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Abstract
We introduce an object called a tree growing sequence (TGS) in an effort to generalize

bijective correspondences between G-parking functions, spanning trees, and the multiset

of monomials of the Tutte polynomial of a graph G. A tree growing sequence determines

an algorithm which can be applied to a single function, or to the set PG,q of G-parking

functions. When the latter is chosen, the algorithm uses splitting operations - inspired by

the recursive definition of the Tutte polynomial - to partition PG,q. The result of the TGS

algorithm is a pair of bijective maps τ and ρ from PG,q to the spanning trees of G and

Tutte monomials, respectively. The algorithm can also be viewed as a way to classify maps

τ that have a coherence property: the splitting operations give rise to a natural bijective

map ρ from PG,q to the multi-set of terms of T (G;x, y). We compare the TGS algorithm to

Dhar’s algorithm and the family of bijections found by Chebikin and Pylyavskyy in 2005,

and obtain commutative diagrams to describe our comparisons. Additionally, we compute

the Tutte polynomial of a zonotopal tiling using splitting operations analogous to those in

the TGS algorithm.
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Abstract
We introduce an object called a tree growing sequence (TGS) in an effort to generalize

bijective correspondences between G-parking functions, spanning trees, and the multiset

of monomials of the Tutte polynomial of a graph G. A tree growing sequence determines

an algorithm which can be applied to a single function, or to the set PG,q of G-parking

functions. When the latter is chosen, the algorithm uses splitting operations - inspired by

the recursive definition of the Tutte polynomial - to partition PG,q. The result of the TGS

algorithm is a pair of bijective maps τ and ρ from PG,q to the spanning trees of G and

Tutte monomials, respectively. The algorithm can also be viewed as a way to classify maps

τ that have a coherence property: the splitting operations give rise to a natural bijective

map ρ from PG,q to the multi-set of terms of T (G;x, y). We compare the TGS algorithm to

Dhar’s algorithm and the family of bijections found by Chebikin and Pylyavskyy in 2005,

and obtain commutative diagrams to describe our comparisons. Additionally, we compute

the Tutte polynomial of a zonotopal tiling using splitting operations analogous to those in

the TGS algorithm.
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Chapter 1

Introduction

To fix notation, given a multigraph G = (V,E), label the vertices V = {q, v1, . . . , vn}, where

q is the root. The vertex and edge set will often be specified by V (G), E(G) in context. If

there are multiple edges between two vertices, order them. In each rooted subtree T of G,

we direct edges toward the root. When necessary, h(e) and t(e) are used for the head and

tail of a directed edge e = (h(e), t(e)). Recall that a spanning tree of G is a spanning,

connected subgraph with |V (G)| − 1 edges.

Definition 1.1: The outdegree with respect to A ⊆ V , denoted outdegA(v), is the

number of neighbors of v not in A ⊆ V , with multiplicity.

Definition 1.2: A G-parking function is a function f : V (G)−{q} → Z≥0 such that any

subset A ⊆ V − {q} contains a vertex v with 0 ≤ f(v) < outdegA(v).

We write f = (f(v1), . . . , f(vn)). Let PG,q denote the set of parking functions on G with

respect to q. Let G−e mean deleting the edge e from G. Contracting G at e means to delete

e, then identify the endpoints of e. Denote contraction by G/e.

Definition 1.3: The Tutte polynomial T (G;x, y) of G is the universal Tutte-Grothendieck

graph isomorphism invariant satisfying the following deletion/contraction principal, and
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defining T (•;x, y) = 1, • the graph with one vertex.

T (G;x, y) =


yT (G− e;x, y) e a loop

xT (G/e;x, y) e a bridge

T (G− e;x, y) + T (G/e;x, y) otherwise

(1.1)

An equivalent definition is a closed formula over all spanning subgraphs of G. Let c(A) be

the number of connected components of a spanning subgraph A. Then

T (G;x, y) =
∑
A⊆G

(x− 1)c(A)−c(G)(y − 1)|E(A)|+c(A)−|V | (1.2)

The symbolMG will be used to indicate the multi-set with elements the terms of the Tutte

polynomial of G. See Figure 1.1 for an example.

Figure 1.1: The Tutte polynomial for the above graph is T (G;x, y) = xy2 + 2x2y + xy +
x2 + 2x3 + x4. The multi-setMG = {xy2, x2y, x2y, xy, x2, x3, x3, x4}.

We focus on the case of finite graphs due to the beautiful bijective correspondences

between the terms of the Tutte polynomial, spanning trees, and G-parking functions. Among

these is Dhar’s burning algorithm [Dha90]; see also [CP05], [CMY10], [Ber08], [CB03]. The

burning algorithm is applied to a graph labeled by a function f : V (G)− {q} → Z≥0. Start

a fire at q, and imagine it burns any edge it reaches. In order to burn through a vertex v, it

must first burn through z = f(v) edges which are incident to v. If the fire is able to burn

through more than z edges incident to v, it will burn through the vertex. All vertices burn

if and only if f is a G-parking function.

2
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Figure 1.2: Commutative diagrams.

We will describe an algorithm which from a G-parking function simultaneously produces

a spanning tree Tf of G and a monomial xαyβ ∈ MT , through the application of an object

called a tree growing sequence Σ. This results in two bijections τ : PG,q → TG, and ρ :

PG,q →MG. We prove the main theorem in section 3.1.2.

Theorem: The maps ρ and τ are bijective.

The algorithm which achieves this is based on operations which simultaneously split each

of the sets PG,q, TG, and MG into two disjoint subsets. We show that these splittings are

coherent in that they eventually force 1−1 correspondences between the sets. As applications

of the theorem, sections 3.2.1, 3.2.2, and 3.2.3 describe how Dhar’s algorithm with a total

edge order OE [CB03], proper sets of tree orders {ΠG} [CP05], and process orders [CMY10],

respectively, can be fit into our definition. Let {OE} be the set of edge orders on G. We

will define the maps in the diagram below and prove that it commutes. An auxilliary result

is the association, via ρ, of a monomial to a G-parking function for the family of bijections

in [CP05]. This is evidence that the TGS algorithm can give a non-arbitrary bijection from

PG,q toMG for algorithmic bijections between PG,q and TG.

The Tutte polynomial is defined more generally for a matroid; see [BO92] for a thorough

survey. In section 4.1.1, we compute a polynomial for a cubical zonotopal tiling using similar

splitting operations to the TGS algorithm, and show that it is the Tutte polynomial of

a specific matroid. In particular, if the vector configuration associated to the tiling is a

cographical matroid, then the polynomial is the Tutte polynomial of the underlying finite

3



graph, and we obtain bijections between tiles, MG, and TG. We conclude in section 4.1.1

with a discussion that relates zonotopal tilings of cographical matroids to the bijective maps ρ

and τ .
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Chapter 2

Three Objects Associated to Multigraphs

2.1 Basic Graph Theory Definitions

Although some of the results of this thesis can be applied to disconnected graphs and more

generally to matroids (2.5), the focus is on connected multigraphs. A graph is defined to be

a tuple G = (V,E), where V = V (G) is a finite set of vertices, and E = E(G) is a finite set

of edges. The order of a graph is the number of vertices. Each edge is expressed as a tuple

e = (u, v), where u, v are the vertices that it joins. Vertices that are joined by an edge are

called neighbors. A path is a sequence of vertices (edges) such that no vertex is repeated,

unless the path is a cycle, in which case the start and end vertex are the same. A graph is

said to be connected if for any distinct vertices u, v in V (G), there is a path between them.

A cut-set is a set of edges which when removed from G result in a disconnected graph. The

term multigraph is used when more than one edge is allowed between two (not necessarily

distinct) vertices.

There are several operations one may perform on graphs. The two operations most

relevant to this work are deletion and contraction of edges. The operation of deleting an

edge is clear from its name: the graph G− e is obtained by removing the edge e from G and

leaving the vertices it joined. The contraction graph G/e is obtained by deleting the edge

5



Figure 2.1: The operations of deletion and contraction.

e = (u, v) and identifying the vertices u and v. If any loops or multiple edges are created by

this operation, we keep them. Deletion and contraction are central to this work.

2.2 Spanning Trees

A tree is a connected graph that contains no cycles (among other characterizations; see

theorem below). A subgraph is a graph on a subset of the edges E(G) and a subset of the

vertices V (G). The subgraph H spans G if V (H) = V (G). Spanning trees are a special class

of subgraphs of a graph G.

Definition 2.2.1.: Let G be a connected graph of order n. A spanning tree of G is a

connected, spanning subgraph with |V (G)| − 1 edges. If G is disconnected, then a collection

of spanning trees on each connected component is called a spanning forest.

To obtain a spanning tree of any graph (after removing loops and duplicate edges),

successively remove edges from G which are not bridges, until only bridges remain. That is,

remove a non-bridge e1 from G1 = G, one from G2 = (V,E − e1), and so on, until the only

edges which remain are bridges. The subgraph must be connected, because G was connected,

and we never removed a bridge, and it must span G.

There are equivalent definitions for trees, which are stated in the theorem below. (See

any introductory textbook on graph theory, such as [Bru12].)

Theorem 2.2.2 : The following are equivalent for a connected graph T = (V,E) of order n.

1. T is a tree.

2. |E| = n− 1.

6



3. T contains no cycles.

4. Every edge of T is a bridge.

5. There exists a unique (only one) path between every pair of vertices u, v ∈ T .

Figure 2.2: Spanning trees of K4.
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2.3 G-Parking Functions

The idea of a G-parking function was introduced by Bak, Tang, and Wiesenfeld [BTW87]

and generalized by Dhar [Dha90].

Definition 2.3.1: The outdegree with respect to A ⊆ V , denoted outdegA(v), is the

number of neighbors of v not in A ⊆ V , with multiplicity.

Figure 2.3: A representation of outdegree. We have outdegA(v) = 3.

Definition 2.3.2: A G-parking function is a function f : V (G) − {q} → Z≥0 such that

any subset A ⊆ V − {q} contains a vertex v with 0 ≤ f(v) < outdegA(v).

Example: Let G = K4. Choose a root q, and let the other three vertices be arbitrarily

labeled v1, v2, v3. The function on the left of Figure 2.4 is not a G-parking function. If

A = {v1, v2, v3}, then 1 = f(vi) = outdegA(vi) for all i. However, if one of the values of the

function is reduced to 0, then we can check that the definition of a G-parking function is

satisfied.

Figure 2.4: Nonexample and example for G-parking functions on K4.

A classical parking function is a tuple (a1, a2, . . . , an) of positive integers such that

#{k : k ≤ i} ≥ i, 1 ≤ i ≤ n.

where 1 ≤ ai ≤ n ∀i. If G = Kn, then its G-parking functions are the classical parking
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functions for n − 1 when 1 is added to every value of f . Since a G-parking function only

has non-negative values on |V (G)| − 1 vertices, the number of G-parking functions for Kn is

then ((n− 1) + 1)(n−1)−1 = nn−2. This number is also known to be the number of spanning

trees of Kn. The classical parking functions first appear in the literature in [Pyk59].

Example 2.3.3: Let G = K4. Its G-parking functions with respect to the chosen root q are

shown in Figure 2.5. Assigning the labels {v1, v2, v3} to the vertices starting with the top

vertex and labeling clockwise, if the values of each function are listed as f(v1)f(v2)f(v3) and

1 is added to each value, then we have the set

{(111, 112, 121, 211, 221, 212, 122, 113, 311, 131, 213, 123, 312, 321, 132, 231}

which is precisely the set of classical parking functions for n = 3.

2.4 Divisor Theory for Discrete Graphs

Let G be a graph and fix a labeling {q, v1, . . . , vn} on the vertices of G, where we have chosen

a root q. Let Div(G) = Z|V (G)| be the group of Z-linear combinations of vertices, written as

f = (a0, a1, . . . , an), with a0 the coefficient of q, and ai the coefficient of vi for all other i.

These are also called configurations or abelian sandpiles. A divisor is commonly denoted

D =
n∑
i=1

aivi.

The degree of a divisor is
∑
ai, and Divk(G) denotes the set of divisors of degree k.

Variations of the chip-firing game can be played on the vertices of a graph. If vi ∈ V and

f = (a0, a1, . . . , an) ∈ Div(G), then the chip-firing move σi is defined by

σi(f)(vj) =


aj − deg(vj) i = j

aj + n(v, vj) i 6= j

(2.1)

9



Figure 2.5: The G-parking functions for K4.
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where n(v, vi) is the number of edges between vj and vi. We say that two divisors f and

g are linearly equivalent, written f ∼ g, if g can be obtained from f via a sequence of

chip-firing moves. A principal divisor is one linearly equivalent to 0. Linear equivalence of

divisors D and D′ also means that D −D′ is principal. Every chip-firing move is a sum of

σi’s, so that one can view linear equivalence as being generated by the cuts bv, where bv is

the set of edges incident to v.

Example 1

The configuration can have a negative value at a vertex.

0 5

2 −1

1 1 1

3 0

2

Example 2

Firing a vertex may cause that vertex to have a negative value.

2 1

1

0 1

2

2 1

2

−2 2

2

Example 3

If there are multiple edges between two vertices, and one of them is fired, then it gives one

chip per edge.

7 −2

1

3 1

2

11



Example 4

We can fire two or more vertices simultaneously, an alternative to firing one by one. Below,

the top and bottom vertices are both fired once.

4 0

3

−2

6 2

1

−4

Example 5

If adjacent vertices u, v are fired simultaneously, they will exchange a chip for every edge

between them. In other words, the net change of the chips between these vertices is 0, and

the total change in chips at each of these vertices only depends on edges not joining u, v.

If the vertices with 4 and 0 chips on the left are fired simultaneously, we have the resulting

divisor below.

4 0

3

−2

2 −2

5

0

Principal divisors can also be described via the Laplacian matrix L of G. With our

fixed labeling (q, v1, . . . , vn) of the vertices of G, consider a vector x = (x0, x1, . . . , xn) with

integer entries. Multiplying Lx is equated to starting from the divisor 0 and firing each

vertex vj, xj times. This gives a divisor D, where D(v) for each vertex is (Lx)(v). The

image of L is the group of principal divisors. The set of all effective divisors (ai ≥ 0 for all

i) linearly equivalent to a given divisor D is called a complete linear series, and is denoted

12



|D|. The Picard group of G is defined as Pic(G) = Div(G)/(D ∼ 0), and the Jacobian

Jac(G) = Pic0(G) = Div0(G)/(D ∼ 0). The degree map deg(D) =
∑
ai is a surjective

homomorphism from Pic(G) to Z, and we get a short exact sequence of abelian groups:

0 −→ Jac(G) −→ Pic(G) −→ Z −→ 0

Since Z is free (hence, projective), the sequence is split, and we get that Pic(G) = Z
⊕

Jac(G).

The Jacobian, in a sense, measures the failure of degree 0 divisors to be principal. In the

case of a discrete graph, the Jacobian is a finite group, and is isomorphic to the critical group

K(G) of critical configurations (see [Big99] for definitions and the proof).

Definition 2.4.1: A q-reduced divisor f is a G-parking function when restricted to

V (G) − {q}, and in addition has f(q) = −
∑

v∈V (G)−{q} f(v). In particular, we can view

PG,q ⊂ Div0(G).

Thus, one can state the definition of a G-parking function in the language of chip firing: it

is a configuration such that firing any subset of vertices leaves at least one vertex in “debt”.

Theorem 2.4.2, [BN06], [MZ08]: There exists a unique q-reduced representative in every

linear equivalence class of Div0(G).

Corollary 2.4.3: Elements of Pic0(G) (Jac(G)) are in bijection with elements of PG,q.

There is a similar story for metric graphs outlined in Appendix 1 (5).

2.5 Matroids

The theory of matroids is heavily influenced by graph theory and linear algebra. In fact,

graphs and vector configurations are common examples of oriented matroids. We will return

to these cases in Chapter 3 along with the zonotope associated to a vector configuration.

There are several equivalent definitions of a matroid that we include for the interested reader.

Definition 2.5.1: Let E be a set. The independent sets of E is a collection I of subsets

13



I ⊆ E which satisfies:

1. I is not empty.

2. If I ∈ I and J ⊂ I, then J ∈ I.

3. If I and J are in I and |I| = |J | + 1, then there exists and element x ∈ I − J such

that J ∪ {x} ∈ I. (exchange axiom)

Definition 2.5.2: A matroid is a pair M = (E, I)), where E is a ground set and I is a

collection of independent sets.

Example 2.5.3: Let E = {a, b, c}. Then there is a matroid M = (E, I) with I =

{∅, {a}, {b}, {a, b}}. Note that there are several possibilities for defining the collection I

that are consistent with the above properties; more precisely, one will find eight nonisomor-

phic matroids on the ground set E, where two matroids M1 and M2 are isomorphic if there

is a bijectionM1 →M2 betwen the ground sets E1 and E2 which preserves independent sets.

Definition 2.5.4: The rank function of a matroid M = (E, I) is

r : 2E → Z>0

r(A) = max
I⊆A,I∈I

|I|

Definition 2.5.5.: The dual matroid M∗ is the pair (E, I∗), where a set J ∈ I∗ is

independent in M∗ if and only if E− J contains a basis of M . The rank function is r∗(A) =

|A| − r(E) + r(E − A) is the dual rank function.

The alternative definitions of a matroid will be useful when we discuss graphic matroids

and vector configurations (section 4.1.2). First, letM be a matroid, and let C be a collection

of minimally dependent sets called circuits. By a minimally dependent set C we mean that

for any c ∈ C, C − {d} ∈ I. The collection of circuits is characterized by the following:

14



1. C does not contain ∅.

2. For any C,D ∈ C, neither is a proper subset of the other.

3. If C1, C2 ∈ C are distinct, then for any x ∈ C1 ∩ C2 we have that (C1 ∪ C2) − {e}

contains a member of C.

Theorem 2.5.6: Let E be a finite set and let C be its collection of circuits. Let I be the

collection of subsets of E that do not contain a member of C. Then M = (E, I) is a matroid.

On the other hand, given a matroid M , its collection of circuits satisfies the above three

properties.

Returning to the example of the three element matroid with ground set E = {a, b, c} and

independent sets I = {∅, {a}, {b}, {a, b}}, its collection of circuits is C = {{c}}.

There is a third characterization of a matroid which is natural to think of - that by its

bases. Let B be the collection of subsets of E which are maximally independent; that is, if

B ∈ B, then B ∈ I and for any x not in B, B ∪ x is dependent.

Theorem 2.5.7: The collection B is the set of bases of a matroid M if and only if it satisfies

1. B is non-empty.

2. Let X, Y ∈ B. For any x ∈ X there is an element y ∈ Y such that (X−{x})∪{y} ∈ B.

There is only one basis in the collection of bases for our running example: B = {{a, b}}.

Example 2.5.8: We can construct a matroidM(G) where the ground set contains the edges

of a graph G of order n, possibly disconnected, and the independent sets are the sets of edges

which form forests in G. Thus, the edges of spanning forests are maximally independent sets.

They also form the collection of bases B ofM(G). We prove that this collection satisfies the

two properties in the previous theorem in the case for G connected. The proof can then be

extended to each connected component of a disconnected graph. To prove the first property,

we’ve noted in section 2.2 that every graph has a spanning tree; thus, B is nonempty.
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If T1, T2 are spanning trees of G, let e = (a, b) ∈ T1. Removing e from T1 results in

two components: let one component contain the vertex subset V ′ and the other component

contain the vertex subset V ′′. Since T2 is a spanning tree, there must be an edge f ∈ T2 that

connects a vertex in V ′ to one in V ′′, else T2 would be disconnected. Adding f to T1 − {e}

will result in a connected graph. Then (T1−{e})∪ {f} is a spanning tree: it is a connected

graph with n vertices and n− 1 edges.

We will return to the above example in 4.1.1.

e

f

Figure 2.6: Suppose the the two trees in the first row are spanning trees of the same graph
G. The tree on the bottom is the “hybrid” of the two trees on top by removing the edge e
from the first and adding in f .

2.6 The Tutte Polynomial

In this section we take a closer look at the Tutte polynomial. A graph isomorphism invariant

is a function F such that if G1
∼= G2, then F (G1) = F (G2). A Tutte-Grothendieck isomor-

phism invariant F is a function where, for every e ∈ E(G), the following two properties are

satisfied:

F (G) = F (G− e) + F (G/e) if e is neither a loop nor a bridge (2.2)

F (G) = F (G/e)F (G− e) otherwise (2.3)
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These properties are defined more generally for a matroid in [BO92].

Definition 2.6.1: TheTutte polynomial T (G;x, y) of G is the universal Tutte-Grothendieck

graph isomorphism invariant satisfying the following deletion/contraction principal, and

defining T (•;x, y) = 1, • the graph with one vertex.

T (G;x, y) =


yT (G− e;x, y) e a loop

xT (G/e;x, y) e a bridge

T (G− e;x, y) + T (G/e;x, y) otherwise

(2.4)

Figure 2.7 displays the use of the deletion-contraction recursion to compute the Tutte

polynomial of the given graph. The edge chosen in each step is in bold. When the edge is

ordinary - neither a loop nor a bridge - an arrow left indicates contraction of the edge, and

an arrow right indicates deletion of the edge. An arrow down indicates either deletion of a

loop (with multiplication by y beside it) or contraction of a bridge edge (with multiplication

by x beside it).

The universality of the Tutte polynomial is essentially stated in the following theorem.

Theorem 2.6.2 [BO92]: Let G be the isomorphism classes of graphs. There is a unique

function T from G into the polynomial ring Z[x, y] having the following properties:

1. If b is a bridge of G, T (b;x, y) = x. If l is a loop of G, T (l;x, y) = y.

2. If e ∈ E(G) is neither a loop nor a bridge, then

T (G;x, y) = T (G− e;x, y) + T (G/e;x, y).

3. If e is loop or bridge, then

T (G;x, y) = T (e;x, y)T (M − e;x, y)
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(Universality) Moreover, if R is a commutative ring and F is a function from G → R

(injective) satisfying the recursions (2.2) and (2.3) when |E(G)| ≥ 2, then

F (G) = T (G;F (b), F (l)).

An example is the generating function for the critical configurations of a graph; in [Mer05],

it is proven that this function is the evaluation of T (G;x, y) along the line x = 1. A corollary

to the above theorem which characterizes generalized T −G invariants is stated in Appendix

B (6).

An equivalent definition for the Tutte polynomial is as a closed formula over all spanning

subgraphs of G. Let c(A) be the number of connected components of a spanning subgraph

A. Then

T (G;x, y) =
∑
A⊆G

(x− 1)c(A)−c(G)(y − 1)|E(A)|+c(A)−|V | (2.5)

Lemma 2.6.3: The above formula satisfies the deletion-contraction recursion.

Proof. Case 1: Let e ∈ E(G) be a loop. Rewrite the Tutte polynomial as

T (G;x, y) =
∑

A⊆Ge/∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |+
∑

A⊆Ge∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |

=
∑

A⊆Ge/∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |+(y−1)
∑

A⊆Ge∈A

(x−1)c(A)−c(G)(y−1)|E(A)|−1+c(A)−|V |

=
∑

A⊆Ge/∈A

(x− 1)c(A)−c(G)(y− 1)|E(A)|+c(A)−|V |+ y
∑

A⊆Ge∈A

(x− 1)c(A)−c(G)(y− 1)|E(A)|−1+c(A)−|V |

−
∑

A⊆Ge∈A

(x− 1)c(A)−c(G)(y − 1)|E(A)|−1+c(A)−|V |
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Disregarding coefficients, all three sums are the same. The second and third sums are

equivalent to the sum over all spanning subgraphs without e since the additional −1 in the

exponent of (y − 1) can be interpreted as deleting e from the subgraphs which contain it.

Since any subgraph without e can be obtained by removing e from another, then this sum

is T (G− e;x, y). Then we have:

T (G;x, y) = T (G− e;x, y) + yT (G− e;x, y)− T (G− e;x, y)

= yT (G− e;x, y)

Case 2: Let e ∈ E(G) be a bridge. Similarly to case 1, we first write:

T (G;x, y) =
∑

A⊆G, e/∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |+
∑

A⊆G, e∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |

= (x−1)
∑

A⊆G, e/∈A

(x−1)c(A)−1−c(G)(y−1)|E(A)|+c(A)−|V |+
∑

A⊆G, e∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |

= x
∑

A⊆Ge/∈A

(x−1)c(A)−1−c(G)(y−1)|E(A)|+c(A)−|V |−1
∑

A⊆G e/∈A

(x−1)c(A)−1−c(G)(y−1)|E(A)|+1+c(A)−|V |

+
∑

A⊆G, e∈A

(x− 1)c(A)−c(G)(y − 1)|E(A)|+c(A)−|V |

All three sums are T (G/e;x, y). In the second line, subtracting 1 from the exponent of

x − 1 is equivalent to identifying the vertices of e: since e is a bridge, spanning subgraphs

which do not contain it must be disconnected (there is no path between the vertices it joins);

thus, when these vertices are identified, the number of connected components of A must
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decrease by one. Then we have:

T (G;x, y) = T (G/e;x, y) + xT (G/e;x, y)− T (G/e;x, y)

= xT (G/e;x, y)

Case 3: Let e ∈ E(G) be an ordinary edge (neither a loop nor a bridge). Then one can write:

T (G;x, y) =
∑

A⊆G, e/∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |+
∑

A⊆G, e∈A

(x−1)c(A)−c(G)(y−1)|E(A)|+c(A)−|V |

= T (G− e;x, y) + T (G/e;x, y)

since the spanning subgraphs of G not containing e are in correspondence with spanning

subgraphs of G − e, and spanning subgraphs of G containing e are in correspondence with

spanning subgraphs of G/e.

The original definition of the Tutte polynomial is as a sum over the spanning trees

of G [Tut54], with exponents quantifying the internal and external activities of a tree T .

These activities are defined in Section 3.2.1. It is easy to see with this original definition

that T (G; 1, 1) is the number of spanning trees of G.

A few other interesting evaluations of the Tutte polynomial:

• T (G; 2, 0) is the number of acyclic orientations of G with no prescribed source.

• T (G; 1, 2) is the number of connected subgraphs.

• T (G; 2, 1) is the number of forests of G.
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Figure 2.7: Using the deletion-contraction recursion formula to compute the Tutte polyno-
mial for the example in Chapter 1. We have that T (G;x, y) = xy2 +2x2y+xy+x2 +2x3 +x4.
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Chapter 3

Combinatorial Bijections of Interest

3.1 The Tree Growing Sequence

3.1.1 Definition and the Main Algorithm

We define the central object of this paper, the tree growing sequence. Let G = (V,E) be a

connected graph and S be the set of all connected subgraphs of G containing q as a vertex.

For each S ∈ S, denote by HS the set of proper subgraphs of S such that HS ⊂ S.

Definition 3.1.1: A tree growing sequence (TGS) is a collection of tuples

Σ = {(S, σS)}S∈S

where σS is a function from HS to the edge set E(S) of S such that σS(T ) /∈ E(T ) and

σS(T ) ∪ T is connected.

The name “tree growing sequence” is used because the graph T will always be a tree in

the application of our algorithm (although it need not be in the above definition). Given

a tree growing sequence Σ and a function f : V (G) − {q} → Z, we apply the following

algorithm to the tuple (f, S, U,X, α, β), where U ⊆ V (G), X ⊆ E(G), and α, β ∈ Z≥0. The

result will be a tree Tf = (U,X) and a monomial xαyβ. Beginning with S = E(G), U = {q},
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X = ∅, α = 0, and β = 0, the edge e = σG({q}) = (v, q) is added to X and v added to U if

f(v) = 0 and u 6= q (e not a loop). Furthermore, when e is a bridge of G, then α is increased

by one. If v = q, so that e is a loop, delete it and increase β by one. If f(v) ≥ 1, the value of

f(v) is reduced by one. The edge e is not added to X, and we equate this with edge deletion

by replacing E(G) with E(G)−e. If it is the case that f(v) < 0, we terminate the algorithm.

Figure 3.1: An example of the data for a TGS.

In subsequent steps, we consider the tuple (f, S, U,X, α, β), where the value of f at some

vertices may have been reduced in previous steps. For each image σS(T ) = e, we assume

that t(e) is a vertex of T . If h(e) is also a vertex of T , then e will be called a loop. The set

23



S = E(G)− {e}D, where the edges {e}D have been deleted. The algorithm is shown below.

Algorithm 3.1.1: Tree Growing Sequence Algorithm (f, S, U,X, α, β)

Input: A graph G = (V,E) with root vertex q, tree growing sequence Σ,

and an integer valued function f on the vertices.

Output: A tree Tf and monomial xαyβ .

Initialization:

S = G,U = {q}, X = ∅
α = 0, β = 0, T = ({q}, ∅)
while σS(T ) is defined

do

if f(σS(T )) < 0

then terminate

else if f(σS(T )) = 0

then



if e = σS(T ) a bridge of S

then



α← α+ 1

X ← X ∪ e
U ← h(e)

S ← S ∪ e
T = (U,X)

else


X ← X ∪ e
U ← h(e)

S ← S ∪ e
T = (U,X)

else if T ∪ e not a tree

then

{
β ← β + 1

S ← S − e

else

{
f(h(e))← f(h(e))− 1

S ← S − e
output (Tf = (U,X), xαyβ)

We illustrate in Figure 3.2 the possibilities for updating the tuple when applying the

algorithm.

Proposition 3.1.2: For any tree growing sequence Σ, applying the TGS algorithm to a

function f : V (G)−{q} → Z will terminate on a spanning tree of G if and only if f ∈ PG,q.

Proof. Fix a root vertex q and f ∈ PG,q. If the algorithm terminates at non-spanning Tf , then

Tf spans S but not G. This implies that V (S) 6= V (G) and we have deleted all edges between

V (S) and U = V (G)−V (S). Then we can find some A ⊆ U such that outdegA(v) ≤ f(v) for

24



(f, S, U,X, α, β) (f, S, U ∪ eh, X ∪ e, α, β)

(f, S, U,X, α, β) (f, S, U ∪ eh, X ∪ e, α + 1, β)

(f, S, U,X, α, β) (f, S − e, U,X, α, β + 1)

(f, S, U,X, α, β) (f, S − e, U,X, α, β)

a

b

c

d

Figure 3.2: Possibilities for updating the tuple.

all v ∈ A. However, this is impossible since f ∈ PG,q. Hence, V (S) = V (G), and T spans G.

Conversely, if h /∈ PG,q, then a tree growing sequence will not terminate on a spanning

tree of G. Let A ⊆ V −{q} be a subset such that all vertices v ∈ A satisfy outdegA(v) ≤ h(v).

It will suffice to let A consist of a single vertex v, because any such subset A can be thought

of as a single vertex with deg(A) =
∑

v∈A outdegA(v). This translates to 0 < deg(v) ≤ h(v)

(excluding loops). Consider the first time that σS(T ) = (v, u), u ∈ V (T ). This will eventually

occur, because σS(T ) is defined as long as T 6= S. The edge (v, u) will be deleted because it

was assumed that deg(v) > 0. Moreover, we reduce h(v) by one. Every time σS′(T ′) = (v, u′),

the edge will be deleted, and h(v) reduced by one. Since deg(v) ≤ h(v), we will eventually

exhaust all edges from A to T . Hence, we will not get a spanning tree by applying Σ to h

(Figure 3.3).

We define the map τ : PG,q → TG to be the assignments f 7→ Tf according to Σ.

Proposition 3.1.3: If f ∈ PG,q, then the above algorithm always produces a monomial xαyβ

in the multisetMG when applied to f .

Proof. Start with α = β = 0. If e = σS(T ) is a bridge of S, then increase α by one. If e is

a loop, meaning f(h(e)) = 0 and T ∪ e has a cycle, then delete it, and increase β by one.

In light of equation (1), we are simply isolating a monomial of T (G;x, y) when computing

it via recursion, and this is the monomial which we associate to f .
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Figure 3.3: The vertex set B = V (G)− V (T )−A. The picture shows what happens when
σS(T ) = e for an edge joining a vertex in A to one in V (T ).

The above proposition is nothing new. However, it is the starting point for a closed formula

for the Tutte polynomial as a sum over PG,q - done by Chang, Ma, and Yeh in [CMY10]

- and serves as inspiration to generalize known algorithmic bijections. Also note that the

set X ⊂ E(S) can be viewed as contracted edges, though technically we do not alter the

structure of the subgraph when adding an edge to X.

3.1.2 The Splitting of PG,q

We change our philosophy from the previous section: instead of taking a single G-parking

function f and producing a spanning tree and monomial, we begin with the set of parking

functions PG,q and perform splitting operations with respect to the deletion/contraction

principle. That is, split the parking functions according to whether the edge e = (h(e), t(e))

is added to X or deleted; see Figure 3.4 for a visual. This splitting will also result in the

bijections τ : PG,q → TG and ρ : PG,q → MG. To this end, we include the proofs of

two lemmas. We use the convention that when an edge e is contracted and h(e), t(e) are

identified, the “thickened” vertex is called t(e). We begin with letting e = (h(e), q) = σG({q})

for an arbitrary TGS Σ = {(S, σS)}.
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Lemma 3.1.4: If l is a loop, then PG,q = PG−l,q.

Proof. Let v be a vertex incident to a loop l. Then outdegreeA,G(v) = outdegreeA,G−l(v) for

any vertex subset containing v.

Lemma 3.1.5: If e is a bridge, then PG,q is in one-to-one correspondence with PG/e,q.

Lemma 3.1.6 [CMY10]: There is a bijection φ between the set of G-parking functions f

with f(h(e)) = 0 and the set of (G/e)-parking functions.

Proof. Define the map φ : PG,q −→ PG/e,q by φ(f)(w) = f(w) for any w ∈ V (G)−{h(e), q}.

Then for a G-parking function f = (f(v1), ..., f(h(e)) = 0, ..., f(vn)),

φ(f) = (f(v1), ..., f̂(h(e)), ..., f(vn)). We claim that

(i) φ(f) is a (G/e)-parking function, and

(ii) φ|f(h(e))=0 is a bijection.

To prove (i), we need to check that for all subsets A in V (G/e)− {q}, there is some v with

outdegA,G/e(v) > φ(f)(v). This is clear, as eh is absorbed by q, so that for any subset

A ⊆ V (G/e)−{q} = V (G)−{h(e), q}, we immediately have that outdegA,G/e(v) = outdegA,G(v).

For (ii), consider g ∈ PG/e. Let f = φ−1(g) = (g(v1), ..., g(vk−1), 0, g(vk+1), ..., g(vn)).

Then f is a G-parking function with f(h(e)) = 0. If h(e) ∈ A ⊆ V (G) − {q}, then

0 = f(eh) < outdegA,G(u), as outdegA,G(u) ≥ 1 (h(e) is a neighbor of q). If eh /∈ A,

then outdegA,G/e(v) = outdegA,G(v) for all v ∈ A, so 0 ≤ f(v) = g(v) < outdegA,G(v) for

some v in every A ⊆ V (G)− {q}, since g is a (G/e)-parking function.

Lemma 3.1.7 [CMY10]: There is a bijection ψ between the set of G-parking functions f

with f(eh) ≥ 1 and the set of (G− e)-parking functions.

Proof. Define the map ψ : PG,q −→ PG−e,q by ψ(f) = (f(v1), ..., f(h(e))− 1, ..., f(vn). Then

(i) ψ(f) is a (G− e)-parking function.
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(ii) ψ|f(h(e))≥1 is a bijection.

For (i), we need to check that there is some v such that ψ(f)(v) < outdegA,G−e(v), for all

subsets A in V (G− e)− {q}. It is obvious that outdegA,G−e(v) = outdegA,G(v) if v 6= e0. If

v = e0, then outdegA,G−e(h(e)) = outdegA,G(h(e))− 1 and ψ(f)(h(e)) = f(h(e))− 1. Then it

is immediate that for any A ⊆ V (G−e)−{q}, we can find some v ∈ A satisfying the condition.

Now, consider g ∈ PG−e. Let f = ψ−1(g) = (g(v1), ..., g(vi−1), g(h(e)) + 1, g(vi+1), ..., g(vn)).

Then f is clearly a G-parking function with f(h(e)) ≥ 1 (we only need to consider subsets A 3

h(e), and both f(h(e)) and outdegreeA(h(e)) increase by 1), giving that ψ is a bijection.

Corollary 3.1.8: For any graph S with fixed root q, there is a bijection between PS,q and

PS/e,q t PS−e,q.

Recall that the map τ : PG,q → TG is the assignment of each G-parking function f to the

spanning tree Tf on which a tree growing sequence Σ terminates, and let ρ : PG,q →MG be

the assignment of a monomial to each f . We will, in general, get different ρ, τ for different

Σ.

Theorem 3.1.9: The maps ρ and τ are bijective.

Proof. It is a well-known fact that the sizes of the three sets PG,q, TG,MG are equal. Hence,

it is enough to show that if f, g ∈ PG,q are not equal, then τ(f) 6= τ(h), and for each

xαyβ ∈MG, there is a unique (up to permuting identical elements) f with ρ(f) = xαyβ.

Fix f 6= h. By Corollary 2.2.3, each splitting produces a bijection between PS,q and

PS/e,q tPS−e,q, where S = G−{e}D according to the edges previously deleted. As we never

contract edges, we view PS/e,q as the set of parking functions such that e = σS(T ) is added

to X. If τ(f) = τ(h), then the same set of edges {e1, . . . , em} is contracted in the paths for

both. However, this implies that either f , h have the same path, which implies f = h; or f

and h split and have the same edges contracted. This is impossible, as there is some e for

which f is in the contraction set, and h is in the deletion set. Therefore, e ∈ Tf , but e /∈ Th,

and τ(f) 6= τ(h).
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The statement that each monomial xαyβ in the multiset MG has a unique preimage

ρ−1(xαyβ) ∈ PG,q up to permuting repeated elements can be proven by splittingMG using

formula (1) in section 3.1.1. If e is neither a bridge nor loop, then MG = MG/e tMG−e;

if e is a loop, then MG = y · MG−e; and if e is a bridge, MG = x · MG/e. Hence, if

e = σS(T ) is a loop or bridge, no splitting occurs. If e is neither, then MG/e corresponds

to PG/e, and MG−e = PG−e. The result of iterating the process until it terminates is that

each f ∈ PG,q is in correspondence with a unique element of MG (again, up to permuting

identical monomials).

σG

σG σG−e

σG σG−e′ σG−e σ(G−e)−e′

l ...
...

...
...

... l

σG σ((G−e)−e′)−l

PG

PG/e PG−e

P(G/e)/e′ P(G/e)−e′ P(G−e)/e′ P(G−e)−e′

l ...
...

...
...

... l

P((G/e)/e′)/b P((G−e)−e′)−l

Figure 3.4: Binary trees illustrating how splitting the parking functions corresponds to the
application of Σ. Here, b means bridge and l means loop. Note that the edges denoted e′

are not necessarily the same on each side of the tree. We can replace P with M and the
splitting looks the same.
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3.2 Comparison of the TGS to Known Algorithms

This section is dedicated to relating tree growing sequences to formerly established bijective

algorithms between the three objects of interest. We focus on Dhar’s algorithm in Section

3.2.1 and the family of bijections described by Chebikin and Pylyavskyy [CP05] in Section

3.2.2. The bijection between G-parking functions and MG given by Chang, Ma, and Yeh

[CMY10] is discussed in Section 3.2.3.

3.2.1 Global Edge Orders and Dhar’s Algorithm

Given a global edge order OE : E(G) → {1, . . . , |E(G)|}, we construct a tree-growing se-

quence ΣOE by defining for all S ⊆ E(G) and subtrees T ⊆ S the image σS(T ) = e

to be the largest available edge which maintains a connected graph at each step. Call

this construction the map R : {OE} → {Σ} from the set of edge orders to the collec-

tion of tree growing sequences. This definition of ΣOE mimics Dhar’s burning algorithm

“with memory”; see, i.e. [BS13], [CB03] for explicit algorithms and proofs of the Dhar

bijection between G-parking functions (also referred to as q-reduced divisors) and span-

ning trees using a total edge order. In the notation for the TGS algorithm, Dhar’s algo-

rithm chooses the edge e = maxOE{(v, u) |u ∈ U, v /∈ U}. The edge e is added to X if

f(v) = |{(v, u) ∈ E(G)− E(S)}|. Thus, the definition of ΣOE is almost the same, except it

may attempt to grow an edge which creates a cycle. Denote DOE(f) the image of f under

Dhar’s algorithm with edge order OE. For a chosen root q, let Σq denote the above TGS

where we start at the root.

Proposition 3.2.1: The map R : OE → Σq commutes with Dhar’s algorithm, for any root q.

Proof. The map R is defined as above. Fix a root q. If q ∈ T ⊆ S, then σS(T ) = e, where

e = maxOE(E(S) − E(T )) and T ∪ e is connected. If h(e) /∈ U, t(e) ∈ U , then the edge

is the same one chosen in Dhar’s algorithm. Furthermore, the edge e is deleted if f(v) ≥ 1

(including after being reduced) which is equivalent to f(v) > |{e ∈ E(S) − X | v ∈ e}|.
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The edge is added to X if precisely f(v) edges incident to v have been deleted. On the

other hand, if h(e), t(e) ∈ U , then e will be deleted. Thus, we do not add this edge to X,

and since such an edge is never considered in Dhar’s algorithm - it is ignored - the diagram

commutes.

{OE} {Σ}

{τ},

R

D
F

Applying Dhar’s algorithm to a G-parking function will also give a bijection withMG via the

notions of internal and external activity of the edges of DOE(f); this is how Tutte originally

defined the polynomial in [Tut54]. An edge e is internally active if it is smallest, according

to OE, in the unique cut-set of (G − T ) ∪ e. Dually, an edge is externally active if it is the

smallest in the unique cycle of T ∪ e′. The Tutte polynomial can be written as a sum over

TG:

T (G;x, y) =
∑
TG

xiayea

with ia and ea denoting the number of internal and external edges, respectively, of the tree

T according to OE. Commutativity of the diagram implies that τ(f) is the same monomial

corresponding to Tf in the above sum. On the other hand, one can ask if the internally

and externally active edges match with the bridges and loops in the tree growing sequence

algorithm.

Proposition 3.2.2: If an edge e ∈ E(G) is internally active for the tree Tf , then it is a

bridge when added to X during application of ΣOE .

Proof. Say e contributes to the exponent α, where τ(f) = xαyβ. Then at some step of

applying ΣOE to f , σS(T ) = e is a bridge of S. Hence, either e is a bridge of G, or there is

a circuit C in S of which e is the smallest among any adjacent edge e′ in G− S - i.e. edges

which have already been deleted in the tree growing process. Then it is the smallest edge in

the unique cocircuit B of (G− Tf ) ∪ e containing e and any e′ as described above.
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Corollary 3.2.3: The following diagram commutes.

{OE} {Σ}

{ρ}

R

K
F

3.2.2 Proper Sets of Tree Orders

In [CP05], a family of bijections between G-parking functions and spanning trees is pro-

duced using an object called a proper set of tree orders, ΠG. Let G = (V,E) be a graph

and choose a labeling of the vertices {v1, . . . , vn}. Given an ordering π(T ) on the vertices of

every subtree T rooted at q, the collection ΠG = {π(T ) |T ⊂ G a rooted tree} is a proper set

of tree orders if and only if the orders are compatible in the obvious way on overlaps (rooted

at q) and a directed edge (u, v) ∈ T means v < u in π(T ). Specifically, the former means

that if the overlap of T and T ′ contains a rooted tree, and i, j are vertices in this overlap,

then i <π(T ) j ⇐⇒ i <π(T ′) j. Let π(T )(q) = 0 for any T . Note that if the trees T and

T ′ differ only by a choice of a set of multi-edges, the orders π(T ) and π(T ′) must be the same.

Figure 3.5: Illustrating one criterion for a proper set of tree orders.

Examples of proper sets of tree orders include tree orders induced by vertex orderings

constructed by breadth-first, depth-first, and vertex adding algorithms. These orders can all

be constructed from the example below.

Example 3.2.4: [CP05] One way to construct ΠG is from a partial order on the set of

(open) paths ending at q. The partial order must satisfy the conditions that paths
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which intersect along another path at q are comparable, and A � A∪ < vk, . . . , v
′
k >.

The partial order � descends to a proper set of tree orders Π�. Given any rooted subtree

t ⊂ G, and distinct vertices v, w ∈ V (T ), the order π�(T ) is determined by the ordering

of the paths from q to v and from q to w. Since these paths intersect along a path

starting at q, they are comparable. However, not every ΠG arises in this manner,

see [CP05].

We define a map Ω : {ΠG} → {Σ}. Fix ΠG. Consider any subgraph S ∈ S, and any rooted

subtree T ⊆ S. Then define σS(T ) = e according to the following:

(i) (a) Take the smallest edge according to π(T ) from every vertex a neighbor of T . Call

this tree T ′.

(b) Let σS(T ) = e be the edge in T ′ such that h(e) is the smallest vertex in V (T ′)−

V (T ) according to π(T ′).

(ii) If there is no edge in S which satisfies (i), let σS(T ) = e′ for the smallest possible edge

e′ induced by π(T ) such that T ∪ e′ is connected.

If no edge satisfies (i) or (ii), σS(T ) is undefined. Again, this happens when T is equal

to the connected component of S containing q.

For example, given π(T ) = {q, . . . , ur} where uj is the j− th vertex in the order, defining

σT as above ensures that we grow T according to the order π(T ). That is,

σT (Tk) = e, Tk = (Vk = {q, u1, . . . , uk}, Ek), e = (uk+1, u) ∈ T, u ∈ Vk}.

Proposition 3.2.5: The map Ω is an injection from the collection of proper sets of tree

orders to the collection of tree growing sequences.

Proof. For each T ⊆ S ⊆ G, there is a unique image σS(T ) = e, when defined. If not, there

are two edges e, e′ satisfying the conditions. This means e, e′ are both minimal according to
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either (i) or (ii), which is impossible. Assembling this data into maps σS and letting σH be

undefined for q /∈ H ⊂ G is precisely the data of a tree growing sequence Σ = {(S, σS)}.

To show injectivity, we must show that if Ω(Πa
G) = Ω(Πb

G), then Πa
G = Πb

G. Suppose

otherwise. Then there is a rooted subtree T ′ ∈ G such that πaG(T ′) 6= πbG(T ′). Assume that

Πa
G and Πb

G differ at the k-th vertex, i.e. uak 6= ubk. Then σaT ′(T ′k−1) 6= σbT ′(T
′
k−1), which implies

that Ω(Πa
G) 6= Ω(Πb

G). Therefore, Ω is injective.

Example 3.2.6: We will borrow an example from [CP05], pp 33-34, where ΠG is the proper

set of tree orders such that i <π(t) j if either dt(q, i) < dt(q, j), or the distances are equal

and i < j in G. Several cases are presented.

In case 1, we have the subtree t of T1 (left) and T2 (right) shown with dotted edges. If

S = G with vertex order given, then we must have σG(t) = (2, 1). If we delete (2, 1),

we have the subgraph S (below G), and σS(t) = (2, 3).

In case 2, consider the subtree t′. We need to know how to grow t′ - if at all - in a given

subgraph. First, let S = G. All spanning trees containing t′ are shown. We can check

that we must define σG(t′) = (2, 1). If we remove (2, 1), the map σS, S = G − (2, 1)

will have image (3, 1) when applied to t′. The graphs to the right of S are maximal

subtrees of S.

One may observe that in light of the definition of σG(T2), the definition of σG(T1) is excess

data, because we would be deleting the edge (2, 1) before growing the edge (2, 3).

However, we want to define σS on all edge subsets S which form a connected subgraph,

whether or not the data will be needed when applying Ω(Π).

The above proposition establishes that any proper set of tree orders can tell us how to proceed

with the TGS algorithm. However, it is desirable to have commutativity of the diagram in

the theorem below. Before the theorem, we describe the bijective map ΦΠ : PG,q → TG, first

given in [CP05]. Fix f ∈ PG,q. Declare p0 = q and T0 = {q}. At each step k, let Tk−1 be the
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Figure 3.6: Some elements of the tree growing sequence Ω(ΠG).

current subtree grown. The next edge to be grown, denoted ek = (pk, v), v ∈ V (Tk), is the

one that satisfies these conditions:

1. There are at least f(pk) + 1 edges from pk to Tk−1,

2. The edge ek is larger than precisely f(pk) of these edges, and

3. The vertex pk is minimal among all vertices with edges satisfying (i), (ii), according to

the order of the tree obtained from Tk−1 by adjoining these edges.

The labels p0, . . . , pn comprise the order π(Tf ), in that p0 <π(T ) · · · <π(T ) pn ( [CP05], Lemma

2.3 ).

Theorem 3.2.7: The following diagram commutes.

{ΠG} {Σ}

{τ}

Ω

Φ
F

Proof. Fix f ∈ PG.q and Π ∈ {ΠG}. It will be shown that Ω(Π)(f) = ΦΠ(f). We will argue

that if an edge is added to X when applying Ω(Π) to f , then it is in ΦΠ(f). Since we know

Tf = (V,X) is spanning by Proposition 2.1.1, this will prove the claim.

Consider the algorithm for constructing ΦΠ(f) = Tn. At step k, let Vk be the vertices

not in Tk−1, Uk ⊆ Vk the vertices adjacent to some vertex in Tk−1, and Wk the set of vertices

satisfying (1). For k = 1, we consider vertices with at least f(v) + 1 edges to q. The edge
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Figure 3.7: Illustration of the algorithm for ΦΠ.

(v, q) satisfying condition (2) will be in E(Tn), for all v ∈ W1. This is because π(T )(q) = 0

for all T , so any edge from v to future vertices in T is larger than (v, q). Hence, when

applying Ω(Π) to f , if σS(T ) = (v, q), it will be added to X. Thus, the first edge to be added

to X when applying Ω(Π) to f will be in E(Tn).

We make a few observations.

• Observation A: For any v ∈ Uk, we know that if e <π(Tk−1) e
′, e and e′ both edges from

v to Tk−1, then e <π(Tk) e
′, and e, e′ <π(Tk) e

′′ = (pk, v), if such an edge exists.

• Observation B: When v ∈ Wk, we know the f(v) edges which the map ΦΠ “ignores”.

That is, the set of smaller edges in condition (2). Call this set Ev.

• Observation C: The edge (v, u) which will eventually connect v to Tk for some k is

determined as soon as v ∈ Wk.

Elaborating on observation C, suppose v ∈ Wk for m ≤ k ≤ m + i; i.e. v is in Wk for the

first time when k = m, and is added to T when k = m + i. Then by observation A, the
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order on the set Ev ∪ em+i is immutable for each of these Wk. In particular, the edges in Ev

are always smaller than em+i. Thus, only condition (3) is not satisfied until k = m + i. At

step m+ i, the edge em+i is smaller than any edge from v to Tm+i that is not in Ev.

Assume by induction that thus far T = (U,X) ⊂ Tn. Then the next edge e = σS(T ) that

is added to X will be in Tn. Indeed, suppose σS(T ) = e is deleted. Then we know e satisfies

(i), (ii), but f(e0) ≥ 1. This is true until σS(T ) = e′ is added to X. The edge e′ is greater

than exactly f(e′0) edges from e0 to T by observation A, and by observations B and C, we

know that e′ must be in E(Tn).

Note that there may be several ways to define a map {ΠG} → {Σ}. However, Ω was

specifically defined so that it is injective.

We observe that the order in which the vertices are added to Tf according to Ω(Π) may

not be the same as the order π(Tf ). An example is shown in Figure 3.8. Let ΠG be the proper

set of tree orders in Example 3.2.5. The top row shows the global order on the vertices. The

middle shows the G-parking functions and their images under ΦΠ. The bottom row is the

order in which the vertices are added when applying Ω(Π) to the corresponding functions.

Nonetheless, the bijection between PG,q and TG is the same.

q v1

v3 v2

f

ΦΠ(f)

(0, 0, 0)

0 1

2 3

(0, 0, 1)

0 1

3 2

(1, 0, 0)

0

1 2

3

Ω(Π)

0 1

2 3

0 1

2 3

0

1 2

3

Figure 3.8: The order in which vertices are added does not match between the maps.
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3.2.3 Process Orders

A bijection between G-parking functions and monomials of the Tutte polynomial that does

not go through spanning trees was constructed by Chang et al [CMY10]. We describe this

bijection and compare it to a tree growing sequence. Fix a total order OV : V → {0, . . . , n}

on the vertices of G. For each f ∈ PG,q, associate a process order πf [KY08]. This is done

recursively as follows:

1. Let πf (0) = v0 = q, and V0 = V (G)− {q}.

2. Let πf (i) = minOV {w ∈ Vi−1 | 0 ≤ f(w) < outdegVi−1
(w)}, where the vertices in

V − Vi−1 have been processed.

3. Increase i by one, and repeat step 2 until all vertices have been processed; i.e. when

i = n− 1.

One can get the process order for f ∈ PG,q from a tree growing sequence. If T does not

span S, define ΣOV by σS(T ) = (v, u), such that v = minOV {w ∈ V (S) − V (T )}, and u is

the smallest neighbor of v in T . If T spans S, then define σS(T ) to be the smallest edge

according to the lexicographic order induced by OV . Apply Σ to any f . When the i-th edge

is added to X = E(T ), identify Vi+1 with the vertices in V − V (T ). If σS(T ) = (v, u) is the

edge added to X, then πf (|X|) = v. Thus, v will be added to V (T ) when at least f(v) edges

from v to T have been deleted and it is the minimum among all such candidate vertices,

which is exactly statement 2 above.

Denote K = {u ∈ V (G) | π−1(v) ≤ π−1(u)}. This leads to the definition of a critical

bridge vertex of f .

Definition 3.2.8: A critical bridge vertex v of the parking function f with πf (i) = v is

one for which outdegK(v) = f(v) + 1 in G (criticality), and for every parking function h

satisfying: g(πh(j)) = f(πf (j)), with πh(j) = πf (j) for j < i; h(v) ≥ f(v); and πh(i) ≥OV v;

we have, in fact, that πh(i) =OV v.
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The last inequality says that there is no vertex strictly greater than v according to OV which

is processed at the same step as v for some other G-parking function h. Let cbG(f) be the

number of critical bridge vertices of f , and wG(f) = |E| − |V |+ 1−
∑

v∈V−{q} f(v).

Theorem 3.2.9 [CMY10]: The Tutte polynomial of G with fixed root q can be expressed

as the following closed formula:

T (G;x, y) =
∑

f∈PG,q

xcbG(f)ywG(f)

Any tree growing sequence can be viewed as a way to write such a closed formula from the

bijection ρ : PG,q → MG. Simply say T (G;x, y) =
∑

f∈PG,q ρ(f). However, any bijection

comes with another bijection τ : PG,q → TG. We think that the above theorem secretly

constructs a spanning tree and can be obtained via some tree growing sequence Σ. Specif-

ically, the tree growing sequence ΣOV defined above is the most likely candidate, and our

conjecture has evidence through several calculations. However, we have not translated the

constructions in [CMY10] to our language of tree growing sequences, and at this point we

cannot verify the conjecture.
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Chapter 4

Tutte Polynomial of a Zonotopal Tiling

4.1 Zonotopes

4.1.1 Zonotopal Tilings

In the same spirit as the tree growing sequence algorithm, we describe a splitting algorithm

which can be used to obtain the Tutte polynomial for a cubical tiling of a zonotope. Let M

be an n-dimensional vector space, N = M∨, and <,> the pairing of N with M (viewed as

the standard inner product on Rn).

Definition 4.1.1: A zonotope is the image of a d-dimensional cube Qd = [0, 1]d under an

affine projection. Equivalently, it is a Minkowski sum

Z = {a1v1 + · · ·+ advd | 0 ≤ ai ≤ 1, vi ∈M ∼= Rn}.

We say that the set X = {v1, . . . , vd} generates Z.

We now discuss zonotopal tilings, where many of the details can be found in [PDC10],

[RGZ93], and [Zie95].

Definition 4.1.2: A parallelotope is a zonotope generated by vectors which form a basis

of M ∼= Rn.
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Definition 4.1.3: A cubical zonotopal tiling Z of Z is a polyhedral complex comprised

of a finite number of zonotopes {Zi} such that the maximal dimensional zonotopes - called

tiles - are parallelotopes, and
⋃
i Zi = Z.

Let Z be generated by {v1, . . . , vd}, and let {Ej} be the equivalence classes of edges of

a tiling Z, where an equivalence class is generated by the edges which are opposite a 2-

dimensional face of Z. Pick a representative wj of each Ej. Each wj is parallel to a vector in

the generating set {v1, . . . , vd}. As a result, we break each vi in to a finite number of vectors

w
(i)
1 = k

(i)
1 vi, w

(i)
2 = k

(i)
2 vi, . . . , w

(i)
l = kil(i)vi, such that k(i)

j > 0,
∑
k

(i)
j = 1, and

∑
j w

(i)
j = vi.

Then we can associate to Z the vector configuration VZ containing the vectors {w(i)
j } for all

1 ≤ i ≤ d.

Definition 4.1.4: Let E be an equivalence class of edges as above with representative w. A

zone Bw of a zonotope Z is the set of tiles which contain an edge in E . Two zones Bw, Bw′

are parallel if w′ is parallel to w.

Each zone Bw has a positive side Zw,+ and negative side Zw,− according to the direction of

the vector w. An example is shown below in Figure 7.

Fix a cubical tiling Z of Z. We compute a polynomial T ∗(Z;x, y) using a splitting algo-

rithm which assigns a monomial to each tile of Z, and T ∗(Z;x, y) is the sum of these mono-

mials. We will be performing two operations - called shrinking and projection in [RGZ93] -

which will split the set of tiles into two disjoint sets at each step.

Definition 4.1.5: Delete the zone Bw and glue the positive and negative sides (see fig-

ure 4.1) of Bw along Bw ∩Z+
w and Bw ∩Z−w . Denote the result of this operation Z −Bw the

shrinking of Z with respect to Bw. Explicitly, since w is parallel to kvi for some 0 < k ≤ 1,

we can write this zonotope as

Z −Bw = {a1v1 + · · ·+ ai(1− k)vi + . . . anvn | 0 ≤ ai ≤ 1}.
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The tiling of Z −Bw is as before. The associated vector configuration is VZ − {w}.

Definition 4.1.6: Define Pw : M → M/(R · w). Let Z|Bw = Pw(Bw) be the projection

of the zone Bw. The tiles of Z|Bw are {Pw(Zi) | Zi a tile of Bw}. The associated vector

configuration is (VZ − {w})/(R · w).

Figure 4.1: Shrinking.

Note that there is a description of Z in terms of Z − Bw and Z|Bw in [PDC10]. Our

description is essentially the same, except we keep track of the tilings at each step. The

decomposition

Z = (Z −Bw) ∪Bw

tells us that the set of tiles of Z splits into the tiles of Z −Bw and tiles of Z|Bw.

Start with the tuple (Z, α, β), where initially α = 0, and β = 0. The monomials will be

xαyβ where the exponent values will change according to the algorithm. Choose a belt Bw,

and apply the shrinking and projection operations. This results in two tuples (Z−Bw, 0, 0)

and (Z|Bw, γ, 0) associated to the resulting zonotopes, where γ is the number of zones parallel

to Bw. If Z − Bw and Z|Bw are zonotopes with the same tiling (i.e. they are equivalent

zonotopes), we get a single tuple (Z − Bw, 0, 1). Similar to the TGS algorithm, we repeat

the operations for each new zonotope created. When the zonotope has been reduced to a

collection of points with assigned tuples (•, α, β), define T ∗(Z;x, y) to be the polynomial

obtained by summing the monomials xαyβ. If we follow the path according to the splitting

from each tile of Z to a point, we can associate a monomial to each tile. Thus, we can write
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Figure 4.2: Projection with respect to w.

the closed formula

T ∗(Z;x, y) =
∑

tiles ofZ

xαyβ

Written in parallel to the deletion/restriction definition of the Tutte polynomial, and

defining T ∗(•;x, y) = 1, the algorithm gives us the recursive formula:

T ∗(Z;x, y) =


yT ∗(Z −Bw;x, y) Z −Bw

∼= Z|Bw

xγT ∗(Z|Bw;x, y) + T ∗(Z −Bw;x, y) otherwise
(4.1)

Observation: The exponent γ can be expressed in terms of vector configurations as

γ = |VZ | − |(VZ − {w})/{w}|,

the number of 0-vectors resulting from the projection operation. We will ‘ignore’ these 0-

vectors after projection, and can think of removing them from the configuration.

Example 4.1.7: The zonotope generated by the vectors v1 = (2, 0), v2 = (0, 1.5),

v3 = (1, 1) ∈ M ∼= R2 is a hexagon. Let VZ = {1
2
v1,

1
2
v1,

1
2
v2,

1
2
v2, v3} be the vector configu-

ration arising from the cubical zonotopal tiling Z shown below.
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The splitting algorithm for Z is shown in Figure 4.3, where in the first step the belt Bw is

chosen, where w is the first 1
2
v1 in the list. A colored zone means we are shrinking/projecting

along that zone. A southwest arrow indicates projection, a southeast arrow indicates shrink-

ing, and a south arrow represents when both are equivalent. Each intermediate zonotope

Zk is tiled and the tiles labeled by the corresponding monomials of T ∗(Zk;x, y). The arrows

are labeled according to where we multiply T ∗(Zk;x, y) by xγ or y in the algorithm. The

polynomial is T ∗(Z;x, y) = x3 + 2x2 + x + 2xy + y + y2, which is the Tutte polynomial for

the graph K4 − {edge}.

We now recall a few notions related to matroids from chapter 2.5.

Definition 4.1.8: The rank function of a matroid M = (E, I) is

r : 2E → Z>0

r(A) = max
I⊆A,I∈I

|I|

Definition 4.1.9: The dual matroid M∗ is the pair (E, I∗), where a set J ∈ I∗ is

independent in M∗ if and only if E− J contains a basis of M . The rank function is r∗(A) =

|A| − r(E) + r(E − A) is the dual rank function.

Definition 4.1.10: The Tutte polynomial of a matroid is defined as

T (M ;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A) (4.2)

If M∗ is the matroid dual, then T (M∗; y, x) = T (M ;x, y). Evaluating T (M ; 2, 2) gives the

number of bases of M .
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Example 4.1.11: If G = (V,E) is a connected graph, we can define the cographical matroid

to be the matroid with ground set E and bases B = {b = E − E(T ) |T a spanning tree}.

Hence, its rank is the genus g = |E| − |V | + 1. More thorough expositions on matroids

and their duals can be found in the original paper by Whitney [Whi35], and lectures by

Tutte [Tut65].

Let w : E(G) → R>0 be a function assigning length one to every edge of G, so that

each edge can be identified to a unit interval. The zonotope Z(G) is the projection of the

cube [0, 1]|E(G)| along the lattice of bonds (minimal cut-sets), which are the circuits of the

cographical matroid. The dimension of Z(G) is g. Choose a tiling so that the representatives

w correspond to the edges of G. Then every tile corresponds to an element b ∈ B, the

complement of a spanning tree. Hence, each tile corresponds to a unique spanning tree,

and we get that any zone Bw is the set of tiles associated to spanning trees which do not

contain the edge corresponding to w. Let W be a matroid with ground set the list of

vectors W = {w1, . . . , wd} spanning the vector space U = RW , and with independent sets

I = {X |W − X is a linearly independent set}. Define W1 = W − {u} and W2 = W1/u.

Then the Tutte polynomial of W satisfies

T (W ;x, y) =


xT (W1;x, y) w is a coloop (w = 0)

yT (W2;x, y) U = RW1 ⊕ R · w (w is a loop)

T (W1;x, y) + T (W2;x, y) U = RU1, w 6= 0

(4.3)

The formula reduces to computing the Tutte polynomial of lists of vectors V (i) = V
(i)

0 tV
(i)

1 ,

where V (i)
0 is a list of k linearly independent vectors and V (i)

0 is a list of h zero vectors; for such

lists, T (V (i);x, y) = xhyk. The bases of W are complements of subsets which form a basis

for U . See [Moc09], for example, for a treatment of the Tutte polynomial and a multiplicity

polynomial for a vector configurations, as well as a discussion of how these polynomials give

information about the associated zonotopes.
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Observation: Given a zonotopal tiling Z, the bases of the matroid W with ground set VZ

described above are in bijection with the tiles, since each tile has edges which form a basis

for U = RVZ . We will denote this matroid by V ∗Z .

Theorem 4.1.12: Fix a cubical zonotopal tiling Z of Z with associated vector configuration

VZ . Then T ∗(Z;x, y) is the Tutte polynomial T (V ∗Z ;x, y).

Proof. Suppose we compute the Tutte polynomial T (V ∗Z ;x, y) and the polynomial T ∗(Z;x, y)

simultaneously, where the choice of w at each step is a nonzero vector. If any 0-vectors are

created, we choose to remove them immediately from the list. The algorithm for computing

T ∗(Z;x, y) gives a bijection

{Tiles of Z} ↔ {monomials}.

Hence, both polynomials have the same number of monomials. Moreover, the operations of

deletion and restriction applied to VZ with respect to w yield precisely the vector configura-

tions associated to the tilings of Z −Bw and Z|Bw, respectively.

Inductively, let Y be a zonotope with tiling Y that is created at some step of the algorithm

with assoicated vector configuration VY . Choose w 6= 0 ∈ VY . We check that the recursion

formulas for the polynomials are the same in all cases.

If Y − Bw
∼= Y |Bw, then T ∗(Y ;x, y) = yT ∗(Y − Bw;x, y) = yT ∗(Y|Bw;x, y). This

occurs when Y is a prism of height w, so the vector w is a loop of V ∗Y . Then T (V ∗Y ;x, y) =

yT (V ∗Y − {w};x, y).

If we project Y with respect to w, we multiply T ∗(Z|Bw;x, y) by xγ, where γ is the

number of belts parallel to Bw. Recall that this represents throwing out all 0-vectors created

by projection. Thus, the integer γ is the number of coloops in VY/{w}, and subsequently

contracting all of them gives T (V ∗Y/{w};x, y) = xγT (V ∗Y/{w, 0, . . . , 0};x, y).

If we shrink Y with respect to w, and w is not a coloop of W , then the tiles of Y − Bw

have the same monomials associated to them as in Y .
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Hence, T ∗(Y ;x, y) = xγT ∗(Y|Bw;x, y)+T ∗(Y−Bw;x, y) = xγT (V ∗Y/{w, 0, . . . , 0};x, y)+

T (V ∗Z − {w};x, y). This proves that T ∗(Z;x, y) = T (V ∗Z ;x, y).

Remarks:

1. If a zonotope Z is a prism of height w, then it is a Minkowski sum Z = Z ′ +w, where

w orthogonal to Z ′; thus, Z −Bw
∼= Z|Bw. The converse is also true.

2. The bijection between tiles and monomials is dependent on the order in which we

choose e. Indeed, if we have the zonotope Z where Z is a segment with two tiles e1, e2,

then choosing e1 first will assign x to e1 and y to e2. Hence, we can switch the order

and get the other possible assignment.

4.1.2 Tiles of a Zonotope and G-parking Functions

We now relate the set of G-parking functions to integer points in the cographical zonotope

Z(G). We start with a discussion for which [BLHN97] and [Big99] are used as primary

references.

Fix an arbitrary orientation on the edges of G, and write an edge as an ordered tuple

e = (eh, et). Let C0(G;R) ∼= R|V ((G)| and C1(G;R) ∼= R|E(G)| be the vector spaces of finite

R-linear combinations of the vertices and edges of G, respectively, called the 0-chains and

1-chains. We have that Div(G) = C0(G;Z). There is a standard inner product on C1(G;R)

given by <
∑
aee,

∑
bee >=

∑
aebe.

Consider the map

C1 C0
d

where d(
∑

e aee) =
∑

e ae(et − eh) is the usual differential. Hence, d(C1(G;Z)) = Div0(G),

as the image is generated by d(e) = et − eh. Denote the 1-cycles by Z1
∼= H1(G;R). Note

that Z1 is isomorphic to Rg, where g = |E|− |V |+1. Its orthogonal complement in C1(G;R)

is generated by the cuts bv. Let Λ = Z1 ∩ C1(G;Z) ∼= H1(G;Z). We call Λ the lattice of

integral cycles.
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Let P be the orthogonal projection below.

C1(G;R) Z1 ⊃ ΛP

We now define the Jacobian of the graph again, this time using the language of 1-chains.

Definition 4.1.13: The Jacobian of G is the finite group

J(G) =
P (C1(G;Z))

Λ
.

The group operation is addition modulo Λ.

We map Div0(G) into the real torus Z1/Λ ∼= H1(G;R)/H1(G;Z) ∼= Rg/Zg as follows.

Choose a path pi - viewed as an element of C1(G;Z) - from the root q to each vertex vi, and

lift f =
∑
aivi to d−1(f) =

∑
i aipi ∈ C1(G;Z). Then apply the orthogonal projection P ,

and take the image modulo Λ.

We get a map

A : Div0(G)→ Z1/Λ

f 7→ P (d−1(f))(modΛ)

This map is a discrete analog of the Abel-Jacobi map originating from complex algebraic

geometry. The image is the Jacobian J(G). It is well-defined, as choosing another path p′i

from q to some vi and lifting f will result in a shift by an element in Λ (that is, pi− p′i ∈ Λ).

Furthermore, if two divisors are linearly equivalent, they are sent to the same point. To see

this, observe that linearly equivalent divisors differ by a cut. This leads to the proof of the

Abel-Jacobi theorem.

Theorem 4.1.14 (Abel-Jacobi) [BLHN97], [BN06]: The Abel-Jacobi map induces a

group isomorphism between Pic0(G) and J(G).

Corollary 4.1.15: The real torus Z1/Λ contains |PG,q| integral points.

Hence, a fundamental domain for Z1/Λ contains |PG,q| integral points. In fact, the closure

of a fundamental domain can be identified with the cographical zonotope Z(G), and we can
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tile Z(G) as described in Example 4.1.2 of section 4.1.1 (see [ABKS14] for details). We

also get the correspondence between spanning trees and tiles. Choose a generic fundamental

domain Z(G) in Z1. The genericity means that integral points will not be vertices of the

zonotope, but will lie in the interior of the parallelotopes of the tiling, so that there is precisely

one integral point in each tile. Thus, we get a bijection between G-parking functions and

tiles of Z(G).

We end with a question which ties together the bijections discussed in this paper. These

bijections depend on several choices. There is the choice of a root q for G, which determines

the set PG,q. There are possibly several ways to tile the zonotope Z(G) to obtain the

bijection between spanning trees and tiles. We have the choice of fundamental domain.

There is also the choice of the order in which the algorithm for computing T ∗(Z;x, y) is

applied. Additionally, we have a choice of a tree growing sequence Σ from which we get

the bijective maps ρ and τ . In light of Theorem 3.1.1, the TGS may contain an underlying

choice such as a total order on the edges. Thus, we state the following:

Question: Are there choices which are compatible in that they make the diagram below

commute?

PG,q

MG {Tiles of Z(G)}

TG

The map TG → MG is given by a total edge order OE from which we read off internal

and external activities. The maps from PG,q toMG and TG are the bijections ρ and τ arising

from a tree growing sequence Σ. We have double-headed arrows for where there are known

invertible algorithms.
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Theorem 4.1.16: The lower triangle is commutative.

Proof. Fix a tiling Z of Z(G) and a correspondence between edges of G and elements of VZ ,

which produces the correspondence between tiles and spanning trees. Compute T ∗(Z;x, y),

but keep track of additional data. For every edge e ∈ E(G), let z(e) be the number of times

e is a coloop (parallel to the element w chosen) or a loop. Let ei < ej if z(ei) > z(ej). If

z(ei) = z(ej), arbitrarily choose which is larger. The resulting total order ei1 < · · · < eim

induces a bijection from TG to MG via external/internal activities, and will match the

bijection induced by the zonotope algorithm. In other words, we are determining how active

an edge is through this count. As a general rule, the earlier an edge is chosen in a path, the

less active it will be, and the higher it is in the total order.
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Figure 4.3: T ∗(Z;x, y) = x3 + 2x2 + x+ 2xy + y + y2
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Chapter 5

Appendix A: Divisor Theory of Metric

Graphs

A (compact) metric graph is a compact and connected metric space such that every point

p ∈ Γ has a neighborhood isometric to a star-shaped set. A discrete graph G gives rise to

a metric graph Γ by assigning lengths to the edges of G, and viewing 2-valent vertices as

interior points. We call G a model for Γ.

Figure 5.1: A graph G on the left with 2-valent vertices. It is a model for the metric graph
on the right (where it is assumed that unlabeled corresponding edges in the graphs have the
same length.

There is a one-to-one correspondence between compact tropical curves and metric graphs,

and it is convenient to view tropical curves in this way. Connected metric graphs Γ1,Γ2 are

equivalent as tropical curves if after removing 1-valent vertices and the edges adjacent to

them, and treating 2-valent vertices as interior points of edges, they are the same metric
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graph. When a tropical curve is viewed as a metric graph Γ, the genus is the first Betti

number g = b1(Γ). The metric theory is established, and many of the below results found,

in [MZ08].

Classically, the Abel-Jacobi map embeds an algebraic curve C in a complex torus, called

the Jacobian of C, by fixing a basepoint p0 and sending a point in C to the vector obtained

by integrating each basis element in H0(C,Ω) over the path from p0 to p. The coordinate

free definition is

J(C) = (H0(C,Ω))∗/H1(C,Z).

This map extends to divisors on C. The definition is analogous for a metric graph, though

it is common to use the canonical identification Jac(Γ) = H1(Γ,R)/H1(Γ,Z). There is no

difference with the definition of a divisor in the previous section. There is a tropical analog

to the Abel-Jacobi map. Fix Γ. Denote by Divk(Γ) the group of divisors of degree k. There

is an equivalence relation ∼ of the group of divisors via principal divisors, as in the discrete

case.

Definition 5.1: A principal divisor D on Γ is one which comes from a continous, piece-wise

linear function f on Γ with integer slopes (i.e. a tropical rational function). Then D is given

by ∆(f), where ∆ is the Laplacian operator. With this definition, we see that

∆(f) =
∑
p∈C

∑
i

(
∂f

∂ξi
(p)

)
· p

where ξi is an outward primitive tangent vector of f at p, one for each edge emanating from

p. Moreover, a tropical curve is a balanced polyhedral complex, so that deg(∆(f)) = 0.

As before, the Picard group is defined as Pic(Γ) = Div(Γ)/(D ∼ 0). One manifestation of

the Abel-Jacobi Theorem is that the Abel-Jacobi map factors through this equivalence, and

φ is a bijection. Furthermore, it is an isomorphism for k = 0, and we have Jac(Γ) = Pic0(Γ).

Both the Picard group and the Jacobian of a metric graph are real tori.

If we fix a basepoint q ∈ Γ, then φ is given by translation by −k ·q, and it is easy to check
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Divk(Γ) Pick(Γ)

J(Γ)

∼

µ
φ

that this is well-defined on equivalence classes. It is a fact ( [BN06], [MZ08]) that there is

a unique q-reduced representative in each linear equivalence class of divisors. A q-reduced

divisor f is one such that, for every closed, connected subset B ⊆ Γ − {q}, there is some

p ∈ B such that 0 ≤ f(p) < outdegB(p), and f is effective outside of q. If we fix a model

G = (V,E) for Γ, with q a vertex of G, and replace the subsets B with U ⊆ V (G) − {q},

a q-reduced divisor is a G-parking function. It is standard to set f(q) = −1. Returning to

the language of chip-firing games and critical configurations, a q-reduced divisor is stable -

we cannot chip-fire from any vertex without losing effectiveness outside of q.

The Jacobian J(C) of a complex algebraic curve C of genus g is an object which is

constructed by integrating abelian differentials H0(C,Ω1) over 1-cycles H1(C,Z). We have

the coordinate free definition J(C) = H0(C,Ω1)∗/H1(C,Z). One can also choose a canonical

basis {γ1, ..., γ2g} of H1(C,Z) and with respect to this a normalized basis {ω1, ...ωg} of

H0(C,Z). Then vectors (
∫
γi
ω1, ...,

∫
γi
ωg)

T generate a lattice Λ in Cg, and the Jacobian

is then defined as J(C) = Cg/Λ, a complex torus.

The curve C is mapped to J(C) by fixing a base point p0 and sending every p ∈ C to

the point (
∫ p
p0
ω1, ...,

∫ p
p0
ωg) modulo Λ in J(C). Then, we can naturally extend the map to

the group of divisors of degree 0 on C, yielding D =
∑
pi −

∑
qi 7→ (

∑∫ qi
pi
ω1, ...,

∫ qi
pi
ωg).

Via the divisor-line bundle correspondence, we get the induced map Pic0(C)→ J(C). The

Abel-Jacobi Theorem states that this map is an isomorphism. A great reference for these

results is Griffiths-Harris’ Principles of Algebraic Geometry [GH78].
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Chapter 6

Appendix B: The Chromatic Polynomial

A corollary of the Theorem 2.5.1 in section 2.6 introduces more general T −G invariants:

Corollary 6.1: (cite Oxley and Welsh) Let F be a field and σ, τ be non-zero elements

of G. Then there is a unique function T ′ from G into F [x, y] such that

1. If b is a bridge of G, T ′(b;x, y) = x. If l is a loop of G, T ′(l;x, y) = y.

2. If e ∈ E(G) is neither a loop nor a bridge, then

T ′(G;x, y) = σT ′(G− e;x, y) + τT ′(G/e;x, y).

3. If e is loop or bridge, then

T ′(G;x, y) = T ′(e;x, y)T ′(M − e;x, y)

Moreover,

T ′(G;x, y) = σ|E|−r|E|τ r(E) · T (G;
x

τ
,
y

σ
).

The chromatic polynomial is a generalized T −G invariant for σ = 1 and τ = −1. This

polynomial counts the number of proper vertex k-colorings of G. It was this polynomial that
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Tutte originally had in mind when he defined his namesake polynomial.

Definition 6.2: Let G be a graph and k ≥ 1. A proper vertex k-coloring of G is a

function κ : V (G) → {1, . . . , k} such that if (a, b) ∈ E(G), then κ(a) 6= κ(b). A graph for

which k-coloring exists is called k-colorable.

1

2

3

1 2

1

2

3

2

Figure 6.1: A proper vertex 3-coloring.

Definition 6.3: Let χG(k) be the number of k-colorings of a graph G = (V,E). The number

is a polynomial in k, and is called the chromatic polynomial of G.

If the operation of contraction is slightly changed so that any multi-edges created are deleted

(as these do not affect the rules for a k-coloring), then the chromatic polynomial satisfies

the simple recursion

χG(k) = χG−e(k)− χG/e(k)

If G has m connected components, then

χG(k) = km(−1)|V (G)|−mT (G; 1− k, 0)

Recall that χG(k) also satisfies the recursion formula

χG(k) = χG−e(k)− χG/e(k).

See Figure 6.2 for an example.
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Figure 6.2: Computation of pG(k) for the graph shown. Notice that we delete loops and
any multiple edges at each step. We pair deletion with a + and contraction with a −.
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