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Abstract

Numerical simulation has become an indispensable tool in a wide range of research

areas and industries. In nuclear engineering, such simulations are important to understand

the behavior of nuclear reactors under different conditions and, accordingly, to develop

optimized designs with established safe operational limits. Estimating quantities of interest

like neutron core power, and temperature distributions requires the solution of a set of

partial differential equations that model the nuclear reactor physics. These equations can be

solved deterministically using a variety of phase-space discretization techniques and, generally,

a sufficiently “fine” phase-space grid is needed to obtain a desired accuracy. However, a

brute-force pursuit of accuracy using ever finer grids results in ever larger algebraic systems

that can quickly become too expensive to solve. This expense is multiplied for applications

that require repeated simulations, such as design optimization and uncertainty quantification.

Reduced-Order Models (ROMs) were developed to overcome the high computational cost

of numerical simulation for neutronic systems by providing a rapid approximation of the

simulated output. The work presented here was primarily exploratory in nature, and the

primary goal was to understand the applicability of various model reduction techniques to

specific problems of interest in reactor physics. In particular, steady-state and transient

neutronic of varying levels of complexity have been analyzed. Efforts began by exploring a

1-D model of a reactor subject to a ramp insertion of reactivity, for which POD-Galerkin

projection was tested and selected for more complex problems. These problems included the

classic 2-D TWIGL and LRA transient diffusion benchmarks, for which a fine grid solution

of the diffusion equations served as the full-order model (FOM) and a source of data for

construction of ROMs. To reduce the cost of constructing and applying ROMs for nonlinear

problems, the hyper-reduction technique known as Discrete Empirical Interpolation Method

(DEIM) and its matrix version were used with POD-Galerkin projection.



Although most of the work presented was based on the diffusion equation, a preliminary

application to the transport equation was also conducted. A critical difference of the

application of the ROM to the transport equation is that the FOM relies on matrix-free

operators, which can complicate the use of POD-Galerkin projection. However, the methods

developed proved to be applicable to the implementation. Importantly, although the POD-

Galerkin method is an intrusive ROM technique, the implemented ROM did not require any

major changes to the existing code, making it a trivially intrusive technique. Rather, access

only to the system operator, which represents all of the underlying system discretization, was

needed.

Although many individual cases were considered, the primary conclusions to make are

that (1) POD-Galerkin projection of diffusion- or transport-based models yield ROMs that

approximate core powers with errors less than the 1% and with computational speedups

that range from approximately 3 to 50 depending on the type and numerical fidelity of the

underlying FOM and (2) such ROMs can be implemented in the many modern diffusion or

transport codes (e.g., the various MOOSE-enabled tools based on finite-element methods1,

or the highly-scalable Denovo discrete-ordinates code2).
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Abstract

Numerical simulation has become an indispensable tool in a wide range of research

areas and industries. In nuclear engineering, such simulations are important to understand

the behavior of nuclear reactors under different conditions and, accordingly, to develop

optimized designs with established safe operational limits. Estimating quantities of interest

like neutron core power, and temperature distributions requires the solution of a set of

partial differential equations that model the nuclear reactor physics. These equations can be

solved deterministically using a variety of phase-space discretization techniques and, generally,

a sufficiently “fine” phase-space grid is needed to obtain a desired accuracy. However, a

brute-force pursuit of accuracy using ever finer grids results in ever larger algebraic systems

that can quickly become too expensive to solve. This expense is multiplied for applications

that require repeated simulations, such as design optimization and uncertainty quantification.

Reduced-Order Models (ROMs) were developed to overcome the high computational cost

of numerical simulation for neutronic systems by providing a rapid approximation of the

simulated output. The work presented here was primarily exploratory in nature, and the

primary goal was to understand the applicability of various model reduction techniques to

specific problems of interest in reactor physics. In particular, steady-state and transient

neutronic of varying levels of complexity have been analyzed. Efforts began by exploring a

1-D model of a reactor subject to a ramp insertion of reactivity, for which POD-Galerkin

projection was tested and selected for more complex problems. These problems included the

classic 2-D TWIGL and LRA transient diffusion benchmarks, for which a fine grid solution

of the diffusion equations served as the full-order model (FOM) and a source of data for

construction of ROMs. To reduce the cost of constructing and applying ROMs for nonlinear

problems, the hyper-reduction technique known as Discrete Empirical Interpolation Method

(DEIM) and its matrix version were used with POD-Galerkin projection.



Although most of the work presented was based on the diffusion equation, a preliminary

application to the transport equation was also conducted. A critical difference of the

application of the ROM to the transport equation is that the FOM relies on matrix-free

operators, which can complicate the use of POD-Galerkin projection. However, the methods

developed proved to be applicable to the implementation. Importantly, although the POD-

Galerkin method is an intrusive ROM technique, the implemented ROM did not require any

major changes to the existing code, making it a trivially intrusive technique. Rather, access

only to the system operator, which represents all of the underlying system discretization, was

needed.

Although many individual cases were considered, the primary conclusions to make are

that (1) POD-Galerkin projection of diffusion- or transport-based models yield ROMs that

approximate core powers with errors less than the 1% and with computational speedups

that range from approximately 3 to 50 depending on the type and numerical fidelity of the

underlying FOM and (2) such ROMs can be implemented in the many modern diffusion or

transport codes (e.g., the various MOOSE-enabled tools based on finite-element methods1,

or the highly-scalable Denovo discrete-ordinates code2).
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Chapter 1

Introduction

1.1 Motivation and Goal

Modeling and simulation of complex systems has become an indispensable tool in many

different science and engineering disciplines. Commonly, these complex systems are described

by a set of equations that is challenging to solve analytically. Alternatively, these systems

are solved by employing numerical discretization schemes such as the finite-difference, finite-

volume and finite-element methods.

These methods rely on discretizing the system along each independent variable, and the

solution is provided only at these discrete points. To improve the method accuracy, the system

needs to be solved over a very fine mesh. Although this results in a more reliable solution,

it leads to a growing space dimension, which is known as the curse of dimensionality, and

an accordingly large computational cost. This problem of the computational cost becomes

inevitably prohibitive with applications that require repetitive execution of the simulation.

Examples of these applications include uncertainty quantification, parametric studies and

design optimization. In such studies, the high-fidelity model has to be solved at multiple

parameter points. Hence, surrogate models that are cheap, yet accurate, are sought to provide

a rapid and reliable approximation of the solution of these systems. Reduced-order models

(ROMs) are a broad class of surrogate models that exploit the correlation that exists in the
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input/output space to represent the system in terms of significantly fewer degrees of freedom.

The premise is that this lower-order model will capture the essential features of the system

and preserve the input-output mapping as much as possible.

Many ROM techniques have been developed and used in a wide range of applications and

they can be classified into two categories: intrusive and non-intrusive. Intrusive methods are

ones that demand access to the source code of the simulation and modifying/adding to the

existing code. This requires knowledge of the underling equations that govern the system being

studied and hence they are considered physics-based models. Projection-based methods3 are

examples of such methods. On the other hand, non-intrusive methods use the simulation

as a black box to generate some outputs that correspond to some inputs and then build a

mapping function between these inputs and outputs. In general, these methods are purely

data-driven and not physics-based. Examples include response surfaces and Dynamic-Mode

Decomposition (DMD)4;5. Each broad categories has advantages and drawbacks. Intrusive

methods are often challenging to implement because access to source code can be limited

or prohibited. Furthermore, intrusive methods require a solid understanding of the physics

and the governing equations. However, once they are implemented, the developed ROM can

be used for many different scenarios under various conditions. Data-driven methods, on the

other hand, are more suitable to predict outputs for the specific conditions under which it was

derived. In the same time, they offer a way to readily develop approximate models, especially

with the recent availability of open source libraries that include a variety of modern methods

and solvers such as TensorFlow6and Scikit-learn7.

In this thesis, we are interested in developing ROMs for nuclear engineering applications,

particularly neutronics, in which the main physics is neutron transport. These applications

could be computationally intractable in situations that require repetitive core calculations

with varying various model parameters. For example, in recent years, safety analysis within

the nuclear industry and regulatory bodies have shifted to best-estimate plus uncertainties

(BEPU) calculations rather than to rely on conservative models that lead to overestimated

safety margins.

In these calculations, confidence bounds are computed by means of uncertainty analysis
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that entails repetitive executions of the numerical simulations, where increasing the number

of simulation runs leads to more reliable confidence intervals and, accordingly, reliable safety

and operational limits. For modern, light-water reactor systems, methods developed over

the past four decades have been highly tuned for these systems to provide credible results

quickly. These methods include a variety of nodal-diffusion and cross-section homogenization

techniques, but for advanced nuclear reactors (e.g., fast-spectrum, metal-cooled reactors

or high-temperature, gas-cooled reactors with multiple levels of fuel heterogeneity), these

existing methods are insufficient. Advanced nuclear reactors are subject to optimization and

parametric studies require running the simulation at multiple input parameters to explore

these parameters space and aid in developing optimal and economical designs. Because there

exists much less experimental data to support these analyses, the availability of accurate but

efficient methods is especially important.

Since the solutions of high-fidelity models evolve in a lower-dimensional space due to

correlation induced by the spatial discretization, governing physics, and geometry constraints,

they can be performed using reduced-order models.

Here, an intrusive ROM based on the POD-Galerkin projection has been developed to

approximate neutronic steady-state and transients with substantially reduced simulation run

times so that multi-query studies can be completed affordably.

The original models to be approximated solve for the neutron population in a nuclear

reactor core, which can be used to derive essential quantities to the reactor safety and

operation such as the core power, core temperature, and the energy deposited. Our goal is to

develop and assess a ROM framework that can be used for different purposes, such as design

optimization and propagating input parameter uncertainties like nuclear data. Moreover, we

aim to identify practical limitations and computational challenges, if any, that could make

method implementation in production level codes problematic. The choice of this method

is based on a scoping study that has been made using a simple 1-D problem to explore the

potential of different methods to approximate neutronic transients8. The methods included

DMD and DMD/POD Galerkin projection. The POD-Galerkin projection gave the best

results, and hence, it was used to explore and analyze more problems with increasing level of

3



complexity.

In particular, a preliminary study of multi-physics problems, in which coupling of other

physics induces non-linearity, was performed. Non-linearity naturally leads an expensive

full-order model and the same for the corresponding reduced-order model. To mitigate the

impact of non-linearities, a method to improve the ROM computational efficiency by splitting

it into two distinct, offline and online stages was developed. The method is based on the

Discrete Empirical Interpolation (DEIM)9 and its matrix version which belong to the broad

class of hyper-reduction techniques. The full-order model to be approximated is mostly based

on the multi-group diffusion equation, however, a preliminary application to the transport

equation is presented, as well. The implementation has been performed in Detran10, an

open-source code for deterministic transport and algorithm development.

1.2 Reduced-order models for neutronics applications

For neutronics applications, deterministic methods to characterize the neutron population

are based mainly on the neutron transport equation and the neutron diffusion equation11–13.

These equations can be coupled with other models to account for other physics, such as

thermal hydraulic and fuel performance. An exact solution for these equations can be found

only for simple problems. In practice, various assumptions and simplifications are made in

order to be able to solve them for realistic problems. These simplifications involve discretizing

the system in space, energy, and angle, which leads to a large number of algebraic equations

that are very expensive to solve. Over the last few decades, some methods were employed in

order to reduce this computational burden. In fact, the diffusion equation is an approximation

of the transport equation, by assuming a linear angular dependence. Spatial homogenization

of cross sections is another simplification that has been introduced to reduce the level of

heterogeneity inside the reactor core and hence the spatial space14;15. Methods to accelerate

the convergence of the iterations in the transport calculations, and hence speed up the

computational time, have been introduced16;17.

For time-dependent problems, quasi-static methods18–20 are used to approximate the
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time-dependent flux by a two-level process in which the flux shape is update at coarse time

steps between which its magnitude is calculated over fine time mesh by solving an inexpensive

system of equations. Although these strategies have alleviated the computational burden

of reactor core calculations, they remain relatively expensive because they still solve the

problem in the original high dimensional space. Recently, there has been a growing interest

in reduced-order models (ROMs) to provide a rapid approximation of the response of the

simulation by performing most of the computation in a lower dimensional space. In the

nuclear community, various ROM methods have been used for different problems in the

neutronics field. However, the focus here is on the work that has been done to approximate

the steady-state and the time-dependent neutron flux coming from solving the diffusion and

the transport equations.

1.2.1 Steady-State Problems

In the framework of projection based methods, Wang21 proposed a POD-like approach to

find a reduced basis for the transport and diffusion eigenvalue problems. The algorithm

builds this subspace in an iterative manner by adding a new basis vector to the subspace

in each iteration until a user-set accuracy is satisfied. One basis set was generated for all

energy groups and the developed ROM was used for a parametric study in which the cross

sections were the parameters of interest. Subsequent work22 used POD-Galerkin projection

for a similar problem, but a basis set was generated for each energy group and a greedy

POD sampling23;24 was used to construct a global basis in order to capture the parameter

domain variance. Moreover, for computational efficiency, the developed ROM was split into

an offline and online stage by taking advantage of the affine parameter dependence resulting

from the finite element descretization. Another approach to build the reduced subspace

was presented by Chunyu25. In this approach, a certified reduced basis was constructed

by using greedy sampling in which, at each iteration, a full-order solution, based on the

finite element approximation, is added to the subspace after which it is orthonormalized.

Steady-state multi-physics ROMs have been also addressed. For example, parametrized ROM
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based on the reduced basis (RB) method was developed for Lead Fast Reactor (LFR) single

channel26, where the parameter of interest were the inner radius of the fuel pellet and the inlet

lead velocity. In this work, the non-linearity induced by the thermal feedback coupling was

simplified by linearization the non-linear term. Another application of multi-physics ROM for

steady-state problems was presented for a Molten-salt reactor (MSR)27. The ROM was also

based on the POD-Galerkin projection, and the non-linearity was treated using the discrete

empirical interpolation method (DEIM). Recent work28 combined POD-Galerkin projection

with domain decomposition. The goal was to improve the ROM computational efficiency by

decomposing the problem into non-overlapping domains for which parallel computing can take

place. Results showed that there was no loss of accuracy due to the domain decomposition

compared to the POD-Galerkin ROM without applying domain decomposition.

For steady state application, we developed a parametric ROM for the eigenvalue diffusion

equation using the matrix version of the DEIM to obtain an offline-online decomposition of

the ROM that is described in chapter 3.

1.2.2 Time-dependent problems

For a time-dependent problem, Sartori29 compared modal methods and POD modes to predict

the reactivity induced by a perturbation in the reactor core. The snapshots used were the

steady-state solutions generated with varying specific parameters in the perturbed regions.

The results showed that the POD performed better for localized perturbations for which

the modal method needed a considerable number of eigenfunctions to correctly predict the

reactivity. In different work30 modal methods with adjoint and forward eigenfunctions as the

test basis were compared with POD basis of both the forward and adjoint steady state flux.

The ROM was sought to reproduce the reactivity induced following either thermal feedback

effects or control rod movement in the ALFRED reactor. Again, the POD basis outperformed

the modal basis where the adjoint test basis was the best choice in reproducing the reactivity

effects in terms of both accuracy and computational time. For control applications, a

parameterized ROM was developed in which the control rod height was the parameter of
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interest31. The movement of the control rod was modeled as a geometric parametrization of

the spatial domain. Tsujita32 used POD-Galerkin projection for the time-dependent diffusion

in which two different snapshots sets were used to generate the POD bases, i.e, steady-state

snapshots and time-dependent snapshots. Results showed that the POD basis derived from

time-dependent snapshots is slightly better with maximum errors in the power of less than

0.6%. Another method based on the proper generalized decomposition (PGD) was proposed

by Alberti33. Although the method provided acceptable accuracy for homogeneous problems,

it did not perform as well for problems with stronger spatial heterogeneity of the same

problems and the results were not promising in terms of the accuracy and the computational

efficiency. For the transport equation as a full-order model, the POD-Galerkin projection was

employed to models based on the discrete-ordinate method where snapshots of the angular

flux were used to generate the basis34. The ROM was used to predict the flux outside the

time range of snapshots for which the error was about 1%.

For kinetic application, we develop POD-Galerkin ROMs for different problems where greedy

sampling was used to parameterize the ROM. To improve its efficiency the matrix version of

the DEIM, i.e, MDEIM was used in conjunction with the POD projection for the diffusion

models, where interpolation of the reduced operator was used for the transport model.

1.3 Outline of the Thesis

This thesis is organized as follows. Chapter 2, an overview of the different methods used to

develop the ROM and improve its efficiency is presented and the algorithm of each method

is described. In chapter 3, the mathematical formulations of the steady state diffusion

equation and the corresponding ROM are given. Also, an application with its results are

presented. The time-dependent diffusion equation and the developed ROM are presented in

chapter 4 with an application to the TWIGL benchmark. Non-linear problems resulting from

multi-physics coupling are addressed in chapter 5 with an application to the LRA problem.

In chapter 6, a preliminary application to the transport equation based on a discrete-ordinate

method is presented. Discussion, general remarks and ideas for future works are given in
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chapter 7.
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Chapter 2

Methods

This chapter aims to give an overview of the methods and tools used throughout the thesis. The

overview starts with the Proper Orthogonal Decomposition (POD) which is a key component

in the developed framework that is used to explore different problems potential of reduction.

After generating a problem-specific POD space, the state variable is approximated in terms

of its basis, where the expansion coefficients are computed by means of a POD-Galerkin

projection. Next, a POD Greedy sampling is presented aiming to take the POD-Galerkin

model one step forward towards treating parametric problems by generating a global subspace

that can be used for a potentially wide range of parameters. In order to improve the ROM

efficiency for nonlinear and parametric problems, splitting the ROM into an offline and online

stages is desirable. For some problems, this splitting can be easily obtained due to some

affine properties1 that enable ROM decomposition into an expensive one-time offline stage,

and an inexpensive online stage that needs to be performed for each new parameter or time

instance. Here, we are dealing with problems for which such decomposition is not readily

available. Thus, to approximate such decomposition, a method called the Discrete Empirical

Interpolation Method is employed within the framework of the POD-Galerkin projection.

Finally, a brief overview on the Dynamic Mode Decomposition (DMD), which is a different

1Affinity here means that time/parameter function/operator can be represented by a linear combination
of time/parameter independent functions/operators, each weighted by time/parameter dependent scalar
function.
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reduction method is introduced. In this work, DMD was used as part of a scoping study

performed to assess the performance of different reduced models to approximate transient

problems.

2.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is one of the most popular reduction techniques.

The method is used to construct a reduced basis that approximates a high-dimensional

quantity. The main assumption is that the intrinsic dimension of the system is significantly

small and hence can be captured by few basis vectors. First, we illustrate the method using

the continuous formulation and then make the connection to the discrete form and the

Singular value Decomposition (SVD).

Let y(x, t) be a solution of some PDE where t ∈ [0, T ] and x ∈ [−L,L]. The POD aims

to approximate a given data set using a basis Φ of rank l, such that the mean square of the

reconstruction error is minimized in the interval [0, T ]. Mathematically this can be expressed

as

min
Φ

1

T

∫ T

0

‖y(x, t)− 〈y(x, t),Φ〉Φ‖2dt subject to ‖Φ‖2 = 1 , (2.1)

where 〈 · , · 〉 denotes the inner product. Note that Eq. 2.1 is equivalent to the following

maximization problem

max
Φ

1

T

∫ T

0

‖ 〈y(x, t),ΦΦT 〉 ‖2dt subject to ‖Φ‖2 = 1 (2.2)

One can show that upon solving this maximization problem, it reduces to an eigenvalue

problem as follows

〈R(x′, x),Φ〉 = λΦ , (2.3)

where R(x′, x)) = 1
T

∫ T
0
y(x′, t)y∗(x, t)dt. Note that in a discrete form this corresponds to the

correlation matrix between a set of trajectories at discrete time instances. The eigenvectors

are the POD modes and the corresponding eigenvalue λ of each mode denotes the weight or
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the energy of each mode. For real-world problems, a closed form of the y(t, x) is not easily

obtained; rather, most models are solved using numerical methods, which yield solutions of

discrete points in time and/or space. Hence, a common way to construct the subspace is

the method of snapshots35. Let Y = [y1, ....,ym] be a real n×m matrix where each column

yi ∈ Rn represents a snapshot of some observable extracted from either an experiment or

a simulation. A subspace is sought to be constructed such that the reconstruction error is

minimized across all snapshots. If the basis set is limited to l basis vectors ui, 0 < i < l, the

discrete variant of Eq. 2.1 can be written as

min
{ui}lk=1

i=m∑
i=1

‖yi −
l∑
k

< uk,yi > uk‖2 (2.4)

subject to (ui,uj) = δij for 1 ≤ i ≤ l, 1 ≤ j ≤ l ,

where δ is the Kronecker delta 2. The correlation matrix YYT can be constructed for which

the eigenvectors can be computed. Equivalently, and more computationally efficient, the

SVD of the data matrix is computed

Y = UΣVT , (2.5)

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices representing the left and right

singular matrices respectively, and Σ ∈ Rn×m is a diagonal matrix of singular values. Thus,

the subspace comprised from the first r vectors of U is the best rank r approximation of Y,

also called POD basis of rank r. There is no general a priori rule based on which the rank is

chosen; however one can set a threshold ε such that

∑r
i=0 Si∑m
i=0 Si

≥ ε , (2.6)

where Si is the ith singular value. The steps of the POD procedure is described in algorithm 1.

2δij =

{
0 if i 6= j

1 if i = j.
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Algorithm 1 POD; Proper Orthogonal Decomposition

Input: Snapshots matrix: Y ∈ Rn×m, ε

Output: Reduced basis matrix U ∈ Rn×r.

1: Compute the SVD: Y = UΣVT .

2: Set U = U[:, : r] where
∑r
i=0 Si∑m
i=0 Si

≥ ε.

2.2 POD-Galerkin Projection ROM

Consider the following dynamic system that results from discretizing a partial differential

equation using a numerical scheme such as the finite difference method:

dy(t)

dt
= Ay(t) + f(y(t)), y(0) = y0 , (2.7)

where y ∈ Rn is the state variable and A ∈ Rn×n is the operator resulting from the system

discretization. In general, this method involves two main steps. First, the state variable y is

expanded in terms of a trial subspace basis, which is the POD space in this case, where each

basis vector is weighted by a temporal coefficient

y ≈ Φŷ(t) , (2.8)

where ŷ(t) ∈ Rr is a vector of the temporal coefficients. Second, the system is projected onto

a test subspace, which is the same as the trial subspace in the Galerkin projection procedures.

By multiplying the system on the left by ΦT and making use of the orthogonality of the

POD basis (i.e, ΦTΦ = I), we end up with

dŷ

dt
= Arŷ + ΦT f(Φŷ) ŷ(0) = ΦTy0 , (2.9)

where Ar ∈ Rr×r = ΦTAΦ. Thus, we are left with r ODE’s instead of n ODE’s, which

makes the resulting ROM more computationally efficien, and, once it is solved for ŷ, the full
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order solution can be computed by Eq. 2.8. Note that the POD basis is chosen here for its

optimality property. However, different methods have been used in the literature, such as the

eigenmodes analysis and the reduced-basis method36–38. Moreover, the test basis and the

trial basis could be different, in which case the method is called Petrov-Galerkin projection.

In such cases, unless the test and the trial basis are bi-orthogonal, there will be an additional

computational cost associated with inverting the matrix resulting from multiplying the left

hand side of Eq. 2.7 by the test basis.

2.3 Greedy POD Sampling

A greedy sampling in the parameter space39 can be combined with POD to construct a

global subspace that can be used in the framework of parametric ROMs. The primary goal is

to ensure that the parameter domain of interest (i.e, P) is efficiently sampled and includes

enough information such that it can be used or wide range of parameters including those of

higher dimensions. To construct this subspace, a training parameters dataset, Ptrain ⊂ P, is

prepared. The greedy subspace is initialized with the first r1 POD basis computed from a

randomly selected sample of the training data. Next, this subspace is used to compute the

ROM prediction error of the state variable for the rest of the training samples. The sample at

which the error is worst is selected, and the subspace is enriched by adding the first r1 POD

basis computed from the selected sample snapshots. Selecting the samples with the worst

errors ensures efficient sampling of the parameter space. Intuitively, samples that are close to

the previously chosen parameter points will have a smaller ROM error. On the other hand,

one expects that the ROM will fail to give an accurate prediction at samples that are far from

the included points in the current subspace. Thus, we keep adding new basis vectors until a

maximum size of the subspace is reached or a user-specified error tolerance at a reference

parameter point µref is met. Note that each time a new basis vector is added, the subspace is

orthonormalized. Regarding the error criteria based on which a new sample is selected, there

are two approaches. Ideally, the true error can be used leading to “strong POD-greedy”40.

Alternatively, an error indicator can be used to alleviate the computational burden associated
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with evaluating the full-order-model. Here, we used the strong-POD greedy approach. The

algorithm steps are shown in Algorithm 2. The term ∆(U,µref) is the error measure using

the current reduced subspace at µref, and r is the maximum size of the greedy basis.

Algorithm 2 POD-greedy sampling procedures
Input: εtol, r, r1, Ptrain ⊂ P

Output: A reduced space U

set n=0

while ε := ∆(U,µref) > εtol or n < r do

µ := argmaxµ∈Ptrain ∆(U,µ)

evaluate the FOM at µ, Y(µ):= {y1,y2, .....yk}

compute the POD modes of the FOM snapshots, {ζ1, ζ2, ......, ζr1} := POD(Y(µ), r1)

Compute the SVD of Y(µ) and keep the first r1 POD modes:{ζ1, ζ2, ......, ζr1} =

POD(y1,y2, .....yk}, r1)

Z = {Z, {ζ1, ζ2, ...., ζr1}} and set n = n+ r1

update the reduced space, U := U ∪ {ζ1, ζ2, .., ζr1} and orthonormalize

n := n+ r1

compute ε = ∆(U, µ0)

end while

2.4 Offline-online

Solving the ROM in Eq. 2.9 involves two main steps. The first step is generating the projected

terms, i.e, UTAU and UT f(Uŷ(t)). The second step is solving the system of ODEs using a

suitable time scheme. In terms of the computational cost, the first step is significantly more

expensive since the projected terms have to be computed at each time step. This projection

requires performing operations with computational complexity that scales with the original

dimensions of the system (i.e., n). In particular, to project the nonlinear function f(Uŷ(t)),

the full-order solution needs to be reconstructed at each time step to evaluate the function
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before performing the inner products (i.e, UT f), which requires O(2nr) flops. Moreover, in

some cases, the operator A is time-dependent in which case UTA(t)U has to be computed

at each time step. In general, this term requires O(n2r + r2n) flops. On the other hand,

the second step involves solving a linear system, at each time step, that has a size equal to

the number of reduced dimensions (i.e, r). Hence, it is favorable to split the ROM into two

stages, an offline stage in which a one-time projection operation takes place, and an online

stage in which the reduced system is solved over the time domain of interest. To achieve

this decomposition, the operator/function can be expanded into number of time-independent

operators/functions each weighted by a temporal coefficient. To illustrate more, the nonlinear

term f(y(t)) can be approximated as

f(y(t)) = Ψθ(t) , (2.10)

where Ψ is a time-independent basis matrix and θ(t) is a vector of the associated coefficients.

With this decomposition, the projection can be written as

UT f(Φŷ) = UTΨθ(t) , (2.11)

Note that the term UTΨ does not depend on time and hence it can be precomputed and

stored, while the coefficient θ(t) is required to be computed at each time step. In a similar

fashion, the operator A(t) can be decomposed as

A(t) =
k∑
i=0

θi(t)Ai , (2.12)

where the matrices Ai are time independent and θi(t) are the corresponding coefficients. The

projection is performed as follows

UTAU =
k∑
i=0

θi(t)U
TAiU , (2.13)
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Again, the matrices UTAiU are precomputed in an offline stage and the coefficients are

computed in the online stage for each new time step. Note that the above discussion applies

to parameter-dependent functions and operators, where the parameter variable is treated

in the same exact manner as the time. An example of this will be shown in the next

chapter. Realistically, some problems either do not admit such decomposition or in the

case of time/parameter dependent operators, they require fundamental intrusive changes

to the existing high-fidelity model operator to enable this decomposition before performing

the reduction. Methods have been proposed to be used with the POD-Galerkin projection

to overcome this computational complexity. For example, DMD was used to approximate

non-linear terms in the framework of Galerkin projection41. Also, methods such as gappy

POD, Empirical Interpolation Methods (EIM)42,43 and trajectory piecewise-linear (TPWL)

approximation44,45 were used in the literature to address this issue. Here, we focus on

the Discrete Empirical Interpolation Methods (DEIM) and its matrix version to treat non-

linearity and time/parameter operators without, intrusively, modifying the high-fidelity model.

These methods are known as hyperreduction techniques since they represent another level of

reduction within the reduced order model.

2.4.1 Discrete Empirical Interpolation Method

Recently, the DEIM9 was proposed to approximate the non-linearity in model order reduction.

The method is a discrete variant of the Empirical Interpolation Method (EIM)42 that was

originally proposed to approximate non-affine coefficient functions using a reduced-basis

expansion to facilitate the online/offline decomposition in finite element methods. The DEIM

is proposed for the same goal for different discretizations of the full-order model. The method

relies on two main ingredients: (1) a reduced space that approximates the nonlinear function,

and (2) a set of spatial interpolation indices. To illustrate the method, let τ denote time or a

model parameter. The nonlinear function f(y(τ)) is approximated by projecting it onto a
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subspace that approximates the function space

f(y(τ)) = Ψθ(τ) , (2.14)

where Ψ ∈ Rn×k is a low-dimensional subspace with k � n, and θ(τ) ∈ Rk is a vector of

the corresponding coefficients. POD is used to find the subspace Ψ using snapshots of the

function (i.e, [y(τ1), .....,y(τm)]). Note that these snapshots are computed at the same points

used for the state variable snapshots required for the reduced model; hence this step will not

introduce any additional cost other than computing the SVD. In order to compute θ(τ), a

few spatial indices are selected iteratively using a greedy search following Algorithm 3. The

basic idea is to select k rows of the basis matrix Ψ. The algorithm takes as an input the

basis vectors of the subspace Ψ. The first index is selected where the entry of the first input

basis has the largest magnitude. Each other index Ii is selected where the approximation

of the corresponding input basis vector Ψi in the subspace constructed by interpolating the

basis [Ψ1, ....Ψi−1] at the previously selected indices is worst. Once the indices are selected,

the matrix Ψk ∈ Rk×k is formed such that

Ψk = PTΨ , (2.15)

where P = [ez1, ez2, ...., ezk] ∈ Rn×k and ezi = [0, .., 0, 1︸︷︷︸
zi

, 0..., 0]T ∈ Rn is the zith column of

the identity matrix. The coefficients can be computed by solving

PT f(τ) = Ψkθ(τ) , (2.16)

and the final function approximation is given by

f̂(τ) ≈ Ψ(Ψk)
−1PT f(τ) . (2.17)

17



Note that the matrix P does not need to be constructed explicitly, since the term PT f

extracts only the elements of f that correspond to the interpolation indices. Thus, at each

time step, only k elements f need to be evaluated. The approximation error can be bounded

as

‖f − f̂‖ ≤ ‖(PΨ)−1‖ε , (2.18)

where

ε ≈ σk+1 .

Note that σk+1 is the (k+ 1)th singular value coming from the SVD of the function snapshots

matrix. Full derivation of the error bound is given in Ref.9.

As explained in the previous section, the projection can be performed by computing the

term UTΨ once in an offline stage, while in the online stage, the vector θ is computed by

solving the linear system of dimension k in Eq. 2.16. The key point is that the cost of the

online computation depends on the reduced dimension k, not the original, high dimension n.

Algorithm 3 DEIM

Input: Snapshots matrix: X = [f1, f2, ...., fm] ∈ Rn×m

Output: A reduced space Ψ, set of indices I

1: [Ψ1,Ψ2, ...,Ψk] = POD(X, ε)a

2: I1 = argmax(|Ψ1|), I = {I1}

3: Ψ = [Ψ1], P = [eI1 ]

4: for i=2 to i=k do

5: Solve (PTΨ)c = PTΨi;

6: Ii = argmax |Ψi −Ψc|

7: I = I ∪ Ii, P = P ∪ eIi , Ψ = Ψ ∪Ψi

8: end for

aPOD refers to Algorithm 1
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Numerical example

Here, the method is illustrated by a simple example. However one should keep in mind that

the method gains its importance in the context of model reduction. Consider the general

non-linear 1-D function

f(x, µ) = (1− x2)cos(πµx)e−xµ
2

, (2.19)

where µ ∈ [1, π] and x ∈ [−1, 1]. To approximate the function using DEIM, first, 50 snapshots

of the functions were collected by evaluating the function at different values of µ in the

prescribed interval. The POD modes were computed using this snapshot matrix, and the

interpolation indices were determined using algorithm 3. Shown in Fig. 2.1 are the first 8

POD modes along with the selected interpolation points. Fig. 2.2 shows the singular values.

Their rapid decay implies the potential of this function to be reduced and accordingly good

approximation using a low-order DEIM.

1.0 0.5 0.0 0.5 1.0

0.4

0.2
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mode 3
mode 4
mode 5
mode 6
mode 7
mode 8

Figure 2.1: POD modes and the interpolation points

The DEIM procedure was performed for different ranks of 2, 4, 6 and 8 and the approxima-

tion error was computed. Fig. 2.3 shows the exact solution at µ = 2.12 which is a parameter

point not used in generating the snapshots. Also shown is the DEIM approximation using

different ranks, with the approximation error (measured in L2) norm is given for each case.

The points used for interpolation are shown in green circles with a corresponding number i,

which denotes the index selected in iteration i.
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Figure 2.2: POD modes and the interpolation points
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Figure 2.3: The DEIM approximation and the exact function at µ = 2.22
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2.4.2 The matrix version of DEIM (MDEIM)

The matrix version of the DEIM (MDEIM) is suggested in3;46 to approximate parameter/time-

dependent operators. Consider a parameterized matrix A(µ) ∈ Rn×n, the goal is to find

a decomposition similar to Eq. 2.12 so that an offline-online ROM splitting is attainable.

The DEIM procedures can be exploited to find such decomposition. First, the matrix can

be cast in a vector form by stacking all of its columns in one vector a(µ) ∈ Rn2
. This

vector can be treated in the same exact way as the function f(t) in the previous section, i.e,

a(µ) = Ψθ(µ). Snapshots of the serialized matrix are collected at different parameter values

and the reduced subspace Ψ and the interpolation indices are computed following algorithm

3. Again, the corresponding coefficients are obtained by solving Eq. 2.16. Next, each vector

in Ψ can be mapped back to an n× n matrix, i.e, Ai. Hence, the matrix is approximated

as Â(t) =
∑k

i=0 θi(t)Ai and the projection term is computed as in Eq. 2.13. As pointed out

in Ref.47, the Weyl–Mirsky theorem48 ensures that the singular values of the approximated

matrix approach that of the original as k increases

|σi − σ̂i| ≤ ‖A− Â‖F (2.20)

where σi and σ̂i denote the ith singular value of A and Â respectively. Moreover, some

properties of the original matrix such as positive definiteness can be preserved49, if necessary,

by imposing some constrains to the problem in Eq. 2.16.

In the practical implementations, the method efficiency can be improved, as suggested in

Ref.47. First, the matrix A is, generally, largely sparse, which leads to a snapshots matrix

that is sparse, too. Consequently, it is more convenient to store only the nonzero elements

(nz) in a, which should be appreciably more efficient in terms of memory and computational

expense. In addition, to obtain the expansion coefficients (θ), the term PTa(τ) needs to be

computed at each new parameter value. In fact, this term only extracts the elements of a(τ)

that corresponds to the selected interpolation indices. In the offline stage, a mapping can

be done between these interpolation indices and the corresponding row-column pairs in A.
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When the matrix is formed in the online stage, only these entries are evaluated by restricting

a for loop over these row-column pairs, leading to more reduction in the computational cost.

2.5 Dynamic Mode decomposition

Recently, DMD has been an emerging method for developing reduced models of dynamic

systems. It was developed originally by Schmid4,5 in the fluid dynamics community to identify

spatio-temporal coherent structures from high-dimensional data. The method provides a date

decomposition in terms of spatial modes, associated with each of them is an eigenvalue that

describes both the frequency and the growth/decay rate of corresponding mode. Moreover, it

exploits the POD discussed in Sec.2.1 to reveal the low rank structure in the data. There

are variations of DMD algorithms that have been proposed in the literature. Here, we focus

on the standard DMD algorithm. To illustrate the method, consider the dynamic system

in Eq. 2.7 but with excluding the additive non-linear term, for simplicity. An approximate

solution to this system is defined using DMD based on the assumption that, over sufficiently

small steps in time, the evolution of y can be well approximated by a relationship of the form

dy(t)

dt
= Ay , (2.21)

where this mapping operator A may not be known explicitly. Suppose the system is sampled

at different times to generate sequential data that is arranged in two matrices as

Y0 =


| | |

y0 y1 ... ym−1

| | |

 , (2.22)

and

Y1 =


| | |

y1 y2 ... ym

| | |

 , (2.23)
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where m is the number of samples. DMD computes the leading eigendecomposition of the

best-fit linear operator A relating the data

Y1 ≈ AY0 , (2.24)

where A satisfies

A = argmin
A
‖Y1 −AY0‖F , (2.25)

for which the resulting matrix is the Moore-Penrose pseudoinverse A = Y1Y0
†. The key point

is that the problem is a high-dimensional one, and hence A is a large matrix and computing

it explicitly is not efficient. Rather, a low-rank approximation Ã is formed as Ã = UH
r AUr.

Here, Ur is the POD basis of rank r computed from the SVD Y1 = UΣVT . The leading

r eigenvalues of A are inferred from the eigenvalues of Ã. Once computed, the eigenvalues

λi of the discrete operator A can be transformed to the continuous frequencies wi’s via

wi = log(λi)/∆t. The procedure is summarized in Algorithm 4, in which b is the amplitude

vector computed to satisfy the initial condition in the DMD basis (i.e., b = ΦDMD†y1).

Algorithm 4 DMD (Adapted from Ref.50)]

Input: Snapshots {yi}mi=1

Output: ΦDMD,Λ
1: Stack the first m− 1 columns in the past snapshots matrix Y0

Stack the last m− 1 columns in the future snapshots matrix Y1

2: Compute the compact SVD of Y1 : Y1 = UrΣrV
H
r

3: Define Ã := UH
r AUr = UH

r N2VrΣ
−1
r

4: Compute the eigendecomposition for Ã: ÃW = WΛ; Λ =

 λ1 0 0

0
. . . 0

0 0 λr


5: DMD Modes ΦDMD = UrW (projected modes)
6: Predicted response yDMD(t) =

∑r
i=1 biφ

DMD
i ewit = ΦDMDdiag(ewt)b; wi = log(λi)/∆t

Although the method is proposed, originally, as an equation-free method, it can be used

in the framework of a projection based method. For example, DMD-Galerkin projection

procedures can be developed in a similar manner to the POD-Galekin projection discussed in

Sec. 2.2 but the DMD modes are used instead of the POD modes.
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Chapter 3

Parameterized Diffusion k-eigenvalue

Problems

3.1 The Diffusion Equation

The characterization of the distribution of neutrons is a central problem in the design and

analysis of nuclear reactors. Using the flux distribution, one can determine quantities like

the reaction rates and the reactor power. An exact treatment of the neutron distribution is

described by the transport equation, which is a linear version of the Boltzmann equation that

was developed originally to treat gas dynamics. The equation is integro-differential and casts

the neutron distribution in terms of seven independent variables: three spatial variables, two

angular dimensions, energy, and time. The main drawback is that it is very difficult to solve

for realistic problems and an exact solution can be only obtained for simplified problems. An

approximate solution can be obtained by employing numerical discretization techniques that

yield large system of equations that are very expensive to solve for large problems.

The diffusion equation to the approximation equation to the transport equation signif-

icantly reduces this computational complexity and has long been the workhorse method

of reactor analysis. One of the main assumption underlying the diffusion equation is the

treatment of the angular dependence, which is assumed to be linear anisotropic, equivalent to
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the P1 approximation. Due to the complex variation of the cross sections within the energy

range of interest for nuclear reactors, the equation is split into number of equations. Each

equation solves for the neutron flux within an energy range along which the cross sections

are assumed to be constant. This representation is known as the multigroup equation.

The steady-state, multigroup diffusion equation for G energy groups can be written as12

−∇.Dg∇φg(r) + ΣRgφg(r) =
G∑

g′ 6=g

Σsg′gφg′(r) +
1

keff

χg

G∑
g′ 6=g

νg′Σfg′φg′(r) , (3.1)

where φg, Dg, ΣRg and νΣfg are the neutron flux, diffusion coefficient, the removal cross

section and the production cross section, respectively and Σsg′g is the scattering cross section

from group g′ to group g, χg is the probability that a neutron will be born with an energy

group in g and keff is the effective multiplication factor. In a matrix form, this can be written

as



−∇ ·D1∇φ1 + ΣR1 −Σs21 . . . −ΣsG1

−Σs12 −∇.D2∇φ2 + ΣR2 . . . −ΣsG2

...
...

. . .
...

−Σs1G −Σs2G . . . −∇.DG∇φG + ΣRG





φ1

φ2

...

φG



=
1

keff



χ1ν1Σf1 . . . χ1νGΣfG

χ2ν1Σf1 . . . χ2νGΣfG

...
. . .

...

χGν1Σf1 . . . χGνGΣfG





φ1

φ2

...

φG



. (3.2)

Typically, this system is solved by employing a numerical descretization scheme such as

the finite-difference, finite-volume and the finite-element methods, which leads to the linear

system

L(µ)Φ =
1

keff

F(µ)Φ , (3.3)
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where µ is a vector of the model parameters such as the group constants and the boundary

condition, the operator L ∈ RN×N is the loss operator, F ∈ RN×N is the fission source

operator, N = G × n with n is the number of spatial cells resulting from the system

discretization. Thus, the system in Eq. 3.3 represents a generalized eigenvalue problem which

is used in order to predict the criticality and flux distribution of a reactor core at a given

configuration, i.e, material and geometry specifications. Some applications such as core

optimization, control and uncertainty analysis require solving this system multiple times with

varying the core configuration or the model parameters. For large problems, this could be

computationally demanding and a ROM that can provide a cheaper approximation of the

quantities of interest is desired.

3.2 POD-Galerkin Projection ROM for the eigenvalue

Diffusion Equation

The POD-Galerkin projection procedures discussed in Sec. 2.1 are used in order to construct

a ROM for the system in Eq. 3.3. A POD subspace is constructed for each group flux by

collecting snapshots of the fundamental eigenvectors computed at different reactor states (i.e,

with varying the input parameters). Then, the group flux is approximated as Φg = Ugag,

where Ug ∈ Rn×r is the POD basis of rank r approximating group g and ag is a vector of the

associated coefficients. The total flux is approximated as

Φ = Ua , (3.4)

where

U =


U1 . . . 0

...
. . .

...

0 . . . UG

 ,
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and

a =


a1

...

aG

 .

Multiplying the system in Eq. 3.3 on the left by UT , yields

UTL(µ)Ua =
1

k
UTF(µ)Ua , (3.5)

or, more compactly,

L̃(µ)a =
1

k
F̃(µ)a , (3.6)

where L̃(µ) ∈ RrG×rG = UTL(µ)U, F̃(µ) ∈ RrG×rG = UTF(µ)U and rG = r×G. Note that

the matrices L and F are large and sparse, where L̃ and F̃ are dense and small. The key point

is that this system has a size of rG that is, in general, significantly smaller than the original

dimension of the system n. Hence, this reduced system should be cheaper to solve, and once

the eigenvector a is computed, the full-order flux can be reconstructed using Eq. 3.4.

3.3 Parameterized ROM for the eigenvalue Diffusion

Equation

Although the system in Eq. 3.6 has significantly reduced dimensions compared to the original

model in Eq. 3.3, there remains a computational challenge in solving the ROM for studies

that require varying the model parameters. In particular, since the matrices L and F are

parameter-dependent, computing the projected matrices L̃ and F̃ needs to be performed at

each new parameter value.

The projection operations (i.e, UTL(µ)U and UTF(µ)U) have a computational cost that is

proportional to the original dimension of the system n. Each projection requires a number

of flops with O(N2 × r + r2 × N), which makes the ROM inefficient for large problems.

Therefore, it is desirable to constitute an offline/online decomposition of the ROM. The
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projection is performed in the offline stage while, in the online stage, an inexpensive system is

solved for each parameter point. The matrix version of the DEIM discussed in Sec. 2.4.1, can

be exploited to improve the ROM efficiency for multi-query problems. First, the matrices L

and F are serialized as l ∈ RN1 and f ∈ RN2 respectively, where N1 and N2 are the number

of nonzero elements in L and F, respectively. By applying the DEIM procedures discussed in

algorithm 3, l and f are approximated as

l(µ) = Ulb(µ) , (3.7a)

f(µ) = Ufc(µ) , (3.7b)

where Ul ∈ RN1×rl and Uf ∈ RN2×rf are the POD subspaces approximating l and f with

ranks rl and rf , respectively. The POD basis are generated using snapshots of the serialized

operators at different reactor states. The coefficient vectors b ∈ Rrl and c ∈ Rrf are computed

in an online stage for each new parameter value (µ) by solving

PT
l Ulb(µ) = l(µ) (3.8a)

PT
f Ufc(µ) = f(µ) , (3.8b)

where Pl ∈ RN1×rl and Pf ∈ RN2×rf are the interpolation matrices computed following

algorithm 3. By remapping each vector in Ul and Uf into a matrix, L and F can be expressed

as

L(µ) =

rl∑
i=0

Libi(µ) , (3.9a)

F(µ) =

rf∑
i=0

Fici(µ) , (3.9b)

where Li and Fi are N ×N matrices. Hence, the projection can be performed as

rl∑
i=0

UTLiU︸ ︷︷ ︸
L̃i

bi(µ) =
1

k

rf∑
i=0

UTFiU︸ ︷︷ ︸
F̃i

ci(µ) (3.10)
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The small matrices L̃i ∈ RrG×rG and F̃i ∈ RrG×rG are computed once and stored in an offline

stage, and for each new parameter value the coefficients b and c are obtained by solving

Eq. 3.8.

For the rest of this chapter, we will refer to this model as the ROM-DEIM, while we refer

to the model in Sec. 3.2 as the ROM.

3.4 Application

To explore the potential of the method described above, the IAEA PWR 2D benchmark51

was used as an illustrative model with the main goal being to develop a parametric ROM

that approximates both the flux distribution and the eigenvalue keff at different given model

parameters.

The benchmark features two energy groups for two different fuel assemblies and reflector

regions. The core contains 177 fuel assemblies and octant symmetry. The control rods are

fully inserted in nine assemblies and partially inserted in four. The fuel assembly pitch is 20

cm. A schematic layout of the core is shown in Fig. 3.1. The corresponding cross sections are

given in Table 3.1.

Region D1 D2 Σ1→2 Σa1 Σa2 νΣf2 Material
1 1.5 0.4 0.02 0.01 0.08 0.135 Fuel 1
2 1.5 0.4 0.02 0.01 0.085 0.135 Fuel 2
3 1.5 0.4 0.02 0.01 0.13 0.135 Fuel 2 + Rod
4 2 0.3 0.04 0 0.01 0 Reflector

Table 3.1: Two group constants of the IAEA-2D benchmark

The code Detran was used to model the benchmark. For spatially discretizing the problem,

the mesh-centered finite difference method was used, and the resultant system was solved

using the Arnoldi method in SLEPc library, with a tolerance of 1× 10−14 and a maximum

number of iterations of 1000. For a spatial grid of 90× 90, the eigenvalue using the nominal

values of the cross-section in table 3.1 was 1.02948. The normalized flux distributions of the

fast and the thermal groups are shown in Figs. 3.2 and 3.3, respectively.
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Figure 3.1: Geometry as modeled for the IAEA 2D diffusion benchmark.
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Figure 3.2: Fast flux distribution
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Figure 3.3: Thermal flux distribution

A parametric ROM was developed to approximate the eigenvalue and the group flux at

different parameter points. The parametric ROM was developed with the aid of the MDEIM

to obtain an offline/online decomposition of the ROM and hence improve its efficiency. Here,

the parameters of interest were the cross sections which were assumed to be uniformly

distributed about 2% of the nominal value given in Table 3.1.

3.4.1 ROM and ranks selection

Before constructing the parametric ROM, appropriate values for the POD rank and the

DEIM orders of the problem operators need to be determined. The ranks are selected based

on the flux relative error which is computed as

flux relative error(%) =
‖Φapprox −Φfom‖

‖Φfom‖
× 100 , (3.11)

where ‖.‖ denotes the L2 norm, Φfom is the solution of Eq. 3.3 and Φapprox is either the

ROM or the ROM-DEIM approximation of the flux. First, snapshots of the group flux,

at different cross section values, were generated using the FOM. For the four assemblies

materials, 13 parameters were considered, where cross sections of the same assembly were

perturbed with the same amount. These perturbed cross sections were generated randomly
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using the specified distribution and are considered as the ROM training data. The SVD was

computed for each energy group snapshots. The first five POD modes of both groups are

shown in Fig. 3.4 where σi denotes the singular value of the ith mode where all the singular

values are shown in Fig. 3.5. As might be expected, the first POD mode has the same shape

as the flux distribution, which is the fundamental eigenvector.

Fast group 

 1=4.7e+00

Thermal group 

 1=1.3e+00

2=3.4e-01 2=1.3e-01

3=1.4e-02 3=1.1e-02

4=8.4e-03 4=4.6e-03

5=3.3e-03 5=2.0e-03

Figure 3.4: POD modes of the fast and thermal groups
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Figure 3.5: Singular values of the fast and thermal groups

In order to select the POD rank, Eq. 3.6 was solved with different POD ranks and the

errors between the resultant flux and the FOM flux were computed using Eq. 3.11 and are

shown in Fig. 3.6. Different mesh sizes were used which gives different problem sizes and

increasing model fidelity. The legend in the figure denotes the spatial grids corresponding to

different mesh sizes. Note that the 9× 9 grid flux can not have rank higher than 81, (i.e, the

number of spatial cells).
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Figure 3.6: Relative L2 norm of the flux error (%)

Based on the shown results, a rank of 30 was selected because it leads to an error that
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is less than 0.01% for all cases. However, a higher rank can be chosen if a better accuracy

is desired. Furthermore, since the parametric ROM is aimed to be constructed using the

MDEIM for the L and F operators, ranks for both need to be selected. Hence, using the

same training data, snapshots of the serialized matrices were generated, and the SVD was

computed for each of them. The singular values are shown in Fig. 3.7.
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Figure 3.7: Singular-values of the serialized L and F operators

As can be seen, the singular values of F decreases instantaneously and based on this, an

order of 1 was selected. Note that this selected low-order is not surprising since this is a

very low-rank operator that contains only the fission cross section data; hence, its serialized

form can be approximated by few basis vectors. On the other hand, the operator L contains

more information including the boundary condition, leakage and other cross section data,

hence it needs to be approximated with higher DEIM order. It was observed that there is

a drastic decrease of the singular values after a rank of 16, and, hence a DEIM of order 16

was selected for this operator. The error resulting from approximating the operators using

MDEIM of the selected orders was measured by computing the Frobenious norms of the

errors for both operators (i.e, ‖UTLU−
∑rl

i=0 UTLiU‖F ) and they were found to be in the

order of 1× 10−15 and 1× 10−12 for F and L, respectively.
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3.4.2 Parametric ROM

The MDEIM procedures discussed in Sec. 3.3 were used to build the parametric ROM. Thus,

a ROM-DEIM was built with a POD of rank 30 and orders of 16 and one for the L and

F operators, respectively. Moreover, to assess its performance and accuracy, a ROM was

constructed without using the DEIM, i.e, by performing the projection at each new parameter

point. For testing, 100 different cross section samples were generated and the corresponding

group flux and keff resulting from the three models, i.e, FOM, ROM and ROM-DEIM, were

obtained. The mean error of all samples is computed for each case as

mean error(%) =
1

m

m∑
i=0

‖Φgapprox. −Φgfom‖
‖Φgfom‖

× 100 , (3.12)

where m is the size of the testing sample. The computed mean errors of the thermal and fast

groups of the ROM-DEIM are shown in Fig. 3.8, where there was no significant difference

between these errors and the errors of the ROM.
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Figure 3.8: Mean relative error of the thermal flux

Furthermore, the error in the predicted keff was computed and the errors distribution is

shown in Fig. 3.9.
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Figure 3.9: Error distribution of the predicted keff using the ROM-DEIM

Also, the maximum errors across the sample are shown in Table 3.2.

grid size fast flux (%) thermal flux (%) keff (pcm)
9× 9 0.0001 0.0002 0.0008

18× 18 0.0024 0.0025 0.0290
27× 27 0.0017 0.0020 0.0023
45× 45 0.0012 0.0017 0.0054
90× 90 0.0011 0.0018 0.0068

Table 3.2: Maximum errors of the flux and the keff

As for the computational efficiency, the CPU time of the three models was obtained

and is shown in Fig. 3.10. Clearly, the ROM cost increases with increasing the number of

spatial cells since its cost is proportional to the problem dimension. On the other hand, the

ROM-DEIM cost is almost constant and is independent of the problem dimension. Of course,

there is an upfront offline cost. However, the key point is that once this offline stage is done,

a large sample size can be used without any computational burden.
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Figure 3.10: CPU time of the models

It was interesting to see the FOM error resulting from using different mesh sizes. As

explained in the introductory chapter, a FOM with a coarse mesh can be considered as a

surrogate model that is used to obtain a cheaper approximation of a FOM with a finer mesh.

The error in keff was computed between FOMs with grids 45× 45 and 90× 90 for the testing

sample and its distribution is shown in Fig. 3.11. As can be seen, the resulting distribution

indicates that the coarser mesh model results in an error in kkeff that is higher than the

ROM wih 90× 90 grid. This suggests that coarse mesh models might not be the best way to

perform efficient multi-query studies if good accuracy is desired. It also suggests that ROMs

could provide better accuracy while retaining the model fidelity.
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Figure 3.11: keff error distribution of the FOM with different mesh sizes

Another case was tested in which all assemblies materials were treated as independent

materials even if they belonged to the same assembly type, leading to a highly heterogeneous

problem with 314 different parameters. For this case, only a grid of 90× 90 was used with

200 samples generated for obtaining the POD and DEIM basis. The singular values of the

group fluxes and the problem operators are shown in Figs. 3.12 and 3.13 respectively.
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Figure 3.12: singular values of the group fluxes
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Figure 3.13: singular values of the problem operators

Unlike the previous case, the singular values do not show a rapid decay because of the

increasing level of spatial heterogeneity. Note that for the F operator, the singular values

drop to a value equivalent to zero after 52, which is the number of the assemblies in the core

excluding the reflector. A ROM-DEIM was built with a POD basis of rank 50 and order

52 for both F and L operators. For testing, 200 samples were used and the distribution of

the resulting prediction error of keff is shown in Fig. 3.14. The maximum errors across all

samples of the fast and thermal flux were 29% and 25% respectively. Moreover, a ROM

was built with the same POD basis and the resulting error of the predicted keff is shown in

Fig. 3.15. The significant difference between the shown errors of the two models suggests

a limitation of using the DEIM for problems with operators of large degrees of freedom.

Note that increasing the DEIM order should reduce this error, however it poses another

challenge with respect to memory requirement since it will result in storing a large number

of matrices in the offline stage. It is important to note that the correlation between different

cross sections has been ignored in this study. Taking the correlation into account should

result in operators with lower degrees of freedom and accordingly increase the potential of

obtaining a good approximation of the operator using DEIM of low order.
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Figure 3.14: Error distribution of the predicted keff using the ROM-DEIM (case 2)
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Figure 3.15: Error distribution of the predicted keff using the ROM (case 2)
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Chapter 4

Time Dependent Problems

4.1 Time-Dependent Diffusion Equation

The steady-state diffusion equation discussed in the previous chapter assumes that the neutron

population is constant with respect to time. In other words, there exists a balance between

the neutrons loss due to absorption and leakage, and the neutrons gain from fission. However,

there are cases in which this balance is no longer maintained and accordingly, the neutron

population exhibits a time dependence. These cases occur for various reasons with different

time scales. Examples include fuel burnup, control rod movement, reactor start up and

shutdown, and various accidental conditions. The time-dependent diffusion equation is used

to predict the time behavior of the neutron population following a perturbation in the reactor

core. In such calculations, the delayed neutrons must be accounted for, in contrary to the

steady-state version, where all the fission neutrons are assumed to be promptly emitted at

the time of fission. For this purpose, the delayed precursors concentration balance equation

is coupled with the flux equation. Thus, the multi-group time-dependent diffusion equation,

for G energy groups and I precursors groups, can be written in the following form:
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1

vg

∂φg
∂t

= ∇.Dg∇φg − Σtgφg +
G∑

g′=1

Σsg′gφg′

+ χg(1− β)
G∑

g′=1

νΣfg′φg′ + χg

P∑
i=1

λiCi ,

(4.1)

where
∂Ci
∂t

= −λiCi + βi

G∑
g′=1

νΣfg′φg′ ,

and φg, Dg, Σag, νΣfg and vg are the neutron flux, diffusion coefficient, the absorption cross

section, the production cross section and the average neutron velocity in group g, respectively.

Σsg′g is the scattering cross section from group g′ to group g and χg is the probability that

a fission neutron will be born in group g. Ci is the ith precursor concentration, βi is the

fraction of delayed neutrons in group i, λi is the ith group decay constant. The system can

be represented compactly in a matrix form as

∂y(r, t)

∂t
= Ay(r, t) , (4.2)

where the stacked unknowns are

y =



φ1(r, t)

...

φG(r, t)

C1(r, t)

...

CI(r, t)


.
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and the system matrix is

A =



v1(∇ ·D1∇+ Σ11) v1Σ12 . . . v1Σ1G

v2Σ21 v2(∇ ·D2∇+ Σ22) . . . v2Σ2G

...
...

. . .
...

vGΣG1 vGΣG2 . . . vG(∇ ·DG∇+ ΣGG)

v1f11 . . . v1f1I

...
. . .

...

vGfG1 . . . vGfGI

p11 p12 . . . p1G

...
. . .

...
...

pI1 pI2 . . . pIG

−λ1 . . . 0

...
. . .

...

0 . . . −λI


where

Σgg′ = (1− β)χgνΣfg′ + Σsgg′
,

fig′ = χgλi ,

and

pig = βiνΣfg .

In a block matrix form, the operator A can be written as

A =

L D

F P

 . (4.4)

Discretizing the system in space yields a system of ODEs, or

dy(t)

dt
= Ay(t) , (4.5)
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where y ∈ RN , A ∈ RN×N and N = (I +G)× n with n is the number of spatial unknowns

arising from discretization. The discretized block matrix A is written as

A =

L D

F P

 . (4.6)

where L ∈ R(n×G)×(n×G), D ∈ R(n×G)×(n×I), P ∈ R(n×I)×((n×G) and F ∈ R(n×I)×((n×I). Thus,

the system in Eq. 4.5 is the full-order model and it can be solved using a suitable time-scheme.

However, it is expensive to solve such systems for fine spatial and time grids, since a linear

system of a size proportional to the spatial discretization has to be solved for each time step.

Hence, a reduced-order model to approximate it is justified. In the following section, the

POD-Galerkin ROM procedures to approximate this problem are illustrated.

4.2 POD-Galerkin Model for the time dependent dif-

fusion equation

In order to build a POD-Galerkin ROM for the system in Eq. 4.5, POD basis sets need to

be generated for the group flux and the precursor concentrations. The total flux can be

represented as

Φ ≈ Uφaφ(t) , (4.7)

where Uφ ∈ R(n×G)×r is a POD basis of rank r and aφ is the associated temporal coefficients

vector. Similarly, the precursors concentration is approximated as

C ≈ Ucac(t) , (4.8)

where Uc ∈ R(n×I)×rc is a POD basis of rank rc and ac is a vector of the associated temporal

coefficients. The basis can be generated such that all flux/precursors groups are collapsed

together using one basis set in which case snapshots of all groups are stacked in one matrix for
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which the SVD is computed. Alternatively, each flux/precursor group can be approximated by

a separate POD basis set. For example, the gth group flux is approximated as Φg = Uφgag(t),

where Uφg ∈ Rn×rφ is the POD basis of rank rφ of the gth group and ag ∈ Rrφ is the

associated temporal coefficients vector. For simplicity, the same POD rank is used for all

groups. In such case the flux basis is constructed as

Uφ =


Uφ1 . . . 0

...
. . .

...

0 . . . UφG

 ,

and the coefficients vector

aφ =


a1

...

aG

 .

The precursor groups can be approximated in a similar manner. The next step is to substitute

Eq. 4.7 and Eq. 4.8 into Eq. 4.5 and project the system onto the POD subspace by multiplying

it on the left by the transpose of the subspace matrix. To compute the projected matrix, the

operator A does not have to be constructed explicitly. Rather, each sub-matrix is projected

onto the appropriate basis, and the reduced operator Ã is then constructed by stacking these

projected sub-matrices together. The upper sub-matrices L and F arise from discretizing

the flux equation, hence they are multiplied on the left by Uφ. On the other hand, F and P

result from discretizing the precursor concentration equation, and are multiplied on the left

by Uc. The projected submatrices are computed as follows

L̃ = UT
φLUφ ,

D̃ = UT
φFUc ,

P̃ = UT
c PUC ,

F̃ = UT
c FUφ ,
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where L̃ ∈ Rrφ×rφ , D̃ ∈ Rrφ×rc , F̃ ∈ Rrc×rφ and P̃ ∈ Rrc×rc . The projected operator

Ã ∈ R(rφ+rc)×(rφ+rc) is constructed as

Ã =

L̃ D̃

F̃ P̃

 (4.10)

Thus, the POD-Galerkin ROM approximating the system is represented as

da(t)

dt
= Ãa(t) , (4.11)

where,

a(t) =

aφ(t)

ac(t)

 .

The initial condition of the temporal coefficients a(t) is naturally defined as

aφ0 = UT
φΦ0 ,

ac0 = UT
c C0 ,

where Φ0 and C0 are the initial conditions of the flux and the precursors concentration,

respectively. Similar to the FOM, the system in Eq. 4.11 can be solved using any time-scheme.

However, compared to the FOM in Eq. 4.5, significantly fewer equations need to be solved

at each time step which makes it computationally cheaper. Once the reduced solution is

obtained, the approximate full-order solutions of the flux and the precursors can be computed

using Eqs. 4.7 and 4.8, respectively.

Computational complexity can be encountered in solving the ROM in Eq. 2.9 when the

operator A is time-dependent, since the corresponding reduced operator Ã has to be updated

at each time step. Because computing this reduced operator has a cost proportional to the

dimension of the system, it contributes significantly to the overall expense of the ROM. Two

approaches can be employed to avoid the direct projection of the operator at each time
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step; the first is an approximate-then-project approach, and an example of a method that

belongs to this category is the matrix version of DEIM, presented in Sec.2.4.1. Alternatively,

a project-then-approximate approach can be used. An example of such methods is to use

interpolation to approximate the elements of the reduced operators. In problems that do not

include feedback, this can be done by using pre-computed matrices at specific time instances.

However, this is challenging in problems with feedback since the original operator elements,

i.e., cross sections, depend on the solution itself. Instead, on-the-fly interpolation can be

employed based on the assumption that cross sections change with time considerably slower

than the flux evolution. This method can be done by using two time steps, i.e., macro time

step and micro time step. The micro time step is the one that is used to integrate the system,

and the macro step is a coarser one, where the macro-to-micro ratio is problem-dependent.

The projection is restricted to be performed at each macro time step. The projected operator

elements are approximated at the micro time steps by interpolating the matrices generated

at the macro step mesh, which are updated to account for the feedback coupling.

4.3 Applications

Two time-dependent applications were studied. The first is a 1-D problem, developed

specifically to explore the potential of different ROM techniques to approximate neutronic

transients. Moreover, the problem is used to understand the impact of the POD group flux

basis generation on the ROM prediction accuracy. In particular, two approaches were adopted

to generate the flux basis. In the first approach, a single basis set was obtained by collapsing

all energy groups together. In the second approach, separate POD basis sets are generated

for each energy group. In both cases, the snapshots were the time-dependent group flux

corresponding to the transient being studied. The result of this study led us to focus on

the POD-Galerkin model and extend it to study higher dimensional problems and also to

parameterize the ROM so that it can be used efficiently for multi-query applications. The

two applications are given in the next two subsections with their numerical results.
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4.3.1 1-D Time Dependent Diffusion

The model problem considered is a slab reactor, as shown in Fig. 4.1, where R indicates

a reflector and Ai specifies the ith assembly. All of the assemblies are of the same fuel

type, but A2 and A4 are control locations. Listed in Table 4.1 are the two-group constants

for the reflector, fuel with no control inserted, and fuel with control fully inserted. Linear

interpolation is used to compute Σa2 value at intermediate control positions. Precursor data

are shown in Table 4.2.

R A1 A2 A3 A4 A5 R

10 cm

Figure 4.1: 1-D reactor model

The transient begins in steady state with both control elements 25% withdrawn. After 2

seconds, the right control (in A4) is removed to 30% withdrawn over a period of 2 seconds

at a constant rate. This configuration is maintained for 6 seconds. At 10 seconds, the right

control is inserted to the 25% position over a period of 2 seconds at a constant rate. The

reactor power is followed for an additional 50 seconds, making a total of 62 seconds. To solve

this problem numerically, a mesh-centered, finite-difference discretization was used in space.

For the time discretization, the backward-Euler method was used, leading to

yk+1(I−A∆t) = yk , (4.13)

where k denotes the time step and ∆t is the time step size. A spatial step of 0.2 cm and

temporal step of 0.1 s were used for all calculations. Shown in Fig. 4.2 is the FOM power

computed using the resulting two group flux.
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material D1 D2 Σa1 Σa2 Σs2←1 νΣf1 νΣf2

(cm) (cm) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)
reflector 1.5000 0.5000 0.0002 0.0100 0.0320 0.0000 0.0000

fuel (all out) 1.3000 0.5000 0.0105 0.1140 0.0220 0.0030 0.1900
fuel (all in) 1.3000 0.5000 0.0105 0.1640 0.0220 0.0030 0.1900

Table 4.1: Two group constants of the 1-D reactor problem.

group i βi λi (s−1)
1 2.18× 10−4 1.2467
2 1.02× 10−3 2.8292× 10−2

3 6.05× 10−4 4.2524× 10−2

4 1.31× 10−3 1.33042× 10−1

5 2.20× 10−3 2.92467× 10−1

6 6.00× 10−4 6.66488× 10−1

7 5.40× 10−4 1.634781
8 1.52× 10−4 3.554601

Table 4.2: Eight-group, delayed-neutron precursor constants of the 1-D reactor problem.
.
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Figure 4.2: 1-D reactor core power
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Numerical Results

First, the above model was used to carefully select the basis generation method that results

in a more accurate ROM. Hence, two POD-Galerkin ROMs were developed, one using a

single basis set of rank 10 for the two energy groups and the second using a group-wise basis

sets, each of rank 5, computed from the corresponding group flux snapshots. Eq. 4.11 was

solved with the same time scheme used for the full-order model. Shown in Fig. 4.3 are the

relative errors in the predicted power using the two ROMs. It is observed that the ROM
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Figure 4.3: Relative errors in power predictions with different group basis

with a group-wise energy basis gives a better accuracy, implying that the variation between

the group fluxes is best captured by separate basis sets. Hence, for the rest of applications

discussed in this thesis, a POD-Galerkin ROM was developed with group-wise POD basis

sets. Moreover, we will show results of two other ROM methods developed for the same

problem. The two methods are the DMD-Galerkin projection and the data-driven DMD. For

the Galerkin-projection models, a basis set was generated for each group flux while one basis

set was generated for all precursor groups. For the POD and DMD bases, 20 modes were
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used. For data-driven DMD, snapshots of the Quantities of interest (QoIs) were stacked into

one matrix to build a DMD surrogate with 45 DMD modes. While the error for POD always

decreases when more basis functions are included, this is not the case for DMD, since the

basis vectors are not orthogonal. Hence, different ranks were tested, and the one producing

the smallest error was used. Shown in Table 4.3 is the relative L2 error in the predictions of

the group flux and the precursors concentration, averaged over space and time. The group

fluxes were used to compute the time-dependent core power, and the resulting prediction

errors are shown in Figure 4.4.

Table 4.3: Relative L2 error in the Quantities of Interest (%)

Model Fast flux Thermal flux Precursor concentration
POD-Galerkin 3.75× 10−5 3.8× 10−5 0.00026
DMD-Galerkin 0.025 0.025 0.024
DMD 1.5 1.49 31.4
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Figure 4.4: Relative errors in power predictions by the surrogates

As shown, the POD-Galerkin projection always performs better than the other two

methods. These results were the main reason that we proceeded with the POD-Galerkin
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model for more complex problem and also for exploring the potential of approximating

problems that exhibit non-linearity resulting from other physics feedback as shown in the

next chapter.

4.3.2 2-D Transient

Here, the TWIGL benchmark was used to illustrate the POD-Galerkin projection model on

a more complex problem. The code Detran10 served as the simulation that has the full-order

model implemented. Some intrusive modifications were introduced to the existing code in

order to perform the projection of the problem operator. The benchmark characterizes a

two-dimensional reactor core as shown in Fig. 4.5. The reactor core consists of two different

fuel regions; the blanket zone, and the seed. The seed is located in two regions (i.e, seed 1

and seed 2). The two-group cross sections are given in Table 4.4, while there is only one

precursor group with λ = 0.914193 s−1.

Table 4.4: Two group constants of the TWIGL Benchmark.

Region Group D (cm) Σa (cm−1) Σsg←g′ (cm−1) νΣf (cm−1)

seed 1 & 2
1 1.4 0.01 0.01 0.007
2 0.4 0.015 0.0 0.2

blanket
1 1.3 0.008 0.01 0.003
2 0.5 0.05 0.0 0.06

The transient is induced by positive reactivity insertion in the seed 2 region, which is

done by decreasing the absorption cross section. Two different transients are studied, the

first is a ramp in which the absorption cross section Σa changes in time according to

Σa(t) =


Σa(0)[1− 0.11667× (t− 0.1)] for 0.1 < t < 0.3 s.

Σa(0)× 0.97666, for t > 0.3 s.

(4.14)

In addition, a step reactivity insertion is produced by reducing the absorption cross section

as follows

Σa(t) = Σa(0)× 0.97666 for t > 0.1 s. (4.15)
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For more details about the benchmark, the reader may consult Ref.52. As in the previous

x (cm)

y (cm)

Blanket Seed 1

Seed 1 Seed 2

Blanket

0
0

24

24

56

56

80

80

Figure 4.5: Schematic of the TWIGL benchmark.

example, Backward-Euler was used to solve Eq. 4.5 with a time step of 0.001 second. The

FOM core power computed of both perturbations is shown in Fig. 4.6.

ROM Results

In order to generate the POD basis, Detran was used to obtain snapshots of the two-group

fluxes and the precursor concentrations. With these snapshots, the POD procedure, discussed

in section 2.1, was applied to each snapshots set to generate a separate basis for each group

flux and one basis for the precursor group. Shown in Fig. 4.7 are the first four POD modes

along with the associated temporal coefficients of the fast and thermal flux, where σi denotes

the singular value associated with the ith POD mode. The first mode is very similar to the

flux shape of both groups, with its associated temporal coefficient of the highest magnitude.

Different spatial resolutions were used to see how the ROM will behave with a growing
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Figure 4.6: Full-order model Core Power.

number of dimensions. Several POD bases of different ranks were generated and used to

build a ROM by varying the problem size, i.e, using different spatial discretizations. Fig. 4.8

shows how the mean of the predicted flux relative error decreases as more basis vectors are

included in the subspace; the legend in the figure refers to the spatial grid dimension. The

accuracy of these ROMs for a given POD rank is nearly identical. In other words, the ROMs

(and underlying POD bases) capture the intrinsic dimensions (or features) of the problem,

and these intrinsic dimensions depend weakly on the discretization used for that problem.

Also, it can be seen in Fig. 4.8 that the step perturbation error decays faster than that

of the ramp, which indicates a faster decay of the singular values. Recall that the step

experiment includes a sudden change in the reactor from one state to another through an

instantaneous change in the absorption cross section. On the other hand, the ramp is driven

by a continuous change in this cross section, and accordingly, the core state undergoes a

richer transition that is best captured by a larger basis. In order to study the impact of the

snapshot temporal resolution on the ROM performance, POD subspaces were generated using

time steps of 0.01 and 0.001 s. For brevity, a fixed 80 × 80 spatial grid and POD basis of

rank 10 were used. The spatio-temporal averaged relative errors of the predicted group flux
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Figure 4.7: POD modes and temporal coefficients of the two-group flux.

and precursors are shown in Table 4.5. It was also interesting to explore the impact of the

Table 4.5: Mean Relative Error (%) between FOM and ROM solutions

Perturbation snapshot ∆t (s.) Fast flux Thermal flux Precursor concentration

Ramp
0.01 2.05× 10−9 2.59× 10−9 2.54× 10−9

0.001 2.14× 10−10 2.16× 10−10 2.53× 10−9

Step
0.01 2.25× 10−9 2.32× 10−9 2.49× 10−9

0.001 3.65× 10−10 3.65× 10−10 2.49× 10−9

snapshots resolution on the ROM prediction accuracy. Hence, snapshots were generated with
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Figure 4.8: Spatio-temporal averaged relative error between FOM and ROM fluxes.

two different time mesh sizes (i.e; ∆t = 0.001 s and ∆t = 0.01 s) and two approaches were

adopted in constructing the ROM. The first is to generate the basis using the coarse mesh

snapshots and perform the testing on a fine mesh. The second is to compute the POD basis

and perform the testing using the same fine mesh size. The former approach is favorable from

a computational point of view, since using a coarser time mesh is cheaper. Moreover, since

the snapshots are expected to exhibit high linear dependence, using a coarse mesh should

not impact the quality of the POD modes. Once the reduced space is produced, the ROM

can be used to obtain the solution with any desired time resolution. The predicted group

fluxes were used to compute the integral core power and the prediction error is shown in

Fig.(4.9). The POD-coarse and POD-fine refer to the POD basis generated using 0.01 and

0.001 s spaced snapshots respectively. Note that all the predictions are made on the fine time

grid. In the case of the POD-coarse this introduces an error in the initial condition of the

temporal coefficients. Recall that the initial condition is computed using a3(0) = UTφ(0),

where T denotes the transpose. However, as can be concluded from the results, the ROM

is still able to reproduce the solution with sufficient accuracy. For the step perturbation,

the error shown is limited to the time interval 0.05–0.015 s, outside of which the error is

nearly constant. The sudden increase in the error corresponds to the sudden insertion of the

reactivity, which is represented mathematically by a change in the operator A.

To further assess the accuracy of the ROM, the resulting error was compared to the

FOM error of a coarser time mesh. FOMs with coarse discretizations, and lower fidelity
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Figure 4.9: Relative absolute error between the FOM and the ROM core powers
.

models in general, represents a class of physics-based surrogate models that rely on applying

simplification of the original model. Hence, the FOM power was computed twice, once by

integrating the system using a fine mesh, i.e, 0.001 s and the other by using coarse time mesh,

i.e, 0.01 s. The error between both powers was computed and is shown in Fig. 4.10. As can

be seen, the error is significantly higher than that of the POD-coarse Galerkin model shown

in Fig. 4.9. Hence, the developed ROM is more reliable and at the same time it preserves the

original model fidelity.
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Figure 4.10: Relative absolute error of the FOM core power using coarse and fine time meshes.
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To understand the computational cost of the the ROM, recall that the use of the ROM

includes two steps, the projection of the full-order operator and the solution of the reduced

system. For the problems considered, the cost of the latter step is trivial, with execution

times on the order of tens of ms. On the other hand, the projection step is more expensive.

Shown in Table 4.6 the core CPU time of the different cases. Although the implementations

were not subject to substantial performance tuning, the numbers should represent a realistic

and self-contained example for comparing the FOM and ROM performance.

Table 4.6: Computational time of the FOM and the ROM for the TWIGL benchmark.

Grid FOM time (s) ROM time (s)

ramp
30× 30 6.3 1.01
50× 50 20.1 2.72
80× 80 61.65 7

step
30× 30 6.3 0.6
50× 50 20.5 1.63
80× 80 61.65 4.45

Parametric ROM and POD-greedy results

The greedy sampling algorithm given in Sec. 2.3 was used to parameterize the POD-Galerkin

ROM and an uncertainty quantification was carried out to illustrate the method. However, it

is important to clarify that the main goal is not to quantify the real problem uncertainties;

rather we aim to show the potential of the method to be used for general parameterized

problems.

In this analysis, the 30 × 30 spatial grid was used. The cross sections were assumed

to be uniformly distributed within 3% about the nominal values given in Table 4.4. To

construct the ROM, 50 independent samples were generated (i.e., training data), while an

additional 100 samples were generated for testing (i.e., testing data). Again, different time

steps (0.02, 0.01, and 0.001 s) were used to generate the greedy POD subspace, but the ROM

was integrated using only a 0.001 s step. Fig. 4.11 shows the error convergence of the greedy

algorithm as the subspace is enriched by adding basis vectors derived from different points

in the parameter domain. The greedy selection was terminated when a subspace of rank
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40 was reached or the reconstruction error fell below the threshold value of 1 × 10−5. For

each selected sample, the FOM was evaluated, and two POD basis vectors were retained

and added to the greedy subspace. There are no general rules for these stopping criteria or

for the number of POD vectors retained at each step. However, for this particular set of

problems, ranks beyond 40 (or errors below the threshold) led to negligible improvement.

Moreover, including just a single POD vector appeared to leave out the potentially more

valuable information contained in the second vector.

For both the ramp and step perturbations, construction of the basis for ∆t = 0.02 s

converged rapidly, leading to early termination and subspaces of less than the maximum rank.

Contrarily, for ∆t = 0.01 s and ∆t = 0.001 s, the maximum subspace size was reached before

the error threshold was satisfied. Each basis was used to construct a ROM with which the

sample means and standard deviations of the observables were predicted using the test data.

The same quantities were computed using the FOM to estimate the ROM prediction error.

Shown in Tables 4.7 and 4.8 are the relative mean error of the sample mean and standard

deviation predictions of the group fluxes and the precursor group, respectively. It can be

inferred from the numerical results that the ROM is able to capture the solution variation

over the parameter domain of interest. The same conclusion can be made from Fig. 4.12,

which shows a histogram of the maximum error in the power prediction of all testing samples.

Moreover, the results suggest that the greedy basis could be generated with snapshots

that exhibit a coarse time mesh leading to an improved ROM efficiency without sacrificing

the accuracy. The selection of optimal resolutions (e.g., time steps) for training depends

in part on the corresponding resolution and other characteristics of the target FOM. Such

dependence may suggest that a general selection criterion is unlikely to be constructed;

nonetheless, effective, problem-dependent heuristics based on experience may be adequate.

The cost of constructing the greedy-POD space was several minutes, which may seem to

be relatively expensive, but it is important to note that these procedures are performed only

one time. Once the subspace is constructed, the parametric ROM can be evaluated at an

arbitrary number of parameter points. For applications that require running hundreds or

thousands of cases, the cost of this step diminishes with respect to the cost of the evaluation
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Figure 4.11: L2 norm of flux error between the FOM and the ROM with the greedy basis size

Table 4.7: Mean Relative Error (%) between the FOM and the ROM Sample Means

Perturbation ∆t (s) Fast flux Thermal flux Precursor concentration

Ramp
0.02 1.85× 10−4 4.79× 10−4 8.13× 10−4

0.01 7.67× 10−5 2.75× 10−4 3.72× 10−4

0.001 7.66× 10−5 2.76× 10−4 3.74× 10−4

Step
0.02 2.46× 10−4 7.52× 10−4 3.67× 10−3

0.01 3.52× 10−5 1.39× 10−4 1.69× 10−4

0.001 5.08× 10−5 3.59× 10−4 7.43× 10−4

Table 4.8: Mean Relative Error (%) between the FOM and the ROM Sample Standard
Deviations

Perturbation ∆t (s) Fast flux Thermal flux Precursor concentration

Ramp
0.02 5.93× 10−3 5.23× 10−3 2.1× 10−2

0.01 2.45× 10−3 4.66× 10−3 1.6× 10−2

0.001 2.45× 10−3 4.66× 10−3 1.6× 10−2

Step
0.02 4.1× 10−3 6.78× 10−3 7.12× 10−2

0.01 8.66× 10−4 2.5× 10−3 2.07× 10−2

0.001 8.62× 10−4 4.35× 10−3 1.08× 10−2

step.
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Figure 4.12: L2 norm of the power error between the FOM and the ROM with the greedy
basis size
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Chapter 5

Nonlinear Diffusion Problems

5.1 Introduction

In the previous chapter, transient problems were treated with single-physics modeling: neutron

transport in the diffusion approximation. This treatment is sufficient when the reactor operates

at low power where there is no significant feedback from other physics. Realistically, the

behavior of nuclear reactors is governed by different physics interactions and requires multi-

physics modeling to account for feedback mechanisms. For example, thermal-hydraulics

feedback plays an essential role in reactor operation. Changes in the fuel temperature alter the

cross sections due to Doppler broadening13, which in turn impacts the neutron population and

hence the fission rate and the rate of heat generation. Also, the coolant density changes with

its temperature, impacting the neutron thermalization and, accordingly, the energy spectrum.

On the other hand, changes in the flow rate of the coolant cause gradual changes in the

reactor temperature, which again impacts the neuron spectrum. Various reactivity coefficients

were introduced to quantify these effects on the reactor criticality, such as the Doppler

reactivity coefficient, void reactivity coefficient, and moderator temperature coefficient. The

magnitude and the direction of these reactivity coefficients are important factors impacting

reactor stability and safety. Multi-physics modeling accounts for these different feedbacks

mechanisms; however, it poses a challenge in terms of the computational cost, since it entails
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solving coupled systems for different fields such as neutron flux, temperature, and flow rate.

Moreover, the neutron transport (or diffusion) equation is no longer a linear one due to the

indirect dependence of the cross section on the neutron flux.

A simplified, homogeneous multi-physics model that shows the coupling between differ-

ent physics can be illustrated by the one-group diffusion equation coupled with thermal

conduction53, or

1

v

∂φ

∂t
−∇.D∇φ+ Σa(T ) = νΣf (T )φ , (5.1)

and

ρCp
∂T

∂t
−∇.K(T )∇T = wΣf (T )φ , (5.2)

where ρ is the material density, Cp is the heat capacity, K is the thermal conductivity,

w is the energy released per fission and T is the material temperature. All the diffusion

equation notations are defined in Chapters 3 and 4. Changes in the neutron fission rate

result in a temperature change (via Eq.5.2), which impacts the cross section and hence, the

solution of Eq. 5.1, i.e., the neutron flux. Note that other systems, e.g., those describing the

fluid flow rate or the mechanical response of fuel elements, can be coupled with the above

equations. Two approaches are used to solve such systems. The most commonly used one

is a serial coupling of two or more separate codes in such a way that the output of one at

a given time step, such as the flux distribution, is used as an input to the other, e.g., the

temperature (which can be used then to update the cross section and so on). This procedure

is commonly referred to as operator splitting or explicit coupling. One drawback of operator

splitting is that time integration requires small steps to avoid stability issues, thus leading

to high computational time. Alternatively, tight coupling in time between the physics can

be maintained by using an implicit scheme that solves a non-linear iteration in each time

step, also increasing the computational time. A modern algorithm such as Jacobian free

Newton-Krylov (JFNK)53 can be used to perform this implicit coupling. Another popular

approach and the one adopted here is to use fixed-point iteration, with an implicit time

scheme to iterate between difference physics within a time step until convergence is satisfied.
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In this chapter, a reduced-order model is developed to overcome the high computational

expense. The non-linearity was treated using the DEIM algorithm presented in chapter 2,

and the LRA benchmark was used as an illustrative example.

5.2 Application to the LRA Benchmark

The LRA benchmark employs two energy groups and two delayed precursor groups and

represents a 2-D quarter-core, BWR model subject to a control-rod ejection with adiabatic

heating54. A schematic layout of the problem is shown in Fig. 5.1, where region numbers

indicate different materials and region R is the ejected rod. The transient is initiated by a
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Figure 5.1: Schematic of LRA benchmark.

control rod ejection with constant velocity over a period of 2 seconds leading to a super-critical,

prompt transient, in which the power increases by about 10 orders of magnitude in a very
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short time. The control rod movement is represented by changing the thermal absorption

cross section of the control rod material. The two-group diffusion equation represented in

chapter 2, is coupled with thermal feedback through adiabatic fuel heat-up defined by

∂

∂t
T (x, t) = α[Σf1(x, t)φ1(x, t) + Σf2(x, t)φ2(x, t)] , (5.3)

and corresponding Doppler feedback defined by

Σa1(x, t) = Σa1(x, t = 0)[1 + γ(
√

(T (x, t)−
√

(T0))] , (5.4)

where Σfi is the fission cross section of group i, T is the temperature, Σa1 is the fast absorption

cross section and T0 is the initial temperature which is 300 K, α = 3.83× 10−11 K cm3 and

γ = 3.034× 10−3 K−0.5. The power local is computed as

P (x, t) = κ[Σf1(x, t)φ1(x, t) + Σf2(x, t)φ2(x, t)] , (5.5)

where κ = 3.204×10−11 W/fission. The model was implemented in the deterministic transport

code Detran10. A mesh-centered, finite-difference discretization was used in space, while a

first-order, backward-difference temporal discretization was used with a fixed 0.001 s step size.

The initial condition for the transient was computed by solving the steady-state equation,

for which keff was found to be 0.9975. Note that at each time step the fast absorption cross

section is a function of the solution itself. The convergence criterion used to reduce the L2

norm of the relative flux error between two consecutive iterations to less than 1× 10−6, or

‖Φ
i+1 −Φi

Φi
‖ ≤ 1× 10−6 , (5.6)

where the superscript i denotes the iteration number. The transient was calculated for 3.0

seconds. Figure 5.2 shows the reference full-order model power along with the core average

temperature, while Figure 5.3 shows the steady-state group flux distribution. This reference

solution is not necessarily numerically converged in either space or time but represents the
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simulation response that one wishes to approximate.
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Figure 5.2: LRA core power
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Figure 5.3: Steady state group flux (neutrons cm2/s)
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material group D (cm) Σa (cm−1) Σs2←1 (cm−1) νΣf (cm−1)

1
1 1.255 0.008252 0.004602

0.02533
2 0.211 0.1003 0.1091

2
1 1.268 0.007181 0.004609

0.02767
2 0.1902 0.07047 0.08675

3
1 1.259 0.008002 0.004663

0.02617
2 0.2091 0.08344 0.1021

4
1 1.259 0.008002 0.004663

0.02617
2 0.2091 0.073324 0.1021

5
1 1.257 0.0006034 0.0

0.04754
2 0.1592 0.01911 0.0

v1 = 3× 107 cm/s, v2 = 3× 105cm/s..

Table 5.1: Two group constants of the LRA benchmark.

group βi λi (s−1)

1 0.0054 0.00654

2 0.001087 1.35

Table 5.2: Delayed neutron data of the LRA benchmark.

5.2.1 ROM Implementation

Using the POD-Galerkin projection, a ROM was constructed to approximate the group

flux and the core power of the LRA benchmark. As discussed in the previous chapter, the

time-dependent diffusion equation coupled with the precursors group equation can be cast

into a compact form as in Eq. 4.5. Similar to the TWIGL benchmark ROM, a POD basis set

was generated for each group flux while one basis set was generated for both precursor groups,

i.e, Φ1(t) = U1a1(t), Φ2(t) = U2a2(t) and C(t) = Ucac(t), where the U1, U2 and Uc are the

POD bases of the fast group, thermal group and precursor concentration respectively, and a1,
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a2 and ac are their respective temporal coefficients. The first 100 normalized singular values1

of the group flux are shown in Fig. 5.4. Since the focus of this application is on treating the
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Figure 5.4: Flux normalized singular value.

non-linearity, rather than trying different ranks of the POD basis, a rank of 30 was chosen

for each group flux and for the precursor concentration. Also, the temperature field was

approximated by projecting it onto a lower dimensional POD space following

T(t) = UtempaT (t) , (5.7)

where Utemp ∈ Rn×rT is the POD subspace of rank rT and aT ∈ RrT is a vector of the

corresponding temporal coefficients. To obtain the subspace, snapshots of the temperature

were collected at different times for which the SVD was computed. Shown in Fig. 5.5 are

the first 100 normalized singular values, based on which a POD of rank 10 was selected for

1The normalization is done by dividing each singular value by the sum of all singular values.
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approximating the temperature.
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Figure 5.5: Temperature normalized singular value.

Inserting Eq. 5.7 into Eq. 5.3 and multiplying on the left by UT
T

2 yields

daT (t)

dt
= α[UT

tempΣf1U1︸ ︷︷ ︸
UT1

a1(t) + UT
tempΣf2U2︸ ︷︷ ︸

UT2

a2(t)] . (5.8)

Note that UT1 and UT2 are time-independent, so they can be precomputed once and stored.

Thus, at each time step the flux temporal coefficients (i.e, a1(t) and a2(t)) are computed

by solving the reduced system of the diffusion equation and then used to compute the

temperature coefficients., i.e, aT , by employing a first-order, backward-difference scheme

to Eq. 5.8. Similar to the full-order model, a fixed point iteration is used to treat the

flux non-linearity. However, it was observed that with using the same convergence criteria

as in Eq. 5.6, the reduced model needed more iterations to converge which could be due

2The superscript T denotes the matrix transpose.
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to the relatively small value of some of the flux coefficients; hence, a convergence criteria

was employed based on the relative L2 norm of the error of flux coefficients between two

consecutive iterations
‖ai−1 − ai‖
‖ai‖

≤ 1× 10−6 . (5.9)

Note that the fast absorption cross section is a non-linear function of the temperature, so

updating it at each time step using Eq. 5.4 requires reconstructing the full-order temperature

distribution. Since the cost of this reconstruction is proportional to the full-order dimension,

i.e., n, the DEIM was used to approximate the absorption cross section and, hence, to avoid

reconstructing the temperature at all the spatial cells in the core. For this purpose, snapshots

of the fast absorption cross section were collected in order to generate a POD subspace that

is used to approximate it

Σa1(t) = Uσaσ(t) , (5.10)

where Uσ is the generated POD space and aσ is a vector of the associated temporal coefficients.

A set of interpolation locations were selected following Algorithm 3 in which an order of 10

was used. Thus, at each time step the temporal coefficients were computed by solving

aσ = (PTUσ)−1PT (Σa1(t=0)[1 + γ(
√

UT
t at −

√
T0)]) , (5.11)

where PT is the interpolation matrix and Σa1(t=0) ∈ Rn×n is a diagonal matrix with elements

equal to initial fast absorption cross section. As explained in chapter 2, this interpolation

matrix extracts elements (rows) from the vector (matrix) it operates on. Hence, the cross

section was computed at each time step using temperature reconstructed only at the in-

terpolation locations. Moreover, since the problem operator A in Eq. 4.5 exhibits a time

dependence, the MDEIM was used to decompose the operator and hence avoid performing

the expensive projection (i.e., UTAU) at each time step. Note that the A is composed of

four main submatrices of which only the loss matrix, i.e., L, changes with time. Accordingly,

the MDEIM was used only to approximate this submatrix of the operator A, while the other

three submatrices were projected once at t = 0 and stored for use in the subsequent time steps.
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Shown in Fig. 5.6 are the singular values resulting from the SVD of the serialized submatrix

L snapshots. A DEIM of order 15 was employed, meaning that the it was decomposed into

15 time-independent matrices that were computed and stored in an offline stage.
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Figure 5.6: Operator normalized singular value.

5.2.2 Results

ROM results

ROMs were constructed for full-order models with increasing the spatial fidelity, i.e, spatial

grids of 22 × 22, 44 × 44 and 55 × 55 were used. For brevity, we show the first four POD

modes with their temporal coefficients of only the 55× 55 grid in Fig. 5.7.
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Figure 5.7: Flux POD modes and their temporal coefficient.

Using a ROM for each spatial grid with the specifications given in the previous section,

the absolute relative error in the predicted core powers are computed as shown in Fig. 5.8.
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Figure 5.8: Relative error of the power predicted by MDEIM ROM

To understand the impact of of MDEIM on the error;the results are compared this of a

ROM without using the MDEIM, i.e., with performing direct operator projection at each

time step. The relative difference of power between both ROMs is shown in Fig. 5.9. The

shown errors implies that MDEIM accurately approximates the problem operator.
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Figure 5.9: Relative error of the power predicted by ROM.

Also, the spatial-averaged relative error in the approximated temperature was computed

and is shown in Fig. 5.10.
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Figure 5.10: Relative error of the temperature predicted by ROM.

As mentioned earlier, the non-linearity of the fast absorption cross section was approxi-

mated using DEIM of rank 10. Shown in Fig. 5.11 are the ten selected interpolation points

onto the absorption cross section map at the end of transient, i.e., at t = 3 s. The temperature

was constructed only at these locations from which the cross section is evaluated using Eq. 5.4.
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Figure 5.11: The fast cross section at t=3 s with the selected interpolation indices in red
color.

The relative error in the assembly power at the peak is computed and is shown in Fig. 5.12

for the 55 × 55 grid from which it can be seen that the maximum error is in the order of

1× 10−5%.
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Figure 5.12: Assembly-averaged power relative error for the 55× 55 grid

Moreover, the computational times of the FOM and the ROMs are given in Table 5.3.

The important point here is that the MDEIM-ROM cost is slightly dependent on the problem

Table 5.3: Computational time of the FOM and the ROMs for the LRA benchmark.

Grid FOM (s) ROM (s) MDEIM-ROM (s)
22× 22 243 76 38
44× 44 1269 226 46
55× 55 2195 341 50

dimension. On the other hand, the ROM time increases with the grid size because the operator

projection is performed at each time step. The shown MEDIM-ROM time includes the offline

cost which involves the operator L decomposition and the projection of the decomposed

matrices. Also, both the ROM and MDEIM-ROM times include the time to reconstruct of

the full-order solution.
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Parametric ROM Results

In the previous section, the developed ROM was used to reconstruct the solution using a

POD subspace obtained from snapshots generated using the same parameter point at which

the solution is sought. Here, our purpose is to extend the capability of the developed ROM

to perform parametric studies. However, it is important to clarify that it is not our goal

in this study to quantify output uncertainties or perform statistical analysis. Instead, we

merely aim to measure the prediction error of the ROM at new parameter points using a

POD subspace sampled from a parameter domain of interest. A case study was performed in

which the parameters of interest are assumed to be the kinetic data, i.e., the delayed neutron

fractions and the decay constants. A POD greedy sampling was used to construct a global

POD subspace. Although the original benchmark employs two precursor groups, it was more

convenient in this study to use six groups to enlarge the parameter space. Shown in Table

5.4 are the parameters normal distributions data adopted from Refs.55;56. A POD greedy

sampling is used for which a set of 50 parameters points were generated to obtain a global

POD space, where at each iteration, three POD basis vectors are added to the space. A

grid of 22× 22 is used throughout this study. A greedy algorithm stopping criteria was used

such that the iteration terminates if the relative norm of the flux error is 1 × 10−4 or the

POD space has a size of 6 (i.e., 20 parameters points are selected). As noted earlier, there

are no general prior criteria for selecting these parameters. The MDEIM-ROM is sought

group i βi ± σβi λi ± σλi(s)−1)
1 0.038± 0.004 0.0127± 0.0003
2 0.213± 0.007 0.0317± 0.0012
3 0.188± 0.024 0.1150± 0.0040
4 0.407± 0.010 0.3110± 0.0120
5 0.128± 0.012 1.4000± 0.1200
6 0.026± 0.004 3.8700± 0.5500

Table 5.4: 6 groups delayed neutron precursor data.

to predict the power at every 0.001 s during the transient, however, a time step of 0.005 s

was used in the greedy procedures. Shown in Fig. 5.13 is the flux error convergence with

the greedy iterations. As shown, the maximum size of the POD space, i.e., 60, is reached
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Figure 5.13: Greedy error convergance

before the error approaches the specified tolerance. The resulting POD basis was stored

and used for testing the ROM. Thus, 50 new parameter samples were generated, and the

ROM was executed with the resultant greedy basis. Moreover, the FOM was run at these

testing parameter points, and the error between both models was computed. The quantities

of interest were the assembly power at the peak and the maximum core temperature, i.e., the

end-of-transient temperature. Note that the time to peak is different from sample to sample.

Shown in Fig. 5.14, the sample mean of the assembly power error, at the peak, where the

mean core maximum temperature error is shown in Fig. 5.15.
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Figure 5.14: Sample mean of the core peak power
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Figure 5.15: Sample mean of the core maximum temperature

Among all samples, the maximum assembly power peak was 0.00111%, and the maximum

81



temperature error was 2.9× 10−5%. The resulting errors imply that the greedy-sampled POD

subspace is rich with information from the whole parameters domain, and accordingly, resulted

in a good approximation even for parameters not among the training sample. However,

methods to improve efficiency and, possibly, prediction accuracy will be presented in chapter 7

as suggestions for future work..
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Chapter 6

ROM Application to the Neutron

Transport Equation

6.1 Introduction

In this chapter, we study the potential of the Boltzmann neutron transport equation for

reduction via the POD-Galerkin projection. As mentioned in chapter 3, the transport equation

gives an exact treatment of the neutron flux in a specified system by explicitly considering the

angular variable. Because of the inclusion of the direction-of-flight as a dependent variable,

solving the equation numerically requires a discretization in angle in addition to time, space,

and energy discretization, which makes solving it an expensive task. For this reason, it is

considered an attractive application for model order reduction. Here, we present a preliminary

study of the POD-Galerkin projection application to the transport equation, where we focus

on the actual implementation and the reliability of the ROM. Methods to improve its efficiency

are left to future work. In the following section, a formulation of the transport equation is

presented and the system is compactly described in a convenient operator notation. The

corresponding ROM formulation is presented in Section 6.3, and applications with results are

given in Section 6.4
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6.2 Neutron Transport Equation

The multi-group time-dependent transport equation is given by

1

vg

∂ψg
∂t

= −(Ω̂ · ∇ψg(r,Ω, t) + Σtg(r, t)ψg(r,Ω, t))

+
1

4π

∫
4π

dΩ′
G∑

g′=1

Σsg←g′(r,Ω
′ ·Ω, t)ψg′(r,Ω′, t)

+
1

4πkkeff

∫
4π

dΩ′

(
χpg(r)(1− β(r))

G∑
g′=1

νΣfg′(r, t)ψg′(r,Ω
′, t)

)

+
∑
i

λiCi(r, t)χig(r)

+ qg(r, Ω̂, t) , g = 1 . . . G

(6.1)

where ψ is the angular flux, Ω is the neutron direction-of-flight and q represents the source

term, which could be external or/and the fission source. All other notation has been defined

in the previous chapters. The corresponding set of precursor equation is,

∂Ci
∂t

=
βi(r)

keff

∫
4π

dΩ′
G∑

g′=1

νΣfg′(r, t)ψg′(r,Ω
′, t)− λiCi(r, t) , i = 1 . . . P . (6.2)

In a steady-state condition, the transport equation reduces to

Ω̂ · ∇ψg + Σtgψ(r,Ω) =
1

4π

∫
4π

dΩ′
G∑

g′=1

Σsg←g′(r,Ω
′ ·Ω, t)ψg′(r,Ω′) + qg , (6.3)

where µ is the cosine of the angle. There exist several numerical methods to solve this system.

However, here we focus on the discrete-ordinate method57–59, regularly called SN , since the

code used to implement the ROM, i.e, Detran, relies on this method for angular discretization.

For simplicity, consider a slab geometry with isotropic sources and scattering, for which the
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steady-state transport equation simplifies to

µ
∂ψ

∂x
+ Σt(x)ψ(x, µ) =

Σs(x)

2

∫ 1

−1

dµ′ψ(x, µ′) +
S(x)

2

=
Σs(x)

2
φ(x) +

S(x)

2
.

(6.4)

The discrete ordinates method consists of evaluating Eq. 6.4 only at discrete angles θn, where

µn = cos θn and n ∈ [1, N ]. In other words, we require

µn
∂ψ

∂x
+ Σt(x)ψ(x, µn) =

Σs(x)

2
φ(x) +

S(x)

2
. (6.5)

Since ψ is computed only at discrete angles, the scalar flux is approximated using numerical

quadrature, or

φ(x) ≈
N∑
n=1

wnψn(x) , (6.6)

where wn is the weight associated with the nth angle. Different quadrature sets are used,

depending on the type of geometry. Gauss-Legendre quadrature is generally used for 1-D

and spherical geometries. To represent the angle-discretized system in an operator form, a

discrete-to-moment operator D, is introduced such that

φ = Dψ . (6.7)

Moreover, we introduce a moment-to-discrete operator M, defined as

ψ =Mφ . (6.8)

Finally, we define the operator

L( · ) ≡
(

Ω̂ · ∇+ Σt(r)
)

( · ) , (6.9)
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Thus, in a multiplying medium, the transport equation becomes

Lψ =MSφ+
1

k eff
MFφ , (6.10)

where F is the fission source operator. Note that the unknown in Eq. 6.10 is the angular

flux ψ. In general, and particularly for reactor physics, our interest is in computing reaction

rates for which only the scalar flux is needed. In practice, the angular flux is, therefore rarely

stored explicit, but is instead computed on-the-fly during a sweep through the space-angle

grid. This can be represented explicitly by manipulating the equations to be functions only

of the scalar flux. To illustrate, consider Eq. 6.10. Multiplying through by the space-angle

transport sweep operator T = DL−1, we have

Dψ = DL−1MSφ+
1

k eff
DL−1MFφ . (6.11)

Rearranging yields

(I − DL−1MS)φ =
1

k eff
DL−1MFφ . (6.12)

Using the same operator notation for the time-dependent, flux and precursors equations and

applying backward Euler approximation in time yields

1

∆tvg

(
ψk+1
g − ψkg

)
+ Lψk+1

g =M
G∑

g′=1

(Sgg′ + XpgFg′)φk+1
g′ +M

I∑
i=1

λiXdigCk+1
i , (6.13)

and
1

∆t

(
Ck+1
i − Ck

i

)
= βi

G∑
g=1

Fgφk+1
g − λiCk+1

i , (6.14)

where k denotes the time step. Now, we can cast Eqs. 6.13 and 6.14 as a fixed-source problem.

First, we solve Eq. (6.14) for the updated concentrations, which leads to

Ck+1
i =

∆tβi
1 + ∆tλi

G∑
g=1

Fgφk+1
g +

Ck
i

1 + ∆tλi
, (6.15)
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Substituting this result into Eq. (6.13) yields

1

∆tvg

(
ψk+1
g − ψkg

)
+ Lgψk+1

g =M
G∑

g′=1

(Sgg′ + XpgFg′)φk+1
g′

+M
I∑
i=1

λiXdig

(
∆tβi

1 + ∆tλi

G∑
g′=1

Fg′φk+1
g′ +

Ck
i

1 + ∆tλi

)
.

(6.16)

Rearranging again, we find

(
1

∆tvg
+ Lg

)
ψk+1
g =M

G∑
g′=1

(
Sgg′ +

(
Xpg +

I∑
i=1

λiXdig
(

∆tβi
1 + ∆tλi

))
Fg′
)
φk+1
g′

+M
I∑
i=1

λiXdig
(

Ck
i

1 + ∆tλi

)
+

ψkg
∆tvg

.

(6.17)

Let

L̃g ≡
1

∆tvg
+ Lg , (6.18)

χ̃g ≡

(
Xpg +

I∑
i=1

λiXdig
(

∆tβi
1 + ∆tλi

))
, (6.19)

and

q̃k+1
g ≡M

I∑
i=1

λiXdig
(

Ck
i

1 + ∆tλi

)
+

ψkg
∆tvg

. (6.20)

Then, we write Eq. 6.17 as

L̃gψk+1
g =M

G∑
g′=1

(
Sgg′ + X̃gFg′

)
φkg′ + q̃kg . (6.21)

Multiplication of this result by DL−1
g and rearranging yields

(
I − DL−1

g M
G∑

g′=1

(
Sgg′ + X̃gFg′

))
φk+1
g = DL−1

g q̃kg . (6.22)
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By dropping group indices, this can be generalized for the multi-group system as

(
I − DL−1M (S + F)

)
φk+1 = DL−1q̃k . (6.23)

Thus, starting from an initial condition of φ and C, Eqs. 6.23 and 6.16 are used to march the

system forward in time. By applying discretization in space, a compact form, the system can

be represented as

((I−DL−1M (S + F)) 0

Pg Pl


 φk+1

Ck+1

 =

 DL−1qk

Ck

 , (6.24)

where M, L, D, F are the corresponding spatially-discrete operators of the operators M,

L, D and F , respectively, Pg is the precursors gain matrix, and Pl is the a diagonal matrix

whose elements are 1 + ∆tλi. Note that the system in Eq. 6.24 has the form of Ax = b and

it can be solved using a linear solver at each time step.

6.3 Reduced-Order Model of the transport equation

Typically, the resulting FOM in Eq. 6.24 is sufficiently large that direct solvers are not

efficient and iterative solvers must be used. Developing efficient iterative methods that

provide rapid convergence is an active area of research across the computational engineering.

Here, we extend the ROM developed in the previous chapters for the diffusion equation to

approximate full-order models based on the transport equation. Let Uφ and Uc be the POD

basis sets generated for the flux and the precursors concentration, and aφ(t) and ac(t) be

their respective temporal coefficients. The POD-Galerkin ROM approximating the system in

Eq. 6.24 is defined as


A1︷ ︸︸ ︷

UT
φ (I−DL−1M (S + F) Uφ 0

UT
c PgUφ UT

c PlUc


 ak+1

φ

ak+1
c

 =

 UT
φDL−1qk

akc

 . (6.25)
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Note that this developed ROM has a form similar to that of the diffusion-based ROM.

However, in practice, it introduces additional challenges with respect to the computational

complexity and practical implementation not present in diffusion. First, consider the upper

part of the right-hand side of Eq. 6.25, i.e, UT
φDL−1qk. Evaluating this term requires

computing two additional reduced matrices beside the ones in the left-hand side that are

similar to that of diffusion ROM. In particular, this term can be expanded as

UT
φDL−1qk =

A2︷ ︸︸ ︷
UT
φDL−1Uφ

akφ
v∆t

+

A3︷ ︸︸ ︷
UT
φDL−1PdUc ac

k . (6.26)

The matrices A2 and A3 are functions of the operator L, which contains the total cross

section. In general, this cross section changes with time in most time-dependent problems.

Consequently, these matrices must be updated at each time step and at each iteration within

a time step for non-linear problems.

As stated previously, the projection has a computational complexity that is proportional to

the original dimension of the system; hence this repetitive projection increases the ROM cost.

In terms of the practical implementation, a major difference between the transport model

and the diffusion model is that the transport operators, i.e, DL−1 and ((I−DL−1M (S + F))

are often implemented in matrix-free operators. This means that an explicit matrix is not

computed for these operators. Recall that the angular flux is computed at each cell by

sweeping along the direction of neutron travel for which only information form the preceding

cell is required. Moreover, the contribution to the scalar flux is made point-by-point to avoid

storing the angular flux, making a matrix-free implementation more convenient for reducing

the memory requirements.

Fortunately, operator-vector products can still be performed for such operators. In fact,

performing one transport sweep, i.e, L−1q, is equivalent to an operator-vector product. Since

the projection is essentially a sequence of vector-matrix products, the reduced matrices needed

to solve the ROM can be obtained for these matrix-free operators. To illustrate, let B be an

arbitrary matrix-free operator for which we seek to compute the reduced form, UTBU. Using
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the matrix-free multiplying function, operator-vector products are carried out independently

for each column in U and the resultant columns are stored in a new explicit operator which

is then multiplied on the left by UT to produce the required projected operator. To solve

the ROM in Eq. 6.25, this process was performed for the operators UT (I −M (S + F) U,

UTDL−1MU, and UTDL−1MPdUc.

Another challenge posed by these matrix-free operators in the context of time-dependent

ROMs is that it is difficult to obtain an offline-online decomposition of the ROM that avoid

performing an expensive projection at each time step. Recall, in the diffusion-based ROM,

we used the matrix DEIM to approximate the problem operator before projecting it by

decomposition in terms of time-independent matrices each weighted by a temporal coefficient.

However, in the case of a matrix-free operator, it might be more convenient to employ a

project-then-approximate approach. As proposed in chapter 4, one way to do that is by

using interpolation to approximate each of the reduced matrix elements, where the order

of interpolation depends on how the matrix elements change with time which is problem

dependent. The interpolation can be done by generating pre-computed reduced matrices at

different time instances, comprising an offline stage and performing the interpolation online

at each time step. Alternatively, this can be done on the fly while solving the ROM by

generating the interpolation matrices only needed over a specified coarse time mesh, i.e.,

macro step, and using them to interpolate and solve the ROM at micro steps within this

macro step. These interpolations matrices are then updated for the next macro step and so

on. The first method is favored in case the pre-computed matrices can be used for another

problem, while the other one is better in terms of memory requirement since only a few

matrices are needed to be stored at each macro step.

6.4 Applications

In this section, the ROM described in Eq. 6.25 was applied to two problems. The first

represents a linear problem describing a delayed super-critical transient, while the second

describes a prompt super-critical transient with feedback, and, hence, that required a non-
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linear treatment.

6.4.1 The TWIGL benchmark

The TWIGL benchmark, described in chapter 4, was modeled using the transport equation

as the full-order model with eight angles per octant. Here, the quarter core in the original

benchmark was extended to a full core with an 80× 80 spatial grid. As mentioned previously,

the benchmark features two transients, a ramp and a step, in which the control rod movement

is simulated by changing the thermal absorption cross section according to equations 4.14

and 4.15, respectively. Here, modified ramp and step transients were considered, and the

core power was computed using the full-order model with a time step of 0.001 s. To build

the ROM in Eq. 6.25, the POD sub-spaces Uφ and Uc were obtained using snapshots of

the scalar flux and the precursors concentration, respectively. For both transients, the same

snapshots from the ramp model were used. Shown in Fig. 6.1 are the first 100 singular values

of the fast and thermal group flux for the ramp transient.
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Figure 6.1: Normalized singular values for the ramp transient.

A rank of 20 was selected for each group flux and the precursor concentration. For the
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ramp, the total transient time is 0.6 s in which the reactivity is inserted over time from 0.1s

to 0.3s. Since this was simulated by changing the absorption cross section, the sweep operator

L depends on time, which requires that the projected matrices have to be computed, at least

200 times if a direct projection is performed. As described in the previous section, this could

introduce a cost that exceeds that of the original model, making the ROM of no benefit. To

resolve this computational complexity, an interpolation based on pre-computed projected

matrices was employed as follows:

1. The full operators were obtained and projected at times 0.0 s, 0.1 s, 0.2 s, and 0.3 s in

an offline step.

2. At each time step, the appropriate, pre-computed matrices were selected, and the

elements of the projected matrix were computed by linear interpolation.

3. Using the approximated projected matrices, the system in Eq. 6.25 was solved at each

time step.

Following these steps, the core power was computed and the error with respect to the

full-order model power was estimated. Moreover, a direct projection approach (i.e., projection

at every step) was used to assess the approximation made by the interpolation. Shown in

Fig. 6.2 is the relative error in the integral core power. Note that the time over which the

error increased is the ramp time, where the approximation introduced by interpolation occurs.

Figure 6.3 shows the maximum assembly power error using the interpolation approach.

For the step transient, the reduced operators must be updated just once at the time of

the step reactivity insertion. This can be done online while solving the ROM, or one can

exploit the pre-computed matrices generated for the ramp transient. In both cases, there is no

approximation made to compute the projected matrices and hence they produce numerically

the same solution. Shown in Fig. 6.4 is the relative error in the integral core power, while

Fig. 6.5 shows the maximum assembly power.

Furthermore, to assess the transport ROM performance with respect to other approximate

models, the diffusion solution for the ramp (and a modified step insertion) were obtained and
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Figure 6.2: Relative error in the ramp transient power
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Figure 6.3: Relative error in the ramp transient assembly power.

compared with the transport solution, and the relative error is shown in Fig. 6.6. The primary

conclusion to be drawn from Fig. 6.6 and Fig. 6.3 is that a relatively low-order, POD-Galerkin

ROM yields substantially lower errors than a fine-mesh, diffusion approximation of the same

FOM. A similar conclusion was drawn based on the results shown in Fig. 4.9 and Fig. 4.10,

93



0.0 0.1 0.2 0.3 0.4 0.5 0.6
time [s]

10 4

10 3
po

w
er

 r
el

at
iv

e 
er

ro
r 

[%
]

Figure 6.4: Relative error in the step transient power
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Figure 6.5: Relative error in the step transient assembly power

in which the ROM of a fine-time-step, diffusion-based FOM outperforms a coarse-time-step

approximation of the same FOM. In other words, the POD-Galerkin ROM may more readily

capture the low-rank dynamics of the higher-order system than do approximations based

on direct ”coarsening” of the FOM. Based on the times listed in Table 6.1, this better
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Figure 6.6: Error in diffusion solution relative to transport (FOM) solution.

representation of the low-rank dynamics comes at a lower computational cost then the

associated diffusion model.

Table 6.1: Computational time of the FOMs and the ROMs for the TWIGL benchmark.

Transient Transport FOM time (s) Diffusion FOM time (s) ROM time (s)
ramp 395 57 18
step 300 53 15

6.4.2 1-D nonlinear application

Here, a simple 1D application is used to demonstrate the transport ROM for non-linear

problems, and at the same time to end the chapter with a starting point for future work.

The slab reactor shown in Fig. 4.1 is used, where a rapid reactivity insertion was assumed by

ejecting the control rod from 25% withdrawn to 50% withdrawn with constant velocity over

a period of two seconds. The control rod movement was simulated by adjusting the thermal

absorption cross section. The adiabatic heat-up and Doppler feedback models of the LRA

benchmark (see 5.3 and 5.4) were used. Shown in Fig. 6.7 is the core power predicted with

the full-order model solved using the Backward Euler with a time step of 0.001s and the
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fixed point iteration.
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Figure 6.7: Slab reactor core power

The challenge of this problem is that the fast absorption cross section depends on the

solution itself, and it needs to be updated while solving the system through non-linear

iterations. Thus, interpolation based on pre-computed projected matrices cannot not fully

preserve the coupling between the different physics. Alternatively, the interpolation matrices

were generated on-the-fly to account for the material dependence on the solution, as explained

in Sec.4.2. While solving the ROM, two projected matrices were computed at the beginning

and the end of a macro step of 0.01s, where the fast absorption cross section was updated

at the end of each step with the temperature obtained by integrating Eq. 5.3 using the

macro step. The flux was obtained by integrating the system in Eq. 6.25 using a micro time

step of 0.001s. At each micro step within the macro step, the elements of the projected

matrices were computed by linearly interpolating the generated matrices. Moreover, we used

direct projection as a way to show the validity of the implemented ROM with respect to

the accuracy, and also to assess the interpolation error. The ROM was implemented with

POD basis sets of rank 15 and 30 for the group flux and the precursor concentrations. Shown
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in Fig. 6.8 are the relative errors in the ROM predicted power using the direct projection

and the interpolation. The direct projection error supports the potential of the ROM for

approximating transport models with good accuracy even with rapid non-linear transients.

On the other hand, the interpolation error increases with the power peak with a maximum

error of 2.7% due to coarse material discretization. Although the error is significantly higher

than that of the direct projection, it is still better than a FOM with a coarse time mesh of

0.01s which results in an error at the power peak of 40%. Note that a higher interpolation

order can be used to improve the error for which more than two matrices need to be stored

at each macro step based of the selected order.
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Figure 6.8: Slab reactor ROM relative power error

The discussion here focused on the ROM performance with respect to accuracy, however,

more has to be done in the computational performance side since the interpolation ROM

did not offer a speed up of the FOM. In particular, efficient methods need to employed to

accelerate generating the projection matrices, in case of matrix-free solvers, otherwise the

ROM could be impractical approach to reduce the computational cost of high-dimensional

systems and this subject will be the focus of future work.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Such reduced-order modeling directly supports the need for predictive simulation of nuclear

systems during transients, an activity that has become increasingly important for the

exploration, design, and optimization of advanced reactors whose operating conditions live

beyond those of existing designs. High fidelity models have been used to study the behavior

of nuclear reactors under different scenarios and postulated events, where at each case the

model is run with varying input parameters to account for model uncertainties and optimize

the designs. This repetitive run of the simulations results in an enormous computational time,

especially if the solutions are required on a fine space/time grid, which is desired for good

accuracy. There have been many endeavors to overcome this computational cost by improving

the discretization schemes, accelerating the iterative methods, or employing approximate

models such as the point-kinetics, which relied upon a strong assumption regarding the spatial

shape of the neutron flux in the reactor core.

In this work, we addressed the problem of computational cost via model-order reduction,

in a way that preserves the spatial structure of the system. This approach is built on the fact

that discretization schemes induce a correlation between model outputs at discrete points

in space, besides the correlation due to the physical phoneme itself. Thus, although spatial
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discretization of the underlying PDEs yields a solution that lives in a high-dimensional space,

it can be efficiently approximated with significantly few degrees of freedom. Throughout

this study, we apply a reduction technique based on the Proper-Orthogonal Decomposition

to approximate the solution by projection over a lower-dimensional space. Combined with

a Galerkin projection of the discretized system, a smaller number of equations is required

to be solved. Different problems have been addressed to resolve various complexities. The

previously developed deterministic transport code Detran was used to implement the ROM

and test it for the different problems.

First, the implemented ROM was tested on the TWIGL benchmark, where the full-order

model to be approximated was the neutron diffusion equation. Using this problem, several

studies were conducted to understand the performance and the accuracy of the developed

ROM. In particular, POD rank study was done for full-order models with different spatial

resolutions. The study showed that the rank approximating the solution is weekly dependent

on the underlying discretization. Thus, while the cost of the full-order models increases

significantly as spatial refinement is done to increase the solution accuracy, the POD-Galerkin

ROM can be used to obtain spatially refined solutions without adding similar cost over a

ROM with lower spatial fidelity. In multi-query applications, this could lead to meaningful

computational time reduction since the cost of obtaining the basis requiring the full-order

solution will represent a small fraction of the time required to run the full-order model

multiple times to perform such studies. Taking the developed ROM one step forward, a

greedy-sampled POD subspace was acquired to run the ROM with different input parameters.

The generated subspace required relatively few full-order solutions at selected parameters

points in the domain of interest. Moreover, it was shown that this subspace could be trained

using a coarser time mesh than that of the desired solution, reducing the upfront cost of the

sampling procedures.

In terms of the computation efficiency, performance study showed that computing the

projected operator accounts for a significant portion of the total ROM cost, if the projection

is performed at each time step. For linear problems that do not include feedback from other

physics, this could be resolved by restricting the projection to the time steps at which the
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operator changes with time. However, problems with feedback induce non-linearity that

requires the operator to be updated at each time step. Hence, it was essential to seek another

level of approximation that enables an offline-online decomposition of the ROM such that

the expensive projection is made once in an offline step while solving the reduced equation is

solved in an online step with a cheaper cost. The matrix version of the Discrete Empirical

Interpolation Method (DEIM) was used to achieve this ROM splitting via decomposing the

operator into time-independent matrices, each weighted by a temporal coefficient. The LRA

benchmark was used to demonstrate this approach with different spatial grids. The maximum

relative error in the assembly power was less than 0.001%. Moreover, the offline-online ROM

resulted in a speedup over that of a ROM with a direct projection at each time step. More

importantly, its cost is weekly dependent on the original dimension of the system, resulting

in a speedup that is more appreciable with increasing the spatial resolution, in which case

the use of a ROM is of more value.

All the previous full-order models were based on the diffusion equation, and hence, the

natural next step was to shift the calculation to the transport equation. The same steps

used for the diffusion-based ROM can be used for the transport ROM. In fact, the transport

equation can be written in a compact operator notation similar to that of the diffusion,

where the operators include information coming from the angle discretization. However, a

major difference in the actual implementation of the transport operator is that they exist

in Detran as matrix-free operators. Moreover, the use of sweeping algorithms resulted in a

ROM formulation requiring more operators to be projected, increasing the computational

complexity of the transport ROM. The projection can still be performed for such operators,

since vector-matrix operations are applicable to such operators, however, an offline-online

decomposition was challenging to obtain.

Instead of using an approximate-then-project approach, as the matrix DEIM provides, a

project- then-approximate approach is more convenient. Interpolation of the reduced matrices

is one way that belongs to this approach. Currently, the ROM is implemented in a such a way

that the reduced matrices elements can be approximated, at each time step, by interpolation

of precomputed matrices.
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The implementation was tested using the TWIGL benchmark. Results showed a maximum

error in the assembly power in the order of 1× 10−3%. Furthermore, an initial application

to non-linear transport problems was presented in which a direct projection was used.

Interpolation on-the-fly is more convenient for such problems since the operator elements are

functions of the solution itself and, hence, are not known before the system is solved. The

ROM provided good approximation of the core power with maximum error of about 5× 10−4;

however, more work needs to be done to approximate the projected operators and improve

the computational efficiency. It is important to mention that the ROM implementation

for both the diffusion and the transport was done in a completely non-invasive way to the

existing full-order models. The ROM required access to the problem operators, and it was

built separately from the original model, which makes it suitable for actual implementation in

other codes. Overall, the developed framework can be reliably used in different applications

such as propagating systems uncertainties, understanding the behavior of nuclear reactors

under different accident scenarios. In practice, the additional inputs required to run the ROM

are basis sets for the different state variables, i.e, flux, and precurosrs. These basis sets can

be precomputed using greedy sampling for different scenarios and over various time scales

based on the target application. Note that the same basis sets can be used to approximate

similar transients for the same system if their histories are included in the snapshots used

to generate the basis, and, thus, the upfront fractional cost of generating the basis can be

greatly reduced. Examples include ramp transients with different insertion or withdrawal

times and rates.

Critically, the approach developed and the results provided herein demonstrate that a

versatile, POD-Galerkin framework for reduced-order modeling is easily accessible for analysts

using a variety of off-the-shelf diffusion and transport tools.

7.2 Future Work

This work has been made to implement the ROM and validate it for different problems.

However, with the implementation in place, work can be done for improvements, and some
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suggestion are summarized as follows:

1. Although the singular values resulting from the SVD of the full-order solution are a good

indication of the error resulting from approximating the solution via projection over a

subspace, rigorous error bounds will be more convenient to use in actual application.

This will require formal mathematical analysis of the discretized PDEs.

2. Posterior error estimates are more efficient to use in the greedy procedures, such that

the full-order model solution is obtained only for selected parameters points.

3. Methods to approximate matrix-free operators for non-linear problems need to be

explored.
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Appendix A

Numerical Methods

A.1 Backward Euler Integration

Backward Euler is an implicit time integration scheme that has the advantage of being

stable for large time steps in contrary to the Forward Euler method. Consider the ordinary

differential equation
dy(t)

dt
= Ay(t) , (A.1)

with initial condition y(t0) = y0. First, the time domain is discretized into sub-intervals each

with a time step ∆t. Recall Taylor series

yk = yk+1 −∆t
dy

dt

∣∣∣
k+1

+ ∆t2
d2y

dt2

∣∣∣
k+1

+ ..... , (A.2)

where yk = y(t0) + k∆t. By keeping the first two terms and rearranging

dy

dt

∣∣∣
k+1

=
yk+1 − yk

∆t
. (A.3)

Using the right hand side of Eq. A.1 and rearranging, we get

yk = (I−A∆t)yk+1 . (A.4)
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Note that this has a form of Ax = b and can be solved using a linear solver at each time

step, where iteration methods might be required for non-linear problems. The method has a

local truncation error of O(∆t2) and global error at any time t of O(∆t).

A.2 Mesh-Centered Finite Difference

The Mesh-Centered Finite Difference is one of the most widely used methods for spatially

discretizing the diffusion equation. For illustration, consider a 2-D, one-group diffusion

equation.

−∇D(r)∇φ(r) + Σr(r)φ(r) = S(r) , (A.5)

where Σr is the “removal” cross section. In the one-group approximation, Σr = Σa. To

solve Eq. A.5 numerically, we use a mesh-centered, finite-difference approach, in which cell

materials and sources are taken to be constant60. By integrating Eq. A.5 over the volume

Vijk, one obtains

∫ xi+1/2

xi−1/2

dx

∫ yj+1/2

yj−1/2

dy

{
−∇D(r)∇φ(r) + Σr(x, y)φ(x, y)

}

=

∫ xi+1/2

xi−1/2

dx

∫ yj+1/2

yj−1/2

dy S(x, y) ,

(A.6)

or

−Dij

[
∆yj

(
φx(xi+1/2, yj)− φx(xi−1/2, yj)

)
+∆xi

(
φy(xi, yj+1/2)− φy(xi, yj−1/2)

)]

+∆xi∆yjΣr,ijφij = ∆xi∆yjSij ,

(A.7)

where the cell-centered flux (equal to the average flux) is defined as

φij ≡
1

∆xi

1

∆yj

∫ xi+1/2

xi−1/2

dx

∫ yj+1/2

yj−1/2

dy φ(x, y) , (A.8)
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the cell-average source is

Sij ≡
1

∆xi

1

∆yj

∫ xi+1/2

xi−1/2

dx

∫ yj+1/2

yj−1/2

dy S(x, y) , (A.9)

and, for example, φx(xi+1/2, yj) is the derivative of φ with respect to x, averaged over y, and

evaluated at x = xi+1/2. To evaluate the partial derivatives φx and φy in Eq. A.7, Taylor-series

expansions are employed. For the x-directed terms at the left (or west) boundary, let

φ(xi−1, yj) ≈ φ(xi−1/2, yj)−
∆xi−1

2
φ+
x (xi−1/2, yj) (A.10)

and

φ(xi, yj) ≈ φ(xi−1/2, yj) +
∆xi

2
φ−x (xi−1/2, yj) , (A.11)

with similar expressions for the right x boundary and the y- term, The + and − superscripts

on the partial derivatives indicate forward and backward extrapolation from the cell midpoint,

respectively. By continuity of net current, we must have

Di−1,jφ
+
x (xi−1/2, yj) = Dijφ

−
x (xi−1/2, yj) . (A.12)

Multiplication of Eq. A.10 by Di−1,jk/∆xi−1 and Eq. A.11 by Dij/∆xi, adding the results,

and rearranging leads to

φi−1/2,j =
Di−1,jφi−1,j∆xi +Dijφij∆xi−1

Di−1,j∆xi +Dij∆xi−1

. (A.13)

Substituting this into the Eq. A.11 gives

φx(xi−1/2, yj) =
2

∆xi

(
φij −

Di−1,jφi−1,j∆xi +Dijφij∆xi−1

Di−1,j∆xi +Dij∆xi−1

)

=
2

∆xi

(
Di−1,jφij∆xi +Dijφi−1,j∆xi−1

Di−1,j∆xi +Dij∆xi−1

) (A.14)
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or

φx(xi−1/2, yj) = 2Di−1,j

(
φij − φi−1,j

∆xiDi−1,j + ∆xi−1Dij

)
, (A.15)

Similarly, one finds

φx(xi+1/2, yj) = 2Di+1,j

(
φi+1,j − φij

∆xiDi+1,j + ∆xi+1Dij

)
. (A.16)

These equations and the equivalents for y are substituted into Eq. A.7 to obtain a set of

internal equations.

Internal Equation

Substitution of Eqs. A.15 and A.16 into Eq. A.7 leads to

−Dij

{
∆yj

[
2Di+1,j

(
φi+1,j − φi,j

∆xiDi+1,j + ∆xi+1Dij

)
+

2Di−1,j

(
φi−1,j − φi,j

∆xiDi−1,j + ∆xi−1Dij

)]
. . .+

}
+

∆xi∆yjΣr,ijφij = ∆xi∆yjSij .

(A.17)

Equation (A.17) represents the balance of neutrons in the cell (i, j). For more simplification,

define a coupling coefficient

D̃i+1/2,j ≡
2Di+1,jDij

∆xiDi+1,j + ∆xi+1
Dij

, (A.18)

with similar coefficients for each direction. Then we can rewrite Eq. A.17 as

D̃i+1/2,j

∆xi

(
φij − φi+1,j

)
+
D̃i−1/2,j

∆xi

(
φij − φi−1,j

)
+
D̃i,j+1/2

∆yj

(
φij − φi,j+1

)
+
D̃i,j−1/2

∆yj

(
φij − φi,j−1

)
(
φij − φi,j

)
+ Σr,ijφij = Sij .

(A.19)
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Note that each term on the left with a coupling coefficient represents the net leakage from a

surface divided by the area of that surface.

Boundary Equations

At the boundaries, we employ the albedo condition60

1

2
D(x, y)∇φ(x, y) · n̂(x, y) +

1

4

1− α(x, y)

1 + α(x, y)
φ(x, y) = 0 , (A.20)

where n̂ is the outward normal, α describes the albedo condition (α = 0 for vacuum, and

α = 1 for reflection). In three dimensions, a mesh cell has six surfaces, some of which may be

part of a global surface. As an example, we consider the west global boundary:

west boundary : −1

2
D1jφx(x1/2, yj) +

1

4

1− α
1 + α

φ1/2,j = 0 . (A.21)

Because this expression contains φ at the edge, we again need to employ Taylor expansions.

For the west boundary, note that

φ1j ≈ φ1/2,j +
∆xi

2
φx(x1/2, yj) , (A.22)

and we rearrange to get

φ1/2,j = φ1j −
∆xi

2
φx(x1/2, yj) . (A.23)

Placing this into the albedo condition yields

0 = −1

2
D1jφx(x1/2, yj) +

1

4

1− α
1 + α

(
φ1j −

∆xi

2
φx(x1/2, yj)

)
, (A.24)

and solving for φx(x1/2, yj) gives

φx(x1/2, yj) =
2(1− α)φ1j

4(1 + α)D1jk + ∆x1(1− α)
. (A.25)
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For the east, we similarly find

φx(xI+1/2, yj) = − 2(1− α)φIj
4(1 + α)DIj + ∆xI (1− α)

, (A.26)

and likewise for the other surfaces. Each of these is placed into the proper partial derivative

of Eq. A.7. For example, the leakage contribution on the left hand side of Eq. A.19 due to

leakage from the west boundary is transformed as follows

D̃1/2,j

∆x1

(
φ0j − φ1j

)
→ 2D1j(1− α)φ1j

(4(1 + α)D1j + ∆x1(1− α))∆x1

. (A.27)

The derived equations for each cell can be combined to compose a linear system in the form

Lφ = Q (A.28)
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