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Chapter One

REQUIREMENTS SPECIFICATIONS FOR SYSTEM DEVELOPMENT

Requirements specifications are the basis for develop-

ing a system. The requirements specification should define

the problem and outline the characteristics (including con-

straints) of a correct solution, encompassing "everything

necessary to lay the groundwork for subsequent stages in

system development" [Ro77c]. To achieve this goal, these

specifications must answer all questions that arise about

what the system should do when completed. If a problem is

well-defined in the requirements specification, the task of

developing a solution becomes much easier.

Many specification methodologies exist for use in

requirements specification. Some of the current methodol-

ogies are E-R-L, PSL/PSA, SADT, and TAGS. E-R-L (Entity-

Relationship-Level) [Gu84] is a model based on an entity-

relationship viewpoint. The E-R-L model uses frames for

entities and relationships between entities, and includes

the ability to have abstraction levels and meta-informa-

tion. The implementation of various automated support

tools has been planned, with a frame-editor currently in

operation.

PSL/PSA (Problem Statement Language /Problem Statement

Analyzer) ITe77] is a computer-aided structured documen-
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tatlon and analysis system. It uses a fixed set of objects

and strongly typed relationships between objects. Through-

out the specification process, textual information is

entered Into a database, where it can be accessed for anal-

ysis to produce various reports dealing with such things as

object usage, system hierarchy, and modification diagnos-

tics.

SADT (Structured Analysis and Design Technique) [Ro85]

Is a graphic, hierarchical dataflow model. SADT combines

graphic language primitives with natural language to pro-

duce a hierarchical model with abstraction levels. At

present, attempts are In progress to develop graphic auto-

mated support tools.

Finally, TAGS (Technology for the Automated Generation

of Systems) [S185] is a system that combines an

Input/Output Requirements Language, with a system/software

computer-based tool system. TAGS combines dataflow

information along with control and timing Information

within a hierarchy of diagrams. This Information, when

accessed through the system database, enables error

checking and system simulation.

Today, dataflow models are among the most popular in

use for requirements specification. Dataflow models are

popular because they are "very well suited for modeling the

structure and behavior of most human organizations" [Rm85].
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structured Analysis (which Is part of SADT) is a well-known

example of a dataflow model.

STRUCTURED ANALYSIS DIAGRAMS

Structured Analysis diagrams are a requirements speci-

fication tool for developing large scale systems. Struc-

tured Analysis diagrams combine the conciseness of a

graphic system with the expressiveness of a natural or

formal language embedded within the diagrams [Ro85]. The

choice of embedded language is specific to the type of

system being developed. By having the ability to incor-

porate any embedded language. Structured Analysis diagrams

are a specification tool that is "universal and unrestric-

ted," making Structured Analysis diagrams a domain-

independent system model [Ro77b]. Structured Analysis

diagrams are a means of precisely specifying a system,

analogous to industrial blueprints [Rm85]. The concise and

complete combination of word and picture documentation

enables the "rigorous expression of high-level ideas that

previously had seemed too nebulous to treat technically"

[Ro85]. The requirements specification begins at a high

level of abstraction. Through decomposition, the system is

broken down into a hierarchically related set of diagrams.

System complexity is managed in Structured Analysis by

restricting a diagram to six or fewer parts. The notation

used in Structured Analysis decomposition is very straight
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forward. Each of the six or fewer parts is represented as

a single box. The left side of the box shows all inputs to

the box, the right side shows all outputs from the box, the

top shows controls, and the bottom shows mechanisms. The

outputs are transformed from the inputs under the direction

of the control, and the mechanism is the means of the

transformation. The inputs, outputs, controls, and mech-

anisms are represented by arrows, which connect the various

boxes, thus indicating relationships between the boxes

tRo77b]. When combined, the boxes and arrows form a detail

diagram . The top-level detail diagram must completely

encompass the breadth of the system.
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Figure 1-1 shows a possible decomposition for a simple

student database for use in managing student transcripts.

The system has three major acitivites: CREATE STUDENT,

PRODUCE TRANSCRIPT, and MODIFY TRANSCRIPT. One input,

STUDENT INFORMATION, is required for the system, with three
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system commands, CREATE, PRODUCE, and MODIFY, controlling

the transformation of the input into the various outputs,

CREATE MESSAGE, TRANSCRIPT, and MODIFY MESSAGE.

HIERARCHY IN STRUCTURED ANALYSIS DIAGRAMS

If any of the parts contained within the detail dia-

gram are not fully specified, the decomposition process

continues. The decomposition process forms a hierarchy of

diagrams. Each box that is further decomposed Is known as

a parent box , and the diagram in which it is originally

located is known as the parent diagram . The parts of a

parent box are placed in a separate detail diagram, once

again with six or fewer boxes. This new detail diagram Is

an in-depth description of the parent box from which It Is

derived, and encompasses the breadth of the parent box.

For any part that still requires further specification, the

hierarchical decomposition continues [Ro77b]. When the

decomposition is complete, the set of diagrams will encom-

pass the depth of the system, with each complete abstrac-

tion level In the hierarchy encompassing the breadth of the

system.

Figures 1-2, 1-3, and 1-4 show a possible hierarchical

decomposition of the parent diagram In figure 1-1. The

CREATE STUDENT activity Is detailed in figure 1-2, the

PRODUCE TRANSCRIPT activity is detailed In figure 1-3, and

the MODIFY TRANSCRIPT activity Is detailed In figure 1-4.
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The abstraction process that gives Structured Anal-

ysis much of its power can also cause a problem: inconsis-

tency in naming information at different abstraction

levels. Except for the most trivial of systems, a Struc-

tured Analysis specification will contain numerous dia-

grams. This introduces the possibility of naming incon-

sistencies across diagram boundaries.

STUt'EHT

iri.'ii

-fRCiDUCE CdtldAriD

ACCESS

STUDEHT
RECdRti

STUtiETlT-

FILE
STUIiERT-

RECORD

FORnAT
TRAnSCRIPT

FORMATTED
TRAnSCRIPT

TRARSCRIPT

PRiriT

TRARSCRIfT

PRdDUCE TRAflSCRIPT
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CONSISTENCY IN SPECIFICATIONS

The requirements specification's main task is "to be

able to answer questions" [Gu84], but an inconsistent

specification is unable to perform this task because the

specification contains contradictions. When examined as a

whole, the various parts of a consistent requirements

specification will not contradict one another [Rm85].
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When working with a hierarchical methodology such as

Structured Analysis, one area where inconsistencies are

prevalent is where information crosses between levels of

the system. In Structured Analysis diagrams, inputs,

outputs, and controls are in this category. Specifically,

the inputs (and also outputs and controls) of a detail

diagram must match those from the parent box at the next

higher level In the model.

As an example of this problem, examine figures 1-1 and

1-2. In figure 1-1, activity CREATE STUDENT requires one
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input: STUDENT INFORMATION. In figure 1-2, this input has

been changed to read STUDENT ID. When examined indivi-

dually, the diagrams seem to be correct; but when examined

together, it can be shown that an inconsistency has already

been introduced at the first level in the decomposition

hierarchy. This problem increases as the size of the

specified system increases and can become worse when

different people specify different parts of the system.

The requirements specification should be analyzable

for consistency. In fact, consistency checking "presup-

pose(s) the analyzabi 1 i ty of the requirements by (various)

means," either manually, or by automated tools [Rm85]. To

make analysis possible, the requirements specification must

be formalized. Furthermore, with more formality, it be-

comes more likely that the analysis can and will be per-

formed by mechanical means [Rm85]. Mechanical analysis Is

advantageous since automated tools can enable easier and

more accurate analysis. However, the right kind of Infor-

mation must be embedded within the formalized specification

to enable computer tools to ensure consistency [Ro77c].

This Information will actually be meta-lnformat Ion (Infor-

mation about Information) and Is usually included in the

specification through the Introduction of formal notations

or possibly even a meta-language to aid in consistency

checking.
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Chapter Two

A NAMING CONVENTION TO AID IN THE CONSISTENCY CHECKING

OF STRUCTURED ANALYSIS REQUIREMENTS SPECIFICATIONS

A consistent requirements specification is a necessity

when developing a system. The requirements specification

lays the groundwork for all subsequent stages. Without a

strong foundation, it is unlikely that a correct solution

can be completed for a problem; and if a correct solution

is implemented, it is likely that the cost of development

will be higher than necessary. Therefore, by reducing the

number of errors in a system early in the development pro-

cess, the probability of a correct solution, and a solution

with less cost, is increased. Consistency checking of

requirements specifications is one method of possibly

reducing the number of errors in the implementation of a

system.

INCONSISTENCIES WITHIN STRUCTURED ANALYSIS DIAGRAMS

In a Structured Analysis dataflow diagram, inconsis-

tencies arise within the data elements that cross diagram

boundaries. The number of diagrams in the specification of

a complex system is large. The diagrams are usually devel-

oped manually. Many different people each develop small

pieces of the system. Combining the large number of dia-

grams with current methods of development provides ample
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opportunities for inconsistencies to be introduced through

miscommunication between developers, or simply through

slight carelessness in recording the specification. As the

system specification is decomposed, the information con-

tained within a single diagram becomes more concrete. Ab-

stract names given to data elements at a higher level in

the specification will no longer be appropriate for the

data elements at a lower, less abstract level. The names

of data elements change to allow more information to be

communicated. However, the changes introduced must be

consistent with the information given in the next higher

abstraction level.

To enable consistency checking, the specification must

be formalized in some manner. This is usually done by

embedding meta-informat ion, or by adding notation within

the existing system. The meta- inf ormat ion, or added

notation, enables consistency checking by supplying needed

information for stating intended relationships between the

various parts of the specification.

The consistency checker, whether man or machine, then

extracts the information and analyzes it by comparing the

information from the specification with the expected

results. In Structured Analysis, the extracted information

must deal with how data elements are related between

abstraction levels. Any differences between the extracted
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information and expected results indicates possible

problems that may require correction or modification.

The consistency checks to be performed, will determine

whether all data elements have their appropriate sources

and sinks. This means that not only must a data element

have a source and sink, but that same data element must

logically have the same source and the same sink at all

levels of abstraction. As the data element is decomposed,

the relationship between abstraction levels in the

decomposition must be shown. Therefore, an inconsistency

is one of two things: 1) different data element names at

adjacent abstraction levels for an identical data element,

or 2) different sources or sinks at adjacent abstraction

levels for an identical data element.

JTUHtriT

inro

-fP.OCiUCE CfrtinfifiD

ftCCEJJ

ilUDEriT h-
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riCURE 2-1 - OFlKintiL aiKIM FtM

A NOTATION ENABLING CONSISTENCY CHECKING

One possible added notation for locating the above

inconsistencies is illustrated in Figures 2-1 and 2-2. The
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notation enables a consistency checker to follow the

derivation of a data element. An extension is added to the

element name, indicating its source (where it is obtained)

and also its sink (where it is used). Figure 2-1

illustrates a complete diagram from a system specification

in its original form. All input, output, and control

identifiers are included in the illustration. Figure 2-2

shows the same basic diagram, with names removed and

identifier extensions added. The extensions would actually

be appended to the end of each data element, but appear in

the diagram separately for clarity.

(iSCl/Sl -

SI

CI

Sll'fiLlCl

Hit —I

jiii.'naii

ftJUil.'flJJU

• ii.'i\-iii:i
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;:,'i*JKi

ftjj

MJOl/fliOl

PROOUCt TRfinSCRIPT

ricuFiC i-i- — I'HTd ELftitriT EKTEri?iori;

The extensions specify the data element source and

also the data element sink. For example, the data element

STUDENT INFO in PRODUCE TRANSCRIPT begins as input one (ID

of this diagram (A2) and ends as input one (II) of activity

ACCESS STUDENT RECORD (A21). The extension therefore

becomes A2I1/A21I1. The data element source identifier (the
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extension before the slash) and the data element sink

identifier (the extension after the slash) are each made by

either concatenating the activity identifier (i.e., 'A2')

with the data element Identifier (i.e., 'II'), or for data

elements being split or joined, from the arbitrarily

assigned split/join identifier (i.e., 'S3'). Activity

identifiers are taken from the identifier of the

source/sink activity. For sources/sinks that cross diagram

boundaries, the activity identifier is taken from the

diagram identifier. Data element identifiers are assigned

arbitrarily at the time of specification development. The

relative numbering of data element identifiers must remain

identical between abstraction levels, to reduce errors

identified during consistency checking. Split/Join

identifiers are assigned arbitrarily at the time extensions

are added to data element identifiers. For an exact

explanation of the method for adding extensions to data

elements, see appendix B.

Current Structured Analysis specification styles allow

for the logical splitting or joining of data elements at

the diagram boundary, without explicitly specifying the

split or join. Because of the method of source/sink iden-

tification, further formalization is required within a

system specification. In addition to the extension nota-

tion, it becomes necessary to require that all data ele-
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ments crossing diagram boundaries be in the same form on

both sides of the boundary. Requiring that all splits and

joins be explicity specified enables consistency checking.

THE METHOD OF CHECKING FOR CONSISTENCY

With the introduction of the above notation, it

becomes possible to check for consistency within a require-

ments specification. Currently, structured analysis

diagrams are produced manually, with limited aid from

automated graphics systems. This means that the addition

of the notation and the extraction of the information

required for checking must also be done manually. The

information must be gathered and arranged manually. To

enable automated consistency checking, the information must

be combined into a textual diagram description. The

textual diagram description contains all necessary informa-

tion required by the consistency checker.

The diagram description can be broken down into four

basic parts: the IOC section, the activity section, the

split section, and the join section. The IOC section

specifies all inputs, outputs, and controls that cross the

diagram boundary of a detail diagram to the abstraction

level directly above the diagram. The activity section

specifies all inputs, outputs, and controls that cross the

diagram boundary to the abstraction level directly below

the diagram. The split section and join section supply
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information for connecting data elements between the other

two sections. Figure 2-3 at the end of the chapter shows a

completed diagram description for the diagrams in figures

2-1 and 2-2.

DATA SOURCES AND SINKS

When diagram descriptions have been completed, the

consistency checking can begin. Two types of checking must

be performed: inter-diagram checks, and also intra-diagram

checks. The inter-diagram checks ensure consistency be-

tween various levels within the diagram hierarchy. The

intra-diagram checks ensure consistency within a single

diagram.

Inter-diagram consistency checking must be performed

for each activity in the diagram hierarchy that is

decomposed in a lower-level detail diagram. Data sources

are extracted from each activity and its related detail

diagram. The possible data sources are inputs and controls

to the activity, and the outputs from the detail diagram.

For each source, the extension is used to locate the

appropriate data sink. The possible data sinks are inputs

and controls to the detail diagram, and outputs from the

activity. The extension gives the diagram identifier and

data element identifier. If a data element is found in the

appropriate position, the data elements are compared.

Non-identical data element names signify inconsistencies.
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After all possible sources have been identified and

checked, data element sinks are located. All sinks not

matched to a data element source are additional

i neons istencies .

Intra-diagram consistency checking is performed for

each diagram in the diagram hierarchy. Intra-diagram

checks are easier to perform than inter-diagram checks

since all required information is located on one diagram.

The process begins by extracting data sources. The pos-

sible data sources are inputs and controls to the diagram,

and the outputs from each activity in the diagram. For

each source, the extension is used to locate the

appropriate data sink. The possible data sinks are inputs

and controls to each activity in the diagram, and outputs

from the diagram. Splits/Joins are treated similar to

activities. If a data element is found in the appropriate

position, the data elements are compared. Non-identical

data element names signify inconsistencies. After all

possible sources have been identified and checked, data

element sinks must be located. All sinks not previously

matched to a data element source are additional

i neons istencies.
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diagram: PRODUCE.TRANSCRIPT

input: STUDENT_INF0.A2I1/A21I1
control: PRODUCE COMMAND. A2C 1 /Jl

output: TRANSCRIPT. A2301/A201

activity: ACCESS_STUDENT_RECORD

input: STUDENT INFO. A2I1 /A2 1 1

1

contro 1 : PRODUCE_COMMAND . J 1 / A2 1 C

1

output: STUDENT_REC0RD.A2101/A22I1

activity: FORMAT_TRANSCRIPT

input: STUDENT_REC0RD.A2101 /A22I

1

control: PRODUCE COMMAND. J2/A22C1
output: F0RMATTe5_TRANSCRIPT.A2201/A23I1

activity: PRINT_TRANSCRIPT

input: F0RMATTED_TRANSCRIPT.A2201/A23I 1

control: PRODUCE COMMAND. J2/A23C1
output: TRANSCRIPT. A2301/A201

split: PR0DUCE_C0MMAND.A2C1/J1

output: PR0DUCE_C0MMAND.J1/A21C1,
PRODUCE_COMMAND . J 1 /J2

split: PR0DUCE_C0MMAND.J1/J2

output: PR0DUCE_C0MMAND.J2/A22C1,
PRODUCE_COMMAND . J2 / A23C1

end

:

FIGURE 2-3 DIAGRAM DESCRIPTION EXAMPLE
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Chapter Three

CONSISTENCY CHECKER REQUIREMENTS SPECIFICATION

When specifying a system, several basic questions

should be addressed: 1) What is the general description

of the problem to be solved, 2) Who will be the predomi-

nant users of the system, 3) What is the required form

for the system input, 4) What is the required form for

the system output, and 5) What operational constraints

exist for the system. After these questions have been

answered, a system model must be developed.

GENERAL PROBLEM DESCRIPTION

The system to be implemented will take a requirements

specification in the form of a set of structured analysis

diagram descriptions and produce a report of any inconsis-

tencies in inputs, outputs, and controls that occur within

the specification. The consistency checker will check for

any data source that does not have appropriate data sinks.

When analyzing a single diagram, the possible sources are

diagram inputs, diagram controls, and activity outputs; and

the possible sinks are diagram outputs, activity inputs,

and activity controls. When analyzing the diagram tree,

the possible sources are activity inputs (taken from the

parent dia- gram), activity controls (taken from the parent

diagram), and diagram outputs, and the possible sinks are

- 18 -



activity outputs (taken from the parent diagram), diagram

Inputs, and detail controls.

INVOCATION OF TOOL

The predominant users of the consistency checking

system will be students in the Department of Computer

Science at Kansas State University. It will fae used along

with other software tools at the university, and it would

therefore be advantageous to operate similar to other

available software tools. With this in mind, the invoca-

tion process should be similar to other applications on the

targeted hardware. The invocation includes the mechanisms

for obtaining input and directing output from the consis-

tency checker.

DEFINITION OF INPUT

The required system input will be a set of textual

structured analysis diagram descriptions. Each diagram

description includes all information required by the

consistency checker. This information states the name of

the diagram; a list of all diagram inputs, outputs, and

controls; a list of all activities within the diagram,

along with the inputs, outputs, and controls to each

activity; and also a list of all splits and joins of each

data element within the diagram. The exact form for the

diagram descriptions can be found in Appendix A. An
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example of a complete diagram description can be found

later in this chapter, and instructions for description

development can be found in Appendix B. The diagram

description is in free-format, thus relieving the user from

the problem of errors introduced by requiring highly

structured, error-prone, formatted input.

DEFINITION OF OUTPUT

The output will include an echo of the input, produc-

ing a formatted copy, indenting sub-sections, and aligning

columns of information. For any error encountered while

scanning the input file, an appropriate error message will

be issued, indicating the error encountered, and also its

location within the input file. Also included in the

output will be a report of all consistency errors found

within the set of diagram descriptions. The list of all

possible error messages are listed appendix D.

OPERATIONAL CONSTRAINTS

Operationally, the consistency checking system should

perform in a manner similar to other available tools. The

method for acquiring system input and producing system

output will therefore be logical and familiar to the user.

STRUCTURED ANALYSIS MODEL OF THE PROPOSED SYSTEM

Figure 3-1 shows the system described previously in

the General Problem Description and is entitled CONSISTENCY

- 20 -



CHECKER. The system contains three major activities: SCAN

DIAGRAM DESCRIPTION INPUT, PRODUCE DIAGRAM DESCRIPTION

OUTPUT, and PRODUCE CONSISTENCY REPORT. SCAN DIAGRAM

DESCRIPTION INPUT scans the diagram description input pro-

ducing either error messages relating to the input scan, or

producing an internal representation of the diagram

description that will be formatted and sent to output by

PRODUCE DIAGRAM DESCRIPTION OUTPUT. The internal repre-

sentation of the diagram description is also used by

PRODUCE CONSISTENCY REPORT. This activity performs the

consistency check producing appropriate error messages

relating to the consistency state of the diagram descrip-

tions. Further decomposition of the system leads to the

specifications in figures 3-2 through 3-5.

-CHECK CDnnfiriD
jcfinriinc iW)}-. njcj

SCftn [lltKAM
[lEJCMFTIOn

inruT —I

TEKTUHL
tilnCFiAn

DESCFlIFTIon

ItlfUT

iriTEHriflL

FORItftT -r
DlftCF^fllt

PESCRIfTIOn

wma laKfM
tiESCPiIfTIOn

OUTPUT

DESctaPTion

OUTPUT

PflOOUCE

COnSISTEflCV

ItEPORT

consisTEncv

EPF:OP,

uses

f)0 consisTEncY checkek ra

FICURE 3-1 - C0nSI5TEnCV CHECKER

Figure 3-2 describes the activity SCAN DIAGRAM

DESCRIPTION INPUT, from diagram CONSISTENCY CHECKER. In

this diagram, SCAN DIAGRAM DESCRIPTION INPUT is decomposed

- 21 -



into GET TOKEN, CHECK SYNTAX, and STORE TOKEN. GET TOKEN

obtains a single token from the input, making it available

to CHECK SYNTAX. For tokens that are not within the

required syntax, the token location is noted and an appro-

priate error message Is issued. Tokens adhering to the

required syntax are stored by STORE TOKEN in an internal

representation of the diagram description for later access

during consistency checking.

-^ CHECK coniiflnii

EFiRdft nscj

CET

TiiKEfl

TEMIUH

bWM n

scfintiiric

UfCRIfTIOri

iriF-UT TdKtri-^ -»
CHECK

SVriTHK — inTEFiriHL

FORIIiiT

DESCftlPTIOn

UOLIDftTEti-*" STORE
TOKEn

^
,

TOKEH

tli scon DIftCRftIt titJCRIPTldh infUT Fl

riCUF;E 5-J - SCftn DIltCMII DESCRIfTIOn IfifUT

Figure 3-3 describes the activity PRODUCE CONSISTENCY

REPORT, from diagram CONSISTENCY CHECKER. In this diagram,

PRODUCE CONSISTENCY REPORT is decomposed into LINK DESCRIP-

TION HIERARCHY, CHECK INTER-DIAGRAM CONSISTENCY, and CHECK

INTRA-DIAGRAM CONSISTENCY. LINK DESCRIPTION HIERARCHY

connects the descriptions from the free-format input into a

tree of descriptions, checking that a single description is

at the top of the structure, and allowing for further

consistency checks. CHECK INTER-DIAGRAM CONSISTENCY checks
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for existing inconsistencies between related descriptions,

with CHECK INTRA-DIAGRAM CONSISTENCY checking for existing

inconsistencies within an individual description.

-scdnninc EHRor, n;cs

LiriK

[lESCRIfTIOn

HIEf;(iF;CHV

IlTEHriflL

FOI;llhT

lIHORfltl

HtJCRIFTIon
LlflKED

-»"

DIACFSAIt

DESCFilFTIOnS

CHECK
inTRfl-DIftCRflll

con;isTEncv

imp,fi-

uses

consiJTEncY
ERROR

tISCJ

CHECK
imER-pificfifin

consiJTEncv

t-inTER-

DIHi^RAH

ERROR

nscj

PROHUCE COflJISTEOCV REPORT n

FICURE 5-3 - PROI'liCE COnSISTEFICV REPORT

Figure 3-4 describes the activity CHECK INTER-DIAGRAM

CONSISTENCY, from diagram PRODUCE CONSISTENCY REPORT. In

this diagram, CHECK INTER-DIAGRAM CONSISTENCY is decomposed

into PRODUCE INTER-DIAGRAM SOURCE LIST, PRODUCE INTER-

DIAGRAM SINK LIST, and DIFFERENTIATE SOURCE/SINK LISTS.

PRODUCE INTER-DIAGRAM SOURCE LIST accumulates all entities

crossing a diagram boundary that are sources of data.

PRODUCE INTER-DIAGRAM SINK LIST similarly accumulates all

entities crossing a diagram boundary that are sinks of

data. DIFFERENTIATE SOURCE/SINK LISTS compares the

information in both lists, matching sources with all

appropriate sinks, identifying all unmatched sources or

sinks, along with their locations within the set of diagram

descriptions.
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Figure 3-5 describes the activity CHECK INTRA-DIAGRAM

CONSISTENCY, from diagram PRODUCE CONSISTENCY REPORT. This

activity is similar to the one described in figure 3-4,

checking for inconsistencies related to sources and sinks

within a single diagram. The added notation is not

actually required for this activity since the inconsis-

tencies are introduced within elements that cross diagram

boundaries. However, this activity is required to relate
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all information contained in a hierarchy of more than two

levels

.
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Chapter Four

CONSISTENCY CHECKER DESIGN AND IMPLEMENTATION

The consistency checker will take a requirements

specification in the form of a set of textual structured

analysis diagram descriptions, and produce a report of any

inconsistencies in inputs, outputs, and controls that occur

within the specification. The system will operate similar

to other available software tools in the Department of

Computer Science at Kansas State University. Input to the

system will be obtained from standard input, and the output

will be directed to standard output. The system begins by

parsing the free-format input, extracting and storing the

required input, output, and control information from the

diagram descriptions. If an error is encountered while

parsing the input, the error and its location within the

input will be identified. If the file is successfully

parsed, a formatted echo of the input is produced. The

parser will not be case sensitive, but when the input is

echoed, the diagram description keywords will be In

lower-case, with user defined identifiers in upper case.

When the echo of input is complete, the consistency checker

will link the diagrams into a tree, checking inter-diagram

consistency, and then intra-diagram consistency.
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CONSISTENCY CHECKER SYSTEM HIERARCHY

System hierarchy is outlined in figure 4-1. The

control structure can be broken down into three major

portions: DIAGRAM DESCRIPTION PARSER, PRINT DIAGRAM

DESCRIPTION, and MAKE CONSISTENCY CHECKS.

CmiSKKt
CHECKEK

,
L

IIMRM MtlBT 1 MKE
KscKirriM »»Cltltll 1 msisiaict

NHtsu Ksa irrion
|

CHECKS

1

1

inntD-DiMMii

1

niTEIt-tlMMII
CKEC KS CHECKS

1

a1 nti NT
men TOKED

riCBtt 1-1 - JTSTEH KEItMtCIIT

DIAGRAM DESCRIPTION PARSER will be implemented using a

recursive-descent process, making calls to GET TOKEN and

PRINT TOKEN. GET TOKEN scans the input stream for tokens,

where tokens are delimited by white space, or where appro-

priate, by commas or colons. PRINT TOKEN changes the

internal storage representation of a token into a form

suitable for printing.

PRINT DIAGRAM DESCRIPTION will print the free-form

input in a more structured form. When printed, all

description keywords will be printed in lower case, with

all user-defined identifiers in upper case. PRINT DIAGRAM

DESCRIPTION also makes calls to PRINT TOKEN.

- 27 -



MAKE CONSISTENCY CHECKS will control the consistency

checking activities, making calls to INTER-DIAGRAM CHECKS,

and INTRA-DIAGRAM CHECKS. INTER-DIAGRAM CHECKS makes

consistency checks of the whole diagram tree, identifying

existing inconsistencies in relationships between diagrams.

INTRA-DIAGRAM CHECKS makes consistency checks of a single

diagram, identifying existing inconsistencies within that

diagram. Both INTER-DIAGRAM CHECKS and INTRA-DIAGRAM

CHECKS make calls to PRINT TOKEN.

CONSISTENCY CHECKER IMPLEMENTATION

The implementation of the consistency checker will be

on a VAX 11/780 computer operating under UNIX, at Kansas

State University, Department of Computer Science. The

consistency checker will be implemented using Pascal.

The consistency checker will expect input to be direc-

ted from standard input, and will direct all output to

standard output. The checker can be invoked, recieving all

input (terminated by ctrl-D) from the terminal and direc-

ting all output to the terminal, by the command

check

The checker can be invoked, receiving all input from an

external file and directing all output to the terminal, by

the command

check < infile

The checker can be invoked, receiving all input from an
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external file and directing all output to a separate

external file, by the command

check < infile > outfile

No other options are available at invocation. Error

messages are outlined, with explanations, in appendix D.

DESCRIPTION OF ALGORITHMS FOR CHECKING CONSISTENCY

Two types of consistency checks must be made:

inter-diagram checks and intra-diagram checks. The inter-

diagram checks ensure consistency between various levels

within the diagram hierarchy. The intra-diagram checks

ensure consistency within a single diagram. Each diagram

must be checked for consistency. Inter-diagram checking is

performed first, followed by intra-diagram checking.

Inter-diagram consistency checking is performed for

each activity in the diagram hierarchy that is decomposed

in a lower-level detail diagram. The process begins by

extracting data sources from the activity and its related

detail diagram. The possible data sources are inputs and

controls to the activity, and the outputs from the detail

diagram. For each source placed in this source list, the

extension is used to locate the appropriate data sink. The

possible data sinks are inputs and controls to the detail

diagram, and outputs from the activity. The extension

gives the diagram identifier and data element identifier.

If a data element is found in the appropriate position, the
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data elements are compared. Non- ident ical data element

names signify inconsistencies, which are identified as

errors. The location of each identified inconsistency is

then printed for the user. After all possible sources have

been identified and checked, data element sinks are

located. All sinks not previously matched to a data ele-

ment source are identified as additional inconsistencies,

with their locations printed for the user.

Intra-diagram consistency checking is performed for

each diagram in the diagram hierarchy. Intra-diagram

checks are easier to perform than inter-diagram checks

since all required information is located on one diagram.

The process begins by extracting data sources. The pos-

sible data sources are inputs and controls to the diagram,

and the outputs from each activity in the diagram. For

each source placed in this source list, the extension is

used to locate the appropriate data sink. The possible

data sinks are inputs and controls to each activity in the

diagram, and outputs from the diagram. Splits/Joins are

treated similar to activities. If a data element is found

in the appropriate position, the data elements are com-

pared. Non-identical data element names signify incon-

sistencies, which are identified as errors. The location

of each identified inconsistency is then printed for the

user. After all possible sources have been identified and
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checked, data element sinks are located. All sinks not

previously matched to a data element source are identified

as additional inconsistencies, with their locations printed

for the user.
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Chapter Five

CONCLUSIONS

Requirements specifications are the basis for develop-

ing a system. The requirements specification defines the

problem and outlines the characteristics (including con-

straints) of a correct solution. The requirements specifi-

cation must answer questions about the system, but an

inconsistent specification is unable to do this because the

specification contains contradictions. The requirements

specification should be analyzable for consistency, with

mechanical analysis being advantageous since automated

tools can enable easier and more accurate analysis.

Structured analysis diagrams are a graphic system for

concisely specifiying requirements of large scale systems.

However, the abstraction process that gives structured

analysis much of its power also allows inconsistencies in

naming information at different abstraction levels. Addi-

tional information must be embedded within the structured

analysis specification to enable computer tools to ensure

consistency. In structured analysis, this embedded

information can be in the form of extensions to data

element names.

A consistent requirements specification is a necessity

when developing a system. The requirements specification
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lays the groundwork for all subsequent stages. Without a

strong foundation, it is unlikely that a correct solution

can be completed for a problem. By reducing the number of

errors in a system early in the development process, the

probability of a correct solution, and a solution with less

cost, is increased. Consistency checking of requirements

specifications is one method of possibly reducing the

number of errors in the implementation of a system, and is

therefore beneficial.
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Appendix A

B-N-F GRAMMAR FOR STRUCTURED ANALYSIS DIAGRAM DESCRIPTIONS

GENERAL DESCRIPTION

A Structured Analysis Diagram Description contains
information related to the contents of a structured anal-
ysis diagram. One description is required for each diagram
in the system model. When combined, the set of diagram
descriptions form the input for the consistency checker.
The input can be free-format, with the individual tokens in

the description separated by white space, or when indicated
in the B-N-F, by commas.

The information in a diagram description is derived
from the related diagram. The diagram description contains
the diagram name, all inputs, outputs, and controls that
cross the diagram boundary, activity information, and
split/join information. Activity information includes the
activity name, and all inputs, outputs, and controls for

the activity. Split information includes the input to the
split and the list of outputs from the split. Join infor-
mation includes the input list to the join and the output
from the join.

The amount of information contained within a diagram
description is ultimately restricted by the rules governing
diagram development (e.g., the number of activities con-
tained within a description has a maximum value of six,
since the number of activities within a diagram is limited
to six).

SYNTAX DESCRIPTION

<dgm_l ist> : :=

<dgm_desc> ! <dgm_desc> <dgm_list>

<dgm_desc> : :

=

diagram: <act ivity_id> <dgm_body> end:

<dgm_body> : :

=

<ioc_group> <act i vity_l ist> <connect_l ist>
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< ioc_group> : :
=

<input_list> <control_l ist> <output_l ist>

<input_l ist> : :=

input: <ioc_list>

<control_l ist> :
:=

control: <ioc_list>

<output_l ist> :
:=

output: <ioc_list>

< ioc_l ist> : :
=

< id_l ist> ! none

<id_list> ::=
<connect_id> 1 <connect_id> , <id_list>

<act i V ity_l ist> ::=
<activity> ! <activity> <act

i

vity_l ist>

<act i V ity> : :
=

activity: <act

i

vity_id> <ioc_group>

<connect_l ist> ::=
<split_list> <join_list>

<spl i t_l ist> :
:

=

<split> : <split> <split_list> ! nil

<spl it> : :=

split: <connect_id> <output_l ist>

< join_l ist> : :

=

<join> ! <join> <join_list> ! nil

< join> : :

=

join: <connect_id> <input_list>

<activity id> :
:=

<id>

<connect_id> ::=
<id> <extension>
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<id> ::=
<alpha> <alphanumer ic>

<extens ion> : :
=

. <source> / <sink>

<source> : :

=

<diagrain_number> <ioc> <one_to_six> !

s <one_to_six> I j < one_to_six>

<diagram_number> ::=
a <one_to_six_l ist> ! aO

<one_to_six> : :=

~i T 2 ; 3 : 4 : 5 i 6

<one_to_six_l ist> ::=
<one_to_six> I <one_to_six> <one_to_six_l ist>

< ioc> : : =

<alpha> :
:

=

aiDiCi ••• iXiyiZi
A!B!c:... !x:y:z:_

<int> ::=
<digit> ! <digit> <int>

<digi t> : :

=

o;i!2:3:4:5:6:7:8:9
<alphanumeric> ::=

<alpha> <alphanumer ic> ! <digit> <alphanumer ic> ! nil
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Appendix B

DIAGRAM DESCRIPTION DEVELOPMENT

A Structured Analysis Diagram Description contains
information related to the contents of a structured
analysis diagram. One description is required for each
diagram in the system model. Before the diagram
description can be developed, the diagram must be complete.
A complete diagram includes the following:

1> Diagram name,
2) All data elements named,
3) All activities named and numbered,
4) All diagram inputs, controls, and outputs
numbered,
5) All activity inputs, controls, and outputs
numbered

.

6) All data element splits/joins explicitly
represented within the diagram.

See [Ro77b] for details on diagram development. Note that
item six above is a deviation from current structured
analysis styles so is not included in [Ro77bl. A complete
diagram is illustrated in figure B-1. The exact syntax for
a diagram description can be found in appendix A.

II II

-PRODUCE coimnriD

, . CI

01OCCEJS
STUDEflT p
RECOM sji

STUtiEFlT

iriFO

STUDEnT-
RECORti II

,.C1

FOfitlliT

TRftflJCfilF'T

tzz

01

rORItHTTEP -

TRUnSCRIfT 11

,.C1
TROflSCRIFT

mm
TROnSCFtlfT

fl23
M 01

a: fRODUCE TRflflJCRIfT n

FICURE t-1 - ORICinrtL DlftCRRK F0RI1

NUMBERING SPLITS/JOINS

Before data element extensions can be added all
splits/joins must be numbered, similar to the numbering of
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diagram inputs, controls, and outputs. All splits (joins)
are numbered arbitrarily beginning with SI (Jl). In figure
B-2, CI has been split twice, giving SI and S2. Note that
two splits are not actually required. Both splits could be

combined into one, thus simplifying the diagram
description. In the figure, two splits are used to conform
to currently accepted diagram style. For data elements
being split into new, unique data elements no further
additions must be made to the diagram. This also applies
to unique data elements being joined into one new, unique
data element. For splits and joins where the data element
is the same on each branch of the split or join, the name
must be copied to each segment of the split or joined data
element. For the purpose of reducing diagram clutter, the

data element name can simply be placed at the location of

the split or join, with the extensions to be placed on
individual segments. If this alternative is chosen, it is

recommended that only one split or join be present on a

data element of this type. See figure B-3.

SI

u u

CI

-FKODUCt connAHD

, .CI

fiCCESS

JTUDEriT

KECORD 1)21

01

fTUDCriT

iriFo

STUDEFtT-

RECORD II

CI

FORItftT

TROnSCfllfT
Uli

«i

FOfiHSTTEti -

IfldnSCfllFT 11

TROnSCRIPT

fdini
TftfinSCfilfT

hZi
oi M

Hi fSODUCE TRdnSCMFT n

riCJRE i-Z - HdCRHB UITH LStELEP SPLITS

ADDING DATA ELEMENT EXTENSIONS

At this point, all required parts of the diagram
should be numbered. It is now possible to begin adding
data element extensions.

Data element names are easily made by concatenating
the data source identifier and the data sink identifier.
The data source and data sink identifiers are made from a
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combination of the activity number of the source or sink,
(i.e., A21) and from the data element number (i.e., II) of
the source or sink. A data source or data sink identifier
may also be the number of a split or join (i.e., SI or Jl).
The data source and data sink identifiers are concatenated
with a slash, and are separated from the data element name
with a period. The process can best be shown through
example

.

.HKUSi-

II II

SI

CI

nom.1 conitftnc

,,ci

n
STUDEni
inro

.nii/iiziii

01dCCESS
JTUDEflT p
FlECOFiD

f)21

STUDEnr-
FiEcoF:[> n

.Si.'fiiJCl

CI

FORtlAT

TftfUlSCRIPT

HZi

Ul

FOFlBftTTED -

TRflnSCRIF-T 11

.tizzoumii

.ni'KKi

.Xi

TRfmSCF-iIf-T

.A2»1^A»1

PRinr
TRfinSCfilfT

a::3
Oi 01

notua TFiftnscFiifT n

FICUftE E-3 - COHFLETED I'lKtM

In figure B-3, the extensio
STUDENT INFO would be A2I1/A21I1
becoming STUDENT_INFO. A2I 1 /A2 II

1

element is STUDENT INFO, therefo
period becomes STUDENT_INFO (all
replaced by underscores). The f

is made by combining the activit
data element, A2, with the data
activity number of the source is
diagram, since the data element
boundary, and the data element i

The second half of the extension
the activiy number of the sink (

the data element number for that
Combining these two parts gives
A2I1/A21I1. This is then concat
to give the result, STUDENT.INFO

n for the data element
, with the final name

The name of the data
re, the part before the
blanks within the name are
irst half of the extension
y of the source for the
element number, II. The
the identifier of the

crosses the diagram
s input one of the diagram.
is formed similarly from

which is activity A21) and
activity (which is ID.

the final extension of
enated with the first part
.A2I1/A21I1.

As a second example, the final data element name for
the control to activity A21, ACCESS STUDENT RECORD, becomes
PR0DUCE_C0MMAND.S1/A21C1 . The first half is produced by
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replacing all blanks within the original data element name
with underscores. The second half is produced by combining
the data element source and sink identifiers. The source
identifier Is SI, since it comes from split one. The sink
identifier is A21C1, since it goes to activity-two-one, and
is control-one to that activity. Combining the data
element source and sink identifiers with a slash, and
concatenating the original data element name and the
extension with a period, the final data element name
becomes PR0DUCE_C0MMAND.S1 /A2 ICl .

The remaining data element names with their
appropriate extensions are given in figure B-3. Remember
that activity numbers are taken from different places
depending on whether the data element crosses a diagram
boundary, and whether the activity number refers to the
data element source or sink. Sources that are inputs or
controls to the diagram get the activity number from the
diagram itself. All other sources are outputs from
activities (or spl i ts/ jo ins) within the diagram and get the
activity number directly from that activity (or directly
from the spl it/ join). Sinks that are outputs from the
diagram get the activity number from the diagram itself.
All other sinks are inputs to activities (or spl its/ j o ins)
within the diagram, or are controls to activities within
the diagram. These sinks get the activity number directly
from the activity (or directly from the split/join).
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DIAGRAM DESCRIPTION EXAMPLE FROM CHAPTER ONE

diagram: STUDENT.DATABASE

input: STUDENT_INF0.A0I1/S1
control: CREATE_COMMAND. AOCl /AlCl ,

PRODUCE_COMMAND. A0C2/A2C1

,

MODIFY_COMMAND.AOC3/A3C1
output: CREATE_MSG.A101/A001,

TRANSCRIPT. A201/A002,
MODI FY.MSG . A30 1 /A003

activity: CREATE.STUDENT

input: STUDENT_INF0.S1/A1I1
control : CREATE_COMMAND. AOCl /AlCl
output: CREATE_MSG.A101/A001

activity: PRODUCE.TRANSCRIPT

input: STUDENT_INF0.S1/A2I1
control : PRODUCE.COMMAND. AOC2/A2C1
output: TRANSCRIPT. A201/A002

activity: MODIFY.TRANSCRIPT

input: STUDENT_INF0.S1/A3I1
control : MODIFY_COMMAND. A0C3/A3C1
output: M0DIFY_MSG.A301/A003

split: STUDENT_INF0.A0I1/S1

output: STUDENT_INF0.S1/A1I1,
STUDENT_INF0.S1/A2I1,
STUDENT_I NFO . S 1 /A3I1

end:
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diagram: MODIFY_TRANSCRIPT

input: STUDENT_INF0.A3I1/S1
control: MODIFY_COMMAND. A3C1 /S2
output: MODIFY_MSG.A3201/A301

activity: ACCESS_STUDENT_RECORD

input: STUDENT_INF0.S1/A31I1
control: MODIFY_COMMAND.S2/A31Cl
output: STUDENT_REC0RD.A3101/A32I1

activity: UPDATE_STUDENT_RECORD

input: STUDENT RECORD. A3101 /A32I 1

,

STUDENT_INF0.S1/A32I2
control: MODIFY_COMMAND.S2/A32Cl
output: MODIFY MSG . A3201 /A301

,

UPDATE5_STUDENT_REC0RD. A3201 /A33I

1

activity: ST0RE_STUDENT_REC0RD

input: UPDATED_STUDENT_REC0RD.A3201/A33I1
control: MODIFY_COMMAND.S2/A33Cl
output: NONE

split: STUDENT_INF0.A3I1/S1

output: STUDENT_INF0.S1/A31I1,
STUDENT_INF0.S1/A32I2

split: M0DIFY_C0MMAND.A3C1/S2

output: M0DIFY_C0MMAND.S2/A31C1,
M0DIFY_C0MMAND.S2/A32C1,
MODI FY_C0MMAND . S2 / A33C1

end:
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input:
control

:

output:

activity:

input:
control
output:

activity:

input

:

control
output

:

spl it:

output:

end

Appendix C

CREATE_STUDENT

STUDENT ID.AIII/Allll
CREATE COMMAND. AlCl /SI

createImsg.aiio2/aioi

create_student_record

student ID.AIII/Allll
CREATE command. Si /A llCl
STUDENf_RECORD.Al 101/A12I1,
CREATE_MSG . A 11 02 / A 1 1

STORE_STUDENT_RECORD

STUDENT_REC0RD.A1 101/A12I 1

CREATE_COMMAND . S 1 / A 1 2C

1

NONE

CREATE.COMMAND . A 1 C 1 /S

1

CREATE_C0MMAND.S1/A1 ICl,

CREATE COMMAND. SI /A 12C1
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diagram: PRODUCE_TRANSCRIPT

input: STUDENT_INF0.A2I1/A21I1
control: PRODUCE_COMMAND. A2C1 /SI

output: TRANSCRIPT. A2301/A201

activity: ACCESS_RECORD

input: STUDENT_INF0.A2I1/A21I1
contro 1

:

PRODUCE_COMMAND . S 1 / A2 1 CI

output: STUDENT_REC0RD.A2101/A22I1

activity: FORMAT_TRANSCRIPT

input: STUDENT_REC0RD.A2101/A22I1
control

:

PRODUCE.COMMAND.Sl /A22C1
output: F0RMATTED_TRANSCRIPT.A2201/A23I1

activity: PRINT_TRANSCRIPT

input: F0RMATTED_TRANSCRIPT.A2201/A23I1
control: PR0DUCE_c5mMAND.S 1 /A23C1
output: TRANSCRIPT. A2301/A201

split: PR0DUCE_C0MMAND.A2CI/S1

output: PRODUCE COMMAND. SI /A2 ICl ,

PRODUCE~COMMAND . S 1 /A22C1

,

PRODUCeIcOMMAND . S 1 /A23C1

end:
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ERROR MESSAGES

1) ERROR: "diagram:" expected

Scanning error. Expecting the keyword "diagram:" as

input.

2) ERROR: "end:" expected

Scanning error. Expecting the keyword "end:" as

input

.

3) ERROR: "input:" expected

Scanning error. Expecting the keyword "input:" as

input.

4) ERROR: "output:" expected

Scanning error. Expecting the keyword "output:" as

input.

5) ERROR: "activity:" expected

Scanning error. Expecting the keyword "activity:" as

input

.

6) ERROR: "control:" expected

Scanning error. Expecting the keyword "control:" as

input

.

7) ERROR: unexpected comma or keyword

Scanning error. Expecting identifier, but found comma
or keyword.

8) ERROR: no AO diagram

Scanning error. A diagram description for the highest
abstraction level was not encountered In the Input
file.
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9) ERROR: multiple AO diagrams

Scanning error. More than one diagram description for

the highest abstraction level was encountered in the

input file.

10) ERROR: unmatched source(s) in diagram

Consistency error. One or more source data elements
were not matched to an appropriate sink data element.

11) ERROR: unmatched sinkCs) in diagram

Consistency error. One or more sink data elements
were not matched to an appropriate source data
element.
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IMPLEMENTATION SOURCE CODE

program check ( input, output)

;

Check — Program to check consistency of a structured

analysis diagram description. The required format for

the input file is described in Master's Thesis:

CONSISTENCY CHECKING OF REQUIREMENTS SPECIFICATIONS
USING STRUCTURED ANALYSIS DIAGRAMS

by

Aaron Friesen

Program Completed December 1986.

Note: All input is taken from Standard Input, and all

output is directed to Standard Output.
*********************************************************

^

type
strSO =

dgmptr =

iocptr =

iocrec =

packed array [

1

"dgmrec;
'^ iocrec;

80] of char;
(* diagram info *)
(* input, output,

control info *)

record
name : str80;
next : iocptr;

end; (* record *)

actptr = ^actrec;
actrec = record

name : str80;
ins iocptr;
ctrls iocptr;
outs ' iocptr;
detail : dgmptr;

(* ioc name
(* next ioc

(* activity info

*)
*)

*)

next : actptr;
end; (* record *)

(* activity name *)

<* input list *)

(* control list *}

(* output 1 ist *)

(* detail diagram
for activity *)

(* next activity *)

sjptr = ''sjrec; (* split, join info *)

sjrec = record
whole : strSO; (* sj name *)

parts : iocptr; (* input/output list *)

next : sjptr; (* next sj *)
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*)

dgmptr
dgmrec

chkptr =

chkrec =

end; <* record
'^dgmrec; )

record
name
hasparent
ins
ctrls
outs
acts
spl its
jo ins
next

end; (* record
"chkrec;
record

name 1 : strSO;
name2 : strSO;
kind : char;
next : chkptr;

end; <* record *)

StrSO;
boolean;
iocptr;
iocptr;
iocptr;
actptr;
sjptr;
sjptr;
dgmptr;
*)

(* diagram info *)

(* diagram name *)

(* parent flag *)

(* input list *)

(* control 1 ist *)

<* output list *)

(* activity 1 ist *)

(* split list *)

(* join list *)

(* next diagram *)

(* check list info *)

<* source/sink name *)

(* source/sink kind *)

(* next source/sink
to check *)

var
cccc : char;

dgm : dgmptr;

word : strSO;

1 ine : integer;

(* global, next
char in input *)

<* head pointer
for diagrams *)

(* temp input
variable *)

(* current 1 ine of
input file *)

(* global error flag *)error : boolean;

procedure GetWord (var word:str80; var 1 ine : integer)

;

GetWord — Scans input stream for one 'word.* A 'word'

is defined as anything delimited by white space.
Also, a comma or colon is assumed to mark the end of

a 'word.'

word — 'word' being input
line -- current line number within input file being
scanned

cccc — global variable of next input character to be
used
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length : integer; (* length of input word *)

function GetCh : char;

GetCh — Gets a character from the input stream,

converting all white space to blanks.

cccc — input character

var ch : char; (* temporary input character *)

begin
if eoln then line := line + 1;

read(ch)

;

if ch in ['a' . .'z'

]

then ch := chr(ord(ch) - 32)

else if (ch = tab) or (ch = chr(12)) then ch := ' ';

GetCh := ch;
end;

begin
word := ' ';

length := 0;
while not eof and (cccc = ' ' ) do cccc := GetCh;

while not eof and (cccc <> ':')

and (cccc <> ' *) and (cccc <> ',') do

begin
length := length + 1;

wordt length] := cccc;
cccc := GetCh;

end; (* while *)

if cccc = ' :

'

then
begin

word[length+l ] := cccc;
cccc := GetCh;

end (* then *)

else if (length = 0) and (cccc = ',')

then
begin

word := *, *;

cccc := GetCh;
end; (* then *)
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end; <* GetWord *)

procedure PrintWord (word:str80; Iniboolean);

PrintWord — Print a word, dropping all trailing blanks.

word — 'word' being printed
In — boolean indicating new line (as in write vs.

writeln)
*********************************************************

^

var i : integer;

begin
i := 1;

while (word[i] <> ' ') and (i <= 80) do

begin
writeCwordt i ] )

;

i := i + 1;

end; (* while *)

if In then writeln;
end; (* PrintWord *)

procedure err (num: integer)

;

(*********************************************************
err — Print an error message

num — message number
*********************************************************)

begin
write ('ERROR;
case num of

');

1

2

3
4
5

6
7
8
9

10
11

end;

writelnC "diagram: " expected');
writelnC "end: " expected');
writelnCunexpected comma or keyword');
writelnC " input: " expected');
writeln( ' "output: " expected');
writeln('"actlvity:" expected');
writelnC "control : expected');
writelnCno AO diagram');
writelnCmultiple AO diagrams');
write ('unmatched source(s) in diagram ');

write ('unmatched sink(s) in diagram ');

(* case *)
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error := true;
end; (* err *)

function KeyWord (word:str80) ; boolean;

Keyword -- determine if the word is a keyword

word — word to be checked

begin
Keyword := (word = 'DIAGRAM:') or (word = 'INPUT:') or

(word = 'OUTPUT:') or (word = 'CONTROL:') or

(word = 'ACTIVITY:') or (word = 'SPLIT:') or

(word = 'JOIN:') or (word = 'END:') or

(word = ', ');

end; (* KeyWord *)

procedure GetDgm (var dgm:dgmptr; var word:str80;
var 1 ine : integer)

;

(*********************************************************
GetDgm — Get a diagram from the input stream

dgm — diagram pointer
word -- next word to be used from input

line — current line number of input file
*********************************************************)

label 9999;

procedure GetlOC (var ioc:iocptr; var word:str80;
var 1 ine

:

integer);

(*********************************************************
GetlOC — get an IOC portion from the input stream

ioc -- ioc pointer
word — next word to be used from input
line — current line number of input file

*********************************************************)

begin
if KeyWord(word)
then err(3)
else
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begin
new( ioc)

;

with 100*^ do
begin

name := word;
next := nil;

end; <* while *)

GetWord(word, line);
if word = ', '

then
begin

GetWord(word, line);
GetIOC( ioc'*. next, word, line);

end; (* then *)

end; (* else *)

end; (* GetlOC *)

procedure GetBox (var actractptr; var word:str80;
var 1 ine

:

integer);

GetBox — get a box portion from the input stream

box -- box pointer
word -- next word to be used from input

line -- current line number of input file
*********************************************************)

label 9999;

begin
if KeyWord(word)
then err(3)
else

begin
new(act)

;

with act* do
begin

name := word;
ins := nil ;

ctrls := nil;
outs := nil;
detail := nil;
next := nil;

end; (* with *)
GetWordCword, line);
if word = 'INPUT:'
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then
begin

GetWord(word, line);
GetlOCCacf. ins, word, line);

if error then goto 9999;
if word = 'CONTROL:'
then

begin
GetWordCword, line);
GetlOCCacf.ctrls, word, line);

if error then goto 9999;
if word = 'OUTPUT:'
then

begin
GetWord(word, line);
GetIOC(act'^.outs, word, line);

if error then goto 9999;
end (* then *)

else err(5);
end (* then *)

else err(7);
end (* then *)

else err(4);
if not error and (word = 'ACTIVITY:')

then
begin

GetWordCword, line);
GetBox(act*.next, word, line);

end; (* then *)

end; (* else *)

9999:
end; <* GetBox *)

procedure GetSplit (var split:sjptr; var word:str80;
var 1 ine : integer)

;

GetSplit — get a split portion from the input stream

split — split pointer
word — next word to be used from input
line -- current line number of input file

**********************************************************)

begin
if KeyWord<word)
then err<3)
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else
begin

new(spl it)

;

with split* do
begin

whole := word;
parts := nil;
next := nil;

end; (* with *)
GetWord(word, line);
if word = 'OUTPUT:'
then

begin
GetWord(word, line);
GetlOCCspl if. parts, word, line);

end (* then *)

else err(5);
end; (* else *)

if not error and (word = 'SPLIT:')
then

begin
GetWord(word, line);
GetSpl it(spl it^.next, word, line);

end; (* then *)

end; <* GetSpl it *)

procedure GetJoin (var join:sjptr; var word:str80;
var 1 ine: integer);

GetJoin -- get a join portion from the input stream

join — join pointer
word -- next word to be used from input
line -- current line number of input file

begin
if KeyWord(word)
then err<3)
else

begin
new( join)

;

with join* do
begin

whole := word;
parts := nil;
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next := nil;
end; (* with *)

GetWord(word, line);
if word = 'INPUT:'

then
begin

GetWord(word, line);
GetIOC( join''. parts, word, line)

end <* then *)

else err(5);
end; <* else *)

if not error and (word = 'JOIN:')
then

beg in
GetWord(word, line);
GetJoinC join^.next, word, line);

end; (* then *)

end; (* GetJoin *)

begin
if KeyWord(word)

then err(3)
else

begin
new(dgm)

;

with dgm'' do
begin

name := word;
hasparent := false;
ins := nil;
ctrls := nil;
outs := nil ;

acts := nil;
spl its : = nil ;

joins := nil ;

next := nil;
end; (* with *)

GetWord(word, line);
if word = 'INPUT:'
then
begin

GetWord(word, line);
GetlOCCdgm". ins, word, line);
if error then goto 9999;
if word = 'CONTROL:'
then

begin

- 57 -



Appendix E

GetWord<word, line);
GetIOC(dgm'".ctrls, word, line);

if error then goto 9999;
if word = 'OUTPUT:'
then

begin
GetWord(word, line);
GetIOC(dgm''.outs, word, line);

if error then goto 9999;
if word = 'ACTIVITY:'
then

begin
GetWord(word, line);
GetBox(dgm^.acts, word,

1 ine)

;

if error then goto 9999;
if word = 'SPLIT:'
then
begin

GetWordCword, line);
GetSpl it(dgm'^.spl its,

word, line);
end; (* then *)

if error then goto 9999;
if word = 'JOIN:'
then

begin
GetWord<word, line);
GetJoinCdgm''. joins,

word, line);
end; (* then *)

if word = 'END:'
then GetWord(word, line)
else err(2);

end (* then *)

else err(6);
end (* then *)

else err(5);
end (* then *)

else err<7);
end <* then *)

else err(4);
end; (* else *)

if word = 'DIAGRAM:'
then
begin

GetWord<word, line);
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GetDgm(dgm''.next, word, line);

end (* then *)

else if (word <> ' ') and not error then err(l);

9999 :

end; (* GetDgm *)

procedure PrintDgms (dgm : dgmptr);

PrintDgms — print the diagrams from the input file

dgm -- diagram pointer

procedure PrintlOC ( ioc: iocptr)

;

PrintlOC — print the IOC portion of the diagram

IOC — IOC pointer

*********************************************************

^

begin
while ioc <> nil do

beg in
PrintWordC ioc" .name, false)

;

ioc := ioc'*. next;
if ioc = nil

then writeln
else

begin
writelnC,');
writeCtab, tab);

end; <* else *)

end; (* while *)

end; (* PrintlOC *)

procedure PrintBox (act lactptr)

;

(*********************************************************
PrintBox -- print the Box portion of the diagram

box — box pointer
*********************************************************)

begin
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while act <> nil do
begin

writeln;
writeC* activity:', tab);
PrintWord (act*. name, true);
writeln;
writeC input:', tab);
PrintlOCCacf. ins);
writeC control:', tab);
Print IOC(act*.ctrls);
writeC output:', tab);
PrintIOC(act*.outs);
act := acf^.next;

end; (* while *)

end; (* PrintBox *)

procedure PrintSJ (sj:sjptr; infol, inf o2 : strSO)

;

PrintSJ — print the SJ portion of the diagram

sj -- sj pointer
*********************************************************)

begin
while sj <> nil do

begin
writeln;
writeC ');

PrintWord( inf ol , false )

;

write (tab)

;

PrintWord(sj'^. whole, true);
writeln;
writeC ');

Pr intWord( inf o2, false)

;

wr ite(tab) ;

PrintIOC(sj''. parts);
sj := sj^.next;

end; (* while *)

end; (* PrintSJ *)

begin
while dgm <> nil do

begin
writeln;
wr i teCdiagram: ' , tab);
Pr i ntWord(dgra'^ . name , true )

;
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wr iteln;
writeC input:*, tab);
PrintIOC(dgm''. ins);
writeC control:', tab);
PrintIOC(dgm''.ctrls);
writeC output:', tab);
Pr int IOC (dgm^. outs);
PrintBoxCdgm^.acts);
PrintSJ(dgm". splits, 'split: ', 'output: ');

PrIntSJCdgm". joins,' join: ', 'input: ');

wr iteln;
writelnC 'end: ' );

writeln;
dgm := dgm*.next;

end; (* while *)

end; (* PrintDgm *)

procedure CheckConsistency (dgm:dgmptr)

;

CheckConsistency — Check consistency of the diagrams

dgm — diagram pointer

var
d, parent : dgmptr;
a : actptr;
count : integer;

procedure MakeDgmLink (dgm:dgmptr; act:actptr);

MakeDgmLink — link the diagrams into a tree structure

dgm — diagram pointer
act — activity pointer

*********************************************************)

begin
while (dgm'^.next <> nil)

and (acf^.name <> dgm'^.name) do
dgm := dgm'". next;

if act*. name = dgm*. name
then
begin

act*. detail := dgm;
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dgm'^ .hasparent := true;
end; (* then *)

end; <* MakeDgmLink *)

procedure Append (name : strSO; klnd:char;
var 1 ist:chkptr);

Append — append the input name to the list

name — input name to be appended
kind -- kind of name being added to the list

list — list of names
*********************************************************

^

begin
newd isf^.next);
1 ist := 1 ist^.next;
list*. next := nil;
list^.namel := name;
list''.name2 := name;
1 ist*. kind := kind;

end; <* Append *)

procedure MakeList (ioc:iocptr; kind:char;
var 1 ist:chkptr)

;

(*********************************************************
MakeList — build the list of source/sink information

ioc — IOC pointer
kind — kind of item being added to the list
list -- list of sources/sinks

*********************************************************)

begin
while ioc <> nil do

begin
if ioc*. name <> 'NONE'
then Append ( ioc* .name ,k ind, 1 ist);

ioc := ioc*. next;
end; <* while *)

end; (* MakeList *)

function FindAndDelete (name:str80;
var 1 ist:chkptr) rboolean;
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var
current, back : chkptr;
found : boolean;

begin
found := false;
back := list;
current := list". next;
while (current <> nil) and not found do

if current ".name 2 = name
then
begin

back". next := current". next;
dispose (current);
current := nil;
found := true;

end (* then *)

else
begin

back := current;
current := current" .next;

end; (* else *)

FindAndDelete := found;
end; (* FindAndDelete *)

procedure PrintList (

1

ist ichkptr)

;

(*********************************************************
PrintList -- Print the names of the items contained

within the input list.

list — list to be printed
*********************************************************)

begin
if list <> nil
then
begin

case
' i'

'o'
'c'
's'
'J'

end;

list". kind of
: write(tab,
: write (tab,
: write(tab,
: write(tab,
: write(tab,

(* case *)

'

(

input)
* (output)
* (control

)

'(split)
'
( jo in)

PrintWordd ist ".name 1, true);
PrintListd ist". next);
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end; <* then *)

end; <* PrintList *)

procedure CheckWithin (dgmrdgmptr)

;

CheckWithin — Check the consistency of information

that is within a diagram description.

dgm — diagram pointer

var
sources, sinks : chkptr;
tempsource, tempsink : chkptr;
back : chkptr;
a : actptr;
sj : sjptr;

begin
if dgm <> nil
then

begin
new(sources)

;

sources'". next := nil;
new(sinks) ;

sinks'^.next := nil;
tempsource := sources;
tempsink := sinks;
MakeListCdgm'". ins, M ' , tempsource)

;

MakeList(dgm^.ctrls, 'c' , tempsource)

;

MakeList (dgm'". outs, 'o' , temps ink);
a ;= dgm'". acts;
while a <> nil do

begin
MakeListCa*. ins, ' i' , temps ink);
MakeListCa^.ctrls, 'c' , temps ink);
MakeList(a'".outs, 'o' , tempsource) ;

a := a'". next;
end; (* while *)

s j : = dgm" .spl its;
while sj <> nil do

begin
Append(sj'". whole, 's' , temps ink);
MakeListCsj^.parts, 's' , tempsource)

;

sj := sj'^.next;
end; <* while *)
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sj := dgm'^. joins;
while sj <> nil do

begin
Append(sj''.whole,' j*,tempsource);
MakeList (s j ''.parts, 'j', temps ink);

sj := sj'^.next;
end; (* while *) I

back := sources;
tempsource := sources* .next;
while tempsource <> nil do

begin
i f F i ndAndDe 1 e te ( te mpsource * . name 2 , s i nks

)

then
begin

back''. next := tempsource''. next;
dispose (tempsource)

;

tempsource := back;
end; (* then *)

back := tempsource;
tempsource := tempsource*. next;

end;
if sources". next <> nil

then
begin

err( 10);
Pr intWord (dgm*. name, true)

;

PrintLi St (sources ".next)

;

end; (* then *)

if sinks*. next <> nil
then

begin
err( 11);
PrintWord(dgm*. name, true);
PrintList(si nks*. next);

end; (* then *)

a := dgm*.acts;
while a <> nil do

begin
CheckWithin(a*. detail );

a := a*. next;
end; (* while *)

end; (* then *)
end; (* CheckWithin *)

procedure CheckBoundary (dgm:dgmptr);

(*********************************************************
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CheckBoundary — Check the consistency of information

that crosses diagram boundaries.

dgm — diagram pointer

var a : actptr;

procedure RemoveLast (wordin:str80; var wordout :str80)

;

RemoveLast — Removes the last half of the extension
on an IOC item

wordin -- the original form of the IOC to be updated
wordout -- the IOC in its updated form

var
i, j : integer;

begin
i := 80;
while (wordinCil <> '/') and (i > 1) do

i := i - 1

;

i f wordinC i ] = ' /'

then
for j := i to 80 do wordinlj] := ' ';

wordout := wordin;
end; <* RemoveLast *)

procedure RemoveFirst <wordin:str80; var
wordout:str80)

;

RemoveFirst — Removes the first half of the
extension on an IOC item

wordin -- the original form of the IOC to be updated
wordout — the IOC in its updated form

var
i, j, k, n : integer;

begin
i := 80;
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while (wordinCi] = ' ') and (i > 1) do

i := i - 1

;

if wordint i + 1 ] = ' '

then
begin

i * ^ i ^ 1
*

while (wordinCj] <> '/') and (j > 1 ) -do

J := J - I;

if wordinl j ] = ' /'

then
begin

k * = i ~ 1
*

while (wordintk] <> '.') and (k > 1) do

k := k - 1;

if wordinCk] = '.'

then
begin

for n := 1 to i - j do
wordin[k+n] := wordintj+n);

for n := k + i - j + 1 to i do
wordinCn] := ' ';

end; (* then *)

end; (* then *)

end; <* then *)

wordout := wordin;
end; (* RemoveFirst *)

procedure MakeCheck (act:actptr; parent :dgmptr)

;

MakeCheck — Performs the actual consistency check
of the information that crosses diagram boundaries.

act -- activity pointer
parent — diagram pointer pointing to the parent

diagram

var
sources, sinks : chkptr;
tempsource, temps ink : chkptr;
back : chkptr;

procedure AddemSources (ioc:iocptr; kind;char;
var 1 ist:chkptr)

;
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AddemSources -- Build a source list from the
detail diagram. Before the sources are added to

the list, remove the first half of the extension.

ioc — ioc pointer
kind — kind of item being added to the list
list — list of sources

begin
while ioc <> nil do

begin
if ioc'^.name <> 'NONE'

then
begin

Append ( ioc" .name, kind, 1 ist);
case kind of

'i' : RemoveFirstd isf.name 1

,

1 ist*.name2);
'o' : RemoveLastd isf^.name 1

,

1 isf^ .name2)

;

'c* : RemoveFirstd isf^.name 1

,

1 ist* .name2)

;

end; (* case *)
end; (* then *)

ioc := ioc". next;
end; (* while *)

end; (* AddemSources *)

procedure AddemSinks (iocriocptr; kind:char;
var 1 ist rchkptr)

;

AddemSinks -- Build a sink list from the detail
diagram. Before the sinks are added to the
list, remove the last half of the extension.

ioc — ioc pointer
kind — kind of item being added to the list
list — list of sinks

begin
while ioc <> nil do

begin
if ioc". name <> 'NONE'

then
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begin
Append

(

ioc'^.name,kind, 1 ist);
case kind of
M' : RemoveLastdisf.namel,

1 ist*.name2);
'o' : RemoveFirstd isf.namel,

1 ist*.name2)

;

*c' : RemoveLastd isf^.name 1

,

1 ist*.name2)

;

end; (* case *)

end; (* then *)

ioc := ioc^.next;
end; (* while *)

end; <* AddemSinks *)

begin
if act*. detail <> nil

then
begin

newCsources)

;

sources'^. next := nil;
new(sinks) ;

sinks'". next := nil;
tempsource := sources;
tempsink := sinks;
AddemSourcesCact*. ins, '

i
' , tempsource)

;

AddemSourcesCact^.ctrls, 'c' , tempsource)

;

AddemSources (act ''.outs, 'o' , tempsource) ;

Adde mS i nk s ( act '". detail'", ins, ' i ' , tempsink)

;

AddemSinksCacf.detai I'^.ctrls, 'c' , tempsink)

;

AddemSinksCacf". detail '".outs, 'o' , tempsink);
back := sources;
tempsource := sources'". next;
while tempsource <> nil do

begin
if F i ndAndDe 1 e te ( tempsource '"

. name 2 , s inks

)

then
begin

back'". next := tempsource'". next;
dispose (tempsource )

;

tempsource := back;
end; (* then *)

back := tempsource;
tempsource := tempsource'". next;

end; (* where *)
if sources'". next <> nil
then
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begin
err( 10);
Pr intWord ( parent '*. name, false) ;

writeC in activity ');

PrintWord( act '".name, true);
PrintLi St (sources". next)

;

end; (* then *)
if sinks'^. next <> nil
then

begin
err( 11);
PrintWord( act ''.name, true) ;

PrintList( sinks'^, next);
end; (* then *)

end; <* then *)

end; (* MakeCheck *)

begin
if dgm <> nil
then
begin

a := dgm'^^.acts;

whi le a <> nil do
begin

CheckBoundary( a". detail );

Make Check (a, dgm)

;

a := a''. next;
end; (* while *)

end; (* then *)

end; (* CheckBoundary *)

begin
d := dgm;
while d <> nil do

begin
a := d'^.acts;
while a <> nil do

begin
MakeDgmLink(dgm,a);
a := a''. next;

end; (* while *)
d := d'^.next;

end; (* while *)
count := 0;
d := dgm;
while d <> nil do

begin
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if not d^.hasparent
then

begin
count := count +1;
parent := d;

end; <* then *)

d := d'^.next;
end; (* while *)

i f count =

then err(8)
else if count > 1

then
begin

err(9);
d := dgm;
while d <> nil do

begin
if not d'^^.hasparent
then
begin

write(' diagram; ');

PrintWordCd". name, true)

;

end; (* then *)

d := d^.next;
end; (* while *)

end <* then *)
else

begin
writeln( 'Beginning Intra-diagram

Consistency Check');
CheckWithinCparent)

;

writeln( 'Completed Intra-diagram
Consistency Check');

writeln( 'Beginning Inter-diagram
Consistency Check');

CheckBoundaryCparent)

;

writeln( 'Completed Inter-diagram
Consistency Check');

end; <* else *)
end; (* CheckConsistency *)

begin (* main *)
error := false;
cccc : = ' '

;

dgm := nil;
1 ine := 1

;

write In;
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writeln( 'Beginning Input Scan');
if not eof
then
begin

GetWord(word, line);
if word = 'DIAGRAM:'
then

begin
GetWord(word, line);
GetDgmCdgm, word, line);

end <* then *)
else err(l);

end; (* then *)

if error
then

begin
writeC 'Processing Stopped At "');

PrintWordCword, false);
writelnC" Near Line ', line:2);

end (* then *)
else

begin
writelnCCompleted Input Scan');
writeln( 'Beginning Echo Of Input');
Pr intDgmsCdgm)

;

writelnCCompleted Echo Of Input');
CheckConsistencyCdgm)

;

writeln( 'Completed Consistency Check');
if not error then writelnCNo Errors Encountered');

end; (* else *)

end. (* main *)
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ABSTRACT

Requirements specifications are the basis for develop-

ing a system, defining the problem and outlining the char-

acteristics (including constraints) of a correct solution.

The requirements specification must answer questions about

the system, but an inconsistent specification is unable to

do this because the specification contains contradictions.

The requirements specification should be analyzable for

consistency. Automated tools enable easier and more

accurate analysis.

Structured analysis diagrams are a system for con-

cisely specifiying requirements of large scale systems, yet

inconsistencies are possible in naming information at

different abstraction levels. Extensions to data element

names showing the element's source and sink enable computer

tools to insure consistency.

A consistent requirements specification is a necessity

when developing a system. Consistency checking of require-

ments specifications is one method of possibly reducing the

number of errors in the implementation of a system, and is

therefore beneficial. By reducing the number of errors in

a system early in the development process, the probability

of a correct solution, and a solution with less cost, is

increased.


