AN INSTRUMENTATION LABORATORY COMPUTER SYSTEM
oy
GREG DEZI

¥

B, S., Kansas State University, 1977

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTZR OF SCIENCE
Department of Electrical Enginesring

KANSAS STATE UNIVERSITY
Manhattan, Xansas
1979

Aporoved by

ity —

Major Professor

Spec. foll
LD

AbGT
RY TABLE OF CONTENTS

1779
INTRODUCTION « 947 v v v v o v v o o v s
N Cfaz-'

" INSTRUMENTATION LABORATORY COMPUTER SYSTEM
ACKNOWLEDGMENTS & & 4 o 4 o o s o o o o &
BISLIOGRKERY & « v » 2 = 5 x @ % ¢ & & % &
SYSTEM DISK & o o o 4 o o o o o o o o « &
INSTRUMENTATION LABORATORY SOFTWARE . . .
IEEE-488 INTERFACE BUS . . + « + « « « + &
SYSTEM PATCH PANEL + « + « « 4 o « o o & &
MULTIPLEXER &+ « & o o o o o o o o o o« o &
FUNCTION GENERATOR/FREQUENCY COUNTER . . .
USBAIS GUIDE < & s o o 5 5 v & % 4 & & ® &
LABORATORY ASSISTANT MANUAL « . .
COMPLETE SYSTEM .+ « & & « + « o o o o o

15

APPENDIX A

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

B

H & @ = o U O

Figure

C-1
c-2
c-3
C-4

D-2
D-3
D-4
D-5
D-6

E-1
E-2
E-3
E-4
E-5
E-6
P-1

LIST OF FIGURES

PATCH PANEL « « « + « +
SYSTEM CONFIGURATION , .
OPEN-COLLECTOR BUS . . .
INTERFACE BUS COMMANDS .

]

L]

IEEE"“BB HANDSHAKE * ¢ @ & @

IEEE-488 INTERFACE BUS SIGNAL

PATCH PANEL . , ¢ « &« & &«

A/D and D/A CHANNEL INTERFACES

LINES

] & » LJ .

DIFFERENTIAL AMPLIFIER and LOW-PASS
DIFFERENTIAL AMPLIFIER and LOW-PASS

LOW"PASS FILTER & & 2 & 2 o e @ & @

LOW-PASS FILTER BCARD . .

FLOWCHART, IEEE-488 LISTENER

LISTENER SCHEMATIC . . .
LISTENER LAYOUT . . . + &

L

MULTIPLEXER SCHEMATIC

MULTIPLEXER WIRING SCHEMATIC

MULTIFLEXER LAYOUT . . + « &

PUNCTION GENERATOR/FREQUENCY COUNTER

L]

L]

FILTER
FILTER

LIST OF TABLES

Table Page
D-I A/DINTERFA_CEFEATURES--nunuoloououD-s

D-2 D/A INTERFACE FEATURES . . + o s+ « s « » « « +» » D=8
E-1 8748 PROGRAM + + o o o o o o s o o s o & o o o » E=7
E-2 VARIABLES LIST « ¢ o ¢ ¢ o s s s o o 2 o« » » o o E=9
E-3 EDGE-CONNECTOR ASSIGNMENTS, LISTENER « « . . . E-10
E-4 EDGE-CONNECTOR ASSIGNMENTS, MULTIPLEXER E-15

INTRODUCTION

With the maturing of computer technology there has been
a growing trend to use computers as mcre than just "number-
crunchers”. In order to use computers in these alternate
ways it became obvious thaf.keypunching computer cards and
running them through a card-reader was an inadegquate means
of entering data. Many of the applications that éomputers
lend themselves to involve processing data from laboratory
measurements, so it was advantageous to design interfaces
that allow measuring devices (instrumentation) to transmit
their data directly to the processing computer. With the
advent of such computer compatible ingtrumentation and in-
expensive mini- and micro-computers, computer instrumentation
systems have become increasingly popular.

A very appealing feature of computer instrumentation is
its ability to make faster and more reliable measurements than
a system which uses a human operator. With the traditional
means of testing a circuit, the operator would clip a test
probe to the first test point, select the range and mode for
the measurinz equipment, attach the test equipment needed to
provide the desired stimulus to the circuit, adjust the con-
trols to provide the desired stimulus, and finally read the
value indicated on the measurement device (often on an analog
scale), After taking and recording this measurement the op-
erator would then move the probe to the next test point and

repeat the whole process. Even with an experienced operator

each of these operationa takes ssveral seconds and, more

importantly, each provides a possible source of error. In
particular, when the measurements are repetitive the operator
tends to become inattentive and may misplace a probe or mis-
read an analog scale.

With a computer controlled system, repetitive measurements
can be made with a repeatable procedure from unit to unit.
Because the time the computer needs to program the test equip-
ment to its proper settings and to take a reading is much smaller
than the time a human needs to do the same operation, throughput
for testing units is greatly increased. These advantages are
not gained without cost, While the time to test each unit is
greatly decreased, the "front end” investment in time and
equipment is much larger, Test equipment that is computer com-
patible is more expensive than comparable manual equipment.

A test fixture to interface units to the instrumentation
system must be built. Pinally, the software to control the
sequence of events in the test procedure must be written and
debugged. For these reasons automated testing currently dom-
inates the testing of complex, mass-produced products, but is
only practical for product development when very repeatable
test procedures are imperative.

Automated test equipment probably accounts for a bulk
of current computer instrumentation systems, but there are
also other applications of such systems. Computer instrument-
ation gystems are used as part of the feedback loop in auto-
mated control of industrial processes. These systems con-

tinually monitor various parameters of the process (temperature,

humidity, chemical concentrations, etc.) and adjust equipment
to keep those parameters within given limits,

A variation of such a system is a "data-logging" system,
which acts as a monitor rather than a controller. An advantage
of using a computer system for this job instead of a strip
chart or similar device is the computer's ability to make a
"value judgement” on the readings it is taking. During periods
of little or normal activity the computer can slow down its
sample rate to reduce the amount of data that must later be
analyzed. When the computer detects abnormal or rapidly varying
activity it can then increase its sampling rate to record the
event more completely. The computer can also be programmed
to set some sort of flag to indicate that abnormal readings
were encountered.

Computerized instrumentation can also be used to transform
raw data into a more presentable form without first manually
transcribing the data into a computer readable form. One of
the most apparent uses of this feature is in the linearization
and conversion of transducer readings. For instance, a commonly
used transducer for measuring temperature is the thermocouple.
This device produces a voltage that is a function of the temp-
erature of the thermocouple. However, the relationship is not
iinear. In the past, conversion tables or an intricate system
of blasing diodes to switch in different resistance values at
different voltage levels were used to linearize the output.
With a computer monitoring the output of the thermocouple,
the computer can mathematically manipulate the reading t¢ pro-

vide an ou*put in any of the common temperature scales desired.

Other data reduction that would he very useful to have the
computer perform on laboratory measurements would be sta-
tistical analysis and automatic generation of plots and
graphs of the data,

A final reason for computer instrumentation is that it
can perform some jobs that cannot be effectively done other-
wise, Any situation that requires measurements to be made
many times a second can only be handled with a computerized
system. Systems that can make 20,000 measurements a second
are readily available and ocnes that make over 1 million meas-
urements a second are not uncommon. A practical application
of this type of measurement is a low frequency spectrum an-
alyzer which can provide a far greater range of capabilities
and improved performance using fast PFourier transform algor-
ithms than similar equipment using swept band-pass filters.

Computer instrumentation offers appealing solutions to
many problems encountered in developing instrumentation systems.
Once the software needed to use the computer in an instrument-
ation gystem is developed, the computer can become a valuable

tool in the field of instrumentation.,

INSTRUMENTATION LABORATORY COMPUTER SYSTEM

In order to give students "hands-on" experience with
computer instrumentation, a PDP11/03 minicomputer was pur-
chased for the instrumentation laboratory in the Electrical
Engineering Department at Kansas State University. Along
with the CPU the system has the following configuration:
dual floppy disk drive; 16 K words (16-bit word) read/write
memory; a i6-chammel, 12-bit Analog-to-Digital converter; a
b-chamnel, 12-bit Digital-to-Analog converter; a real~time
clock; a serial interface (selectable to 300 baud for the
Decwriter, or 4800 baud for the CRT display): an interface
card compatible with the IEEE-488 interface standard; a Dec-
writer; and a CRT display/keyboard. Software purchased with
this system includes two moniters (a foreground/background
monitor and a single job monitor), a PORTRAN compiler, an as-
sembler, a scientific subroutine package, and an editor for
building ASCII files on disk. To use this minicomputer
system in the laboratory a large amount of software and some
hardware needed to be developed.

The PDP11/03 computer system was added to the instrumen-
tation laboratory to provide students with experience in the
ways that a computer can be used in instrumentation systems and
the problems encountered in trying to interface analog signals
to the computer system. To prevent the desired laboratory ex-
perience from being lost in a frustrating exercise in computer
programming, it is imperative that the softwara developed for

the system allow the student to control as many functions as

possible with a minimum of programming. #ith this in mind,
the software was developed in the form of a large library of
FCRTRAN=callable subroutines. Zarly in the development of the
software two fundamental decisions were made which enabled the
software to be developed as rapidly as possible and kept the
system complexity to a minimum. The price of these decisions
has been a restriction on the flexibility and future growth

of the system,

The first decision was that the single user monitor (RT-11)
provided by DEC would be the monitor that the students would
operate under. The other possibilities were to use DZC's
foreground/background monitor, a multiprogramming monitor in
which a program that is not time-critical (background job) is
executed when execution of the foreground job is suspended, cr
to write a laboratory monitor that would run under DZC's single
job monitor. The foreground/background monitor would allow
a resident program to take periodic measurements of an event
with a long time constant and execute other rrograms detween
measurement times. The problem with this approach is that
most programs that are run on the system are "real-time" tro-
grams and, as such, do not lend themselves tc being run in a
background environment.

Writing a new monitor directed specifically toward student
use would have many advantazes over using DZC's menitor., iost
importantly, it would protect the system from the students.

(3v using DEC's general rurpose monitor it is possible to
modify or destroy files on the system disk which are needed to

run the computer.) A special monitor would also allow a less

complicated procedure for developing and running a student’'s
program than the general purpose monitor requires. Finally,
using DEC's monitor means that the students will have to

~gain at least a minimal understanding of DEC's operating
system to use the computer. While the advantages that would
be gained by writing a custom monitor appear to be very streng,
the overhead required to implement that option (both time and
money) make it unreasonable.

The second decision was that the computer's interrupt
capability would not be used. Since only one job will be
running at a time it was decided that system complexity would
be greatly reduced at small performance cost by not using in-
terrupts., Instead, when the program needs to know if an event
has occurred yet, it goes into a loop and waits until an ap-
propriate bit is set or cleared. The drawbacks to this method
are: much CPU time is wasted in wait loops, and the time until
the computer responds to an event could be as long as the time
needed to execute the wait loop once. Since there is not much
else the CPU can be doing while waiting for an event in a
single job environment, the first drawback is acceptable in
this system. For occasions where the response time is critical
(i.e. reading an A/D conversion before another is completed),
the second drawback is overcome bty writing the wait loop in
assembler, thereby providing as fast a response as an interrupt
routine would,

The software written for the laboratory can be grouped
under three catagories: software to use the features of the

PDF11/03 system, software to interface with IZ=ZE-488 instrument

bus compatible devices, and the versatile miscellanecus category
A descrivtion of each of the subroutines is given in appendix

3, All of the subroutines are collected in a single library
along with several of DZC's FORTRAN-callable system subroutines.
This library is on the system disk along with the system monitor
and FCRTRAN compiler. (For a more complete descriptiocn of the
system disk see appendix A,)

The subroutines that access the peripherals of the FDF11/03
system do the bookkeeping necessary to use the ADV11-A Analog-to-
Digital Converterl, the AAV11-A 4-channel 12-bit 3/A Converter?,
and the XWV1l-A Programmable Real-time Clock~. Three of the sub-
routines are written in assembler (DAC, RDAD, and RJ3LX) in order
to minimize their execution time. Sampling rates of up to & XHz.
(using RDAD for each reading) or 12.5 XHz. (readinz a block of
measurements with RDBILK) can be obtained using these subroutines.

The second group of subroutines are those which allow the
user to interface with the IZEZ-488 bus. These routines do the

% ovr

bookkeeving needed to use DEC's I2Vi1-A LSI-11/Instrument 3us

Interfaceu. Since the IEEE-4E88 bus standard is growing in

1For further description of the ADV11-A see iicrocomoputer
Yandbook, Digital Equiprment Corp., 2nd Edition, sections I-4.15
and I-5.15.

2For further description of the AAV1l-A see ixicrocomputer
Zandbook, Digital Equipment Corp., 2nd Edition, sections I-4.1%4
E.ﬂd I-Sl lLF-

3For further description of the KWVll-A see iicrocomputer
.. ok Hes L ot Skl L
Handbook, Digital Equipment Corp., 2nd Edition, sections I-4,18
and I-5.17.

i‘“ 2 L = R
For further descripntion of the I3V11-A see silcrocomputer
Yandbook, Digital Egquipment Zorp., 2nd Edition, sections I-4.13
and I-5.13.

acceptance and is extremely useful in configuring a computerized
instrumentation system, it will be emphasized in the lectures
that accompany the instrumentation laboratory. (For a descrip-
tion of the IEEE-488 bus standard see appendix C.,) In order to
give the student an understanding of the step-by-step working

of the bus, most of the subroutines were written to allow in-
dividual commands to be sent on the bus rather than combining
them into functional blocks. The one exception to this is the
routine SNDMSG which sends a string of characters to a specified
listener.

The final group of subroutines are those written to make
life easier for the student and to allow him to use the com-
puter earlier in the semester. Currently, the only commercial
IEEE-488 bus compatible instrument in the laboratory is an
HP3455 voltmeter donated by the Hewlett-Packard Company. Two
of the subroutines in the library allow students to take readings
with this voltmeter without understanding anything about the
IEEE-488 bus. In this way simple measurements can be made
using the computer and the voltmeter before the IEEE-488 bus
is covered in lecture, In addition to these subroutines there
is a stand-alone plot routine that will take a file of data
points and generate a computer printout graph.

Along with the software written for the laboratory, a few
items of hardware were needed. The most obvious need was for
a convenient, low-noise means of connecting the A/D and D/A con-
verters to the desired points of the circuit being examined.

BNC connectors and the associated co-axial cabling were finally

selected. A patch panel with 24 BNC connectors (6x&4) was built

(see Fig. 1) and provides connections to other circuitry as
well, 3etween each A/D channel's BNC connector and the A/D
converter there is a unity gain differential amplifier and a
2-pole, active, low-pass filter with a cut-off frequency of

10 KHz. There is also a 2-pole, active, low=-pass filter
between the D/A converters and the D/A connectors on the patch
panel. (For further detail on the interfacing to the A/T and
D/A converters see appendix D.)

As mentioned earlier, the only commercial IZEE-488 com-
vatible test equipment currently in the latoratory is an HE3455
voltmeter. Until further equirment is purchased, several test
functions will be performed by student-built IZEZ-438 com=-
patible test equipment. 7This equipment includes a function
generator, a frequency counter, and a multiplexer. Further
information on these items is ziven in appendices Z and F.

The current configuration of the laboratory's computer system
and assoclated equipment is shown in Fig. 2.

The ccmputer instrumentation system that is currently
teing used is sufficient to demonstrate that it is possitle
t0 use computers in solving instrumentation oroblams, However,
some improvement is needed for it To te more rerresentative
of a practical system, To upgrade the svstem the following
modifications are desirable. First, the "home-built" test
equioment needs to be rerlaced with quality, commercial IZZE-42E
bus compatible equivalents. TFower supplies that are compatiple
with the IZZZ-488 bus are needed to examine the effects of cower

sucrly fluctuations on the devices being tested. Less crit-

10

MULTIPLEXER

O

0

R DVM
0

A/D FUNCTION GENERATO

D/A

O

O

O

0

O

SINE

0

O

O
SQUARE
O
VvCO

PATCH PANEL

FIGURE 1

—

NOILVHNOIIANOD W3ILSAS

S e e — — — S — — —— — Dt e —— o Bt s bemn mmmem s memms mmee s

dSvd Lidad

I_ 0, _ 3917dS _

_ ov, _ 3911dS _

sna 88v-3331

o1,

[

S3J1A3Q

Jdnind

|

<~

— — — omn — — — g omemme e p—— e gl wm—

ASVI T3INVd HOLvd

|

WAQ
SSVEdH

I

ﬁ HaNTVL —

—n 88r-333|
oL}

HILNNOD HOLVHINID
AON3NOIYA NOILONNA

P e | e —— g— R —— — —— — —

HaAN3ILSIT 8 z
_ g8v-3331 T?xm._&._u:ﬁ

— . em—— e E— Sme— —— — S —— o | o r— m— — —

—a

— n | — m— —] —— ———

H3ard
SSVd-MOT LENRIE
H3ddnd
dilY 4410

T3aNVd
HOLlvd

| S S

FIGURE 2

ical, but desirable, is a redesign of the filter/buffer circuits
for the D/A and A/D converters. The current design is func-
tional, but the error due to the offset voltages of the btuffers
nullifies the accuracy of the converters. Finally, a second
computer/controller with a monitor and an architecture more

friendly toward program development is needed.

i3

ACKNOWLEDGMENTS

I am grateful to several reople for their help in de-
veloping the computer system and preparing this report:

To D. R. Palmer for the work he contributed to the de-
velopment of the system; in particular, for designing and
building the Function Generator/Frequency Counter and for
writing the "PLOT"™ program.

To my wife, Sandy, for her encouragement and help in
preparing this report.

To Professor M. S. P, Lucas for his sage advice whenever

I got stuck.

14

[1]
2]
(3]
(4]
[5]
[s]
{71
[8]
£9]

Intel, 1977

BIBLIOGRAFHY

J. Finkel, Computer-aided Experimentation: Interfaci
to Minicomputers. New York: John Wiley & sons, 197

IBV-11/Instrument Bus Interface User's Manual, Maynard,
Mass,: Diglital Equipment Corp., 1977

IEEE Standard 488-1975, "Digital Interface for Program-
mable Instrumentation,™ New York: The IEEE, Inc.,, 1975

MCS-48 Microcomputer User's Manual. Santa Clara, CA:

Microcomputer Handbook., Maynard, Mass.: Digital Equipment
orp., 1975

PDP-11 FORTRAN Language Reference Manual, Maynard, Mass.:
Digital Equipment Corp., 1975

RT-11 System Message Manual. Maynard, Mass.: Digital
Equipment Corp., 1976

RT-11 System Reference Manual., Maynard, Mass.: Digital
Equipment Corp., 1976

RT-IIéRSngg FORTRAN 1V User's Guide. Maynard, Mass.:
Digit ulpmen orp., 1975

i5

APPENDIX A
SYSTEM DISK

The system disk used for the instrumentation laboratory
was configured with two considerations in mind. The first was
that the system should be as easy as possible to use, and
the second was that the files on the system disk should be
protected from the user. Since all of the experiments that use
the computer can be completed using FORTRAN programs, the
assembler was omitted from the disk. All subroutines needed
are included in either the "FORLIB" or "“LABLIB" library file
on the system disk. The stand alone program "FLOT" and two
of its data files ("RECT" and "SEMI") are also on the system
disk to allow the user access to the program without having
to create a copy of the program on his own disk. The following
list describes the purpose of the files on the system disk:
MONITR.SYS "MONITR" is the RT-11 single-job monitor. It is
. the resident program that accepts commands from

the teletype and translates them into actions by
the computer. "TT" is the teletype device hand-
ler routine. It tells the monitor how to talk
to the teletype (in this case the Decwriter).
EDIT .SAV "EDIT" is a program that allows interactive
modification or creation of ASCII data files.
It is used to manipulate the FORTRAN source
programs written for the laboratory.
FORTRA.SAV The "FORTRA" program converts a FORTRAN file into
FORTRA.HLFP a lower level language., The file created is

called an object file. "FORTRA.HLF" contains the
error diagnostics used by "FORTRA.SAV",

FORLIB.0BJ
LINK .SAV
PLOT .SAV
RECT .DAT
SEMI .DAT
LABLIB.ORBJ

"FPORLIB" is a library of the standard FORTRAN
built-in functions, a few subroutines needed to
access some system functions (for a more complete
description of the system functions see the
RT-11/RSTS/E FORTRAN IV USER'S GUIDE, Appendix B),
and the code needed to convert "FORTRA" 's output
file to machine executable form.

"LINK"” takes object files {either from "FORTRA"

or from a library file), assigns absolute memory
locations to the variables, and "links" the ad-

resses of subroutines to subroutine call state-

ments. =

The program "PLOT" will generate a rough plot
from data points stored in a file on the user's
disk., More information on "PLOT" can be found
in appendices B and G of this report and the
notebook labeled "FLOT".

"LABLIB" is a library of FORTRAN callable sub-
routines. These subroutines come from two sources,
some are part of DEC's "SYSLIB"™ library and the
rest were written for the instrumentation labor-
atory. The following is a list of the subroutines
in "LABLI3" and where a deszcription of them can

be found.

The following subroutines are described in appendix 0
of RT-11 SYSTEM REFERENCE MANUAL,

SUBROUTINE PARAGRAPH

CVITIM
GTIM
IPEEK
IPOKE
ISFY
JTIME
SECNDS
TIMASC
TIME

()
ocoomm_g\.uu\om

W Fow

OO0OO0OQOOOOQ
- " - -
LI Wil \w
N

L] - - -

The following subroutines are described in appendix B
of this report.

DAC
DIGVLT
DVMCVT
IFC
POLL
RCV
RDAD
RDEILK
RDVN

SENDC
SEND#
SETAD
SETCLK
SNDMSG
SYNC
TRGAD
VLTDIG

APPENDIX 3
INSTRUMENTATION LABORATORY SOFTWARE

The software written for the instrumentation labsratory
consists of seventeen subroutines that are a part of the
"LABLIB" library on the system disk and one stand alone trogram
("PLOT") that also resides on the system disk. Source listings
for the subroutines can be found in the computer printout note-
book labeled "LA3LI3 SU3RCUTINE LISTINGS", Detailed descrip-
tions of the subroutines, the »narameters they use, and any
subtle points about their use can be found in the computer
printout notebook labeled "LA3LI3 3UBROUTINZ DESCRIPTIONS". A
detailed description and listing of "FLOT" can be found in the
notebook labeled "FLOT", In the rages that follow, the routines
are listed and a brief vertal description of each routine is
included. For the routines whose execution time is fixed and
important to the subroutine's usage it has been included in

the descrivtion.

DAC:

DIGVLT:

DVMCVT:

IFCq

Digital to Analog Conversion: This subroutine enables
the user to select one of four 12-bit D/A channels
and convert an offset binary number (0=-5.12 V,,
4096=5,12 V,) to an equivalent output voltage. The

execution time of this subroutine is approx. 170 uSec.

Digit to Voltage: This subroutine converts an offset
binary number to a number that is equal to the voltage
the binary number represents. This is useful in cases
where A/D conversions must be used in calculations or
output for examination. The execution time of this

subroutine is approx. 920 uSec.

Digital Voltmeter Convert: This Subroutine takes an
array of 15 ASCII characters arranged in the format
used by the HP3455 DVM (/> D.DDDDDDE /- DDER) LB)
and converts it into the equivalent floating point
number. The execution time for this subroutine is

approx. 9.7 mSec.

Interface Clear: This subroutine puts the IEEE-488
bus into a known state. It unlistens and untalks
all devices on the bus and makes the PDP11/03 the

controller-in-charge.

POLL: Conduct Serial Poll: This subroutine conducts a
serial poll of the current talker on the IEEE-48E
bus. It returns a status byte from that talker as

a parameter.

RCV: Receive: This subroutine causes the PFDP11/03 to act

as a listener on the IEEZ-488 bus and returns one

byte received from the bus.

RDAD: Read Analog to Digital Converter: This subroutine
waits for an A/D conversion to be completed and re-
turns the converted value. The channel that the A/D
conversion is done on must have already been selected
(with SETAD) and an A/D conversion triggered before
this routine is called. The execution time of this

subroutine is approximatly 208 uSec.

RDBLX: Read 3lock: This subroutine fills successive memory

locations (a one dimensional array) with values from

an A/D converter channel, The number of readings
wanted is passed as a parameter. The A/D conversions
must be triggered by the real-time clock and the A/D
channel desired must be selected before RD3LK is called.
This subroutine is used when A/D conversions must be
made faster than FORTRAN programming will permit (RD3LK

ig written in assembler).

RDVIM 4

SENDC:

SENDIM :

SETAD:

SETCILK:

SNDMSG:

SYNC:

Read Digital Voltmeter: This subroutine triggers the
HP3455 to take a reading and returns the floating

point equivalent of the reading.

Send Command: This subroutine sends a one byte command

on the IEEE-488 bus.

Send Message: This subroutine sends one byte on the

IEZE-488 bus as a message byte.

Set Analog to Digital Converter: This subroutine

selects the A/D channel that the next conversion will

be made from and whether the conversion will be triggered
by software or by the real-time clock. The execution

time for this subroutine is approx. 1.4 mSec.

Set Real-time Clock: This subroutine sets the real-time
clock to produce a pulse train with a given period.

The execution time of the subroutine is approx. 3.9 mSec.

Send liessage: This subroutine sends an array of bytes
(one at a time) on the IEEE-488 bus. This subroutine

is extremely useful for configuring the HP3455 DVi.

Synchronize: This program is used to keep the calling
program in time with the real-time clock. The sub-
routine does not return control to the calling pregram

until a real-time clock output occurs.

B-4

YLTDIG:

PLOT:

Trigger an Analog to Digital Conversion: This sub-
routine triggers the start of an A/D conversion if
the A/D converter is set for software triggering.

Execution time for this subroutine is approx. 830 uSec.

Voltage to Digit: This subroutine converts a number
that is equivalent to a given voltage into its offset
binary representation. This is useful when it is
desirable to have the D/A converter output a given
voltage. Execution time for this subroutine is approx.

820 uSec.,

Plot Program: This is a stand alone program that takes
a data file generated by another program and makes a
computer printout graph of the data. If it is wanted,
the program will list the X-Y pairs contained in the
data file. The Y-axis of the graph is always linear
and is marked off into 5 major sections with 10 minor
divisions for each major one. The X{-axis can be gelected
as either log or linear scale. If log is selected, the
scale is five decades starting from the lefthand wvalue
provided. If linear is selected, the axis is divided
into 5 major sections with 20 minor divisions in each.
In all cases the computer generates the graprh and the
major division labels based on the upper and lower

bounds for both axes.

B~4

APPENDIX C
IZEE-488 INTERFACE 3US

Until recently, in order to design a computer controlled
instrumentation system the designer had to build a separate
interface for each piece of test equipment. Some form of
addressing had to be created, the data formats of the test
equipment had to be made compatible with the computer, and
some form of handshaking had to be devised. The overhead re-
quired to build such an interface system was so large that
automated test set-ups were only economical for systems that
were to be mass-produced, or for meagurements that could not
be done by hand.

To alleviate this problem the IEEEZ-488 bus standard was
developed. The standard provides a uniform protocol and bus
structure to be used in instrumentation systems. The IZEE-488
bus standard is modeled on the "Hewlett-Packard Interface 3us”
(HPI3) developed by the Hewlett-Packard Company. The bus
structure used by the IEEE-488 standard is an open-collector
bus structure,

lAn open-collector bus structure can be thought of as
several SPST switches connected in parallel with one side
tied to ground and the other side connected through a resistor
to V. (Fig, C-1). When any of the switches is closed, the
output is pulled low with the current drawn through the resis-
tor causing the voltage drop of Vcc. If all of the switches

are open, no current flows through the resistor and the output

goes to Vcc. Since the passive output state of the bus is Vcc

C-1

0
Q

out

out

EQREE

a. open-colféctor bus b. switch equivalent

B

FIG. C-1

and the actively driven state is ground, open-collector systems
are often described wi?h negative logic. (In negative logic
"1" is assizned to the lower voltage and "0" is assigned tc¢
the higher voltage.) In negative logic, the function performed
by the open-collector bus is an "CR" function and the bus
structure is sometimes referred to as a wire-or. The logic
used in the IEEE-488 standard is negative logic. This is a
source of confusion when first reading the standard.

The IEZE-488 bus standard uses the byte (8 bits) as its
basic information unit. Zight data lines are used so a byte
is transmitted in parallel with successive bytes transmitted
serially. Since a byte is the basic information unit, it is
often convenient to describe information sent on the bus in
terms of ASCII characters. In addition to the eight data lines
there are Tive general interface management lines (IFC, ATN,
SRR, REN, EOI) and three data byte transfer control (handshake)
lines.

Much of the versatility of the IEZE-488 bus standard
comes from the three-wire, open-collector handshaxe protocol
defined bv the standard. This handshake allows data to be

transmitted as fast as the sending and receiving devices can

handle it., The same handshake is used for transmission of
both commands and data. Only one device is allowed to trans-
mit at any one time, but many devices can be listening at the
" same time. By using an open-collector structure for the
handshake lines and defining the handshakes so completion is
indicated by the high state of the handshake lines, the hand-
shake is completed by the slowest device recelving the byte
(not necessarily the slowest device on the bus). In this way,
data is transmitted asynchronously at the maximum rate the
slowest participating device can handle., (See diagram at the
end of this appendix for an example of the handshake.)

Devices on the bus can perform three functions (or some
subset of the three): controller, talker, and listener. The
minimum useful application of the bus has a device configured
to always be a talker {(i.e. a DVM) sending messages to a device
configured to always be a listener (i.e. a printer). In gen-
eral, the bus will be used in a computer controlled system,
and the computer will be controlling the configurations of the
devices attached to the bus,

The controller "directs traffic” on the bus. It selects
which devices are to be listeners, which are to be talkers,
and monitors the general interface management lines. The
commands used by the controller are shown in Fig, C-2. The
controller sends a command by forcing the attention line (ATN)
low, putting the command on the data lines, then going through
the handshake procedure described before. An interrupt cap-
ability is provided through the SRQ line. When SRR goes low

(indicating a device needs service) the controller conducts a

£=3

00000001 GO TO LOCAL
00000100 SELECTED DEVICE CLEAR
00000101 PARALLEL POLL CONFIGURE
00001000 GROUP EXECUTE TRIGGER
00001001 TAKE CONTROL
0010001 LOCAL LOCKOUT
00010100 DEVICE CLEAR
00010101 PARALLEL POLL UNCONFIGURE
00011000 SERIAL POLL ENABLE
00011001 SERIAL PCLL DISABLE
001 XXXXX MY LISTEN ADDRESS
00111111 UNLISTEN

01 0XXXXX MY TALK ADDRESS
01011111 UNTALK

GO TO LOCAL: Device is under the control of its manual switches
SELECTED DEVICE CLEAR: All listeners are cleared

PARALLEL POLL CONFIGURE: Pirst step in parallel poll

GROUP EXECUTE TRIGGER: Triggers addressed listeners

TAKE CONTROL: Tells currently addressed talker to be controller
LOCAL LOCKOUT: Disables device's manual controls

DEVICE CLEAR: Clears all devices on bus

PARALLEL POLL UNCONFIGURE: Releases devices set for parallel poll
SERIAL POLL ENABLE: Causes addressed talker to enter serial poll
SERIAL POLL DISABLE: Returns device to a talker

MY LISTEN ADDRESS: Causes addressed device to become a listener
UNLISTEN: Causes all listeners to be unaddressed

MY TALK ADDRESS: Causes addressed device to be a talker

UNTALK: Causes current talker to be unaddressed

FIG. C-2
INTERFACE BUS COMMANDS

serial poll, asking each device what its status is. (A par-
allel poll is also possible but will not be described here.)

A talker sends information on the bus, While active,
it controls the DAV handshake line and monitors the NRFD and
NDAC lines to see when the handshake is completed., When a
serial poll is being conducted, a talker responds to the ATN
line going high by sending a status byte. (Bit 7 of the status
byte is the status of the talker's service request flag.)

A listener receives information from the bus. Each listener
monitors DAV and influences the state of the NRFD and NDAC lines.
When the controller has ATN pulled low (indicating a command
byte is being transmitted) all other devices are listeners. If
commands are not being sent, only addressed listeners partic-
ipate in the handshake.

Along with defining a bus protocel, the standard also
defines the electrical specifications and mechanical cocnnections
needed to be compatible with the bus. The bus can support up
to 15 devices attached at once, and a total transmission length
of up to 20 meters. The maximum data rate that can be obtained
with the bus is one million bytes/second and is typically much
less than that. Although the IEEZ-488 bus standard appears
formidable at first glance, it tends to become reasonably

"friendly"” as one works with it.

DATA : '
LINESJ/// FIRST DATA BYTE 1\\\ ///— SECOND DATA BYTE

DAV
| ’ |
| SOME |
| | READY
T TT
e | LT
I ! 11l '
b ' | I
| | SOME l | | SOME
| ACCEPTED | I I ACCEPTED
I rTTT= rrTTo—
R B
NDAC || Liit ! ! L1l
a P . [1
| 1|] | | |
‘ P ol | |
1 2 3 b 5 6 7 8

1. Handshake lines are set for next data byte.
DAV:high, NRFD:high, NDAC:low

2. Talker has put data byte on data lines and drives DAV
low to indicate the data lines are valid.

3., After DAV goes low, all listeners drive NRFD low,

4, Last listener to read the data byte allows NDAC to go
high. (All other listeners have already released NDAC.)

5. After NDAC goes high the talker releases DAV and lets it
go high.

6. After DAV goes high all listeners drive NDAC low.

7. After driving NDAC low, listeners allow NRFD to go high
indicating they are ready for the next data byte. (Note
the handshake lines are in the same states thevy were in

during step 1.)

8, Talker starts handshake for second data byte. Handshake
cycle repeats.

IEEE-488 HANDSHAKE
FIGURE C-3

DIO1-DIO8
DAV
NRFD

NDAC

ATN

IFC

SRQ

REN

EOI

IEEE-488 INTERFACE BUS SIGNAL LINES

Data lines
Data Valid: Mandshake line used by talker.

Not Ready For Data: Handshake line used by
Tistener.

Not Data Accepted: Handshake line used by
Tistener.

Attentlon: Used by controller to send commands
and initiate parallel poll. Devices must
respond to ATN going low within 200 nSec.

Interface Clear: Unaddresses all devices on the
bus.

Service Request: Line used by devices as an
Interrupt request.

Remote Enable: Allows a device to be remotely
programmed by message bvtes.

End or Identify: Used to indicate the last byte

of a multi-byte message and {(when used with
ATN) to initiate a parallel poll.

FIGURE C-4

APPENDIX D
SYSTE# PATCH FANEL

The need for a convenient means of making connections
to the A/D and D/A converters became aprarent shortly after
starting to work with the system. A patch panel with an array
of 3NC connectors was selected as the solution., In addition
to connectors for the A/D and D/A converters (4 channels of each)
rrovisions were made for connections to a function generator
and 3 sets of 4-input multiplexers. (Cne set is dedicated to
the Yr3455 DVM and the other two sets are arranged as a UX/DEnUX
pair.) Along with the patch vanel, circuitry was necessary to
act as buffers and filters for the A/D and D/A converters.

In the first attempts to use the converters, noise was
a severe problem. To minimize the noise in the system that
will be used in the laboratory, co-axial cables and active filters
are used in the interface between the converters and the patch
vanel.

The A/D channels appeared to have a greater noise problem
than the D/A converters did. A major source of the noise was
the long length of 40-connector ribbon cable needed to bring
the A/D board terminations to the back of the computer. To
reduce this problem, co-axial ribbon cable was run to within
about %" of the A/D board termination, and a splice to conven-
tional ribbon cable made at that point. (While the splice was
being made, all 8 co-axial cables were spliced to the first

8 A/D channels even though only % would be immediately used.)

The A/D converter is single-ended with its ground tied to
earth potential. To make the A/D converters more useful in
a laboratory environment, a differential amplifier stage was
added to each channel. The final part of the interface to
the A/D converters is a 10 KHz., 2-pole low-pass filter.
Since the absolute maximum sampling rate of the A/D converter
is 24 XHz., little information is lost by bandlimiting the
signal to 10 KHz., and high frequency noise components are
significantly reduced.

The D/A channels had a much smaller noise problem and
as a result had fewer remedies applied to them., Standard
ribbon cable was used from the D/A board termination to the
rear of the computer and an interface to co-axial cable was
made at that point., Like the A/D channels, a 10 XFz., 2-pole
low-pass filter was inserted between the converter and the
patch panel. In the future the pass-band of this filter might
need to be increased since the risetime on a step output is
fairly slow.

The following pagss contain: a drawing of the patch panel,
a block diagram of the cabling for the A/D and D/A converters,
schematics and layouts for the buffers on the A/D and D/A

converters.

MULTIPLEXER

ouT

O

O

0

R DVM
o

A/D) FUNCTION GENERATO

D/A

O

O

O

] SINE

O

0

O

O
SQUARE
O
VCO

PATCH PANEL

FIGURE D-1

arv

JOV4H3LNI TINNVHD Vv/a

> 1anvd

A ~ HOlvd

< -~ T18YD NomaM - -

RELA L V ﬂ_ Xv02 _) HEBR[E| | Xvo2 o~ NN w
[¢]
HoUVd < 3 o SSVd-MO1 {- - o AA\;
310d-2
JIV4HILNI TINNVHD A/v

378YH NOBOIY
NN s
e NN] xvoo wosem NJ_ HaLlnd L=NIVD | Xv0d
NN N Ia
> s " SSVd-MO1 dWY £ >

310d-2 4410

FIGURE D=2

A/D INTERFACE FZATURES

Differential input

Input impedance approximately 100 X Chm.
Differential gain =1

Common-mode gain = ,002

CMRR = 54 4B

Low pass filter has 2-pcle roll-off. f_, = 10 KHz.

0
Two channels on each printed circuit board.

TABLE D-1

H3LTd SSVd-MOT ANV HII4ITdWNY TVILNIH34Id

MBYIO YIEE JO %L UIYIIM SIEM POEN SJOIR|Ne) eyy ‘peydiew Ajeword 8q tSnw Sy PUW ‘pM ‘tH T
OULO YITE JO I VIYIIM SJem Pesn BI0ITIEes Oyl ‘Peydew Ajeso|d eq 1enw zY pus LY ‘L

:SILON
noL
]
= -
it aeer -
—adozp , T
B sy
Ti- neve b 2 ¥ EeL noL 3NV
arv roemy 2 AVAYAY. AVAVAY ou HOLVd
oL _ 1] L[] Woud
zie 4d ovs
_ _ nsu
12 AN— +

1y

FIGURE D-3

O

@)
Ovout
oad”d © oo
OFRTIOS & @
oh T
OFIoU g =3 S ch 2D
O OOE% Eg Q0 OO

+ !
O] O
2
i
013

FOIL PATTERN (SEEN THROUGH BOARD)

DIFF. AMP. AND LOW-PASS FILTER
FIGURE D-4 ‘

1.
2.

D/A INTERFACE FEATURES

OQutput impedance approximately 200 Qhm,

Output ground is at earth potential. (grounded through
the PDP-11's ground connection)

There is a 100 Ohm resistor in series in the output ground
to protect the PDP-11.

2-pole roll-off low-pass filter. fo = 10 KHz.

Four channels on each printed circuit board.

TABIE D-2

13NV
HO1lvd
| ol

d317ld SSVd-MOT

00} S
&M
——ddosy
T 9 M
N o .
} M 6've N 6'veZ v/d m
winy Y NN\, \/\/\/\llis_om_“_ g
(O1) ¢H
N L | 1
ers N[t 4.
rAYS 4d ov6

00
e
D/A 1 c2 K
Return 10 @ Eg E Eg OOut L
Return ZO OC!_E_O Eg - E__:.J) OOut 2
oA 20 OO h (D Retumnz2
O O
d

O o =, OGnd
OO oXo)
@@ TV COCEI 0

Return 3

D/A 3O czso O

Return 4

OO (] O
] oo
OO0

UuJuuuuud

D g
Ratufn3o @ E% E E OOut 3
Fleturn4o @ @ 3 G OOUt 4
Yo ole C% E

Cla

COMPONENT LAYOUT

LOW-PASS FILTER BOARD
FIGURE D-6

FOIL PATTERN (SEEN THRIUGH 3CARD)
LOW-PASS FILTER 30ARD

FIGURE D-7

APPENDIX E
MULTIPLEXER

The IEEE-488 compatible multiplexer is located inside
the patch panel box. It requires power supply voltages of
+5 V., -12 V4 and Ground, It is connected to the three right-
hand columns of BNC connectors on the patch panel. In addition
to the patch panel connections, there is a connection to the
IEEE-488 bus and a co-axial cable to the rear input of the
HP3455 DVM, The IEEE-488 device number of the multiplexer
is selected by the DIP switches on th 8748 "listener” card.
Switches 3 (MSB) through 7 (LSB) are used to select the number.
If the slide switch is - pushed toward the switch number printed
on the package a "0" is selected for that bit. If the switech
is pushed away from the number a "1" is selected. The device
number currently assigned to the multiplexer is "5". For this
device number the MLA command is an ASCII '%'. The multiplexer
channels are selected by sending one message byte to the multi-
plexer over the IEEE-488 bus. The message byte to be sent is
given by the following formula,

IDVM="DVM" channel selected
IIN = "IN" channel selected
I0UT="out"” channel selected

ISYTE=IDVM+4*IIN+16%I0UT (IBYTE is message byte)
For example: The following code selects DVM1,INZ2,0UTO

IDVM=1
IIN=2

I0UT=0
IBYTE=IDVM+4*IIN+16*IQUT
CALL SENDC('%')

CALL SENDM(I3YTE)

DO NOT apply voltages greater than +5 V. to any multiplexer input.
The description of the IEEE-488 compatible multiplexer is in

two parts. The first deals with the "listener" card and the

gsecond with the "multiplexer" card.

E-2

LISTENER

The listener card of the IEEE-488 compatible multiplexer

- is a general purpose IEEE-488 listener, An INTEL 8748 single
chip microprocessor was used to fulfill the protocol require-
ments of the bus., The message byte received by the 8748 is
output on 8 data lines. (Note: if desired, a pulse can be
obtained every time a new byte is received by "anding" TO, P16.
and FT; from the 8748,)

The IEEE-488 standard requires that all devices respond
within 100 nSec. to ATN rising or falling. This requirement
ensures that all devices that should be participating in a
handshake are in fact participating., The 8748 cannot directly
meet this requirement. The desired result is obtained by having
each change of state on ATN trigger a TTL one-shot. This one-
shot then drives NRFD and NDAC low, stopping any handshake for
over 100 uSec. By the end of the 100 uSec. pulse, the 8748 has
had enough time to configure itself to participate in the
handshake, An MC3448 is used to provide the drive needed for
the outputs to the bus (NRFD, NDAC).

The following pages contain: a flowchart for the 8748
program, program variable description, edge-connector pin-out,

a schematic, and circuit board layout.

(: power on_:)
‘ note: all logic levels

disable interrupts shown in these
flowcharts are
positive logic.
_ 1 implies "high"
[set NDAC,NRFD high | 0 implies "low"

l

set input bits high
Plo_s

!

FQe=0

1

read device number

1

form MLA and load
into register 4

4

register 5

l.

set NDAC,NRFD high

load UNLISTEN into ?

FLOWCHART, IEEE-488 LISTENER
FIGURE E-1

(: COMMAND j)

ATN H-1 (%)

IFC g 34 FO—0

set NﬁAC low

FQ==1

L FQea=0 i

e

set NRFD low |

set NDAC high

FO=0

set NDAC low

set NRFD high

C LI_STEN)
!

set NRFD high

!

set NDAC.low

®

©

P2=message byte

!

set NRFD low

i

set NDAC high

o

©

set NDAC low

{

set NRFD high

00

or

13

27

34

3A

46

A

3:
CMMD :

D:

Fs

DIs
DI3
ORL

CLR

ANL
ORL
MOV
Mov
ANL
ORL
JNTO
IN
ANL
JNZ
CLR

JFO
JMP
JTO
IN

ANL
JNZ
GLR
ANL
JT1
INS
CFL

XRL
JNZ
CLR
CPL
JMP
INS
CPL
XRL
JNZ
CLR
ANL
ORL
JTO

ANL
JNZ
CLR
JNT1

ORL
JMP

TCNTI
P1,#FF

FO
A,P1
A, #1F
A,#20
R4,A
R5,#3F
P2,#00
P1,#FF
CMMD
A,PL
A, #20

FO
LSTN

A,P1
A,#20

Pl ,#387
CMMD
A,3U3

A, R4

FO
FO

A,BUS
A

A,RS5

70
P1,#7F
P1,#7F

A,P1
A,#20

FO

E
P1,#BF
P1,#BF
CMMD

8748 PRCGRAM

DISABLE INTERRUPTS

NRFD,NDAC SET HIGH. OTHER BITS
SET AS INFPUTS

CLEAR MLA FLAG

READ DEVICE NUMBER

MASK OFF NRID,NDAC,IFC

MAKE MLA FROM DEVICE NUMBER
R4=MLA

R5=UNLISTEN

CLEAR QUTZFUT PORT

RESET PORT 1 TO ALL 1's

IF ATN IS LCW GO TG COMMAND LCDE

LOOK AT L2¢

IF IFC IS LOW, CLEAR MLA FLAG
IF MLA FLAG IS SET, GO TO LISTIEN

IF ATN IS YIGH GO TC WAIT HQR=
LOOK AT IFC

IF IFC IS LGW, CLR MLA FLAG
SET NDAC LOW

WALIT FOR DAV TO GO LCW

READ CONMMAND

COMPARE TO MLA
IF MLA, SET MLA FLAG

READ CCMMAND AGAIN
COMPARE 70 UNLISTEN

IP UNLISTEN, CLEAR MLA FLAG

SET NRFD LOW

SET NDAC HIGH

IF ATN IS HIGH, GO TO WALIT MODE
LOOK AT IFC

IF IFC IS LOW, CLEAR MLA FLAG
WAIT FOR DAV TC CO HIGH

SET NDAC LOW

SET NRPD HIGH

LOCK FOR NEXT COMMAND

TA3LE E-1

35
89FF
85

531F
4320
AC

3D3F
9A00
89FF
261F
09

5320
961B
85

O4OF
BOLE
0407
B6LZ
09

5320
9627
85

3932
561F
vo

37

96 34
85
95
04 3A
08
37
oD

GE3A

997F
897F
360F
09

5320
9646

L6 3A
993F
893F
O41F

KE LSTN: ANL P1,#BF

- 52 G

62 Hi

ORL P1,#BF
JNTO A

IN A,P1
ANL A,#20
Jz A

JT1 G

INS A,BUS
CPL A

OUTL P2,A
ANL P1,#7F
ORL P1,#7F
JINTO A

IN A,P1
ANL A ,#20
Jz K

JNT1 H

ANL - P1,#BF
ORL P1,#BF
JMP G

SET NDAC Low

SET NRFD HIGH

I¥ ATN IS LOW, GO TO WAIT ROUTINE
LO0X AT I¥C

IF IFC IS LOW, GO TO WAIT ROUTINE
WAIT FOR DAV TO GO LOW
REAL MESSAGE BYTE

OUTPUT MESSAGE BYTE

SET NRFD LOW

SET NDAC HIGH

IF ATN IS Low, GO TO WAIT ROUTINE
LOOK AT IFC

IF IFC IS LOW, GO TO WAIT ROUTINE
WAIT FOR DAV TO GO HIGH

SET NDAC LOW

SET NRFD HIGH

LOOK FOR NEXT MESSAGE BYTE

E-8

99BF
89BF
260
09
5320
C6OF
5652
og
37

297F
897F
26 0F
09

5320
C60F
4662
99BF
B89BF
0452

The following assignments were made for the 8748,

BUS: IEEE-488 data lines (negative logic)

-P17= NRFD (output)

Plgs NDAC (output)

Plss IFC (input)

Ply_y* device number from DIP switches (input)
P20_7: message byte received (output)

TO: ATN (input)

Ti: DAV (input)

FO (intermal): MLA flag

Register 4 (internal): bit pattern for MLA command

Register 5 (internal): bit pattern for UNLISTEN command

VARIABLES LIST
TABLE E-2

VONOMMAFWIRPNINESCHDYZR2 RS9 EHoOQOW =

GND
ATN
IFC
DAV
NRFD
NDAC
DIO
DIO
DIO
DIO
DIO
DIO
DIO
DIO

O~ F W -

+5 V,
DO
D1

D3
D4
D5
D6
D7

LISTENER EDGE~-CONNECTOR ASSIGNMENTS

TABLE E-3

d3IN3ILSIT 8v/8

avie

(O—] ozq n }—ano
@— 124 taq ——@H)
Ag ©—— 2 vao ———@)
®B—— cze saa ——(N)
errCon
3 wis GND |——anND — 00ud rag Il@
s W —_— N TS HOLIMS dig As——] PPx caa I'll@
r——=—1
@ Jeng g oo " \\.,|" oid taa [———O))
1 —®
OND n.d.-_..h q g .'.I@ “ TR “ e e
@ a sng M...A.n_“ﬁ ——aND “ Pt " Tid oaa |I®
amneg vy sng IIL”- .- \“ ”“ H.“
aws vweg _—. € .“ am
n v T O i Nasd
7o otd ay
== ang
14 va 3
As Az _
ON ano |—ano ©® o AN —
wny, o @ — sza 55 [_
™ e O——| 924 1353y ‘
FLT Y
Wy zy ——ane @ w4 twx =
—_— N v l——as AHYIII "w aix f—
09
oon o oN = A L, @
a3, (3]

N OND }——aND

aND——aND I D,
As TS _
H P i

Wiy o
— ey a
an 0
uhb
a
o

oo Ty
AS
. N W
ON N
00> b 2

AS T

AS

FIGURE E-2

IC 4
7400

IC 1

8748

IC 2
m21

IC3
74121

iIC5
MC3448

L
g
nC 1
el

 —
g —

LS8

MSB
NC
NC

8748 LISTENER LAYOUT

FIGURE E-3

ON :0
OFF:1

MULTIPLEXER CARD

The multiplexer card of the IZEE-488 compatible multi-
plexer contains three, dual 4-channel multiplexers (dual since
both signal and return are switched), and the logic needed to
indicate which channel has been selected on sach multiplexer,
The multiplexer used was the CD4052 Dual 4-channel Analog
Multiplexer/Demultiplexer. One multiplexer is used to select
one of 4 channels on the patch panel as the input to the HP3455
DVM, The other two multiplexers are arranged as a MUX/DEMUX
pair. In addition to the multiplexers, three TTL 2-line to
L-line decoders are used to light an LED next to each channel
selected.

The Power supply voltages used for the CD4052 multiplexers
are+ 5 V. Since input voltages that exceed the CD4052's supply
will destroy the device, it i1s important that signals applied
to the multiplexers be less than + 5 V. The "on resistance”
of the CD4052 is approximately 200 Ohm. The channel select
lines are brought in on a DIP connector that plugs into a
sockét on the multiplexer board.

The following pages contain: an edge-connector pin-out,

a schematic, a wiring diagram, and circuit board layout.

E-13

IN"
LEDS

IN O
IN1&#
iIN2
IN3®

INO G
IN1G)
IN2©)
IN3 ()

DVM O &

DVM 1 (&
DVM 2 (9
DVM 3

DYMOG)
DVM 16
DVM 20)
DVM 3 ()

DVYM (9

DvmM &

(L (Ll

——'0VM' LEDS

CHANNEL
SELECT

DVM MULTIPLEXER

2-LINE TO 4-LINE
DECODER

ouT 0

ouT 1(+)

out 20

CUT 3 @

QuUT 0

ouT 1 (2}
ouT 2 2}

(L (L
AN AN

QUT 3 (3

2-LINE TO 4-LINE
DEC

ODER

L_CHANNEL _1

SELECTS

MUX/DEMUX PAIR

FIGURE E-4

—_“out”
— LEDS

2-LINE TO 4-LINE
DECOCER

EDGE~CONNECTOR

O O~ Ovn Fuo o

DVM LED SOURCE A GND,
DVMO B DVMO RET
DVM1 c DVM1 RET
DVM2 D DVM2 RET
DVM3 E DVM3 RET
DVM(+) F DVM(-)
OUTO q QUTO RET
OUT1 g QUT1 RET
OUT2 K QUT2 RET
10 QUT3 I QUT3 RET
11 INO M INO RET
12 IM1 N IN1 RET
13 IN2 P IN2 RET
14 IN3 R IN3 RET
15 LED DVMO S LED OUT2
16 LED DVM1 T LED OUT3
17 LED DVM2 U LED INO
18 LED DVM3 v LED IN1
19 LED OUTO W LED IN2
20 LED OUT1 X LED IN3
21 QUT LED SOURCE Y IN LED SOURCE
22 "12 Vu z +5 v:

DIP CONNECTOR

(From message byte lines of listener.)

T b
=
LW

TABLE E-4

i+ pvo 92—

H3X3dILINN

) tA pun AL [z 2]
@l.l.lv].lllll.llﬂi x NI [P H oe BAz o ®
el 1AZ oo {»
[e R UAT |5 D]
v = vt s Q)
1 LU @
ra (L Muu
oAl L &)
TS0rad ||_.ﬂ..|_..4|1 stive
tn pup S4 LET)
L '] ST
4_“— i
1t
ra lidd
e
HH [———pugy ez
280 +0D 1*yo08
(+1] dia
pup
.J ne
zt-alli_.ﬂ T o LLUN ra O
iy TAl \
5] ve 7 @
of; = oar Lo —E)
3 3 R
] zs0vad III_.-II_SI' stivL
4 PUD g Lol "

pup g

Mo
5-0ZEA1

FIGURE E-5

IC6

DIP
socket 1C4 IC5
Ic1 IC2 IC3

MULTIPLEXER LAYOUT

FIGURE E-6

APPENDIX F
FUNCTION GENERATOR/FREQUENCY COUNTER

The IEEE-488 compatible frequency counter and function
generator are located inside the patch panel case, They require
power supply voltages of +5 V., Tip V., and ground. The func-
tion generator is connected to the column of BNC connectors on
the patch panel labeled "FUNCTION GENERATOR" (third column from
the left), The frequency counter is connected to the IEEE-488
bus, and to the BNC connector on the right side of the case.

The IEEE-488 device number of the frequency counter is "1~
which corresponds to an MTA command of ASCII ‘'A’,

The frequency counter and function generator are essentially
separate devices. The function generator supplies a sine wave
output (4% Volt maximum amplitude) to the BNC connector labeled
"SINE", The frequency of this signal is determined by the volt-
age input to the "VCO" connector of the patch panel, and the
position of the switch on the right side of the patch panel
case. The "up" position selects the high range (5 XKHz. - 700
KHz.), while the "down" position selects the low range (30 Hz. -
5 KHz.). The range of voltages allowed on the "VCO" input is
-5,12 Vv, to +5.12 V. (the range of a D/A converter channel).

The frequency is a linear function of the "VCO" input, with

-5.12 V, corresponding to the high end of the frequency range
and +5.,12 V, resulting in the lowest value. The amplitude of
the sine wave is controllable through the "AM" input. It too
is a linear function of the voltage at the input. Zero Volts

input (or no connection) results in the maximum amplitude.

The function generator frequency cannot be set accurately
from the "VCO" input. However, the frequency being produced
may be accurately measured with the IEEE-488 compatible frequency
counter, When it receives its MTA, the counter measures the
frequency of the signal on its input. When the reading is com-
plete (after about one second), the device generates a Service
Request on the interface bus. After a Serial Poll is completed,
it sends six bytes on the bus, each containing a BCD digit in
the lower four bits. The digits are sent in descending order,
most significant digit first.

To operate the devices, first connect one of the D/A outputs
to the "VCO" input and another to the "AM™ input (if amplitude
control is desired). Connect the sine wave output on the patch
panel to the frequency counter input on the right side of the
case. Assign appropriate voltages to the D/A converters to
select the desired frequency and amplitude. Be certain the
range switch is in the correct position. To read the frequency
being produced, address device "1" to talk., When a Service
Request occurs, the reading is complete. Conduct a Serial Poll
of device "1", then receive the six bytes of the frequency value.
These bytes can be manipulated to yield a single number rerpre-

senting the frequency.

CONTROL

l

FREQUENCY
hE COUNTER
DATA
SINE
FUNCTION
~+ MICROPROCESSOR GENERATOR
vco AM
L
‘I DATA
IEEE-488
s INTERFACE
IEEE-488
D/A D/A

PDP-11 SYSTEM

FUNCTION GENERATCR/FREQUENCY COUNTER

FIGURE PF-1

This appendix is the user's guide used by the students

in the instrumentation laboratoryv.

G-1

USER'S GUIDE

INSTRUMENTATICN LAB

PDP11-03

TABLE OF CONTENTS

TABLE OF CONTENTS 1
GLOSSARY 2
OPERATING PROCEDURE 3
SYSTEM EDITOR 6
SOFTWARE DESCRIPTION 9
"PLOT" DESCRIPTION 12
SAMPLE PROGRAM 14
TURN-ON PROCEDURE 20
TURN-OFF PROCEDURE 21
HELPFUL HINTS | 22

* Read First-- This section clarifies some points not fully
explained in the manual.

<>

UPPER CASE

lower case

GLOSSARY

angle brackets indicate a single character that
needs more than one letter to describe it.

{CR) means the carriage return key
{ESC) means the escape key

{control C) means to hold down the control key
while typing a "C"

{TAB) means the tab key

LETTERS: in a typing instruction mean letters
are to be typed exactly as shown.

letters: in a typing instruction mean the
position is to be filled with characters selected
by the user.

EX: If a program called TEST1 was being entered
and the user's guide listed the following as a
typing instruction:

DX1:filename.FOR
the following should be typed:

DX1:TEST1.FOR

OPERATING PROCEDURE

All programs to be written for the instrumentation lab
PDP11-03 should use FORTRAN as the source language. This
guide will assume a working knowledge of FORTRAN. If this
is not the case, you might want to refresh yourself with
a FORTRAN manual, The lab has a reference manual on DEC's
(Digital Equipment Corporation) implementation of FQORTRAN
entitled PDP-11 FORTRAN LANGUAGE REE@RENCQ_MA&UAL with

the manuals for the computer (none of which should be
taken out of the lab!) and the library has many other
FORTRAN manuals available,
The first step in using the lab's computer is to write
a program. One feature that is different from FORTRAN
implementations you might have used before are the device
numbers for input and output., Since the Decwriter is both
the input and output device, input/output statements will
take the form:
WRITE(5,format number)variable list
READ(E?§;rmat number)variable list
The example program below asks for a single digit integer,

calculates the square of the number and prints the integer

and its square.

C FPROGRAM TO CALCULATE THE SQUARE OF A ONE DIGIT INTEGER

WRITE(5,100) !EXPLAIN INPUT NEEDED
100 FORMAT(' ENTER A SINGLE DIGIT INTEGER')
READ(5,101)K !ENTER NUMBER
101 FORMAT(I1l)
=K ##2 ICALCULATE THE SQUARE
WRITE(5,102)K,J ! QUTPUT RESULTS
102 PFORMAT(1X,Il,' SQUARED EQUALS ',I2)
STOF
END

Notice the following points about the previous program,
1) Comments can be made with a line started with a
nc" (see the first line of the program) or an
"{* following a FORTRAN statement. (lines 2,4,6, and 7)
2) Each output line requires a carriage control
(for instance the first blank after the apos-
trophe in format 100 and the 1X in format 102).
Input formats do not need carriage controls.

Now that the program is written it needs to be trans-
ferred to floppy disk., PFirst, go through the turn-on
procedure on page 20, You should now be in monitor and a °','
should be the last thing the computer typed ocut. If so, read
the section on the system editor (page 6). If not, try geoing
through the turn-on procedure again. After reading the section
on the system editor enter the program onto your group's
floppy disk.

To run this program, first make sure you are in monitor
(indicated by the prompting character'.,’'). If not, you are
probably still in editor and need to type:

EX {ESC>(ESC>
To get in monitor if you aren't in editor, type:
{control C) {control C>
Now that you are in monitor, type the following to compile

your program. The computer responses are shown underlined.

R FORTRAN{LR)

DX1sfilename,TT:/L:1/W=DX1:filename {R)
The computer will tyve your program and
any warnings or errors,

{control C)

R LINK{CR)

DX1:filename=DX1:filename,SY:LABLIB/F{CR)

{control C)

| *[=

I %] ke | &

* Explanation of errors and warnings can be found in
DEC's RT-11/RSTS/E FORTRAN IV User's Guide Appendix C.

N

Te run this program (or any program that you haven't
modified since you compiled it last) type:
RUN DX1:filename{CR)
-Your program is now running-
If you want to abert program execution you can return to
monitor by typing:
{contrel C){control C)
When you are finished using the computer go through
the turn-off procedure on page 21.

SYSTEM EDITOR

The FORTRAN programs are stored on your group's floppy
disk and arranged in units called "files". Each file must
have a unique (to that disk) filename of up to six charac-
ters long. Make sure you remember the filenames written on
your group's disk since you can't get a listing of the disk's
contents, (The lab instructor should be able to.) The
editor keeps the file it is operating on in memory and keeps
track of which lines are being operated on by moving a
pointer to indicate the section being manipulated. (You
never "see" the pointer, it is just a variable in the
editor program.) The instructions explained in this guide
will enable you to do any editing you will need to do. If
you are interested in a complete description of the editor
commands, see the lab instructor.

When in editor, the prompting character from the com-
puter is an "*" (as opposed to a "." when in monitor). Since
{CR> is a character that the editor must operate on, it is not
used to cause the computer to execute the commands given.
Instead, the "escape” key is used. Typing (ESC) will separate
commands, and typing {ESC){ESC) will cause the whole string
of commands to be executed. The commands that follow this
description will allow you to perform any necessary modifi-
cation to your file. In the explanation of the commands

"n" represents a number selected by the user.

To run editor you must first be in monitor (indicated
by a "." prompting character). If you are in monitor type:
R EDIT{CR)
If you are not in monitor type:

{control C)»{control C)
«R EDIT{CR)

You should now be in editor and the prompting character
should be an "*", To create a new file type:
EWDX1:filename,FOR{ESC) {ESC)
To modify an existing file type:
EBDX1:filename,FORCESC) R(ESC) {ESC)
After you are finished creating and/or modifying a file, type:
EX{ESC) {ESC)
This will write the file onto your disk and return you to
monitor., Do not return to monitor with {control C). If
you do, nothing you did in editor will be written onto disk
and ALL modifications made will be lost.,

1) FORTRAN statements will be correctly aligned for
you by the editor if you type {TAB) before the
start of the statement part of a line.

EXs {T GO TO 100
100<{TAB)WRITE(5,200}A,B
{TAB) *C,D (this line is interpreted

as a continuation line)

2) Try to "recycle" filenames by destroying an old
file with "/K" and inserting your new program in
the resulting blank file, Your disk can only hold
a finite number of files, If your latest program
would exceed that number you won't be able to write
it out to your disk when you try and you will have
lost all the time spent to create it in editor.

EDITOR COMMANDS

nA advances the pointer to the start of the nth line
from the current line (n can be positive or negative).

v verifies the current position of the pointer by typing
the line that the peinter is on.

Gechar finds the first occurrence of the character string
"char” after the current pointer location and moves
the pointer to point immediately after the last
character in the string.*

=Cchar replaces the character string just found (using the
"G" command) with character string "char"
i.e. GWRTE{ESC)=CWRITE{ESC){ESC) will replace the
first occurrence of WRTE with WRITE.

nL lists n lines counting from current pointer location.
/L will list all lines from the current pointer
location to the end of the file,

nk deletes ("kills") n lines counting from the current
pointer location., /K deletes all lines from the
current pointer location to the end of the file,

B moves the pointer to the beginning of the file,

Ichar inserts the character string "char" immediately
before the current pointer location, The character
string can be many lines long and is delimited by
the (ESC) that separates this command from the next,
This command is used to enter a program into editor
the first time.

*NOTE: If the editor doesn't find the character string
"char"” it will type ?*SRCH FAIL*? and the pointer
will be pointing at the end of your file., To use
the "G" command again it will be necessary to move
the pointer in front of the string you are looking
for. The "B" command will move the pointer to the
top of your file,

SOFIWARE DESCRIPTION

A number of subroutines have been written to enable

you to use the instrumentation peripherals of the PDF11-03,

The next two pages give a brief description of these

subroutines. A more detailed description can be found in

the computer printout notebook labeled "LABLIB SUBROUTINE

DESCRIPTIONS". The following notes should help avoid some

problems in using the subroutines.

1)

2)

3)

To remotely set the functions on the HP3455 pass
'6' (with apostrophes) for IMLA in subroutine
SNDMSG.

EX: SNDMSG(IARRAY,N,'6"')

The D/A and A/D converters use the following scale:
-5012 V=20
0,00 V = 2048 each step = 2,5 nV
5.12 VvV = 4095
These conversions can be done with DIGVLT and VLTDIG

Maximum sampling rate using RDAD is LKHz.
Maximum sampling rate using RDBIK is 12.5KHz.

INSTRUMENTATION LAB SUBROUTINES

The following is a collection of abbreviated descrip-
tions of the subroutines in LABLIB., Complete descriptions
can be found in computer output labeled "LABLIE SUBROUTINE
- DESCRIPTIONS".,

DAC Perform a D/A conversion
CALL DAC(I,ICH)
I INTEGER number to be converted
ICH INTEGER D/A channel to be used

DIGVLT Convert an offset binary number to equivalent voltage
CALL DIGVLT(I,V)
T INTEGER offset binary number
v REAL equivalent voltage

DVMCVT Convert output from HP3455 to floating point number
T CALL DVMCVT(IARRAY,VALUE)

IARRAY(15) INTEGER output from HP3455
VALUE REAL floating point number
IFC Put IEEE-488 bus into a known state
CALL IFC

POLL Returns status from current talker on IEEE-488 bus
CALL POLL{IEBYTE)

IBYTE INTEGER status of current talker
RCV Reads a byte from the IEEE-488 bus
CALL RCV(IDATA)
IDATA INTEGER byte read from tus
RDAD Waits for current A/D conversion to finish and reads value
CALL RDAD(I,IERR)
1 INTEGER value of converted voltage
IERR INTEGER error code

RDBIK Fills an array with A/D conversions
CALL RDBLK(IARRAY,N,IERR)

IARRAY(N) INTEGER array to be filled
N INTEGER number of readings
IERR INTEGER error code

10

SENDM

SETCLK

SNDMSG

SYNC

TRGAD

VLIDIG

Triggers a reading on the HP3455 and returns a reading
CALL RDVM(VALUE, IERR) -

VALUE REAL reading returned

IERR INTEGER error code

Sends a command byte on the IEEE-488 bus

CALL SENDC(IDATA)
IDATA INTEGER command byte to be sent

Sends a message byte on the IEEE-488 bus
CALL SENDM(IDATA)
IDATA INTEGER message byte to be sent

Set A/D converter to selected channel and trigger option
CALL SETAD(ICH,ICIK)

ICH INTEGER A/D channel selected

ICLK INTEGER trigger option

Set period of real-time clock
CALL SETCLK(T)
T REAL period in seconds

Send message to a device on IEEE-488 bus
CALL SNDMSG(IARRAY,N,IMLA)

IARRAY(N) INTEGER message
N INTEGER number of bytes in message
IMLA INTEGER device to receive message

Wait until next ouput of real-time clock to return
CALL SYNC(IERR)
IERR INTEGER error code

Triggers the start of an A/D conversion
CALL TRGAD(IERR)
IERR INTEGER error code

Convert a voltage value to equivalent offset binary
CALL VLTDIG(I ﬁ
I INTEGER offset binary representation
v REAL voltage value

11

"PLOT" DESCRIPTION

The plot program takes a data file produced in another
program, and produces a rough, ccmputer printout plot. To
create a data file that is compatible with the plot program
the following must be added to the program that gathers the
data, Variable names can be changed to avoid conflicts with
existing variable names in the program but the data types must
gtay the same (i.e. integer or real).

The following variables are needed to specify the plot:

LoG Selects logarithmic or linear scale
for the x-axis. 1=log, O=linear,
The y-axis is always linear.

BOTTOM Lower bound of the y-axis

TOP Upper bound of the y-axis

ALEFT Lower bound of the x-axis, Must be
a power of 10 if semi-log plot is
selected.

RIGHT Upper bsund of the x-axis. If semi-
log plot is selected this value is
ignored and 100,000 * ALEFT is used

instead.,

N The number of X,Y pairs in the data
file.

NOTE: Since the linear scales are separated into
five sections, if (upper bound) - (lower bound) = 5n
then each major division is n units from the next.
In other words, the graph labeling turns out
neater if the upper and lower bounds are round
numbers and the difference between them is a
multiple of five,
The easiest way to form the data file is to create an
array (N x 2) that contains the data pairs. If such an array
exists (say it is called ARRAY(N,2)) and the above variables

have been assigned values, then the following statements in

12

your program will create the desired data file.
CALL ASSIGN(1,'DX1:PLOT.DAT')
WRITE(1,1000)L0OG,BOTTOM,TOP,ALEFT,RIGHT,N
1000 FORMAT(I1,4F10.2,I4)
WRITE(1,3000)((ARRAY(J,K),K=1,2),J=1,N)
3000 FORMAT(2F20,10)

Once the data file has been created (and the creating
program's execution has terminated) the following steps
will cause the plot to be made:

1) Make sure you are in monitor

2) Type: R PLOT{R)

3) Follow the directions typed by the computer

13

SAMPLE PROGRAM

In the pages that follow, a sample program is taken
through the steps of its development. The program takes 100
A/D conversions at a sample rate of 10 KHz and creates a data
file of those values vs., time for the plot routine. The
uge of several of the subroutines and the plot programis
illﬁstrated in this program. The following pages were
written by entering and running the program on the FDP11l
system. Occasionally there will be a note marked by a circled
number (i.e. C))¢ The note will be explained on the page
following the listing. Output typed by the computer is

shown underlined,

14

RT=11%.) AL =N

+DAT 8-FER-79
+ASSIGN DX1:DK

R EDIT

*EUDXI EMFLE.FORS

XI REAL ARRAY(100.,2)
INTEGER IARRAY(100)
N=100
T=100.E-4

SAMPLE RATE OF 10 KHZ

0ooo0

IERR=0
ICH=0
ICLK=1
CALL SETCLKL(T)

SET REaL TIME CLOCK

0aoo

CALL SETAD{ICH,ICLK)

SET A/0 CONVERTER TO CHANNEL Os AND TRIGGERING OFTION T0
REAL-TIHWE CLOCK TRIGEERING .

CALL ROBLK{IARRAY:Ms [ERR)

TAKE 100 REALRINGS

[pRe Ny aoOaoo0n

T T=.1
TIME=OQ Y
GC 10 I=1,150
ARRAY (Is13=TIME

c
C X-AXI3 I8 TIME IM MILLI-SECONLIS
c
CALL OIGULT(IARRAYI{I})
C CONVERT A/D REANINGS TO EQUIVALENT VOLTAGE

ARRAY(I+21=V
TIME=TIME+T
10 CIONTINUE
L8G=0
BOTTOM==-2.5
TOP=2.,3
ALEFT=0.,
RIGHT=10.

(]

C SET UF FARAMETERS FUR FLOT AND CREATE IATA FILE
c

CALL ASSIGNIl-'OXLi:FLIT.DaT)

WRITE(L+1000YLOG-30TT J“sJHF ALEFTAIGHT»N
1309 FORMAT(I1-4510, 29141

WRITE(1y3000) ((ARRAY (s e N=1220 =10
3000 FLURMATIZFZO.10)

STOR

=l

o =

SEAES

15

R FORTRAN
EOX1:SHFLE, TT:/L 11/W=0X1$SHPLE SN $3
EQRTEAN LU YO1C-03A THU DA-FER=79 00100100 PARE_201

0001 REAL _APSAYI100.2)
0002 INTEGER TARRAY{100)
QQQ} E-—]OO
QONA T=100.E—-5
= c ,
C SAMFLE RATE 0OF 10 KHY
C
0005 IERR=
0004 CH=0
0007 ICLK=1
000H CALL SETCLK(T)
c
C _SET REAL TIME CLOCK
[
0009 CALL SETAR(ICH, ICLK)
C ‘
C_SET a/D CONUERTER T2 CHANMEL O+ ANT TRIGGERING OPTION TO
C REAL-TINE i OCR_TRINGBERLNG :
L
0010 CALL ROBLK(IARRAY Ny IERR)
~ L
C TAKE 100 READTNGS
C
0011 T=.1
0013 TIME=0
0013 [0 10 1=1,100
0014 ARRAY ([+ 1) =T THE
C
C X-AXIS IS TIME IN MTLLTI-SECON[S
o
0015 CALL DIGULT(TARRAYLI) «U)
‘g A
C_CONVERT &4/0 FEADINGS TO EQUIVALENT UNLTAGE
c
0014 ARRAY{(T,2)=V
0017 TIME=TINE+T
0018 10 CONTINUE
00172 Lag=n .
0020 BOTTOM==2.5
0021 TorF=2.5
003 ALEFT=0.
Q023 RIGHT=10.
g 5 ,
C_SET UUP PARAMETERS FOR PLOT AND CREATE NATA FILS
o
0024 CALL ASSISGN(1s/T¥1:FLOT.0ATY)
QTS WRITE(121000)1 Gi3e =101 T 0me Tl e S EREToRTEHT AN
o028 1000 FORMAT(TI.aF1D .2 ' d;
Q27 WRITEC1« 3001 CCARREATY SR Y K=12)5 1=1 ¢ MY

Qu2a 3000 FDORMATICEFZ0,10)

Q029 STOF
C030 ENQ

o —
+R LINK

X0X1:SMFPLE=0XL!SMPLE»SY LABLIR/F

16

LRUN SHFLE
STOF --
R FLOT

00 YNU WISH TO ALTER FINT FARAMETERST (1=YES, 0O=NO)
0

FRINT DATA FOINTS? (1=YES» O=NO)
0

ADVANCE TO EOTTOM OF FPAGE aND TYFE "CO<CRE"

17

00y

00*01 oo's 00°y

t ! !

! | !
e e [—————-
3

'

1]

!

1

' .

!

:

1

.

1

i ;

L]

i +
! +
!

! . +
! +
! +
1+ +
(] +
i+ +

T +

: + +

! +

1 +

! + +

! + +)
- + +

! + +

i + L4+

! + +

! ++4 44

! HHH4+

!

t

1

b e m————t e —————— 1—-

+

+

++

+

+++4

+Ht

444
+
+
+

e |

000

!

-

05°¢

0640

08°0

o5 T

~- 40l%

18

® 6

{ESC) is printed as a $ by the computer

Correct FORTRAN alignment is generated by the
computer if {TAR> is typed before each, statement (if
the statement has a label number, type {(TAB) between
the label number and the statement).

Errors can be deleted by typing delete once for
each character to be deleted. The computer will type
a backslash "*", echo print each character deleted,
then type another backslash when characters are
entered again.

{control C> is printed as a ~C by the computer.

19

7o

9.

TURN-ON FRCCEDURE

Make sure all three switches on the front panel of
the computer are in their down position (this turns
the computer off).

Turn on power strip on the back of the large wooden
bench above the computer if it isn't already on.

Make sure the floppy disk labeled "INSTRUMENTATION
LAB SYSTEM DISK"™ is in the left hand disk drive.
(When inserting a floppy disk, the label should be
up and towards you,)

Make sure your group's floppy disk is in the right
hand disk drive.

Make sure the Decwriter is turned on.

Flip the two leftmost front panel switches to their
up position. (Both must be flipped at the same time.)
The computer will type 3.

Type: DX <R>
After a short pause, the computer will respond:
RT-11SJ V02C-02

Type: DAT dd-mmm-yy TR>

Where dd is the day of the month, mmm is the first
three letters of the current month, and yy is the
last two digits of the year.

The computer will respond with ".".

EX: DAT 23-MAR-79<CR)

Types ASSIGN DX1:DK<CR)

If you did everything right you are now in monitor and the
computer should have typed the prompting character ".".

20

-1,

2,

TURN-OFF PROCEDURE

Place all three front panel switches in their down
position,

Turn off the power strip on the back of the wooden
bench above the computer,

21

HELPFUL HINTS
In the course of developing this user's guide it became
evident that there were several "tricks" to using the system

that weren't obvious from the explanation in the manual.

1. When entering a program for the first time use the
"I* editor command after typing EWDX1:filename,FOR{ESC)
to "insert” the program,

2. When you are through inserting characters with the "I"
editor command, make sure you terminate your input
string with {ESC).

3. Typing mistakes can be deleted by typing {(delete) once
for each character to be deleted.

b, The manual contains a sample program entered on the
PDP-11. Looking at that sample program might clarify
confusing instructions in the manual.

5. To get a listing of your program while in editor, type:
B{ESC)/L{ESC>{ESC)
(this also moves the pointer to the top of the file.)

&y Liberal use of the "V" editor command helps prevent
errors due to not knowing where the pointer is.

7 To move iheleditor'pointerlto the bottom of a file,
search for a character that isn't in the file.

8. If you have done the turn-on procedure properly, you
can omit the "DX1:" part of command lines.

22

APPENDIX H
LABORATORY ASSISTANT MANUAL

In order to protect the system software from the students

a powerful user program was omitted from the system disk used

by the students. This program is on the disk labeled "INSTRU-

MENTATION LAB SYSTEM DISK MASTER". 3y using this disk in the

left disk drive instead of the system disk used by the students,

the laboratory assistant can rerform several operations on a

user disk that a student cannot.

Erasing a user disk (also used to make a blank disk a user

disk).
1.

Go through the turn-on procedure in the laboratory
user's guide with the disk labeled "INSTRUMNSENTATION
LA3 SYSTEM DISK MASTER" in the left disk drive, and
the disk to be erased in the right disk drive.

Type: R PIP{CRY

Type: DX1:/Z (CRY
The computer will respond with DX1:/Z ARS YOU SURE?

If sure (this will destroy all files on the disk).
Type: 7{CR)

To erase another disk, replace the disk in the right
disk drive with the next disk to be erased and go to
step 3.

If done, go through the turn-off procedure in the lab-
oratory user's guide, then replace the disk in the left
disk drive with the system disk used by the students.

"Cleaning up” a student user disk.

1.

Go through the turn on procedure in the laboratory
user's guide with the disk labeled "INSTRUMEINTATION LA3
S7TSTEM DISK MASTER" in the left disk drive, and the
disk to be "cleaned up" in the right disk drive.

Type: R PIF{CR)

To list the files on the disk:
Type: DX1:/E{CR)

To delete a file from the disk:
Type: DX1l:filename,FOR/D{CR)

Type: DX1:%*, BAK/D(CR)

Type: DX1:%,BAK/DECR)

Type: DX1:/SCCR>

Go through the turn-off procedure in the laboratory

user's guide, then replace the disk in the left disk
drive with the system disk used by the students.

LABLIB DOCUMENTATION

The source listings and documentation files for the LABLI3

subroutines and PLOT are on the disk labeled "INSTRUMSENTATION

LAB SOPTWARE DOCUMENTATION".

To get a copy of a file.

1.

5.

Follow the turn-on procedure in the user's guide with
the disk labeled "INSTRUMENTATICN LA3 SOFTWARE DOC-
UMENTATION" in the right disk drive.

Type: R EDITLCR)

To get a copy of a source listing:
Type: ERDX1:subroutine.FORCESC)REESCH/LCISCH/KLISCHCESC)

To get a copy of a description:
Type: ZRDX1:subroutine.DOC{ESC?REESC)/LLESCY/KKESIYKESC)

Reptat-step’3 for each ‘copy desired.
Go through the- turn-off procedure in the user's guide.

Return disk labeled "INSTRUMENTATION LAB SOFTWARE
DOCUMENTATION" to the disk box.

To modify a subroutine in LA3LIB the following steps must

be done.

1a

Using EDIT

a) make the modification,

b) increase version number.

c¢) update "date of last modification" in heading.

d) describe modification in heading.

e) get a clean copy on a new page.
Put new version in notebook. Xeep o0ld version in notebook.
If necessary, correct the description using EDIT.
Compile new version.
Using LI3R, replace subroutine in LABLI3 with new version,
Jsing P12, revlace all coples of LABLI3 with new version.

H-3

APPENDIX I
COMPLETE SYSTEM

The computer system used in the laboratory is set-up to
only use a part of its capabilities. This was done to make the
laboratory system easier to use. OCOther capabilities, which
require a more complete understanding of the PDP11/03 system, can
be accessed by using a different system disk ("COMFLETE SYSTEM
DISK MASTER").

This appendix describes some of the other capabilities,
explains a little more about the FDP11/03, and indicates where
to look in DEC's reference manuals for the information most

needed by the user.

I-1

FILENAMES

To use the more general system , the user must understand
the system used by DEC to specify a file. The file specifi-
cation takes the form ddd:ffffff.eee where "ddd” is the device
where the file is located, "ffffff" is the filename, and "eee"
is the type of file.

The device ("ddd") can be specified several ways. The
device can be directly named ("DXO0" is the left disk drive,
"DX1" is the right disk drive), the device can be indirectly
named ("SY" is the system, which is always the left disk drive},
or the device specification (and its ":" delimiter) can be
omitted. If the device specification is omitted, the monitor
uses the current default device. The PDP11/03 turns on with
"DX0" the default device and the line "ASSIGN DX1:DX" in the
turn-on procedure assigns DX1 to be the default device.

The filename "ffffff" is a name (1 to 6 characters) assigned
to the file. The extension "eee" of the file indicates what

type of file it is. Fossible extensions are:

FOR Fortran Source File
MAC Assembler Source File
3AK Back-up Source File
OBJ Object File

SAV Executable File

DAT Data File

S¢S System File

In many instances (whenever the type of file specified is
obvious by usage) the extension may be omitted. For instance,
"FORTRA" always uses an "FOR" file as a source and creates an
"03J" file, so those extensions may be omitted. When using

editor, the extensions must be specified.

A "BAK" file is created by EDIT when a file to be modified
is loaded into editor with an "E3ddd.ffffff.eee" command.
After the modifications are made and editor is terminated with
the "EX" command, the editor renames the unchanged, original file
with a "3AK" extension and stores the modified file under the
filename specified. If you do not want "BAK" files, enter files
to be modified into editor with these commands:

BERAAQ:ffffff.eee{ESCPRCESCIENdAA :ffffff, eeeESCYLKESCY
source file destination file

A data file can be written or read by a FCRTRAN program
by assigning a FORTRAN device number to the data file using

the subroutines described in paragraph 3.2 of RT-11/RSTS/E

FORTRAN IV USER'S GUIDE,

COMPLETE SYSTEM DISK

To make room for "LABLI3" and "FLOT" several system programs
were omitted form the instrumentation léboratory system disk.
-These programs are on the disk labeled "COMPLETE SYSTZM DISK
MASTER". The files on this disk that are not on the laboratory

system disk are:

PIP
LIZR
MACRO
SYSMAC
PATCH
CDT
SYSLI3

PIP: The Peripheral Interchange Frogram is used to manipulate
files., The features of this program are described in
Chapter 4, RT-11 SYSTEM REFERENCE VWANUAL. The commands
found to be most useful are the following:

ddd:/E Lists the directory of the indicated device.
ddd:1 ffffff.eee/D Deletes the specified file.

ddd:/S Compresses the files on the device. It
combines the unused blocks into one large block.

ddd:ffffff.eee=ddd :ffffff.eee Creates a copy of the
file specified on the right side of the "=" under
filename given on the left side of the "=",

LI3R: Used to make a subroutine library like LA3LI3. This
program is described in Chapter 7, RT-11 SYSTEM REF-
ERENCE MANUAL,

MACRO: "MACRO" and "SYSMAC" are the files needed to assemble

SYSMAC: programs written in assembler. Descriptions that will
help in writing assembler subroutines and programs can
be found in the following sections:

Section 3 (pages 479-581) MICROCOMFUTZR HAND3COK

Chapter 5 RT-11 SYSTEM REFERENCE MANUAL

Chapter 9 RT-11 SYSTEM RS-ERENCE mMANUAL

Appendix C RT-11 SYSTEN REFERENCE MANUAL

Appendix E RT-11 SYSTEM REFERENCE uANUAL

Sections 2.3 an . - R5T 2 N IV
GUIDE

PATCH: Described in Appendix L, RT-11 SYSTEM REFERENCE MANUAL,

CDT: Described in Chapter 8, RT-11 SYSTEM REFERENCE MANUAL,

SYSLIB: Library of useful FORTRAN-callable subroutines that
allow some access to system functions from a FORTRAN

program, Described in Appendix 0, RT-11 SYSTEM REF-
ERENCE MANUAL,

1-5

CRT TERMINAL

To use the CRT terminal instead of the Decwriter, use
the following procedure:
1. Unplug the Decwriter from the rear of the FDF11/03
and plug in the CRT terminal.
2. Remove the top cover-plate on the FDF11/03.

3. Set the small slide switch on the bottom right printed
circuit board to 4800.

4, Turn on the CRT terminal.

5. After vou are finished be sure to return the slide

switch to 300 and reconnect the Decwriter.

Note: Since the screen only displays 24 lines, a listing
of over 24 lines causes the top lines of the listing to go
off the top of the screen before they can be read. To control
the rate that new lines are sent to the CRT:

With the computer in monitor, type:
SET TTY HOLD {CR)

Now, after the screen is filled, typing <SCROLL) allows
one new line to appear and typing <SCROLL? while depressing
{SHIFT) allows 24 new lines to appear. To return tc the normal
mode :

W#ith the computer in monitor, type:

SET TTY NOHOLD<CR>

MAXING A COPYABLE USER DISK

In general, it is a good practice to have each user disk

~contain the bootstrap loader, monitor, and FIF., If this is

done, a copy of the disk can be made by treating it as a system

disk and following the directions for copying a disk.

To make a user disk with the above files, the following

procedure must be used when the disk is initialized.

1,

Follow the turn-on procedure in the laboratory user's
guide with the disk labeled "CCMPLETZ SYSTZEM DISK
MASTER" in the left disk drive, and a blank disk in the
right disk drive.

Type: R PIPCCRY

DX1:/Z <R
The computer will respond: DX1:/Z ARE YOU SURE?
Type: Y<CR>

Type :MONITR.SYS=SY:/{ONITR.SYS/X/Y <CRY

Ignore the ?REZBC0T? message returned.

Type: TT,SYS=SY:TT,SYS/X/Y<CR>
PIP,SAV=SY:PIP,.3AV/X<CR>
DUMMY=MONITR.SYS/ULCRY

TO COPY A DISK

Follow the turn-on procedure in the laboratory user's
guide with the disk to be copied in the left disk
drive, and a blank disk in the right disk drive,.

Type: R PIP{CR>

DX1:1/Z<4CR>
The computer will respond: DX1:/Z ARE YOU SURE?
Type: Y<{CR?

DX1:%,%/X=SY %, #/X/Y(CRY
DX1 :A=MONITR.SYS/U<CR)

I-8

SUBROUTINES

To use a subroutine with a FORTRAN program, the subroutine
" must first be created as a separate file and compiled (or
assembled)? When linking the main program include the sub-
routine(s) filename(s), separated by commas, immediately after
the main program filename on the right-hand side of the "=",
EXAMPLE: "MAIN" is a program that calls a subroutine "SUB",
"MAIN" and "SUB"™ have already been written and compiled. To
link "MAIN" the following command will be typed:
DX1:MAIN=DX1:MAIN,DX1:SU3,SY:LABLI3/F<CR>

* For a description of the parameter passing convention used
by this PORTRAN implementation see sections 2.3 and 2.4 of
the RT-11/RSTS/E FORTRAN IV USER'S GUIDE. This infermation

is needed to write an assembler subroutine,

I~-9

WHERE TO FIND INFORMATION

DECLAB~03 HAND30OCK: (little green book)

How to copy a disk page 14
Creating a user disk page 15
CRT scroll feature page 24
FORTRAN error messages pages 55-84

PDP-11 FORTRAN LANGUAGE REFERENCE MANUAL:

RT-11/RSTS/E FORTRAN IV USER'S GUIDE:

Filenames 1.,1.1

FORTRAN compiler 1.2

Link 1,3

Subroutine linkage 2.3

Subroutine register usage 2.4

Device/file default assignments 3.6

System subroutines Appendix 3

Error diagnostics Appendix C

MICROCOMFUTER HAND3OQOK

Module descriptions:
A/D p186-192,328-339
D/A p184-186,322-328
IEEE-488 interface p180-184,314-322
Real-time clock p2l1-215,349<-365
Serial output pPl47-153,259=270

Architecture and Assembler p505-583

Instruction timing Appendix 3

RT-11 SYSTEM REFERENCE MANUAL

Editor Chapter 3

PI?P Chapter 4

Assembler Chapters 5 and ¢

Appendices C,2, and =

Link Chapter 6

Librarian Chapter 7

SYSLIB Appendix 0

I-10

AN INSTRUMENTATICN LASORATORY COMFUTER SYSTEM

by

GREG DEGI
B. S., Kansas State University, 1977

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1979

ABSTRACT

A computer system based on a PDP11/03 minicomputer has
been developed for use in the KSU Electrical Engineering in-
strumentation laboratory. System software includes a simplified
user's guide and a library of FORTRAN-callable subroutines.
The subroutine library consists of subroutines which control
the PDP11/03 laboratory peripherals: real-time clock, A/D
converter, D/A converter, and IEEE-488 bus interface. In
addition to the dese¢ription of the system software, an appendix
which describes some capabilities of the system which were
omitted from the user's guide is included.

Several items of hardware designed and built for the system
are described., These items include: buffers for the D/A and
A/D converters, a patch panel, an IEEE-488 compatible freguency
counter, and an IEEE-488 compatible multiplexer. The multiplexer
uses an INTEL 8748 microprocessor to interface with the bus.

This interface is documented in an appendix.

