 
quantities of ozone. 

1.3. The ineffective action on viscosity 

Unlike the treatment on grain, the treatment of flour does not have any significant effect 

on any of the parameters of the micro visco-amylo-graph® (Table 8). 

 

            
Source d.f. 

Beginning of 
Gelatinization 

Maximum 
Viscosity 

Breakdown Setback 

Concentration 2 0.27ns 0.82ns 3.35ns 1.24ns 
Quantity 2 1.30ns 0.61ns 0.65ns 0.27ns 

            
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively.  

F-values were derived from Type III Sums of Squares.   

 

Table 8: F-values from analysis of variance of the micro visco-amylo-graph® parameter for 
ozonated soft white wheat flour using different concentrations and quantities of ozone. 

However, Tables 9 and 10 show that the maximum viscosity and the breakdown are 

modified by the three concentrations and the three quantities.  Contrary to the treatment on grain, 

both parameters are decreased by the action of ozone on flour, meaning an increasing α-amylase 

activity.  More detailed results are shown in Appendix B, Table IV. 
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Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Begin Gelatinization (BU) 35.0 ± 7.2a 33.7 ± 5.0a 35.7 ± 4.4a 34.4 ± 8.8a 
Maximum Viscosity (BU) 816.3 ± 3.8a 791.7 ± 5.4b 793.2 ± 4.8b 789.4 ± 8.9b 

Breakdown (BU) 270.0 ± 3.0a 232.9 ± 8.8b 228.9 ± 9.4b 239.3 ± 12.8b 
Setback (BU) 235.3 ± 3.1a 221.6 ± 5.3a 224.9 ± 5.0a 232.2 ± 22.7a 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.  

 

Table 9: Micro visco-amylo-graph® parameter results of ozonated soft white wheat flour, at 
different average concentrations of ozone. 

 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Begin Gelatinization (BU) 35.0 ± 7.2a 34.7 ± 6.9a 32.3 ± 4.9a 36.8 ± 6.5a 
Maximum Viscosity (BU) 816.3 ± 3.8a 792.3 ± 6.5b 789.6 ± 8.1b 792.4 ± 5.2b 

Breakdown (BU) 270.0 ± 3.0a 233.2 ± 9.7b 231.7 ± 9.6b 236.2 ± 13.9b 
Setback (BU) 235.3 ± 3.1a 229.0 ± 13.5a 225.7 ± 13.7a 224.0 ± 15.9a 

          
Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.  

 

Table 10: Micro visco-amylo-graph® parameter results of ozonated soft white wheat flour, for 
different average quantities of ozone. 

1.4. Effects on baking quality 

1.4.1. The cake test 

As for the action of ozone on grain, the concentration and quantity of ozone applied to 

flour are significantly related to the change in cake volume but not to the cake symmetry (Table 

11).  Meanwhile, only the quantity modifies the cake contour. 



Chapter 2 – Effect of ozone treatment on wheat flour 

- 43 - 

 

          Source d.f. Cake Volume Cake Contour Cake Symmetry 

Concentration 2 6.53* 0.64ns 0.64ns 
Quantity 2 7.61** 4.45* 0.93ns 

          
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares.  

 

Table 11: F-values from analysis of variance of the cake test for ozonated soft white wheat flour 
using different concentrations and quantities of ozone. 

Table 12 and 13 show that all concentrations and quantities have greater volumes, but 

due to a large standard deviation they are not significantly different from the control.  Similar 

conclusions can be given to the contour index and the symmetry.  More detailed results are 

shown in Appendix B, Table V. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Volume Index 96.0 ± 1.4a,b 110.2 ± 14.4a,b 96.3 ± 14.0a 111.2 ± 19.5b 
Contour Index 9.0 ± 11.3a 2.8 ± 9.8a 4.7 ± 3.9a 7.3 ± 10.8a 

Symmetry 3.0 ± 0.0a 5.2 ± 2.5a 4.3 ± 3.3a 3.3 ± 2.3a 
          

Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.  

 

Table 12: Cake test results of ozonated soft white wheat flour, at different average 
concentrations of ozone. 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Volume Index 96.0 ± 1.4a,b 96.5 ± 6.0a 106.8 ± 8.4a,b 114.3 ± 25.5b 
Contour Index 9.0 ± 11.3a 3.0 ± 4.9a 0.2 ± 5.3a 11.7 ± 10.1a 

Symmetry 3.0 ± 0.0a 5.0 ± 2.1a 4.8 ± 3.3a 3.0 ± 2.4a 
          

Means with the same letter within a row are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.  

 

Table 13: Cake test results of ozonated soft white wheat flour, for different average quantities of 
ozone. 
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1.4.2. The bread test 

As well as the treatment on grain, the concentration and quantity of the treatment on flour 

are significantly related to the bread volume (Table 14). 

 

      Source d.f. Bread Volume 

Concentration 2 7.32** 
Quantity 2 6.04** 

      
*, ** and ***, significant at P<0.05, P<0.01 and P<0.001, respectively. 

F-values were derived from Type III Sums of Squares. 

 

Table 14: F-values from analysis of variance of the bread test for ozonated soft white wheat 
flour using different concentrations and quantities of ozone. 

The action is confirmed by Tables 15 and 16.  All treatments of different concentrations 

and quantities show greater volumes than the control.  Once again, the concentration of 80 g/m3 

and the quantity of   5 g/kg have the best results whereas the greater concentration and quantity 

have lower differences with the control.  More detailed results are shown in Appendix B, Table 

VI. 

 

          
Ozone Concentration Control 80 g/m3 95 g/m3 110 g/m3 

Bread Volume (cm3) 134.3 ± 4.0a 147.8 ± 3.6b 146.2 ± 3.0b,c 141.0 ± 7.2a,c 
          

Means with the same letter are not significantly different (P=0.05).  

Results are average of triplicate measurements ± standard deviation.  

 

Table 15: Bread test results of ozonated soft white wheat flour, at different average 
concentrations of ozone. 

          
Ozone Quantity Control 5 g/kg 10 g/kg 20 g/kg 

Bread Volume (cm3) 134.3 ± 4.0a 147.8 ± 2.5b 146.4 ± 5.5b,c 141.4 ± 6.0a,c 
          

Means with the same letter are not significantly different (P=0.05).  

Results are average of triplicate measurements ± standard deviation.  

 

Table 16: Bread test results of ozonated soft white wheat flour, for different average quantities 
of ozone. 
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2. Colorimetry 

The direct ozonation on the flour did not change in any way the color of the flour 

(Appendix B, Table VII). 

3. Conclusion 

This type of treatment has also clearly demonstrated its possibilities to modify the 

properties of the flour.  Its main characteristics are to increase the volumes of breads and cakes.  

Besides that, the increase in sucrose and lactic acid retention capacity shows that the direct 

ozonation ofo flour is suitable for flour destined for high sugar level products such as sweet 

breads and long fermentation products such as sour dough, respectively. 
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Chapter 3 - Comparison of the treatments on wheat grain and flour 

 

 

The ozonation of wheat is a growing subject of research.  Many experiments need to be 

done in order to establish the real effects of this treatment.  In this part, two treatments are 

compared to determine the specificities of each of them. 

1. Comparison from the analytical tests 

1.1. The water activity 

We have seen that the treatment on wheat grain requires an addition of water to increase 

the introduction of ozone into the grain.  This results in an increase of the water activity of the 

flour.  It may or may not be a problem, depending on the conditions of storage and maintenance, 

but the effect still remains.  A similar experiment should be run without addition of water to see 

if any difference occurs compared to the one used in this experiment. 

On the other hand, the treatment on flour did not increase the water activity.  Of course, 

no water has been added before the treatment.  It is obvious that the addition of water, like in the 

previous treatment, is more difficult. 

In any case, it could be concluded that none of the treatments would actually modify the 

water activity of the final flour. 

1.2. The physicochemical tests 

1.2.1. The Solvent Retention Capacity 

This test has shown very significant results for both treatments.  They proved that they 

increase the retention in sucrose and lactic acid.  But when compared, it appears that they do not 
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have significant differences except in the retention of sucrose (Table 1 and 2).  The treatment on 

flour is significantly greater than the treatment on grain. 

 

         
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Treatment Grain Flour  Grain Flour  Grain Flour 

Sucrose (%) 105.5 ± 4.8a 125.3 ± 5.3b  108.0 ± 3.5a 122.5 ± 6.1b  106.8 ± 3.7a 120.5 ± 2.5b 
Sodium Carbonate (%) 101.1 ± 3.1a 98.8 ± 11.4a  106.5 ± 4.0a 102.5 ± 3.9a  103.7 ± 3.4a 103.1 ± 6.1a 

Lactic Acid (%) 129.1 ± 3.6a 125.7 ± 1.1a  130.1 ± 2.9a 126.8 ± 6.0a  131.0 ± 4.6a 127.0 ± 6.3a 
Deionized Water (%) 82.3 ± 3.1a 90.3 ± 3.8b  83.6 ± 1.5a 86.8 ± 6.2a  83.4 ± 3.9a 88.7 ± 5.8a 

         
Means with the same letter within a row of a specific concentration column are not significantly different (P=0.05). 

Results are average of quadruplicate measurements ± standard deviation. 

 

Table 1: Solvent retention capacity results of soft white wheat flour from ozonated grain and 
ozonated flour, as a function of average concentrations of ozone. 

         
Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Treatment Grain Flour  Grain Flour  Grain Flour 

Sucrose (%) 106.2 ± 3.2a 124.0 ± 5.0b  108.2 ± 4.8a 120.1 ± 4.6b  105.8 ± 3.6a 124.0 ± 5.0b 
Sodium Carbonate (%) 101.2 ± 2.9a 105.0 ± 3.8a  105.9 ± 3.6a 99.1 ± 1.8b  104.2 ± 4.4a 100.8 ± 12.2a 

Lactic Acid (%) 130.5 ± 3.2a 132.2 ± 4.8a  132.3 ± 3.2a 124.3 ± 2.4b  127.4 ± 3.4a 123.5 ± 1.4a 
Deionized Water (%) 82.0 ± 2.4a 89.5 ± 6.6a  85.2 ± 1.8a 85.8 ± 5.4a  82.1 ± 3.4a 90.7 ± 2.7b 

         
Means with the same letter within a row of a specific quantity column are not significantly different (P=0.05). 

Results are average of quadruplicate measurements ± standard deviation. 

 

Table 2: Solvent retention capacity of soft white wheat flour from flour from ozonated grain and 
ozonated flour, as a function of average quantities of ozone. 

1.2.2. The Falling Number 

This test shows the real differences that can occur between two treatments.  From any 

point of view, concentration (Table 3) or quantity (Table 4), the treatment of flour demonstrates 

significantly that it gives better results than the treatment on grain. 

The action of ozone directly on the flour seems to greatly modify the physicochemical 

properties of the flour for higher falling numbers. 
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Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Treatment Grain Flour   Grain Flour   Grain Flour 

Falling Number (s) 385.3 ± 15.2a 487.2 ± 54.4b   374.3 ± 23.2a 499.5 ± 20.0b   372.2 ± 17.7a 517.3 ± 31.5b 
                  

Means with the same letter within a row of a specific concentration column are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.     

 

Table 3: Falling Number determination results of soft white wheat flour from ozonated grain and 
ozonated flour, as a function of average concentrations of ozone. 

                  
Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Treatment Grain Flour   Grain Flour   Grain Flour 

Falling Number (s) 380.8 ± 14.0a 473.7 ± 37.1b   374.3 ± 24.2a 515.8 ± 29.6b   376.7 ± 19.9a 514.3 ± 35.7b 
                  

Means with the same letter within a row of a specific quantity column are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.     

 

Table 4: Falling Number determination results of soft white wheat flour from ozonated grain and 
ozonated flour, as a function of average quantities of ozone. 

1.3. The modification of starch 

The viscosity parameters are another example of the differences present between the two 

treatments.  It comes from the results that the treatment on grain gives significantly greater 

maximum viscosity and breakdown values than the treatment on flour, both depending on the 

concentration (Table 5) and on the quantity (Table 6).  On the other hand, the beginning of 

gelatinization stays unchanged, no matter which concentration or quantity of ozone is used. 

The quantity of ozone appears to be important for the setback values (Table 6).  Even 

though the variation in concentration does not give significant differences between the two 

treatments, the variation in quantity does.  The treatment on flour has greater setback values than 

the treatment on grain.  However, as stated earlier (Chapter 1, 1.3), problems occurred during the 

cooling phase of some samples for the treatment on grain.  The instrument did not cool down as 

much as supposed, resulting in setback values higher than expected.  Therefore, the significant 

difference between the two treatments for the setback values is questionable.  It would be more 

probable to have no significant differences. 
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Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Treatment Grain Flour  Grain Flour  Grain Flour 

Begin Gelatinization (BU) 29.9 ± 7.7a 33.7 ± 5.0a  28.3 ± 3.7a 35.7 ± 4.4a  30.2 ± 5.9a 34.4 ± 8.8a 
Maximum Viscosity (BU) 873.7 ± 11.3a 791.7 ± 5.4b  846.0 ± 9.4a 793.2 ± 4.8b  860.7 ± 22.4a 789.4 ± 8.9b 

Breakdown (BU) 284.1 ± 10.3a 232.9 ± 8.8b  278.8 ± 14.5a 228.9 ± 9.4b  270.0 ± 23.5a 239.3 ± 12.8a 
Setback (BU) 133.4 ± 9.3a 221.6 ± 5.3a  138.0 ± 19.2a 224.9 ± 5.0a  176.3 ± 59.3a 232.2 ± 22.7a 

                
Means with the same letter within a row of a specific concentration column are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.     

 

Table 5: Micro visco-amylo-graph® parameter results of soft white wheat flour from ozonated 
grain and ozonated flour, as a function of average concentrations of ozone. 

 

                
Ozone Quantity 5 g/kg  10 g /kg  20 g/kg 

Treatment Grain Flour  Grain Flour  Grain Flour 

Begin Gelatinization (BU) 31.0 ± 6.2a 34.7 ± 6.9a  27.1 ± 4.8a 32.3 ± 4.9a  30.3 ± 6.3a 36.8 ± 6.5a 
Maximum Viscosity (BU) 868.6 ± 18.3a 792.3 ± 6.5b  857.4 ± 18.3a 789.6 ± 8.1b  854.3 ± 18.9a 792.4 ± 5.2b 

Breakdown (BU) 283.3 ± 15.0a 233.2 ± 9.7b  279.4 ± 22.1a 231.7 ± 9.6b  270.1 ± 12.8a 236.2 ± 13.9b 
Setback (BU) 125.0 ± 27.8a 229.0 ± 13.5b  161.8 ± 47.1a 225.7 ± 13.7b  161.0 ± 35.1a 224.0 ± 15.9b 

                
Means with the same letter within a row of a specific quantity column are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.     

 

Table 6: Micro visco-amylo-graph® parameter results of soft white wheat flour from ozonated 
grain and ozonated flour, as a function of average quantities of ozone. 

1.4. The baking quality tests 

1.4.1. The cake test 

Once again, significant differences appear between the two treatments (Tables 7 and 8).  

The action of the ozone directly on the flour modifies it so that the volume index of the cakes is 

significantly greater than when grain is treated with ozone, with every concentration and 

quantity.  For the other parameters, differences are not significant. 
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Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Treatment Grain Flour  Grain Flour  Grain Flour 

Volume Index 69.3 ± 1.0a 110.2 ± 14.4b  72.0 ± 4.1a 96.3 ± 14.0b  85.7 ± 11.8a 111.2 ± 19.5b 
Contour Index 8.7 ± 3.4a 2.8 ± 9.8a  5.5 ± 3.8a 4.7 ± 3.9a  10.8 ± 2.0a 7.3 ± 10.8a 

Symmetry 1.0 ± 0.0a 5.2 ± 2.5b  2.5 ± 1.0a 4.3 ± 3.3a  5.2 ± 3.3a 3.3 ± 2.3a 
                

Means with the same letter within a row of a specific concentration column are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.     

 

Table 7: Cake test results of soft white wheat flour from ozonated grain and ozonated flour, as a 
function of average concentrations of ozone. 

                
Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Treatment Grain Flour  Grain Flour  Grain Flour 

Volume Index 72.2 ± 5.3a 96.5 ± 6.0b  75.8 ± 10.2a 106.8 ± 8.4b  79.0 ± 13.5a 114.3 ± 25.5a 
Contour Index 6.8 ± 3.9a 3.0 ± 4.9a  8.7 ± 3.8a 0.2 ± 5.3a  9.5 ± 3.7a 11.7 ± 10.1a 

Symmetry 1.8 ± 1.0a 5.0 ± 2.1b  4.0 ± 3.5a 4.8 ± 3.3a  2.8 ± 2.5a 3.0 ± 2.4a 
                

Means with the same letter within a row of a specific quantity column are not significantly different (P=0.05). 

Results are average of duplicate measurements ± standard deviation.     

 

Table 8: Cake test results of soft white wheat flour from ozonated grain and ozonated flour, as a 
function of average quantities of ozone. 

1.4.2. The bread test 

In contrast to the cake test, the bread test does not show any significant difference 

between the treatments, neither by concentration (Table 9) nor quantity (Table 10).  Both 

treatments seem to modify similarly the flour. 

 

                
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Treatment Grain Flour  Grain Flour  Grain Flour 

Bread Volume (cm3) 148.3 ± 4.0a 147.8 ± 3.6a  143.9 ± 8.5a 146.2 ± 3.0a  134.8 ± 9.8a 141.0 ± 7.2a 
                

Means with the same letter within a row of a specific concentration column are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.     

 

Table 9: Bread test results of soft white wheat flour from ozonated grain and ozonated flour, as a 
function of average concentrations of ozone. 
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Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Treatment Grain Flour  Grain Flour  Grain Flour 

Bread Volume (cm3) 148.9 ± 3.6a 147.8 ± 2.5a  142.3 ± 9.5a 146.4 ± 5.5a  138.5 ± 10.0a 141.4 ± 6.0a 
                

Means with the same letter within a row of a specific quantity column are not significantly different (P=0.05). 

Results are average of triplicate measurements ± standard deviation.     

 

Table 10: Bread test results of soft white wheat flour from ozonated grain and ozonated flour, as 
a function of average quantities of ozone. 

2. Colorimetry 

As previously stated in Chapters 1 and 2, no difference in colorimetry has been 

determined neither compared to the control nor between the two treatments.  The action of ozone 

seems to not deteriorate the color of the flour, in any way.  Hence, the ozone is definitely not a 

bleaching agent. 

3. Conclusion 

The results given by the various analytical tests show clearly that each treatment has its 

own characteristics.  They modify specific properties of the flour.  The action of the ozone on the 

grain will specifically modify the viscosity of the flour and its breakdown whereas the other 

treatment will not.  But, the action of ozone directly on the flour will give greater results on the 

retention of sucrose, the activity of α-amylase (falling number) and cake volume. 

One important point to retain is the fact that when significant differences occur, they 

occur for both the concentration and the quantity average.  No analytical test leads to a difference 

in only one of the two variables.  Would it mean that the treatments are significant or not, no 

matter the variables?  Such a conclusion cannot be made since differences have been shown in 

Chapters 1 and 2. 

Finally, beside the disparity of the treatments, we need to look simultaneously for the 

effect within a treatment and between the treatments. 
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Conclusion 

 

Since recently, the ozone is viewed as a new compound that could be used to treat the 

flour.  Especially in countries were the chlorination is forbidden, the ozone treatment could be of 

a big interest if it was showing significant and reliable modification of the flour. 

Lately, such treatment has been developed by the Goëmar laboratory and is now 

industrialized.  But many questions remain and need answers, especially on the actual action of 

the ozone, its modification and the variation in the results that can be realized.  This last point is 

what this research has been looking for. 

In a first time, it has been put in light that the ozonation on the grain confers greater 

sodium carbonate retention capacity (useful for long fermentation products such as sour dough), 

lactic acid retention capacity (allowing the cookie to spread), increases the maximum viscosity 

and the volume of the bread, but gives detrimental results on the volume and symmetry of the 

cakes. 

In a second time, the ozonation directly on flour has proven that it grants the flour with 

greater sucrose retention capacity (important for the use in high ratio sugar formulas), lactic acid 

retention capacity and increases the bread and cake volumes, but the α-amylase activity is shown 

to decrease. 

In a third time, the comparison of the two treatments demonstrates that the treatment on 

flour has overall a superior effect than the treatment on grain, except for the maximum viscosity 

determined by visco-amylo-graph®.  The principal points of advantage concern the greater 

retention capacity in sucrose, the decrease in α-amylase activity and the larger volume of the 

cakes.  On the other hand, both treatments are similar for the retention capacity in sodium 

carbonate, lactic acid and deionized water and bread volume. 

To conclude, the treatment on flour seems to overcome the treatment on grain. However, 

the effects of each treatment should stay explicit and related to each test.  A flour with a specific 

treatment is intended for a specific use.  Treatments have to be chosen conscientiously. 
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This appendix contains all the detailed results that have not been shown in Chapter 1. 
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Table I: Water activity results from soft white wheat flour from ozonated grain. 

Results are average of duplicate measurements ± standard deviation. 

 

                        Ozone 
Concentration 

80 g/m3  95 g/m3  110 g/m3 

Ozone 
Quantity 

5 g/kg 10 g/kg 20 g/kg 
  

5 g/kg 10 g/kg 20 g/kg 
  

5 g/kg 10 g/kg 20 g/kg 

Aw 0.597 ± 0.001a 0.601 ± 0.004a 0.597 ± 0.001a  0.550 ± 0.003a 0.537 ± 0.001b 0.599 ± 0.002c  0.565 ± 0.005a 0.524 ± 0.005b 0.516 ± 0.001b 
                        
            
                        Ozone 

Quantity 
5 g/kg  10 g/kg  20 g/kg 

Ozone 
Concentration 

80 g/m3 95 g/m3 110 g/m3 
  

80 g/m3 95 g/m3 110 g/m3 
  

80 g/m3 95 g/m3 110 g/m3 

Aw 0.597 ± 0.001a 0.550 ± 0.003b 0.565 ± 0.005c  0.601 ± 0.004a 0.537 ± 0.001b 0.524 ± 0.005b  0.597 ± 0.001a 0.599 ± 0.002a 0.516 ± 0.001b 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).  
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Table II: Solvent Retention Capacity results of soft white wheat flour from ozonated grain. 

Results are average of quadruplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Sucrose (%) 106.0 ± 4.7a 105.3 ± 6.3a 105.2 ± 4.4a  106.6 ± 3.0a 109.4 ± 3.9a 107.8 ± 3.9a  106.0 ± 3.9a,b 110.0 ± 2.8a 104.3 ± 1.5b 
Sodium Carbonate (%) 99.5 ± 0.8a 103.0 ± 4.0a 100.8 ± 2.9a  102.9 ± 3.5a 108.1 ± 2.8a 108.4 ± 3.4a  101.3 ± 3.0a 106.6 ± 2.1b 103.4 ± 3.3a,b 

Lactic Acid (%) 129.6 ± 3.0a 132.4 ± 1.8a 125.2 ± 1.0b  128.1 ± 2.0a 130.9 ± 4.0a 131.3 ± 1.2a  133.7 ± 1.5a 133.6 ± 3.2a 125.8 ± 3.1b 
Deionized Water (%) 80.3 ± 1.1a 86.0 ± 1.5b 80.8 ± 2.1a  84.2 ± 1.5a 84.1 ± 1.6a 82.6 ± 1.1a  81.7 ± 2.7a 85.6 ± 2.1a 83.0 ± 5.7a 

                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Sucrose (%) 106.0 ± 4.7a 106.6 ± 3.0a 106.0 ± 3.9a  105.3 ± 6.3a 109.4 ± 3.9a 110.0 ± 2.8a  105.2 ± 4.4a 107.8 ± 3.9a 104.3 ± 1.5a 
Sodium Carbonate (%) 99.5 ± 0.8a 102.9 ± 3.5a 101.3 ± 3.0a  103.0 ± 4.0a 108.1 ± 2.8a 106.6 ± 2.1a  100.8 ± 2.9a 108.4 ± 3.4b 103.4 ± 3.3a,b 

Lactic Acid (%) 129.6 ± 3.0a 128.1 ± 2.0a 133.7 ± 1.5b  132.4 ± 1.8a 130.9 ± 4.0a 133.6 ± 3.2a  125.2 ± 1.0a 131.3 ± 1.2b 125.8 ± 3.1b 
Deionized Water (%) 80.3 ± 1.1a 84.2 ± 1.5b 81.7 ± 2.7a,b  86.0 ± 1.5a 84.1 ± 1.6a 85.6 ± 2.1a  80.8 ± 2.1a 82.6 ± 1.1a 83.0 ± 5.7a 

                        
Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table III: Falling Number results of soft white wheat flour from ozonated grain. 

Results are average of duplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Falling Number (s) 389.5 ± 21.9a 388.0 ± 21.2a 378.5 ± 9.2a  377.5 ± 13.4a 349.5 ± 9.2a 396.0 ± 15.6a  375.5 ± 9.2a 385.5 ± 23.3a 355.5 ± 0.7a 
                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Falling Number (s) 389.5 ± 21.9a 377.5 ± 13.4a 375.5 ± 9.2a  388.0 ± 21.2a 349.5 ± 9.2a 385.5 ± 23.3a  378.5 ± 9.2a 396.0 ± 15.6a 355.5 ± 0.7a 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table IV: Micro Visco-Amylo-Graph® results of soft white wheat flour from ozonated grain. 

Results are average of triplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Begin Gelatinization (BU) 37.7 ± 5.1a 24.7 ± 0.6a 27.3 ± 8.4a  27.0 ± 4.4a 29.7 ± 4.6a 28.3 ± 3.2a  28.3 ± 2.5a 27.0 ± 7.2a 35.3 ± 4.5a 
Maximum Viscosity (BU) 868.0 ± 7.0a 879.7 ± 5.9a 873.3 ± 18.0a  850.0 ± 8.7a 846.7 ± 13.2a 841.3 ± 6.8a  887.7 ± 12.3a 846.0 ± 4.0b 848.3 ± 14.2b 

Breakdown (BU) 284.0 ± 8.2a 290.7 ± 13.1a 277.7 ± 7.6a  276.0 ± 7.8a 289.7 ± 17.7a 270.7 ± 13.3a  290.0 ± 25.1a 258.0 ± 20.7a 262.0 ± 15.5a 
Setback (BU) 136.7 ± 9.0a 126.3 ± 7.1a 137.3 ± 10.0a  135.7 ± 22.4a 139.0 ± 28.0a 139.3 ± 13.3a  102.7 ± 37.2a 220.0 ± 16.7b 206.3 ± 6.1b 

                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Begin Gelatinization (BU) 37.7 ± 5.1a 27.0 ± 4.4b 28.3 ± 2.5a,b  24.7 ± 0.6a 29.7 ± 4.6a 27.0 ± 7.2a  27.3 ± 8.4a 28.3 ± 3.2a 35.3 ± 4.5a 
Maximum Viscosity (BU) 868.0 ± 7.0a,b 850.0 ± 8.7a 887.7 ± 12.3b  879.7 ± 5.9a 846.7 ± 13.2b 846.0 ± 4.0b  873.3 ± 18.0a 841.3 ± 6.8a 848.3 ± 14.2a 

Breakdown (BU) 284.0 ± 8.2a 276.0 ± 7.8a 290.0 ± 25.1a  290.7 ± 13.1a 289.7 ± 17.7a 258.0 ± 20.7a  277.7 ± 7.6a 270.7 ± 13.3a 262.0 ± 15.5a 
Setback (BU) 136.7 ± 9.0a 135.7 ± 22.4a 102.7 ± 37.2a  126.3 ± 7.1a 139.0 ± 28.0a 220.0 ± 16.7b  137.3 ± 10.0a 139.3 ± 13.3a 206.3 ± 6.1b 

                        
Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table V: Cake test results of soft white wheat flour from ozonated grain. 

Results are average of duplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Volume Index 68.5 ± 0.7a 70.5 ± 0.7a 69.0 ± 0.0a  74.0 ± 7.1a 70.0 ± 4.2a 72.0 ± 0.0a  74.0 ± 7.1a 87.0 ± 11.3a 96.0 ± 5.7a 
Contour Index 5.0 ± 2.8a 12.0 ± 1.4a 9.0 ± 0.0a  4.0 ± 1.4a 5.0 ± 4.2a 7.5 ± 6.4a  11.5 ± 0.7a 9.0 ± 1.4a 12.0 ± 2.8a 

Symmetry 1.0 ± 0.0a 1.0 ± 0.0a 1.0 ± 0.0a  3.0 ± 0.0a 3.0 ± 1.4a 1.5 ± 0.7a  1.5 ± 0.7a 8.0 ± 2.8a 6.0 ± 0.0a 
                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Volume Index 68.5 ± 0.5a 74.0 ± 1.7a 74.0 ± 7.1a  70.5 ± 0.7a 70.0 ± 4.2a 87.0 ± 11.3a  69.0 ± 0.0a 72.0 ± 0.0a 96.0 ± 5.7b 
Contour Index 5.0 ± 2.8a 4.0 ± 1.4a 11.5 ± 0.7a  12.0 ± 1.4a 5.0 ± 4.2a 9.0 ± 1.4a  9.0 ± 0.0a 7.5 ± 6.4a 12.0 ± 2.8b 

Symmetry 1.0 ± 0.0a 3.0 ± 0.0b 1.5 ± 0.7a,b  1.0 ± 0.0a 3.0 ± 1.4a 8.0 ± 2.8a  1.0 ± 0.0a 1.5 ± 0.7a 6.0 ± 0.0b 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table VI: Bread test results of soft white wheat flour from ozonated grain. 

Results are average of triplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Bread Volume (cm3) 148.3 ± 4.0a 151.3 ± 3.2a 145.3 ± 3.2a  151.3 ± 2.5a 139.5 ± 0.7a 139.3 ± 10.6a  146 ± 2.8a 131.5 ± 4.9a 127.0 ± 7.1a 
                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Bread Volume (cm3) 148.3 ± 4.0a 151.3 ± 2.5a 146 ± 2.8a  151.3 ± 3.2a 139.5 ± 0.7b 131.5 ± 4.9b  145.3 ± 3.2a 139.3 ± 10.6a 127.0 ± 7.1a 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table VII: Colorimetric results of soft white wheat flour from ozonated grain. 

 

                          
Ozone Concentration  80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 
Control 

 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

L 96.33  96.19 96.89 96.95  96.56 96.05 96.44  95.95 95.28 96.67 
a* -0.97  -0.79 -1.06 -1.04  -1.08 -1.07 -0.76  -1.13 -0.97 -0.87 
b* 7.60  8.13 7.61 7.54  7.64 7.63 7.56  7.03 7.73 7.53 
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Appendix B - Detailed results from Chapter 2 

 

 

This appendix contains all the detailed results that have not been shown in Chapter 2. 
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Table I: Water activity results of soft white wheat flour being ozonated. 

Results are average of duplicate measurements ± standard deviation. 

 

                        Ozone 
Concentration 

80 g/m3  95 g/m3  110 g/m3 

Ozone 
Quantity 

5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Aw 0.439 ± 0.018a 0.452 ± 0.001a 0.433 ± 0.012a  0.456 ± 0.003a 0.426 ± 0.030a 0.428 ± 0.018a  0.438 ± 0.014a 0.461 ± 0.001a 0.447 ± 0.006a 
                        
            
                        Ozone 

Quantity 
5 g/kg  10 g/kg  20 g/kg 

Ozone 
Concentration 

80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Aw 0.439 ± 0.018a 0.456 ± 0.003a 0.438 ± 0.014a  0.452 ± 0.001a 0.426 ± 0.030a 0.461 ± 0.001a  0.433 ± 0.012a 0.428 ± 0.018a 0.447 ± 0.006a 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table II: Solvent Retention Capacity results of soft white wheat flour being ozonated. 

Results are average of quadruplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Sucrose 121.4 ± 3.3a 125.0 ± 5.2a 129.5 ± 4.5a  129.8 ± 2.6a 116.1 ± 0.6b 121.6 ± 2.0c  120.7 ± 2.1a 119.3 ± 1.0a 121.4 ± 3.5a 
Sodium Carbonate 100.3 ± 1.3a 101.4 ± 0.6a 94.8 ± 21.0a  106.7 ± 1.3a 98.7 ± 1.1b 102.2 ± 3.4b  108.2 ± 1.1a 97.6 ± 0.6b 104.5 ± 7.4a,b 

Lactic Acid 125.8 ± 0.7a 126.3 ± 1.6a 124.8 ± 0.5a  134.7 ± 0.7a 121.8 ± 1.2b 123.9 ± 1.1c  136.2 ± 0.8a 124.7 ± 2.0b 122.0 ± 0.5c 
Deionized Water 86.2 ± 1.5a 92.8 ± 3.9b 91.9 ± 1.5b  88.8 ± 10.9a 84.3 ± 1.2a 87.5 ± 1.9a  93.4 ± 0.8a 81.4 ± 1.4b 92.2 ± 1.8a 

                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Sucrose 121.4 ± 3.3a 129.8 ± 2.6b 120.7 ± 2.1a  125.0 ± 5.2a 116.1 ± 0.6b 119.3 ± 1.0b  129.5 ± 4.5a 121.6 ± 2.0b 121.4 ± 3.5b 
Sodium Carbonate 100.3 ± 1.3a 106.7 ± 1.3b 108.2 ± 1.1b  101.4 ± 0.6a 98.7 ± 1.1b 97.6 ± 0.6b  94.8 ± 21.0a 102.2 ± 3.4a 104.5 ± 7.4a 

Lactic Acid 125.8 ± 0.7a 134.7 ± 0.7b 136.2 ± 0.8b  126.3 ± 1.6a 121.8 ± 1.2b 124.7 ± 2.0a,b  124.8 ± 0.5a 123.9 ± 1.1a 122.0 ± 0.5b 
Deionized Water 86.2 ± 1.5a 88.8 ± 10.9a 93.4 ± 0.8a  92.8 ± 3.9a 84.3 ± 1.2b 81.4 ± 1.4b  91.9 ± 1.5a 87.5 ± 1.9b 92.2 ± 1.8a 

                        
Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table III: Falling Number results of soft white wheat flour being ozonated. 

Results are average of duplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Falling Number (s) 431.0 ± 14.1a 544.5 ± 12.0b 486.0 ± 39.6a,b  485.5 ± 3.5a 500.5 ± 6.4a 512.0 ± 35.4a  504.5 ± 29.0a 502.5 ± 41.7a 545.0 ± 8.5a 
                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Falling Number (s) 431.0 ± 14.1a 485.5 ± 3.5a 504.5 ± 29.0a  544.5 ± 12.0a 500.5 ± 6.4a 502.5 ± 41.7a  486.0 ± 39.6a 512.0 ± 35.4a 545.0 ± 8.5a 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table IV: Micro Visco-Amylo-Graph® results of soft white wheat flour being ozonated. 

Results are average of triplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Begin Gelatinization 36.7 ± 6.7a 33.0 ± 1.0a 31.3 ± 5.7a  38.0 ± 1.7a 32.7 ± 4.6a 36.3 ± 5.5a  29.3 ± 8.7a 31.3 ± 8.4a 42.7 ± 3.2a 
Maximum Viscosity 789.7 ± 7.1a 793.3 ± 5.5a 792.0 ± 5.2a  794.0 ± 1.0a 793.7 ± 5.7a 792.0 ± 7.5a  793.3 ± 10.0a 781.7 ± 7.6a 793.3 ± 4.9a 

Breakdown 235.0 ± 12.3a 235.3 ± 7.1a 228.3 ± 7.6a  236.0 ± 2.0a 221.0 ± 6.2a 229.7 ± 11.9a  228.7 ± 13.3a 238.7 ± 3.8a 250.7 ± 10.0a 
Setback 222.7 ± 4.0a 220.0 ± 6.9a 222.0 ± 6.6a  229.0 ± 3.0a 229.0 ± 3.0a 223.7 ± 6.5a  235.3 ± 24.2a 235.0 ± 22.3a 226.3 ± 30.1a 

                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Begin Gelatinization 36.7 ± 6.7a 38.0 ± 1.7a 29.3 ± 8.7a  33.0 ± 1.0a 32.7 ± 4.6a 31.3 ± 8.4a  31.3 ± 5.7a 36.3 ± 5.5a 42.7 ± 3.2a 
Maximum Viscosity 789.7 ± 7.1a 794.0 ± 1.0a 793.3 ± 10.0a  793.3 ± 5.5a 793.7 ± 5.7a 781.7 ± 7.6a  792.0 ± 5.2a 792.0 ± 7.5a 793.3 ± 4.9a 

Breakdown 235.0 ± 12.3a 236.0 ± 2.0a 228.7 ± 13.3a  235.3 ± 7.1a,b 221.0 ± 6.2a 238.7 ± 3.8b  228.3 ± 7.6a 229.7 ± 11.9a 250.7 ± 10.0a 
Setback 222.7 ± 4.0a 229.0 ± 3.0a 235.3 ± 24.2a  220.0 ± 6.9a 229.0 ± 3.0a 235.0 ± 22.3a  222.0 ± 6.6a 223.7 ± 6.5a 226.3 ± 30.1a 

                        
Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table V: Cake test results of soft white wheat flour being ozonated. 

Results are average of duplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Volume Index 101.0 ± 7.1a 103.5 ± 7.8a 126.0 ± 12.7a  94.5 ± 7.8a 111.5 ± 6.4a 83.0 ± 7.1a  94.0 ± 2.8a 105.5 ± 13.4a,b 134.0 ± 4.2b 
Contour Index 2.5 ± 3.5a -4.5 ± 4.9a 10.5 ± 14.8a  7.5 ± 0.7a 2.5 ± 6.4a 4.0 ± 2.8a  -1.0 ± 5.7a 2.5 ± 3.5a 20.5 ± 2.1b 

Symmetry 4.5 ± 0.7a 5.5 ± 4.9a 5.5 ± 2.1a  5.5 ± 3.5a 5.5 ± 4.9a 2.0 ± 0.0a  5.0 ± 2.8a 3.5 ± 0.7a 1.5 ± 2.1a 
                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Volume Index 101.0 ± 7.1a 94.5 ± 7.8a 94.0 ± 2.8a  103.5 ± 7.8a 111.5 ± 6.4a 105.5 ± 13.4a  126.0 ± 12.7a 83.0 ± 7.1b 134.0 ± 4.2a 
Contour Index 2.5 ± 3.5a 7.5 ± 0.7a -1.0 ± 5.7a  -4.5 ± 4.9a 2.5 ± 6.4a 2.5 ± 3.5a  10.5 ± 14.8a 4.0 ± 2.8a 20.5 ± 2.1a 

Symmetry 4.5 ± 0.7a 5.5 ± 3.5a 5.0 ± 2.8a  5.5 ± 4.9a 5.5 ± 4.9a 3.5 ± 0.7a  5.5 ± 2.1a 2.0 ± 0.0a 1.5 ± 2.1a 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table VI: Bread test results of soft white wheat flour being ozonated. 

Results are average of triplicate measurements ± standard deviation. 

 

                        
Ozone Concentration 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

Bread Volume (cm3) 149.0 ± 2.6a 150.7 ± 1.5a 143.7 ± 1.5b  147.3 ± 3.5a 147.3 ± 0.6a 144.0 ± 3.6a  147.0 ± 1.7a 138.5 ± 4.9a 136.7 ± 8.7a 
                        
            
                        

Ozone Quantity 5 g/kg  10 g/kg  20 g/kg 

Ozone Concentration 80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3  80 g/m3 95 g/m3 110 g/m3 

Bread Volume (cm3) 149.0 ± 2.6a 147.3 ± 3.5a 147.0 ± 1.7a  150.7 ± 1.5a 147.3 ± 0.6a 138.5 ± 4.9b  143.7 ± 1.5a 144.0 ± 3.6a 136.7 ± 8.7a 
                        

Means with the same letter within a row of a specific concentration or quantity column are not significantly different (P=0.05).    
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Table VII: Colorimetric results of soft white wheat flour being ozonated. 

 

                          
Ozone Concentration 

 
 80 g/m3  95 g/m3  110 g/m3 

Ozone Quantity 
Control 

 5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg  5 g/kg 10 g/kg 20 g/kg 

L 96.33  94.68 94.51 94.76  94.59 94.33 94.59  95.02 94.63 94.40 
a* -0.97  -0.93 -0.91 -0.87  -0.88 -0.93 -0.86  -0.88 -0.89 -0.94 
b* 7.60  8.55 8.26 8.50  8.53 8.23 8.34  8.53 8.42 8.40 
                          

 

 


