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CHAPTER 1
INTRODUCTION

Geometric programming is a branch of nonlinear programming dealing
with the problem of minimizing posynomials (polynomials with positive
coefficients) subject to certain posynomial inequality constraints.

The general theory of geometric programming was initially developed
by Duffin, Peterson and Zener in 1966 [6]. A serious limitation in the
application of this theory has been that all the functions involved in
the problem are to be posynomials. This shortcoming was overcome by
Wilde and Beightler [9] in 1967 when they generalized the theory to
allow the use of negative coefficients in both objective function and
constraints, and also to permit reversed inequality constraints.

The most recent development of geometric programming has been
made by Avriel and-Williams in 1971 which is called complementary geo-
metric programming [1,2]. Complementary geometric programming removes
the restriction of positive coefficient and solves any rational function
of posynomials.

Although the theory of geometric programming has many potential appli-
cation, it lacks provisions for dealing with "degree of difficulty". A
geometric programming has '"degree of difficulty” if the number of terms ap-
peafing in the objective functions and constraints is more than the
number of variables plus one. The method is extremely desirable when
the degree of difficulty is zero. In this case the optimal solution is
determined by solving a set of simultanous linear equations. For problems

with one degree of difficulty Duffin et al. [6] has shown that the optimal



value of the objective function can be found by expressing the dual
variables in terms of one of the variables, substituting them into the
dual function and maximizing the dual function by cne of the one di-
mensional search techniques.

When the degree of difficulty is more than one the solution to the
problem has to be found through optimizing the dual objecﬁive function
subject to linear conétraints. In 1969 Kochenberger [8] used the
method of Lagrange multipliers for maximizing the dual function subject
to linear constraints. He used Newton-Raphson iterative technique for
locating the maximum point. Williams in 1972 used separable programming
for sclving the dual problem. The method was based on making the dual
objective function separable by a simple linear transformation. Comple-
mentary geometric programming can also be used in problems having more
than one degree of difficulty [1,2].

The purpose of this report is to present a summary of techniques
for extending the applicability of geometric programming to problems
with degrees of difficulty. The following chapter presents some of the
Duffin's original work. Chapter III presents the Wilde and Beightler's
Formulation of generalized geometric programming. Chapter IV presents
complementary geometric programming. Chapter V presents some of the
solution techniques for optimizing geometric programming problems with
one or more degrees of difficulty. Finally, Chapter VI presents some
conclusions and the limitations involved in methods described in Chapter V.

Examples are solved for each method to illustrate the algorithm.



CHAPTER 1II
GEOMETRIC PROGRAMMING
1. INTRODUCTION

Geometric programming is defined as the problem of minimizing posy-
nomials (polynomials with positive coefficient) subject to certain in-
equality constraints.

The basic theory of geometric programming is based on the' arithmetic
mean geometric mean inequality which states that the arithmetic pean is
at least as great as the geometric mean.

The primal problem of any geometric programming is defined as
minimizing a posynomial S subject to certain posynomial inequality
constraints. Let M denote the constrained minimum value of the primal
function, 5, then there is a related maximization problem concerning a
function v which is called the dual function.

The problem of maximizing the dual function v subject to certain
linear constraints is called the dual program. It has been shown that
M is the constrained maximum value of v as well as being the constrained

minimum value of S [6].

2. POSYNOMIALS
A posynomial is a function of real value consisting of finite sum of

positive terms given as

S=U1+Uz+"""“n | (1)



where
m a
i
uj = C .nlx 3, §=1,2, vouy n (2)
1=
or
ol m a
5 = c, I x.ij (3)
=1 da=1 t

where Cj are positive constants and the aij are arbitrary real constants.

The design wvariables Xys Egy eeey X aTE assumed to be positive variables

3. ARITHMETIC MEANS AND GEOMETRIC MEANS

Geometric programming as mentioned before is based on the arithmetic

mean geometric mean inequality which states that the arithmetic mean is

at least as great as the geometric mean.

For any number of pesynomial terms Un’
8, 8 %
+ LN A + ae e
§, U, +6, U 5nuniul U, v (4)

i1 2 2

where
Gl + 52 + ... + Gn =1 (5)
61 are the weights which must sum to unity, that is the normality con-

dition. The equality sign in (4) is satisfied only if all the Ui’

i=1, ..., m, are equal.



4. THE PRIMAL FUNCTION

Optimization problems are often concerned with the problems of

minimizing an objective function of the form

S=U; +U, + ...+ 1T . (6)
or
n m aij
S = Z Cy I = _ (N
j=1 i=1
x; 20 : (8)

where § is posynomial if Cj are positive. § is called the primal
function and Xys Xy eeey X are called primal variables. The con-
ditions (8) are called natural constraints. The matrix (aij) is called

the exponent matrix.

5. THE DUAL FUNCTION
The arithmetic mean geometric mean inequality (4) can be changed

to

: 8
uy 1 fuy 2 ujn
u. + u + +u s 1 _2 B (9)
1 2 L n_ 61 62 LI BN 3 6

if we let u; = 61 Ui fori=1, 2, ..., n. The left hand side of (9) is the

primal function S to be minimized. The right hand side of (9) is called the

predual function and is denoted by V.

s>V . (10)



Substituting (2) into the predual function gives

) ) 5

v - ﬁ 1 & 2 Cyn xDl xD2 xD‘“ an

5] 3 A I 1 72 """ Tm

2 n
where

n
Dj = izl 8, - 240 4=1,2, v.., m (12)
8§, 20 (13)

Gi are called dual variables. Relation (13) is called the positivity
condition.

If we choose the weights 6, so that Di are zero, then the predual

i
function does not depend on the variable LI and it is called the dual

function, denoted by v.
Cy1(C,hy2 Cyn
= |2 2 -
-t
It follows that
S>M>v (15)

6. THE MAXIMUM OF THE DUAL FUNCTION
It can be shown that the minimum value of the primal function S is

equal to the maximum value of the dual function v subject to the normality

and orthogonality conditions [6], or



=1 1
and
o
Dj = 121 61 . aij =0 (o?thogonality condition)
61 >0 i=1, ..., n
The proof of duality theory is given in [6].
EXAMPLE 1:
Minimize
X, fl
S=—2—+Xz+2x
% 2

The normality condition is

+8,=1

61 + 62 3

and orthogonality conditions are
—261 + 63 =0
61 + 62 - 63 =0

From these equations, we cbtain

(16)

an

(18)

(19)



2
=%
1
62 4
and
S
‘53‘2

From equation (14)

or

. (4)1/4 (4)1/4 (4)1/2 oy

and the minimum value of S is 4.

7. DETERMINATION OF THE MINIMUM POiNT

Geometric programming differs from the other optimization techmniques
in that it gives the minimum value of S(X) of a posynomial $§ without
first locating the point (El, 52, FEF o En? wﬁich makes § a minimum. In

order to find the optimum point the following relation is used

uj(E) = Ej S(x), i=1,2, vy n (20)
where
m a,.
u, = C I xj ’ j=1,2, seay N (21)



In general there are n equations and m primal variables which can

be solved to find the minimum point (§1, 52, . ;EP'

EXAMPIE 2:
In the previous example we found that S(x) = 4,

= 1/4 and §, = 1/2. To find x, and x, at the minimum

= 1/4, & 1 .

§; 2 3

point equations (20) and (21) can be used,

or
X
Z-1/axb=1
X
x, = /4 x4 =1
*q
2= =1/2 x b= 2
)

from which, X, = 1 and-x2 = 1.

8. CONSTRAINED MINIMA
The general problem of geometric programming is to minimize a

posynomial § subject to inequality constraints of the form
gk(xl, Xyy oo EEQ <1, k=1, «vsey P (22)

where the gk(x) are also posynomials. The primal problem can now be
stated as

minimize

s= ] u | (23)



subject to
e . . _
g = ) uy <1, k=1,2y ¢ces P (24)
i=mk
where
m=n_,*+1, k=1, «ees P (25)

To be able to handle geometric programming problems with inequality
constraints we must express the geometric inequality (9) in more general
form in which weights are no longer normalized.

The dual problem that corresponds to the primal problem is then

maximize
n Ci 61 P -Ak
v = I (5—] H_Rk - (26)
i=1v'i k=1
where
By .
A = 1 85 k=1,2, «0os, P @n
i=mk 7 .
and
m =n +1, m, = ny +1, eeeym_=n_+1 (28)
n =n
P

subject to linear constaints of the form

10
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o

I 8, =1 - - (29)
i=1l h

n ;
izl aij - 61 = 0, j = 1, LI Y m . (30)
6,20 (31)

Equations (29), (30), and (31) are called normality conditiom,

orthogonality condition and positivity condition respectively.

EXAMPLE 3:

Minimize
2
S xl + lex2

subject to

61 + 62 =1
261 + 62 - 263 =0
62 - 63 =0

Therefore §, = 1/3, 62 = 2/3, and §,, = '{‘./3 and the dual

3
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function becomes

v= (3 323 3 ;3.
or

%
5 =3

To find the optimum primal variables §1 and §2, we have

xi =1/3x3=1

2x1x2 =2/3x3=2

Therefore, Xy =71 and x, = 1.

9. THE DUALITY THEORY

A program (either primal or dual) is said to be consistent if there
is at least one point that satisfies its constraints. A primal problem
is said to be supgrconsistent if there is at least one vector x* that
has positive components and satisfies the following strict inequality
constraints [6] .

gk(x*) € A, ki= Ly qwes P

In terms of the above concepts the main theorem of this formulation
of geometric programming is stated as: .
THEOREM 1. Suppose that the primal problem is superconsistent and that
the primal function S éttains its const;ained minimum value at a point
that satisfies the primal constraints.

Then
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(i) The corresponding dual problem is consistent and the dual

function v(8) attains its constrained maximum value at a

point which satisfies the dual constraints.

(ii) The constrained maximum value of the dual function is

equal to the constrained minimum value of the primal

function.

(11i) If x is the minimizing point for primal problem, there are

non-negative Lagrangian multipliers ﬁk, k =

such that the Lagrangian function

1,2, no}g p’

L(x,u) = S(x) + E u [g (x) - 1] (33
i=1

has the saddle point propérty

L(x,1) < S(x) = L(x,1) < L(x,n) | (34)

for arbitrary x, > 0 and arbitrary M 2 0. Moreover,

3

there is a maximizing vector §,for the dual problem whose

components are

m 13
% Z 5
§, = —L2
i S(x) ’
m a,
ij
My ¢, Z xj
5, = =1
i S(x)

My eees Oy (36)

1’2’ ses g p
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where x = x and U= ;. Furthermore

L Wy
Akfﬁ) = E—— k=1,2, eea, P (37)
8(x) :
(iv) If § is a maximizing point for dual problem, each minimizing

point x for primal problem satisfies the system of equations

m aij _ _

C; ? gj = Gi « v(8), i=1, ..., 0 (38)
4=1
m aij _

g, jgl x, = s 1=m, .o, (39

where k ranges over all possible values for whichrlk(a) > 0.

Equations (38) and (39) provide a method for finding a minimum
point (§1,§2, app— ;hP from the knowledge of maximizing point 8.
Equation (38) and (39) can be solved by taking the logarithm of both
sides first and the; solving for En(xl), ln(xz), etc. [6]. From equation
(37), we see that the numbersrlk, aside from a constant factor, are the

Lagrangian multipliers for the primal problem.

THEOREM 2. If the primal problem is consistent and there is a point §*
with positive components which satsifies the constraints
of the dual problem, the primal function S(x) attains its
constrained minimum value at a point x which satisfies the
constraints of the primal problem.

The proof of the above theorems are given in [6].
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10. DEGREE OF DIFFICULTY

The degree of difficulty of a geometric programming problem is de-
fined as

degree of difficulty = n - (m+ 1) (40)

where n is thg total number of terms in the primal function and primal
constraints (forced constraints) and m is the number of primal variables.
If degree of difficulty is zero, the solution is determined by
solving the linearrconstraints without reference to the objéctiﬁe
function. If the degree of difficulty is more than zero, then one of
the optimization techniques should be used to maximize the non-l;near

dual objective function subject to the linear dual constraints.
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CHAPTER III
GENERALIZED GEOMETRIC PROGRAMMING

Wilde and Beightler generalized the theory of geometric programming
to include negative coefficients in both objective function and
constraints, and also to permit reversed inequality constraints [9].

The generalized geometric programming problems can be stated as

minimize
TO N an
Yo ° t-—z-l %ot ot ngl X, o e FEL ¢ >0 0
subject to the constraints
T
m N a
- mtn - .
Im = t£l “mt mt nzl *n LS B (2)
o, EF1, wm=1, .., M (3)
e > 0, x > 0 ‘ (4)

The dual problem corresponding to this primal problem is then

maximize
M Tm c W o) W g
0 t=1 nt :

subject to the linear comstraints
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TO
tzl Oge Vor = O = +1 . (normality conditiénj (6)
f oy |
o w =0, n=1, ..., N (orthogonality (7
0 t=1 Dt mtn mt condition)
T
m
Ym0 = n t£1 “nt Wmt_>_0, m= Ly waey M - (&)
mt = O | @

w,, =1 (10)

0. W
lim cmt me mt mt

wmt-+0 (_';-t——) =1 (11)
» :

The relationship between the primal and the dual variables at the optimum

solution are

30tn ~%
ot E X = Vo © Viw ), t=1, cees TD (12)
n=1 £
and
N a W
¢, I xn‘""“=;-'~‘i-§-, B By meey Ly m=1, ooy M (13)
n=1 mQ '
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The equations (12) and (13) are linear in 2n(x) and give the values
of El’ ;2, i3 Em at optimum,
Substituting the value of Vo from equation (8) into the dual

problem (5)

_ ’ M Tm cmt 0mtwmt M Tm Omtwmt .
Viw) = ¢ (mg Il &?—ﬂ n o (w.) ] (14)
» m0
0 t=1 mt =0 t=1
T o
Zm
g .w
M m [cmt]Umﬁwmt M t=1 RE, mE
=g |01 1 [— I w (15)
=0 t=1 wmt =0 )
Since o_=+1,
-
W Tm
o0 = o= L O
Gm t=1
WOO =1
The final result is
T c W (o]
_ M m Coe mt mt M O ¥ 0
VW) = o (n 1 (= I w ] (16)
m0
™= =0

0 t=1 “mt

which is similar to equation (26) in Chapter II.
Generalized geometric programming is more applicable to optimization

problems because of the signum function-crmt in equations (1), (2), and
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(3). The negative sign of o helps to solve those problems having re-
versed inquality constraints. The disadvantage of the generalized
geometric programming is that the guarantee of global optimality is lost

in the optimum solution.

The Degrees of Difficulty

The beaety of geometric programming occurs when the total number of
terms is one greater than the number of variables. 1In this case the
solution is determined by solving the linear constraints without reference
to the objective function.

The total number‘of terms is equivalent to
M
T= } T : 17
m=0
The total degrees of difficulty is defined as

D=T- (N+1) | - (18)

When D is greater -than zero the dual problem is not so easily optimized.

EXAMPLE 1:
Minimize
2
§ = X + x2
subject to
2
xE, 2 2

Arranging the above constraint into the general form given by (2)



Here

w1 Gnn =+ 1, o

%01 02 11

The dual constraints are

Wor T Wgp = 1
Mgy - My =0
Yo ~ %11 =0

Solving for Wo1? wOZ’ and wll’ we obFain

w = w = =1/2

01~ Yo2 T "1

Therefore
“bo =1
and Wi = 1/2

The value of dual function at this poiné is

1/2

+1

_ 1/2 1/2 1/2
o (" " (8

1/2

= 2,83



The primaf variable are found from equation (12) and (13) as

xi = 1/2 x 1 x 2.83 = 1.415
or Xy = 1.183
X, = 1/2 x 1 x 2.83 = 1.415

The minimum value of the objective function at this point is

Smin=2.83

21
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CHAPTER IV
COMPLEMENTARY GEOMETRIC PROGRAMMING

1, INTRODUCTION

A serious limitation in the successful application of geometric
programming to optimizing engineering design has been that all the
funcltions involved in the problem are to be posynomials, i.e., generalized
polynomials with positive coefficients. Avrieland Williams [1,2] ex-
tended the theory of geometric programming to include any rational
function of posynomial terms. The case in which some of the terms may
be negative is then a special case of the theory. A program formulated
in terms of a rational function of posynomial terms is called a comple-

mentary geometric program.

2. PROBLEM STATEMENT

The most general form of a complementary geometric program (CGP) is:

-

Minimize
Ro(x) (1)
subject to '
R.k(x) <1, k=1, .ce, P (2)
x>0 (3)

where X is a mdimensional vector, and

A (%) - Bk(")
Ry (x) = .G - D () °

k=0,1, ..., P (4)
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where the A, B,-C and ﬁ are all posynomials and possibly some of them
may be absent. It must be assumed, however, that Rn(x) > 0 for all
feasible x. This can, in principle, always be achieved by adding a
sufficiently large constant to RD'

To treat the problem, a new variable Xy > 0, constrained to satisfy
b4 3_R0(x), i.é;, Ro(x)/x0 < 1, is introduced, so that the prob;em is

0
reduced to minimizing Xq subject to constraints of the type

A(x) - B(x)
Cx) = D(x) ~ . | _ (5)

The constraints have meaning only if C(x) - D(x) has constant sign
throughout the region of interest. Accordingly as C(x) - D(x) is pos—

itive or negative, equation (5) can be written as

A(x) + D(x) |
Blx) ¥ o(x) =1 | ©

if C(x) - D(x) is positive or

B(x) + C(x) |
A * Do =1 (7

if C(x) - D(x) is negative.

Then the standard complementary geometric program (CGP) is

Minimize
(8)

subject to

P ()/Q () < 1, k=0,1,.:0, P &)
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and
x = (x5, Xps eves xﬁ? >0 7 (10)

where‘Pk(x) and Qk(x} are posynomials of the form

%13k
P () =] Py () = ) ey 1% ] (11)
3 i i
' 13k
Q (x) = )jj 4y () = § U T % . (12)

Complementary geometric programming enables us to héndle much
larger family of engineering optimization problems than ordinary geometric
programming. However, complementary programming does not have the‘
property of the ordinary geometric programming that every constrained
loca} minimum is glso.a global minimum. Complementary geometric programs
can have logal minima which are not global minima, however, in many
practical situations it is sufficient to find a local minimum.

The algorithm described in the next section obtains a local minimum.

3. ALGORITHM

The algorithm for solving complementary geometric programs is based
on the fact that arposynomial divided by a posynomial consisting of only
one term is again a posynomial. Therefore, if each of the Qk(x) in
equation (9} are approximated by one term posynomialé, we obtain an
ordinary geometric programming problem. The algorithm consists of
successively épproximating the Qk(x) by one term posynomials so as to

produce a sequence of approximating geometrie programming problems whose



solutions converge to a local minimum of the original CGP program.
The approximation of Qk(x) to one term is based on the arithmetic-
geometric mean inequality (equation (9), Chapter II).
u.y j .
Ju zm (—l] - , (13)
] J '

%

Since the Qk(x) are of the form (omitting the k subscript)

k|

| "
Q0 = [ a0 = [ 4, Tz i | (14)
] fda ® .

we may take any x > 0, and put

and recalling the definition of 6j

q.(x)
§. = —d—uu (16)

€
From equation (13) we have

- qj(;s)/Q(:-:)
Q@) > 1 [955} qj<x>] = Q(x,%) a”n
3 tey(x) :
The right-hand side of (17) is a one term posynomial and it is the

approximation for Q(x) at x and will be denoted by Q(x,x).

The first step in solving a complementary geometric program then is

25
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to select some feasible point, call it x(l), and replace the Qk(x) by .

Q (x,xP). Thus (8), (9) and (10) become:

Minimize
%g (18)
subject to
...Pk(x) ,
(l) i 19 k = 0: 1: sesy P (19)
Q (x, x*7) .
x>0 . (20)

-

This is an ordinary geometric programming problem which is solved
for some optimal solution; call it x(z). Qk(x) is then replaced by

Q(x, x(z)) and a new optimal solution 3(3) is obtained, etec.

We can see that if x(l) is feasible in (17), then so is x(2), since
. 2 (x(P) p (x'?) o
2 z 1
.70 &, 2D T o )

The sequence x(n), therefore, is feasible and will converge to a

local minimum.

4. DEGREE OF DIFFICULTY OF A CGF PROBLEM
The degree of difficulty of a complementary geometric programming
problem is defined as [1,2] the total number of posynomial terms in the

numerators of the inequality constraints (9) less (m + 1), where (m + 1)

is the number of primal variables Xgs Ky coes Koo
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In other words, the degree of difficulty of a complementary goemetric
programming problem is equal to the degree of difficulty of the approxi- -
mating ordinary geometric programming problem,rsolﬁed at each iteration.
This means that the degree of diffiuclty of a CGP Problem is independent
of the number of terms appearing in the denominators of the constraints.

5. EXAMPLE (extracted from reference 2)

Minimize
%0
subject to
8x% + 8x., > 11
0 1-—
—x0+8x15_ 2
X, > 0, % > 0

Rearranging the iﬁeqhality constraints into the standard form of equation
(9), we obtain

Minimize

*o0

subject to

‘11/8 <1
2 x "
R |




If we lét

ne)
. =SJ_"_
i Q(x)

in equation (17), the problem reduces to

Minimize
xU'
subject to
xg -£ ] “€,
ol I o RS
1l 2
- -
3 (x 4
T
) S
or
Minimize
*a
subject to
=2c -e

where



2, 2
1 = %/ (xp + %))

™
i

2
g = X/ (x5 + %))

€y = 2/(2 + xo)
€y = x0/(2 + XO)
and
11 Eq, €9

€11 =5 (e " (&)

83 (:‘-4
Cpy = 8 (e4/2) ° (e})

The narmality and orthogonality conditions are |

01

Sor = 22181y ~ Bgfpp = O

~ 881 t8; =0
which give the solutiom

601 =1

§,, = l/(Zel + ¢

11 g

2 4)

621 = 52/(251 + 92-34)

29
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The dual Function can be written as

8 é

c 11,C A A
2 5
v(8) = {Elli (3_1J 0 oy ?
: 11 21
where
‘1= 8
and
Ay =8y
C01 601
The term (3——} in the dual function is considered as one, since
01
601 -'C01 = 1. The dual function can be further simplified to
- 8 é
_ 11 21
v(§) = (Cpy) T(C,)
S (4, 1/4) which is a feasible point, the optimal

Starting with x
value of the dual function of the first approximating geometric programming

problem would be
v(ﬁ(l)l = 1.139

By solving equationé (38) and (39) in chapter II the primal variables

are found to be

Xy = 601 v(8) = v(8)



and

€
v

1

X

which yield the values of

1.139

by
L]

and

0.325

)
at the first iteratiom.
This point will be the next trial point, 3(2} = (1.139, 0.325), and
will be used in the next iteration. The convergence of the algorithm
to the desired minimum is presented in Table 1. The optimal solution

is

1.000

L
n

= 0.375

M
|

and the minimum value of the objective function is

S(x) = v(8) = 1.000



TABLE 1

Convergence to optimum in example 1

Iteration " X Xy v(§)
1 4,000 0.250 1.139
2 ' 1.139 0.325 1.009 .

3 ‘ 1.009 0.375 1.000
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CHAPTER V

OPTIMIZATION OF THE GEOﬂETRIC PROGRAMMING PROBLEMS CONTAINING

DEGREE OF DIFFICULTY

Geometric programming is a method for solving a class of nﬁnlinear
optimization éroblems. The method is very desireable when the degree
of difficulty is zero. In this case the optimal sclution is obtained
by solving a system of linear equations. If the problem has degree of
difficulty greater than zero, the corresponding system of linear
equations has no single solution and the optimal solution has to be
found by optimizing the dual objective function subject to 1ineaf con-
straints. 1In this chapter some of the solution techmiques to the problems

with one or more degrees of difficulty are presented.

1. GEOMETRIC PROGRAMMING PROBLEMS WITH ONE DEGREE OF DIFFICULTY
Method 1. This method provides a quick estimate of the upper and

lower bounds of the optimal value of the objective functiom.

S(xps vves X) 2 S(X) = v(8) > v(8y, «ui, 8) (1)

This is accoﬁplished by neglecting_one of the terms in the primal
objective function and hence reducing the problem to zero degree of
difficulty. The problem with zero degrees of difficulty can now be
solved for the weights, which are then substituted into the dual function

to obtain a lower bound on the true optimal value of the objective



function. The upper bound is obtained by substituting the corresponding
values of the primal variableg Xys vess X into the original objective
function.

The range on which the optimal value of the objective function or
S(x) is bounded can be small or large depending on the size of the
weight neglecfed. Hence by choosing the smallest weight, a good esti-
mate of the optimal value of the objective function can be found.

The smallest weight or § may be found by writting the relations
between the weights ané finding the range each § is bounded. The one
with the smallest upper bound is the one to be neglected.

EXAMPLE 1: (extracted from reference 3)

Consider the problem of minimizing the cost fumction

9 1~k

- 5
xl x2 + 2,5 x 10 x2 + 9000 x.x

§ = 1000 x;, + 4 x 10 1%9

The normality and orthogonality conditions are

61 + 62 +.63 + 64 =1
51 - 62 + 64 =0
- 52 + 53 + 64 =0

This problem has 4 - 3 = 1 degree of difficulty. Solving 815 8,5, and

63 in terms of 64 yields

&, =

1 (1 - 28

Wi

4

34
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= —-1

52 3 1+ 6,)
= '-l -—

63 =3 (1 264)

Since all the & should be positive, the following bounds can be put on §.

0<6;<1/3

1/3 < 6, < 1/2.

2

<1/3

0<6, <1/2

4

As can be seen either 61 or 63 has the smallest upper bound on it.

Neglecting 64 OF letting

63 =0
we obtain

61 =0

62 = 1/2

63 = 0
and

64 = 1/2

the value of the dual function at this point is
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5 5 5 §
v0.t,0.Ly - [1000) 1 (4x10%) ? [2.5x10°) 3 [900) %
222742 6.0 U8, ) §, ) §,)

_ (ax10”)M? (900) /2
172 172
= 12.0 x 10°
X, = 411 and x, = 1.63

1 2
and the value of the primal function at this point is

S(411, 1.63) = 12.8 x 10°

Therefore, the optimum value of the objective function, S(%), is esti-

mated to be

12.0 x 10° < 8(x) < 12.8 x 10°

Method 2. In this method weights Gi afg to be expressed in terms
of one of the weights called the basic variable (the number of basic
variables is equal to the degree of difficulty and in this case is one).
The dual problem (function) can then be reformulated in terms of the
basic variable (or variables). This problem cén now be solved by one
of the one dimensional search techniques. Since the dual function is

nonlinear with respect to Gi’ it is simpler to take the logarithm of

the dual function and then search for the optimum point [6].



EXAMPLE 2:

and 6, in terms of §

In the previous example we expressed 61, 62, 3

=1l
.y

- ok _
65 = 5 (1~ 25,

Substituting these values into the dual function yields

1, 1
Y126y Li4s)
100 }3 4 (4x10’ ]3 4

v(8) = v(s,) = [1_ :
_ 3(1-254) 3(1+64)

Le1-26

L 2.3x103]3
AT
t1-2

&)

) 5,
4 (9000] 4
%
which is one dimensional with respect to 54. Taking the logarithm of
both sides, differentiating with respect to 64, and equating to zero

gives

9

8 (v(s,)) = (1-26,) 2n[—2000 | 4 10145, )0n 4x10
4 3 N e L ]
5(1-28,) 5(1+8,)

9000,
5,

.3x10° ]

1 2

+ =(1-25 )En[_
3 4 1
3(1—2 ﬁ)

+ Sézn(

4
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dln(v(ﬁa)) ) dv(64) 1

= x
dﬁ4 d64 v(64)

=0

or

Further simplification gives

)3

(1+64)(5
= 2.045x10

4

4 3

(1-284)

which gives the sol&tion, by one-dimensional search, as

*
64 = 0.453

and therefore the other weights are

0.031

(=]
]

6, = 0.484

and

38



63 = 0.031

The optimum value of the objective function at this point is

S(x) = 12, 6x10°

39
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2. GEOMETRIC PROGRAMMING PROBLEMS WITH TWO OR MORE DEGREES OF
DIFFICULTY |
When two or more degrees of difficulty is involved in geometric
progr;mming problems-the‘solution is not easily found. In this case
the optimal solution is obtained by optimizing the nonlinear dual ob-
jective function subject to linear equality constraints. |
In this section some of the methods for dealing with the geometric

programming problems with two or more degrees of difficulty are presented.

Method 1. Solution by Separable frogramming

Separable programming can be used for maximizing the dual fumction
under the linear constraints. The methc& provides an approximate solution
for the dual problem.

Since the constraints are linear there is I.ID problem in applying a
separable programming algorithm to them. The nonlinear dualrfunction
can be made sepérable by taking the logarithm of the function.

From equation (16) Chapter III it is apparent that

T

M m M .
¢n(V(w)) = g W zn(—EE] + ow An(w ) , (1)
mzﬂ t£1 mt mt wmt m£0 m m0 mQ

which is separable in the dual variables.

The constraints of this modified function are

Vo % ) OV = © _ : (2)
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T

5 | |
oW, =0 : (3)
oy Ot Ot _ _
and

M Tm

P ! opa v =0, for n=12, ..., N %)

=0 t=1

A FORTRAN program is available for generating data to solve the dual

geometric programming problems using MPS/360 [10].

EXAMPLE 1: (extracted from reference 10)

Minimize
2 212
YO = 4x; + 10::;2 + 4x3 + 2(x1 + xz)

subject to the constraint

Xy¥pXg > 100

xi_>_0

The objective function is not a posynomial, but geometric pro-
gramming can be applied to the equivalent problem of minimizing the

posynomial

Y. = 4x + 2x

0 + 10:&:2 + 4x

1 3 4

subject to the constraints

2.-2 2
XX, XX, < 4



where

1/2

. 2
X, = (xl + xz)

The problem has 7 - (4+1) = 2 degrees of difficulty. The dual function

is

W w w W w W
V@) = [ 4) Ol{wlo] 02( 4} 03(w2} 04["1} ll{ 1) 12 .
Y01 02 Y03 04 11 Y12 _
w
(%)'] 21(""m)WN(‘"?.(J)W?'c'
21
From equation (1) the dual problem becomes
maximize
I (v(W)) = w40 [;’-4—- + Wy, tn (;—12) + wptn (u + Wy, 0 L2 )
0l 02 04

- 1 1+ 100
+ w,.4n —-—-] + w,,.n —] + w,.in [——-] in(w,.)
11 11 12 127 - 21 Voq Y10 10
20”‘(“’20)

subject to the constraints



Yo1 * Y2 t Vo3 * vy =
f01 * 2y =y =0
Y02 By, ¥y =0
03 vy =0
Woe T 29y - 2y, = D
and
Y0 Y11 " %12 =0
Y20 - W,y = 0

By using the FORTRAN program for generating the data and using MPS/360
the problem converges to the following results.

The dual variables are

= 0.23117

Vo1

Woo = 0.30500
Vg3 = 0.33333
Vo4 = 0-13050
'wll = 0.05108
vy, = 0.01417
vy, = 0.33333

The value of the dual function is then determined from

43



v(w) = exp(4.47719) = 87.98708

The primal variables are found from equations (12) and (13) to be

4xl = (0,23117)(87.98708)

10x

(0.30500) (87.98708)

2
433 = (0.33333)(87.98708)
Zx4 = (0.13050) (87.98708)
or
x; = 5.085
x, = 2.6854
Xy = 7.332
x, = 3.741

Substituting these values into the primal objective function yields
YO = 87.990
Since this is a pesynomial problem

87.98708 < v(w) = Y,(x) < 87.990

The given solution is apparantly very close to the true optimum.

a4
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Method 2. Solution by Complementary Geometric Programming.

This method can be utilized-to remove the degree of difficulty and
solve a sequence of ordinary geomefric prﬁgramming problems. -Consider the
general complementary geometric programming problem of the form |

Minimize

Ro(x) (1)
subject to
P (x)/Q (x) < 1, e 1y sweg B ' (2)

x>0

where Pk(x) and Qk(x) are posynomials. The term Qk(x) can be approxi-

mated by the monomial

_ I(k) (qq, () ik
g - 40 (O @
i=1 ik
where
qik(;:) i=1, ..., I(k)
€ik — k=1, ..., p (%)
Q (x)
Iﬁk)
Q (x) = . qik(x), k=1, «eo, P (5)
. i=

The resultant approximating geometric programming problem is then
Minimize

X, (6)
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subject to
PO@E@I™T 21, k=01, ..., p )
where
I(k)
P, (x) = § Pp®, k=01, ..., p O (®

j=1

' The degrees of difficulty of this CGP problem is n—(mt+l) and is
independent of the number of terms appearing in the denohinator of
equation (2). Here n is the total number of terms appearing iﬁ Pk(x)
and m is the number of primal variables (xl, Xps cons xm). To reduce
the problem to zero degree of difficulty, we have to continue to "condense"
until the approximating program given by (6) and (7) has zero degree of

difficulty. Condensation is done by approximating (n-m) terms of the

posynomials Pk(x) in equation (7) to one term posynomial using equation

E.;
3 IR (p,, () IF |
P =1 Fik———] R k@ Doy wosew D (9)

=1 Fik
where J'(k) is the number of terms condensed in the constraint Pk(x)

and

P, (%) e '
E'k=3’%%—~' J=1, eee, 3'(K) (10)

d -~
jzl pjk(x) k=0,1, ..., p



The associated dual geometric program of the approximated problem is

maximize
- 63
P n C A
v(§) = T (I[ (El} ] Ty % (11)
k=0 ‘j=1 °j =0
subject to
60 =1 ; (normality condition) (12)
JU(k) _ £=1, ..., m (orthogonality
'21 aﬁjaj =0 condition) (13)
] k=0,1, ...y P
§, 20 =1, ceey J"(k) (positivity (14)
J . ‘condition)
where
J'(K) = J(k) - J'(k) +1 ' (15)
JE(k) . _
A, = 8., k=0,1, coop P (16)
k" & |
n ,
_ I(k) (C} k=0,1, ...\ P
5 =(C, T [——] " (17)
J3=1 \Eix J=1, cory J"K)
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Cj and C% refer to the terms Pk(x)vand Qk(x) after condensing the problem

to zero degree of difficulty

I1(k) TR 1y swwg W

a,,=a

5 I 5 BN Be1f4k® § =1, en., K (18) 

The algorithm for solving the sequence of approximating prcblems cén be

described in the following steps:

(i) Choose a feasible starting point x(l).

(ii) - Determine the €5k and Ejk ffom equations (4) and (10).
{(iii) Solve the dual piogram associated with the approximating
program expressed by (11), (12), (13) and (14).
(iv) Find the corresponding primal variables from the optimum
values of the dual variables and the dual function using

equations (38) and (39) in Chapter II. Call the new
(2)

point x*7°,

(2)

(v) If the new solution, x » 18 within some specified tolerence

x(l), terminate the algorithm. If

(2)

level of the old one,
not return to step (i) using the new solution, x s, as the
second starting point.

Figure 1 shows the general flow diagram for the solution of geometric

programming problems by CGP.

EXAMPLE 4: Multistage Heat Exchanger Design b§ Complementary Geometric
Programming

This problem was solved previously by Boas [4] via dynamic pro-

gramming and also by Fan and Wang [8] via the discrete maximum principle



Fig. 1.

START

(1)

Initialize: x'~,

Error, K =1

d

The Flow Diagram

‘P

Calculate

Eik and Ejk

from (4) & (10)

i

Solve the dual
constraints (12),
(13) and (14) for

-

|

Define the

coefficients C,
by 17) J

|

Formulate

J!I[k]
A = 7 85 » k=1, ..., K

3=1

is
§.>0

YES
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for Solving Problems with Degree of Difficulty
by the Method of Complementary Geometric Programming



(1)

Set x = X
K=K+1

(2)

50

Y

Calculate the dual
function v(3)
from (11)

|

(2)

chapter II

Calculate x from
lequations (38) and (39)

|

Calculate
- xD—XOnew

Pt Ty

YES

g > Exrro

NO

Punch: v(8),

Xys Xys ecey X

STOP

Fig. 1. Continued
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and lately by Avriel and Williams [1,2] via complementary geometric pro-
gramming.

There are three heat exchangers as shown in fig. 2 each with the flow
rate of W and specific heat Cp. The fluid is heated from temperature To.to
T3 by passing through three heat exchangers in series. At each stage, the
cold stream is heated by a hot fluid having the same flow rate W and specific
heat Cp as the cold stream. The temperature of the hot fluid entering the
heat exchangers, tll’ t21, and t.., and the overall heat transfer coefficients

31

Ul, U2’ and U, of the heat exchangers are known constants. Optimum design

3
involves minimizing the sum of the heat transfer areas of the three heat
exchangers, AT = Al + Az + A3.

There are three heat balance equations expressing the fact that the

rate of heat transferred to the cold fluid is less than or equal to the

rate of heat loss by the hot stream;

W Cp(Ti =T ) SWC (e -y, i=1,2, 3
or

Ty b, <t +T o, t=1,2, 3
or ‘

T, + t,

2221, 1-1,2,3

i1 © Ti-1

h

Similarly, the heat gain of the cold stream at the it stage is equal to

or less than the heat transfered at the same stage, that is

- < " =
WC (T, =T, 1) SUA (e, - T, 1), 1=1, 2,3
Let Uy = U, /NG, i=1, 2,3
T, FUAT ST, +HUAE, 1=1,2,3
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FIGURE 2

Multistage Heat Exchanger System

T U T, Ve Ty 3 I,
3| Stage ]1jmwees—————pd Stage 2 = Stage 3 —

¥ W
Ez W, tul l:;z W, t 1:;2_ Wy By




or

T, + U,A T,
i iii-

T, , t UAt

1
i2

<1, i=1,2,3

Rearranging all inequalities and the objective function, we will have

minimize

AT

subject to

(A) + A, + A3)/AT <1

3
| A
|—l

>
| A
et



The following data was given for this example:

T = 100°F, T, = 500°F, we, = 10° B.t.u./hr °F, and

i | til Ui (B.t.u./hr—ftz-oF)
1 © 300 120
2 400 80
3 600 40

Substituting the constants into the inequalities we will have

minimize

Ar

subject to

Ay Ry ® Bolhy + daihy 21

l = -
200 (T3 ¥ tpp) 21

T2 + t22

400 + T. —

500 + t
600 + T, =—

T, + 0.12 A
1 1 ‘1

100 + 0.(.‘!(31271\14:1_2 -
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T2 + 0.0008 A2T1 o1

Tl + 0.0008A2t22 -

. 500 + 0.0004 AT
32, 1

T2 + 0.0004 A3t32-—

There are 15 - 9 = 6 degrees of difficulty in this problem. Using
the method of condensation, we have to condeﬁse twelve terms into
six terms to reduce degrees of difficulty to zero. Condensing the
last six inequalities and also approximating the denominators by
equation (3), the problem reduces to _

minimize

Ay

subject to

A/Ag+ Byl/Ay + Agfhy < 1

T, 51 ¢ 2
D @ <1
400 [El [ez ]
T. %3 t.. %4 “€5 1. "%
E_g 22y %400 X g
E3] (gz-l t;;ﬂ (56) <
€7 t.. ©s8 €9 1. “%10
50 32y ° 600 2
G I I T <1
7 8 9 10
T. f110.12 A, 12 “€13 0.0012 A t.. °14
(L A (100 B <1
€11 € €t € J -

12 13 - Fu4



where

[:2 “15 o.oza AT, 816[:1
15 16 - a7
oo "19 o.ooo: AaTz]ezo[Zz ‘
19 €20 21
€y = Tll(T1 + tlz)
€y = typ/(Ty + tp)
ey = T/ (T + t5))
€ = typ/ (T + tyy)
ey = 400/(400 + T)
cg = Ty/ (400 + T,)
€, = 500/(500 + tg,)
Eg = t32/(500 + t32)
eq = 600/(600 + T,)
€10 = T2/(600 + T2)
€41 = Tll(Tl + 0.12 Al)

0.12 Al/(T1 + 0.12 Al)

0.008 At

2%22
€18 - )

0.0004 A3t3

-

)

18

56



€13 = 100/(100 + 0.0012 A1t12)
€14 = O.Qﬂlz A1t12/(100 + 0.0012 Altlz)
€15 = TZI(T2 + 0.0008 A2Tl)

e, = 0.0008 A2 Tll(T2 + 0.0008 A2T1)

16
€4 = Tll(Tl + 0.0008 A2t22)
€18 = 0.0008 A2 EZZI(Tl + 0.0008 Azt

= 500/(500 + 0.0004 A3T2)
€y = 0-0004 A, T,/(500 + 0.0004 A,T,
€y = To/(T, + 0.0004 A, t,,)
Eppy = 0.0004 A, t, /(T, + 6.0004 Ay t

The normality and orthogonality conditions are

22)

)

32)

57



| * (59— 514%%, -
8 - + (€16~ £187%8 B

*y *leyg m Bgpdg =

6154 —e665 + 21167"- (316 - 617)68 =

e385 10% T eusfst ey 2% =

€2% ~£1487 | -

€403 - €18%8 | =

€g% ~ €326 =

There are ten simultaneous linear equations which can be solved

for 6., 8., & §

0r 815 895 ees 8g-
The dual function v(§) is

It is evident thaf-ﬁo = 1.

1 2 63

-G E RN EEE

A, - A A 2
y 3 4 5 6 7
() "0 10 0 ¢ o)

where

58



1 1
A= 8,
Ay = 6
Ay = 8
Ag = 8,
Ag = 8g
Ay =8y

¢, = 1
c, = 1
cy = 1
C4 =%

°?=[

1
11

A

0.12

E
€13‘ 13

£14

€12

|

100

|

0.0012

JElfl»
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€ € E
c - [ 1) 15[0.0008] 16 ©17 [ ®18 ] 18

8~ legs) 16 ) (e17) 0.0008

£ E €
. - [500} 19[0.0004] 20 oy [ €99 ] “l
9 {eqq €90 J 21 0.0004
Starting with point (AT = 15,000, A1 = 5,000, A2 = 5,000, A3 = 5,000,
Tl = 200, T2 = 350, tl2 = 150, t22 = 225 and t32 = 425) which is in

the feasible region, the problem converges to the solution after 8
iterations. Table 2 shows the convergence of the algorithm to the

desired solution.
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Method 3. Solution by Method of Lagrange Multipliers
The method of Lagrange multipliers can be used to maximize the -
dual function subject to linear equality constraints [7].
The Lagrangian function is
N+1

LGa,%) = v(®) - ) A,F (1)
f£1

where the lj are Lagrange multipliers, Fj are dual constraints given

by equations (6) and (f) of Chapter III, and v(w) is the dual function.
The optimal values of the dual variables can be found by taking

the first partial derivatives of the Lagrangian function L(a,i) with

respect to the dual variables w

St and setting them equal to zero, or

@D @ P, @
L W j=1 ] a?mt
and
oL (w 15 _ =
_—EX;- =-F =0, i=1, ..., N1 (3)

The Newton-Raphson iterative technique can be used for finding the solution

set to equations (2) and (3).

1" Y T ity - (&)

1

where H is the Hessian matrix of L{w,\) and (VL) is the gradient of
L(w,\), both evaluated at Gi. The gradient of L(w,A) is found from

(2) and (3) and using
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= C w
g: w) _ v(w)oomtzn[—t%n;o] (5)
mt mt
The Hessian matrix H can be written as
r 3
hll hlz - ae hln
h21 h22 %o th
H=| - (6)
Lhnl hn2 hth
where
- Jg
n,, = 2 LOnA) 1=1 n
1] ow, ow o oo
iy w (7

j=1, ..., n

W and Wj are éhe general expressions for Vot and lj and n is the total
number of dual variables and the Lagrange multipliers.

The elements of the Hessian matrig, hij’ can be divided into five
groups:

The first group consists of the second partial derivatives of L(G,i)

with respect to Wogs OF
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3L, 1) _ 22v(@) _ 1 faven . 4 8
o we ey “ag . |
mt mt
g g
a0 3@ (22 - 2L
m0 mt
and
3L (%, %) '
=0,  Jel, ., M1 ®
L2y

The second group consists of the second partial derivative of L{w,1)

with respect to w_, and Woets OF

mt t

2LG,1)  _ °LGw,N)
ey 0

- (10)
mtawmt' m

t

1 [av(;r)] (Bv(;)l + cUlﬂtﬁmt'gmv(;;)
- o w ow w
v(w)

mt mt' m0

The third group consists of the second partial derivative of L(w,A)

with respect to w

- and Woteys OF

0%LGi, ) _ aoLGE, %)

awmtawm't' , awm't'awmt

(11)

_1 (av(E)}[av(a)]
v(w) mtj e
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The fourth group consists of the second partial derivative of L(G,i)

with respect to L and A,, or

t k|

2L, %) _ 221 (w,3) - - "Jflf:]_ (12)
Wpethy Ry gey P .

The fifth group is the second partial derivative of L(w,))

with respect to Aj and A, , or

2’L(w,X) _ ALY _ 0, =t vimy DL (13)
3x,0 wry

3k k=1, ..., N1

A subroutine may be used for inverting the matrix H and its product by
the transpose matrix (VL)T. Figure 3 shows the flow diagram for the

method of Lagrange multipliers.

EXAMPLE 5:
Consider the following problem
minimize
*o

subject to

2
Sxo + 8x; > 11

- x. + 8x 2

0 g

Arranging the constraints according to the generalized geometric pro-

gramming, we obtain



START

Initialize: w__,
mt”

A, Error, K= 1

l

Define C
mt

:

Formulate

1
mt

1

Y

Calculate
: 1

]
[]

w, - H
1

Calculate the dua

function v(w)

Find the product

Bl ()

1

Formulate the
Lagrangian function

L{w,%)

!

Find le from H

using a subroutine

Calculate the -
gradiant (VL)

Calculate the elements

-of matrix H

~ Pig. 3. The Flow Diagram for Solution by the Method of Lagrange

Multipliers.
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Calculate the
primal variables

X,
L

!

Punch: v(;:) .

xl’ s e0 g xm

Fig, 3. Continued



minimize
*a

subject to

8
11 5

onrn

The problem has 5 = 3 = 2 degrees of difficulty. From the objective

function and the constraints the following values are found

op =1 o = 1L, Cop= 1 311 = 1 820 = 1
g, = -1, 011 = —i, Cll = 8/11, 3519 = 1, ay11 = 1
g, = 1, 0;2 = =1, 012 = 8/11, ajy1 =‘2, a1, = 0
993. 1, Gy = 172, 25, =0, 8551 " 0
922 =1 Gy =4 8y, =0, 3y, =1
The dual functioq is
o1 11 12

: -W W
(021"20] 21[“22“'20] 22
Waq ¥as
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where

W =1

00 -~ ¥o1

+ w

10 © Y11 12

W0 = Y21 t ¥y,

The dual constraints are

“o1 =1
Yo1 "~ ¥y =~ Va1 =0
= V9 t Wy =0

The Lagrangian function can be written as

L(w,2) = v(w) - Al(Zwll +w,. - 1)

21
= Ay Gy, = wy,)

where Al and )‘2 are the Lagrange multipliers. Using the Newton-Ralphson
iterative technique, the problem converges to the desired optimim in 3
iterations. Table 3 shows the convergence to optimum. The optimum values

of xo and xl are

Xy = 1.000

El = 0.375 |

and the minimum value of the objective function is



Table 3

Convergence to optimum in Example 5.

70

ITERATION - Li%} V10 Waq LY 11 Az v(w)
1 0.40 0.15 0.10 0.30 0.00 0.00 1.1585
2 0.47 0.18 0.06 0.18 0.00 -0.97 1.0000
3 0.47 0.18 0.06 0.18 0.00 -0.98 1.0000




S(x) = 1.000
which quite agree with the solution obtained by complementary geometric

programming in chapter IV.
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CHAPTER V1L
" CONCLUSION

Chapter V illustrates how separable programming, complementary
geometric programming and the method of Lagrange multipliers can be used
to optimize constrained polynomials when faced with degrees of difficulty.
These methods offer a significant extension of the applicability of
geometric programming especially when the degrees of difficulty is large.
Although the guarantee of global optimality is lost in these methods, in
many practical situations it is sufficient to find a local minimum.

Separable programming is a powerful method for optimizing the non-
linear dual objective function of geometric programming problems with
degrees_of difficulty. Since the constraints of the dual problem are
linear, if the dual objective functioﬁ is concave, the solution will
always be global. In general, the éeparable programming algorithm pro-
duces an approximate solution which is a local optimum. One of the ad-
vantageé of ﬁhe separable programming technique is that unlike other
techniques its success does not depend on haﬁing a "good" starting point.
This property makes separable programming very attractice when the
problem has too many degrees of difficulty.

Compleméntary geometric programming as described in Chapter V gives
an approximate solution to the gecmetric programming problems with &e-
grees of difficulty. The optimal solution obtained by CGP is a local
optimum and is shown to be independent of the starting-point around the

optimal point. However if the starting point is too far from the optimal
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point the algorithm does not guarantee the convergence of solution, even
if it is in the feasible region (See appendix, example 1).

Complementary geometric ﬁrogramming as well can be used for solving
maximization problems. Consider example 2 in the appendix; the problem is

to maximize the daily net profit S given by

S = [350 - (50 + 0.25p 2311y _ (2000/p) - (8000/P) - (20/P°%)1p

subject to
P/R < 1310

The problem can be changed into the general complementary geometric pro- -

gramming form by minimizing

Yo =C-35

subject to
P/R < 1310

where C is a large number added to -S to make the modified objective
function positive. As can be seen from Table 5 in the appendix, the same
results were obtained for different values of C.- The results obtained

shows that even if C < S or Y, < 0, the algorithm converges to the de-

0
sired solution.

The last method mentioned in Chapter V is the method of Lagrange
multipliers. Like the other two methods, the method of Lagrange multipliers

obtains an approximate solution to the dual problem which is mostly a

local optimum. Wilde and Beightler [ 9] have shown that if all the
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signum functions (o, O Gmt) are positive, the logarithm of the dual
function will always be concave and the optimal solution to the dual
problem will be a global optiﬁum. With negative signums, however,.the
character of the dual function is uncertain and local optimums may be
produced.

In conclusion, all of the methods described in Chaptér V produce
an approximate solution to the geometric programming problems by giving
the optimal solution to the corresponding dual problem. The sqlution

obtained then would be a local cptimum.:-TﬁerEfOTe the local optimal

solution is dependent upon the starting point around the local optimal
point and the guarantee of convergence to solution is lost for starting

points too far from the optimal point.
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APPENDIX

This section presents some of the important features involved in the
solution of the geometric programming problems containing degrees of
difficulty by complementary geometric programming and the method of
Lagrange multiplier. Examples 1 and 2 are solved by complementary
geometric programming to show the effect of different starting points
in convergence of the problem to the desired solution. Example 3 is
solved by the method of Lagrange multipliers for checking the results

given in [7].

EXAMPLE 1: Solution by Complementary Geometric Programming

The following problem with two degrees of difficulty was solved
by separable programming (See Chapter V, example 3). The solution by
complementary geometric programming is presented here |

Minimize

2 2.%/2
Y0 4xl + 10x2 + 4x3 + 2(x1 + xz)
subject to

X Xy Xg > 100

x. >0
1—

2

= (w2 1/2
If we let X, = (xl + xz)

» then the problem changes to
minimize

YO = 4x1 + 10x2 + 4x3 + 2x4
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subject to

-1-1-1
lOOxl Xy Xy £ 1
Now by introducing a new variable X z-YO’ the problem changes to a CGP

problem or

minimize

subject to

xal (4 + 10x, + bxy + 2x,) < 1

3

This problem has 7 - 5 = 2 degree of difficulty, therefore the number of
‘termsshogldbe reduced by 2. Condensing the first inequality into two
terms reduces the degrees of difficulty to zero and the modified problem
is

miniﬁize

B

subject to
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where

2 -2 2 -
x1x4 + xzx4

-1.-1 -1
lOOxl x2 X

g &1

m
n

4x1/(4x1 + 10x,)

€, = 10x2/(4x1 + 10x2)
€4 = 4x3/(4x3 + 2x4)

€, = 2x4/(4x3 + 2x4)

The dual constraints are

%
8 = 8y - 8,
5151 + 263
5261 + 26
Egdy

]



Solving for 60, 61, 62, 63 and 65, we cobtain

O
|

1= (53 - eé)f(el + €y + 233 - 54)

62 = (el + 52)/(51 + €y + 253 - 54)
63 = 1/2[33(51 + az)-- 31(253 - 54)]/(51 + €y + 253 - 24)
54 = 1/2[(5l + 5:2)(34 - 33) + 51(2(-3 - EA)]/(EI + €y + 253 - €

The dual function can be written as

§; 8, 84 4 5

_ C1 C2 C3 C4 C5 Al ( AZ 13
v{8) = =~ 3 3 T 3 '(11) . 12) -(l3)
1 2 3 4 5

where

ll = 61 + 62

12 = 63 + 64
and

13 = 55

81
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3 4
@ [
63 =1
04 =1
and .
C5 = 100

The primal variables x,, %)y Xg and x, can be found by taking logarithm
of equations (38) and (39) in Chapter II1 and soiving for Ln(xi).

To test the effect of different starting points in the solution
by complementary geometric programmiﬁg problems, different starting
points were used in this example. The results obtained indicated
that around the optimum point all the starting points converge to
the desired optimum. However the solution could not be obtained with
the starting poin£ far from the optimum point. VTable 4 shows the effect

of different startihg points on the optimal solution.

The optimum values of Xys Xy Xg and x, are

2 4
X, = 3.09
X, = 2.68
Xy = 7.33
x, = 5.74

and the minimum value of the objective function is

82



83

pesurelqo SeM UOTINTOS ou 0°0T 0°¢ 0°9 0°'s 0°0sT Y

8.8°L8 006°S 6%7L°S Ly6°T 006°S S%0°L8 0'8 0*% 0°s 09 0°0T1T E
860°88 009°S. 9lT°'L  168°C 618°Y% 809°L8 0°9 0°g §*Z 0°¢ 0°06 4

066°L8 T%L°S rAX N A 789°¢ $80°¢S (86°L8 e s [4X 0 4 %¥89°C €80°S 066°L8 T

0 2

2 » € z i T 0

b4 b 4 x ox 2% _mn x "X X
uofanTog TeWildp Jutod durlaels *oN uny

T ®T7duwexs ur BuruwwmeiB8oad o7a3°wWOa8
Lavjuswardwod £q swdTqoad BujuweiBoid Opajewosl Jo uolinTos a2yl uy sjurod Burlaels JuLISIITP JO IDDIIS OYL

% 9198l



84

Y. = 87.9
0 - - 9

I

EXAMPLE 2: Solution by Complementary Geometric Programming

This example was solved by Chen [5] via generalized geometric
programming. Complementary geometric programming solution is used to
show the applicability of CGP in maximizing problems and check the
effect of adding a constant to the objective function in optimal dual
soluﬁion.

A TV manufacturing plant produces sets at the rate of P units per
day. The manufacturing costs per set have been found to be $50 +
0.25 P1'25 Rl'l, where R is the research and development expenses in
man-hours per day. The unit cost of the research and development per
set is $20/R.0'6 per man-hour. The total daily fixed charges are $2,000
and all other expenses are $8,000/day. If the selling price per set
is $350.00, calculate the maximum daily net profit for a ratio of
P/R < 1310.

Selling price of TV set = 350.00 (in dollar)

1.25 R}..1 (in dollar)

manufacturing cost per set = 50 + 0.25 P
fixed daily charges/set = 2,000/P (in dollar)

other daily expenses/set = 8,000[P (in dollar)

research and development expenses/set = 20/R.0°6 (in dollar)

The objective function is then the daily net profit S

S = [350 - (50 + 0.25 Pl'25 Rl'l

) - (2000/P) - (8000/2) - (20/R°-%)}P

which has to be maximized subject to



P/R < 1310

This problem can be changed into minimization problem by multiplying
the objective function by-—l. A constant C has to be added to the ob-

jective function gince -S is a negative number. The new problem is then

to minimize

YO =C-8
subject to

P/R_i 1310

Changing the problem into CGP form yields

minimize

subject to

2.25 R}.l

(C + 10,000 + 0.25 P + 20 PR"°°6)/(x0 +300P) <1

This problem has 4 - 3'= 1 degree of difficulty. Condensing the
last two terms in the numerator of the first inequality into one term
gives

minimize

subject to
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- =€,

v r00om [ [
3 4

E E

! 2
(O.ZSPZ'ZSRL]'} (20 PR_O'B] {x_

o | ) & )

310 2 =1
where
e; = 0.25 P2 g1 1 /(025 2?2311 + 20 Py
e, = 20 PR 2-6/¢0.25 p2- 2211 4 20 P09
£5 = X,/ (xg + 300 P)
e, = 300 B/(x, + 300 P)
The dual constraints 'are
8o
§h = 848y B
- 5461 + (2.2551 + €y = 54)62 + 63 0
8 0

(1.1 € 0.6 62)62 -8,

0.6

)



The solution to the sjstem of linear equations is

1 E4
61=E_-3358'€ + 0.4e,.°€
3 * 173 =2

3

€4

2 (3-3561'53 + 0.452.83)

(l.le1 - 0. 662) (54)

3 (3.3581'53 + 0.482'63)

$

The dual function can be written as

c c
e [5]

where

and

The primal variables are found by taking logarithm of equations
(38) and (39) of Chapter II and then solving for x., P and R.
The problem was solved using Xy = 60,000, P = 100, and R = 1.00

as the starting point. To see the effect of size of C, different runs
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were obtained with different C. The results showed that for all values
of C the problem converges to the desired solution. Table 5 shows the
effect of different values of C in the optimal solution.

The optimum value of S is $48,586 and for this optimum vélue

P

342.5

and

rd
il

0.2614

EXAMPLE 3: Solution by the method of Lagrange multipliers

subject to

xi + x2‘3_3

X +‘2x2_i 4

Arranging the problem into the generalized GP form we obtain

minimize
Yo = 2xl + xlx2 + 3x2
subject to
1 2 1
~3E g H il
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This problem has 7 - 3 = 4 degrees of difficulty.

From the objective function and the constraints, we obtain

=1 o =1, o5 =-1, 0y =-1,
0y = -1, 002 =1, 012 = -1, 522 = -1,
02 = _1, 003 = 1’

Cp = 2s €y =1/3, Cy =1/4
Gpp = 0e U= B8, Gy L2
€o3 = 3

fu =1 833°2 ;=L

3932 = 0» 13115 = 0 355, = 0,

Z021 = 1y 315770 855, =0,

8g2 = 1s 8559 = 1s 35, =1
33 = 0s
353 = 1

The dual constraint._s are



w01 + WGZ + w03 = 1
Wop t gy T AWy — Wy, =0

Wog T Wp3 ~ Wiy Wy =0

The dual function is

w \ w -w
o [COlVOO] OI[COZWOO] 02[C03w00] 03[°11“10] 11
v(w) = | —— x

Y01 ¥z J Y03 w1 )

(E@]""lz (sz’zo] V21 {szwzow V22
o Yy W J
where
Yoo = ¥o1 T ¥o2 T Vo3 = !
Y10 = Y11 "' Y12
Y20 = V21 T V2
The Lagrangian function becomes
L, 1) = v(w) - Ay (wo]_ + Vo2 +wyg - 1)
= Ay (g +¥gy = 2wy = Wyy)
= A gy + ¥gy = vy T ¥p))
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Starting with point

W91 = 0.30
Voo = 0.207
W3 = 0.50
Wy, o= 0.11
Wiy = 0.10
w,, = 0.28
wzé = 0.60
}1 = 0.0

Ay = 0.0

13 = 0;0

the problem converges to the desired solution after six iterations. The

optimal solution is

x; 1.28277

]

and the minimum value of the objective function YO is 8.39284. Table 6

1.36063

shows the convergence of the algorithm to the desired soclution in

example 3.
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The objective of this report is to give a summary of methods for
solving geometric programming problems with degrees of difficulty. Each
method is tested by several numerical examples. Problems considered in
this report are: geometric programming problems with only one degree of
difficulty, and geometric programming problems with two or more degrees
of difficulty.. 2

In type one problem the optimal-value of the objective function can be
either estimated by assigning an upper and lower bound to the optimal wvalue,
or evaluated by expressing the dual variables in terms of one of the
variables, substituting the dual variables into the dual function and
maximizing the dual function by one of the one dimensional search tech-
niques. | | |

Type two is the more general case of the geometric pfogrammiﬁg problems
and has to handled by optimizing the dual objective function subject to the
linear constraints. The optimization techniques employed are separable
programming, complementary geometric programming and the method of
Lagrange multip@ieré. Some examples and design problems are solved to

illustrate the algorithm.



