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I. INTRODUCTION

In the usual formulation of statistical decision theory the, probability
distribution of the observations is assumed to be a member of some specified
class of distribution functions. Under those assumptions, many estimators,
such as estimators of mean, median or variance, were derived and discussed.
However, in many instances, we do not know if the assumed conditions are
appropriate. To overcome this difficulty, other methods that are nonpara-
metric in nature must be considered.

Recently, a great deal of research has been undertaken in nonparametric
methods of estimation of 1ife distributions from which the probability of
failure at any given time can be estimated.

Many authors, for example, Kaplan and Meier (10), Ferguson (6,7),
Hollander and Korwar (9,12), Susarla and Van Ryzin (21,22,23), Barlow and
Scheuer (2), Breslow and Crowley (3), Shaked, et al. (18), Ferguson and
Phadia (8), consider nonparametric estimation of the 1ife distribution func-
tion for many kinds of data. The development of nonparametric analysis in
the area of reliability can be found in Shimi and Tsokos (19).

In Section 2 the development of nonparametric estimation of Tife
distribution functions is discussed. Definitions and results of the Dirichlet
process and of a process that is neutral to the right, which are very useful
with respect to some nonparametric decision theoretic problems, are also
presented.

Section 3 includes a summary of several types of data in life testing
and of 7 methods of nonparametric estimation of 1ife distribution functions.
In Section 4 we discuss each method given in Section 3 according to

its usefulness, comprehension, and accuracy.

The final section provides some proposals for future work.



II. REVIEW

In terms of the nonparametric estimation of 1ife distribution, the
classical approach is to use the sample distribution function with non-
accelerated type Il censored data (see Fig. 1). Recently, nonparametric
estimation methods have been developed for use with other types of data.

In 1958, Kaplan and Meier (10) developed several nonparametric estimators
for incomplete observations. Among those estimators, the most commonly used
one is the product 1imit (PL) estimator. Breslow and Crowley (3) in 1974
derived properties of the PL estimator.

Another approach to the development of nonparametric estimation of life
distribution requires the use of accelerated data. This method was first
introduced by Barlow and Schener (2) in 1971 by assuming stochastic ordering.
Steck, et al. (20) in 1974 used the functional relationship method. Shaked
et al. (18), in 1979, pointed out that both papers suffer from the dis-
advantage that at least a small sample of nonaccelerated observations are
needed and suggested a further improvement by the use of only accelerated
data.

In 1973 Ferguson (6) suggested the Bayesian approach in solving
nonparametric decisjon problems. He introduced a class of random proba-
bilities called Dirichlet processes (5). According to Ferguson, the
Dirichlet process has the following two desirable properties as a prior
distribution for nonparametric problems:

(I) It has a large or nonparametric class of probabilities as its
support in the topology of weak convergence.

(II) Posterior distribution given a sample of observations from the
Dirichlet process is manageable analytically, and is also a
Dirichlet process.

Using the concept of the Dirichlet process, Ferguson (6), Korwar and

Hollander (9,12), Susarla and Van Ryzin (21,22,23) developed several useful



nonparametric estimators of distribution functions and investigated their
properties.

Since the Dirichlet process is, with probability one, a discrete
probability, a more general process called the process neutral to the right
has been presented by Doksum (5) in 1974. In 1979, Ferguson and Phadia (8)
applied the process neutral to the right as a prior to estimate the survival
function.

The following is a description of some basic definitions and results
of the Dirichlet process and the process neutral to the right. [See (1,5,

6,7,11) for more comprehensive coverage.]

The Dirichlet Process

Definition 2.1. [Ferguson (6,9)] Let Z Z,, -..s Z, be independent random

‘I!
variables with Zj having a gamma distribution with shape parameter @; >0

and scale parameter 1 for all j. Let o4 > 0 for some j. The Dirichlet dis-
tribution with parameter '(u1,...,ak) denoted by D(u],...,ak) js defined as
the distribution of (Y;,....Y,), where Y, = Z/5.5 2, 3=1.2,... k.

This distribution is always singular with respect to Lebesque measure in
k-dimensional space since Y1 . I Yk = ]. Besides, if any mj = 0, the
corresponding Yj is degenerate at zero. However, if @ > 0 for all i=1,2,....k,

the (k-1) dimensional distribution of (Yy5+..5Y 1) is absolutely continuous

with density

f(Y]s---sYk_'llq'!s---’ak) (2])
(2 + ... +a,.) k-1 k-1

_ k a.-1 ay =1

= (a]) - (“k) (izl Yi i) (1-151Y1) k IS (Y1,...,Yk_]),

where S is the simplex



k-1
S = {{Yy,..u¥ q)eY, 20, 1§]Yi > 1}

For k=2, (2.1) becomes the Beta distribution, Be(a1,a2).

For ease of exposition, we restrict attention, unless otherwise
specified, to prior distributions on the space of all probability measures
on (R,B) where R is the real 1ine and B is the c-algebra of Boreal subsets

of Rr.

Definition 2.2, [Ferguson (7)] Let af-) be a finite non-null measure

(nonnegative and finitely additive set function) on (r,B), and let P(-)
be a stochastic process indexed by elements of B. Then P is a Dirichlet
process on (R,B) with parameter o write PeD(a) if for every finite measurable
partition {B1,...,Bm} of R (i.e., the Bi are measurable, disjoint, and
(U]8; = ®), the random vector (P(B,),...,(B_)) has a Dirichlet distribution
with parameter (a(B]),...,a(Bm)). ;

In particular, for every Bee, P(B)eBe(a(B),a(R)-a(B)) and therefore
E[(P(B)] = «(B)/a(R).

Definition 2.3 [Ferguson (6)] Let P be a random probability measure on

(rR,B). We say that X »X_1s a sample of size n from P if for any

170
m=1,2... and measurable sets A],...,Am, C1,---.C

n

n

P {X]EC],...,Xnacn|P(A1),...,P(Am),P(C1),...,P(Cn)} (2.2)

n
= 1. P(C. .S.
HJ 1 (CJ) a.s

Ferguson (6,7) and Korwar et al. (9,12) derived some useful theorems
governing the properties of the Dirichlet process. We shall 1ist those

theorems without proof.



- Theorem 2.4 [Ferguson (6)] If FeD(a) and if X],...,Xn is a sample from F,

then the posterior distribution of F given Xi""’xn is D(a+2?ax ) where
i
ax(A)=1 if XeA, and is 0 otherwise.

Theorem 2.5 [Korwar and Hollander (9,12)] Let P be a Dirichlet process on

(r,B) with parameter « and let X],...,Xm be a sample of size m from P. Then
P{X1 5_x1,...,Xmgxm} (2.3)

= {a(A, ).o(elA, Jm-1)1/{a(R)...(a(r)+m-1)3,
(1) (m)
where X(-I) e X(

is the ordered values among x],...,x , and Ax=(—m,x].

m)
Theorem 2.6 [Ferguson (6,7)] If PeD{a), then P is discrete with probability

one.

Process neutral to the right.

We present one of the definitions of neutral to the right which is

rather easy to comprehend. [For more details, see (5,7,8).]

Definition 2.7. A process F(t) is said to be a random distribution function

(i.e., (a) F(t) is nondecreasing a.s., (b) F(t) is right-continuous a.s.,

(c) Tim F(t)=0 a.s. and (d) 1imt+wF(t)=1 a.s.) neutral to the right if

Y

tr-e

it can be written in the form F(t)=1-e 't where Yt is a process with indepen-

dent increments such that (a) Y, is nondecreasing a.s., (b) Yy is right con-

tinuous a.s., (c) 11mt+_th=0 a.s., and (d) 1imt+mY == a.s.

5

A process such as Y_, described in Definition 2.7, has at most countably

t’
many fixed points of discontinuity t],tz,.... Let 51,52,... be the random
heights of the jump in Yt at t1,t2,... respectively. Then 31,52,... are

independent nonnegative (possibly infinite-valued) random variables with

corresponding densities ft ’ft s... Let Zt denote the same random variable
1 "2

as Yt but with the jumps removed. Then Zt=Yt'EijI(tj,m)(t) and Zt is a



nondecreasing process with independent increments and Zt has no fixed points
of discontinuity, and therefore has an infinitely divisible distribution with
Levy formula for the log of the moment generating function.

-ezt

Log E[e ‘] = -eb(t)+f8(e—az-1) dN, (2) (2.4)

where b is a nondecreasing continuous function with b(t)+0 as t+e, and

where Nt is a continuous Levy measure; that is,

(i) for every Borel set Bes, Nt(B) is nondecreasing and continuous.
(ii) for every real t, Nt(-) is a measure on the Borel subsets of (0,«)

(i11) f;z(Hz)'] dN,(2)20 as to=

From the above definition, we can see that the process neutral to the right

is specified by the four quantities {t],tz,...}, {ft ,ft sos.}s b, and N
1 2

The main results of Doksum (5) for the process neutral to the right

£

are presented in the following theorems.

Theorem 2.8 If F is a random distribution function which is neutral to the
right then the posterior distribution of F given X],...,Xn is neutral to the
right. Ferguson and Phadia (7,8) gave an alternative description of Doksum's
result in terms of the distribution of the process Yt for the sample size
n=1. The general case of arbitrary sample size would follow by repeated
application.

Theorem 2.9 Let F be a random distribution function neutral to the right,
F(t)=1-e'Yt, and let X be a sample of size one from F. Then the posterior

distribution of Yt given X=x is best treated in two cases.

Case 1. If x is one of the prior fixed points of discontinuity, say x=tk,
then the posterior density of the jump in Yt at x given X=x may be found by
multiplying the prior density of the jump by (1-e'5) and renormalizing.

Thus,



dH, (s) = (1-e‘5)dex(s)/fg(1-e's)dax(s) (2.5)

Case 2. If x is not one of the prior points of discontinuity, then the

posterior distribution of an increment in Y_ to the left of x may be found

t
by multiplying the prior density of the increment by e and renormalizing;

that is:
dH(s) = e *d6(s)/spe " da(s) (2.6)

Where G is the prior distribution and H is the posterior distribution given
X=X

In the process neutral to the right, there are two cases, one is
homogeneous, the other is nonhomogeneous. The definition of the neutral

to the right homogeneous process is as follows.

Definition 2.10 (8) A random distribution function F neutral to the right

is said to be homogeneous if the independent process Yt=-1og(1-F(t)) has

Levy function independent of t; that is, if the MGF has the form

w(t)S5(e™®%-1) dN(z)

Mt(8)=e (2.7)

where v(t) is continuous nondecreasing, 1im.___v(t)=0, ]imt++wv(t)=+m and

to-
where N is any measure on (0,=) such that fgz(1+z)‘]dN(z)<m.

The following theorem describes the relationship between the Dirichlet
process and the process neutral to the right.

Theorem 2.11 (5,7) If FeD(a), then F is a nonhomogeneous process neutral

to the right, and if o is continuous, then Yt=—Tog(I-F(t)) has no fixed
points of discontinuity.
This implies that if XeBe(a,B) then Y=-log(1-X) is infinitely divisible.

The density of Y is:



SOR FF(S‘;‘%BLY e"BYu-e'y)“"I%zm) (2.8)

and the moment generating function of Y is:

My(u) = E[eu-y] = g%:;?%iig:ﬂg for u < 8 (29)



ITI. ESTIMATION MODELS

3.1 Type of data. Life testing has the following common sampling forms.
(See Figure 1 for classification.) (I) Accelerated sample: Samples of cer-
tain devices are subject to conditions of greater stress than that encountered
under normal operation, and from the results for those high-stress environ-
ments (may or may not include normal stress), an estimate of performance of
the device under normal operation is obtained. This sampling method is used
when lifetime tends to be long and the time consumed in testing a sample of
a certain device may be excessive. (II) Nonaccelerated sample: Samples are
tested under conditions of normal operation only.

The above sampling schemes are distinguished by the following types of
data.

(1) Type I censored data: A test is conducted on n items, as as each failure

occurs, the time is recorded. x(]),x(z),...,x(r) are the observed ordered
failure times of the r items, r < n. The test terminates at a preassigned
time.

(2) Type II censored data: A test is conducted on n items and as each

failure occurs, the time is recorded. X(1),X(2),...,X(r) are the observed
créered lifetimes of the r items, r < n. The test terminates when a pre-
assigned number of failures, r, has occurred.

(3) Mixed censored data: A test is conducted on n items and as each failure

occurs, the time is recorded. X(]),X(z),...,x(r) are observed lifetimes of
the r items, r < n. The test terminates when a preassigned number of
failures, r, has occurred or a preassigned time has been reached, which
ever comes first.

In either type of data, we have two methods of sampling.

(i) With replacement: Items that fail are immediately replaced by new items

having the same expected life distribution.
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(i) Without replacement: Items that fail are not replaced.

Moreover, in each operating method of Type I censored data there are
three types of observations.
(i) Real observation: Xs=x;

(i1) Right censored data: Xy > x; (exclusive censoring) or

i 2 %, (inclusive censoring)

This is usually encountered when one preassigns a different time (ti)
for each different sample, Xi'
(iii) Left censored data: X5 < X; (exclusive censoring) or

X; < %y (inclusive censoring)

3.2 Estimation. In this section we shall review some useful approaches in
nonparametric estimation of life distribution developed in the last decade
or so. (See Table 1 for classification.)

(1) Ferguson's method (6). Suppose a random sample LSRN ) is taken from

a distribution F that is a random sample function of a Dirichlet process P
with parameter ao(-). Take the loss function to be L(F,E) = fR(F(t)-
?(t))de(t) where W is a given finite measure on (r,B) (a weight function)

and F is an estimator of F. Then,

ﬁn(t|x1,...,x ) = PnFO(t)+(1-Pn)Fn(t|X1,...,X ) (3.1)

n n

where
P = a(r)/(a(rR)*n)
O(t) = Q(('m,t))/ﬂ(R)

n
and F_(t[x;,....x.) = 1/n 1 §, ((-=,t]) is the empirical distribution

i=1 ™
function of the sample.



1

(2) Hollander and Korwar's method (9,12). Let (Fi,ﬁi) i=1,2,...,n be a

sequence of pairs of independent random elements. The F's are random pro-
bability measures which have a common prior distribution given by a Dirichlet

process on (R,B). Assume a{R) is known. Given F1=F‘ (say), X.=(X

-I 1.1,.'.’

Xim.) is a random sample of size m, from F'. (In Korwar and Hollander's
i
paper (12) they assume X, has equal sample size.) Under the same loss func-

tion as Ferguson's method the proposed sequence of estimator is, for i=1,

P |
n . .
Ho(t) = P, j£1Fj(t)/(n-1)+(1-Pi)Fi(t) (3.2)
j#i
where
P1. = a(R)/(a(R)ﬂni) (3.3)

and Ei is the empirical distribution function of X5 12T ¢4 54 50s

Hollander and Korwar illustrated the use of the estimators defined by
(3.2) by applying their methodology to the data from Proschan (17). The
data consist of intervals between successive failures of the air conditioning
systems of three jet airplanes. (9, p. 98)

From the data, n=3, m]=30, m2=27, and m3=24. They considered the case
where o(Rr) is specified to be 7. Then from (3.3) they obtained Py =

7/(7+30)=19, P2 = 7/(7+27)=.21, P, = 7/(7+24)=.23; so that,

3
Hy(t) = 19(F,(t)+F4(t))/2+.81(F, (t)),
Hy(t) = 21(F, (t)+F,(t))/2+.79(F, (1)),

Hy(t) + .23(F (t)+F,(t))/2+.77(F4(t)).
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(3) Kaplan and Meier's PL method (3,10). Let T],...,TN be a random sample

of values of the random variable T (called the lifetime), and L],...,LN be a
sample of the random variable L (called 1imits of observation) where T and L '
are assumed independent. We observe t1=min(Ti,Li) i=1,2,...,N. For each

item it is known whether one has

—
A
—
ct
n

Ti (a death)

or

-
A

—

ct
|}

L; (a loss)

Let N be the total sample size. If one 1ists and labels the N observed
lifetimes (whether to death or loss) in order of increasing magnitude

0 §_t1' < t2' £ v 5_tN', then the estimator of survival function is

P(t) = I[(N-r)/(N-r+1)] (3.4)
r

where r assumes those values for which tr' < t, and tr' measures the time
to death.

As an example, consider the observed data:

Deaths at 0.8, 3.1, 5.4, 9.2 months

Losses at 1.0, 2.7, 7.0, 12.1 months

Here N=8 and the construction of the function ﬁ(t) proceeds as follows

(1 0<t<0.8
(8-1)/(8-1+1)=7/8 0.8<t<3.1
P(t) = | (7/8)x(8-8)/(8-4+1)=7/10 3.1<t<5.4
(7/8)x(4/5)x(3/4)=21/40 5.4<5<9.2
| (21/40)x(1/2)=21/80 9.2<t<12.1
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(4) Susarla and Van Ryzin's method (21). Let X],...,Xn be the true survival

times of n individuals which are censored on the right by n follow-up times,
YI"“’Yn' It is assumed that the Xi are independent idéntica]ly distribu-
tion function F(u), where F is distributed as a Dirichlet process on R =

(0,=), and that the parameter ao(+) is known. The observable data are:

Zi = min{Xi,Yi}
1 §F xifyi

61 = = [
0 if xi<Yi

Assume that Y]""’Yn are mutually independent random variables which
are also independent of X],...,Xn where Yi is distributed as Hi’ Hi(u)=
Pr(Yigu), i=1,...,n. Note that if 51=], the Z, in the pair (21’51) which
is observed is a true lifetime; and if di=0, then Zi is an exclusive right

censored data. Let Z],...,Zk be the real observations and Z "’Zn be

k+1°°
the exclusive right censored observations. Also, let Z(k+1)""’z(m) denote
the distinct observations among the exclusive right censored observations
Zk+1""’zn' Let lj denote the number of exclusive right censored observa-
tions that are equal to Z(j), for j=k+1,...,m, and let N{u) and N+(u)

denote the number of observations greater than or equal to u and the number
greater than u, respectively. Then the nonparametric estimator §(u) of

survival function S(u) under the squared errors loss

-~ A

L(5,5) = r5(5(w)-5(u)? dw(u)

with w being a weight function, is

§ ogpani i)

- a(u,=)"(u) \
),QD_)"‘N(Z ))-.AJ

(
o(g )t jek#iLE(5

(Vo I
_—
=

(3.5)
(J
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in the interval Z(£)§y<2 ) for 2=k,...,m with z(k)=0, and Z(m+])=m‘

(2+1
The authors used the same data given in Kaplan and Meier (10) (and

listed under mefhod 3) to obtain the estimate of survival function. Let a be

u

given by a{u,m)=8e'e , and 6=.12, B8=4, 8, and 16. In their notations, 61=]

for i=1,...,4 and 61.=0 for i=5,...,8 with Z-|=0.8, ZZ=3.1, Z3=5.4, Z4=9.2,

ZS=1.O, 26=2.7, Z7=7.0, and Z,=12.1. Also that, Z(,i)=21. Tor =6y 485

8
m=8, and Aj=1 for /=5,...,8. a(Rf)=8 and k=4 then,

1%

LoalZigy =) tN(Z 4))

- -6u,,+
_ Be " +N (u)
S(U) = B€ 5 u g {atﬁtj),m)+u(z(j)j_] i
where a(Z(g),=)=8e"Sa(Z 5y =)=8e"" "% a(Z 4y ,=)=se™O°

_..=12.18 o - -
3(2(8),@)'89 and N(Z(s))-7, N(Z(s))—ﬁ, N(Z(7))'3,
and

U in N (u) 2
{0,+8) 8 4
(.8, 1.0) 7 i
(1.0, 2.7) 6 5
(2.7, 3.1) 5 6
{3.:15 5:4) 4 6
(5.4, 7.0) 3 6
(7.0, 9.2) 2 7
(9.2, 12.1) 1 7
(12.1, =) 0 8

(5) Susarla and Van Ryzin's method (22,23). Let (Fn,Xn,Yn) be a sequence

of independent stochastic processes where for each n, ]-Fn is a random
distribution function on R=(-=,=) and distributed according to the Dirichlet
process with common parameter o with a(R) known, Koo right sided distribution
function (i.e., Fn(t)=P(Xn>t|Tn) and finally, Y is a random variable

independent of (Fn,xn) and distributed according to the right sided
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distribution H. (Y may be defective, in which case H=0.) We observe only
6i=[xigﬂi} and Zi=m1n{xi,Y1} for i=1,...,n. Susarla and Van Ryzin gave the

estimator of survival function in two cases:

(i) 1f {Hn} is known then §i is defined by

(a(R)+1)  S:(u,(8,,74)) (3.6)
_ﬁ+min{&i(u),a(R)} if u<Z;
= [ min{a, (u),a(R)} S if 8,21 and u>Z,
—F]+min{&i(zi),a(R)}) min{ain;), 13 if 6,=0 and u>Z,
where
& 00 = ezl (H00) 7 (Zx)/ (n-1) (3.7)
' J#

An example involving survival times of melanoma patients was given and
expression (3.6) was applied to obtain the survival curve estimator. The
authors listed the survival times (in weeks) of 81 participants from a
melanoma study conducted by the Central Oncology Group with headquarters
office at the University of Wisconsin-Madison. They assumed Hn(u) was known

as e PY; us0, a(u)=ce”®" for u>0, 850 and c>0; and used 3=(1-3)/Z as an

estimator of B, where Z=(n-1)'1z?=]zj and 3=(n-1)'1z§=1sj. In this example,
J# J#

é was shown to be a consistent estimator of 3.
From this data, §;=0, 2,=16, a(R)=c, n=81, 1-3=1-46/80=.425, 2=7055/80=
88.1875 and g=.00482. Applying (3.6), they obtained:

§.(u)=1 if u<lé

exp(.00482(u-16))G; (u)
78780

(3.8)

= min( w 1) if u>16

where:
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(n-T)'éi(-)=Eg=] [2,>].
J#
(i1} When {Hn} is not known. Assume that -e'(x)/a(x)<r{x) is a known
function where o'=da/dx and that K is a known real value bounded function
on E vanishing off (0,u1), u]<m,such that fqu(u) du=0 for j=1,...,2-1 with
2 a fixed positive integer and sK(u) du=1 and € is a function of n with

0<gn<1. Then the estimator §i is defined by (3.6) with &i replaced by ;i

where:
a;(t) = exp(-/ go;(x)dx) (3.9)
with
g N
A j=][6j-]] K((Z;5-x)/2,)
¢i(x) = max{min{-4Z} » r(x)}, 0} (3.10)
n
En Ej:] [ZJ.>X1
J#i

(6) Ferguson and Phadia's method (8). Let F=T-e~'t be a random distribution

function neutral to the right, and let X1,...,Xn be a sample of size n from
F. Assume that the observational data has three forms, m, real observations

X

X1=x].---,Xm]=xm], m, exclusive censorings Xm]+1> m1+1...’

X >X , and m, inclusive censorings X >X TR | >
m]+m2 m]+m2 3 m1+m2+1 m]+m2+l m1+m3—
X where m1+m2+m3=n. Let Upseonslly be the distinct values among

m1+m2+m3

Xx,...,xn, ordered so that Up<eso<uy . Let 6],...,6k denote the number of
real observations at Upseeeslp respectively, let SEREREY denote the number
of exclusive censorings at Upseensly respectively, and let Mys---su denote

the number of inclusive censorings at Upaes ol respectively so that
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ke _ k, _ k _ _ -k
I84¥Mys ZyA,=m,, and AN IFRLER Let hj Lisj+]

of the X; greater than uj, and j(t) denote the number of u, less than or

(51+Ai+ni) denote the number

equal to t.

Since the form of the process neutral to the right is too general,
they derived the estimator of survival function under three types of the
process neutral to the right. Each one is rather general and easy to
evaluate.

(i) The gamma process. Assume that the independent increments of the
process Yt has gamma distribution with shape parameter vw(t) and scale
parameter t independent of t, and that v(t) is continuous. Then,

h.(t)+r v(t)

S(t) =(E§ZESI?:T) (3.11)
H\]:(t)[{(hi_]+'r)(h_i+r+'l) vluy) golhita 4o+l ,6.)
i=1 "(h,_ FT)(ho+1) £o (N FA+0,65)
where
tele,8) = 2520 (B71) ()7 1og(iH, (3.12) -

If our prior guess at the shape of S(t) is given by So(t), then for

fixed ©, vw(t) is
v(t)=log(s,(t))/Tog(x/(1+1)) (3.13)

(ii) Simple homogeneous process. Let Yt be a homogeneous process with MGF

of the form:

-1

(6)=g[e~®"t1=e¥(t)/ple™®-1)e ™ (1-e7) ™" dz (3.14)

M
t
where v is continuous, nondecreasing and t>0 is a parameter, then the

estimator of survival function is:
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$(6)=e-v (£ (h5 1)+ (3.15)

(h. +A1+T)
HJ(t)[e“(U )(h1 1‘h )/((h +T)(h +1)) (ﬁ*:j—;g—;;a]

If we fix the prior guess at S to be Sy so that E(S(t))=50(t) then we
may express (3.15) in an alternate form:
S(t)=sy(t)™/ (Mj(e)*™) | (3.16)

(h, +A1+r)
HJ(t)[s (u )'T(hi-l'hi)/((h 1#7) (h, +T))(ﬁ—:x—;g—;;)]

(i11) Dirichlet process. The Dirichlet process, D(x), can be defined as
the random distribution function neutral to the right for which the MGF of

Yt=-1og(1-F(t)) 1s:

M, (8)=E[e”"t°]

_ 0(e7%2-1) d N (2)

where the Levy measure is expressed as:

~a(R alt
)t )
z(1-e™7)

The survival function can then be estimated as:

. a{R)-a(t)-h.
S(t)= a(R)+nJ(E)

(a(R)-dTui)+hi_1) (G(R)-u(ui+hi+ li)
T3=1 " TaTR)=alu, J¥h, 7 (a(R)=a(u; J*h-+x,73;)
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where o (u) = Hms_*ua(s).

The authors presented the application of the results by reworking the example
of Kaplan and Meier (10). Their data are the same as was jllustrated in
section 3.2 for Kaplan and Meier's PL method. They take the prior guess at

S to be:

_ o0t

SO(t) fort >0 (3.19)

and chose the intensity parameter t in formulae (3.11) and (3.16) to be 1.
From Kaplan and Meier's data, it is seen that u1=0.8, u2=1.0, u3=2.7,
u4=3.1, u5=5.4, u6=7.0, u7=9.2 and u8=12.1. Furthermore, 6]=64=65=67=1,
12=13=16=A8=1, and the rest of the 5i's and Ai's and all of the “1'5 are
equal to zero so that hi=8-1 for i=0,1,: «as8.

(a) The gamma process. Substituting (3.19) and z=1 into (3.13), one
obtains v(t)=0.1443t. From (3.11), the estimate of survival function is:

=(9-'(t )0.14431:
10-j(t)

j(t)r(10-1)% y0.1443u, 1"(qp7) 8
e L e 1

where j(t) is the number of observations less than or equal to t.

Sg(t)

(b) The simple homogeneous process. From (3.16) with S =e~0-1t (t>0) and

0
t=1, one obtains the estimate of survival function as:
5,(t) = o-0.1t/(9-3(t))
IIgj;t)[eo.mi/((m-i)(9-1‘)) (10-1‘- 51.) ]
10-1
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-0.1¢t

(c) The Dirichlet process. From (3.18) with a(t,=)=e , the estimate

of survival function is:

0.1t 0.1

- u. "
: ; +8-1+),
S pyef L #8-g(t) i) & i
Splt) 3 M1

e-O- Iui+8-_i

(7) Shaked, Zimmer and Ball's method (2,18). Let B be a set in a finite

dimensional Euclidean space such that every VeB corresponds to one and only
one stress level under which an item can operate. Let VOEB be the normal
stress and let V],...,Vk be accelerated (greater) stresses under which k
life tests are being performed. Assume that k and V],...,Vk are determined
before the life test begins and remain constant throughout. Thus, without
loss of generality, assume that g = {VO’Vl""’Vk}‘ (See Mann (]31 for the
selection of the accelerated stress levels.)

Suppose that a known function m exists such that for every ViEB and
VjeB,

ij(t) = Fvi(m(u,vj,ci,t)),tgp (3.20)
where FV denotes the distribution function of the lifetime of a device
subject to stress V and « is an unknown parameter. (o may be a vector.)
The set of all possible a's will be denoted by 2 and the function m will be
called a time transformation. Moreover, assume that m of (3.19) is of the

form:
g(asv )
m(a,Vj,Vi,t)=§TETV?T-t (3.21)
g(a,V) 0, VeB,aea.
The set of data that is obtained from accelerated Tife tests is the
set of observations Tiz’ £=1,...,ni, i=1,...,k where Tiz is the time of

failure of the 2th item in the sample of size n, that is run under stress
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level Vi’ i=1,...,k. In addition, assume that the sample size n; are
fixed in advance. If nonaccelerated data are also available then the pro-
cedure which follows can still be used by augmenting 0 to the range of the
indices i and j. However, for the application of the procedure no non- |
accelerated data are needed. Denote the scale factor between Fv. and

J

F by:
Y

eij = g(asvj)/g(u’vi); i#j, aea; Vi’VjEB (3-22)

The first step in the procedure for estimating F, (t) is to estimate
0

. . . pags =2 _=1.n . .
eij for given i and j (i#j). Let Ti=n z£=1T1£, i=1,...,k, then an esti-

mator of eij is:
aij = Ti/Tj (3.23)

Mext, for every i, j(i#j) estimate %4 from the equation:

eij = g(aij’vj)/g(uij’vi) (3-24)

then estimate o as a weighted average:

a = i:j wijaij (3.25)

where wij's are determined by:
- 2
i o (A(qiifvi,vj))
ij Var(éij) (3.26)
where:
(a/aa)g(a,vj)g(a,vi)-(B/Bu)g(a,vi)g(a,v.)
Ala,Vy,V5) = J

(g(a»V;))?

and & W..=1
igg
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~

If eij is the estimator of Sen (20), then using the expression for the

asymptotic variance of Sen's estimate (p.536) one can approximate
var(éij) and substitute it in (3.26). Similar remarks hold for other
estimators of 855

J
Define the rescaled values:

n  9la,Vy) . _

T_i = H&m 'iZ E_],-..,n.i, 1‘],...,k (3.27)
Then:

a 4"

Fy (t) = (Number of T, less than t)/N (3.28)

0
where N = zk n
i=1 "'i°

If the time transformation of (3.20) is of the form:
mla,Vg, g 1)<t Vg)/aeVy) (3.29)

and if eij is again defined as in (3.22), one can use the same method as

before, but estimate .. by 31./3j where Si is the mean of log T. ...,

1J

lTog T, ~ and Sj is similarly defined.

1
The authors illustrated their method by a numerical example, using

the real data reported by Nelson (15,16). The data consisted of times to
breakdown of an insulating fluid subjected to seven constant elevated test
voltages: 26 kv, 28 kv,..., 28 kv. The normal voltage is VO = 20 kv.
Assume the model g of (3.21) is:

g(a,V) = V*,a>0 (3.30)

Then from (3.24) and (3.23)
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. Tlog b,. log(T./T.)
i TBETVE%V;T Taarv37vf7 (3.31)

To obtain wij they used (3.26) and from a result of Cramer (4, p.366) they

obtained:
W..=(Tog(V./V.))? (3.32)
1] J 1

thus from (3.31), (3.32) and (3.25), it follows that:

X 2K (log(V./v,) (Tog(T,/T.))
I L R it R A LA EARREARE LA 1.93
& k Kk 2 (3.33)
51-=]Zj=1-+1(109(‘1j/V1-))

Also, from (3.33) they obtained the value of a to be 17.9286. The rescaled

variables are from (3.27).
& a _ 17.9286 - .
T'if. - (v.l'lvo) Til = (Vi/ZO) Tiz’ L ]’---’n, (334)
i=1,...,k.

and the empirical distribution based on Til's is the estimate ﬁv (t).
0
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IV. DISCUSSION

The feature of the nonparametric estimation of life distribution is
to use a weak set of assumptions, as compared to the more restrictive para-
metric models, to get the estimate of the distribution. Once we have the
estimate of the distribution, we can predict the probability of failure at
any given time. Besides, nonparametric estimation techniques have the
advantage of being relatively insensitive to outliers in the data.

In this section we consider the properties of the estimators we
described in Section 3.

(1) Ferguson's method (6). This estimator is a weighted average of

our prior guess of F and of the sample distribution function, with respec-
tive weights Pn and (I-Pn). Ferguson gave a reasonable interpretation to
a(R) as the prior sample size.

If «(R) is large compared to n, little weight is given to the observations;
if «(R) is small compared to n, little weight is given to the prior guess of
F. As a(R) approaches zero, the estimator converges to the sample distribu-
tion function which is a ML estimator.

In theory the concept of the Dirichlet process is not easy to understand.
However, in application, the estimator of the distribution function is quite
reasonable, and useful. The Bayes risks Rn(a) of Ferguson's estimator (12)
is:

Rn(a)dng(En,a)=E5Ff{EF(t)|£FF(t)-fn(t))2}dH(t)} (4.1)

= [a(R)/T(a(R)+1) (a(R)+n) }]/F (£} (1-Fy(t)) dW(t)

Moreover, Ferguson's estimator has a very nice property (6), that is,

no matter what the true distribution is, Ferguson's estimator converges to
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it uniformly almost surely. This follows from the Glivenko-Centelli theorem
and the observation that Pn+0 as n-e,

(2) Hollander and Korwar's method (9,12). This method is a modification

of Ferguson's method. It is more useful since we can estimate all n distri-
bution functions simultaneously regardless of whether sizes are equal or not.
Besides, Hollander and Korwar's estimator requires less prior information
about «(+). Only a(R) needs to be specified. After the sample size is fixed,
a{R) is not hard to determine.

Similar to Ferguson's estimator, Hollander and Korwar's estimator of

Ff’ i=1,...,n is a weighted average of the sample distribution function of

X5 and of the past samples 54,...,54_],54+},...,§ﬂ. It is also very easy to

apply.

Hollander and Korwar (9,12) showed that even though one needs to
specify a(R), the procedure is asymptotically as good as though « were known
exactly, and that the difference between the risk of Ferguson's estimator

Em (when based on 54) and the overall expected loss using H; converges to
i

zero as n-=. Also, Hollander and Korwar gave a necessary and sufficient
condition that their estimator does better than the sample distribution

function E] (based on 34). This condition is expressed as:
-
a(R) = m,
t=1
a.l 5 ’57“ (4.2)
i (n-1) {a(R)+mi}

+n-1

Furthermore, they showed that if:
(n-l)-min(m1,...,mn) > max(ml,...,mn) (4.3)

ar

(2n-3)min(u(R),m1,...,mn) > max(a(R),m1,...,m ), (4.4)
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then the Hollander and Korwar's estimator is better than the sample
distribution function.

(3) Kaplan_and Meier's PL method (3,70). Kaplan and Meier's paper (10)

presented not only the PL estimator but also the RS estimator and the actual
estimator. We shall only describe the PL estimator since the RS estimator
does not utilize all the information from the sample and the PL estimator

is a 1imiting case of the actual estimator. In their papers, they describe
the observations as either time to death or time to loss. Here we interpret
them as type I censored data and assign to each sample a time scheme Li
(referred to as the 1imits of observations in Section 3) if death occurs
after Li’ otherwise Ti (time of death) is assigned to t,.

The PL estimate is very easy to calculate, is consistent and of negligible
bias (3). The asymptotic expression for its variance is:

VIB(t)| = PA(t)elN-r) (N-r+1) ] (4.5)

r
where r runs through the positive integers for which t;gﬁ and t; corresponds
to death. -

The disadvantage of the PL estimate is that if the greatest observed
lifetime corresponds to a loss (t*), then for t>t*, P(t) is undefined though
bounded by 0 and ﬁ(t*). It may be time-consuming and expensive or impossible
to overcome this disadvantage.

When no loss occurs at ages less than t, the PL estimate of P(t)
reduces, in all cases, to the usual binomial estimate, namely, the observed
proportion of survivors.

(4) Susarla and Van Ryzin's method (21). This method gives the nonparametric

solution to the estimation of the 1ife distribution function under the squared

error loss using the notion of the Dirichlet process prior. The resulting
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estimator shown in (21) reduces to the PL estimator in the case where
a(R+)*0. a{+) is a parameter of the Dirichlet process prior.
This estimator is a function of the sufficient statistics. Unlike the

PL estimator, one can obtain an estimate, §(u), for any value of u.

(5) Susarla and Van Ryzin's method (22,23). This estimator is useful if
individuals respond differently to the same treatment, but on the average
have the same survival distribution. 1In that case, one can estimate the
distribution function for each individual survival distribution.

Susarla and Van Ryzin showed that their estimator has: 1) mean-square
consistency, 2) almost sure consistency, and 3) asymptotic normality assuming
that the observations are i.i.d with right cdf FO and that the censoring
random variables are i.i.d with a continuous distribution function.

The properties of this estimator is lacking for small samples. When
the distribution Hn is unknown, the authors suggest the use of two functions,
K(u) and £, There are certain conditions that K(u) and £, must satisfy,
which 1imit their applicability. When Hn is known, it was found that the
probability of survival until 180 weeks (§i(180)=.198) was larger than the
probability of survival until 160 weeks (51(160)=.18). Susarla and Van
Ryzin attributed this undesirable feature of the estimator to the use of
(Hj(x))'] in equation (3.7). Hence it would be desirable in the future to
investigate alternative estimators to &i(x).

(6) Ferquson_and Phadia's method (8). Ferguson and Phadia's estimators,

using the process neutral to the right as prior, are very general and useful.
The intensity parameter t measures, in some sense, the prior "strength

of beljef" in the process neutral to the right. In the simple homogeneous

process and in the Dirichlet process, the estimators converge to the sample

distribution function as t tends to zero.
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(7) Shaked, Zimmer and Ball's method (2,18). Shaked, Zimmer and Ball's

method is used under the condition that the lifetime is long, and the time
spent on testing a sample of devices is excessive. Accelerated data for
this method is obtained from observations collected on the devices under
consideration when subject to conditions of greater stress than that under
normal operating condition. From the results for these high-stress environ-
ments, an estimate of performance of the device under normal operating con-
ditions is obtained. This method has the advantage in that lifetime
observations under normal operating condition (which are difficult to
obtain) are not required.

The disadvantage of this method is that it is difficult, in the

procedure of estimation, to obtain the asymptotic variance of éi The

i
authors used simulation to compare their estimator with the power rule
method (14, p. 425) under the assumption of exponential lifetime. It
turned out that, in some instances, their estimator was asymptotically
equivalent to the maximum Tikelihood method for estimating the nonaccelerated

mean lifetime.
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V. SUGGESTIONS FOR FUTURE STUDIES

Comparisons between the parametric and the nonparametric methods.

It was suggested in Section 4 that the nonparametric estimation of the
distribution function is robust. This point, however, needs further investi-
gation especially for small samples. In accelerated sampling, Shaked et al.
(18), using simulation, compared their method with the power rule method
[Mann et al. (14)] under the assumption of exponential 1ifetimes, which
revealed that the Shaked et al. (18) method was asymptotically equivalent
to the maximum Tikelihood method for estimating the nonaccelerated mean
lifetime. However, when Shaked et al. (18) compared their method with
Nelson's parametric method (16) by using the real data reported by Nelson
(15,16), they found that there was a significant difference between the
nonparametric estimates and the parametric estimates. They did not, however,
explain which method was better or under what conditions a parametric or
nonparametric method should be used. Also, there has been no comparisons
between the parametric and nonparametric methods or among the different
nonparametric methods for nonaccelerated sampling. Such comparisons would
be desirable, especially for small samples. It would also be desirable to
compare nonparametric and parametric methods for different sample sizes in
order to determine how the size of the sample might affect the choice of

the method.
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. Table 1.

for which each method is suitable.
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Different nonparametric estimation methods and data classification

Purpose Methods Conditions Ref.
Estimate the Ferguson's Nonaccelerated Type II 6
distribution method without replacement censored

data with r=n
Simultaneous Hollander and | Nonaccelerated Type II 9
estimation of n Korwar's without replacement censored
distribution method data. Samples are taken from 12
n distribution functions, and
sample sizes may or may not be
equal
Kaplan and Nonaccelerated Type I 10
Meier's PL without replacement censored
method data 3
Estimation of the Susarla and Nonaccelerated, without 21
survival function Van Ryzin's replacement with Type I
me thod censored data
Ferguson and | Nonaccelerated Type I 8
Phadia's censored data without
method replacement
Estimation of the Susarla and Nonaccelerated, without 22
nth distribution Van Ryzin's replacement and with mixed
function method censored data 23
Estimation of the Shaked, Accelerated Type II censored 2
distribution Zimmer and data without replacement. The
function under Ball's lifetime of the device is very 18
operating conditions | method long.
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~ ABSTRACT

The aim of this report is to survey recent work in nonparametric
estimation of Tife distribution. My presentation consists of seven
methods of nonparametric estimation of 1ife distribution functions and a
summary of several types of data in 1life testing. The definitions and
results of the Dirichlet process and of a process that is neutral to the
right, which are very useful with respect to some nonparametric decision
theoretic problems, are also presented. Some proposals for future work

are outlined.



