/ ACCESS RIGHTS FOR

INTELLIGENT DATA OBJECTS/

By

Sandra Kay Bishop

B.S., Illinois State University, 1978

A MASTER”S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

Kansas State University
Manhattan, Xansas

1986

Approve

Major ProYfessor

LD |
a;‘f A1120L 749700
1486

257 Acknowledgements

o &

I would like to dedicate this work in memory of my mother, Agnes
Bishop, whose unconditional love and encouragement I will always
remember and cherish. I would also like to thank my husband, Dave
Vancura, for without his love and understanding this certainly
would not have bteen possible. Very special thanks go to Dr.
Elizabeth Unger for her many long hours spent reviewing this paper
and giving suggestions for its enhancement. Her guidance in this

project is greatly appreciated.

CONTENTS

Chapter 1. Introduction........ R IREEE TEiTiE. Tl T vaeeea

Tl ONEEV T BN em ¢ & ¥ 3 50w & & & 5 waess § 5 5 e Py G E SRR AR G E e

1.2 The Intelligent Data Object........ Y

1.3 Current Work in Automated Form Systems.........c.coc.. ‘o
154 Specific Problefi s vs s suims s ovmassssn eitEl YT
Chapter 2. Requirements.....cevevivrnsunnsnan ws % & W Y 6 ey
2.1 General Requirements......... § % uan FERAEEEE N
2.2 Specific Regquirements........ o B WS ¥V S BT B E 3 SRR B § B BN T
Chapter 3. Design........... N [P —— € n e e e TR
3.1 Design Modules...... T8 BT U RS RS R NS E 1 e B mabuee .
3.2 Design StructuUresS......cooen. P § E ¥ SIS U ¥ SR ¥

3.3 Control Flow Within and External £o ID0...iiueeereronnn

Chapter 4. Implementation.....cocseeovessstonceaconans e
%.1 Access to Form OperationS .y eseseeus s wmws sy wwmasss s o
4,2 Access to Fields of the Form....iiivrrernrennnnerennens -

15

19

19

23

29

29

35

39

44

44

33

4.3 Form Definition Language.....

4,4 Assumptions and General Comments..........

Chapter 5, Conclusions and Extensions........

Bibliographyecseoaanue

- 1i -

LR S A R I B B B)

53

53

55

58

Figure
Figu#e
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

1-1.

2-1.

LIST OF FIGURES

Requirements of an Office Modeling System........ 7

Advantages of Form Based Systems.......

Units of the ID0:essassmedesss aiisie e i

Office Needs for Form Operations........

User Groups and Their Members..........

e s e ee. 14
cheraaena. 16
I T
N E o m sm 27

Intelligent Data Object and its Interactions..... 30

Access Rights Specification for Form

OPETationSeeiisswnass pavmesssimosss 46

~
iEEE manE . 2

Access Rights Specificaticn for Form Fields...... 32

Form Operations Allowed in Form Type

PROJTRACK. it venasis i inrrrarnnnsannons

Figure

Figure

Figure

Figure

3-6.

3-7.

3-9.

Figure 3-10.

Figure 3-11.

Figure

Figure

Figure

Figure

Figure

4-1.

4-3.

44,

4-5.

Access Rights Specification for the Project

TEECKINE FOLM: 55 ames s 5 Luma s & 3 5050 4§ 5 5 4004003 & ceere 36

Security Matrix for Project Tracking Form

Operaticns......... v x x o b v e e e e e —— 37

Valid User List for Project Tracking Form........ 38

Access Right Specification for Form Fields....... 38

Security Matrix for Project Tracking Form

PLeldS cu ey v i s v v s & o & & o ST § R § ¢ 8 et ¢ 8 39

Flow of a Project Tracking Form Operation........ &1

Original QOPLIST Structure of AC ops.h.iceciirrcaias 45

Modified OPLIST Structure of AC ops.h............ &6

Original ACFRMOPS Structure of AC ops.h.......... 47
Modified ACFRMOPS Structure of AC_ops.h.......... 47
Original ACGRPOP Structure of AC_group.h......... 48

- iV -

Figure 4-6.

Figure 4-7,

Modified ACGRPOP Structure of AC _group.h

Command to Attempt Execution of a Form

ODBERL LOM:6.49 5 & nosnesrn § 5w wnecmusi 6 60 mostun § 3 o woe

50

Chapter.!. Introduction
1.1 Overview

This paper deals with the general system design for a prototype
system which implements the concept of an intelligent data object
(IDO). An intelligent data object is loosely defined as an instance
of an intelligent abstract data type. More specifically, an IDO is
an object that has the capacity to make decisions about the next
action to take place using a built-in decision making capability
and external data it can query. In this work the IDC will be used
to describe an office information form. The specification of access

rights for use of the IDO is the subject ocf this project.
1.2 The Intelligent Data Object

The intelligent abstract data type, or IDO, extends the set of
operations to those defined from a class which may cause =z
"triggered" action, retrievals from an external source and routing
information within a potentially distributed svstem. Thus, this
intelligence is extended to include routing and a history of
routing and processing. This intelligence "resides" within the

object instance itself.

The IDO has the following components:

1. Form structure or the textual information to be displayed to
assist the user in filling in the form and to allow creation
of a facsimile of the form on paper in a rather conventional

style.

2. Definition oL tvpes of the f£ields and cther attributes of the
fields; for instance, a date field may be defined and the
system should thus provide integrity checking to assure that
a number acceptable as a date is inserted into that field. Inm
addition, other constraints such as the restriction that this
date be greater than another date may also be supplied in

this definitiona’. ccmponent.

3. Operations and retrievals have to be defined in some

"language'. These operations come in three classes.
¢ fcrm operations, e.g., edit, copy, mail, file.

e data operations, e.g., database retrievais, arithmetic

operations, access right specifications.

e specification of pre- and post- conditions to be
satisfied before the field is fiiled and after it is

£
z

illed.
4, routirg instructions.

5. form processing instructions. {(e.g., form creation and

modification)

6. form instance history and '"task control block", i.e., local

storage and instruction pointers.

In a2 typical non-automated office environment, a form is a printed

or typed document with blank spaces for insertion of required or

requested information. An electronic form is the computer
equivaleﬂt of a paper form. Although an electronic form does not
necessarily have intelligence, we are considering the electronic
form to be an intelligent data object. Fields in electronic forms
are much mecre powerful-than those of paper forms, e.g., they can
cause initiation of actions such as integrity checking. Electronic

forms offer capabilities not found in paper forms, e.g.,

calculation of field values from other values.
The IDO supports the following concepts:

e Abstraction

e Tracing of forms

e Security of a form or parts of a form

e Routing of forms

The IDO helps to ease the transition from manual office systems
usually based on paper forms to automated office svstems based on
electronic forms by minimizing the changes experienced by office
personnel. The electronic form retains many properties of paper

forms.

Fields of the form (paper or electronic) appear as the blank spaces
where required or requested information is to be inserted. In
paper forms, fields can be filled with any information regardless

of its correctness; checking of data is dene at some later stage

when someone formally or informally reviews the form. Electronic
forms can check the appropriateness or accuracy of the information

automatically and immediately.

An electronic form actually consists of a form definition or form
type, along with an instance of the form. An electronic form may be
interpreted as representing a view of the office automation svstem
database. The display part of a form definition indicates how an
instance of the form (view of the database) is to be displayed, the
field types and the constraints associated with them ensure
validation of the input data, and interaction with forms by

authorized users is enforced by the access rights.

Associated with each form instance is a unigue identifier that will
be used to trace the form. Copying a form will involve generating a

new identification number and copying the form data.
1.3 Current Work in Automated Form Systems

Several people have authored articles describing work relevant to
the definition and design of intelligent form based svstems. The
perspectives include work in the study of abstract data types [20]

[21] cffice modeling systems [3] [19] [6] and form based systems

(7] {297,

1.3.1 Abstract Data Iypes The abstract data type provides a model
to follow for the definition of an IDO. In fact the IDO is based

directly on the concept of abstract data type. An abstract data

type defines a class of abstract objects which is completely
characterizeﬁ by the operations which may be performed on those
objects [20]. This means that an abstract data type can be defined
by defining the characterizing operations for that type.
Programming methodology identifies data abstraction as a group of
related functions or operations that act upon a particular class of
objects, with the constraint that the behavior of the objects can

be observed only by applications of the operations [21].

The concept of an abstract data type provides data abstraction in a
form most useful to the user (programmer); as one need only be
aware of the behavior of an abstract object, which is precisely the
information needed to write the program, and irrelevant details
about how the object is represented in storage and how the
operations are implemented, are hidden. Once a type of IDO has

been defined, instances of it can be created (instantiated).

Values of a specific IDO type can be generated only by using the
operations associated with the type. Users of electronic forms
should be allowed to interact with a form only according to the
preprescribed cperations supplied by the form designer.
Implementation details of forms should be hidden from the user. Any
changes in the implementation of forms will not affect the
application programs, provided the form operations are changed

appropriately.

1.3.2 Office Modeling Systems Many office modeling systems have
ﬁeen studied. In an office, people receive, deal with, classify,
remember, find and send information. The transmission of
information is done orally as well as on paper. Besides office

workers processing information, they alsa generate new information.

"

Ellis defines an office ..a2s a set of related procedures. Each
procedure consists of a set of activities connected by temporal
orderings called precedence constraints. In order for an activity
to be accomplished it needs resources - examples include files,
calculators, people, pencils, telephones" [6]. Tsichritzis
describes an cffice procedure as consisting of three parts: a
condition, an action and a notification part [27]. Structured
Systems Analysis (SSA) defines a business "as a logical set of
functions which exists to provide a product or service...'". Uhlig
et al. maintain that ".., viewing the office as a communication
system enables us to describe the process in quantitative terms' .
(Lebensold et al.) chose the following interpretation of "office':
an office is that part of an organization into which comes
information, from which comes information, and in which infecrmation
is generated or transformed in such a way that it can be used

outside the office to produce products, services, and money.

Features that modeling tools for an office information system
should have are listed in Figure 1-1 [19]. These requirements are

necessary but not necessarily sufficient,.

e Be simple and easy to use

. Répresent reality closely

s Be consistent at various levels of the office hierarchy
e Express both asynchronous and concurrent events

e Have a sound theoretical base

e Represent both ‘'document model" and "processor model"
(Data and activities)

e Handle incomplete specificaticns

e Allow incremental change of models

Figure 1-1. Requirements of an Office Modeling System

1.3.2.1 584 - Structured Systems Analvsis

Structured Systems Analysis (SSA) is described as a '"business
modeiling and communication technique" that is used by both the
systems analyst and the business perscn [19]. SSA concerns itself
with both the actual model that is built and the process of

builiding the model.

The SSA model includes a "global model", a hierarchy diagram which
describes how the various functions in the organization are
lcgically related to each other. The "function matrix" is a NxN
matrix defining the responsibilities associated with each function.
An "informaticn flow diagram" is a network diagram which represents

how informaticn Ziows through the organization. The '"detail

activity model" of the SSA is an annotated hierarchy diagram which
describes the lowest level functions in the Global Model. The ''data
structure diagram" is another annotated hierarchy diagram which
describes the view that the business person has of the information
in the organizaticon. A "glessary of business terms" is included
which is an English language narrative description defining the

terminology relevant to the specific business.

1.3.2.2 Information Control Nets (ICNs) Cook [3] discusses a
model for office procedures, the Information Control Net model, and
a particular type of transformation that can be performed on an
Information Control Net (ICN) model, streamlining. ICNs partition
the structure of a procedure and the information used in a
procedure. ICNs have nodes corresponding to activities that
comprise a procedure and nodes corresponding to repositories

(databases) used during a procedure.

An ICN formalism is a tool for describing office procedures. An ICN
model is an instrument for evaluating and constructing alternative
procedures. An ICN model enables the evaluation of the control
structure, or orgarization of activities, and the information
structure, or communication and use of information, in a procedure.
An ICN meodel also shows the opportunities for execution of
activities in parallel. An analyst interested in the information
structure of a procedure could see the information requirements of
specific activities, and patterns of access of office databases.

The analyst could alsoc see communications patterns, both within and

among offices.

The ICN model provides a framework for analyzing office procedures.
Alternative procedures may be suggested by streamlining an ICN
model; one large form may be divided into two smaller forms, each
with a different route. The ICN model can be the basis for dynamic
simulations to allow computer-aided, interactive analysis of
offices. The ICN model does not reflect the internt of a procedure,
nor does it indicate specific optimizations of a procedure. The
model! captures the organization of a procedure and the patterns of

information usage in the cffice well.

An ICN model of an office procedure can be expressed as a.graph or
diagram. The ICN modeling tool is based on Petri Nets. McBride
and Unger [24] discuss using Petri Nets to model jobs in a
distributed system. A job in an office environment can be
considered an intelligent form. A procedure is represented as a
set of activities embedded in a control structure, which shows the
temporal ordering of activities. The modeler represents how
activities f£it into the control structure of the procedure, but
does not represent how they are executed. Graphically overlaid on
the contro! structure diagram is the corresponding information
structure diagram, which shows the use of forms, files , and
databases where information is stored during the procedure. Control
flow is diagrammed in bold-faced lines; communication or
information flow is diagrammed in light-faced lines. Information-

handling may be implemented electronically as well as with paper

- 10 -

forms and verbal communication. The execution of activities may be
implemented by a group of officeworkers or entirely by one

officeworker. The iﬁplementation of the procedure is not expressed
in an ICN model. Different implementations may be evaluated within

the framework of an ICN model.

Circles denote activities and sgquares show data storage facilities,
Arrows coming from nowhere are points of initiation, and arrows
going nowhere are points of termination. Parallelism is indicated
through the use of "AND nodes" which are solid circles from which
come arrows pointing to the various parallel activities. There are
also decision nodes, circles into which come dashed arrows, and
from which come solid arrows pointing to the activities between
which a choice is to be made. A complex activity can be represented

by a circle, indicating the ICN’s modularity.

Control flow arcs represent the precedence constraints among
activities. Two procedural characteristics that can be represented

easily in an ICN model are parallelism and choice.

The information flow arcs in an ICN model reflect possible routes
of information flow rather than necessary ones. All information
used or produced by the activities is represented in the ICN
formalism as data labels., These labels designate the information

transferred between activities and repositories.

The physical existence of information is treated abstractly in an

ICN model. Information is modeled with no indication of medium.

- 11 =

Rather, information is modeled to reflect content, via data labels;
local or global relevance, according to whether it is stored in a
temporary or permanent repository; and usage, according to its
creation, storage, and usage by the activities comprising the

procedure.

Streamlining reduces an ICN model to the basic communication and
information requirements of an office procedure. Part of the value
of an ICN model is the global perspective it can give. The
streamlined ICN model is not jintended to be installed in an office,
rather, it is meant to suggest ways to restructure the original
procedure. The streamlining transformation is potentially valuable
to an office manager responsible for managing lengthy or

complicated procedures.

1.3.2.3 BDL - Business Definition Language Business Definition
Language (BDL) was designed to be a problem-oriented, readable, and
easy-to-modify ''data processing" descriptive language [19]. BDL
follows the structure of cffices very closely, mirroring the flow

of data through an organization.

There are four objects that BDL recognizes: documents, steps, paths
and files. A document is the basic data structure, "simply data
filled out on a form". Steps correspond to the "organizational
units of the system being described", and they show, at the lowest
level, how input documents are transformed into output documents.

Paths represent the data flow. Documents flow over paths to get

- %~

from one step to another. Files are "permanent repositcries of

documents."

Three of the major components that make up BDL are the Form
Definition Component, the Document Flow Component, and the Document
Transformation Component. Rather than there being one language
which is used throughout BDL, there is a specific language for each
of the separate components. Also, BDL programming requires an

interactive terminal with some graphic facilities.

1.3.2.4 ABL - Alternative Based Language ABL was developed out of
a concern for the need to have reliable software. In addition to
providing the software designer with a powerful programming tool,
ABL also allows the system model builder to describe clearly and

concisely how any system behaves.

By successively refining an ABL system, it is also possible to

maintain the same structure in a model as in the implementation of

that model.

ABL permits the user to partition a system into several parts.
Through the model it is also possible to look at an office
environment both from a low-level point of view and from a high-

level view. ABL deals well with concurrency.

The formal roots of ABL are in the relational algebra, decision

table theory, and formal language theory.

w 13 =

ABL gives the OIS designer complete flexibility in terms of being -
able to represent either the activities in an office, or the data

that flows through it.

The "else" clause in decision tables is the underlying power of
this facility to deal with incomplete specifications. This
capability is implemented as a transfer of control to an exceptiocn

step.

An ABL system is easy to modify at specification, design and
y

implementation stages.

ABL is rich in constructs to express parallelism and modularity and
permits the user to interact with the model in a variety of ways.
Work is in progress to provide an environment for direct executicn

of ABL models of office information systems.

1.3.3 Forms and their Access Rights Potential capabilities of
electronic forms have been examined by focusing on three important
aspects - fields, abstraction, and access rights [7]. The
contribution of Gehani [7] has been to define the paradigm for an
electronic form. He discusses thirteen types of fields that can be
provided in electronic forms. With each kind of field, the form
designer is allowed to associate actions to be performed when the
field is to be displayed or filled. Any new language, or an old
one extended to allow form definitions, that provides appropriate
data types, an interface to a data base, etc., could be used for a

form-based automation system.

= i =

Advantages of form based office automation systems over non form-

based systems are listed in Figure 1-2 [7].

1. Forms allow logically related data to be treated as an
entity.

2. Electronic forms retain many properties of paper forms.
3. TForms can be traced.

4. Information that specifies which users can interact with
a particular type of form can be associated with the

form.

5. 1Intelligent forms can have routing informaticn
associated with them.

6. Forms can serve as a high-level protocol for information

communication.

Figure 1-2. Advantages of Form Based Systems

Only office personnel with the proper authority should be able to
access certain forms, access certain fields within a form, and/or

perform certain operations on a form.

Access rights have been discussed in reference to workstations [31)
and users [7]. Tsichritzis [31] suggests that workstations, not
users, should be assigned access rights. Workstations are
restricted at station creation time to performing only specified
operations on forms. An authorization station cannot be used as an
entry or a query station, thus providing security. A critical

station can be physically guarded. It may also be desirable to

= 15 =

restrict form operations to certain time intervals of the day.

The method of associating access rights with workstations is
somewhat inflexible [7]. A station cannot double up as both query
and entry station when needed. A station cannot behave as a query
station for one set of forms and an authorization station for
another set of forms. Gehani [7] proposed that users instead of
workstations have access rights. For this project, access rights

will be associated with users, not workstations.

User access rights are associated with the forms themselves.
Access rights may be specified nonprocedurally. These access rights
wiil govern interaction of users with the fields of a form and the

manipulation of forms.

1.4 Specific Problem

This project does not cover every component of the IDO described in
the Overview (section 1.1). The subdivisions of the IDO which will

be included in this project are listed in Figure 1-3.

- 16 -

1. Station.manager, for handling the receipt and sending of
IDOs within the system

2. Design of the IDO, which is divided into three areas as
follows:

e Design of form fields and processing instructions
e Design of the access rights
¢ Design of the routing and history information

3. Database retrieval

4. Designing a form definition language for use by the form
creator. This is divided into two projects as follows:

e Field specification, in particular, virtual fields
(fields calculated within the object from other
fields in the object and from retrieval from the
database)

e Routing information to be specified by the form
creator

Figure 1-3. Units of the IDO

This paper deals with one aspect of design of the IDO and the
design data structures necessary to implement the actions of such
an object type. Generally, the structure of the form of the IDO
must be designed. Data structures will be provided so that the
form can be used within the office automation system. (The form
will need to be displayed, modified, etc.) Processing instructiaons
must be designed as well. These processing instructions are needed
to perform calculations and check security and integrity on the
IDO, to perform retrievals irom the database, and to provide

multiple users views of the foerm. The structure of the history and

- 17 -

routing information must be defined. A time date stamp of arrival
at. and departure from each node and instance of the processing
instructions will be accommodated. This is required by the station
manager in order to keep track of where the form is, what has been
done and what needs toc be done. This project will not accommodate
flexible processing or routing instructions. Flexible means that
the processing or instructions defined in the IDO abstract type may
be modified by the user at the time an instantiation is created.
The structure of the data for a particular instance of the form

must be designed.

This particular portion of the project deals specifically with the
design of the structure of the access rights in the IDO. Logically
all the parts of an IDO are one unit. However, in this particular
implementation, only history and actual data for an instance of the
form will be routed as part of the form. Structure information is
assumed to be resident at each node in the system for this project.
For most cffice environments, this is a reasonable assumption. The
station manager could be designed to accommodate retrieval of such

information if it were not resident at the node.

This project involves the definition and design of data structures
to accommodate access rights associated with the form. This
includes information such as who can access a specific form and
specific fields within the form, and who can perform specific
operations within the form. Access rights must be associated with

forms to ensure that forms are accessed and/or modified by

= PG

appropriate users only.

Another area of concern is the security of the entire IDO from the
node being visited, and vice versa. The IDO itself, as an abstract

data type, must not be accidentally or maliciously removed.

Forms can serve as a high-level protocol for information
communication. Data could be extracted from a form for
transmission to another automated office with instructions that the
data should be interpreted as being of a particular form type. This
assumes that form types are known to the receiving station. The
IDO can be expanded te include visual or voice forms. The validity
of the form and privacy of information enforced by access rights on
a system is in question when a form is transmitted to another
automated cffice system. Agreements between systems need to be made

as to what access rights will be assigned to interrelated forms.

Chapter 2 of this paper deals with requirements in the IDO for
structure information related to access rights. Chapter 3 covers
design alternatives and design chosen, with detailed descriptions
of data structures. Chapter 4 describes the implementation to be
done in conjunction with this design. Chapter 5 provides a

conclusion and recommended extensions in relation to the project.

- 19 -

Chapter 2. Requirements

This chapter is divided into two sections, general requirements and

specific requirements of the IDO access rights.

Access rights need to be specified so that only the predetermined
correct users can modify and/or read a form or specific fields of
the form, Access rights should-te assigned to a user based on the
funct;on and need to know of the user in the organization [7]. The
user may be required to have different access rights for different
forms and form types, or even to different fields within the same

form.

Section 2.1 provides the requirements for the access rights imposed
by the IDO, i.e., why the IDO needs this information. Section 2.2
deals with specific requirements that must be met by information
specifying access rights. User requirements are also covered in

this section.
2.1 General Requirements

In a conventional office, restrictions due to access rights are
enforced by means of physical security, checks, and reviews by
office personnel. Physical possession by itself offers some degree
of security. In automated offices, physical possession of a
document is nonexistent. All users have the same potential to
access 2ll the forms (at least those in a shared database). Users”

access to these forms must be controlled in a way compatible with

- 20 -

the needs of the office. This can be done by having the automated

office system enforce.the rights granted to users to manipulate

forms.

2.1.1 Data Field Reguirements 1In the IDO, the following four
types of fields require some type of security measures:

e Unchangeable

e Ordered

e Lock

e Invisible
Unchangeable fields are those that are optional to enter but cannot
be changed once they are filled. Security measures must be provided

to guarantee this restriction.

Ordered fields can be filled only after some other fields have been
filled. An example of an ordered field is a signature field. For
example, signature fields showing approval from different
management levels must be filled in order of increasing management

levels.

Supplying a value for a lock field results in certain other fields
being protected from modification. This could be demonstrated by
use of a signature field as an indication that the form is approved
and therefore no other fields on the form can subsequently be

updated.

An invisible field is a field that for a particular user or group

of users cannot be viewed. One use cf this type of field would be

-~ ¥ =

an employee’s salary. A field may be visible even though the user
is not allowed to update that given field. Alternatively, a form
designer may make the decision not to allow the user to view the

form if he/she cannot update the data.

In addition to the above four types of fields, access rights can be
granted to users for each individual field. This can be implemented
using either an inclusive or exclusive list. Both are required
since in some cases there will be very few users who need to access
the given field, while for other fields only a few users should be
denied access. In making the decision for a field to have an
inclusive or exclusive list, consideration of which access rights

should be given to a new user needs to be made,

2.1.2 Form Operation Requirements A user of the IDO may need to
determine the status of a given form. In the case of a paper form,
this normally would involve consulting with various persons who may
have already seen the form. Some knowledge would be required as to
who typically sees this type of form and where to go next if a
specific user has already seen/altered/approved the form. 1In the
case of an IDO, this would involve the ability to view the history
f this particular form instance. Since the office management may
not desire for everyone to have the ability to obtain this form
status, we must have the ability to assign access rights to this

procedure.

Form creation is obviously essential as a function in a form-based

- 22 -

system. For this project we assume that the form exists already but
we need to demonstrate that access rights are valid for users

attempting to create a new form.

Copying of a form may be desired in a system if different groups of
users are concerned with mutually exclusive portions of the form.
Different copies may take different routes and be reunited at a

later time.

Destruction of a form may be a desired operation in an office.
This could be either destruction of an entire form or a portion of
the form, which would have the effect of going back to an earlier

stége of the form.

When a form is complete, the office personnel will most likely wish

to store it in a database.

Mailing or sending of a form to another node needs to be done when

a user has completed his/her modifications to the form.

Two additional operations that generally occur in forms systems are
viewing and modification of a form. The user may need to obtain
information as well as supply information on the form. In paper
forms this would involve physically getting the form, looking at it
and possibly changing it. The IDO checks whether the user has valid
access and whether input values are correct. Demonstration of the
screening of invalid users and allowing valid users proves that the

access rights have been assigned properly.

~ 93 -

2.1.3 Other Reguirements Changes in access rights can be
permanent, as in the case of change of personnel, promotions,
transfers, and reorganizations. Granting of access rights can be
temporary, for instance when an employee takes a vacation. The
user’s ability to delegate a subset of his/her access rights to
another user would handle this problem. It may also be desirable
to be able to change access rights dynamically without having to
create a new version of the automated office system. In order to
do this, some users will have the access rights to change access
rights of other users. Since ;e are assuming an existing static
system for this project, dynamic alteration of access rights and

access right delegation will not be implemented.

After transmission of a form, the sender will not have access to it

until the f£2rm returns to that node.
2.2 Specific Reguirements

The IDO raquired by our office is a form to track a software
development project. The manager Is responsible for committing to a
project, and canceling it if necessary. Project leaders are
responsible for managing the project at a2 lower level and are
involved with the other scftware developers on the project. The
functions of designers and programmers are to design and code the

software, respectively.

- 24 -

2.2.1 User Reguirements for Form Operations Users’ form

operations needs are shown in Figure 2-1,

e Create - Manager
e Copy - Manager, Project Leader
e Destroy - Manager
o View - All
e Edit - All
o File - All

o Mail - All

Figure 2-1. Office Needs for Form Operations

The manager is the person who assigns a new project within the
office. No other user has this responsibility. When a new project
is committed to, a form must be associated with that project. This
function is accomplished by the form creation operation; since the
manager is the only user able to assign a new project, he/she is
the only one allowed to perform the "create'" operation on this type
of form. On these same lines, the manager is the only user allowed
to cancel a project and thereby perform the destroy operation on
the form. Embedded within the destroy operation, storage of the
canceled form into the database could be performed. Decisions such
as how long the form has been in existence could be used o

determine whether we should store the cancelled form or simply

- 25 -

remove it from the system.

After filling a portion of the form, the project leader needs to
send the form on to be completed. Since the programmer and designer
need to fill in mutually exclusive fields, the project leader has
the ability to copy the form and send one copy each to the designer
and programmer. The copy operation could have the intelligence to
determine that if the programmer and designer happen to be the same
user in a given case that a copy of the form would not occur. In
the case in which copies are created, they may be united back into

one form at a later time.

All personnel in our office will have a need to view and edit the
form. Any user may need to see the status of the project and what
the current schedule is. Each user in our current system has

changes he/she must make to the form. Every officeworker also has
the ability to mail the form after making modifications or viewing

the form.

When the project leader or manager feels that the form is
completed, he/she needs to attempt to file the form. The "file"
operation will involve storing the form information in the
database. Also involved within this form operation could be
included checks that proper signatures exist on the form indicating
necessary approval. All other required fields would need to have

been previously filled as well.

= 26 .=

In a paper-based form system, occasionally a form becomes due and
its location is unknown. In an electronic forms system, if a form
has been in existence for a specified period of time and a porticen
is missing, the form may reappear to the supplier of this missing
information. This information is specified within routing énd
history information in the form. In our system we allow all users

except programmers to attempt to locate the form.

2.2.2 User Requirements for Data Fields A field named Project
Name will need to be assigned by the manager at the time of form
creation. Since the manager assigns the project, he/she also
assigns the name of the project and the department to which it is
assigned. The other fields the manager will need to fill ares the
manager’s name, signoff (approval) and date of approval. The
approval field indicates that the manager has reviewed the form and
accepts its contents. This approval may only be filled out after

the project leader has already signed off and dated the form.

The project leader alsoc has signoff and date fields that he/she
must sign on form approval. In order for this to be performed, all
other fields on the fcrm other than the manager’s signoff and date
must be filled. The project leader can fill in the field that
specifies the date testing will be complete and the delivery date
for the project. Date that requirements will be complete is a field

required to be filled by the project Leader.

The designer in our system must f£ill out the due dates for the

- 27 -

design portion of the project, along with his/her name. The
programmer will fill in the date code will be complete in addition

to his/her name.

2.2.3 Other System Reguirements To allow the form designer to
associate form access to some of the users of a group but not all
group members, the system must have available an association of
groups to their members. As an example, our system may have the

following groups and associated users within the groups.

Manager - Susan, Bill

Project Leader - Dave, Ed, Janet

Designer - Todd, Kathy, Lou, Ken, Alice

Programmer - Roy, Marie, Ron, George, Al, Judith

Figure 2-2. User Groups and Their Members

The need may arise for another milestone to be tracked, e.g., we
will split design into high level and low level design, or we may
want to keep with the form the original due dates as well as those
for the last reporting period. This would require form

redefinition.

Changing of access rights may become necessary, as in the case in
which the project leader goes on vacation and needs to fill in form

during the period when he/she is away. If the project leader could

= 8 =

temporarily delegate access rights, this requirement would be met.

Additional office forms may be required that use our software
project tracking form. For example, a report may be needed that
indicates which projects a given department is currently assigned
to, or a report that finds out how many projects an individual is

involved in.

A language to assign access rights must be developed for the
project tracking form described. A design that incorporates all the
user requirements discussed in the previous two sections must be

met.

1o

Chapter 3. Design

Access rights specification methodologies for form cperations and
for form fields are provided in this chapter. Also, a design of the
method in which form operations and data access are performed is

included.
3.1 Design Modules

The modules of our system are an access rights specification
language, form operations, form fields, screen interface, and
database interface. The interaction of these modules with the IDO

is discussed in this section and.is depicted in Figure 3-1.

~ 30 -

INTELLIGENT DATA OBJECT

(]
‘ Form \
| Fields }
i+ Specification

| |
\)

A\

1|
i
|

INTERFACES
! f
| |
E Access | { Form
| Rights | Operations
| Specification i Specification
{ J //}

—— .]

IDO

- —

Database

5

|
|

Screen
Interface

N

Figure 3-1., Intelligent Data Object and its Interactions

3.1.1 Access Rights Specification The access rights specification

language specifies which users have access to operations and fields

associated with the IDO. Wnen executed, the commands of this

specification language will populate data structures that will be

= Bt =

used to verify proper access to fields and operations of the IDOC.
These structures are within the IDO itself and must be able to be
read by users attempting to execute form cperations and perform

field manipulation within the IDO.

The structure of the language for defining access rights for form
operations is shown in Figure 3-2. Capitalized words are fixed as
part of the language and other words are variables that must be
supplied by the forﬁ designer. Optional portions are indicated
within braces. Three different methods of specification are
represented. The first is used when the form designer wishes to
list access rights in terms of those operations the specified group
and users cannot access. The second allows specification of every
operation that the group and users can execute. The last type of
specification states that none of the operations are available for
a given grcup. An example of this tvpe of specification will be
discussed in Section 3.2. The optional specification of users
within a group indicates that only these specified users may access
the operations, and actually the form type itself. If no users are
supplied, then access is allowed tc all users within the given
group. The form designer may supply "others" as the indication of
a group. This assigns the access rights specified for groups in
the system that have not been specified by previous specification

statements.

e ”

FORMOP FOR formtype IS
e WHEN group{{user{ user})} ALL {EXCEPT op{ op}}
e WHEN group{(user{ user})} op {op}

e WHEN group{(user{ user})} NONE

Figure 3-2. Access Rights Specification for Form Operations

Field hanipulat%on requires that only valid users update field
values. For this system, there are no unreadable fields; Each user
can read but not necessarily write to a given field. The access
rights provided in the rights specification language supplies this
determining factor. The language to assign access rights to fieids
of the form is provided in Figure 3-3. As in the specification of
form operations, capitalized words are fixed within the language
and lower case items will be supplied by the form designer., The
form designer is allowed to specify field access for each group via
either an exclusive or inclusive list. 'Other" is allowed as a

valid user group.

FIELDACC FOR formtype IS
e WHEN group UPDATE ALL {EXCEPT {fieldnm{ fieldrm}}}
e WHEN group UPDATE {fieldnm{ fieldnm}}

e WHEN group UPDATE NONE

Figure 3-3. Access Rights Specification for Form Fields

w G

The ability in the specification language to indicate access both
to fields and operations of the,form on an exclusive basis (and the
ability to specify "ALL") relies on an underlying assumption that

the operations and fields of the form have been previously defined.

3.1.2 Form Operations Actual form operations and field
manipulation operations represent one module of our system. The

form operations supplied in the system are listed in Figure 3-4.

e Create
e Destroy
e File

e Mail

o View

e Edit

s Copy

Figure 3-4. Form Operations Allowed in Form Type PROJTRACK

The form operations include checks against data structures created
by the form definition language. These checks verify proper access
to perform each operation defined within the IDO, A detailed

example is provided in section 3.3.

The full definitions of the form ocperations are not designed in

this project. The purpose is to demonstrate that the access rights

= 3G =

have been assigned properly. "Pseudo operations' are provided for
the Create, Destroy, Copy, File, and Mail functions. What this
means is that attempted execution of these operations on the form
will result only in an indication of whether proper access was
obtained. The successful completion of the "create'" operation, for
example, will not be the actual creaticon of a new form, but perhaps
a message indicating that it is acceptable for the user to create a
form at this time. The View and Edit operations, however, will

result in actual! viewing and editing of the form.

The decision was made to include File and Mail operations as
explicit commands within our intelligent data object. As with other
operations included in gur system, this is not the only way to
design the operations allowed for a given IDO. For instance, the
Mail operation could be something done as part of another
operation. Prespecified procedures within the Edit operation could
check whether the form is ready to be mailed every time a user
exits the Edit operation. If the form were adequately filled for
that user, mailing of the form could be automatically performed.
Filing of the form could be done automatically when the form is
destroyed, when it is complete, or when it has some other condition
set up by the form designer. The fields associated with the form

are presented and discussed in section 3.2.

3.1.3 Screen and Database Interfaces A screen interface is
necessary in the displaying of the form. Extraction of information

from the files containing field values and display information is

- 35 -

performed here.

Database interaction is required to store the form information when
necessary. In our system, filing of the form is done upon request,
given that the proper fields have already been filled. The user
must, of course, have been assigned the proper access to have the
ability to perform this operation. In some IDO systems, storage in
the database is done automatically upon a given condition. Database
interaction also is required if the form has been stored and we
desire old information to be retrieved to populate the form. This

can be embedded within a2 form operation.
3.2 Design Structures

An example form for use in an office is shown in Figure 3-5.

Project Tracking Form
Project Name:

Department:
Manager: MGRsig: Plsig:
Project Leader: Date: Date:
Designer:
Programmer:
Req: Reqlast:
Design: Deslast:
Code: Codelast:
Test: Tstlast:
Delivery: Dellast

Figure 3-5. The Project Tracking Form

- 36 -

Operations on the Project Tracking Form can be performed as
indicated by the form designer in the specification language.
Figure 3-6 gives specific commands that would be executed to assign

access rights to the Project Tracking Form.

FORMOP FOR projtrack IS
e WHEN manager ALL
e WHEN projlead(janet) ALL EXCEPT create destroy
e WHEN designer(todd kathy) ALL EXCEPT create destroy copy
e WHEN programmer{roy george judith) view edit mail file

Figure 3-6. Access Rights Specification for the Project Tracking
Form

Note that there are no users specified within the manager group
type. This indicates that all managers have access to the form and
the specified operations. For the project leader group, Janet is
the only user with access to the form. For each type of user
specified in the specification language, a row in a security matrix
of operations allowed on the form type is allocated. An indication
of valid users of the form within each group is represented by a
list of those valid users. After specifying the commands above,
the security matrix and user list produced will appear as in

Figures 3-7 and 3-8.

w B

OPERATION
Create Copy Destroy View Edit File Mail
GROUP
Manager Yy y y ¥ ¥ y ¥
Projlead n y n ¥ ¥ y y
Designer n n n g v ¥ y
Programmer n n n Yy y Yy Y

Figure 3-7. Security Matrix for Project Tracking Form Operations

Note that no row exists for "other" user groups besides those
specified in our specification language. This is not required in
this case, but is discussed to illustrate the use of "others" as a
valid group. Suppecse, for instance, that in a given form tvpe we
wanted to allow all users other than those specifically named to
perform the View command. However, there is another group, Hackers,
to whom we do not wish to give this capability. We would then need
a row in the matrix of all n”“s for Hackers and all n”s except for a

"y" in the View coclumn, for other groups in the system.

% 38 =

GROUP USERS

Manager - Susan Bill

Projlead - J;net

Designer -~ Todd Kathy

Programmer - Roy George Judith

Figure 3-8. Valid User List for Project Tracking Form

The access specificatiorn statements to assign proper manipulation

of fields of the Project Tracking Form are supplied in Figure 3-9.

FIELDACC FOR formtype IS

e WHEN manager UPDATE projnm mgrnm dept
mgrsig date? delivery

o WHEN projlead UPDATE plnm plsig
datel test reqg delivery

e WHEN designer UPDATE desnm des

e WHEN programmer UPDATE prognm code

Figure 3-9. Access Right Specification for Form Fields

Listed in Figure 3-10 are the form fields with their assocciated
lists of valid user groups. As mentioned previously, zll users have
read access to all fiélds within the form. The structure
illustrated in Figure 3-10 is a result of the field access

statements of the form specification language.

FIELD
projnm
dept
mgrnm
plom
desnm
prognm
mgrsig
plsig
date2
datel
req
des
code
test

del

-39 -

GROUP
Manager Projlead Designer Programmer
y n n n
y n n n
y n n n
¥ ¥y n n
n ¥ v n
n n ¥ y
y n n n
n y n n
y n n n
n ¥ n n
n y n n
n v v n
n y n ¥
n y n n
¥ ¥y n n

Figure 3-10. Security Matrix for Project Tracking Form Fields

3.3 C(Control Flow Within and External to IDO

3.3, 1

Fform Operations When an attempt is made to access a form

operation, the form that the user is attempting to access is

- 40 -

specified as part of the form operation. Before checking of any
security matrices is done, existence of the form must be verified.
An operation uniquely named for the specified form must exist. The
current user is then checked to determine what user group he/she
belongs ta. The security matrix for form operations is checked to
determine whether this user group has access to the operation
specified. Also, the list of users of this group who are allowed
access to this form is checked. If all of these checks are
successful, the operation will be completed. A pictorial

representation of a typical form operation is supplied in Figure

3-11.

- 41 -

Formop]
Formnm
J
A/
\
n Formnm y
Exists // 4}
2
!
n User \ y
- { allowed j}——mm—orur
access
?
:
i Perform
operation
Formop
STOP

Figure 3-11. Flow of a Procject Tracking Form Operation

o B

3.3.2 Form Field Manipulation Display and field value information
will be stored in separate files for eéch field, and access rights
will have been previous{y set up based on the language
specification, as described in Section 3.2. On successful access
to the Edit or View operation, the screen associated‘with this form
will be displayed. Since we have no invisible fields associated
with this form, any field previously filled will be displayed. If
any users had no read access to a specific field, the value

previously filled would not be displayed. Possibly the field name

would be masked out as well.

When the user attempts to move within the fields of the screen

display, he/she will invoke a ''mext field" ocperation, defined most
likely as a single keystroke or sequence ¢f keys. For those fields
which are determined not changeable by this user, the cursor could
skip over the fields. Another method would be to allow the user to
stop at each field value location but if an attempt is made to

enter a value, some result would let the user know that this is an
invalid attempt to change data on the form. This second method

requires less checking, as the security matrix for Project Tracking
form fields would only be checked when an actual attempt to update
data is made, while the first case reguires checking on movement to

each field.

The design presented has several implementation possibilities. The
goal of the implementation is to verify that the access rights

specified by our subset of the form definition language have been

assigned appropriately.

- 44 -

Chapter 4. Implementation

There are three main areas covered in this implementation. The
first is that of verifying proper access and denial when attempts
are made to execute a form operation. The second area is to verify
proper access to field manipulation on the form. The third area is
the development of a subset of a form definition language for our
system. The portion of the form that will be defined by this subset
of the language is the access.rights of various users and groups to

form operaticns and form fields.

Implementation of the first area, access to form operations, will
be covered in detail in this chapter. The form definition language
and access to form fields will be also be discussed, but in less
detail. Some assumptions and general comments are also included in

this chapter.
4.1 Access to Form COperations

This section discusses header files containing structures and .¢
files containing functions associated with accessing form
cperations in our system. Problems encountered along with their

solutions are provided.
4.1.1 AC ops.h

Header file AC_ops.h defines access rights structures for
operations associated with a particular form type in our IDO

management system. Originally, seven character pointers were used

to specify the names of ail operations allowed for a form type. One
to seven of these pointers were to be populated. The structure

containing these pointers is displayed in Figure 4-1.

typedef struct {

short opnum;
char *opl;
char *op2;
char “op3:
char Fopd;
char Bepd s
char *opb;
char *op7;
} OPLIST;

Figure 4-1. Original OPLIST Structure of AC_ops.h

In the ACopchk function, attempts to check if a valid cperation 1is
specified involved comparing two strings. The first string
contained the form operation specified by the user attempting to
access that fofm operation. The other string was created by looping
from 1 through the number cf operations allowed and placing this
locp variable at the end of the string. For example, if an instance

of the structure OPLIST were defined as
OPLIST oper;

and currop is the lecop variable, the following situation would
exist. Locping from | to oper.opnum would occur and in order to
create a string to check the correct operation, the following

instruction would be executed:

- 46 -

sprintf(newstring, "oper.op%d",currop);

The first time through the loop newstring would contain oper.opl,
the second time through it would contain oper.op2, etc. The intent
is to check for a matching operation name and break out of the iocop

when the match is found.

The problem with this method was that I needed to get the contents
of oper.opl! and the string compare system call was checking the
operation specified by the user against the strings oper.opt,
oper.op2, etc., instead of the contents of each of these strings.
After checking several sources, it became apparent that the only
way this could be done was to check internal system variables. This
method seemed prone to errors and further internal modifications.
The alternate method derived was to define an array of pointers
instead of individual pointers. The OPLIST structure presented in

Figure 4-1 was modified and the result is shown in Figure 4-2.

typedef struct {

short opnum;
char *opl[7];
} OPLIST;

Figure 4-2. Modified OPLIST Structure of AC_ops.h

The other structure in AC_ops.h is the ACFRMOPS structure which was

originally defined as illustrated in Figure 4-3,

= 47 =

typedef struct {

short create;
short edit;
short destroy;
short mail;
short file;
short copy;
short view;

} ACFRMOPS;

Figure 4-3. Original ACFRMOPS Structure of AC ops.h

Attempting to use this definition resulted in a problem similar to
that of the original definition of OPLIST, in that I was attempting
to use a variable name for specifying the member of az structure. It
was also determined that this method was inflexible because the

form operations were hard coded in the structure and therefore were

required to be known prior to form definition.
P

The purpose of the ACFRMOPS structure is to associate access rights
of every operation in the fcrm type with a specific group in the
system. The structure was redefined as depicted in Figure 4-4, with
acc[0] containing the value of the access rights of the current

group to opl[0], acc{l] specifying access to opll],etec.

typedef struct {
short acci71;
} ACFRMOPS;

Figure 4-4. Modified ACFRMOPS Structure of AC ops.h

=GR =

4.1.2 AC group.h

Header file AC_group.h contains access rights information for
groups associated with a particular form type in the IDO Management
System. The ACGRPOP structure defines an ACGROUP structure for up
to four groups in our system. The initial definition of this

structure can be viewed in Figure 4-5.

typedef struct {
short grpnum;
ACGRQUP grpl;
ACGROUP grp2;
ACGROUP grp3;
ACGRQUP grp4;

} ACGRPCP;

Figure 4-5. Original ACGRPOP Structure of AC_group.h

Referencing individual groups within the structure produced the
same problem as in the QPLIST structure described in section 4.1.1.
The ACGRPOP struciure was therefore redefined as shown in Figure

4-6.

typedef struct {
short grpnum;
ACGROUP grpl4l;
} ACGRPOP;

Figure 4-6. Modified ACGRPOP Structure of AC group.h

The ACGROUP structure associates each group with its group

- 49 -

identification number, users associated with the group, and access

rights to the operations and fields of the form.

4.1.3 AC_user.h and AC_ddi.h

AC_user.h contains structure ACFRMUSE, which is actually associated
with a specific group in cur system. I allow a maximum of 12 users
for a group and supply the name and userid of each user. A "count"
member of the structure identifies the number of users actually

populated in the structure for this particular group.

AC_ddt.h is a header file containing a DDT macro, which compiles
specified sections of code when the DEBUG option is included on the
compile command. I have used it in my testing to execute several
print statements that the system users would not want to see but

are very useful for debugging purposes.
4.1.4 ACformop and DBACformop

ACformop and DBACfcrmop are executable products built by linking
functions ACmain, ACcpchk, and ACformdef together. DBACformop
prints several statements useful in debugging, while ACformop is
the version that would be available to users in our system.
Execution of ACformop and DBACformop causes entry tc the main
routine in file ACmain.c. Arguments to these products are described

in Figure 4-7.

= B0 2

(DB)ACformop form_oper form name
where form oper is the form operation
the user is attempting
to execute
and form_name is the form on which
the attempt is being made

Figure 4-7. Command to Attempt Execution of a Form Operation

4.1.5 ACformdef

ACformdef is a function whose purpose is to populate access rights
data structures for our PROJTRACK form type. The structures
associating valid users with each group are also populated by this
function., The only modifications made from the original to present
ACformdef function were changes to reflect modifications in

AC_ops.h and AC_group.h header files.

When originally defining a grpop structure of type ACGRPOP and an
opist structure of type QPLIST, it was apparent that these must be
defined external to the function since they would be referenced by
other functions for checking. Specifying "extern ACGRPOP grpop;"
caused a compiler error when linking functions together. When the
structure is defined, although it must not be within the braces for
the ACformdef function, "extern" should not be specified. Removing

"extern" from the definition cleared up this problem.

4.1.6 ACmain

ACmain is the main entry point when an attempt is make to invoke a
form operation. ACmain calls ACopchk to verify that the current
user and group are allowed access to the form and operation
specified. Returns are handled and the resulting error or success

message printed.

During testing, on one attempt to invoke an cperation, I
accidentzily omitted the form type. This resulted in an error, as
it should have, but it would not be immediately apparent to the
user that a parameter was missing. Therefore, I added a check in
ACmain to verify that the correct number of parameters had been
passed. When I first coded this, I printed an error message when
argc was not equal te 2. After the code change, an attempt to
invoke an operation with 2 valid parameters on the ACformop command
resulted in the printing of this new error message. After
investigation I discovered tha*t the check should have been for 3
instead of 2., The argc variable always ccunts the name of the
program as one argument in addition to any others passed in. Making

this change resulted in the error message printing at appropriate

times.

4.1.7 ACopchk

This function does the actual checking of various design structures

in our system to verify that the current user as part of the

- 52 -

current group is allowed access to this form and the form coperation
specified. When access i{s not allowed, an error return code can be
interpreted by the calling program to determine the reason for

denial.

Changes to checks for group and user data were made based on
mocdifications to structures in AC_group.h and AC_ops.h header
files. These modifications were previcusly described in sections

4,1.1 and 4.1.2.

The definition of oplst as a structure of type OPLIST was required
to be external since it is populated in ACformdef. Errors were

discovered in testing when oplst was defined locally.

Error messages indicating failure to access a form cperation were
originally printed within ACopchk. These were removed and replaced
by error returns tTo the calling function. Error messages are
printed out of ACmain based on the error or success return from

ACopchk.

When checking to see if the form specified by the user exists, a
check for existence of a file having that same name is decne. The
problem with this is that the user could create a file having that
name in his own directory and the check would pass, making it
appear that the form did exist. To avoid this problem, the full
path name is specified on the check for file existence in function
ACopchk. Users {other than the form designer) can not create a file

in this directory.

- 53 -

4,2 Access to Fields of the Form

A function ACfldchk is used to verify that the current user and
group is allowed access to each field of the form that the user
attempts to modify. Access rights structures are checked to verify
proper access, and success and denial messages are printed,
depending on the users and groups attempting access. Several
problems discussed in section 4.1 were avoided in ACfldchk from the
experience gained from checking access to form operations and the

similarity of the ACfldchk function to the ACopchk function.
4.3 Form Definition Language

A form definition language replaced the method of manually
assigning access rights in data structures via functicn ACformdef

(described in section 4.1,5).
4.4 Assumptions and General Comments
Form redefinition will not be implemented in this project.

Copying of a form is one of the operations allowed in this system.
An explicit "join" of the two copies is not considered in this
system. It is assumed that the copies would be rejoined befcre form

signoff by the project leader and manager.

Verification of the access rights for various users will be

demonstrated at one node cnly.

- 54 -

The INGRES database is assumed to exist at each node or be able to
be accessed by each node in the system. An assumption is made that

if more than one copy exists, all copies are consistent.

C language has been used because of its favorable screen driver
programs. A personal reason for using C and UNIX is that this past
vear I started programming in C and I wanted to enhance my

knowledge of both C and UNIX.

- 55 -

Chapter 5. Conclusions and Extensions

The system requirements and design for assigning access rights
within an IDO have been supplied. This involved the creation of a
subset of a form definiticon language to assign these access rights
and the design of the structures into which these assignments need
to be stored. Also involved was the design of the form operations

and the method for obtaining the access informaticn stored.

There are some areas of the IDO that are beyond the scope of this
report, but could be covered as extensions of the project. These

include the following:

e Modifications to an existing form structure (not the
instance). This introduces many complications, such as what
to do with a form instance that is currently being routed

Wwithin the system (How will it be mapped into the new form?)

¢ We basically are dealing with an operational system - add form

creation.

e Interaction of multiple IDO‘s within a system will be required
in some offices. Also, communication between offices via
single and muitiple IDO’s may be necessary. This could include

visual and voice representations of the IDO.

» For history information, it may be desirable to have

information on exactly which operations were performed by each

user.

- 56 -

e Ability of the user to delegate a subset of access rights to

another user.

o Ability to change access rights dynamically without having to
create a new version of the automated cffice system. This
would require that some of the users have access rights o

change access rights of other users.

e Allowing the "user" ito be a computer program as opposed to a
human. This possibly would involve associating the access
rights of the owner of the program with the program itself. Aas
an alternative, the program could be defined as a different
"user" if access rights of the program need to vary from those

cf the owner of the program.

e Security of an IDO from each visited node (and vice versa)
requires further investigation and is an important extensicn

of this project.

e For additional security within an office, the specification of
access rights to restrict form manipulation to certain
workstations could be implemented. This specificztion would
supplement the already existing access rights based on users,

form types, and operations.

o Time periods during which users are allowed to update fields
and perform form operations could be specified. Indicated

workstations to be used during these time periods may also be

- 57 -

necessary.

e Specify different access rights for different copies of a
form. Different copies of the form may have different
restrictions. However, no field of a form copy could be less

restrictive than its counterpart on the original form.

e Ability for specific users to destroy a portion of a form.

Bibliography

Baumann, L.S. and Coop, R.D., "Automated Workflow Control: A
Key To Office Productivity", Proc. AFIPS Office Automation
Conf., Mar 1980, and Electronic Office Research Project, Sperry

Univac, Roseville, Minn, Naticnal Computer Conference, 1980

Conway, R.W., and Maxwell, W.L. and Morgan, H.L., "On the
Implementation of Security Measures in Information Systems"

Communications of the ACM, April 1972, Vol.15 No.4.

Cook, Carolyn L., "Streamlining Office Procedures——An Analysis

Using The Information Control Net Model" AFIPS NCC 1980.

DiPirro, J.E. and Ferrans, J.E. and Juszczak, C., "A Form
Management System For Switching Database Administraticn",
Proceedings IEEE International Conference On Communications,
Boston, MA, june 19-22, 1983, pp. A4.1.1-34.1.6 (pp. 125-130),

VYol. 1

Ellis, Clarence A. and Nutt, Gary J., "Office Information
Systems and Computer Science", Computing Surveys, Vol. 12, No.

1, March 1980

Ellis, Clarence A. and Bernal, Marc, "Officetalk-D: An
Experimental Office Informaticon Syvstem', ACM 0-89791-075-

3/82/006/0131

10.

12,

13.

14,

- 59 —

Gehani, Narain, "The Potential Of Forms In Office Automation",
IEEE Transactions On Communications, Vol COM-3Q, No. 1, Jan

1982, pp. 120-125.

Gehani, N.H., "An Electronic Form System: An Experience In

Prototyping', Bell Laboratories Research Report, June 198!

Gehani, N.H., "High Level Form Definition In Qffice Information

Systems'", The Computer Journal, Vol. 26, No. 1, 1983

Gibbs, Simon J., "Office Information Models and the
Representation of Office Objects', ACM 0-89791-075-
3/82/006/0021

Gries, David and Gehari, Narain, "Some Ideas on Data Types in
High-Level Languages'", Communications of the ACM, June 1977,

Vol. Structures", SIGPLAN Notices, Vol. 8, No. 2.

Guttag and Hotwitz and Messer, '"The Design Of Data Tvpe
Specifications"”, Current Trends In Programming Methcdology, Vol

IV, Data Structuring, Prentice Hall, 1978.

Hammer, Michael and Kunin, Jay S., "Design Principles Of an
Office Specification Language', Proceedings AFIPS Office

Automation Conference, Mar 1980, National Computer Conference

Hewitt, Carl and Baker, Henry Jr., "Actors and Continuous
Functionals", Library For Computer Science, Massachusetts

Institute of Technoliogy, 545 Technology Square, Cambridge,

15.

16.

18.

19.

20.

21.

22.

- 60 -

Massachusetts 02139, MIT/LCS/TR-194

Hogg, John and Gamvroulas, Stelios, "An Active Mail System',

Sigmod Record, Vol. 14, No. 2, 1984

Hughes, Phil, "Unix Security: Permission Particulars",

Microcomputing, Sept. 1984,

Konsynski, Benn R. and Bracker, Lynne C. and Bracker, William
E., "A Model For Specification Of Office Communications', IEEE
Transactions On Communications, Vol. Com-30, No. !, January

1982, pp. 27-36

Ladd, Ivor and Tsichritzis, D.C., "An Qffice Form Flow Model",
Proceedings AFIPS Office Automaticn Conference, National Comp.

Conf., Mar. 1980, University Of Toronto, Ont. Canada

Lebensold, J., and Radhakrishnan, T. and Jaworski, W.M., '"a
Modeling Tool for Office Information Systems', 1982 ACM 0O-

89791- 075-3/82/006/0141

Liskov, Barbara and Zilles, Stephen, "Programming With Abstract

Data Types', SIGPLAN, April 1974

Liskov, Barbara H. and Zilles, Stephen N., "Specification
Techniques for Data Abstractions'", IEEE Transactions On

Software Engineering, Vol. SE-1, No. 1, March 1975

Mazer, M.S., "The Specification of Routing In A Message

Management System”, M.S. Thesis Department of Computer Science

23.

25,

26.

27.

. 28.

28,

30.

31,

= &Y =

Univ. of Toronte

Mazer, Murray S. and Lochovsky, Fredrick H., "Routing
Specification In A Message Management System", Proceedings of
the 16th Annual Hawaii Int“l Conf. on System Sciences, 1983,

Vol. 1

. McBride, R. A. and Unger, E. A., '"Modeling Jobs In &

Distributed System", 1983 ACM (0-89%791-123-7/83/012/0032
Moulton, Rolf T., "Network Security", July 1983, Datamation.

Stefferud, Einar, "Electronic VS Paper Media Continua —— A

Comparison', NCC “80 Personal Computing Digest

Tsichritzis, D. and Christodoulakis, S., "Message Files', ACM

0- 89791-075-3/82/006/0110

Tsichritzis, D.C. and Rabitti, F.A. and Gibbs, S. and
Nierstrasz, 0.M. and Hogg, J., "A System For Managing
Structured Messages", IEEE Trans. Commun., COM-30, 1(Jan

1982), pp. 66-73

Tsichritzis, D.C., "Forms Management', Commun ACM 25, 7(July

1982), pp. 453-478.

Tsichritzis, D., "A Form Manipulation System", Proc. N.Y.U.

Symp. Automated Office Systems, Mav 1979,

Uhlig, R.P. (editor), "Computer Message Systems', North-Holland

iz.

33,

- 62 -

Publishing Co., IFIP Symposium On Computer Message Systems,

Ottawa, Canada, 6-8 April 1981

White, Robert, "A Prototype For The Automated Office',

DATAMATION, Apr. 77

Zloof, M.M., "QBE/OBE: A Language For Office And Business

Automation", IEEE Computer (May 1981), pp. 13-22

ACCESS RIGHTS FOR
INTELLIGENT DATA OBJECTS

By

Sandra Kay Bishop

B.S., Illinois State University, 1976

AN ABSTRACT OF A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

Kansas State University

Manhattan, Kansas

1986

The use of an intelligent data object (IDO) is an important part of
the continuing trend toward the automation of offices. An
intelligent data object is an encapsulated set of data (data
object) which has within it instructions which describe the
processing of the data. Considering forms as IDOs allows the
conversion from paper based to electronically based offices to be
relatively easy from a user’s standpoint. The intelligence within

the form gives it decision-making capabilities.

The IDO defined in this project supports the concepts of
abstraction of data. Actions that will be performed are defined but
the details of the implementation of these actions and the details
of the storage of data are not defined as they will appear within
this abstract data type. Objectives supported by the IDO are
retention of properties of paper forms, the ability to trace forms,

security of a form or parts of a form, and routing specification.

The structure of information relating to the access rights of an
IDO instance is defined in this paper. An implementation

demonstrating the use of access rights within the IDO is included.

