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ABSTRACT 
 
Failure of passive transfer (FPT) is one of the main reasons for increased mortality rate in  

newborn calves and diagnosis is dependent on determination of serum IgG concentrations  

(diagnosis is based on < 1 g/dL of total IgG). Several qualitative assays are available, but  

the reference method, single radial immunodiffusion assay (SRID), albeit quantitative 

measures only one subclass at a time. We set out to develop a competitive multiplex  

microsphere flow cytometry assay to measure bovine IgG1 and IgG2 concentrations in 30  

serum samples acquired from newborn Holstein calves  prior to and 24 hours after  

ingestion of colostrum and to compare the values with SRID.  A triplex bead assay was  

created by mixing three distinct sets of Quantum plex carboxylated fluorescent  

microspheres that were coated with purified bovine IgG1, IgG2 or albumin using a two  

step chemical reaction.  The triplex protein coated beads were reacted with a cocktail of  

sheep anti-bovine IgG1 and IgG2.  Evaluation of analytical specificity demonstrated  

cross reactivity between anti-bovine IgG2 and IgG1 coated beads that precluded  

determination of IgG2 > 0.5 g/dL.  Cross reactivity between anti-IgG1 and IgG2 coated  

beads was minimal and did not affect IgG1 concentrations between 0.15 to 1.2 g/dL.   A  

competitive linear decrease in the fluorescence intensity was observed in the triplex assay  

when 2-fold dilutions spanning a concentration range of 12 mg/dL – 100 mg/dL of either  

purified bovine IgG1 or IgG2 were included as a competitive inhibitor of the reaction.   

Precolostral serum samples from 29 calves were determined to be < 0.4 g/dL by SRID.  

Standard calibrants for the flow assay were prepared from two fold serial dilutions of  

purified bovine IgG (stock concentration 10 g/dL) using a precolostral calf serum pool as  

the diluent.  The standard calibrants (IgG1 was 1.0- 0.16 g/dL and IgG2 was 3.4 – 0.22 

    



g/dL) were used as the inhibitors in a triplex assay to develop a standard curve for  

unknown samples. Dilutions of bovine reference serum containing known amounts of 

IgG1 (1.2 – 0.15 g/dL) and IgG2 (1.6 – 0.2 g/dL) was used as positive control.  The intra 

Intra-assay and inter-assay precision of the mutiplex assay was good (coefficient of 

variation < 10%). Since the IgG2 concentrations of post colostral samples were below 

detection limit, only IgG1 values were compared to the SRID.  The agreement between 

triplex microsphere assay and SRID for IgG1 was poor with a mean bias of 0.743 g/dL 

towards triplex microsphere assay (95% confidence interval of 0.382 to 1.105 g/dL).   

Method comparison studies between total IgG determined by SRID and the gamma-

globulin fraction determined by serum electrophoresis indicated that the SRID calculated 

higher values than the protein method (mean bias of -1.4 g/dL, 95% confidence interval 

was -1.8 to -1.05 g/dL).  We hypothesized that the positive bias for the microsphere assay 

was explained in part by the use of dilution factors, use of standards that had a low 

analytical range, and erroneously high standards used in the SRID method.   
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                                         Review of Literature 

 

Failure of passive transfer (FPT) and associated neonatal disease. 

 

Calves are born with a naïve but competent fully developed peripheral immune 

system.  Newborn calves are susceptible to environmental pathogens because there is a 

prolonged lag period and primary immune responses produce low amounts of antibody.   

Protective memory immune responses may not be optimal until after one month of age 

(Tizard & Schubot, 2005), therefore, immune protection from the dam is paramount at 

the time of birth.  Ruminants differ from humans in that intrauterine transfer of maternal 

immunoglobulins does not occur.  This phenomenon is due to the fact that maternal blood 

does not bathe the trophoblast and the chorionic epithelium is in direct contact with the 

uterine tissues, described as syndesymochorial placentation (Tizard, et al, 2005).   As a 

consequence, the transplacental transfer of immunoglobulin (Ig) molecules is completely 

precluded, and newborn calves are dependent on receiving maternal antibodies by oral 

consumption of colostrum (Quigley et al., 2001;Bush & Staley, 1980). Adequate levels of 

gamma globulin (IgG) transfer are essential for health and survival of neonatal calves. 

Passive immunity is achieved by ingestion of an adequate mass of IgG in colostrum 

produced by the dam (Bush, et al, 1980;Quigley, et al, 2001;Besser & Gay, 1994). Failure 

of passive transfer (FPT) occurs when the plasma IgG concentration is below 1g/dL 

(Besser, et al, 1994;Quigley, et al, 2001) and predisposes the newborn calf to disease. 

Calves with IgG concentrations greater than 1g/dL have lower mortality rates from 

infectious enteritis and respiratory diseases (Besser, et al, 1994).  The frequency of failure 
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of passive transfer in dairy calves is reported to be as high as 35% of the calves (Stott et 

al., 1979;Brignole & Stott, 1980), whereas it is less frequent in beef calves (Wilson et al., 

1999).  

 

Colostral immunoglobulin absorption. 

 

The colostrums in cattle consist of the accumulated secretions of the mammary gland 

during the last weeks of pregnancy.  Estrogens and progesterone influence the transfer of 

immunoglobulins and other proteins from the blood to the mammary gland.  IgG is the 

major Ig present in the blood and it accounts for 65 – 90% of the total antibody content in 

the colostrum whereas IgA and IgM are 10 – 20% of the total (Tizard, et al, 2005).  The 

subclass of IgG that predominates in bovine colostrum is IgG1.  In fact, colostral IgG1 

concentrations are five to ten times higher than maternal serum IgG1 (Besser, et al, 

1994;Tizard, et al, 2005;Sasaki et al., 1976).  Transfer of IgG1 from the blood across the 

mammary glad secretory epithelium is facilitated by receptors to IgG1 (Barrington et al., 

1997a) and peaks 1-3 days before partiturition (Brandon et al., 1971). As lactation of the 

dam progress colostrum changes to milk and the glandular epithelial cells cease IgG1 

receptors production under the influence of prolactin (Barrington et al., 1997b).  

Thereafter, most of the IgG and IgA are derived not from the blood but produced locally 

in the udder (Tizard, et al, 2005).   

Selective transfer of maternal immunoglobulin occurs over the first few hours of 

birth by an apical tubular system in the intestinal absorptive cells. After 12 hours the 

absorptive capacity of the intestine decreases (Bush, et al, 1980;Stott, et al, 1979), and by 
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24 hours of birth passive transfer of maternal Ig stops.  Maternal antibodies are detected 

in the lymphatics  at 1 to 2 hours after birth (Bush, et al, 1980). Absorption of IgM is 

slower than IgG and IgA (Bush, et al, 1980) and gradual decreased absorption for each 

class is independent and observed at 16 hours for IgM, 22 hours  for IgA, and 24 hours  

for IgG.  Irrespective of when the calf is fed, absorption of proteins decreases 

spontaneously at 12 hours of age.  Cessation of the nonselective absorption of proteins 

through intestinal epithelial cells is referred to as gut closure, and is thought to be a 

function of exhaustion of the pinocytic capability of the apical enterocytes, and due to 

enterocyte replacement by a more mature population of epithelial cells that may lack 

specific Fc receptors (Mayer et al., 2002).  The basal cell membrane fails to release the 

pinocytosed products resulting in cessation of transport, hence closing the uptake by the 

tubular system.  The amount of IgG consumed has a positive linear relationship to the 

concentration of the IgG in the serum within 24 hours (Bush, et al, 1980).  Unlike other 

piglets or lambs (Lecce & Morgan, 1962), in cattle feeding or dietary regimens do not 

influence time to closure, however gut closure may be extended to 36 hours if feeding is 

delayed (Stott & Fellah, 1983).  

 

Factors affecting passive transfer in calves. 

 

Attainment of passive immunity in newborn calves is influenced by IgG 

concentration and the volume of the colostrum (Arthington et al., 2000;Besser, et al, 

1994;Bush, et al, 1980;Quigley, et al, 2001;Stott, et al, 1979;Besser et al., 1991) , the age 

of calves at first feeding (Arthington, et al, 2000;Bush, et al, 1980;Stott, et al, 1979), birth 
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weight, (Bush, et al, 1980;Stott, et al, 1979), and absorption of IgG from intestine to 

blood (Besser, et al, 1994).   In an early report, it was described that fermented colostrum 

had a lower pH and lower absorption of gamma-globulins (Bush, et al, 1980), however, 

lower pH did not affect the absorption of exogenous IgG spiked in colostrum 

supplements (Quigley, III et al., 2000).  Furthermore, high rates of FPT occur in dairy 

calves that are allowed to suckle naturally.  This observation was attributed to the fact 

that the IgG concentration in holstein cow colostrum is more dilute than beef cows.  

Dairy calves are unable to achieve adequate passive transfer unless they receive adequate 

IgG mass when fed 4 liters of colostrum (Besser, et al, 1991).    

 

Methods for determining failure of passive transfer. 

 

 There are several traditional methods to diagnose FPT such as salt turbidity assays 

including zinc sulfate and sodium sulfite, total protein by refractometry, gluteraldehyde 

turbidity assay and immunological methods including SRID and immunoturbidity assays 

but none of them are entirely satisfactory. 

 

Salt turbidity assays. 

 

Salt turbidity assays that are commonly used to measure Ig in serum include the zinc 

sulfate assay and sodium sulfite assay.  Both are considered qualitative assays and their 

principle is based on the fact that when a salt mixture is added to serum containing Igs, 

the immunoglobulins precipitate or salt out resulting in a turbid solution.  In both 
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methods, the turbidity is proportional to the amount in milligrams of immunoglobulin 

using known standards to compare with the patient sample.  Both the zinc sulfate and 

sodium sulfite assay are easy, inexpensive and less time consuming when compared to 

SRID.  However, hemolysis caused a false increase in turbidity of the zinc sulfate test 

(Weaver et al., 2000). In addition the zinc sulfate turbidity assay overestimated the 

concentration of immunoglobulins compared to SRID (Pfeiffer et al., 1977).  When a cut 

off of < 1g/dL of IgG1 was used to define FPT, the zinc sulfate test had a diagnostic 

sensitivity of 100% and specificity of 52% when compared with the SRID.  The low 

specificity of the zinc sulfate test indicates that false positive results for FPT were 

frequent (48% of the time) and greater than when the sodium sulfite assay and serum 

total protein by refractometer were used to predict FPT (Tyler et al., 1996b) 

 In the sodium sulfite turbidity assay 14%, 16% and 18% sodium sulfite solutions 

are used to test serum samples for Ig.  The highest salt concentrations (18%) induce 

turbidity at low concentrations of high molecular weight proteins, whereas low salt 

concentrations precipitate proteins of high concentrations.  For example in a  study of 242 

calf serum samples, mean serum IgG1 concentration was found to be 2.9 g/dL (range 2.4 

– 3.6 g/dL) by SRID when precipitation or turbidity was present in all three sodium 

sulfite solutions.  Precipitation in the 16% and 18% sodium sulfite solutions was equal to 

a range of 1.0 – 4.3 g/dL for IgG1; whereas when precipitation occurred only in the 18% 

sodium sulfite solution the IgG1 concentration was equal to a range of 0.6 – 2.5 g/dL. 

Absence of turbidity in all three sodium sulfite solutions was considered a negative result 

and reflected a mean serum IgG1concentration of 0.6 g/dL, (range was 0 – 2.4 g/dL) 

(Tyler, et al, 1996b). When the performance of the sodium sulfite test was determined by 
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calculating the diagnostic sensitivity and specificity of the assay to correctly identify 

animals with FPT using SRID as the gold standard method, the diagnostic sensitivity 

(85%)and specificity (86%) was best when the highest salt solution was used (18%) 

(Tyler, et al, 1996b).  The sodium sulfite turbidity test can be used to evaluate a broad 

range of IgG compared to zinc sulfate turbidity assay.  However,  the zinc sulfate test was 

shown to a high number of false positives (specificity was 52% and sensitivity was 

100%) (Tyler, et al, 1996b).   Although the results from this study indicated that the 18% 

salt solution provided the best diagnostic sensitivity and specificity, today commercially 

available kits provide only the 16% salt solution (Bova-S, VMRD, Pullman, WA).  Based 

on previous findings, this assay would serve as only a screening test for FPT and would 

only identify samples that had < 1.0 g/dL IgG. 

  

Total protein. 

 

      Total protein can be measured using a  refractometer which measures the protein 

concentration based on change in refractive index caused by the solid components in the 

plasma (Stockham & Scott, 2002).  Serum total protein concentrations of the 242 calf 

samples described previously were determined using a temperature-compensated 

refractometer and compared to IgG1 concentrations using SRID.   A protein 

concentration of 5.2 g/dL is shown to correlate with a concentration of 1 g/dL of IgG1 

(Tyler, et al, 1996b).  When 5 g/dL of total protein was considered as the cutoff for FPT, 

the specificity was 96%, but sensitivity was 59%.  In contrast, the sensitivity was 94% 

and specificity 74% when 5.5 g/dL was considered as the cutoff (Tyler, et al, 1996b).  
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The total protein by refractometer is considered excellent for herd monitoring, however, 

there are concerns regarding the effects of age and hydration status (Weaver, et al, 2000). 

Similarly, the biuret reaction using brom-cresol green dye is one of the most common 

spectrophotometric methods used to measure total protein.   Copper in the biuret reagent 

binds to peptide bonds creating a blue-green colored complex. The color change is 

proportional to the amount of protein in the solution, but not all the polypeptide chains 

are available for the reaction (Stockham, et al, 2002) 

  

Serum electrophoresis. 

 

Serum electrophoresis is used to determine the concentration of immunoglobulin due 

to different migration pattern of proteins in an electric field. The major disadvantage of 

this method is that it requires expensive equipment and it cannot be used to determine the 

concentrations of the subclasses of the gamma fraction  (Pfeiffer, et al, 1977).  The assay 

also requires knowledge of the total protein concentration because the percentage of the 

gamma fraction is then multiplied by the total protein to determine the concentration of 

the gamma fraction.   

Gluteraldehyde coagulation test. 

 

The molecular cross linking caused by a 10% gluteradehyde solution coagulates 

basic proteins such as immunoglobulins and fibrinogen. The amount of coagulation is 

thought to be dependent on IgG as it is the predominant immunoglobulin in postcolostral 

serum (Stockham, et al, 2002). The gluteraldehyde coagulation test is inexpensive and 
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easy to perform, but the sensitivity and specificity is inadequate for diagnostic use when 

compared with SRID.   Diagnostic sensitivity was reported to be < 41% and specificity 

varied from 85% to 100% (Tyler et al., 1996a). 

 

Single radial immunodiffusion assay (SRID). 

 

Single radial immunodiffusion is a quantitative assay which can determine the 

concentrations of total bovine IgG and the subclasses IgG1 and IgG2 (Pfeiffer, et al, 

1977).  The assay is based on a precipitation reaction that occurs in an agarose gel 

between the immunoglobulin (Ig) in the bovine serum sample and specific antibody to 

bovine Ig incorporated into the gel at the time of gel preparation. The standards consist of 

bovine serum containing known concentrations of IgG and its subclasses or isotopes. In 

the early assay development, standards were initially prepared by precipitating 

immunoglobulin from adult bovine serum with ammonium sulfate (50 and 40%) then 

dialyzed and lyophilized. The protein concentration of the IgG product was determined 

by the Lowry method (Pfeiffer, et al, 1977).                                                                                             

Today commercially available standards to measure total bovine IgG by SRID are in 

the range of 400mg/dL to 3200mg/ dL.  For IgG1 and IgG2 standards are 125 mg/dL to 

1000 mg/dL and 94 mg/dL to 750 mg/dL, respectively. The diameters of the precipitin 

rings resulting from the antigen antibody reaction of the standards are used to create a 

linear standard curve. The diameters of the precipitin rings of the bovine serum samples 

are compared to the diameters produced by the standards.  Concentrations of the 

unknown samples are determined by a linear standard curve created by plotting diameters 
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in millimeters vs. concentration on semilog paper.   The SRID is considered the gold 

standard because of the specificity and quantitative properties of the method (Davis et al., 

2005).  In addition, there are several advantages to the SRID method compared to other 

methods.  For example, SRID uses only 3 µL of serum and can be used to determine the 

concentrations of the subclasses of IgG.   However, the disadvantage is that the SRID 

requires 18 to 20 hours of incubation.  Since age of feeding is an important factor in 

treating FPT, this long incubation period is a major disadvantage of this method. Finally, 

SRID is very expensive compared to other methods. 

 SRID gave better results compared to other methods because it is more 

quantitative than either sodium sufite assay or zinc sulfate assay. SRID showed fewer 

false positive results when compared to zinc sulfate assay and correlated well with 

refractometric determination of total protein (Tyler, et al, 1996b). Most of these methods  

measure IgG based on the assumption that IgG is the most abundant protein in the serum 

whereas,  SRID  directly measures IgG and its subclasses by antigen antibody reaction. 

 

Automated and transportable turboimmunometric assay. 

 

 Automated assays have been designed to detect human IgG, equine IgG, and 

bovine IgG.  The are based on detection of  agglutination reaction between IgG and 

specific antibody that results in light scatter and is measured spectrophotometrically by 

an automated instrument (Davis, et al, 2005;Etzel et al., 1997). This assay is not affected 

by hemolysis in serum and can be used for serum or plasma samples. The major 

advantage of this assay over SRID is the automation, shorter turnaround time (< 1 hour) 
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and elimination of human error in reading precipitation rings.  Comparison studies 

between the turboimmunometric assay and SRID for equine and bovine IgG showed 

good correlation (Davis, et al, 2005;Etzel, et al, 1997).   

 A commercially available immunoassay using lateral-flow technology is now 

marketed for field testing.  This assay produced by Midland BioProducts was evaluated 

for performance in predicting FTP by testing 204 male Holstein calves (ranging from 4 to 

8 days old) and comparing the results to  refractometry of total protein and zinc sulfate 

turbidity methods.  The lateral-flow immunoassay values correlated well with the 

refractometry and zinc sulfate turbidity techniques, but the lateral flow immunoassay had 

the best diagnostic accuracy (95%) compared to refractometry (80%), and zinc sulfate 

(73%) methods (McVicker et al., 2002), but still cannot read IgG1 and IgG2 in the same 

tube. 

 

Multiplex microsphere technology using flow cytometry. 

 

Multiplex fluorescent microsphere bead assays are extensively used in human 

medicine.   This is a novel technology that enables one to analyze multiple analytes in a 

single tube using a flow cytometer.  These microspheres are internally dyed with 

fluorophores (combinations of red and orange dyes) of different intensities and act as 

solid base to which the analyte or protein can be covalently linked using various chemical 

or molecular techniques. The flow cytometer can differentiate amoung microspheres up 

to 100 different bead sets based on size, fluorescence intensity, and fluorescent 

wavelength.  This technology can analyze numerous biomolecules such as nucleic acids, 
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viruses, ligand binding interactions, proteins such as cytokines and antibodies when 

proteins, nucleic acids or capture molecules are covalently linked to the microspheres and 

treated with specific reporter antibodies following incubation with the analyte of interest 

(Camilla et al., 2001;Dasso et al., 2002;Lal et al., 2004;Paul et al., 2005).         

  There are hurdles to using this novel technology as the cytometer and the 

associated software is very expensive. Microsphere bead technology is very sensitive, 

thus standardization of the assay and the reagents for the multiple components is very 

critical (Camilla, et al, 2001;Dasso, et al, 2002;Lal, et al, 2004). Minor variations in the 

coupling protocols will significantly alter the fluorescence intensity of the capture 

antibodies because of the variation in the density of the coupled capture antibodies 

(Dasso, et al, 2002). 

       Many studies have reported good correlation between microsphere bead assay and 

enzyme-linked immunosorbent assay (ELISA) (Camilla, et al, 2001;Dasso, et al, 

2002;Lal, et al, 2004).  However, studies that compare methods for agreement are 

lacking.  Correlation coefficients used to determine correlation between methods identify 

associations, which are not unexpected if the methods measure the same analyte.  

However, there are better statistical models to determine the degree of agreement or bias 

between methods (Altman, 1991).   

Using flow cytometry, the microsphere assay directly measures multiple Igs or their 

isotypes by antigen-antibody reaction, if the beads are covalently linked with the proper 

purified proteins and allowed to react with fluorochrome labeled specific reporter 

antibodies. The main advantage of using a microsphere assay to determine IgG and its 

subclass concentrations in the foreseeable future is the expected shorter turn around time 
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and multiplexing that would allow multiple Igs to be measured, thus facilitating the 

ability to identify animals with FPT or other immune deficiencies.  
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Introduction 

Newborn calves are immunologically naïve at birth and require the passive 

transfer of maternal immunoglobulins (Ig) after birth to maintain health and immune 

protection against environmental pathogens. Unlike humans, transfer of Ig to calves and 

foals does not occur in utero due to the strict barriers of placentation in these species.  

Instead, maternal immunoglobulins are absorbed from colostrum (first fraction of milk) 

in a narrow window of time after birth (≤ 24 hours).  Determination of adequate passive 

transfer of these critical life saving antibodies in neonatal animals is a common procedure 

requested by practitioners in the field.  Several commercially available assays used to 

measure serum Ig concentrations in neonatal calves include refractometer determination 

of total serum protein concentration, sodium sulfite turbidity, zinc sulfate, and SRID.  

Previous studies indicate there is marked variation in the results and poor accuracy or 

lack of precision of the assays.   Serum electrophoresis was found to be very accurate and 

quantitative (Pfeiffer, et al, 1977).   The RID was not linear at high concentrations of 

serum immunoglobulin, whereas sodium sulfite turbidity assay is semi-quantitative and 

zinc sulfate is qualtitative (Tyler, et al, 1996b).  Variables that contribute to variability 

from one study to another include the age of the calves that were sampled, the time of 

sampling, and venipuncture site (Chorfi et al., 2004).  

New technology using immunological reactions, microspheres, and flow cytometry 

has become available that provides a multiplexing capability in which multiple analytes 

can be measured in a sample at one time.  This technology uses polystyrene carboxylated 

microspheres that are internally dyed with fluorochromes of various intensities.  The 

beads serve as a solid matrix in which multiple different analytes can be covalently 
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attached.  Fluorescently conjugated reporter antibodies specific to the protein are then 

used to capture the analyte in the serum.  Thereafter, the microspheres coupled with 

analyte and antibodies can be analyzed by flow cytometry.  The main advantages of using 

the microsphere assay to determine IgG and its subclass concentrations in the foreseeable 

future are the expected shorter turn around time and the ability to measure multiple Igs at 

one time, thus facilitating the ability to identify animals with FPT or other immune 

deficiencies.  

Many studies have reported good correlation between microsphere assays and 

enzyme-linked immunosorbent assays (ELISA) (Camilla, et al, 2001;Dasso, et al, 

2002;Lal, et al, 2004).  However, studies that compare methods for agreement are 

lacking.  Correlation coefficients used to determine correlation between methods identify 

associations, which are not unexpected if the methods measure the same analyte (Bland 

& Altman, 1986b).  There are better statistical models to determine the degree of 

agreement or bias between methods (Bland & Altman, 1986a;Altman, 1991).   

The goals of this project were to develop a multiplex microsphere flow cytometry  

assay to measure bovine IgG subclasses and to compare the IgG1 and IgG2 results to that 

of the reference method (SRID) using serum samples obtained from calves prior to and 

24 hours after ingestion of colostrum.  Total IgG concentrations determined by SRID 

were also compared with the gamma-globulin fraction by serum electrophoresis. 
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Materials and Methods  

Calf samples. 

  

Serum samples from 30 newborn Holstein calves were collected at birth and 24 

hours later, at which time all calves had received one to two liters of banked colostra. 

Venipuncture by jugular vein and animal handling protocols were followed using 

approved guidelines established by the Kansas State University Institutional Animal 

Care and Use Committee.  A precolostral serum pool was prepared by pooling 1 mL 

serum aliquots from each of 29 calf samples.  All twenty-nine samples were determined 

to be below the detection limit of the single radial immunodiffusion assay (SRID). 

 

Quantitation of bovine IgG1 and IgG2 by single radial immunodiffusion.  

  

 Concentrations of total IgG in all calf samples (pre and postcolostral) were 

determined by SRID in duplicate using a commercially available assay (Immunocheck, 

SRID, VMRD, Pullman, WA) with an analytical range of 400 – 3200 mg/dL.   

 

Quantitation of bovine IgG by combined biuret and serum protein electrophoresis.  

  

 The gamma fraction of calf samples was quantified independently by the clinical 

pathology laboratory at the College of Veterinary Medicine, Kansas State University 

using a combined cellulose acetate serum protein electrophoresis method and the biuret 

method for total protein (Hitachi 911, Boehringer Mannheim, Indianapolis, IN). 
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Conjugation of analyte to carboxylated microspheres. 

 

Three distinct sets of carboxylated fluorescent microspheres (5.5 µm, Quantum 

Plex beads, Bangs Laboratories, Fishers, IN) were separately covalently linked with 

either purified bovine IgG1, IgG2 (Bethyl laboratories, Montgomery, TX) or globulin 

free bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO) using a modification 

of a previously described method (Paul, et al, 2005).  To prepare a stock of carboxylated 

beads for protein conjugation, three separate 1 mL aliquots of bead suspensions were 

washed twice with 2-[N-morpholino] ethane sulfonic acid buffer (Sigma, St. Louis, 

MO).  Two mL of 1-ethyl-3-3-(3-dimethyl aminopropyl) carbodimide hydrochloride 

(stock was 10 mg/ml of EDC in deionized water, PIERCE, Rockford, IL) was brought 

up to 10 mL by adding  2-(N-morpholino)ethane sulfonic acid (MES) buffer, pH 7.4, 

then incubated with the stock beads for 15 minutes at room temperature. To open the 

amine group on the proteins, each protein (bovine IgGs and serum albumin) were 

treated with the EDC/MES mixture in a similar manner.  The activated bovine proteins 

(IgG1, IgG2, and albumin, 50 mg/L) were added to the carboxylated activated 

microsphere sets for 3 hours and 30 minutes on a rocker platform at room temperature. 

This carbodiimide coupling procedure results in a water soluble intermediate product 

that creates a protein attachment to the beads by an amide linkage. After the incubation 

period, the beads were washed twice with 0.05% Tween in PBS, pH 7.4 (PBST). The 

conjugated microspheres were incubated with 30mM glycine at room temperature for 

15 minutes to quench the charge and reduce nonspecific absorption.  To block the 

remaining nonspecific binding sites, beads were incubated with 3% BSA for 1 hour on a 
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rocker platform at 37 °C. The bead suspension was washed twice with 0.05% PBST. 

Finally, an equivalent amount of conjugated beads were suspended in 0.05% PBST and 

stored at 4°C.  All washing steps were at high speed (2000 x g) for 5 minutes (Beckman 

TJ6 centrifuge, Fullerton, CA).  

     

Determination of optimal concentrations of fluorescin labeled secondary antibody. 

  

 Using a monoplex assay for each IgG subclass coated bead set, a cocktail of 

secondary antibodies was serially diluted ten fold (final concentrations 0.1g/L to 0.01 

mg/L) and incubated with IgG1 or IgG2 coated microspheres for 30 minutes on a rocker 

at room temperature and assayed on flow cytometer.  

 

Comparison of monoplex and biplex assays. 

 

To determine whether or not there was interference in the antibody-antigen reaction 

when multiple bead sets were introduced, the mean fluorescence intensity values for 

each monoplex assay generated by reacting a single set of protein conjugated 

microspheres with a single antibody was compared with values determined in a biplex 

assay.  For the biplex assay, a cocktail of beads coated with IgG1 and IgG2 were 

incubated with a cocktail of anti-bovine IgG1 and IgG2. The antibodies were tested in 

ten fold dilutions. A cocktail of conjugated beads were made by adding 50 µL of each 

conjugated bead set to a tube (1.5mLEpendorf tube).  The microsphere cocktail was 

mixed with 10 µL of a bovine standard or serum sample diluted 1:4 in PBS. 
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Immediately, 100 µL of a cocktail of two FITC- labeled affinity purified sheep 

antibodies to bovine IgG1 and IgG2 (4 µg/mL stock in 0.01M PBS,  Bethyl 

laboratories, Montgomery, TX) was added to the bead mixture and incubated for 30 

minutes on a rocker platform at room temperature. The bead suspension was suspended 

in 300 µL of PBS prior to acquisition by flow cytometry.  Mean fluorescence intensities 

(MF) generated from monoplex assay for both IgG1 and IgG2 were compared with the 

biplex assay. 

 

Development of triplex assay to measure bovine IgG1 and IgG2. 

 

The characteristics of the Quantum plex microspheres used to covalently link 

purified bovine IgG1, IgG2 and BSA are illustrated in Fig. 1A prior to reacting with 

FITC-labeled anti-bovine antibodies. The different bead sets of 5.5µm diameter can be 

detected by far red emission (690 nm) after excitation with the argon laser (Fig. 1.B). 

Bovine serum albumin (BSA) was conjugated to the microsphere set (designated as 

pink beads) with the lowest fluorescent intensity detected by the FL3 detector (10 to 20 

mean fluorescent channels).  Bovine IgG2 was conjugated to the microsphere set 

(designated as blue beads) with fluorescent intensity between 100 and 200 mean 

fluorescent channels of the FL3 detector.  Bovine IgG1 was conjugated to the 

microsphere set (designated as green beads) with fluorescent intensity between 700 and 

800 mean fluorescent channels of the FL3 detector. To confirm specific protein coating 

of the beads, beads were incubated with a cocktail of fluorescein isothiocynate (FITC) 

sheep anti-bovine IgG1 and IgG2 (Bethyl Laboratories, Inc., Montgomery, TX).  An 
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arbitrary cut-off for background fluorescence intensity was established based on the 

shift in fluorescent intensity of the negative control bead set coated with BSA or 

background fluorescence intensity established for IgG1 and IgG2 conjugated beads in 

cross reactivity studies. Two fold dilutions of standard serum calibrants diluted in 

precolostral serum were used as the inhibitor of the assay to generate a standard curve.  

The decrease in mean fluorescence intensity that occurred with inclusion of inhibitor 

was proportional to the concentration of the inhibitor protein.  

 

 Determination of analytical specificity of microsphere assay, 

 

To determine the cross reactivity of the IgG1 or IgG2 bovine antibodies to the 

bovine subclass immunoglobulin molecules coating the microspheres, beads conjugated 

with IgG1 were reacted with sheep anti-bovine IgG2, and beads conjugated with IgG2 

were reacted with sheep anti-bovine IgG1.  The mean fluorescence intensities of these 

reactions were compared to the mean fluorescence intensity values of the isotype 

specific reactions (i.e. anti-bovine IgG1 with IgG1 and anti-bovine IgG2 with IgG2).  

To determine if the cross reactivity of the sheep anti-bovine antibodies to the IgG 

subclasses altered the decrease in mean fluorescence intensity obtained with specific 

IgG subclass inhibitors, a triplex assay was performed using one inhibitor at a time.  In 

separate tubes either purified IgG1 or IgG2 (serial dilutions starting at 1 mg/mL) was 

added to the mixture of beads coated with IgG1, IgG2 and BSA. Two fold serial 

dilutions of purified protein were tested in separate tubes. Immediately, the cocktail of 
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antibodies (sheep anti-bovine IgG1+anti-bovine IgG2) was added and incubated for 30 

minutes on rocker at room temperature and assayed on flow cytometer. 

 

Stability of bead protein conjugates.  

 

To determine the stability of the proteins covalently linked to the beads, the triplex 

assay was performed weekly for four consecutive weeks using the same stock of beads 

and cocktail of secondary antibodies. 

 

Preparing the standards and creating a standard curve.  

 

Standard serum calibrants were prepared by two fold serial dilutions of purified 

bovine IgG (10 g/dL, Sigma Co, St. Louis, MO.) using precolostral calf serum pool as 

the diluent. The total concentration of bovine IgG in the commercial product was 

confirmed by serum protein electrophoresis using cellulose acetate and biuret reactions 

(Hitachi 911, Boehringer, Mannheim). This assay was performed by the clinical 

pathology laboratory at Kansas State University.  Concentrations of IgG1 and IgG2 in 

the standard calibrants were determined by the SRID (VMRD, Pullman, WA). Controls 

consisted of bovine reference containing known amounts of IgG1 and IgG2 (Bethyl 

laboratories, Montgomery, TX).  The concentrations of the serum calibrants were 

converted to natural log and plotted on the X-axis vs. mean fluorescence (Y-axis). A 

first order polynomial equation [Y = slope(X) + intercept] was generated from the 

standard curve.  The equation was solved for the X value and the natural log value was 
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converted using the exponent.  Serial dilutions of the bovine reference serum were run 

as positive controls between ranges of 2.8 to 0.35 g/dL for total IgG (IgG1 was 1.2 - 

0.15 g/dL and IgG2 was 1.6 – 0.2 g/dL).  A set of beads conjugated with BSA was used 

as a negative control.   

 

Flow cytometry 

 

A total of 1000 gated bead events for each bead set were collected by a flow 

cytometer (FACSCalibur, Becton Dickinson, San Jose, CA) and the data were analyzed 

using Cell Quest software (Becton Dickinson, San Jose, CA).  Three gates were placed 

on each microsphere set using two color dot plots.  Distinction of Quantum plex bead 

sets that reacted with FITC sheep anti-bovine IgG antibodies was visualized by 

displaying the beads in on FL3 (y-axis) vs. FL1 (x-axis) (Fig. 1).  The mean 

fluorescence intensity of the binding of FITC conjugated antibody (peak emission 535 

nm) to each bead set, (BSA, IgG1, and IgG2) was recorded by the FL1 detector.   

 

Assay reproducibility and analytical accuracy. 

 

Intra-assay and inter-assay precision or reproducibility was determined by assaying 

standard serum calibrants and four fold dilutions of the bovine reference serum on the 

same day (intra-assay) or over several days (inter-assay) using a stock of conjugated 

beads.  Results were obtained from each set and coefficient of variation was calculated 

(standard deviation divided by the mean) and expressed as a percentage.   

   21
 



 

The analytical accuracy of the assay was determined by assaying the bovine 

reference serum with known concentrations of 0.175 – 1.2 g/dL determined by SRID 

and ELISA (communication with Bethyl labs, Montgomery, TX).  Percentage of 

recovery was calculated by dividing the observed values determined by the microsphere 

assay by the expected values and multiplying the result by 100.   

 

Method comparisons.  

 

IgG1 concentrations of 30 postcolostral serum samples were determined in 

duplicates by SRID (VMRD, Pullman, WA) and by the triplex micrsophere assay.  The 

average of each replicate sample was determined for each assay.  To identify constant 

and proportional bias the average concentrations of each assay were plotted by Deming 

regression analysis (Analyse-it software for Microsoft excel, version 1.71).  For NCCLS 

(National Committee for Clinical Laboratories) bias plots, the differences between the 

methods were plotted against the mean concentration determined for the reference 

method (NCCLS, now Clinical Laboratory Standards Institute).  The SRID method was 

designated as the reference method, whereas the microsphere assay was designated as 

the new or comparative method. Total IgG concentrations determined by SRID were 

compared to the total serum gamma fraction by protein serum electrophoresis using 

cellulose acetate combined with the biuret reaction for total protein.  In each method 

comparison, the average values for the reference method (SRID) were subtracted from 

the average values of the comparison method to determine the differences.   
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Statistical analysis 

 

Data was analyzed for normality using Kolmorgorov-Smirnov (K-S) and replicates 

were tested for differences in the median by the Mann-Whitney Rank Sum test.  

Association between the methods that determined IgG1 concentrations (microsphere 

assay and SRID and protein serum electrophoresis and SRID) was determined using the 

Spearman Correlation coefficient (RS).  

 

Results 

 

SRID assay results of pre and post colostral samples.  

 

Concentrations of total IgG for 29 calves in precolostral sera were below detection 

limits of the SRID assay (0.4 g/dL).  One calf had 1.6 g/dL.  Total IgG, IgG1 and IgG2 

concentrations in post colostral sera determined by SRID were listed in Table 1.  The 

median concentrations for total IgG were 3.2 g/dL, whereas IgG1 and IgG2 were 

between 2.0 - 2.05 and 0.11 – 0.115 g/dL, respectively.  The proportion of IgG1 of the 

total bovine IgG determined by SRID was 65%, whereas IgG2 was 3%.  There was no 

statistically significant difference between the replicates (Mann-Whitney Rank Sum 

test, P =0.865). 
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Analytical specificity of the microsphere assay, 

 

Specificity of the assay was evaluated to identify any cross reactivity of the FITC-

labeled sheep anti-bovine antibodies to the protein coated microspheres or to soluble 

protein inhibitor.  In the first experiment, secondary antibodies were tested for binding 

to IgG1 or IgG2 coated beads without serum inhibitor (Fig. 2). Slight binding of IgG1 

coated beads occurred with anti-bovine IgG2 (Fig. 2A, mean fluorescence intensity was 

33), whereas anti-bovine IgG1 reacted with IgG2 coated beads resulting in a greater 

shift in fluorescence intensity (up to 102) (Fig 2B.) indicating cross reactivity of anti-

bovine IgG2 with IgG1 and anti-bovine IgG1 with bovine IgG2.  However, the shift in 

fluorescence intensity that occurred with specific isotype reactions for IgG1 and IgG2 

were substantially higher, 2-logs for IgG1 (Fig. 2C), and 1-log for IgG2 (Fig. 2D).   

 In the second experiment when purified IgG1 was added alone in increasing 

concentrations to the FITC-labeled anti-bovine antibody cocktail, the mean fluorescence 

intensity for the reaction between antibody and IgG1 coated beads decreased in a linear 

manner, while the mean fluorescence intensity of IgG2 and BSA coated beads remained 

essentially unaltered (Fig. 3). Similarly, when IgG2 was added without IgG1 inhibitor, 

only the IgG2 coated beads showed a decrease in mean fluorescence intensity (Fig 4) 

indicating specific competition with soluble IgG2.  There was a slight drop in mean 

fluorescence intensity for IgG1 and IgG2 when the opposite IgG class inhibitor was 

added at the low inhibitor concentrations. These results indicated the cross reactivity of 

the sheep antibodies did not affect the triplex assay when purified inhibitor was used.   
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Comparison studies between monoplex and biplex assay. 

 

Interference between the bead sets was investigated by comparing mean 

fluorescence intensities generated by the monoplex assay with those generated by the 

biplex assays.  In Figure 5, the mean fluorescence intensity of the monoplex and biplex 

assay were similar and demonstrated linearity over the dilutional range for both IgG1 

(Fig. 5) and IgG2 (Fig. 6).  There was a slight decrease in the mean fluorescence 

intensities for IgG2 when the biplex was compared to the monoplex assay. In 

conclusion, the biplex assay having two sets of beads did not substantially alter the 

fluorescence intensities detected by the binding of FITC cocktail antibodies to either 

IgG1 or IgG2 coated beads.   

 

Assay stability and optimization of report antibody concentrations. 

 

Stability of the beads after protein coating was analyzed by comparing mean 

fluorescence intensity values generated from the triplex assay over time. The mean 

fluorescence intensity for each set of microspheres of the triplex assay did not change 

up to four weeks, thereafter the protein coated beads deteriorated causing an increase in 

scatter properties and a decrease in the mean fluorescence intensity.  The optimal 

concentration of FITC-labeled sheep anti-bovine IgG1 and IgG2 was determined to be 

1:250 because this concentration did not cause BSA-coated beads to shift in fluorescent 

intensity and gave the highest mean fluorescence intensities compared to further 

dilutions of antibody.   
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IgG subclass concentrations of bovine IgG standards and reference sera. 

 

The IgG concentrations of the Sigma serum standard and reference serum were 

compared in Table 2.  Protein electrophoresis and the biuret method confirmed the 

concentrations of the Sigma serum product after dilution with the precolostral sera pool. 

The total amount of IgG determined by serum protein electrophoresis approximated the 

sum of the two subclasses of each product.  Concentrations of the IgG subclasses of the 

two products were comparable with IgG2 being consistently higher than IgG1 in both 

serum products.   

 

Development of a standard curve for the triplex assay.   

 

Increasing concentrations of the standard bovine IgG (Sigma, CO, St. Louis, MO) 

diluted with the precolostral sera pool was used as the inhibitor in a triplex assay to 

develop a standard curve for unknown samples (illustrated in Fig. 7 dot plots).  The 

bead sets coated with IgG1 (green dots) and IgG2 (blue dots) shifted to the left or 

decreased in fluorescence intensity as the inhibitor concentrations increased (Fig. 7B –

F) compared to precolostral serum without inhibitor (Fig. 7A).  The highest 

concentration of standard IgG1 (1.0 g/dL) did not shift into the fluorescence region in 

which anti-IgG2 cross reacted with IgG1 coated beads (Fig. 7F compared to Fig. 2A).  

Several concentrations of standard IgG2 (3.4 – 0.8 g/dL) overlapped with the 
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fluorescence shift that occur when anti-IgG1 cross reacted with IgG2 (Fig. 7D-F 

compared to Fig. 2B). 

Because the IgG2 concentration of the post colostral sera from all calves was < 0.2 

g/dL by SRID, further quantification of IgG2 by the microsphere assay was not 

performed.  To create a standard curve and a first order polynomial equation to solve for 

unknowns, the standard IgG1 concentrations were plotted against the mean fluorescence 

intensity of the standards (Fig. 8A).  However, this plot produced a nonlinear curve, 

therefore, the x-axis data (standard concentrations) were converted to natural log (Fig. 

8B) and the equation for the line was created. 

 

Assay reproducibility and analytical accuracy for IgG1. 

 

        The imprecision data for the microsphere assay for IgG1 is presented in Tables 3 

and 4. The within assay reproducibility (intra-assay precision) was good (CV < 10%) 

for all concentrations of standards and reference serum (Table 3), however, reference 

sera at 0.3 g/dL concentration had the highest CV (8%).  The inter-assay precision was 

also good (CV < 10%) for each concentration of standard or reference sera (Table 3).  

The standard curves for the intra-assay and inter-assay reproducibility experiments were 

linear with similar values for the slope and intercept (Fig 9A and B).   

 The accuracy of the microsphere assay was near 100% (± 8%) for all 

concentrations of bovine reference sera (0.35 g/dl – 1.2 g/dL) except for the lowest 

concentration (0.175 g/dL), in which the percent recovery was 183%.   
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Method comparison of SRID and microsphere assays. 

  

 The amount of agreement between the triplex microsphere assay and the reference 

method SRID was determined by comparing the results of all the 30 pre and post 

colostral serum values performed in duplicate. Since IgG2 concentrations were less than 

0.3 g/dL in both assays, statistical comparisons were not performed. The mean IgG1 

concentrations determined by the flow cytometry microsphere assay and SRID were 

compared using a Deming regression plot.  Figure 10 shows the presence of an extreme 

outlier that caused the regression line to cross the line of identity.  The outlier was due 

to a post colostral sample that measured 7.5 g/dL (mean) by the RID and 2.3 g/dL by 

the microsphere assay. This outlier was removed from the database because of the 

extreme discrepancy between the two assays and the data from the methods were 

reanalyzed for comparison (Fig. 11).  In the new plot the data points were spread out 

and based on the position of the new regression line, there was a notable constant and 

proportion bias. The NCCLS bias plot (Fig. 12) showed a mean positive bias of 0.743 

g/dL (95% confidence interval was 0.382 to 1.105 g/dL) over the analytical range. The 

RS value was low (0.31) indicating a poor correlation between the two assays.  Since 

the microsphere assay for IgG1 had poor agreement with the SRID assay, total IgG 

concentrations of the post colostral sera samples were compared with a protein 

electrophoresis method using cellulose acetate to determine the gamma globulin 

fraction and biuret method to determine the total protein of the samples.  Although the 

RS value was fairly high (0.78) indicating a good correlation between the gamma 

globulin concentrations and the total IgG determined by SRID, the Deming regression 
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plot showed poor agreement (Fig. 13). There was a negative mean bias of -1.4 g/dL, 

(95% confidence interval was -1.8 to -1.05 g/dL) for the protein electrophoresis method 

compared to the SRID indicating the SRID had higher values (NCCLS bias plot, Fig. 

14).  Because of this observation, the serum calibrants that were used as standards for 

the microsphere assay and verified by protein electrophoresis were sent to VMRD for 

quantitation by SRID using the total IgG SRID plate.  The results indicated that the 

SRID assay produced higher IgG concentrations than the protein electrophoresis 

method (Table 6).   

 
 
Discussion 
 
 

In this report, we developed a competitive multiplex microsphere flow cytometry 

assay to determine bovine IgG1 and IgG2 concentrations in 30 serum samples from 

newborn Holstein calves acquired prior to and 24 hours after ingestion of one to two 

liters of banked colostra, and compared the values with SRID. We choose to measure 

bovine IgG1 and IgG2 because previous studies have shown that there is selective 

absorption of IgG during the first few hours of life and that adequate concentrations of 

IgG (predominantly IgG1) in the serum of newborn calves decrease the mortality rate.    

To accomplish this goal, we obtained serum samples from 30 newborn Holstein 

calves before and 24 hours after ingestion of colostrum. In this manner, the age of the 

calves was controlled.  Using SRID to measure total IgG concentrations, the precolostral 

serum samples contained less than 0.4 g/dL for 29 calves.  One calf had 1.6 g/dL of IgG 

indicating that sampling of this calf occured after feeding colostrum.   The total 

concentration of IgG in post colostral sera from 30 calves ranged from 0.8 to 7.2 g/dL 
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with a median value of 3.2 g/dL (interquartile range = 2.25 to 4 g/dL).  According to the 

SRID only two calves had IgG concentrations < 1.0 g/dL.  The IgG1 concentrations had a 

similar range as the total IgG, but the median concentration and interquartile range was 

lower (2.0 g/dl; 1.4 – 2.5 g/dL) constituting about 60 – 65% of the total IgG.  IgG2 

determined by SRID using a specific IgG2 plate revealed very low concentrations of 

IgG2 (interquartile range = 0.11 – 0.15 g/dL).  Unexpectedly, the IgG1 and IgG2 

subclasses contributed to approximately 65- 75% of the total IgG.  Possible explanations 

for this finding are that other IgG classes contribute to the total IgG in post colostral sera, 

a suggestion that has not been reported before, or that the SRID assay that measures total 

IgG is overestimating the total IgG.  We support the latter hypothesis, for additional 

studies by others demonstrate the SRID overestimates IgG compared to cellulose acetate 

protein electrophoresis assays which measure the gamma globulin fraction (R.Di Terlizzi, 

2005). 

The multiplex microsphere bead assay developed in this study uses the flow 

cytometry to differentiate microsphere beads based on size and fluorescence intensity. 

The multiplexing property of this assay enables the quantitation of the IgG subclasses in a 

single sample. This simultaneous analysis reduces sample volumes, time and labor. The 

triplex bead assay was developed based on the covalent linking of proteins to 

carboxylated microspheres by chemical reactions and the microsphere assay is 

reproducible and has shown good correlation with ELISA (Camilla, et al, 2001;Lal, et al, 

2004;Dasso, et al, 2002). 

In contrast to many multiplexing formats that use a capture antibody and reporter 

antibody conjugated to a fluorochrome, the principle of the assay that we developed was 
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based on competition for a reporter antibody between soluble Ig and Ig bound to 

microspheres.   Therefore, antigenic determinants on bovine IgGs present in the serum 

competed with purified bovine IgG coating the microspheres for the FITC-labeled 

antibodies.  As a result, as serum IgG concentrations increase the fluorescence intensity 

of the beads reacting with antibody decreases proportionally to the amount of soluble 

serum Ig. 

We found that one of the limitations of the microsphere assay was the 

observation that the FITC-labeled sheep anti-bovine IgG1 and IgG2 antibodies cross 

reacted with IgG2 and IgG1 coated microspheres in the absence of serum Ig inhibitors.  

Although the isotype specific reaction was one to two log higher than the nonspecific 

reaction, the cross reactivity between IgG1 antibodies and IgG2 coated beads impaired 

the ability to determine accurate concentrations of IgG2 between 0.8 – 3.4 g/dL.  

Although the sheep anti-bovine isotype specific antibodies used in this study were 

affinity purified and preabsorbed with opposite IgG subclasses, some degree of cross 

reactivity is expected (personal communication, Bob Wilds, Technical support, 

VMRD).  When purified bovine IgG1 or IgG2 at low concentrations (up to 0.1 g/dL) 

was added as an inhibitor to the assay the decrease in fluorescence intensity was linear 

indicating that the cross reactivity properties of the antibodies did not significantly alter 

the change in fluorescence intensity determined for each IgG subclass in a low 

analytical range.  However, the assay would not be able to accurately determine IgG2 at 

concentrations > 0.5 g/dL. 

To test the interference for the microsphere assay, the biplex assay was 

compared with monoplex assay. The biplex assay did not significantly alter the 
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fluorescence values detected by the binding of FITC cocktail antibodies to either IgG1 

or IgG2 coated beads (monoplex).   This can also be considered as a test for cross 

reactivity because the fluorescence in the biplex assay was not different from the 

monoplex assay.  We predicted that the mean fluorescence intensity for detection of 

IgG2 in the biplex assay would be greater than the monoplex assay because of the cross 

reactivity of anti-IgG1 against IgG2 coated beads that we demonstrated previously.  

However, the mean fluorescence intensity for IgG2 in the biplex assay was actually less 

than the monoplex assay.   

The optimization of the triplex assay required a two step carbodimide chemical 

reaction and similar incubation techniques for all the three activated proteins and 

microspheres. It was observed that variation in the conjugation steps affected the 

reproducibility of the assay and the standard curve (data not shown); therefore large 

stocks of protein coated beads were prepared to analyze the entire set of serum samples. 

Previous studies to test the process of  coupling  antibodies to microsphere beads has 

shown that slight variations in the coupling procedure affect the reproducibility of 

microsphere assay when new stock beads are prepared each time,  there was change in 

CVs up to 25% (Dasso, et al, 2002). 

The triplex microsphere assay demonstrated linearity over the two fold dilutions of 

standard serum calibrants which included the cutoff range for FPT (< 1 g/dL), but the 

triplex assay was designed to determine the concentrations of IgG1 and IgG2 not just 

detect FPT.  The mean fluorescence intensity generated by using a known amount of 

bovine IgG1 and IgG2 as the inhibitors in a triplex assay was used to develop a standard 

curve for unknown samples.  Bovine reference serum containing known amounts of IgG1 
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(1.2 - 0.15 g/dL) and IgG2 (1.6 – 0.2 g/dL) was used to test the linearity of the curve and 

as a control.  The triplex microsphere bead assay for IgG1 was reproducible. The intra-

assay and inter-assay precision was good with CV less than 10% for all concentrations of 

standards and reference serum with similar slope for the first order polynomial equation.  

The analytical accuracy of the IgG1 assay approached 100% for bovine reference serum 

concentrations between 0.35 to 1.2 g/dL, however was poor at the lowest concentration 

(0.175 g/dL).  Possibilities for this observation included nonlinearity of the standard 

curve at the lowest concentration, lack of sensitivity of the assay, or errors in sample 

preparation.  

In our studies we measured the IgG1 and IgG2 concentrations of all the 30 

precolostral and postcolostral serum samples from Holstein calves in duplicates.  The 

Deming method comparison of IgG1 from the flow assay was done using SRID as the 

reference.  The presence of an outlier caused the regression line to cross the identity line, 

When this outlier was removed there was constant and proportion bias.  The 

concentration of IgG1 determined by the microsphere assay was higher than SRID and 

method comparison studies showed poor agreement between the microsphere assay and 

SRID assay.  The positive bias for the flow cytometry assay can be explained in part by 

the use of dilution factors and use of standards with a low analytical range.  Moreover, 

independent studies using protein electrophoresis to determine the gamma globulin 

fraction demonstrated that the Ig standards used to test total IgG by SRID were 

erroneously high (Table 6).  Based on these findings we propose that the SRID has 

several limitations and should not be considered the gold standard method.  The 

limitations include the variations that occur between individuals when measuring the 
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diameter of the precipitation ring, which is dependent on having a crisp diffusion ring and 

the accuracy of using a millimeter ruler.  Furthermore, samples may diffuse into 

neighboring wells.  The error rate is reported to be high in SRID if the serum 

concentrations of immunoglobulins are higher than 3g/dL due to the lack of linearity of 

the standard curve and the amplification of errors when concentrations are corrected for 

the dilution factor (Pfeiffer, et al, 1977).  In fact, this group reported a negative bias of 

0.3 g/dL between the serum protein electrophoresis method and total IgG determination 

by SRID.  Similar problems occur with the microsphere assay because the postcolostral 

serum samples that have IgG1 concentrations greater than 1g/dL must be diluted due to 

low analytical range of the bovine IgG1 and IgG2 standards.  Most of commercial 

preparations of purified bovine IgG1 have higher IgG2 concentrations than those of 

newborn calves. 

Although the triplex assay is potentially more sensitive than SRID, because of the 

sensitivity of fluorescence intensity measured by a flow cytometer, further studies must 

be performed to optimize the multiplex assay to measure bovine IgG subclasses.  Future 

experiments that must be done include using a monoclonal anti-bovine reporter 

antibodies to minimize the cross reactivity, preparing bovine standards that cover a wide 

analytical range, independent quantitation of IgG1 and IgG2 standards other than by 

SRID, and recovery studies that involve spiking bovine serum with known concentrations 

of IgG1 and IgG2 to determine the analytical sensitivity of the assay.  
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Table 1. Post colostral IgG concentrations (g/dL) measured by RID  
 

Calf no 
SRID (Total IgG) 

Rep. 1.         Rep. 2. 
SRID (IgG1) 

Rep. 1.       Rep. 2.  
SRID (IgG2) 
Rep. 1.        Rep. 2 

3421 3.2 3.2 2.1 2.1 0.04 0.04 
3429 2.3 2.3 1.3 1.3 0.07 0.07 
3430 1.6 1.6 1.4 1.3 0.07 0.07 
3431 1.7 1.7 0.7 0.7 0.12 0.15 
3432 2.9 2.9 1.5 1.3 0.19 0.19 
3436 4.0 4.2 1.4 1.4 0.19 0.19 
3437 4.0 4.0 1.3 1.3 0.12 0.12 
3438 1.5 1.5 2.1 2.1 0.10 0.10 
3439 3.2 3.2 2.0 2.0 0.09 0.09 
3440 7.2 6.8 7.5 8.0 0.20 0.20 
3441 4.8 4.8 2.1 2.1 0.09 0.09 
3444 3.2 3.2 1.9 1.9 0.09 0.09 
3446 5.0 5.0 2.7 2.7 0.09 0.09 
3448 0.8 0.8 0.7 0.7 0.04 0.04 
3451 1.2 1.2 1.5 1.5 0.12 0.12 
3454 0.9 0.9 0.7 0.9 0.05 0.05 

3418A 5.0 5.0 2.6 2.6 0.12 0.12 
3419A 3.2 3.2 2.7 2.7 0.09 0.09 
3420A 3.2 3.2 2.0 2.0 0.09 0.09 
3421A 3.2 3.2 2.1 2.1 0.14 0.14 
3422A 2.4 2.4 2.2 2.2 0.11 0.11 
3423A 2.3 2.3 1.7 1.7 0.10 0.11 
3426A 2.4 2.5 2.3 2.3 0.15 0.15 
3427A 4.8 4.8 3.0 3.0 0.18 0.16 
3431A 3.2 3.2 2.5 2.5 0.13 0.13 
3433A 5.0 5.0 1.2 1.2 0.11 0.11 
3435A 3.8 3.8 3.2 3.2 0.16 0.16 
3437A 1.5 1.5 1.2 1.5 0.5 0.05 
3438A 3.0 3.0 2.0 2.4 0.27 0.27 
3440A 4.0 4.0 2.6 2.6 0.94 0.09 

Median 3.2 3.2 2 2.1 0.12 0.11 
25% 2.3 2.3 1.4 1.4 0.09 0.09 
75% 4.0 4.0 2.5 2.5 0.16 0.15 
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Table 2. Concentrations of bovine IgG subclasses in serum calibrants and  

reference sera  

 

*PE – protein electrophoresis by cellulose acetate 

Sigma 
bovine IgG 
(PE)* 

Sigma bovine IgG1 
by SRID 
 

Sigma bovine 
IgG  
IgG2 by SRID 
 

Bovine Ref. 
Sera 
IgG1 

Bovine Ref. Sera 
IgG2 

 
5.0     g/dL 

 
1.0   g/dL 

 
~3.4     g/dL 

 
1.2    g/dL 

 
1.6 g/dL 

 
2.5     g/dL 

 
0.5   g/dL 

 
1.7     g/dL 

 
0.6    g/dL 

 
0.8  g/dL 

 
1.3     g/dL 

 
0.25 g/dL 

 
0.85   g/dL 

 
0.3    g/dL 

 
0.4 g/dL 

 
0.6     g/dL 

 
0.16 g/dL 

 
0.45   g/dL 

 
0.15  g/dL 

 
0.2 g/dL  

 
0.3     g/dL 

 
Too small 

 
0.225 g/dL 

-- -- 
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Table 3. Intraassay reproducibility. 

 

Sigma bovine IgG1 
Concentration 

g/dL SD MF  CV 
 

1 16.0 291.3      5% 

0.5 26.8 427.5 
 

6% 

0.25 22.3 579.3 
 

4% 

0.16 20.5 824.8 
 

2% 

too small 28.7 1001.8 
 

3% 

A. 

 

 

 

 

 

B. 

 
 Ref-serum 

IgG1  
Concentration

g/dL SD MF  CV 

1.2 17.0 286.3 
 

6% 

0.6 14.0 407.3 
 

3% 
 

0.3 42.0 530.5 8% 

0.1 30.3 607.0 
 
      5% 

-- --  
 

-- 
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Table 4. Interassay reproducibility. 

A. 
Sigma Bovine IgG1 by flow  SD MF  

 
CV 

 
1g/dL 14.8 270.3   8% 

0.5 g/dL 17.1 418.3 
 

 8% 

0.25 g/dL 41.8 616.8 
 

9% 

0.16 g/dL 26.1 788.8 

 
 
1% 

too small 36.2 953.5 

 
 

-- 

 

 

 

 

 

 

 

 

B. 

 
Ref-serum IgG1 by flow SD MF  CV 

 
1.2 g/dL 21.5 279.5 8% 

 
0.6 g/dL 30.1 364 8% 

 
0.3 g/dL 44.7 500.5 9% 

 
0.1 g/dL 7.4 571.3 1% 

 
-- -- -- -- 
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Table 5.  Analytical accuracy of IgG1 in bovine reference serum 

 

 

Expected concentration 

of IgG1 

Observed 

concentration of IgG1 

Percentage recovery 

(observed/expected) 

 
1.2 g/dL 

 
1.3 g/dL 

 
108% 

 
0.7 g/dL 

 
0.70 g/dL 

 
100% 

 
0.35 g/dL 

 
0.37 g/dL 

 
106% 

 
0.175 g/dL 

 
0.32 g/dL 

 
183% 
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Table 6.  Comparison of IgG concentrations of Serum calibrants by 

Protein electrophoresis and SRID methods. 

 

  
Protein electrophoresis SRID for total IgG 

5.0 g/dL            Too large 
 

2.5 g/dL 3.4 g/dL 

1.3 g/dL 1.7 g/dL 
 

0.6 g/dL 0.9 g/dL 
 

0.3 g/dL 0.4 g/dL 
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 FL1-H

 

 

Figure 1. Flow cytometry dot plot (A) and histogram (B) of Quantum Plex beads 

illustrates the different red fluorescent properties of the beads that were coated with 

BSA (pink dots), IgG2 (blue dots), and IgG1 (green dots) as the microsphere sets are 

distinguished from one another by a two color dot plot using the FL3 detector and FL1 

detector (A) and plotted as a histogram on a log scale using the number of bead events 

(counts) vs. the height of fluorescent channels.    
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Figure 2. Flow cytometry dot plots (FL3-H vs. FL1-H) illustrating the binding of 

FITC sheep anti-bovine Igs to a combination of IgG1 and IgG2 coated beads. Cross 

reactive binding of  FITC-labeled sheep anti-bovine IgG2 occurred with IgG1 coated  

microspheres, green dots (A) and  FITC-labeled sheep anti-bovine IgG1 with IgG2 

coated beads, blue dots (B).   Isotypes specific reactions demonstrate a greater shift in 

fluorescence intensity for bovine IgG1 coated beads treated with anti-bovine IgG1(C) 

and bovine IgG2 coated beads treated with anti-bovine IgG2 (D).  No changes were 

observed in BSA, red dots. 

 

   48
 



 

 

 

 

 

 

 

 

 

 

 

 

 IgG1 mg/dL

0 20 40 60 80 100

M
ea

n 
flu

or
es

ce
nc

e 
in

te
ns

ity

0

500

1000

1500

2000

2500

3000

3500

 IgG1 
 IgG2 
 BSA 

 

Figure 3.  Triplex bead assay illustrating a specific linear decrease in fluorescence 

intensity from IgG1 coated beads resulting from competitive inhibition of FITC sheep 

anti-bovine IgG1 caused by purified bovine IgG1(solid circles).  There is slight drop in 

fluorescence intensity from IgG2 coated beads (empty circles).  Fluorescence from BSA 

coated beads was unaltered (solid triangles). 
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Figure 4.  Triplex bead assay illustrating a specific linear decrease in fluorescence 

intensity from IgG2 coated beads resulting from competitive inhibition of FITC sheep 

anti-bovine IgG2 caused by purified bovine IgG2(solid circles) (except for highest 

concentration of IgG2). There is slight drop in fluorescence intensity from IgG1 coated 

beads (empty circles). Fluorescence intensity from BSA coated beads was unaltered 

(solid triangles). 
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Figure 5.  Bar chart comparing  monoplex IgG1(black bars) and biplex IgG1(white 

bars) microsphere assay over the dilution range of  sheep anti-bovine IgG1 and IgG2, 

the mean fluorescence intensity of the monoplex IgG1 and biplex IgG1are similar as 

there is no significant interference in biplex for IgG1. 
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Figure 6.  Bar chart comparing monoplex IgG2 (black bars) and biplex IgG2 (white 

bars) microsphere assays over the dilution range of sheep antibovine IgG1 and IgG2 

antibodies, there is slight decrease in fluorescence intensity for the biplex IgG2 on 

comparision with the monoplex IgG2. 
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Figure 7.  Flow cytometry dot plots (FL3-H vs. FL1-H) illustrating decrease in 

fluorescence intensity for IgG1 (green dots) and IgG2 (blue dots) coated beads with 

increasing concentration of inhibitor.  No changes were observed in BSA (red dots). 

 (A) Precolostral serum-no inhibitor  (B) IgG1 too small to detect by SRID, IgG2-0.22 

g/dL, (C) IgG1-0.16 g/dL, IgG2-0.45 g/dL (D) IgG1-0.25 g/dL, IgG2-0.85g/dL, (E) 

IgG1-0.5 g/dL,IgG2-1.4 g/dL, (F). IgG1-1g/dL, IgG2 ~3.4 g/dL. 
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Figure 8.  The standard curve and first order polynomial equation created by plotting 

IgG1 standard serum calibrants against mean fluorescence intensity of the IgG1 

standards.  (A) A nonlinear curve is observed when concentrations of IgG1 in g/dL 

plotted against mean fluorescence intensity.   (B) Linear curve resulted when 

concentrations of IgG1 in x-axis were converted to natural log and the polynomial 

equation for the curve was created 
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Figure 9.  The standard curve and first order polynomial equation created by plotting 

concentrations of IgG1 standard serum calibrants in natural log in x-axis  against mean 

fluorescence intensity of the IgG1 standards.   The standard curves for the intraassay (A) 

and interassay (B) reproducibility experiments were linear with similar values for the 

slope. 
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Figure 10.  The average concentrations of duplicate samples for IgG1 determined by 

flow and SRID were plotted using Deming method comparison.  The faint line represents 

the line of identity if the samples had the same concentrations.  The dark line represents 

the best fit line, which is extremely altered because of the presence of an outlier. 
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Figure 11.  Average concentrations of duplicate samples for IgG1 determined by flow 

and SRID were plotted using Deming method comparison without outlier.  The faint line 

represents the line of identity if the samples had the same concentrations.  The dark line 

represents the best fit line, which shows a positive bias, constant and proportional bias. 

The mean fluorescence intensity of the duplicate measurements of SRID and flow is used 

for Deming method. The concentration of IgG1 determined by flow is higher than SRID. 
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Figure 12. NCCLS Bias plot represents difference between methods compared to 

SRID.  Differences were determined by subtracting the average of duplicate samples of 

the SRID from the average of duplicate samples from the flow cytometry assay.  The 

short dashes represent positive bias of 0.743 g/dL.  The short and long dashes represent 

95% confidence interval of the bias (0.382 to 1.105 g/dL).  One outlier was observed.  
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Figure 13.  Average concentrations of duplicate samples for total IgG determined by 

cellulose acetate method and SRID were plotted using Deming method comparison.  The 

faint line represents the line of identity if the samples had the same concentrations.  The 

dark line represents the best fit line, which shows a negative bias, constant and 

proportional bias. The concentration of total IgG determined by SRID is higher than 

cellulose acetate method. 
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Figure 14.  NCCLS bias plot represents the difference between methods compared to  

SRID.  Differences were determined by subtracting the average of duplicate samples of  

the protein electrophoresis determined by cellulose acetate (CA) from the mean of  

duplicate samples from the flow cytometry assay.  The short dashes represent negative  

bias of 1.4 g/dL.  The short and long dashes represent 95% confidence interval of the bias  

(-1.8 to -1.05 g/dL). 
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