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Abstract 

A discrete-time Markov chain with stationary transition probabilities is often used for the 

purpose of investigating treatment programs and health care protocols for chronic disease. 

Suppose the patients of a certain chronic disease are observed over equally spaced time intervals. 

If we classify the chronic disease into 𝑛 distinct health states, the movement through these health 

states over time then represents a patient’s disease history. We can use a discrete-time Markov 

chain to describe such movement using the transition probabilities between the health states. 

 

The purpose of this study was to investigate the case when the observation interval coincided 

with the cycle length of the Markov chain as well as the case when the observational interval and 

the cycle length did not coincide. In particular, we are interested in how the estimated transition 

matrix behaves as the ratio of observation interval and cycle length changes. 

 

Our results suggest that more estimation problems arose for small sample sizes as the length of 

observational interval increased, and that the deviation from the known transition probability 

matrix got larger as the length of observational interval increased. With increasing sample size, 

there were fewer estimation problems and the deviation from the known transition probability 

matrix was reduced. 
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Chapter 1 -  Markov Chains 

A stochastic process is a collection of random variables defined on a common probability space 

indexed by the index set 𝑇, 𝑌! , 𝑡 ∈ 𝑇 , which describes how some system evolves over time 

(Resnick, 1992). 𝑇 can be continuous, discrete, or even a collection of regions in some cases. A 

stochastic process is said to be stationary when the statistical evolution of the process over an 

interval is the same as that of the process over a translated interval. That is to say, a stochastic 

process {𝑌!,𝑛 ≥ 0} is stationary if for any integers  𝑚 ≥ 0, 𝑘 > 0, (𝑌!,… ,𝑌!) has the same 

distribution with 𝑌! ,… ,𝑌!!! . 

 

A Markov chain is often a realistic stochastic process for real life situations. When constructing a 

stochastic process, a challenge is to have dependencies among the random variables that allow 

for sufficient realism but also are mathematically tractable. One of the main advantages of a 

Markov chain process is that it balances these two demands nicely (Resnick, 1992).  To define a 

Markov chain, let 𝑋!,𝑛 = 0, 1, 2,…   be a stochastic process that takes on a finite or countable 

number of values. The set consisting of all possible values is called the state space, which is 

denoted by 𝑆.  For the expression  𝑋! = 𝑖, we say that the process is in state 𝑖 at time 𝑛 or after 

the 𝑛!! step. It is assumed that every time the process is in state 𝑖, there exists a fixed probability 

𝑝!" that the process will move to state 𝑗 in the next step. That is, 

  𝑝!" = 𝑃   𝑋!!! = 𝑗 𝑋! = 𝑖,𝑋!!! = 𝑖!!!,… ,𝑋! = 𝑖!,𝑋! = 𝑖!  

for all states 𝑖!, 𝑖!,… , 𝑖!!!, 𝑖, 𝑗   ∈ 𝑆 and for all 𝑛 ≥ 0. The process described above is known as a 

Markov chain process.  

 

One important characteristic of Markov chain process is that the conditional distribution of any 

future state 𝑋!!!, given the past states 𝑋!,𝑋!,… ,𝑋!!! and the present state 𝑋!, is independent of 

all the past states and only depends on the present state 𝑋!. That is,  

𝑃  {𝑋!!! = 𝑗|𝑋! = 𝑖,𝑋!!! = 𝑖!!!,… ,𝑋! = 𝑖!,𝑋! = 𝑖!} = 𝑃{𝑋!!! = 𝑗|𝑋! = 𝑖} = 𝑝!" 

for 𝑛 ≥ 0. Since  𝑝!" indicates the probability that the process will move from state 𝑖  to state 𝑗 in 

the next step, it has to be a nonnegative value. Also,  

𝑝!"!
!!! = 1 for 𝑖 = 0, 1,… 
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Let 𝑃 denotes the matrix consisting of all one-step transition probabilities 𝑝!", so that 𝑃 =

𝑝!" ,  where  𝑝!"   is the element of  𝑃  in the 𝑖!!  row and  𝑗!!  column.𝑃 is called the transition 

probability matrix of the Markov chain. Since 𝑝!" add to 1 across all possible values of 𝑗, each 

row of the transition probability matrix 𝑃 sums to 1 as well. If 𝑃  does not depend on the number 

of steps 𝑛, we then say that the 𝑝!" are stationary transition probabilities, and the Markov chain 

𝑋!,𝑛 = 0, 1, 2,…  is said to be homogeneous (Resnick, 1992).  

 

We can derive higher-ordered transition probabilities using simple matrix multiplication as long 

as the one-step transition probabilities 𝑝!" are known. Let us define the 𝑛-step transition 

probability 𝑝!"!  as the probability that a process ends up in state 𝑗 after 𝑛 steps given that the 

process starts in state 𝑖. That is, 𝑝!"! = 𝑃  {𝑋!!! = 𝑗|𝑋! = 𝑖} for all 𝑛 ≥ 0, 𝑘 ≥ 1  and  𝑖, 𝑗 ≥ 0. The 

Chapman-Kolmogorov equations can be used to derive these 𝑛-step transition probabilities 

(Resnick, 1992). According to the Chapman-Kolmogorov equations,  

𝑝!"!!!= 𝑝!"!!
!!! 𝑝!"!  for all 𝑛,𝑚 ≥ 0 

The term 𝑝!"! 𝑝!"!  represents the probability that starting in state 𝑖, the process will enter state 𝑗 in 

𝑛 +𝑚 steps through a path which takes it into state 𝑘 at the 𝑛!!  transition. Let 𝑃! denote the 

matrix of all 𝑛-step transition probability where 𝑝!"!  is the element in the 𝑖!!  row and 𝑗!!  column. 

𝑃! is the 𝑛-step transition probability matrix. The Chapman-Kolmogorov equations then are 

𝑃!!! = 𝑃!𝑃!  

where 𝑃!  is taking the one-step transition probability matrix to the 𝑛!! power. In particular, if 

the probability that a process going from state 𝑖 to state 𝑘 in 𝑛 steps does not depend on the time 

at which the process is initiated, then the 𝑝!"!𝑠  are stationary 𝑛-step transition probabilities.  

 

Let {𝑋!:  𝑛 ≥ 0} be a Markov chain with state space 𝑆, and let 𝑖 and 𝑗 be two states in 𝑆. State 𝑗 is 

said to be accessible from state 𝑖 (written 𝑖 → 𝑗) if 𝑝!"!   > 0 for some 𝑛 ≥ 0.  In other words, if it is 

possible for a process to enter state 𝑗 in a finite number of steps given that the process starts at 

state 𝑖, then 𝑗 is accessible from 𝑖. Furthermore, state 𝑖 and 𝑗 are said to be communicating 

(written 𝑖 ↔ 𝑗) if they are accessible from each other. Note that any state communicates with 

itself. Communication is an equivalence relation on the state space  𝑆 since it satisfies the 

following three properties (Resnick, 1992): 
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Reflective property: 𝑖 ↔ 𝑖 for all 𝑖 ∈ 𝑆 

Symmetry property:  𝑖 ↔ 𝑗 iff 𝑗 ↔ 𝑖 

Transitive property: if 𝑖 ↔ 𝑗 and 𝑗 ↔ 𝑘, then 𝑖 ↔ 𝑘 

 

Equivalence classes are defined to be disjoint subsets of the state space 𝑆. Specifically, the union 

of all equivalence classes makes up the entire state space. Two states that communicate with 

each other belong in the same equivalence class. A Markov chain is said to be irreducible if the 

only equivalent class of the state space 𝑆 is 𝑆 itself. So, for any two states 𝑖, 𝑗 ∈ 𝑆 in an 

irreducible Markov chain, 𝑖  communicates with 𝑗. A subset 𝐶  of the state space 𝑆 is closed if the 

process starting at any state 𝑖 ∈ 𝐶 never leaves 𝐶. Note that 𝐶 is closed if and only if 𝑝!" = 0  for 

all 𝑖 ∈ 𝐶 and 𝑗 ∈ 𝐶!. If a closed set only contains one single state 𝑗, then 𝑗 is called an absorbing 

state. Note that 𝑗 is absorbing if and only if 𝑝!! = 1, in other words, a process that enters state 

𝑗  never leaves 𝑗. 

 

A state 𝑖 is recurrent if the Markov chain returns to 𝑖 with probability 1 in a finite number of 

steps. In particular, a state 𝑖 is said to be positive recurrent if the expected value of the number of 

steps it takes for the process to return to 𝑖 is finite, and it is called null recurrent if 𝑖  is recurrent 

but the expected value of the number of steps it takes for the process to return to 𝑖 is infinite. In a 

finite-state Markov chain, all recurrent states are in fact positive recurrent. On the other hand, a 

state 𝑖 is transient if the probability that the process will return to 𝑖 at some point is less than 1. In 

other words, for a transient state 𝑖, there is a positive probability that the process will never 

return to 𝑖. Note that if 𝑖 is the initial state, say 𝑋! = 𝑖, then state 𝑖 is recurrent if and only if the 

expected number of visits by the Markov chain to 𝑖 is infinite. The state 𝑖 is transient if and only 

if the expected number of visits by the Markov chain to state 𝑖 is finite. Also note that if the state 

space of a Markov chain is finite, then not all states are transient. Thus, at least one state must be 

recurrent for a finite-state Markov chain. Suppose that state 𝑖 ∈ 𝑆 is a recurrent state, and state 𝑖 

communicates with state 𝑗. In this case, state 𝑗 is also recurrent. If 𝐶 is a recurrent equivalence 

class in the state space 𝑆, then 𝐶 is closed. Also, if 𝐶 is a finite closed equivalence class, then 𝐶 

is recurrent (Resnick, 1992). 
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The period 𝑑 of a state 𝑖 is the greatest common divisor of {𝑛 ≥ 1:  𝑝!!! > 0}. That is to say, for a 

process that starts at state 𝑖, its returns to state 𝑖 are only possible via paths whose lengths are 

multiples of 𝑑. If 𝑑 = 1, then state 𝑖 is said to be aperiodic. On the other hand, if 𝑑 > 1, then 

state 𝑖 is said to be periodic.  

 

Let 𝐶 be an equivalence class of the state space 𝑆 and suppose that whenever 𝑖 ∈ 𝐶 has a 

particular property, it follows that the property also applies to every other state 𝑗 ∈ 𝐶. Such a 

property is called a solidarity property or class property. It turns out that recurrence, transience, 

and periodicity are all solidarity properties (Resnick, 1992). For example, if 𝑖 ∈ 𝐶 is recurrent, 

then every  𝑗 ∈ 𝐶 is also recurrent. And if 𝑖 ∈ 𝐶 has period 𝑑, then 𝑗 ∈ 𝐶 has the same period 𝑑. If 

a state is both positive recurrent and aperiodic, then this state is said to be ergodic. 

 

As  𝑛 → ∞, 𝑝!"!  converges to some value that is the same for all 𝑖. This value is called the limiting 

distribution. For an irreducible ergodic Markov chain, the limiting probability 𝑙𝑖𝑚!→!𝑝!"!  exists 

and is independent of the initial state 𝑖. If we denote the limiting probability by 𝜋!=𝑙𝑖𝑚!→!𝑝!"!  

for 𝑗 ≥ 0, then 𝜋! is the unique nonnegative solution of the equation 𝜋!= 𝜋!!
!!! 𝑝!" for 𝑗 ≥ 0. 

Also, 𝜋!!
!!! =1. The limiting probability that the process will be in state 𝑗 after 𝑛  steps also 

equals the long-run proportion of time that the process will be in state 𝑗 (Ross, 2009). The 

limiting probability is often called stationary probability. 
 

For further information on Markov chains, please refer to Resnick’s Adventures in Stochastic 

Processes and Ross’ Introduction to Probability Model. 

 

 

 

 

 

 



5 

 

Chapter 2 - Our Problem 

A discrete-time Markov chain with stationary transition probabilities is often used for the 

purpose of investigating treatment programs and health care protocols for chronic diseases. A 

Markov chain model is appropriate in such a situation for two reasons. First, the progression of 

chronic disease is often expressed in terms of different health states. The Markov chain is a 

simple but effective model to describe such a progression. Second, a Markov chain can be 

constructed in a simple way, and we can investigate its properties through matrix analysis and 

simulation (Craig & Sendi, 1998).  

 

Suppose patients with a certain chronic disease are observed over equally spaced time intervals 

(Craig & Sendi, 1998). These intervals are called the observation intervals. If we classify the 

chronic disease into 𝑛 distinct health states, the movement through these health states over time 

can then represent a patient’s disease history.  We can use a discrete-time Markov chain to 

describe such movement using the transition probabilities between the health states. In the ideal 

situation, the observation intervals coincide with the cycle length of the Markov chain. However, 

this does not happen very often in real situations. One thing to note here is that the Markov chain 

process simply models the health state at the end of each cycle, it does not consider the 

progression between cycles (Craig & Sendi, 1998). 

 

The Markov chain model we will use for the purpose of describing chronic disease progression 

has state space 𝑆 = 1,2,… ,𝑛   representing distinct health states.  The transition probability 

matrix 𝑃 consists of transition probabilities {𝑝!":  𝑖, 𝑗 = 1,2,… ,𝑛}, where 𝑝!" indicates the 

probability of a movement from health state 𝑖 to health state 𝑗 by the end of a cycle. According to 

a property of transition probabilities, 𝑝!" = 1!
!!!  for all 𝑖 ∈ 𝑆. In addition, we assume a 

common cycle length of the Markov chain. 

 

Depending on the relationship between observation intervals and the cycle length of the Markov 

chain, different methods can be used to obtain the maximum likelihood estimate of the transition 

matrix.  
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 Section 2.1 - First Case 
Let us first consider the case when the common observation interval coincides with the cycle 

length of the Markov chain. Suppose we have a chronic disease with 𝑛 distinct health states, and 

we would like to estimate a one-year transition matrix where the data comes from a cohort with 

one-year observation intervals. We first obtain the one-year observed count matrix 

𝐶 =
𝑐!! ⋯ 𝑐!!
⋮ ⋱ ⋮
𝑐!! ⋯ 𝑐!!

 

where 𝑐!" is the number of patients moving from health state 𝑖 to state 𝑗  in an one-year cycle. 

 

The maximum likelihood estimate of the transition matrix given the observed count matrix is 

simply the row proportions of 𝐶 (Craig & Sendi, 1998). If we denote the unknown transition 

matrix by 𝑃, then the elements of the maximum likelihood estimate 𝑃 can be expressed as 

𝑝!" = 𝑐!" 𝑐!"!
!!! . 

 

 Section 2.2 – Second Case 
Let us next consider the case when the common observation interval does not coincide with the 

cycle length. Let 𝐿! denote the common observation interval and 𝐿! the cycle length of the 

Markov chain. 𝑃!, the maximum likelihood estimate of the transition matrix associated with 

𝐿!  ,  is obtained using the method described in section 2.1 for when the observation interval and 

cycle length coincide.  

 

The maximum likelihood estimate of the transition matrix associated with  𝐿!, denoted by𝑃!, can 

then be expressed as: 

𝑃! = 𝑃!
!/! , where 𝑘 = !!

!!
. 

For example, supposed the common observation interval is 3 years, and the desired cycle length 

is 1 year. Then 𝑘 = 3 and 𝑃! = 𝑃!
!/!. In other words, one would take the cubic root of the 

estimated three-year transition matrix in order to obtain the estimated one-year transition matrix. 
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In order to estimate 𝑃!, we will need to compute powers of the matrix 𝑃!, so we decompose the 

matrix 𝑃! into its eigenvalues and eigenvectors (Gilbert & Gilbert, 2004). Based on the 

decomposition, the 𝑛×𝑛 transition matrix 𝑃!  can be expressed as 

𝑃! = 𝐵𝐷𝐵!! 

where 𝐵 is the 𝑛 by 𝑛 matrix of eigenvectors and  

𝐷 =
𝜆! ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆!

 

where 𝜆! is the 𝑖!! eigenvalue. It then follows that 

𝑃!
!/! = 𝐵𝐷!/!𝐵!! 

where 

𝐷!/! =
𝜆!
!/! ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆!

!/!
 

 

In our simulation study, we set the cycle length of the Markov chain equal to one year, and 

considered the case when the observation interval coincided with the cycle length as well as the 

case when the observational interval and the cycle length did not coincide. In particular, we are 

interested in how the estimated transition matrix behaves as the ratio of observation interval and 

cycle length changes. 
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Chapter 3 - Methodology for Simulation Study 

 Section 3.1 – Method 
Our objective for this study is to estimate the transition matrix for a Markov chain with a cycle 

length of one year in both the case when the observation interval coincides with the cycle length 

as well as the case when the observational interval and the cycle length do not coincide. In 

particular, we are interested in how the estimated transition matrix behaves as the ratio of 

observation interval and cycle length changes. 

 

First, we created a Markov function in R to generate a Markov chain from a known 𝑡 × 𝑡 

transition probability matrix 𝑃. This function took in three parameters: The transition probability 

matrix, the number of steps of the Markov chain to simulate, and the initial state of the Markov 

chain. We then modified the Markov function to create another function called Markovk, which 

generated every 𝑘!! step of a Markov chain from a known  𝑡 × 𝑡 transition matrix 𝑃. Please refer 

to the Appendix for R functions and R code. 

 

Second, we generated a dataset containing information about patients’ chronic disease 

progression. Each row in this dataset represented one patient’s disease progression, which was a 

sequence generated from a Markov chain with known parameters. The initial state was generated 

randomly. We also created additional datasets with each row being a sequence generated from a 

Markov chain with known parameters, but taking each 𝑘!! observation. 

 

The transition matrix 𝑃! was estimated from each dataset using the method described in Section 

2.1. This is the case when the common observation interval coincides with the cycle length of the 

Markov chain. In order to obtain the estimated transition matrix 𝑃!, we first obtained the 

observed count matrix of the dataset: 

𝐶 =
𝑐!! ⋯ 𝑐!!
⋮ ⋱ ⋮
𝑐!! ⋯ 𝑐!!

 

where 𝑐!" was the number of observed movements from state 𝑖 to state 𝑗  in an one-period cycle. 

The maximum likelihood estimate of the transition matrix given the observed count matrix is 
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simply the row proportions of 𝐶 (Craig & Sendi, 1998). In other words, the entries of the 

maximum likelihood estimate 𝑃! could be expressed as 

𝑝!" = 𝑐!" 𝑐!"!
!!! . 

 

The 𝑘!! step estimated transition matrix 𝑃! was then estimated from the dataset assuming we 

observed every 𝑘!! state. This is the case when the common observation interval does not 

coincide with the cycle length of the Markov chain, and is described in Section 2.2. 

 

Several problems arose in the decomposition of 𝑃! when we were conducting the simulation. 

Please refer to section 3.2 for further discussion. 

 

In our study, we investigated 12 combinations of conditions. We used two different transition 

probability matrices: an irreducible matrix 𝑃! and a reducible matrix 𝑃!, where 

𝑃! =
1/2
1/2
0
0

    

1/2
0
1/2
0

    

0
1/2
0
1/2

    

0
0
1/2
1/2

   and  𝑃! =

0
0
1/4
0
0

    

0
0
1/4
0
0

    

1/2
1
0
1/2
0

    

0
0
1/4
0
0

    

1/2
0
1/4
1/2
1

, 

two different sample sizes: 50 and 200, and three values of observation interval: 1-year, 3-year, 

and 5-year. The number of observations for each subject was fixed at 5. For each of the 12 

combinations, we repeated the process of generating the dataset using the known transition 

probability matrix and estimating the transition probability matrix 1000 times.  

 

Finally, we compared the estimated transition matrices with the known transition matrix by 

looking at both their element-wise deviations and total deviations. For the element-wise 

deviations, we computed the average of the differences between each of the 1000 estimated 

transition probabilities and the known transition probabilities, along with their standard 

deviations. This was done for each of the 𝑝!" in 𝑃. For the total deviation, we computed the sum 

of the absolute values of the differences between 𝑝!" and 𝑝!" for each of the 1000 estimated 

transition matrix. And then we took the average of the sums along with the standard deviation of 

the sums. 
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 Section 3.2 - Problems with Estimation 
Several problems arose in the decomposition of the estimated transition matrix when we were 

conducting the simulation. First, for even values of 𝑘, the eigenvalues of 𝑃! have multiple roots. 

For example, when 𝑘 = 2, the 2!" step estimated transition matrix 𝑃! is expressed as 

𝑃! = 𝐵𝐷!/!𝐵!! 

where 𝐵 was the 𝑛 × 𝑛 matrix of the eigenvectors of 𝑃!, and 

𝐷!/! =
𝜆!
!/! ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆!

!/!
 

where 𝜆! was the 𝑖!! eigenvalue of 𝑃!. In this example, we would end up with multiple results 

for the 2!" step estimated transition matrix 𝑃! due to the multiple roots of 𝐷!/!. In order to avoid 

this problem, we decided to only choose odd values of 𝑘. 

 

Second, we ran into several issues with matrix decomposition of 𝑃! while we were trying to 

estimate the 𝑘!! step estimated transition matrix 𝑃!. The first problem was that occasionally the 

matrix of eigenvectors of 𝑃!was singular. In other words, the 𝑛 × 𝑛 matrix of the eigenvectors of 

𝑃!, which was denoted by 𝐵 in the expression 𝑃! = 𝐵𝐷!/!𝐵!!, was singular. This was not a 

large issue as it only happened in 1− 2% of simulations.  

 

A more problematic issue was when the estimated transition matrix had complex eigenvalues or 

eigenvectors. This can occur even when the true transition matrix has only real eigenvalues and 

eigenvectors. A square matrix 𝑃 has characteristic polynomial 𝑓 𝑥 = det 𝑥 ∙ 𝐼 − 𝑃 . The roots 

of the characteristic polynomial are the eigenvalues of the matrix. When we estimate the 

transition matrix, we essentially obtain the characteristic polynomial of the estimated transition 

matrix 𝑃 by moving the characteristic polynomial of the true transition matrix 𝑃 slightly. If the 

characteristic polynomial of 𝑃 barely crosses the 𝑥-axis (Figure 3-1), it is likely that the 

characteristic polynomial of the estimated transition matrix will no longer have an intersection 

with the 𝑥-axis (Figure 3-2). In this case, 𝑃 may have complex eigenvalues and eigenvectors, 

even though 𝑃 has real eigenvalues and eigenvectors. 
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Figure 3-1. Possible characteristic polynomial for 𝑷 

 

    
 

Figure 3-2. Characteristic polynomial for 𝑷 

 

As an example, consider the transition matrix  

𝑃 =

1/4
1/4
1/4
1/4

    

1/4
1/4
1/4
1/4

    

1/4
1/4
1/4
1/4

    

1/4
1/4
1/4
1/4

 

The characteristic polynomial for 𝑃  is 𝑓 𝑥 = 𝑥! − 𝑥!, which has roots 0 and 1. Figure 3-3 

shows the plot of the characteristic polynomial for 𝑃. 
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Figure 3-3. Characteristic polynomial for 𝑷 

 

 

Since the characteristic polynomial of 𝑃 barely intercepts the x-axis, when we estimate the 

transition matrix, the characteristic polynomial of 𝑃 frequently did not intersect the 𝑥-axis. 

Hence we often ran into issues with 𝑃 having complex eigenvalues or eigenvectors. 

 

To avoid this issue as much as possible, we tried to pick the transition matrix 𝑃 carefully. When 

the issue did occur in simulations, we dropped the unestimable results. 
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Chapter 4 - Results 

In our study, 12 combinations of conditions were investigated. We used two different transition 

probability matrices: one 4 × 4 matrix and one 5 × 5 matrix.  

𝑃! =
1/2
1/2
0
0

    

1/2
0
1/2
0

    

0
1/2
0
1/2

    

0
0
1/2
1/2

   and  𝑃! =

0
0
1/4
0
0

    

0
0
1/4
0
0

    

1/2
1
0
1/2
0

    

0
0
1/4
0
0

    

1/2
0
1/4
1/2
1

, 

two different sample sizes: 50 and 200, and three values of observation interval: 1-year, 3-year, 

and 5-year. For each of the 12 combinations, we repeated the process of generating the dataset 

using the known transition probability matrix and estimating the transition probability matrix 

1000 times. Finally, we compared each estimated transition matrix with the known transition 

matrix by looking at both element-wise deviations and total deviations. 

 

 Section 4.1 - Results for 𝑷𝟏 
Below are the results for the first six combinations using the transition probability matrix 𝑃!. 

Inside the parentheses we included the standard error of the deviations. Table 4-1 contains the 

total deviations for 𝑃! and Table 4-2 contains the element-wise deviations for 𝑃!. 

 

 

 K=1 K=3 K=5 

N=50 Tot Dev= 0.454 

(SE=0.174) 

unestimable=0 

Tot Dev = 1.701 

(SE=0.368) 

unestimable=7 

Tot Dev = 2.9 

(SE=0.927) 

unestimable=252 

N=200 Tot Dev = 0.228 

(SE=0.084) 

unestimable=0 

Tot Dev = 1.191 

(SE=0.29) 

unestimable=0 

Tot Dev = 2.015 

(SE=0.335) 

unestimable=11 

Table 4-1. Total deviations for 𝑷𝟏 
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Table 4-2. Element-wise deviations for 𝑷𝟏 

 

 N=50 N=200 

K=1  

0.001
(0.074)

0.004
(0.07)

0
(0)

0
(0)

  

−0.001
(0.074)

0
(0)

0.001
(0.071)

0
(0)

  

0
(0)

−0.004
(0.07)

0
(0)

−0.003
(0.071)

  

0
(0)

0
(0)

−0.001
0.071

0.003
(0.071)

 

 

unestimable=0 

 

0.002
(0.036)

0.0002
(0.035)

0
(0)

0
(0)

  

−0.002
(0.036)

0
(0)

0.001
(0.036)

0
(0)

  

0
(0)

−0.0002
(0.035)

0
(0)

−0.002
(0.036)

  

0
(0)

0
(0)

−0.001
(0.036)

0.002
(0.036)

 

 

unestimable=0 

K=3  

0.012
(0.141)

−0.007
(0.148)

−0.006
(0.115)

0.005
(0.109)

  

−0.012
(0.152)

0.003
(0.114)

0.006
(0.143)

−0.005
(0.118)

  

−0.006
(0.119)

0.012
(0.141)

0.007
(0.111)

−0.011
(0.151)

  

0.005
(0.111)

−0.009
0.116

−0.006
(0.152)

0.011
(0.142)

 

 

unestimable=7 

 

0.002
(0.096)

0.001
(0.098)

−0.0003
(0.077)

0
(0.075)

  

−0.001
(0.099)

0.0003
(0.076)

−0.002
(0.095)

0.0002
(0.079)

  

−0.002
(0.079)

0.002
(0.094)

0.0005
(0.078)

−0.001
(0.098)

  

0.001
(0.074)

−0.004
(0.076)

0.002
(0.097)

0.001
(0.094)

 

 

unestimable=0 

K=5  

0.008
(0.239)

0.008
(0.252)

−0.023
(0.224)

0.014
(0.231)

  

0.0003
(0.241)

0.003
(0.222)

0.011
(0.204)

−0.017
(0.231)

  

−0.006
(0.239)

0.013
(0.238)

0.004
(0.209)

−0.025
(0.265)

  

−0.0022
(0.22)

−0.024
(0.235)

0.009
(0.249)

0.028
(0.242)

 

 

unestimable=252 

 

0.001
(0.158)

0.006
(0.161)

0.001
(0.148)

−0.003
(0.135)

  

0.005
(0.165)

−0.007
(0.143)

−0.003
(0.153)

−0.0002
(0.147)

  

−0.007
(0.15)

−0.004
(0.151)

0.003
(0.138)

0.006
(0.157)

  

0.001
(0.14)

0.006
(0.147)

−0.001
(0.156)

−0.003
(0.151)

 

 

unestimable=11 
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The results of the 6 combinations using 𝑃! show that when we estimated the transition 

probability matrix, more estimation problems arose when the sample size was 50 as the length of 

observational interval increased. When 𝑘=1, all 1000 transition matrices were estimable. When 

𝑘=3, 0.7% were unestimable, and when 𝑘=5, 25.2% were unestimable. This makes sense 

because when the time between each visit of the patients gets longer, we begin to have more and 

more missing data. When 𝑘=1, there is no missing data at all (i.e. the cycle length and 

observation interval coincide), but when 𝑘=3, two thirds of the data are missing. And when 𝑘=5, 

four fifths of the data are missing. Hence more errors are going to occur as the length of 

observational interval increases, and more missing data will give a less accurate 𝑃!, and so 𝑃! is 

more likely to have complex eigenvalues and eigenvectors. 

 

We also observed that the deviation from the known transition probability matrix got larger as 

the length of observational interval increased. In the case when sample size was 50, the total 

deviation was 0.454 with standard deviation 0.174 for 𝑘=1. When 𝑘 increased to 5, the total 

deviation increased to 2.9 with a larger standard deviation 0.927. We believe that this is also due 

to the missing data caused by longer time between each visit of the patients.  

 

Moreover, with increasing sample size, there were fewer estimation problems, and the deviation 

from the known transition probability matrix was reduced. This is as expected, since as the 

sample size gets bigger, we will obtain a more accurate estimate of the known transition 

probability matrix. 

 

 

Section 4.2 - Results for 𝑷𝟐 
Below are the results for the other six combinations using the transition probability matrix 𝑃!. 

Inside the parenthesis we included the standard error of the deviations. Table 4-3 contains the 

total deviations for 𝑃! and Table 4-4 contains the element-wise deviations for 𝑃!. 

 

The results of the 6 combinations using 𝑃! indicated that when estimating the transition 

probability matrix, we encountered more estimation problems when the sample size was 50 as 



16 

 

the length of observational interval increased. When  𝑘=1, 2.5% of the transition matrices were 

estimable, when 𝑘=3, 1.6% were unestimable, and when 𝑘=5, the unestimable amount of 

transition matrices increased to 19.6%. The reason for more estimation problems is the same as 

reason explained in Section 4.1 for 𝑃!. Again it makes sense that more errors are going to occur 

as the length of observational interval increases. 

 

The deviation from the known transition probability matrix also increased as the length of 

observational interval increased. In the case when sample size was 200, the total deviation was 

0.296 with standard deviation 0.11 for 𝑘=1. When 𝑘 increased to 5, the total deviation increased 

to 1.43 with a larger standard deviation 0.58. This is also because of the missing data caused by 

longer time between each visit of the patients.  

 

Furthermore, with increasing sample size, fewer estimation problems appeared, and the deviation 

from the known transition probability matrix decreased. This is reasonable, since as the sample 

size gets bigger, we will obtain a more accurate estimate of the known transition probability 

matrix. 

 

 

 K=1 K=3 K=5 

N=50 Tot Dev=0.587 

(SE=0.228) 

unestimable=25 

Tot Dev=1.685 

(SE=0.681) 

unestimable=16 

Tot Dev=2.9 

(SE=1.27) 

unestimable=196 

N=200 Tot Dev=0.296 

(SE=0.11) 

unestimable=37 

Tot Dev=0.81 

(SE=0.29) 

unestimable=33 

Tot Dev=1.43 

(SE=0.58) 

unestimable=26 

Table 4-3. Total deviations for 𝑷𝟐 
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 N=50 N=200 

K=1  
0
(0)

0
(0)

−0.0002
(0.063)

0
(0)

0
(0)

  

0
(0)

0
(0)

0.002
(0.066)

0
(0)

0
(0)

  

0.004
(0.121)

0
(0)

0
(0)

0.002
(0.118)

0
(0)

  

0
(0)

0
(0)

−0.0005
(0.066)

0
(0)

0
(0)

  

−0.004
(0.121)

0
(0)

−0.001
(0.064)

−0.002
(0.118)

0
(0)

 

 

unestimable=25 

 
0
(0)

0
(0)

0.0002
(0.032)

0
(0)

0
(0)

  

0
(0)

0
(0)

0.002
(0.032)

0
(0)

0
(0)

  

−0.0005
(0.059)

0
(0)

0
(0)

−0.0004
(0.061)

0
(0)

  

0
(0)

0
(0)

0
(0.032)

0
(0)

0
(0)

  

0.0005
(0.059)

0
(0)

−0.002
(0.034)

0.0004
(0.061)

0
(0)

 

 

unestimable=37 

K=3  
0
(0)

0
(0)

−0.01
(0.1)

0
(0)

0
(0)

  

0
(0)

0
(0)

0.01
(0.1)

0
(0)

0
(0)

  

−0.009
(0.2)

−0.04
(0.3)

0
(0)

−0.004
(0.3)

0
(0)

  

0
(0)

0
(0)

−0.01
(0.1)

0
(0)

0
(0)

  

0.009
(0.2)

0.036
(0.3)

0.01
(0.2)

0.004
(0.3)

0
(0)

 

 

unestimable=16 

 
0
(0)

0
(0)

−0.001
(0.07)

0
(0)

0
(0)

  

0
(0)

0
(0)

0.001
(0.06)

0
(0)

0
(0)

  

0.004
(0.12)

−0.01
(0.13)

0
(0)

0.004
(0.1)

0
(0)

  

0
(0)

0
(0)

−0.0003
(0.07)

0
(0)

0
(0)

  

−0.004
(0.12)

0.01
(0.13)

0.001
(0.08)

−0.004
(0.1)

0
(0)

 

 

unestimable=33 

K=5  
0

0.0001

0
0.002

−0.01
0.3

0
0.005

0
0

  

0
0.0004

0
0.0001

−0.01
0.2

0
0.0008

0
0

  

−0.02
0.4

−0.07
0.6

0
0

−0.04
0.4

0
0

  

0
0.001

0
0.0008

−0.005
0.3

0
0.0001

0
0

  

0.02
0.4

0.07
0.6

0.03
0.3

0.04
0.4

0
0

 

 

unestimable=196 

 
0

(0.0006)

−0.0003
(0.006)

−0.003
(0.1)

0
(0.0007)

0
(0)

  

0
(0.0004)

0
(0.0001)

0.007
(0.1)

0
(0.0001)

0
(0)

  

−0.002
(0.2)

−0.04
(0.3)

0
(0)

−0.02
(0.2)

0
(0)

  

0
(0.0008)

0.0003
(0.007)

−0.005
(0.1)

0
(0.0006)

0
(0)

  

0.002
(0.2)

0.04
(0.3)

0.0006
(0.1)

0.02
(0.2)

0
(0)

 

 

unestimable=26 

Table 4-4. Element-wise deviations for 𝑷𝟐  
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Appendix – R Code 

Markov function for generating a data set: 

markov<-function(P,n,i) { 

 m<-seq_len(n) 

 m[1]<-i 

 for (i in 2:n) { 

  m[i]<-sample(1:ncol(P),1,prob=P[m[i-1],]) 

 } 

m 

} 

 

Markovk function for generating a data set: 

markovk<-function(P,k,n,i) { 

 m<-markov(P,1+(n-1)*k,i) 

 s<-m[seq(1,length(m),k)] 

  s 

} 

 

Estimating transition matrix: 

library(expm) 

library(matrixcalc) 

est.transk<-function(data,n,k){ 

 x<-factor(c(data[,-ncol(data)]),levels=1:n) 

 y<-factor(c(data[,-1]),levels=1:n) 

 trans<-table(x,y) 

 trans<-trans[1:n,1:n] 

 trans<-trans/rowSums(trans) 

 for (i in 1:n){ 

  for(j in 1:n){ 

   if(trans[i,j]=="NaN"){ 
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    trans[i,j]=1/n 

   } 

  } 

 } 

 t.eig<-eigen(trans) 

 imagval<-is.numeric(t.eig$values) 

 imagvec<-is.numeric(t.eig$vectors) 

 if (imagval=="FALSE" | imagvec=="FALSE"){ 

  mistake<-1 

  transk<-matrix(0,nrow=n,ncol=n,byrow=TRUE) 

 } 

 else{ 

 sin<-is.singular.matrix(t.eig$vectors) 

 if (sin=="TRUE") { 

  mistake<-1 

  transk<-matrix(0,nrow=n,ncol=n,byrow=TRUE) 

 } 

 else { 

 mistake<-0 

 transk<-

t.eig$vectors%*%diag(sign(t.eig$values)*abs(t.eig$values)^(1/k))%*%solve(t.eig$vectors)} 

 } 

 return(c(mistake,transk)) 

} 

 

 

First combination, P is 4 by 4, n=50, m=5, k=1: 

mistakes<-0 

d11<-vector(,1000) 

d12<-vector(,1000) 

d13<-vector(,1000) 
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d14<-vector(,1000) 

d21<-vector(,1000) 

d22<-vector(,1000) 

d23<-vector(,1000) 

d24<-vector(,1000) 

d31<-vector(,1000) 

d32<-vector(,1000) 

d33<-vector(,1000) 

d34<-vector(,1000) 

d41<-vector(,1000) 

d42<-vector(,1000) 

d43<-vector(,1000) 

d44<-vector(,1000) 

Tot<-vector(,1000) 

for (r in 1:1000) { 

P<-matrix(c(1/2,1/2,0,0,1/2,0,1/2,0,0,1/2,0,1/2,0,0,1/2,1/2),ncol=4,byrow=TRUE) 

#### create dataset ### 

data<-matrix(nrow=50,ncol=5,byrow=TRUE) 

for (c in 1:50){ 

 i<-sample(1:4,1) 

 data[c,]<-markovk(P,1,5,i) 

} 

### estimate transition matrix ### 

est<-est.transk(data,4,1) 

if (est[1]==1){ 

mistakes<-mistakes+1 

d11[r]<-NA 

d12[r]<-NA 

d13[r]<-NA 

d14[r]<-NA 

d21[r]<-NA 
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d22[r]<-NA 

d23[r]<-NA 

d24[r]<-NA 

d31[r]<-NA 

d32[r]<-NA 

d33[r]<-NA 

d34[r]<-NA 

d41[r]<-NA 

d42[r]<-NA 

d43[r]<-NA 

d44[r]<-NA 

Tot[r]<-NA 

} 

else { 

#create estmatrix from est[2]-est[17]# 

estmatrix<-matrix(est[2:17],ncol=4,byrow=FALSE) 

### get the difference and total ### 

d<-P-estmatrix 

d11[r]<-d[1,1] 

d12[r]<-d[1,2] 

d13[r]<-d[1,3] 

d14[r]<-d[1,4] 

d21[r]<-d[2,1] 

d22[r]<-d[2,2] 

d23[r]<-d[2,3] 

d24[r]<-d[2,4] 

d31[r]<-d[3,1] 

d32[r]<-d[3,2] 

d33[r]<-d[3,3] 

d34[r]<-d[3,4] 

d41[r]<-d[4,1] 
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d42[r]<-d[4,2] 

d43[r]<-d[4,3] 

d44[r]<-d[4,4] 

Tot[r]<-sum(abs(d)) 

} 

} 

### Elementwise Deviations ### 

(avg<-

matrix(c(mean(d11,na.rm=T),mean(d12,na.rm=T),mean(d13,na.rm=T),mean(d14,na.rm=T),mea

n(d21,na.rm=T),mean(d22,na.rm=T),mean(d23,na.rm=T),mean(d24,na.rm=T),mean(d31,na.rm=

T),mean(d32,na.rm=T),mean(d33,na.rm=T),mean(d34,na.rm=T),mean(d41,na.rm=T),mean(d42,

na.rm=T),mean(d43,na.rm=T),mean(d44,na.rm=T)),ncol=4,byrow=TRUE)) 

(stddev<-

matrix(c(sd(d11,na.rm=T),sd(d12,na.rm=T),sd(d13,na.rm=T),sd(d14,na.rm=T),sd(d21,na.rm=T),

sd(d22,na.rm=T),sd(d23,na.rm=T),sd(d24,na.rm=T),sd(d31,na.rm=T),sd(d32,na.rm=T),sd(d33,n

a.rm=T),sd(d34,na.rm=T),sd(d41,na.rm=T),sd(d42,na.rm=T),sd(d43,na.rm=T),sd(d44,na.rm=T))

,ncol=4,byrow=TRUE)) 

### Total Deviation ### 

mean(Tot,na.rm=T) 

sd(Tot,na.rm=T) 

 

 

Eighteenth combination, P is 5 by 5, n=200, m=5, k=1: 

mistakes<-0 

d11<-vector(,1000) 

d12<-vector(,1000) 

d13<-vector(,1000) 

d14<-vector(,1000) 

d15<-vector(,1000) 

d21<-vector(,1000) 

d22<-vector(,1000) 
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d23<-vector(,1000) 

d24<-vector(,1000) 

d25<-vector(,1000) 

d31<-vector(,1000) 

d32<-vector(,1000) 

d33<-vector(,1000) 

d34<-vector(,1000) 

d35<-vector(,1000) 

d41<-vector(,1000) 

d42<-vector(,1000) 

d43<-vector(,1000) 

d44<-vector(,1000) 

d45<-vector(,1000) 

d51<-vector(,1000) 

d52<-vector(,1000) 

d53<-vector(,1000) 

d54<-vector(,1000) 

d55<-vector(,1000) 

Tot<-vector(,1000) 

for (r in 1:1000) { 

P<-matrix(c(0.5,0.5,0,0,0,0.5,0,0.5,0,0,0,0.5,0,0.5,0,0,0,0.5,0,0.5,0,0,0,0.5,0.5 

),ncol=5,byrow=TRUE) 

### create dataset #### 

data<-matrix(nrow=200,ncol=5,byrow=TRUE) 

for (c in 1:200){ 

 i<-sample(1:5,1) 

 data[c,]<-markovk(P,1,5,i) 

} 

### estimate transition matrix ### 

est<-est.transk(data,5,1) 

if (est[1]==1){ 
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mistakes<-mistakes+1 

d11[r]<-NA 

d12[r]<-NA 

d13[r]<-NA 

d14[r]<-NA 

d15[r]<-NA 

d21[r]<-NA 

d22[r]<-NA 

d23[r]<-NA 

d24[r]<-NA 

d25[r]<-NA 

d31[r]<-NA 

d32[r]<-NA 

d33[r]<-NA 

d34[r]<-NA 

d35[r]<-NA 

d41[r]<-NA 

d42[r]<-NA 

d43[r]<-NA 

d44[r]<-NA 

d45[r]<-NA 

d51[r]<-NA 

d52[r]<-NA 

d53[r]<-NA 

d54[r]<-NA 

d55[r]<-NA 

Tot[r]<-NA 

} 

else { 

#create estmatrix from est[2]-est[26]# 

estmatrix<-matrix(est[2:26],ncol=5,byrow=FALSE) 
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### get the difference and total ### 

d<-P-estmatrix 

d11[r]<-d[1,1] 

d12[r]<-d[1,2] 

d13[r]<-d[1,3] 

d14[r]<-d[1,4] 

d15[r]<-d[1,5] 

d21[r]<-d[2,1] 

d22[r]<-d[2,2] 

d23[r]<-d[2,3] 

d24[r]<-d[2,4] 

d25[r]<-d[2,5] 

d31[r]<-d[3,1] 

d32[r]<-d[3,2] 

d33[r]<-d[3,3] 

d34[r]<-d[3,4] 

d35[r]<-d[3,5] 

d41[r]<-d[4,1] 

d42[r]<-d[4,2] 

d43[r]<-d[4,3] 

d44[r]<-d[4,4] 

d45[r]<-d[4,5] 

d51[r]<-d[5,1] 

d52[r]<-d[5,2] 

d53[r]<-d[5,3] 

d54[r]<-d[5,4] 

d55[r]<-d[5,5] 

Tot[r]<-sum(abs(d)) 

} 

} 

### Elementwise Deviations ### 
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(avg<-

matrix(c(mean(d11,na.rm=T),mean(d12,na.rm=T),mean(d13,na.rm=T),mean(d14,na.rm=T),mea

n(d15,na.rm=T),mean(d21,na.rm=T),mean(d22,na.rm=T),mean(d23,na.rm=T),mean(d24,na.rm=

T),mean(d25,na.rm=T),mean(d31,na.rm=T),mean(d32,na.rm=T),mean(d33,na.rm=T),mean(d34,

na.rm=T),mean(d35,na.rm=T),mean(d41,na.rm=T),mean(d42,na.rm=T),mean(d43,na.rm=T),mea

n(d44,na.rm=T),mean(d45,na.rm=T),mean(d51,na.rm=T),mean(d52,na.rm=T),mean(d53,na.rm=

T),mean(d54,na.rm=T),mean(d55,na.rm=T)),ncol=5,byrow=TRUE)) 

(stddev<-

matrix(c(sd(d11,na.rm=T),sd(d12,na.rm=T),sd(d13,na.rm=T),sd(d14,na.rm=T),sd(d15,na.rm=T),

sd(d21,na.rm=T),sd(d22,na.rm=T),sd(d23,na.rm=T),sd(d24,na.rm=T),sd(d25,na.rm=T),sd(d31,n

a.rm=T),sd(d32,na.rm=T),sd(d33,na.rm=T),sd(d34,na.rm=T),sd(d35,na.rm=T),sd(d41,na.rm=T),

sd(d42,na.rm=T),sd(d43,na.rm=T),sd(d44,na.rm=T),sd(d45,na.rm=T),sd(d51,na.rm=T),sd(d52,n

a.rm=T),sd(d53,na.rm=T),sd(d54,na.rm=T),sd(d55,na.rm=T)),ncol=5,byrow=TRUE)) 

### Total Deviation ### 

mean(Tot,na.rm=T) 

sd(Tot,na.rm=T) 

 

 

 


