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CHAPTER I

INTRODUCT ION

Given a sequence x(j), j =0, 1, 2, . . ., (N-1), obtained by sampling
a continuous waveform, one seeks its frequency structure by means of an
orthogonal transformation which maps the x(j) into a sequence A(n), n =0, 1,
2, . . oy (N-1), 1If Fn(j) are a set of N orthonormal functions, it follows

that
N-1
A(n) = % x(}) F (), n=0,1, 2, ..., (N-1), (1.1)
=
Most of the work in this area has been done for the case when the set
Fn(1) are the FPourier functions. The corresponding transform is the go-
called discrete Fourier transform (DFT). Again, the Fast Fourier transform
(FFT) is an algorithm which yields the desired coefficients A(n) in approxi-
mately 2N*logy) N arithmetic operations and affords a substantial saving in
memory‘:i]. A less publicized transform is the BIFORE (Binary Fourier
Representation) transform* (BD) [g, 5} in which the bases are square waves
(Walsh functions), Periodic sampling of these square waves yields Hadamard
matrices (g] which possess transform properties., The corresponding
algorithm which requires N'log2 N arithmetic operations to obtain the A(n)
in (1.1) is called the Fast BIFORE or Hadamard transform (FBT) [ﬁ]. A BIFORE
power spectrum which possesses the shift invariance property similar to the
conventional Fourier spectrum has been developed [ﬁ]. The BT has found
applications in several areas which include signal representation and classi-
fication [?], image coding [ﬁ], spectral analysis of linear digital

systems [6:] and speech processing E, EE‘ « Several of its properties have

%*
Also called the Hadamard or Walsh-Fourier transform.



been developed and compared with corresponding properties of the DFT [E, IEJ .
This report concerns a study of a more general version of the BT, namely
the complex BIFORE transform (CBT) [}i] s
In Chapter 1I, the notion of complex Binary Fourier Representation is
introduced. Chapter III presents a development of the CBT power spectrum.
In Chapter IV, a physical interpretation of the CBT power spectrum is
presented, Finally, recommendations for future work are included in
Chapter V.
Sincérthe CBT is a more general version of the BT, it is reasonable to
expect that it will find applications in several areas in addition to those

cited above with respect to the BT.



CHAPTER 11

COMPLEX BINARY FOURIER REPRESENTATION

2.1 Complex Hadamard Matrices

Walsh functions [3] are a set of orthogonal functions which are square
waves, Consequently, the amplitude of & Walsh function is either +1 or -1.
Sampling of Walsh functions results in an array whose elements are 1, A
rearrangement of the rows of such an array yields real Hadamard matrices

which can be defined by the following recursion formula:

[ H{k-1) J H{k-1)
H(g _(k_hlrl-:};(;i; » k = 1: 2: reesy T (2-1)
where
[50] isa % x 2% Hadamard matrix, [u(o)]
and n = logz N

Again, the complex version of the Hadamard matrices in (2.1) are defined

by the recursion formula
[ :I <k.l)._!_%ﬁ<i)__
He (1) (1) ® H(k-2) | -B(1) @ H(k-2) (2.2)

fOrk=1, 2: ¢« s o3 Dy

where. K K
[éc(ki] is a (27 x 27) complex Hadamard matrix,

Ec(oﬂ = [1]

® 1implies the Kronecker delta product (see Appendix A) and

E-j(lzl =B-ﬂ’i= ﬁ.

For example, for k = 1 and k = 2, ( 2.2) yields

i) -[3



and

1 11 1
1-1 1 -1
Eic(Zzl =l1-1i-1 i
1§ -1 -1

respectively,
" From. (2.2) and the definition of Kronecker delta product it
follows that _ |
H.(k-1) I H.(k-1)
Eé(kj= NG . o R s el (2.3)

H(k-2) |~1H(k-2) | “H(e-2) $H(k-2)_
| H(k-2) | iH(k-2) | -H(k-2)-iH(k-2)

fOr k=1’2’o--’nl

where, [E.(®)] = [1] .

For example with k = 3, . .., (2.3) yields

P I R S

1 -1 1 -i |-1 1 -1 i

2.2 Orthogonal Properties of Complex Hadamard Matrices
The complex Hadamard matrix satisfy the orthogonal property
Eic'(nﬂ I:Ht(n) T - NE(n)] (2.4)
where, N = 20,
NOIR o(o)
[%C(n) is the transpose of complex conjugate of |I.(n) y

[ﬁ(ﬁﬂ is the identity matrix of order 2", For example, for n = 2,



(2.4) yields

——;“ 1 1 Ef— 1 1 1 1 [;“ 0 0 O
1 -1 1 -1 1 -1 i -i 0O 4 0 O
1 -i -1 i 1 1 -1 -1 ) 0 0 4 O
1 i -1 -i 1 =1 =1 4 0 0 0 4

o el [l - el

Since]?c(nilis orthogonal, its inverse can be found as follows

H ({] E1 (n] I(n)—‘ . ' (2.5)

Comparison of (2,4) and (2.5) results in

-1 1 o T
[rew] -2 E‘c (nﬂ ; 2.6)

2.3 Complex BIFORE Transform (CBT)
" Denoting the sequence x(j), j =0, 1, . . ., (N-1) by {?(ni] » the

complex BIFORE (Binary Fourier Representation) transform is defined as

L] = 4 ) 50} o
[z_(n)] T E(O) x() x(2) . ... .x(N—il s

the vector representation of the data sequence [g(qi] s

[gx(;ﬂ Pa[o s 3@ ... Lsaen] ke

B(k) being the transformed coefficients and Ho(n){ is the (NxN) complex

where -

Hadamard matrix defined in  {2.3).
2.4 Fast Complex BIFORE Transform (FCBT)

The FCBT is an algorithm which facilitates rapid computation of the
transform coefficients B(k),k =0, 1, ., ., ., (N-1). The development of the

algorithm is best illustrated for N = 8, when (2.7) yields

(50! =3no] [xo] 3



that is

Solving for first four points, one has

Decomposing

— e

B(0)
B(1)
B(2)
B(3)
B(4)
B(5)
B(6)

| BT |

[ B(0) |
B(1)
B(2)

| 5 |

peco]

!
He (2) | Hc(2)
|

x(0)
x(1)

x(2)
x(3)

| 2D

-3 o]

- [ic] -

the above expression yields

[ B(0)
B(1)

B(2)

3|

The last four points

(B4 |
B(5)

B(6)

2

H(0) | iH(0) | -H(0) | -1iH(O) |

(

1 | B _}'if*(_l)
= 8 H(1) tiH(l)

1H(1) | -H(D)

x(0) + x(gg—
x(1) + x(5)

x(2) + x(6)

H(1) {-m(n: “HQ1) | w || x®| . 2.8

I -iH(1) | | x(5)
x(6)
 x(7) ]

_353) + x(ZlJ

Hc(éil into lower order Hadsmard matrices and recalling that

_x_(O) + x(Z)—
x(1) + x(5)
(2.9
x{2) + x(6)
x(3) + x(zz_i
~in (2.8) give an expression
—;}0) - xEZ;4
x(1) - x(5) . (2.'10)
x(2) - x(6)
x(3) - x(7)




The additions and subtractions associated with ( 2.9) and (2.10) are
designated by Iteration 1 in the signal flow graph for N = 8 shown in Fig.(Z.l)

where

Xy (k) x(k) + x(kt+d), k=0, 1, 2, 3

and (2.11)
xl (k) x(k“fl-) - x(k), k = 4, 5; 6, 7

The notations used for signal flow graphs throughout the work are

explained below
k
Ci(i) =
L]
/
-c.(®

dp(1)

Cri1(1l) = KCx(i) + 1 Cx(3)

/

4 () det1(d) = kdg(d) + 1 de(d) .

1

This represents the (r+1)th iteration. The multiplier is 1 if nothing is
mentioned,

Substituting (2.11) into (2.,9) there results

[ B(0) | [ ; _;1(d;ﬂ
1 H(1) H{1)
B(1)| = g — _|___ . . ___I o xl(l)
B(2) H(0) | -iH(0) -H(0) | iH(O) x1(2) . (2.12)
_?(%i_ _550)1_ iH{0) | -H(0) | -iHEEE' _fl(%iJ

Again from (2.12) one has

B (0) . x,(0) + x;(2)
= § |ED
B(1) %, (1) + x1(3)

1 1 1 x2(0)
or = 3 (2.13)



‘8 = N 103 Lg0d Jo ydea8 moy3 [eulrg °*(1°'z) °*S14

@) Gy W N W% W' : — (Wx
©) §——r @fx G_vmx. (9) Ix (9) %
©) 1 . ©)Ffx  Jl- . (© (5)1x (§)x
O pom— (1) &x VA (%) Ox () Ix ()%
(€) 9 _¢ P_n ©Ffx X (€)%x S () I (g)x
@ sy @ & . (2)%x = (2) Ix (D)%
(1) & ——— (1) €x : L ‘ i (1%
©) 8 <—— @Fx o (0)ex £ @ (0)*
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where. x2(0) = kl(O) + x1(2)
x2(1) = xl(l) +x;,03) . _
The additions and subtractions in (2.13) are represented by iteration 2
in Fig.(2.1).
Evaluation of (2.13) yields
B(0) = § x4(0)

and (2.14)
B(1l) = %_ x3(1) ‘

where. x3(0) = x5 (0) + x(1)
and x3(1) =‘;é(0) - x9(1) .
Iteration 3 in Fig.(Z.l)shows the arithmetic operations in (2.14).
Again from (2.12) and (2.14) it follows. that
B(2) 1 | H(O) -11(0) x7(2)
= 3 , 5 (2.15)
B(3) H(0) iH(0) x5 (3)
Thg additions and subtractions which lead to (2.15) are shown in Fig.LZ.ﬂ

and designated by iteration 2, On simplification, (2.15) yields

B(2) ”Ei x5(2)

and B(3) =% x3(3)
‘where X3(2) = %,(2) - 1 xp(3)
and %3(3) = %y(2) + L x,(3) -
Now going back to (2.10), one has
[ B4 [ x1(4)]
B(5) L | B -iHET)-l x| (2.16),
s 8 | wa (D) | | %, (6)
- <17 |




Matrix partitioning of (2.16) yields

where
-
x, (4)

x2(5)

HE(%?}
L_1_3(5)

1 1 1 x2(4)
g (2.17)
1 -1 X5 (5)

xl(h) -1 x1(g;~

x1(4) + 1 x,(6)

Figure(?.l)shows the arithmetic operations in (2,17) under iteration 2,

Thén . (2.16)
B(4)
and B(5)
where

1
8
=
g *3(3

on simplification yields

(2.18)

x3(4) = x2(4) + x2(5)

and x3(5)

=%, (&) - x,(5) .

Iteration 3 in Fig.(2.1)shows the arithmetic operations in (2.18).

Finally, from the lower half of (2,16), it follows that

B(6)

B(7)
where

%, (6)
and : x2(7)
that is B (6)
and B(7)
where

x4 (6)
and x4(7)

The arithmetic

1 1 1 x_(6)
s 2 (2.19)
1 -1 x2(7)

x, (4) + 1 x;(6)

n

x1(5) + i 31(7) bt

1

8 (2.20)
1 .
8

%2 (6) + x5(7)
= x2(6) - x2(7)

operations in (2.18) and (2.19) are shown under

iteration 2 and iteration 3 respectively in Fig.(Z.l).

10



11

This concludes the development of the algorithm for computing the BIFORE
transform for complex input sequence$. As a further illustration, the signal
flow graph for N = 16 is also included in Fig. (2.2).

Generalizations

Examination of the signal flow graphs in Figs.(2.i)and(2.2),1eads to
the following observations and subsequent generalization,

1, There are log;N iterations for a N-periodic sequence.

2. The first iteration consists of additions and subtractions only
since the multipliers are +1.

3. After the first iteration, g data points in the lower half take
multipliers -i and 1. The multiplier -1 is associated with the % data points
in the upper half portion, while the lower half portion takes the multiplier
i,

4, The g points in the lower half, then, follow ordinary BIFORE trans-
form with real multipliers +1 for the remaining (logzﬂ - 2) iterations.

5, After the lst iteration the upper half of g points is treated as a
new set of g points and CBT is performed over them from step 2 explained
above,

To illustrate the CBT for N = 8 and N = 16, examples are considered in

Fig, 2.3 and Fig. 2.4,
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2.5 Inverse Complex BIFORE Transform (ICBT)

The ICBT yields the original signal or periodic sequence [%{n) from

the transform sequence [é;(éﬂ

It is recalled that the CBT is defined as

[Baw] = & [rew] [xw] -

(2.21)

To solve for &(éz] , expression (2,21) is multiplied by Hz (qi]T to

obtain

o] "[ael - #[d] " el [kl -

Applying the orthogonal property of [g;(n) in (2.4) to

[ﬂf‘__)l - E‘;(’ET Eix&;} -

AN ALGORITHM TO COMPUTE THE ICBT

results

The derivation of the algorithm is best illustrated for

Then (2.23) becomes
o) - ()" i)

Substituting for E'Z(szl Y. €he trenspske oF the cémplex
Ec(;_)—] » the following eight equations are obtained.
x(0) = {3(0) # B(l)} + {B(Z) + 3(3)} + {3(4) + 3(5)} + {B(e)
x(1) = {8(0) - B(L}+1 {B(2) - 3} +{3 ) - B} +{B(6)
x(@ = {8(0) + 31 -{B + 3} + {3 + B} -1{p(®)
x(3) = {B(®) - B(D] -1{B(2) - B+ {B) - () -i{B(6)
x(@) = {8(0) + 3} + {8 +33)} - {8 +3} - {5(®)
x(5) = {B(0) - B(LY} +1{B(2) () - {5(6)
x(6) = {B(0) +B(1) -{B(2) +B(®) -1fBe) + B +i{8(6)
x(7) = {B(0) - B(D)) -1{B(2) - B(3)} -1{B(&)

1
1
1

4

B3] - {84

Br(S)‘} +i (B_ (6

(2.22)

{2.22) there
(2.23)
the case N = 8,

(2.24)

conjugate of

0}

+ B(?)}
3(7)} . (2.25)

The arithmetic operations in (2,25) are summarized in Fig.(Z.S}.



Iteration 1

B (0) B1(0) = B(0) + B(1)
B(I);::::::=":::::;;;: Bl(l) = B(0) - B(l)
B(2) 31(2) = B(2) + B(3)
3(3)'><_1: B,(3) = B(2) - B(3)
B(4) - B (4) = B(4) + B(5)
B(S);>-<_1- B,(5) = B(4) - B(5)
3(6)% - 51(6} = B(6) + B(7)

3(7);:::::::>*=:::::;:‘ By(7) = B(6) - B(N

Fig. (2.5). Summary of arithmetic operatioms in (2.25).

In terms of Bi(k), k=0,1, . . . 7, expression (2.25) can be written

as
x(@ = {3,0 + 3@} + {8, +3,(6))
x) = (B, + 3@} + {5, +5,m}
x(2) = {BI(O)V - @) + 1B, + 8,6
x(3 = {8, - B3} +1[B,(5 - B, (D)
) <@ = {8, + 3, - {8,® +35,(6)}
x(s) = {8, + 18, - {By(5) +8,(D) (2.26)
x® = {8, - 3,@} - 1B, -35,(6)]
x(n = {3, -3y} - fsy» -n,] |

Figure (2.6) summar%f@% the arithmetic operations in (2.26).



Iteration 2
B, (0) B, (0)
1
B (l)\/ B, (1)
==
B, (2) B, (2)
1 2
51‘3)‘/”’/,/"\\\\t\>“ 2,3
31(4)"‘\\\\\g(///,/f"82(4)
Bl(s}:i:><:::~:::><:::j32(5)
B, (6)* B, (6)
1 "”’,4”"‘~\\\\\\‘

B,(7) =B, (7)

Fig. (2.6). Summary of arthmetic operations in (2.26).

B1(0)
B1(1)
B,(0)
B (1)
B1(4)
B,(5)
B,(4)

B, (5)

+ 31(2)
+ 1B, (3)
= 31(2)

131(3)

+ B,(6)

+ B (7)

B,(6)

- B,

17

The multipliers used in iteration 2 (see Fig. (2.6))are 1, -1, i and -i.

After the second iteration,equations in (2.26) become simpler as written

next. Once again (2.26) is written in terms of Bz(k), k=0,1, 2, ...

to obtain the following eight equations.
x(0) = 32(0) + B, (4)
x(l) = Bz(l) +. 52(5)
x(2) = B(2) + 1B,(6)

x(3) = 32(3) + 132(7)

x(4) = B,(0) - By(4)
x(5) = By(1) - B,(5)
x(6) = B,(2) - 1By(6)

x(7) = 32(3> - 1B,(7) .

s 7

(2.27)

The equations in (2.27) represent third iteration as shown in Fig. (2.7).



Iteration 3

= B, (0) + B,(4) = x(0)

B, (0) » B4(0) = B, ,
By (1) AN K B3(1) = B, (1) + By(5) = x(1)
B (z)\\// By(2) = By(2) +iB,(6) = x(2)
B, (3) W By(3) = B,(3) +iBy(7) = x(3)

B, %) B,(4) = B,(0) - B,(4) = x(4)
B, (5) //\_1 B 3(5) = B,(1) - B,(5) = x(5)
B, (6) \B 3(6) = B,(2) ~1B,(6) = x(6)
32(7)./ _1\33(7) = B,(3) -1B,(7) = x(7)

Fig.(2.7). Summary of arithmetic operations in (2.27).
Combining Figs. (2.5), (2.6) and (2.7), one obtains the signal flow
-graph for N = 8 @5 shown in Fig. (2.8). The signal flow graph for N = 16
is shown in Fig. (2.9).

From these signal flow graphs, the following observations and generali-~
zatiors result,

1, In general there are logzN iterations,.

2, 1In the first iterationm, %’pairs of points are added and subtracted
tp obtain the input to the second iteration.

3, The rth

iteration, r = 2, 3, . . L,=1032N consists of N/2%¥ groups
with 27 data points in each group., The first of these groups takes each
of the multipliers 1, i, -1, -i for (‘2)1._2 times. Each of the remaining

ETg"I groups take the multipliers 1, -1 and hence involve only addi-
tions and subtractions,

4, The total number of arithmetic operations required to recover all

" the N data points x(0), x(1), . . ., x(N-1) is proportional to N.log,N.
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In conclusion Fig. (2.10) illustrates the ICBT for the case N = 8 with

—_—

10+104, -24, -3-4, =3+5i, 1431, -1-i, 1+i, 3-74
C(qy|T o | 2EERRL, 23, 23-4, 3ol
By (3) 8 8 8 8 8 8 8 8

The corresponding data sequence Ex(ij is seen to be

X ro—
[.__1(_(321 Co= | 144, 2431, 1, 14+2i, 21, 2, 3+, i .

Note that the above results are consistent with the numerical example

associated with the CBT in Fig. (2.3).
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CHAPTER III

POWER SPECTRUM CONSIDERATIONS

3.1 CBT Shift Matrix

The key to obtaining a power spectrum for the CBT introduced in
Chapter I is the shift matrix which relates the CBT coefficients of a
shifted sequence to those of the original sequence [%(éi] . It is recalled

that the CBT is defined as
El_ag(@ = %Ec(rﬂ Eﬁ(nﬂ : (3.1)

1 ‘ :
Let [;< )(%i] denote the complex N-periodic sequence obtained by

shifting the original sequence‘[?(éi] to the left by one position. Then

E;m(rElT =[x x@ ... xo-n x@ :
T ‘
where [;(1)(;ﬂ is the vector representation of[ggcl)ggil'.

Using matrix notationJ:é(iﬂ and-[g(l)(iﬂ are related as follows

where

[ﬁ(éi] =10 0 0 0 1 0 0 O .

o 0 0 o 0 1 0 O
¢ 0 0o-0 G 0 1 O
o 0 0 o 0 0 o0 1




If [é(l)(;i] denotes the CBT of [g‘l)(ézl » then from (3.2) it follows

that

Substituting (3.2) in (3.3), there results

From the ICBT defined in (2.23) and (3.4) if follows that

50d) - 4l ] [

E“’(n_)- [a] [5,m . | (3.5)
— >4

Gl - 3 [l b Bl

Clearly [;(éE] in (3.5) is the desired shift matrix since it relates

or

where.

2 =

thhibBT of the shifted sequence [}fl)(éil to the CBT of the original

sequence [g(éil .

In particular consider the case N = 8., Then substitution of the

element values of [Ec(gﬂ s [ﬁ(éi] and [;Z(éi]T in the expression for
[;(n) in (3.5) results in the following shift matrix



I
o’
o0 le11
0 - O
0
ﬁﬁ_j =
0 L:E %_ MR
E(sz] - 7|%1 _-1+i|
l1-5  -1-1 |
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(3.6)

Inspection of (3.6) results iﬁ two observations which concern .the

féiiéwing properties of_[g(ii] B
() [A(3)] has a block-diagonal structure.

(ii) There are 2+log,8 submatrices along the main diagonal (indicated
2

by the partitioning in (3.6)).

(i1i) The submatrices mentioned in (i1) are orthonormal,

It can be shown that (see Appendix B) in géneral, [;(ﬁi] has 2-1og2 N

orthonormal submatrices which have recursion properties. That is

A1(0) |
,____4._._*_7
14,©

RSy
1
B Nt

(2] - 220

@,

(3.7)




where. n= 1032 N,

] = [i]

] -E

[2(k:] [1 (1{)] for k=0, 1, 2, . . .» (n=2).
[a0] = [703) [Eed] - eg] + 0" 7 3Ead)] [re]

for k=0,1,2, ..., (n-2); andm = 1, 2, and [U(K)| is defined in .
Appendix B, In what follows, the shift matrix developed above will
be used to obtain the CBT power spéctrum.

3.2 CBT Power Spectruﬁr .

In Fourier Analysis, it ig well known that the power spectrum is
invariant with respect to shifts in the signal. This is a fundamental
prope?ty of a power spectrum, ‘A CBT power spectrum which has this shift
invariant property will be éEveloPed in what follows.r

Consider the case N = 8, Then from (3.5) and (3.6), it follows that

3 () ., IEEY
3 1y 4,(0) ‘ O B(1)
3(1)(2) 04 (o)—L - B(2)
3P (3) EAY B(3)
5P - e @ B
Bm (5) O B “{'_CITI)_I{ B(5)
3 (6) N/ T T e, | | B

3(1) | | : B(7)

where. Elcoz = [1]

[4,(0] -
e, @]
Ez (©)

]
Ill
(oS
L1

26

(3.8)
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14 =14
Elflzl =777 T2
14 =l
2 2
and P
1-i  -1-i
o] -5 2.
o -lH
2 2_ ]

Using elementary matrix partitioning, (3,8) yields

8¢y = B(O)

D) = -B)

3@ = 182

31 (3) = -i8(3)
3V @w] ~ — 8@
By = &M EGL

and W@y — — [Be6)
= (C, (D)
W 2 B(7) | - (3.9)

B (7 —
Since the matrices El(]:)] and Ez(lz’ are orthonormal, from (3.,9), it

S

follows that

| Dol” = |50
' B(D(l)l2 = |sn|?
lB(I)(zﬂz = |B|?
'B(l)(3)|2 = |B(3)|?

f%i; ‘3(1)(j)12 = .f%ig B(j)|2

and 7

7
;%;;: |B(1)<i>|2 :gég:}3<i>|2 . (3.10)
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Thus the invariants for one shift in the data sequence D(Z&_ﬂ are:

a0y = B2
p)) = [B(D|?
) = |3’
By = |3’

P(4) = §'|B(j)|2 o (3.11)
K5 = 446_ sen|®
(=

Howgver, using the property that powers of orthonormal matrices are
-'als.o' orthonormal, it follows tha‘t the above'analysis is valid for'all‘ ‘¥
shifts .éf the data sequence E{(ﬂ where, k=0,1,2, , . ., 7. Thus
7 the CBT -power spectrum fof N =8 is given by the P(i), i =0, 1, 2, . . ., 5
in (3.11). It is observed that the spectrum has 2'-log28 = 6 spectrum points,
In general, it can be shown that the CBT power spectrum has 2-103214

spectrum points which can be defined as follows:

»(0) - |82
D) = |sw|®
3-2°-1 "
B 2 | B0 (3.12)
25+2_1
and P(25+3) = Z IB(k)l2 s s=1,2, . . ., (n=2),.
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If the CBT power spectrum for a real periodic sequence is found, then
it is 6bserved that
PO) = |B(0)|?2
) = |B(D]|?
and P(2s+2) = P(2s+3)
where P(2s+2) is given by (3.12).

Figures (3.1) and (3.2) illustrate the computations involved to compute
the CBT power spectrum for an 8-periodic and & l6-periodic sequence respec-
tively. From (3.12), it féllows that the power spectrum for the 8-periodic
sequence in Fig. (3.1) is given by

P(0) = 200/64

P(l) = 4/64
P(2) = 10/64 (3.13)
P(3) =  34/64
P(4) =  12/64
and P(5) =  60/64

Similarly the power spectrum for the l6-periodic sequence in Fig. (3.2) is

given by
P(0) = 290/256
P(l) = 50/256
P(2) = 106/256
P(3) = 10/256
P(4) = 196/256 (3.14)
P(5) = 292/256
P(6) = 248/256

and - P() = 376/256
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The number of 1ndependent'power spectrum points associated with the
BT, CBT, and the DFT corresponding to real and complex N-periodic input

sequences are summarized in Table (3.1).

Table (3.1)

Name of No. of independent spectrum points

transform real input complex input
BIFORE logoN + 1 log,N + 1
Complex BIFORE log,N + 1 2~1og2 N
Discrete Fourier | ' g +1 N

3.3 Further Computational Considerations

From (3.12) it is clear that to obtain the CBT power spectrum, it is
necessary to compute all the CBT coefficients B(k), k=0, 1, 2, . . .,(N-1),
In this section it is shown that one can compute the spectrum points directly
without first obtaining the transform coefficients. The method is best
illustrated for the case N = 8.

For N = 8, the spectrum points are (see 3.11).

B = [B|%, k=o0,1,2,3. (3.15)

However from the signal flow graph N = 8 in Fig. (3.1), one has

Combining (3.15) and (3.16) there results
2
IX3(k)|
P(k-) = 82 »y k=0,1,2, 3 . (3.17)

Again examination of the signal flow graph N = 8 in Fig. (3.1) reveals that

B (4) 1 1 1 X9 (4)
= § (3.18)
B(5) 1 -1 X9 (5)



B(6) 1 1 1 x2(6)
and = 3 . (3.19)
B(7) 1 -1 | %D

Taking the transpose and complex conjugate of (3.18), one has

ﬁ 11
E‘(z.) n*(;_)—l . %Ez*(") xz*(il[ ;] : (3.20)

Multiplication of (3.18) and (3.20) results in

4 ! %)
E*(l’) B*(-':l—l B(4) ) ;_2 E;(M x;(i;l'i :l Xy
B(5) 1 -1 1 -1} |x,(5)
2 .
o IE(::.)|2+ |B(5)|":l = 82 IE;(a)Iz +|x2(5)l—f:| . (3.21)

The left hand side of (3.21) is precisely P(4) (see (3.11)).

Hence (3.21) can be written as |
5 ' _
_ - 2 2 ‘
P& = 7 Zk I (3.22)

A similar treatment of (3.19) yields
-2, ! 2
B =T > |n®|” (3.23)
k=

The arithmetic operations in (3.17), (3.22) and (3.23) which yield the
power spectrum are summarized in the flow graph shown in Fig. (3.3). From

this flow graph it follows that its general version consists of log,N

33

iterations. The rt! iteration yields 2r-1 groups with N/2°"! data points in

each group for r =1, 2, 3, , , ., n. The data points in each of the lower
group yields two spectrum points. Thus the general form of (3.17), (3.22)

and (3.23) can be expressed as follows:
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p(k)

P(2s+2)

and p(2s+3)
- for s

where n

35

~1 2
N2 %0 |° , k=0,1,2,3

o8
N2

28
N”

3-25-1 5
=g5+1 lxn-s (k)‘
s+2 (3.26)
2. -1 "
- | *n-s (9]
k=32

1’ 2’ 3! s s e (n'Z).

logzN

and xr(k) denotes the kiR output data point of the eth iteration,

‘r=1!2’-oo:n-

Based on (3.24) the power spectrum for a l6-periodic sequence is derived

and is shown in Fig. (3.4).

In conclusion, two numerical examples for the cases N = 8 and N = 16 in

(3.24) are included in Fig., (3.5) and Fig. (3.6) respectively., From Fig,

(3.5), the CBT power spectrum of the 8-periodic sequence shown is given by

P(0)
P(1)
?(2)
P(3)
B(4)

and P(5)

=

=

200/64
4/64
10/64
34/64
12/64

60/64

(3.25)

Again, the power spectrum of the l6-periodic sequence shown in Fig. (3.6) is

given by
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BO0) = 290/256
K1) = 50/256 -

P.(2) = 106/256

P(3) =  10/256

P(4) = 196/256 (3.26)
P(S) = 292/256

P(6) = 248/256

p(7) = 376/256 ‘._

3.4 Autocorrelation Theorem
~The cross-correlation sequence of two real N-periodic sequencesEé(nz]

andEé(n) is defined as

i =1
[Z(kﬂ = “ﬁl‘“ i x(h) - y(icth) (3.27)

“h=0
for k = 0’ 19 2, « » -:‘(N'I).

If Ei(éﬂ andﬁgﬁéi]are identiéal, then (3.27) represents the auto correlation

sequence and is defined as

T _
Ez(kﬂ = —NI—Z % (h) *x (k+h) | (3.28)

h=0
for k=0, 1, 2, . . ., (N-1).
In the case of the real BIFORE transform Ohnsorg [é] has shown that the
BT power spectrum can be computed from the BT coefficients of z(ki] in
(3.28), as follows:
P(o)= B,(0)
and 28,1

p(s)= Z B,(k), s=1,2,,..,n
k=25'1

(3.29)
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where, B,(k), k=0, 1, 2, . . ., (N-1) are the BT coefficients of
EoP

The autocorrelation theorem analogus to that in (3.29) is now considered
for the CBT when the input sequence [%(n) is complex, Then (3.28) is
modified to obtain,

N-1
[za9] = S Eh_o x(h)  x*(kth) (3.30)

for k=0, 1, 2, . . ., (N-1)., and where x*( ) is the complex conjugate
of x( ).

The autocorrelation theorem is best demonstrated by means of a numerical
~ example for the case N = 8, With N = 8, the matrix form of (3.30) is éiven

be."

_Z(D-)— _?(-0) x(1) x(2) ... ... x-(;)—— _x*(O-)_
2(1) x(7) x(O) \x(l)\‘. B E 8 .\::(6) x*(1)
2(2) .xce)\xo)\x(m e x| | x
2(3) ]
20| | R R RER D
z(5) R B e
2(6) ] e
2| | = Yo >(0) e |

Again, consider the 8-periodic sequence Eé(%ﬂ » Such that
x(0) = 1+i, x(1) = 2431, =x(2) = 1, x(3) = 1+2i

x(4) = 21, x(5) = 2, x(6) = 3+, x(7) = 1 ’ (3.32a)

then (3.31) yields



20-201 20+61 29-81

22 29+81 20-61 204214
Z(4y = g, 2(5) ="g ., 2(6) =g » 2(N) = 3 - (3.32b)

The signal flow graph which yields the CBT of the sequence [éﬁéi] in
(3.32b) is shown in Fig. (3.7).

From Fig. (3.7), one has

B: (0) = 200/64 , B (1) = 4/64

B (2) = 34/64 ., B (3) = 10/64

y oy o L1 5 sy o 42191
64 E ol 5
7-1 : 5+i

B (6) = ¢4 s BN =T -

Noﬁ referring to (3.é5), it is found that the CBT power ébectrﬁm for
the sequence [%géi] in (3.32a) is given by

P(0) = 200/64

P(1) =  4/64

P(2) = 10/64

P(3) = 34/64 | (3.34)
P(4) = 12/64

P(5) = 60/64 -«

Comparing (3.33) and (3.34), there results
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P (0)
P(1) =B (1)
P (2) (3)
P(3) =B (2)
(6) + B (7) (3.35)

B .(0)

n
=

-}

and . pl4) =
p(5) o B.(4) +B(5) -«
It can be shown that (3.35) generalizes to
p(k) = B:(k), k=0, 1
s+2

2. -1

P {(2842) HZEZ B - (m) (3.36)
m=3.2

" 3:2%-1 |
P(2s43) = % B . (m)
for s =0, 1, 2, . . ., (n-2) and n = log,N .
From (3.36), it is clear that the CBT power spectrum can be obtained
from the CBT of the autocorrelation sequence of the input sequence E((él

Thus (3.36) is the desired autocorrelation theorem for the CBT,
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CHAPTER IV

PHYSICAL INTERPRETATION OF THE CBT POWER SPECTRUM

4.1 Introductory Remarks

In the case of the real BT, there are (1032N+1) power spectrum points,
Each spectrum point represents the power in a subsequence which is obtained
by decomposing the original input sequence. The input sequence is de-
composed into (10g2N+1) subsequences which are mutually orthogonal to one
another, In this chapter an analogous development is carried out for the
CBT,
4.2 A Decomposition Technique

In CBT, there are 2-1032H spectrum points, Hence the input sequence
should be decomposed into zlogzN mutually orthogonal subsequences.

Consider the 8-periodic sequencé in Pig. (4.1). With respect to Fig.
(4.1), it is convenient to introduce the notation

Xy (m)

’fr(m)= -?;—J-, r‘l; 2’ 3;m=0’ 1' 23...) 7.7 (4.1)

Then, it can be shown that the original sequence [iﬁ%i] can be expressed

as a sum of the following subsequences [Ef(éﬂ which are expressed in terms

of the ¥y (m) in (4.1):

@] = [B® %O B[O .. %
[613)] = [F3(D) A3 (D) KD v vv v e :,;3('?‘;
6,D] = [F3(2) 1R3(2) F3(2) ~153(2) H(2)  1F3()) Fa(D) -f,;Béi
_9_3(31_ = ﬁ(s) -i%3(3) X33 iX3) %33 -i%;(3) -%3(3) 1%, (3)
6] = [B®W ) & () K@) Fy(S) %) i %, (i

0] = [o® % -5 - Hp(6) %D 15y(6) 1%, (7)
| (4.2)
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In (4.2), it is observed that:
1, There are 6 i,e,, 210g28 subsequences [Er(éil. In general there
are 2log,N subsequences [§f(€i], n n.logZN.
| é. [50(3) is l-periodic, [El(%z] is l-antiperiodic*,[Eé(%i] and

[%3(%3 are 2~antiperiodic and [E%(%E] and [Es(%i} are 4-antiperiodic, 1In

general the periodicities of the subsequences [§¥(Eﬂ can be expressed as

follows:

[go(éﬂ is 1l-periodic
[:1(61 is 1l-antiperiodic o 4.3

[:;QLQ(E:] and[:;s+3(§:] are 2Bf5ntiperiod1c for s =0, 1, 2, . . .,(n-2).

3. The original 8-periodic sequence is given by

x(:i__>| -g I:G-,-(s) . | (4.4)

In general (4.4) can be expressed as

2n-1

[X(r:_;] - Zo @(E)li n = log,N . | (4.5)
=

A numerical example is considered next, Let

[:K@T= [1+;, 2431, 1, 1421, 21, 2, 3+, i] | (4.6)

Then, the % (m) defined in (4.1) are obtained as shown in Fig, (4.2).

Table (4.1) verifies that

ol - > Gl e

r=0

*A sequence is M-antiperiodic if xMtm) = -x(m).
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Ceneral Structure of Er‘(t;ﬂ
Inspection of (4.2) reveals that the subsequences @(3ﬂ can be con-
structed by associating multipiiers 1, -1, 1 a_nd -1 with the’i’c'i.(m) obtained

in Pig. (4.1). A systematic way of associating these multipliers with

’ir(m) is shown below,

x3(0)= 1 3 Member of[(_;o(Bﬂ ; l-periodic
x3(1) — 1 53— Member of[gl(a)] 3 l-antiperiodic
- . —

X3 (2) Members of[cz (3)]; 2-antiperiodic

[

i —_

X3 (3) *»— |Members of E;3 (Bﬂ; 2-antiperiodic

N T
| S

x5 (5) i Members ofE;4 (3—)}; 4-antiperiodic
i

X9 (6) i |

x2(7)

Members of E:S (35_]; 4-antiperiodic

Fig. (4.3). Construction of the subsequences E.;‘t.(3;’| .

Iﬁ Fig. (4.3) it is ﬁofed that the basic multipliers associated with the
2-antiperiodic sequences are 1, 1 and 1, =i, The 4-antiperiodic sequences
take the same multipliers except that each multiplier appears twice and
hence the sets of multipliers are (1, 1, i, i) end (1, 1, =i, ~1), Again,
if 8-antiperiodic sequences are present then each multiplier appears four

times as shown below :
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B-antiperiodic

.
[TYYYYYTY

.
N\ 1
AN 1
AN\ 1 8-antiperiodic

“Z s
‘r Y Y vyYYVY

From the above discussion, it follows that in general if m-antiperiodic
subsequences [Ef(%ﬂ are present in the decomposition, then the multipliers
1, 1 and 1, -1 each appears % times,

In conclusion, & numericalﬁgggmple for the case N = 16 is considered.

Let

[E'(@ = 1+i; 2+3i’ . . L . . s -21) 4 . (&08)

The decomposition process which yields the subsequences [Ef(éi] is

shown in Fig. (4.4). 1In Table (4.2), it is verified that

[xw] - i@@[ . .9

r=0

4,3 Orthogonal Properties of [g;téi}
An important property of the subsequences ng(n) is that they are
orthogonal to each other. From the discussion in section 4.1, it is known

that a given N-periodic data sequence can be expressed as the sum of 2n

subsequences [Er(éi]' From (4.5) one has
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Table (4,2)
13+113 134114 13+114  13+11i 134134 13+114 134131 13+114
16 16 16 16 16 16 16 16
-1-74 1471 -1-74 1474 -1-74 1474 -1-74 1474
16 16 16 16 16 16 16 16
9+54 -5+91 -9-54 5-91 9+51 -5+91 -9-51 5-9i
16 16 16 16 16 16 16 1
-1+3i 3+ 1-3i -3-1 -1431 3+ 1-34 -3-1
16 16 16 16 16 16 16 16
-81  18+2i 8 -2+18i 8i -18-2i -8 2-18i
16 16 16 16 16 16 16 16
-124204  2-6i 20+12i -6-23 12-20i -2461  ~20-12i 6+21
16 16 16 16 16 16 16 16
| -4-61 16481 8i 241 bebi -8+161 =8 -24
16 16 16 16 16 16 16 16
| 12-44  -16+16i -16-16i _8-161  -4-12i  16+16i  -16+16i =-16-8i
16 16 16 16 16 16 16 16
1+ 2+34 1 1421 2-1 41 -3 -1-i
e ——— ——— — "“___——"'—'_"____—_—J
13+4111  13+11i  13+411%  13+11i 134114 134118 13+114 134114
16 16 16 16 16 16 16 16
-1-74 1474 -1-7i 1471 -1-74 1474 -1-71 1474
16 16 16 16 16 16 16 16
9+51 -54+91 -9-5i 5-91 9+51 -5+91 -9-54 5-9i
16 16 16 16 16 16 16 16
1431 I+ 1-31 -3-i -1434 3+ 1-31 -3-i
16 16 16 16 16 16 16 16
-8i 18421 8 -2+18i 81 -18-21 -8 2-18i
16 16 16 16 16 16 16 16
-12+201  2-6i 20+123 -6-21  12-20i -246i  -20-12i  6+2i
16 16 16 16 16 16 16 16
4t4i  -16-8i -84 -244 -4thi 8-161 8 24
16 16 16 16 16 16 16 16
-12+41  16-16i  16+16i  =-8+16i 44124  =16-16i 16-16i  16+8i
16 16 16 16 16 16 16 16
2i 2 3+ i 2+ -1 -2i 4




[x(xﬂ - 2HZ-1 [ex@)] 5 n = 10gN. (4.10)
) r=0 _

Since each E" (tﬂ has 2" elements, it can be expressed as

| E,(r;_] - E(n) gr() &® . ... .sr<ﬂ-£|'- 4.11)

In terms of the elements g-l;( ) ofE,'_. (n)|, the orthogonal property of
the subsequences Et(rE] can be stated as
-1 M
gr(m)- gz (m) =0 (4.12)
m =
for r # s and r,s =0, 1, 2, . .. » (2n-1)., where gs*(m) is éo:nplex
7 conjx‘x'gate‘uof és(m) .
-&.4 Powa;- Assréciated with Decomposed Sequence
The purpose' of decomposing the given data sequence into 2n subsequence
Er'(ra » 18 to establish a one-to-one corresmndence between the power in
each of these subsequences and a CBT power spectrum point.-

It is recalled that the average power in a real M-periodic (or, anti-

per iod ic) sequence

E((mzl = _‘EO) x(1) x(2) - - - - x(bi-l)_'n.. m = log,M

is given by M-1
' 1 ,
Fav: = M % x2 () . (4.13)

1f the M-periodic (or, antiperiodic) sequence is complex, then (4.13) is

rewritten in the form

M-1
1 Z 2
Pav: = x(k)] (4.14)
Ea T
where |x(k) | denotes the absolute value of x(k).
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Consider the 8-periodic sequence defined in (4.6). The powers in
corresponding subsequences are computed by applying (4.14) to each of the
[Er(S) listed in Table (4.1). Again, the CBT power spectrum for this
sequence was computed earlier (see (3.25)). These results are summarized

in Table (4.3).

Table (4.3)

Sequence Power CBT power sepctrum
Gr(3) Periodicity Associated (Ref (3.25))
Go(3)] ~ 1-pertodic 200/64 P(0) = 200/64
6,(3)] 1-antiperiodic 4/64 P(1) = 4/64
(6, (3) 2-antiperiodic 10/64 P(2) = 10/64
[65(3) 2-antiperiodic 34/64 P(3) = 34/64
Eéh(%i 4-antiperiodic 12/64 P(4) = 12/64
65(3)] 4-antiperiodic 60/64 P(5) = 60/64

Similarly results pertaining to the 16-periodic sequence defined in
(4.8) obtained from Table (4.2) and (3.26) are summarized in Table (4.4).

Examination of Tables (4.3) and (4.4) reveals that there is a one-to-
one correspondence between the CBT power spectrum points P(k) and the
subsequences [E;(Eﬂ and [E;(Eﬂ for N = 8 and N = 16 respectively. In‘
general it can be shown that

1. The CBT power spectrum point P(0) represents the average power in
the l-periodic sequence [g;(éi] .

2. The CBT power spectrum points P(2s+2) and P(2s+3) respectively

1

represent the average powers in the il -antiperiodic subsequences [§é5+2 (éz]

and [§é3+3(£ﬂ, where n = logyN, and 8 =0, 1, 2, . . ., (n-2).



Table (4.4)

Sequence Power CBT power spectrum
Gr(4) Periodicity Associated (Refer (3.26))
[6o®)] 1-periodte 290/256 P (0) = 290/256
614 | 1-antiperiodic 50/256 P(l) = 50/256
E2(4)_ 2-antiperiodic 106/256 P(2) = 106/256
:_63<4—)j. 2-antiperiodic 10/256 P(3) = 10/256
[64(4)]  4-antiperiodic 196/256 P (4) = 196/256
:Eﬁ(éz: 4-antiperiddié - 292/256 ' P (5) = 292/256
(Gg(4)| 8-antiperiodic 248/256 P (6) = 248/256
67(4)]  8-antiperiodic 376/256 B (7) = 376/256
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CHAPTER V

RECOMMENDATIONS FOR FUTURE WORK

5.1 Relationship Between the CBT and Discrete Fourier Transform (DFT) Spectra

The DFT of a N-periodic sequence is defined as
N-1

G = > xm W, k=0, 1, ..., () (5.1
' m=0 N

where W= e-ﬁ“/N .

_The Fast Fourier Transform (FFT) is an algorithm which yields the DFT

coefficients Cy(k) in-(5.1) in approximately N-log, N arithmetic operations

and requires a storage of approximately N locations, The number of storage

locations and the number of arithmetic operations required using direct

methods to compute the Cy(k) in (5.1) is proportional to Nz. Thus, as N

increases, it is obvious that the e€fficiency of the FFT increases rapidly.

As an illustrative'example. consider the sequence defined in (4,6), that is

3 ' . s «—1 4y

e

The FFT signal flow graph, N = 8 is shown in Fig. (5.1). The

corresponding power spectrum is obtained as
| 2 _ 200

P = | c, (0 = 5
f = |exy|? = 45
= |g@|? = B2
B = || - %

(5.3)

2

86y = lge® | = %
Fal

Py = |co(® =
?"(7) \CxU) = 64 .
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Comparing this flow graph with the CBT signal flow graph for N = 8, it
is apparent that the two are very similar. On the basis of this similarity,
the following recommendations are made for future work:

1. Develop a general transformation which relates the discrete Fourier
and complex BIFORE transform,

2 Détermine the relation between the CBT and DFT power spectra. The
DFT power spectrum is defined as _

$(S) = lck(s)lz, s=0,1, .. .,'(Nfl) . (5.4)

For the simple example of the 8-periodic sequence in (5.2), it is

straightforward to verify that _

P(s) = P(s), s=0,1, 2, 3

p(4) = By +B(5) | ' (5.5)
and P(5) = B(6) + B(7)
where,the P(s) are the CBT power spectrum points (see (3.25)); This suggests
the existence of a general rule to obtain P(s), given'?(s).

3. When the data sequence [%(n) is real, then it is known that
(§ + 1) of the ?(s) and (logzn + 1) of P(s) are independent spectrum points.
Again, when[gtn) is complex, the DFT_and CBT yield N and 21032N independent
spectrum points, It is emphasized that both spectra represent a distribution
of power in [%(ﬁz} and have the shift invariant property. Thus it is
instructive to investigate whether there are other transforms and corresponding
power spectra, whose number of spectrum points falls between the limits cited

above,
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APPENDIX A

Kronecker delta matrix product (denoted by @® ) is explained below

considering two square matrices

ale £ g] bfe £ g
~ = alh 1 3] o0 1 3]
a b aEl:ﬂ bgla
cql BN HYCT efe £ 8] dafc £ g]
£ cEiII dlh 1 3]
el 1 m dklg_
_a;af ag be bf;—g_
7 ah ai aj bh bi bj
i : L | ak al am bk bl bm .
ce cf cg de df dg
- ¢ch ci cj dh di dj
ck ¢l em dk dl dm

In general, if a matrix A of order (mxm) and a matrix B of order (nxn) are
multiplied in Kronecker delta manner, then the resulting matrix is of order
(mn x mn).

It is recalled that Elc.(_lﬂ can be written as

1 1,1 1
Ec(g] = 1 -1l 1 -1 .
-t

lil—l:h

A matrix E’(]:l-] of order (2 x 2) is defined as
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Then Ec(z_ﬂ can be written as

Eé@

It can be simplified by

5] o [swa] | rea]

L

which leads (A.1) to yield

[

Ha(1)

Ho(n-1) |

P(1l) ®H(0) i -P(1) ® H(0) |
where EI(OE] = [l:l . The above result is generalized to obtain

m) -

_Hi(n-1)

He(1)

—

using

P(l) @ H(n-2) Tl_ -P(1) ® H(n-2)

|
H(n-2) | -iH(n-2)

1._.
H(n-2) | iH(n-2)

(A.1)

—

o) | k@ ]
H(n-2) : -iH(n-2) |

—

He(2)

: LH_(n-Z) | iH(n-2) | -H(n-2) ]I—-i!-l(n:i)_
Using (A.2) Hé(ﬂ can be derived from Ec-(:;l as follows

ERSIE

H(1)1-1H(1) l -;1—(1-) I_in(_l;

l T i
| B() | SIONE OIS

-
-H(n-2) | 1iH(n-2)

(A.2)

—

He(2)

61



|
1 1,1 1,1 1 1
1 .11 a1l a1
m - — =]
1 -1 -1 4|1 =i -1
[
1 1-1 4l 1 oa

L =t d =fq=l 1 =i
|

Higher order [H;] can be computed in & similar manner,
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APPENDIX B

In (3.6) the shift matrix [A(Sﬂ was calculated. It has the block

diagonal structure as shown below :

[A(31] diagonal EO, Ayy Ay, Ag, Ay ’A:Sj

where
o = [1]
1 ["1]
[Az] = [4]
el - E
148 -1+
[A4] = 2 2
Td  wlei
| 2 2
IEEEET
and [Asj = 2 2 . (B.1)
1+i =1+1 ‘
| 2 2

It should be noted that
(g) = [z
and Els] [AZ] ' (B.2)

For shift matrix in real BT a recursive relationship is derived which
is based on the roots of the characteristic equation [l}-_' .
Factorization of the characteristic polynomial
AN - 1 =0 (B. 3)

over the real field generates the following shift matrix

[A(nﬂ = diagonal EO’ Al’ Az, A3’ A4’ LI ] AN_E.(B"i)
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The characteristic equation given in (B.3) when factorized over the complex
field yields
n-1 "
AN o1 = @ ] EA)Z +E:| (8.5)
k=0
which governs the shift matrix in this case [}é] . The shift matrix is of

bleck diagonal structure and can be defined as

[;(%i] = diagonal _élSO) A2(0) Cl(O) C,(0) Cl(l) 02(1) W .

s e e e e . Ci(n=2) Co(n-2)
18 Sl (5.6)

4,0] = [1]
o - ]

and [CI(RS] and %2(1;)] are square matrices of order 2k and complex conjugate

of each other.

A vecursive relationship to compute [gl(gﬂ and [E?fkij is derived

below [’_’11]

Considering N = 4, a sequence shifted by one position to left can be

related to the original data sequence [%(éﬂ as

where the transformation matrix [ﬁ(Zﬂ is

0 1 0 0

E‘(zﬂ=0010-
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Now,a matrix E(nﬂ of order (2" x 2™ is defined which has all zero
elements except the element in the first column and last row, which is 1.

Using U(n_;] a recursive relationship for E«i(x;)_l can be written as

|
- M(n) - U(n) U{n)
M (nt+1) |- - — - = - — - - (B.8)

For n =1, [__b_d(@ can be written as

[na] - E—JE jl E j

|

|

[= oll
o ol
: |
— —;f
ICJ r-”
!

[ ]

=l
k__ql
I

o 1 o o
or B(23=0010 .
o 0 0 1
ENERCIN

The recursive formula for EC: m (k) lis

] - [0 [5d] - e + o™ fol|[5d] o

X Eh
where m= 1, 2 and E{(I;_)—_l 1s (29} order Hadamard matrix [lﬂ

Using (B.9),E§1(1) is computed to be

] - [r] ™ [Fa] - ] + 02 o] ]

-
1 0 1 0 0 0 0 1 1
or El(ﬂ % - + i
1-“ 1 0 1 0 10 1 -1

e

=




or. Egi(gﬂ =

" B - [ -

1
R

which was calculated in (3.8).

To illustrate the recursion,[?l(zﬂ is computed, From (B.9)

or. E}-(zzl = 21:

or.; El(ﬂ =

and

1 1 1 1
11 -1
1 1-1-1

l1-1-11

—
3+

1-1
1

—

1=1

-1+

— ., =T
k@] - [v@] + n? v ] | [m)]
01 0 0 0 0 0 O 0
0O 01 0 0O 0 0 O 0
- +
0 0 0 1 0 0 0 O 0
1 0 0 O 1 0 0 0 1
1 1 1 1
1=1" 3 =1
1 1-1-1
1+« =1 1
“l+i  -1+i -1+
“3-1 1-1 1-1i
1-i 1-4 =3-1
-1+i 3+1

]O o o Ol

Higher order block diagonal matrices can be computed in a similar way

using (B.9).
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ABSTRACT

The Complex BIFORE (Binary Fourier Representation) transform (CBT) is
studied. An algorithm which yields the inverse CBT in approximately NlogzN
arithmetic operations is developed.

The CBT power spectrum is compared with corresponding poﬁer spectrum of
the BIFORE transform (BT) and discrete Fourier transform. An algorithm
which enables rapid computation of the CBT power spectrum is developed.
Again, a physical interpretation of the CBT power spectrum is provided.
This is accomplished by developing a method which enables a real or complex
N-periodic data sequence to be expressed as the sum of 2log,N mutually

- orthogonal subsequences,



