s/

29-Lb i A

RECOGNITION OF IDENTICAL STUBS
IN A

DECISION TABLE PROCESSOR

By
CHI-DONG LU

B.5., National Taiwan University, 1968

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1973

Approved by:

j\-LWL G@-m.._,e T

Major Professor

LD

b b
RH

) 973
L9
e
Doc ta—

vy T

TABLE OF CONTENTS

List of Figures iii

II.

III.

Iv.

VI.

VII.

VIII.

IX.

XI.
X1I.

XILI.

page

Introduction ..sveesvsvsesinsnrssnssonees &
The structure of a decision table 2
Cross references ...ivseeesercesscnsesans 3
The approach of the programveeeess 6
Input/Output e ereaereeesnereesresnnnes O
Program materials available ...eoveeesess 10
LADLEHECONE & sovownen s o ¥ woasns § & 5 § wmse § L4
ALBOTLthM +uvveeoeanesnsssansnnssanseosss 10
Tdemtifters . svmmmrnsin s onmres o v o spmwes ¢ L
FLAWCRATE 255 oenmnsd 5§ b Raamvs ¥ 5 s 0uemss 5 A
EXplanation seeevvervcccsssnnnessssasnass 17
COUCLOBLON: & 455 sommmine £ 5 5 FEWRS & ¥ ¥ Luewgy ¢ o

Program liSting .evevecsvseccanssosnnsaae 23

Acknowledgementecosessevsanssosvarsenass 28

REfEreNCES covssseenerssosnosssonavssnnveanse 29

ii

Figure page
1. Basic structure of a decision table 4
2, A limited entry vertical rule table &
3. An extended entry horizontgl rule table . 5
4. Table linkage flowchartvovevcoveees 7
5. The structure of a stub node .veevssosese 12
6. The structure of an identical stub's

identifier node .evvsveencrnsronsrscesns, 12
7. The snapshot of an initialized stub node

LIST OF FIGURES

liSt LRI B R B B A R NN O R O T IO B R IR I B R R B R R B A R) 17

iii

I. INTRODUCTION

A decision table is simply a tabular form for expressing con-
ditional logic. It shows the relationship between conditions, the
values of those conditions and the associated actions.

The use of decision tables in computer source programs and the
development of processors for converting these decision tables to
standard source programs has occurred over the past few years. For
example, the Census Bureau and Working Group 2 of the Special Interest
Group for Programming Language (of the Los Angeles Chapter of ACM)
have each independently developed a preprocessor to convert decision
tables written in COBOL to standard COBOL statements and paragraphs.
These can be converted to a computer object program by a COBOL compiler.

Recently, Smith and Conrow are developing the DECTAL processor to
convert decision tables written in PL/I to standard PL/I statements,
which can be translated to a computer object program by a PL/I compiler,

Due to the complex logic in decision making, a group of linked
declision tables are used for segmenting the logic shown in decision
table form. A key feature in DECTAL is the ability to reference con-
dition or action stubs anywhere in a block of decision tables from any
other point in the block. Currently it is the programmer's responsibility
to supply cross references if he wishes to effect the economy in compile
time and execution module size which a cross reference implies. Auto-
matic recognition of identical stubs and provision of the cross refer-
ences while still providing the desired economies.

The program developed in this work is written to be incorporated

2

into the DECTAL processor to do the automatic recognition of identical
stubs. The cross-reference table already existing in DECTAL can be modi-

fied for identical stubs recognized as the result of this program.

II. THE STRUCTURE OF A DECISION TABLE

The general basic structure of a decision table is shown in
Figure 1. There are four sections or quadrants usually separated
by double lines but often in other ways, e.g. single line, thick line.
The sections set our respectively: the full set of conditions applicable
(condition stubs), the full set of actions applicable (action stubs), the
different combinations of those conditions(condition entries) and the
corresponding combinations of actions (action entries). Each combination
of conditions and associated actions forms a decision rule set out in
parallel to all the other decision rules.

Within this general structure, several different types of decision
tables can be defined. One classification is based on whether or not the
rules are set out in columns or rows; the former is termed '"vertical
rule" and the latter "horizontal rule".

A more important difference lies, however, in the extent to which
conditions and actions are defined in the stub, Where conditions and
actions are wholly specified in the stub (as illustrated in Figure 2),
the table is termed ''limited entry". Entries are limited to noting
the status of particular conditions and actions in a specific rule.

In those cases where conditions and actions are generally iden-
tified in the stub, with specific values shown in the entries, the
table is termed "extended entry'", Figure 2 illustrates horizontal

rule as well as extended entry.

3

The last important difference lles in the way in which the con-
ditions are linked. The conditions can be linked by the conmnector
AND, OR or MIXED AND/OR. In Figure 2 and 3 they are linked by connector
AND.

DECTAL handles extended entry decision tables by converting them
to limited entry decision tables, so the program described here con-
cerns itself solely with recognition of identical stubs in a limited

entry decision table.
ITI. CROSS REFERENCES

It would be unrealistic to define logic in all cases in a simple
table, so a group of tables 1s desired to express the required logic.
A hypothetical example of the linkage between tables in a flowchart
is i1llustrated in Figure 4.

As a result of using a number of tables for segmenting the logic,
a table and a stub need to be identified. The symbol Txx is recognized
to denote the heading of a table (e.g. T40 means table forty). In the
same manner the symbol A(or C)xx designates a specific Action (or Con-
dition) stub in a certain table in the DECTAL processor. The combination
of these two symbols can completely identify the position of a stub in
the set of tables. Using these identifying symbols, the DECTAL processor
constructs a cross-reference table for all the stubs with the Form *Txx
(A|C)xx to convey programmer-supplied referencing of the identical stubs
among the tables.

This program groups all the identical stubs together and could be
incorporated into the DECTAL processor to modify the cross reference

table for identical stubs.

Condition Conditions

Stubs Entries
Action Action
Stubs Entries

Figure 1, Basic structure of a decision table

RULES
6 2 3 &
Credit Satisfactory ? Y N N N
Prompt payer - b4 N N
Special Clearance Obtained ? - - Y N
Accept order X X X
Return order to sales X

Figure 2. A limited entry vertical rule table

CONDITIONS ACTION
Product Customer Order value Discount
Battery Retailer $50 15%
Battery Wholesaler $50-5200 227
Battery Contract $50-5200 27%
Battery Agency $50-5200 25%
Tires Retailer $50 10%
Tires Wholesaler $50-5200 29%
Figure 3. An extended entry horizontal rule table

IV. THE APPROACH OF THE PROGRAM

The DECTAL processor handles the decision tables written in the
PL/I language. In general, the necessity for inserting a blank between
terms in PL/I statements implies the ability to use any number of blanks
at that point; and the location of the comment (/* ---*%/) is not seriously
restricted in the PL/I language; 1t can appear in front of, following,
or even in the middle of a statement,

The possibility that two identical stubs would not be recognized
as ldentical because of extra blanks or of a comment included in one
or both must be removed. Reduction of stubs to a standard, deblanked,
decommented form, will permit simple character string comparison to
detect identical stubs. Such comparison is a very low-level test for
identity; stubs like 'IF I=1' and 'IF 1=I', which are identical in
effect though different as character strings, can never be recognized
by the methods of the program developed here.

The literals in PL/I statements mean the exact form in the single
quotation marks must be taken, so that the literals cannot be deblanked.

After the standard form of the stub is set up, the grouping of the
stubs is introudced here. We apply the linked allocation list method to
link all the stubs in the tables, although it is easy to insert an item
into the midst of a list, but it takes a long time to search for the
appropriate position for an item.

Ten lists are used instead of a single long list for lowering the
search time to about cone tenth of that for a single long list. Ideally,

we would like to link all the equal lemgth stubs in a list, but since

TABLE

GO TO 2.3.4,
or 5
i
TABLE 2 TABLE 3 TABLE 4 TABLE 5
GO TO 6 GO TO 8 GO TO 8 or 9 GO TO 10
A
TABLE 6
GO TO 7
] X
TABLE 7 TABLE 8 TABLE 9 TABLE 10
GO OUT GO oUT GO oUT GO oUT

Figure 4.

Table linkage flowchart

8

a limited number of lists can be used effectively in a program, in our
case, the stubs are divided among 10 lists according to their length
as shown in the following table:

1 : stub length

Condition stubs Action stubs
1 2 3 4 5 6 7 8 9 10
O o~ 0 - ~ o o~ o0 q- ~
— ™ =] O - ™M et 2 v O
v | v v v A v v v v A
- — — — — ! — — — —
\"2 v v v v A" v v
o v o~) o o) o~ o0

=] [20] ~F —~ o ~F

The first five 1ists take care of the condition stubs, while the
rest of lists handle the action stubs. All 1lists are contained in an
area with size of 20,000 bytes.

Since each 1list needs a grqund node to indicate its termination,
a single blank stub node is used to be the ground node of each list.
This 1s the most efficient way to set up each list in descending order
because all stubs can be inserted in a pre-existing list without need
to test for special cases.

The identical stub's identifier for each subsequent appearance of
a stub is linked into the identical stub list attached from the first
appearance stub in the first-in-first-out manner while the first ap-
pearance stub is linked in the stub list in descending order.

The space restrictions imposed by the already large size of the
input section of DECTAL will force the use of a much smaller area by
this program using ten areas each one containing one list instead of
using ten lists in one area will permit saving some core memory by
swapping the lists in and out of core. When tén areas are used, extra

execution time for the swapping of areas will be paid.

V. INPUT/OUTPUT

The input for the program has two parts, which will be transfered
from the DECTAL processor when the program is incorporated into DECTAL.
One part is the stub identification field and the other is the stub
statement. An input 1s handled in each cycle, that is the next input
data 18 read right after an input is completely handled, until the
'"%*EN' in the stub identification field (IDS) is read, the program will
transfer its control back to the DECTAL processor.

The program handles unlimited input, but each stub cannot exceed
710 characters, because 710 characters is the largest limited entry stub
which can be generated from an extended entry statement, DECTAL can handle
indefinitely long limited entry stubs. The main excuse for a limit of
710 characters is that significantly long passages of identical code
will be easy for the user to cross reference for himself. Presumably
only short identical stubs will be reused with sufficient frequence
that automatic recognition is practical and necessary.

Since DECTAL processes stubs one at a time and puts entries in the
directory vector shortly after each stub is processed, it seems better
to let this program be a subroutine which is called with the stubs and
identifier flelds as arguments and returns either the same identifier
field (if the stub is a new one) or the identifier field of the stub
at its earlier occurence (if the stub is a repeat). Then DECTAL
would use the returned identifier field in its dictiomary look-up process
just as it currently uses the programmer-supplied cross reference

identifier field.

10.

11.

10

VI. PROGRAM MATERIALS AVAILABLE

1. Documentation : 22 pages,
2. Flowchart : 1 chart.
3. Listing : 3 pages.

4, Source deck : 122 cards.

VII., LIMITATIONS

Machine configuration : IBM system 360 model 50,
Code : PL/I(F) version 5.3B.
Others : NEATER2 (A PL/I Source Statement Reformatter)

is used.

VIII, ALGORITHM
Initialize ten head pointers and create a ground
level stub node for each pointer.
Read input data.
If '"*EN' is read in the stub identification field of the
input then go to step 10,
Remove comments in the stub.
Deblank the stub except for literals inside the single
quotation marks.
Allocate the stub node in the area.
Search for the appropriate linked list and positionm.
Link the stub node into the lsit,
Go to step 2.

Print out the cross reference table.

End the program.

11

IX., IDENTIFIERS

IDS : 6~character string holds the stub identifier of the

current data item.

STUB : varying character string holds the stub statement

in the current data item up to 710 characters.

STUBBUF : 1420-character string, converts the varying string
STUB into a fixed character string and performs
all the manipulation of the STUB.

STUBARY : an array has 710 elements; in which each element
is l-character string, defined on STUBBUF, such
that every character can be accessed individually.

BS710 : 710-character string, pointed to by P, overlays on

STUBBUF at an arbitrary position of STUBBUF.

HEADPT : a head pointer array, has 10 elements, each

element points to a linked list.

Ql, Q2, Q@ : intermediate pointers.

STIDL : l-character string defined on the 4th character

of IDS to tell 1if a stub is a condition stub.

A ! an area with the size of 20,000 bytes.

DAFILE : a based major structure, whose allocated address
is pointed to by DAPT, used as a stub node shown

in Figure 5.

DAPT ~H5~* DAFILE

Figure 5.

12

NEXFILE

NEXTSTMT

LASTSTMT

FRSTID

N

INFO

The structure of a stub necde,

NEXFILE : link pointer points to the next stub node.

NEXTSTMT

LASTSTMT

FRSTID :

¢ head pointer points to the first node of any
EQFILE list of stubs identical to this one.
: end pointer points to the last node of any
EQFILE list of stub identical to this one.
fixed length character string in DAFILE holds
the stub identifier for the first appearance

of a stub,

M, N : indicates the length of the stub.

INFO : varying character string in DAFILE, copies the

stub statement.

EQFILE

EQPT -h“\\\\\‘ EQFILE
IDINFO

Figure 6.

: major based structure, which allocated address

is pointed by EQPT, used as an identical stub's

identifier node shown in Figure 6.

LINK

The structure of an identical stub's identifier node.

IDINFO

LINK

¢ holds the identical stub's identifier for each

subsequent appearance of a stub.

: a pointer points to the next EQFILE node.

13

X. FLOWCHART

Allocate DAFILE
in area A
HEADPT (J)=DAPT
INFO = blank

NEXTSTMT,
LASTSIMT,
NEXFILE=NULL

(=)
@____.

14

IDS="*EN'

STUBBUF=STUB

Print out the
lists in a
table format |

15

A
pair of
/* and */ in
STUBBUF

I=1Q2+1

Overlay BS710
at position T
on STUBEUF

Test the first blank
in BS710 convert it
to the absolute
position in STUBBUF
and assign to IBB

Remove the
statement betwee
/* and */
inclusively

Move the stub
to the first
position

IQl=position of the first
single quotation mark
in STUBBUF

IQ2=position of the second
single quotation mark
in STUBBUF

IBB
lies between

IQ1&1Q2

Link the stub
node into the
ligt in des~
cending order

K=the first non-
blank character
after IBB

The length of
the stub =
IBB-1

Create a stub node
in area A

seeking for the
right list

Stub
node = any
node in the
list

symbols
+—*/ﬂ&|;

(IBB-1)th o
Kth character is
one of the following

1=(),><

16

Leave one blank
between (IBB-1)
th and Kth
characters

Leave no blank

between (IBB-1)th
and Kth characters

©

Create an identical

stub's identifier node
link it into the identical
stub identifier list

free the stub node

®

17

XI. EXPLANATION

In the initialization block we set up the ground stub
node in order to indicate the last node of the list,
such that we know when to stop processing the list,
There are ten lists of this kind in area A. The

snapshot of a list 1s shown in Figure 7.

HEAD (1?

NULL

NULL

NULL stub node

?

1

blank

J

Figure 7. The snapshot of an initialized node list.

Each node can have its own list known as the identical
stub's identifier 1list which contains all the identical
stub's identifiers as will be explained later.

After reading in an input data we have to deblank the
stub into a standard form. TFirst of all we remové all
the comments in the stub then progress to the deblanking

process as shown in following.

18

Assume that after removing all comments the stub
looks like
PUTbbLISTbb ('bTEST');
Position : 123456789111111111122
012345678901
The deblanking process will do the following steps :
1. 1I=1 indicates the first character of the stub.
2. IQl and IQ2 indicate the positions of the first
single quotations after I.
3. Find the first blank position after the Ith character
and store in IBB.
4, If IBB falls between IQl and IQ2 then let I point
to the character next to IQ2 (i.e. I=IQ2+1) and go
back to step 2,
5. K indicates the first non-blank position after the
IBBth character.
6. If there is no more non-blank character then terminate the
deblanking process.
7. If (IBB-1)th or Kth character is one of the following
symbols :
1=() > <% /&| ;
then remove all blanks between IBB-1l and K; otherwise
leave one blank between them.
8. Let I point to the first non-blank position at or
after IBB and go back to step 2.

The deblanking of the stub can be described as follows

By step

19

I=1

1Q1=13, IQ2=19

IBB=4

IBB does not fall between IQl and 1Q2
K=6

There is a non-blank character indicated

by K
Stub = PUTbLISTbb('bTEST');
12345678911111111112
01234567890

I=5
IQ1l=12, IQ2=18
IBB=9
IBB does mot fall between IQl and IQ2
K=11
There is a non-blank character indicated
by K
Stub = PUTbLIST('bTEST');
123456789111111111
012345678
1=9
IQ1=0, IQ2=0
IBB=19
IBE does not fall between IQl and IQ2
K=0
K indicates that there are no more non-blank

characters so the process is completed

After we have tﬁe standard form of a stub, we have

to create a stub node for the gtub then search for

its appropriate position (in descending order) in

its 1ist, 1If the stub is new, the node is inserted

in the correct position of the list of stubs. If
there is a stub node containing an identical stub
statement in the list then we create an identical
stub's identifier node linked into the list attached
from stub node and free the created stub node. The
above algorithm is described as the following Figures :

Assume the stub node known as

oc—\

?

?

?

FRSTID=

N«

INFQ=

is assigned to the list pointed by HEADPT (2)

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
[HAT ARE CROOKED
COMPAIRED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM

CUSTOMER.

HEADPT (2)

?

FRSTID=1

Nl

INFQ=1

gl

IDINFOB1

p2

f

B2

IDINFOR2

NULL

21

=3

gl

g2

FRSTID=2

Ne2

IDINFOx2

NULL

NULL

NULL

blank

If INFO=l > INFO= > INFO=2 then the =-node 1s linked into

the list as
HEADPT (2)
«]l r @]
) 4 o«
« "N x?
? ?
? ?
FRSTID=1 FRSTID=x
Nel N«
INFG=1 INFQO«x
«x? <
«3 -“——-——ﬂ NULL
- Bl NULL
Bl
IDINFO 1 P g2 NULL
g2 FRSTID=2 ?
B2 Ne2 1
IDINFOR2
INFO=2 blank
NULL

If INFO= = INFOz2 then

create an identical stub's identifier node

B

IDENTIFIER

NULL

Free the created stub node for = and link the new R-node
into the identical stub list attached from =2-node (in first-

in-first-out manner) as

HEADPT (2)
7 =1
«l
«2 =2
\ o 3 |
?
Bl rf'“"’""“‘"‘ gl
? IDINFOB1
B
FRSTID=1 R2 -
Fi FRSTID«2
Nl
N=2
INFO=1 g2
IDINFOR2 INFO=2
i B
B IDENTIFIER

NULL «3 NULL
NULL
NULL

?

1

blank

24
D. After handling all the input data there are ten

stub node lists in the area A. According to these
lists the cross reference table printout of DECTAL

‘ can be modified.
XII. CONCLUSION

The program does the automatic recognition of identical stubs
in decision tables to be incorporated into the DECTAL processor,
which converts decision tables written in PL/I to standard PL/I
statements, for freeing its user from the necessity to supply the
key feature cross references.

Ten lists are used to save one tenth of search time in a
long list by using the linked allocation list method to insert an
item into the midst of a list.

It takes 39.6 seconds execution time in slow core for the
test run of this program on 48 stubs including the I/0 process.

If the program is incorporated into DECTAL, the I/0 process can
be eliminated to reduce the execution time.

There 1s an alternative method in using ten areas instead
of using ten lists to save some core memory when the use of smaller

area is forced by the large size of the input section of DECTAL.

XIII. PROGRAM LISTING

25
KSU'S PL/T NEATENER AND PRECOMPILER PAGE

STUBREC:PROC OPTIONSIMAIN)
DCL IDS CHAR{6),DCL IDS CHAR(6),STUB CHAR{T7L0O)VAR,STURBUF CHAR({
1420) 3 STUBARY{710)CHAR{1)DFF STURRBRUF,BST710 CHAR{T10)}BASED(P);
DCL HEADPT{10)POINTER, {Q,01,Q2)PDINTER,STIDL CHAR{1)DEF IDS POS
{%#),A ARFA{20000),1 DAFILE BASEDINAPT),2 NEXFILFE POINTER,2 NEXT
STMT POINTER,2 LASTSTMT POINTER,2 FRSTID CHAR(6),2 N BINARY FIX
EDy2 INFD CHAR{M REFER{N)),1 EQFILE BASED{EQPT),2 IDINFO CHAR(®
)92 LINK POINTER;
/*INITIALIZE 10 HEAD POINTERS FOR THE LISTS*/
M=13
PO J=1 7O 103
ALLOCATE DAFILE IN(A);
HEADPT{J)=DAOT;
INFD=" ¢
NEXTSTMT ,LASTSTMT ,NEXFILE=NULL ;
END3
INDATA: GET LIST(IDS,STUB):
IF IDS="%*EN?' THEN
GO TO TERMINT;
STUBBUF=STUR;
/*REMOVE COMMENT STATEMENTS IN THE STUB%/
TEXTIN: IX=INDEX{STURRUF,'/%v);
IY=INDEX({STUBBUF, 1%/) :
IF I1Y-=0 THEN
IF IX-~=0 THEN
DO
P=ADDR{STURARY(IY+2)}):
SUBSTR{STUBBUF, IX)=BS710;
GOTO TEXTING
END3
/*TEST FOR SINGLE QUOTES AND BLANK#*/
I=13
ABTRACT :P=ADDR{STUBARY{I}):
IBB=INDEX{BRST10," *)+I~13
IF IBB=1 THEN
BRSTLO0=SUBSTRIBST10,VERIFY{RSTLO," *))3;
TQL=INDEX(BST10,'*v ")4[~];
[Q02=INDEX{SURSTR{STURBUF,IQ1+1),'"%v)4+7Q13
IF IBB>IQ1 THEN
IF IBRCIN2 THEN
nos
I=1Q2+1;
GDTN ABTRACT;
END3
/*DERLANKING*/
J=VERIFY(STUBARY{IBB=1),%2={)y><lt=%/~E]| ")
P=ADDR{STUBARY{IBB+1))3;
K=VERIFY(BS710,* 1)
IF K>0 THEN
nO;
I=K+IBR;
IF J=1 THEN
J=VERIFY{STUBARY (I} 4" 3={) 4D #=%/=E]|3");
P=ADDR{STUBARY(I));
I=IRR+J3
SUBSTR{STURRUF,I)=RS710;
GOTD ARTRACT:
ENDS

wwwww#-i\mwn\awr-r‘r*&-{r.J-\-i-\uJNt—‘r-NNw—-r-r--ruu&.p-.p.babwm.—-n—-p--u;--Nr\.\wmmwmwmp—-.-a..—ruw.—a-.-‘rm‘-

KSU'S PL/T NEATENER AND PRECOMPILER

M=1BB-1;
J=CEILI{M/16)3
J=MIN{J,5);
ALLOCATE DAFILE IN(A);
IF STIDL-='C* THEN
J=J+53
Ql1,Q=HEADPT(J) 3
FRSTID=1IDS;
DAPT->INFO=STUBBUF3
/%*SEARCH FOR THE APPROPRIATE POSITION®x/
SEARCH: IF Q=>INFO>DAPT->INFD THEN
D03
Q1=0Q3;
Q=Q->NEXFILE;
GD TO SEARCH;
END3
F*LINK INTO THE LIST*/
IF Q->INFO<KDAPT->INFO THEN
DO 3
DAPT->NEXFILE=Q;
IF Q=Q1 THEN
HEADPT(J)=DAPT;
ELSE
Q1->NEXFILE=DAPT
DAPT->LASTSTMT ,DAPT->NEXTSTMT=NULL;
GD TO INDATA;
END3
ALLOCATE EQFILE IN(A);
FREE DAPT->DAFILE IN(A);
EQPT->LINK=NULL;
EQPT->IDINFO=IDS;
IF Q->LASTSTMT=NULL THEN
Q=->NEXTSTMT 4 Q->LASTSTMT=EQPT;
EL5E
DO3
Q2=Q->LASTSTMT;
Q=>LASTSTMT,Q2->LINK=EQPT;
END;
GO TO INDATA3
/*¥PRINT OUT THE XREF TABLE*/
TERMINT: DO K=1 TO 103
Ql=HEADPTI(K);
LOOKY: ICOUNT=13
IF Q1->NEXFILE=NULL THEN
GO TO TEMP;
Q=Q1->NEXTSTMT;
LOOKX: IF Q=NULL THEN
DO
Q1=Q1->NEXFILE;
IF ICOUNT=0 THEN
PUT EDIT('.")(A);
GO0 TO LOOKY;
END3
IF ICOUNT=1 THEN
DO
IDS=Q1->FRSTID;
IF STIDL-~=* ' THEN

PUT SKIPI2)EDITIQLI->FRSTID,* ——*){A(6),A(3));

26 PAGE

NP WP PO odNWWNNNMN MWW W W N AN e o e 0000 P P P LW NN W WL W LR NN = ke e B PG e e s b

KSU'S PL/I MNEATENER AND PRECOMPILER 27 PAGE

ELSE 5

PUT SKIP(2)EDITI{QI->FRSTID,y* ———=="){A(3),4A(6)); 5

END3 4

ELSE 3
PUT EDIT(*,")1A)}; 3
IDS=Q=->ININFO; 2
IF STIDL=" ¥ THEN 3
PUT EDITIQ->IDINFO)IXI{1),A{3)]); 3
ELSE 3
PUT EDITIQ->IDINFNI{XIL)A{B)): 3
ICOUNT=03 2
Q=Q=->LINK3; 2
GD TO LOOKX3 2
TEMP: END3 2
1

END STUBRREC;

28

ACKNOWLEDGMENT

The author wishes to express his sincere thanks and appreciation
to his major professor, Dr. Kenneth Conrow, for his suggestion of this
toplc and assistance during the preparation of this report.

The help of Dr. Kane S. Yee and Dr. Myron A. Calhoun in reviewing

the manuscript is gratefully acknowledged.

29

REFERENCES

Smith, Romald G. and Conrow, Kenneth. DECTAL : A DECISION
TABLE ALGORITHM, Kansas State University Computing Center,
Manhattan, Kansas, 1972.

London, Keith R. Decision Tables, Auerback Publishers Inc.,
Princeton, New Jersey, 1972,

The National Computing Center Ltd. Decision tables in
data processing, Science Associates/International Inc.,
New York, 1970.

Knuth, Donald E. Fundamental Algorithms, The art of Computer
Programming, volume 1, Addison Wesley Publishing Company
Inc,

Pollack, Seymour V. and Sterling, Theodor D. A Guide to PL/I,
Holt, Rinehart and Winston, Inc., New York, 1969.

Smith, Ronald G. and Conrow, Kenneth. NEATER2 : A PL/I source
statement reformatter, Comm. ACM, 13, (11), Nov. 1970,
pPp. 669-675,

IBM. IBM system/360 Operating system PL/I(F) Language,
Reference Manual, Form GC28-8201-3,

RECOGNITION OF IDENTICAL STUBS
IN A

DECISION TABLE PROCESSOR

By

CHI-DONG LU

B.S., National Taiwan University, 1968

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1973

A decision table is also called logic table, decision logic table,
decision structure table and step.

The development of the DECTAL processor converts decision tables
written in PL/I to PL/I statements,

In many cases where complex logic is involved, more than one de-
cision table is used for segmenting the logic shown in decision table
form,

The cross reference table construction in DECTAL needs to be modi-
fied for the identical stubs in the tables.

This program is written to incorporate into the DECTAL processor
to do the automatic recognition of identical stubs.

The program is coded in PL/I language and run through IBM system
360 model 50.

Deblanking and linear allocation list technology are used in the

program.

