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ABSTRACT

The objective of this work was the evaluation of pseudospectral

methods for their computational efficiency and applicablity to problems

in transport phenomena. This was accomplished by application of

Chebyshev pseudospectral methods to problems from each major area of

transport phenomena. The evaluation of the pseudospectral method was

based upon comparison to the analytic solution, if available, or finite

difference approximation otherwise. It was found that discontinuities

in the solution domain can result in serious deviations from the correct

solution; for example, the temperature discontinuity in thermal

entrance length problems led to the propagation of error within the

solution. Digital filtering was used successfully to damp out

oscillatory behavior in all cases studied.
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CHAPTER I. INTRODUCTION

Transport phenomena are pervasive in chemical engineering and

accurate numerical solutions are requisite for improvements in process

design and analysis. However, the evaluation of these equations is

often difficult due to coupling and nonlinearity. This has given rise

to many of the empirical relations used by practicing engineers today,

and is largely responsible for the development of the "unit operations"

approach. While empirical relations can be used for process design it

is sometimes difficult to predict exactly what will happen if a par-

ticular variable is changed. With the universal availability of

computers many, if not most, linear systems are now modeled numerically,

allowing optimum operating characteristics to be determined.

The most popular numerical scheme for solving partial differential

equations is the finite difference method which is easily applied to

many problems. Finite difference techniques can be used in conjunction

with explicit, implicit or hybrid methods depending upon the nature of

the equation. Another popular numerical approach is the finite element

method (see Finlayson [1980]). While a great amount of numerical work

is carried out in all fields of Chemical Engineering some of the most

advanced work has occurred in the area of fluid flow, primarily because

of the nature of the Navier-Stokes equation, and the problem of

turbulence. Consider the equations:
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where u. is the instantaneous velocity. This problem is often attacked

using Reynolds decomposition by letting u = U + u'; where U is the mean

velocity and u 1 is the fluctuation about the mean. The resulting equa-

tions are time averaged and simplified by noting that the linear terms

in the fluctuating quantities are zero for a statistically stationary

process. The result of this procedure is the Reynolds momentum

equation:
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It is the introduction of -puju 1

. terms that constitutes the major dif-

ficulty confronting any analyst wishing to employ this method of attack

upon the problem. An approximation for the turbulent momentum flux (-

pu'u') is necessary for calculation of many flows of interest. This

term is usually related to mean flow velocity gradients multiplied by a

proportionality function, or eddy viscosity. The result is in essence

an empirical curve fitting approach in which constants are adjusted

until the calculated and experimental results agree. Extrapolation from

these results can be dangerous. It has been noted by many fluid

dynamicists, including Tennekes and Lumley [1972] that gradient

transport models are not appropriate for turbent flow with multiple

length or velocity scales.

There are alternatives to the Reynolds equation-turbulence modeling

approach; these include sub-grid scale closure models and direct



numerical simulation of the Navier-Stokes equations. Deardorff [1970]

has been the principal proponent of sub-grid scale closure—in this

method, the large scale motions are explicitly obtained from the Navier-

Stokes equations. The very small scale motions are treated

statistically and in this manner the Reynolds number limitations of a

total numerical simulation are avoided. Orszag [1977], among others,

speaks in favor of this approach, while noting that the methods

presently being used to handle the dissipative eddies are less than

satisfactory. One would anticipate great difficulty in the direct

simulation of the Navier-Stokes equation, since in the past 150 years,

only about 75 analytic solutions have been found—a tribute to the

intractability of simultaneous nonlinear partial differential equations.

The pursuit of numerical solutions to the full set of equations is

hindered by the rapid increases in degrees of freedom (nodal points in

finite difference methods) with Reynolds number. Schumann et al.

[1980], Liepmann [1979], and Orszag [1977] have all noted that the

9/4required degrees of freedom scale with Re . If it were possible to

deal with a flow where Re=100 with 1000 interior mesh points, the scal-

4 7ing law suggests that Re=10 would require about 3 x 10 mesh points.

In fact, Orszag notes that an order of magnitude increase in computa-

tional power will permit an increase in Re of only 2.15 times and

Schumann et al. note that a brute-force simulation on a 10 MIPS machine

4
for Re=10 would require about 3 years computing time. There are

grounds for optimism, however, for free flows and flows in decay, where



either the Re is small or the large scale motions can be treated inde-

pendently of the dissipative structure. There is less reason to be

optimistic about success in direct simulation of flows about objects;

for turbulent boundary layers or laminar boundary layers undergoing

transition, the rapid changes in the streamwise direction cause dif-

ficulties in resolution. Furthermore, the downstream or outflow

boundary conditions would appear to require complete specification in

the wake region—with the concommitant danger that the flow will be

over-specified and the results of the direct simulation set in advance.

Therefore, there is need for numerical methods in which there is

not a rapid increase in the degrees of freedom with increasing Reynolds

number for the full set of Navier-Stokes equations and which also does

not require "numerical" boundary conditions in addition to those

specified by the original problem. Preferably, it should be possible to

apply this approach easily to any problem of interest.



CHAPTER II

REVIEW OF LITERATURE

For the above reasons the decision was made to explore the spectral

methods described in the monograph of Gottlieb and Orszag [1977] and the

review of Gottlieb et al [1984a]. Spectral methods have become incre-

asingly popular in recent years resulting in studies of transitional

fluid flows (Kleiser [1982], Marcus et al. [1982] and Orszag and Kells

[1980]); incompressible fluid flow simulations (Haidvogel et al. [1980],

Kumar and Yajnik [1980], Leonard and Wrey [1982], Noin [1982], Moin and

Kim [1980], Orszag [1971, 1980] and Taylor and Murdock [1980,1981]); and

most recently for complicated compressible flow fields which include

shock waves (Gottlieb et al. [1981, 1984b], Hussaini and Zang [1984],

Sakell [1984] and Salas et al. [1982]). Interest in spectral methods is

due in part to the increased accuracy available for a given number of

independent degrees of freedom (i.e. the number of mesh nodes for a

finite difference method) in comparison to finite difference techniques;

for example see Haidvogel et al. [1980] or Dennis and Quartapelle [1982]

for comparisons of accuracy. The spectral methods are often referred to

as being infinite-order accurate, that is, if after N terms the error

decreases more rapidly than any power of 1/N. Orszag [1971] states that

it is possible to decrease the computational time and storage by an

order of magnitude. The advent of the fast Fourier transform in the mid

60* s facilitated the development of spectral methods, since rapid

evaluation of trigometric polynomial coefficients became possible. Much

of the work done with respect to fluid dynamics has involved the use of



the pseudospectral techniques also known as "collocation" or the "method

of selected points" (Lanczos [1956]).

Spectral methods represent the solution to the problem as a

truncated series of eigenfunctions for the independent variable. The

type of series expansion used is based upon the type of boundary condi-

tion that is to be satisfied, for example, a periodic boundary condition

would suggest the use of a Fourier series representation for the

solution. Gottlieb and Orszag [1977] and Orszag [1977] suggest the

following series representations:

Boundary Conditions Series Representation

periodic exp(inx)

inviscid sin(nx) or cos(nx)

no-slip Chebyshev (T (x)) or Legendre (P (x))

The most popular series representations are the sine series and the

Chebyshev series due in part of the ability to use the FFT to evaluate

coefficients or their inverse transform. Additional series repre-

sentations have been used for special problems; for example Tang [1979]

used surface harmonics as the expansion function for two dimensional

flows on the surface of a sphere and Kasahara [1977] used Hough har-

monics to solve shallow-water equations over a sphere. Typically the

series representation was an eigenfunction expansion for the governing

equation. Gottlieb and Orszag [1977] discuss the convergence properties

of various series expansions and conclude that for "non-slip" boundary

conditions that Chebyshev or Legendre series provide the greatest ac-

curacy for the fewest terms in the expansion.



Spectral methods can be classified as Galerkin, Tau, or

Pseudospectral. A Galerkin method seeks the approximation of the de-

pendent variable, u„(x,t), in the form of a truncated series.
N

N

u
N
(x,t) = Z a

n
(t)

<J>n
(x) (4)

n=l

where 4> (x) are linearly independent functions choosen such that uN (x,t)

satisfies all boundary conditions. The coefficients, a (t), are deter-

mined by the Galerkin equations:
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where L is a linear differential operator. The tau method developed by

Lanczos [1956] employs expansion functions, 4> , assumed to be elements
n

of a complete set of orthonormal functions. The approximation to the

solution, u„(x,t) is expressed
N

u
N
(x,t) = Z a

n
(t) $n

(x) (6)

N+k
Z

n=l

where k is the number of independent boundary constraints that must be

applied. The coefficients a„ , to a„ . are chosen such that the k
N+l N+k

boundary conditions are satisfied. Whereas the expansion coefficients

a to a are the approximate solutions for the differential equation

being solved. Collocation methods represent the solution, u , as a
N

series expansion:



N

u„ = Z a
<f>

(x) (7)
N « n^n

n=l

where the expansion coefficients a are the solutions of the equations

Z a * (x.) = u(x.) (8)
n n 1 i

Notice that the coefficients a are dependent on both <t> and the points
n n

x for n=l , 2 N. Collocation methods can be applied in either
n

normal or spectral space (i.e. solve for u or a , respectively) but,

most often are applied in normal space because of the nonlinear nature

of the governing equation. The greatest difference between these

methods is the manner in which boundary conditions are handled (see

section 2 of Gottlieb and Orszag [1977]).

Pseudospectral (collocation) techniques are the most likely to be

appropriate for typical governing equations of transport phenomena. The

principal concept behind pseudospectral calculations as stated by Orszag

[1980] is to simply transform freely between physical (x.) and spectral

(a ) representations, evaluating each term in whatever representation

that term is most accurately, and simply evaluated. Pseudospectral

computations have several advantages over spectral algorithms: 1) For

complex geometry the solution of the spectral (Galerkin) method requires

at least twice the number of fast Fourier transforms than that of the

pseudospectral method using trigometric series representation; 2)

Pseudospectral techniques have significant advantages over spectral

techniques when solving nonlinear partial differential equations espe-

cially when considering computational expense.

8



In order to demonstrate the spectral method consider the one dimen-

sional transient equation:

9u 3
2
u

3t . 2 (9)
3x

with the boundary and initial conditions

u(0,t) = u(/r,t)=0

u(x,0) = f(x) (10)

the analytic solution to this problem can be shown to be

00 Jt

u(x,t) = Z { | f f (x)sin(nx)dx } sin(nx)exp(-n
2
t) (11)

n=l
n

Therefore, let u be the spectral approximation to u, so that the solu-

tion can be approximated as

N
u
N
(x,t) = Z a (t)sin(nx) (12)

n=l

Substituting back into equation (12) and using the Fourier transform

results in

da
n
(t)

-dT~ = _n a
n
(t)

< 13 >

and this set of ordinary differential equations is solved with respect

to the initial conditions a(0) = 2/ir
J

f(x)sin(nx)dx (n=l N)

.

Gottlieb and Orszag [1977] have shown for this example that u(x,t)-u
N

(x,t) goes to zero more rapidly than exp(-N t) for any t>0 and N— >co.

It can be seen that the spectral approximation of u(x,t) that results is

a truncation of the exact solution to N terms. In contrast to this

9



exceedingly good approximation it i3 possible to construct a spectral

method that will arrive at extremely poor results; therefore care must

be exercised in the construction of a spectral approximation.

The pseudospectral method is typically chosen over other spectral

methods when considering a nonlinear equation. For example consider

2
3u . ,3u 9 u , ,

aT
= exP< xu

)lx-
+ 72 < 14 >

3x

let the approximation u„(x,t) to u(x,t) be
N

N
u
N
(x,t) = Z a

n
(t)*

n
(x) (15)

n=l

where (x) is an orthonormal function. Then the spectral approximation

will be

da
Q
(t)

-St"
=

J Ve^ [atSVn 1SVA + ^Vn) dx (16)

It is seen that these equations for a (t) are computationally complex

due to the resulting integro-differential equation for a (t).
n

Therefore, consider the pseudospectral method in which, N collocation

points (Xj.Xg. .

.

.Xjj) lying within the computational domain are

introduced. The approximation (15) is forced to satisfy the governing

partial differential equation (14). For example, the following steps

would be followed; 1) Determine N coefficients a (0) such that
n

N
u
N
(x 0) = E (0)* (x ) (17)

n=l J

10



2) Evaluate each term of the governing partial differential equation in

either physical or spectral space, whichever gives the most accurate and

easily obtainable approximation. For example, exp (x u (x.,t)) is

evaluated in physical space since the value for u„(x.,t) is known and
N J

the partial derivatives are evaluated in spectral space since this

results in the most accurate representation. 3) Integrate in time with

respect to u
N
(x.,t) using the "leap-frog" method or another suitable

choice. 4) Repeat steps l)-3) until the time integration is completed.

From this example pseudospectral methods are seen to be much easier to

apply to nonlinear equations than corresponding spectral techniques.

The application of boundary conditions in a spectral method can

determine the solution's stability. Gottlieb et al. [1981] state that

incorrect boundary treatments may give strong instabilities in contrast

to finite-difference methods in which this would appear as relatively

weak oscillations. Moin and Kim [1980] note that fully explicit pseudo-

spectral solution of the incompressible Navier-Stokes equation have an

inherent numerical problem for viscous flows involving solid boundaries,

due to enforcing no-slip conditions at the walls. Rudy and Strikwerda

[1981] presented a study of inflow and outflow boundary conditions for

compressible Navier-Stokes equations of flow past a flat plate. This

study, conducted for finite-difference methods of solution, indicates

that errors in the data specified at the inflow boundary condition can

significantly affect the solution obtained. Gottlieb and Orszag [1977]

note spectral methods are extremely sensitive to the formulation of

11



boundary conditions; for example, when improper boundary conditions are

imposed, the solution is likely to be "explosively" unstable.

Convergence of the spectral (Galerkin) method for Navier-Stokes

equations has been demonstrated for a Fourier representation with peri-

odic boundary conditions by Hald [1981]. Maday and Quarteroni [1982]

have provided stability results and "optimal" convergence rates for

Galerkin and pseudospectral approximations (using trigonometric polyno-

mials) for the stationary Navier-Stokes equation with periodic boundary

conditions. Canuto [1984] analyzed explicit and implicit methods of

imposing boundary conditions for Chebyshev and Legendre approximations

of elliptic problems ensuring stability and convergence for these

methods. Canuto and Quarteroni [1984] give stability and "optimal"

convergence rates for Chebyshev collocation approximations of variable

coefficient elliptic problems with Dirichlet or Neumann-type boundary

conditions. Gottlieb [1981b] has demonstrated stability of Chebyshev-

pseudospectral representations for parabolic and hyperbolic equations

with variable coefficients. Gottlieb and Orszag [1977] discuss al-

gebraic stability criteria as applied to spectral methods. Pasciak

[1980] investigated spectral and pseudospectral representations of

advection equations with the intention of introducing a framework in

which finite elements analysis can be applied to spectral methods. In

addition error estimates are given for fully discrete explicit pseudo-

spectral as well as semidiscrete spectral and pseudospectral methods.

Some additional considerations warrant attention. In the case of a

discontinuity, the rate of convergence in the region of the discon-

tinuity is seriously degraded, but spectral approximations are still

12



normally more accurate than corresponding finite difference repre-

sentations (Gottlieb and Orszag [1977]). Additionally, the error is

localized better by the spectral method such that less local dissipation

is required to smooth the discontinuities. If dissipation or a filter-

ing technique is not used then Gibb's phenomenon is seen in the region

of the discontinuity, and, the resulting error from the lack of smooth-

ing pollutes the solution globally (Osher [1984]). Majda et al. [1978]

have shown for general linear hyperbolic Cauchy problems with nonsmooth

initial data that the appropriate smoothing techniques applied to the

equation results in stability and that this smoothing combined with

smoothing of the initial data gives rise to infinite order accuracy away

from the discontinuities of the exact solution. The most prominent

examples of discontinuities that have been examined by spectral methods

are shock waves (Gottlieb et al. [1981,1984b], Hussaini and Zang [1984],

Sakell [1984], Salas [1982], Streett et al. [1985], and Taylor et al.

[1981]). A variety of filters and dissipation functions have been used

to damp the oscillations occurring in the solution due to the

discontinuity. For example, one sided Schumann filter (Gottlieb et al.

[1981]), von Hann window filter (Hussaini and Zang [1984] and Salas

[1982]), second and fourth-order artificial viscosity (Sakell [1984]

and Streett et al [1985]), artificial density (Street et al. [1985]) as

well as the method of Boris and Book [1976], orginally developed for the

construction of finite difference algorithms involving strong shocks

(Taylor et al. [1981]), have produced accurate, smooth solutions for

this type of problem. In addition, Gottlieb et al. [1981] used a low-

pass spectral filter to remove the high frequency waves that lead to

13



instability and a "cosmetic" filter (a one-sided Schumann filter) to

find a nonoscillatory numerical solution. Gottlieb [1985] provides a

brief review of recent advancements in the field of compressible flow

problems. Streett and Bradley [1985] discuss briefly some applications

of spectral methods in aerodynamics.

Symmetric flow past a flat plate has been treated by Orszag [1971]

and Taylor and Murdock [1980] , [1981] . Planar flow has been investigated

by Moin and Kim [1980], Orszag and Kells [1980] and Kleiser [1982].

Taylor and Murdock studied the flow over a flat plate in a range of

5 5
1.2x10 <Re<3.8xlO , which is well within the turbulent flow regime. The

velocity profile was solved as perturbation about the Blasius velocity

profile. Taylor and Murdock used a mesh of 17x17 to solve for the

velocity profile, while Orszag used nine collocation points to ap-

proximate a one dimensional boundary layer, both studies resulted in

accurate approximations.

The treatments of transonic flow by Gottlieb et al. [1984b] and

Streett et al. [1985] are interesting in that spectral methods

(Chebyshev collocation) are being used. The treatment of transonic flow

over an airfoil can be viewed as state-of-the-art application of

spectral methods because of the difficulty posed by the sharp shock

gradients and the computational competition with finite difference

methods. Again, it is seen that separation causes difficulty as Streett

et al. note that the potential equation which is being solved becomes a

mixed elliptic-hyperbolic type and admits weak solutions with

14



discontinuities. Streett et al. use artificial viscosity with a direc-

tional bias introduced in the potential equation in the supersonic

region to suppress the appearance of compression and expansion shocks

due to the presence of a supersonic bubble. It is apparent that the use

of nultigrid techniques has made spectral methods for steady compres-

sible flow competitive with finite difference methods for problems of

aerodynamic interest.

A very thorough review of application and major developments of

spectral methods from approximately 1977 to 1983 is provided by Gottlieb

et al. [1984a]. This review presents all major aspects of applying

spectral methods to Navier-Stokes equations. Taylor et al. [1985] have

proposed a method for solving the primative three dimensional (3-D)

Navier-Stokes equations without introducing the Poisson equation for

pressure. This was accomplished by integrating the equation of con-

tinuity for the normal velocity component with respect to the surface

and integrating the corresponding equation of motion to evaluate the

pressure term. This procedure, applied to evaluate boundary layer

stability, was found to be the same as a marching solution of a Poisson

equation and therefore unstable. A second method was proposed in which

the normal velocity component was evaluated from both the equation of

continuity (V ) and the equation of motion (V ) and an iterative method
c n

of the following form:

p-i , p
» . a -a,vv (18)

was used to evaluate the pressure at the new time. They found this

approach to converge very slowly due to its explicit nature. Malik et

15



al . [1985] describe a Fourier-Chebyshev spectral method for the incom-

pressible Navier-Stokes equations. The algorithm, combines a fully

spectral scheme with a Fourier-finite difference method in evaluating

most wall bounded shear flows. Zang and Hussaini [1985] have employed

this algorithm, with appropriate modifications, using Fourier-Legendre

expansions to model incompressible channel flow. Satisfactory results

were obtained. It should be noted that while Legendre series and

Chebyshev series require approximately the same number of terms to

converge to the solution, (Gottlieb and Orszag [1977]) Legendre series

are rarely used in practice. While the FFT is much faster than matrix

inversion for large matrices as the matrix size decreases the efficiency

of the FFT also decreases until it is approximately that of matrix

inversion; therefore Legendre representations should be competitive

Chebyshev representations when "few" terms are required for an accurate

approximation. Taylor [1984] has shown that for N < 64 that Crout's

method is equivalent or better than the FFT. Also Zang and Hussaini

note that evaluation of derivatives by matrix multiplication (Legendre

collocation matrices) is faster for N=32 than machine language Chebyshev

transforms

.

Many methods are being used to solve spectral representations, for

example, Deville et al. [1982] examined time integration for the non-

linear Burger equation. They conclude that only two methods are

practical choices: The first employs a second order Adams-Bashforth

method to integrate the non-linear terms and a second order Crank-

Nicolson scheme to integrate the linear terms and the second method

utilizes predictor and corrector steps and both finite difference and

16



pseudospectral methods. Taylor [1984] outlines a finite difference

predictor and spectral corrector approach for integration. An ADI

method has been used to solve a Poisson equation (Haidvogel and Zang

[1979]). Haidvogel and Zang described a second algorithm for Poisson's

equation in which the tau method is used and the resulting coefficient

matrix for the second order derivative is diagnolized. This approach is

better suited to time-dependent problems and is an order of magnitude

more efficient than the ADI algorithm. Haldenwang et al. [1984] have

used this algorithm for a 3-D Helmholtz equation. The use of non-

homogeneous boundary conditions with the resulting equations for

evaluation of derivatives is discussed in Appendix I of the Haldenwang

et al paper. Sharp and Harris [1984] have investigated the combination

of pseudospectral methods with parametric differentiation as applied to

the Falkner-Sakan equation. From CPU times given for evaluation of the

equation, it does not appear that the method of parametric differentia-

tion combined with a pseudospectral expansion is competitive with the

pseudospectral method. Zebib [1983] has proposed a new Chebyshev method

which represents the highest derivative as a Chebyshev series expansion

with lower derivatives being obtained by integration. This technique

can be viewed as being related to the tau method in that additional

terms arising from the integration are used to satisfy boundary

conditions. From the examples presented the method appears to be fully

as accurate as more traditional Chebyshev techniques.

For cases where fully spectral techniques are difficult to apply or

inappropriate for the problem domain other avenues are available for

their application. One possible method is the combination of finite

17



difference and pseudospectral methods for separate directions. Reddy

[1983] used such an approach in solving 3-D flowfields over missle

shaped configurations at moderate angles of attack. In this approach a

Fourier sine series was used in the circumferential direction with

finite difference representation for the other directions. Reddy es-

timated that a 40% increase in efficiency could be obtained for a

relatively sparse grid with respect to the spectral representation.

Metivet and Morchoisne [1982] have investigated splitting the domain on

which the problem is defined into a finite number of problems on

subdomains. Metivet and Morchoisne note the main considerations of this

approach are "patching" (i.e. ensuring that derivatives at the bound-

aries of adjacent subdomains are continuous) and modifications of

equations due to mapping of the subdomains. The proposed method has the

flexibility of finite element and finite difference methods, but main-

tains the accuracy of monodomain spectral techniques.

It is evident that spectral methods can be applied competitively to

many aerodynamic and hydrodynamic flow simulations. Since equations for

heat and mass transfer are often similar to those of fluid flow, it is

likely that spectral methods can be applied profitably in those cases as

well. The purpose of this work is to investigate the application of

spectral methods to problems in transport phenomena and to assess the

suitability and computational efficiency of such methods when applied to

important nonlinear equations.
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CHAPTER III. APPLICATION OF THE CHEBYSHEV PSEUDOSPECTRAL METHOD

In order to discuss how Chebyshev collocation is applied, it is

advantageous to have a framework for the evaluation of coefficients and

derivatives. A Chebyshev series is defined on the interval (-1,1) with

the interpolation points most commonly chosen as

Xj = cos ^j (j = 0,1 N) (19)

for a Nth-order representation. A Chebyshev polynomial of degree n is

defined

T (x) = cos(n cos (x)

)

therefore it follows

T
n
(Xj) = cos ^ (j = n = 0,1 N) (20)

Based on these definitions the approximation to the solution U„(x.)
N v

J'

is:

n=0

where a are the polynomial coefficients. The coefficients are

evaluated by application of a Fourier transform resulting in:

N

C
n
a
n

=
N

Z C
j W cos ^ (n=0,1 N) (22)

where c
Q

= c
N

= 2 and c = 1 for 0<j<N. This transform can be expressed

in terms of matrices
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a = T U„ (23)

where

a =
"1

U
N

=

U
N <V

u
N

(x
l}

U
N

(X
N

and

T = —
N

vv

VV

vv

vv

vv

vv

vv

vv

vv

vv vv vv

vv

vv

vv

vv
Now consider the derivative of U which can be expressed in terms of

polynomial series the following manner

5x"<V x» = Vn5x-<V X»
n=0

for a Chebyshev representation this can be rewritten

h <VX» " \ bnV x)

n=0
(24)

where b = 0. The relation between the coefficients a and b can bew
. n n

shown to be
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2
N

b = — Z
n c ,n p=n+l

P a
. (25)

p+n odd

based on the recurrence property

2T (x) =
n

c T . '(x) w T "(x)
n n+1 * ' n n-1 v

'

n+1 n-1 (26)

where c =w =0 if n<0, c_=2, w =1, and c =w =1 for n>0, and the prime
n n u o n n

indicates differentiation. The coefficient representation for the

second derivative can be shown to be:

d
n =

c"

N

Z
n p=n+2

p+n even

, 2 2,
p(p -n )a

t (27)

where

2 N

7T < UN> - * d
n

Tn^)
dx n=0

(28)

and d
N
=d

N-l
= °" The evaluatlon of derivative coefficients can be

represented in matrix fashion. Consider the coefficients of the first

derivative

where

b - D<» .

r b

(29)

and

N J

dJ.' =0 if i>j or i+j even
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otherwise

DJ}* = ?! for i=j=0,l N
i j c

.

The second derivative coefficients can be expressed

d=D (1)b= tD
(1)D(1)

a] =D (2)
a

where

(30)

d =

r d

L
dNJ

It can be seen that any order derivative can be evaluated by raising

D the appropriate power, q, where q is less than N. Ku and

Hatziavranidis [1985] have taken this approach a step further by noting

_n_(l)_s .= T D T U
N (31)

or for a qth order derivative

UM
(q) -T" (D

(1)
)

q T
8
UM (32)

where
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VV VV T
2
(x

o> • • • w
W Tl(Xl ) T

2
( Xl ) . . . T

N ( Xl )

t ( X2 ) y X2 ) t
2
(x

2
) . T

N
(X

2
)

[T^) Ti ( Xn ) T
2 ( Xn ) . . . T

n ( Xn )

They note that this procedure is as accurate as the FFT in evaluating

derivatives and is more efficient in terms of computational time and

implementation. The basic framework for evaluation of derivatives and

coefficients has been established.

There are limitations to the above approach. One of the most

notable exceptions is the application of Robin's boundary conditions at

the interface of two calculated domains (i.e. flux equated across the

boundary) . Often the derivatives of the dependent variable for the

first one or two points beyond the boundary are not very accurate in the

pseudospectral representation due to aliasing. For a cosine function

cos(ux), the frequencies u and -<j are indistinguishable and are said to

be aliases of each other. More specifically when a Fourier transform is

used to transform a function into spectral space and back again the

result is:

w(k) = w(k) + w(k+2K) + w(k-2K) (IlklKK) (33)

where w(k) is the aliased representation of w(k) and N = 2K. The last

two terms arise from the fact that exp[i(k±N)x ] = exp[ikx.] for all
J J
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integral j and k. It should be noted that for IlklKK only one of the

two terms due to aliasing can be non zero. Therefore, the values of the

derivative at the boundary must be forced to satisfy the required

condition. This can be accomplished either by direct substitution of the

derivative value, if possible, or by the use of the tau method.

Additional summation terms are needed for the cases where aliasing is

significant and hence has to be removed. A matrix approach may be

difficult to apply for the case of nonlinear problems. Therefore, in

certain cases, it may be easier to eliminate the aliasing if the

governing equation is represented in terms of the series coefficents.

Another example is when a spectral filter is desired to eliminate

"noise" from the solution arising from a discontinuity. Again, it is

easier to use the series coefficents in a spectral filtering method than

to use the dependent variable values.

Using the preceeding approach classical problems in fluid and

thermal transport and two additional problems dealing with diffusion

were studied. The classical problems considered were; 1) Start-up

laminar velocity profile in a circular tube; 2) Transient temperature

profile of a wire filament electrically heated; 3) The classical

Graetz problem. Diffusion in which diffusivity was a function of

concentration was modeled for a planar geometry. The last problem

considered was transient diffusion and reaction within a spherical

pellet, with nonlinear Michael is-Menton kinetics (typically seen for

many enzymes )

.
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Start-up Laminar Velocity Profile

The simplest problem considered is the start-up of the laminar

velocity profile in a circular tube. This problem is considered simple

because of the linearity of the governing equation, which is given by:

3v P
o ~ PL 1 8 . 8v, , .

p -p
r

v is the fluid velocity, p is the density of the fluid, t is time,

is the applied pressure gradient, fi is the fluid viscosity and r is the

tube radius. The following initial (I.C.) and boundary conditions

(B.C. ' s) were used:

I.C. v(r.O) =0; < r < R (35)

B.C. 's v(R,t) =0; t > (36)

8v— (0,t) = 0; t > (37)

The analytic solution to this problem expressed in terms of the

dimensionless varibles <j>, £ and T where

a, = y. . * « £. T . tSL.T o ' S ft > * o

(Po
-p

L
)R'

:

/4/iL
K

pR*

is

2 • J
o

(a
n?) 6XP [_Gt

n
T]

<?.t) = (lY) - 8 Z -2 S. 2

—

(38)
n=l o J„(cr )n l

v
n'

The a
n

are chosen such that the resulting zeroth order Bessel function

( J (a
n )) ls zero. The pseudospectral approximation, <j> to the

solution,
<f>, was expressed by a Chebyshev polynomial expansion. The

governing equation was integrated with an Euler predictor. Table 1
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illustrates the results obtained for this problem with nine and

seventeen expansion terms and t = 0.05. Table 2 illustrates the results

obtained for this problem with seventeen and twenty-five expansion terms

and T = 0.10, results for a finite difference representation are

included.

Tables 1 and 2 illustrate that fairly accurate approximations are

obtained for the central region of the tube. Table 2 indicates that no

significant increase in accuracy is obtained by increasing the number of

coefficents. An anomaly seen for the psuedospectral approximations is

the relative inaccuracy of the solution near the boundary in relation to

that of the central region. The cause of this inaccuracy may be due to

the integration method chosen or presence of a discontinuity at the

boundary when the pressure gradient is intitiated. The results

presented in Table 2 suggest the integration method used was relatively

accurate and therefore the problem in the boundary region is due to the

initial discontinuity. Possible methods to deal with the problem of the

initial discontinuity include using a digital filter to remove any

"noise" that may occur near the boundary, the use of a more accurate

integration scheme, or use of a highly accurate finite difference

representation to initialize the values of the pseudospectral

approximation at some point beyond the initial starting values.

Aliasing is not a factor in this case, since as Orszag [1972] has noted,

aliasing terms lead to the numerical solution being susceptible to

numerical instability.
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Table 1. Comparison of pseudospectral predicted unsteady laminar flow
to the analytical solution with four terms of the series
being retained, T = 0.05.

1.0 0.9239 0.7071 0.3827 0.0

4> (0.05,?) 0.0 0.1054 0.2056 0.1941 0.2000

4>
8
(0.05,£) 0.0

* Error

0.07848

0.0 25.5

0.1796

112.6

0.1998 0.2032

3.0 1.6

0.1959 0.1976

0.93 1.2

<f>16
(0.05,?) 0.0

* Error

0.06040 0.1579

0.0 42.7 23.2
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Table 2. Comparison of pseudospectral and finite difference predicted
flow to the analytical solution with four terms of the
series being retained, T = 0.10.

1.0 0.9239 0.7071 0.3827 0.0

<*>(o.io,e) 0.0 0.1182 0.2861 0.3577 0.3851

<fr16
(0.10,£) 0.0 0.08447 0.2504 0.3584 0.3885

% Error 0.0 28.5 12.5 0.20 0.88

<fr24
(0.10,£) 0.0 0.08443 0.2503 0.3582 0.3886

% Error 0.0 28.6 12.5 0.14 0.91

Finite
Difference
(0.01 radial

spacing

0.0 0.1115 0.2990 0.3864 0.3991

% Error 0.0 5.7 4.5 8.0 3.6
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Transient Temperature Profile of a Wire Filament

Electrically Heated

The problem considered is the transient temperature profile of a

cylinderical wire filament electrically heated with only radiative heat

losses considered. It is assumed that the physical properties of the

wire are constant. The governing equation is

|J
= a 2_I + (T* _ T

4
) (39)3t

3x
2 m

where

a = — ; thermal diffusivity

and

^ c<Jo

T - (l!fi T
4 )*

m xupea o

k is the thermal conductivity, c is the specific heat capacity of the

filament material, 6 is the density, p is the periphery of the cross

section of the filament, 6 is the total emissivity of the surface, cr is

the Stefan-Boltzmann constant, u is the cross section area, I is the

heating current, p is the specific resistance and T is the temperature

of the chamber walls in which the heating is occuring. The following

I.C. and B.C.'s were assumed:

I.C.

T(x,0) = T ; -1 < x < 1 (40)
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B.C. 's

T(l,t) = T(-l,t) = T
q

; t>0 (41)

An analytic solution for the central region of the wire is given by Jain

and Krishnan [1955]

T -T

Y^ exp[-2 tan (— )] = C exp [- |-] (42)
m ma

where

and

t = (wV 1

IB

T -T T
C = J-_2 eXp[-2 tan"

1

(f)]mo m

The system was modeled for a wire two centimeters (cm) in length with a

= 0.1, = 8.6X10"
11

, T = 1182. 5°K, T = 281°K, t = 1.762 andm oo
C=0.3863. The temperature profile obtained for a time of 0.04 seconds

is displayed in Figure 1. This profile was obtained for both

pseudospectral and finite difference representations using a second

order Adams-Bashforth predictor with time increments of 0.0001 seconds.

The values obtained from the numerical solutions for the central region

of the wire agree exactly with that obtained from the analytic solution.

The finite difference representation, with nodes spaced 0.01 cm and

using symmetry about x=0, required approximately 1.17 seconds per

iteration on a Zenith Z-122 microcomputer using compiled Basic.

Approximately 0.42 seconds per iteration was required for a twenty-five

term pseudospectral representation on the same machine. In both cases
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Figure 1. Tenperature Profile within an Electrically Heated Wire
Filament Obtained with Finite Difference and Pseudospectral
Methods for t=0.04 seconds.
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the number of terras retained for the physical representation may be

reduced without affecting the accuracy of the numerical solution, thus

increasing the speed of the computation.

The Classical Graetz Problem

The classical Graetz problem refers to the analysis of laminar

flow heat transfer in a tube. For the case of a circular tube the

following conditions are assumed; 1) The heat capacity, thermal

conductivity, viscosity, and density of the fluid are constant; 2) The

laminar velocity profile is established before entering the region in

which heat transfer will occur; 3) At x=0 the wall temperature will

change from that of the uniform fluid temperature, T , to the new
o

value, T , and is constant at this value for x>0. The governing

equation for the heat transfer occuring in a cylindrical tube neglecting

thermal conduction along the axis is

3T k ,1 3 . 3T.,
u
ai

=
c"p [

r §7
(r

aF )] < 43 >

p

where u is the velocity at the radial position r, k is the thermal

conductivity, C is the heat capacity, p is the density of the fluid, T

is the local temperature and x is the axial postion. The laminar

velocity profile is defined to be

u = 2U [1 -
(J-)

2
] (44)

w

U is the maximum velocity, r
w

is the radial distance to the wall.

Boundary conditions employed are
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T(r,0) = T
Q

; < r < r
w (45)

T(r
w
,x) = T

w
; x > (46)

3T(0,x) „ , v—-£-? = x > (47)

The solution takes the form:

2 (—

)

T - T 09 -/8
v
r '

tH-T ' \ C
n*n <]H -Pt-V1-^

< 48 >

w o n=0 w

the values for c , o> and /S are given by Knudsen and Katz [1958] for
n n n

n=0,l and 2 which is sufficient for most situations. The governing

equation was integrated using a second order Adams-Bashforth method

-5
with axial increments of 1x10 . It was found by trial and error that

within the first 30 steps larger axial increments (e.g. doubling the

increment size) resulted in numerical instability. A digital filter of

the form

f'(x) = (f(x+2h) + 2f(x+h) + 9f(x) + 2 f(x-h) + f(x-2h))/15 (49)

was used initially to damp oscillations occurring from the presence of a

discontinuity at the entrance. This filter was modified to account for

the varible node spacing that results for Chebyshev representations

f ' (x
i

)
=

(VU
i-2

)
+

'l
f(Vl )

+ 9f(x
i

)
+ 2f(X

i+l
)

+ f(x.
+2

))/(12+* 1+J 2 ) (50)

where

*i
= 2 U

i
" Vi )/(x

i + i
- V

and
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S
2

= (X
i-2 ' X

i
)/(X

i
"W

for i>l. For i=l the following filter was used

f'Uj) = (0.25 f(X
Q

) + 10 f(x
1

) + f(x ))/11.25 (51)

Weighting was chosen such that the boundary condition at the wall was

not over emphasized by the filter. The filters were used only for the

first seven axial increments. Figure 2 presents numerical results in

relation to values obtained from the series summation with x/r = 0.075.
w

It can be seen that good agreement is obtained considering the

existence of a discontinuity at the entrance region. More accurate

results may possibly be obtained by the use of different filtering

methods, different axial spacing between filterings or the use of more

accurate integration methods once away from the entrance region. Ku and

Hatziavramidis [1984] examined the classical Graetz problem using

Chebyshev psuedospectral representation in the radial direction and

either a Chebyshev finite difference or Chebyshev finite element method

in the axial direction. The use of Chebyshev techniques in the axial

direction was accomplished by transforming the problem from an infinite

domain on the x-axis to a finite domain. The transformation

z = J tan
-1 (—

)

(52)
w

mapped the problem onto a domain of z t 0.5, where K is a constant

that may be varied at will. Both the Chebyshev finite difference and

finite element techniques gave excellent results in general.
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Figure 2. Solutions to the Classical Graetz Problem from the Analytic
Series Summation and the Pseudospectral Method for x/r, = 0.075.w
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Diffusion in a Planar Slab

This problem considers the transient diffusion of ethanol in a

porous planar slab with concentration-dependent diffusivity. Values for

the diffusivity of ethanol in water (Bird et. al. [I960]) were fit to a

third order power series of the form

D = a + bX
E

+ cXg + dXg (53)

where a = 1 .443935xl0~
5

b = -7.373196xl0~
5

c = 1.615881xl0~
4

d = -7.973184xl0~
5

as determined with a statistical software package (3-D Designer

Statistics for Micros) where D is diffusivity and X_ mole fraction of
E

ethanol. The governing equation for transient diffusion of ethanol in

a slab infinite along the x and z axes is

8X
E dD

9X
E n

a\
, t

ir
=

d̂ "^ "17
(54)

An expression relating the derivative of the diffusivity to ethanol mole

fraction can be introduced through the chain rule

42 = 42-^ (55)dy 3X
E

9y (55)

Therefore the governing equation can be expressed in terms of ethanol
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mole fraction only

3X 3X 9 X

-g| = (b + 2cX
E

+ 3dXg) (g-5)
2

+ (a + bX
£

+ cX
2

+ dx!) § (56)
3y

Initial and boundary conditions impressed upon a slab 2 centimeters

thick are

X
£

(y,0) = 1; -Ky<l (57)

X
E
(+l,t) = X

E
(-l,t) = 0; t>0 (58)

Both a second-order Adams-Bashforth and a fourth-order Runge-Kutta

scheme were used to integrate the governing equation. Chebyshev

representations of 17, 25 and 33 terms were used to evaluate the

solution in addition to a finite difference method used for comparison.

A second-order Adams-Bashforth method was initially applied with digital

filtering to evaluate the governing equation. This particular technique

displayed severe discrepancies from the finite difference solution and

even among the various pseudospectral solutions. Integrating to t=1000

seconds invaribly led to the first term, away from the wall, being

approximately 0.62 ± 0.02 for each approximation. Subsequently, a

fourth-order Runge-Kutta method was applied to assess the validity of

the Adams-Bashforth method that was used. This approach gave the same

results as the Adams-Bashforth method to within 5*. Integrating to

t=5000 seconds, with 17 terms, still resulted in the term next to the

wall being approximately 0.62 ± 0.02. This would suggest the

pseudospectral approximation in the vicinity of the wall was near its

steady state value for the above approach.
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Examination of the governing equation suggests that the first and

second derivatives and the evaluation of the diffusivity terms control

the solution. Therefore, the validity of the approximations for

derivatives was examined. Due to the presence of intial discontinuities

at both boundaries, the derivative approximations oscillated about the

correct derivative values. Oscillations were most severe at the

boundaries and attenuated as the central region was approached. Since

the derivative values initially should have been zero in the core region

both positive and negative deviations about the correct solution were

introduced; thus the digital filter that was used for the Graetz problem

was applied to both the first and second derivatives. This approach

produced reasonable results in comparison to the finite difference

values

.

Figures 3 and 4 in addition to Tables 3 and 4 display the results

obtained. These results are for a second-order Adams-Bashforth

predictor with step sizes of 1, 2.5 and 10 seconds for 33, 25 and 17

term representations respectively. The derivatives were filtered for

the first 500 seconds, in addition a "cut-off" filter was used.

Typically, due to the oscillation of the derivative values, the solution

also oscillated to a lesser degree, most noticeably when the true

solution was constant. Therefore when the collocation approximation for

mole fraction exceeded one, that point along with the succeeding points

were set equal to one, thus "cutting-off " oscillatory behavior. The

finite difference representation used nodes spaced 0.005 cm apart and

symmetry about x=0 with the integration being carried out by a second-

order Adams-Bashforth method with time increments of 0.5 seconds.
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Figure 3. Ethanol concentration Profiles within a Slab Obtained by a
Finite Difference Representation and Pseudospectral
Representations of 17, 25, and 33 Terms, for t-1000 seconds
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Figure 4. Ethanol concentration Profiles within a Slab Obtained by a
Finite Difference Representation and Pseudospectral
Representations of 17. 25, and 33 Terms, for t=5000 seconds.
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Table 3. Comparison of ethanol mole fractions at various
a slab at a time of 1000 seconds for finite d:

and pseudospectral methods.

points with
Lfference (Fl

0.9239

x(cm)

0.7071 0.3827

*FD
0.5357 0.9281 0.9984 1

% Error

0.5982

11.67

. 8958

3.480

0.9910

0.7412

1

*24

% Error

. 7094

32.42

0.9355

0.7973

0.9991

0.07011

1

*32

% Error

0.6157

14.93

0.9295

0.1509

0.9979

. 05008

1
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Table 4. Comparison of ethanol mole fracti
slab at a time of 5000 seconds
pseudospectral methods

.

ons at various points with
for finite difference (FD)

x(cm)

0.9239 0.7071 0.3827

*FD
0.1954 0.7188 0.9116 0.9695

ia 0.5066 0.7844 0.9210 0.9665

* Error 159.3 9.126 1.031 . 3094

*24 0.3316 0.7627 0.9295 0.9770

% Error 69.70 6.107 1.964 0.7736

*32 0.1980 0.7233 0.9151 0.9708

* Error 1.331 0.6260 0.3839 0.1341
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Figure 3 displays the pseudospectral and finite difference

approximations for t=1000 seconds. Table 3 compares error between

finite difference and pseudospectral methods. It can be seen that the

33 term series representation results in the best approximation to the

solution. In addition Table 3 substantiates this veiw point by

comparison of relative percent error. Figure 4 and Table 4 present the

results for t=5000 seconds. Again it is seen that the 33 term

representation accurately approximates the finite difference solution.

It is apparent from the deviations among the approximate solutions

that the 17 and 25 term expansions cannot adequately represent the

initial solution. Although, no effort was made to optimize the

filtering, it is likely that the derivative values require far less

filtering than was applied.

Diffusion and Reaction in a Spherical Pellet

The problem considered was the diffusion and concurrent reaction of

a substrate within a spherical catalysis pellet with nonlinear

Michaelis-Menton kinetics. It is assumed that the pellet is homogeneous

with diffusion and reaction symmetric such that only radial variation

need be considered. In addition, diffusivity and density of the system

are assumed to be constant. The governing equation is:

as n t
1 9 / 2 3S.,

V
m
S

, ,

3T = D (-2 3r-
(r

iF )) ' FTs" < 59 >

r m

S is substrate concentration, D is the diffusivity of the substrate

within the pellet, r is radial position, V the maximum rate at which
m
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the reaction can take place with respect to the physical conditions

(i.e. temperature) and K a kinetic constant. The following
m

dimensionless varibles are introduced into the governing equation

c - S_
. R . £_ . _ tD_

C " SK
'

R "
r '

T ~
2

b s r
s

S. is the bulk concentration of substrate and r is the radial distance
o s

to the pellet surface. Which results in

ac _ a^c 2 3c _ac
3r

-

9R
2

+
R 8t "

/8+C
(60)

where

V r
2

K
a = -S-2

; 8 = -"•

b b

The initial and boundary conditions considered are:

C(r,0) =0; < r < 1 (61)

C(l,t) - lj t > (62)

3C(0,t)
-ir-

1 = 0; t > (63)

Due to the nonlinear nature of this problem, no analytic solution is

known to exist. Therefore, a finite difference method was executed for

comparison. The governing equation was integrated using a second order

Adams-Bashforth method. The initial thirty increments were lxlO
-5

in

size at which point the time increment was increased to lxl0~ . The use

of small initial time increments was to damp the oscillations present in

the solution arising from the initial discontinuity and ease the

effects that filtering may have on theultimate solution. The values
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II

1 1 1

0.9808 0.1411 0.2212

. 9239 -7.843xl0~
3

0.1226

0.8315 2.027xl0~
3

0.04517

0.7071 -8.452xl0~4 0.01841

. 5556 4.737xl0~
4

6.421x10

0.3827 -3.270X10"
4

2.105x10

0.1951 2.657xl0~
4

7.139x10

-1.563xl0~
4

3.347x10

-3

-4

-4

1

0.1740

0.09500

0.02741

8.861x10

2.173xl0~

4.382x10

1.155x10"

2.265x10"

-3

-4

Table 6. A comparison of concentration profiles within a spherical
pellet after seven time increments for no filtering and
filtering schemes I and II.
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chosen for a and /9 were 7.5 and 1, respectively; these values indicate

that for a region in which the substrate concentration is high (i.e.

C—>1), the kinetics are nonlinear and for the case where the

concentration is low, first-order kinetics hold. The filters are the

same as those used with the Graetz problem with the exception of

weighting on the central point, which was increased by one for both

filters. Two separate filtering approaches were used, the first (I)

filtered the first seven increments, the second (II) filtered at

increments seven and fourteen until no negative concentrations

existed. It can be seen from Table 5 that significant differences can

occur from the use of different filtering schemes, most notably in the

central region where the solution approaches zero. The question that

arises, however, is the extent to which filtering affects the numeric

values. Table 6 presents concentration values with no filtering and

filtering schemes I and II at increment seven. It can be seen there are

noticeable differences between the results of the two methods. Note the

oscillations present without filtering, these oscillations occur due to

the presence of the discontinuity at the boundary and increase at each

time step leading ultimately to numeric instability.

External Separated Flows

One of the original goals of this research was the application of

pseudospectral methods to external separated flows, notably flow about a

pitched flat plate. Although this problem is extremely difficult, it is

nevertheless instructive. Therefore, consider the two dimensional

incompressible Navier-Stokes equation for flow past a pitched flat plate

expressed in terms of the stream function
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it**
+ % h - *x h™ =^ (64)

The transient response of the flow to a periodic forcing function is the

ultimate goal, but the first step is to consider the steady state

solution. A Fourier spectral solution for the steady state form of

equation (64) was presented by Mei and Plotkin [1984] for confined

laminar wakes. The use of the Fourier spectral method by Mei and

Plotkin was made possible by imposition of periodic boundary conditions.

As a preliminary step, the Falkner-Skan equation was used to

estimate the accuracy of the pseudospectral approximation for separated

flow present on a divergent wall. Based upon a fourth order Runge-Kutta

solution of the Falkner-Skan equation {ft = -0.125)

f" + ff" + /8(l-f'
2

) = (65)

with boundary conditions

f = f '
= 0; rj =

f - l; r? = » (66)

a Chebyshev interpolation function was evaluated for 11, 21, and 41 term

representations. The evaluation was based on a comparison of the first

and second derivatives found using a pseudospectral evaluation and those

obtained by the Runge-Kutta method. The coefficients for the

pseudospectral approximation are obtained by Fourier transformation.

Three separate observations were made from these evaluations; 1) In one

trial the data used for the value of f(rj) at each collocation point was

rounded to three significant figures with N=20. This resulted in large

oscillations of the first derivative, as noted by Osher [1984] and Majda

et al. [1978]. 2) Increasing the number of collocation points from 11 to
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21 to 41 did not significantly affect the accuracy of the resulting

approximations. 3) The accuracy of a derivative decreased approximately

one order of magnitude for each increase in the order of differentation.

It should be noted however, that the decrease in accuracy of succeeding

derivatives may be due to slight errors introduced by the use of linear

Interpolation to evaluate point values for the pseudospectral

approximation. A compilation of these results is presented in Tables 7

and 8.

Based upon the above, it was decided to use a steady state stream

function-vorticity representation for the flow.

9x 3y 3y 3x " U\ 2
+

. 2
} (67 '

3x 3y

ax
2

ay

with the boundary conditions

° = - \H + H ] (68)

*(x,0) = Vr
x
(x,0) = * (x t 0) =0 -a < x < a (69)

*{x.tm) = *(*»,y) = ^free streaB (70)

(j(±»,y) = u(x,±a>) = (71)

2

u(x,0) =-|^~| -a<x<a (72)
ay

Then the stream function and vorticity can be approximated by:
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N

*(x,y ) = Z a
n
(x)T

n
(y ) (73)

n=0

N

o(x,
yi

) = Z a
n
(x)T

n ( yj ) (74)

This representation was chosen to make use of the increased accuracy of

pseudospectral approximations along the axis in which the greatest

amount of change will occur; Gottlieb et al. [1984a] note that a finite

difference representation is typically used along the vertical axis and

a pseudospectral representation along the horizontal axis. The solution

is split into an upper and lower region for above and below the plate

and having the numerical boundary conditions

(J (x,0) = <J (x,0) a < x < -a (75)

\fr

U
(x,0) = \|f (x,0) a < x < -a (76)

where the superscript u and 1 refer to the upper and lower regions

respectively.

The following computational scheme was then used to evaluate the

flow. The mesh nodes for the stream function were initialized using an

equation given by Lamb [1945] that had been corrected for the angle of

attack and transformed to Cartesian coordinates (Appendix A). The

vorticity was initialized at zero everywhere except on the plate where a

first order finite difference evaluation was performed based on methods

found in Roache [1972]

U(x,0) =
w

% + 0(An) (77)
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where An is the distance from the wall (w) to the mesh node normal to

the wall (w+1). The following steps were then followed in obtaining a

solution:

1) Determine the pseudospectral coefficients to the Chebyshev

polynomials at each (x,y.) combination.

2) Starting at the leading edge of the flow field evaluate the

derivatives with respect to y for that column.

3) Equation (67) is solved with respect to u for a finite difference

representation of the x derivative.

4) Equation (68) is solved with respect to ^ for a finite difference

representation of the x derivative.

5) Steps 3) and 4) are repeated for each value of u> and ^ in the

column.

6) Move to the next column and repeat steps 2) through 5).

7) Repeat for the second region.

8) Satisfy the numerical boundary conditions.

9) Continue steps 1) through 8) until convergence is achieved.

In order to estimate the accuracy of the above algorithm a central

finite difference algorithm for the stream function representation was

developed. The successive under relaxation algorithm was based on the

same boundary conditions as given by equations (69)-(70).

Both the finite difference and pseudospectral algorithms were

explosively unstable. The fact that both algorithms were unstable

suggests that improper boundary conditions are being applied. Either

boundary condition for the derivative of the stream function on the
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plate may cause problems. These boundary conditions have to be

satisfied since each represents a velocity component on the plate and

the Newtonian no-slip condition requires that velocity be zero at the

surface. Evaluating either condition with a forward finite difference

approximation implies that the entire region around the plate has \|f = 0.

As an aside, insufficient numerical boundary conditions were applied for

the pseudospectral approximation. The first and second derivatives for

both stream function and vorticity should have been equated across the

boundary

.
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Chapter IV. CONCLUSIONS

The objective of this work was to assess the suitability and

computational efficiency of the application of spectral methods to

problems in transport phenomena. This was accomplished by the

evaluation of representative problems from each major area of transport

phenomena; momentum, mass and heat transfer.

It was found that Chebyshev pseudospectral representations can

accurately evaluate derivatives of smooth functions with few expansion

terms. The reduction in the number of nodes at which a solution was

sought, along with the use of matrices to evaluate derivatives resulted

in significantly faster solution times than obtained with finite

difference representations of corresponding accuracy. The presence of a

discontinuity in the solution domain was found to be a serious problem

for a number of initial and boundary value problems. A discontinuity

affects the entire solution domain due to the global nature of

derivative evaluation. The effects of this problem can be removed by

the use of digital filtering; such filters were found to be quite

satisfactory in the removal of "noise" from the solution arising from a

discontinuity. Therefore, pseudospectral methods should be applicable

to many if not most problems of interest in transport phenomena.

There is need to develop criteria for the application of filters

to pseudospectral solutions, namely the type of filter that should be

applied and amount of filtering necessary to arrive at accurate results

for a given type of problem. Additionally, filters that retain the

"infinite" order accuracy of spectral methods are desirable. Finally,

for problems in which a discontinuity is present due to initial
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conditions, other methods for initializing the solution should be

investigated so that the discontinuity can be removed and the accuracy

of the pseudospectral method exploited. An example of alternative

initialization would be the use of a high order finite difference method

to remove the discontinuity and subsequent use of an accurate

interpolation technique to provide solution values for the

pseudospectral points.
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APPENDIX A

STREAMLINE EXPRESSION FOR A PITCHED FLAT PLATE

57



Lamb [1945] gives the following representation for the stream

function for flow past a flat plate pitched at angle of 45°

t = sinh£(cosn - sinn) (Al)

whose edges are located at x = ± c and where q is the free stream

velocity. This equation was derived from the relation describing fluid

motion relative to an elliptic cylinder

^ = - c J
v sinh^cosn - u sinh£sin£J (A2)

where u and v are the x and y components of velocity with respect to the

plate. Then \^ can be represented as

i/ = -c q cos8sinh?|tanecosn-sinrj| (A3)

where © is the angle of attack for the plate. Cartesian coordinates and

elliptic coordinates are related in the following fashion

x = ccosh(£)cos()7) (A4)

y = csinh(£)sin(n) (A5)

The following relation

2 2
x y

i

—

I—s—r = l (A6)

c cos r) c sin n

along with the definition of a point on a hyperbola and the relation of

sinh to cosh define the following relations for the stream function in

Cartesian coordinates

* = -q cose{ tane\A
2

- |( >/(c+x)
2
+y

2 '

- \/(c-x)
2
+y

2 '

)

2
-y } (A7)

for y>0, and

* = q cose{ taneyk
2

- \( v^c+x)
2
+y

2 '

- \Xc-x)
2
+y

2 '

)

2
-y

}
(A8)

for y<0.
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APPENDIX B

COMPUTER PROGRAMS
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The programs in this Appendix represent each section of Chapter

III. Two programs have been used for the evaluation of the derivative

matrix defined by equation (32) given N, where there are N+l terms in

the series expansion (0 to N). All programs, with the exception of

one, have been written in Basic due to the availability of interpative

and compiler versions of this language for microcomputers. The one

exception was written in Fortran. The programs should be self

explanatory with the remarks provided in each.
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C THE FOLLOWING PROGRAM EVALUATES MATRICES FOR THE
C DETERMINATION OF DERIVATIVE COEFFICENTS.

REAL A ( 33 , 33 ) , E ( 33 , 33
)

, C ( 33 , 33 ) , D ( 33 , 33

)

DATA A, E, C, D/ 10 89*0. , 10 89*0. , 1089*0. , 1089*0.

/

DATA L, M, N, IA, IE, IC/33, 33, 33, 33, 33, 33/
OFEN(l, FILE='C1. DAT' )

QPEN(2,FILE='C2.DAT'

)

C OPEN (3, FILE='C3. DAT'

)

C 0PEN(4,FILE='C4. DAT'
WEITEi*, 753)

753 FORMAT (
' N? '

)

READ U, 754 )N
754 FORMAT<I2)

INDEX =2
AINDEX=N-2
EINDEX=N-2
DO 10 1=1,

N

TI = I

DO 20 J=INDEX,N,

2

A (I, J)= 2. *(N-1. -B INDEX)
EINDEX=BINDEX - 2.

IF (J.EQ.N-1) GOTO 16
GOTO 20

16 IF (2*(I/2).NE. I) GOTO 15
20 CONTINUE
15 INDEX=INDEX+1

IF ( INDEX. GT.N) GOTO 26
EINDEX=AINDEX-TI

10 CONTINUE
26 CALL VMULFF(A, A, L, M, N, IA, IE, B, IC, IER)

CALL VMULFF(A,B,L, M,N,IA,IB,C,IC,IER)
CALL VMULFF(B,B, L, M, M, I A, IE, D, IC, IER

)

DO 30 1=1,

N

A(l, I)=A(1, I)/2,
E(l, I)=B(1, I)/2.
C(l, I)=C(1, I)/2.

30 D(l, I)=D(1, D/2.
DO 90 1=1,

N

DO 90 J = 1,N
WRITEd, 1000)A(I, J)
WRITE (2, 1000 )B( I, J)

C WRITE (3, 1000 )C ( I, J)
C WRITE (4, 1000 )D( I, J)

90 CONTINUE
1000 F0RMAT(F15. 2)

STOP
END
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i ' THE FOLLOWING PROGRAM DETERMINES THE MATRIX FOR THE
2 •' DIRECT EVALUATION OF DERIVATIVES FROM SOLUTION VALUES
10 CLS
15 FI#=3. 141592654*
16 N = 3

2

20 DIM 01(33, 33) , 02(33, 33) , Tl (33, 33) , T2(33, 33 5

21 DIM TT( 33, 33), TO (33, 33)
30 OPEN" I", 1, "CI. DAT"
40 OPEN" I", 2, "C2. DAT"
50 FOR 1=0 TO N
60 FOR J = TO N
70 INPUT#1,C1( I, J)
80 IMPUT#2, C2(I, J)
90 NEXT J
100 NEXT I

110 FOR 1=0 TO N

120 IF 1=0 OR I=N THEN 01=2 ELSE Cl=l
130 FOR J=0 TO N
140 IF J=0 OR J=N THEN C2=2 ELSE 02=1
150 TT(I,J)= 2*COS( I*J*PI#/N)/N/C1/C2
160 TC( J, I)=COS(I*J*PI#/N)
170 NEXT J
130 NEXT I

l'?0 FOR 1 = TO N

200 FOR J=0 TO N
210 Tl( I,J)=0: T2( I, J)=0
220 FOR K=0 TO N
230 Till, J)=T1( i, J) + Cl( I,K)*TT(K, J)
240 T2(I, J)=T2( I, J) + C2(I,K)#TT(K, J)
250 NEXT K
260 NEXT J
270 NEXT I

230 FOR 1=0 TO N
*290 FOR J = TO N
300 OKI, J)=0:C2( I, J)=0
310 FOR K=0 TO N
320 CKI, J)=C1(I, J) + TC(I,K)*T1(K, J)
330 C2(I,J)=C2(I,J) + TC(I, K)*T2(K, J)
340 NEXT K
350 NEXT J
360 NEXT I

370 0?EN"0",3, "G1N32. DAT"
380 OPEN"0", 4, "G2N32. DAT"
390 FOR 1=0 TO N
400 FOR J=0 TO N
410 ?RINT#3,C1(I, J)
420 NEXT -J

430 NEXT I

440 FOR 1=0 TO N
450 FOR J=0 TO N
460 FRINT#4, 02(1, J

)

470 NEXT J
43 NEXT I



490 CLOSE

1 ' The following program calculates the start-up velocity
2 ' profile in a circular tube using Chebyshev pseudo-
3 ' spectrai method.
10 CLS
20 DIM V(25),G1(25, 25),G2(25, 25) , VP ( 25

)
, V?P < 25

) ,FGLD(25)
30 N=24:PI=3. 1415926*
40 0PEN"I",1, "G1N24.DAT"
50 QFEN"I", 2, "G2N24.DAT"
60 FOE 1=0 TO N
70 FOE J=0 TO N
80 IN?UT#1, Gl( I, J)

90 INPUT#2.G2(I, T)

100 HEXT J
110 NEXT I

120 FOR JFK=1 TO 800
130 GOSUE 300
14 FOR 1=1 TO N/2
150 R=C0S(I*PI/N): IF R<. 00001 THEN R=. 00001
160 V(I)=V(I) + .000125* (4 + VP(I)/R + VPP(D)
170 NEXT I

180 FOR I=N/2 TO N

190 V(I)= V(N-I)
20 NEXT I

210 FOR 1=0 TO N/2
220 PRINT V( I)

230 NEXT I

240 NEXT JFK
250 LPRINT "N=24 UNSTEADY LAMINAR FLOW IN A CIRCULAR TUEE"
260 FOR 1=0 TO N/2
270 LPRINT I,COS(I*PI/N) , V(I)
2 80 NEXT I

290 STOP
300 FOR 1=1 TO N/2
310 VP(I)=0: VPP(I)=0
320 FOR u=l TO N
330 VP(I)=VF(I) + G1(I,J)#V(J)
340 VPP( I )=VFP ( I ) + G2( I, J)*V( J)
350 NEXT J

360 NEXT I

370 RETURN
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i The following program evaluates the transient
2 temperature profile of a wire electrically heated.
3 The Chebyshev pseudcspectrai method is used in this
4 ' program.
10 CLS . .

20 DEFINT I

30 DEFINT J
4 N = 24
50 DIM 7(60) , TFP(60

)
, A (60 >, AFP (60) , OLD (60)

60 DIM G2(25, 25)
70 0FEN"I\1, "G2N24.DA7"
SO FOR 1=0 70 N
90 FOH J=0 70 N
100 INPUT#1,G2(I, J)
110 NEXT J

120 NEXT I

130 H=.0001
140 PI =3. 1415926*
150 ALFHA=.

1

160 EETA=8.5317E-11
170 7M=i.95555E+12
180 70=281
190 FOH 1=0 70 N

200 7(1) =70
210 0LD( I )=167. 28
220 NEX7 I

230 LFRIII7 TIME*
240 FOR JFK=1 70 400
250 GOSUE 410
260 FOE 1=1 70 N/2
270 7EMF= ALPHA* 7PP( I) + EE7A*(7M - 7(1) -•4)

280 7(1)= 7(1) + H*(3*7EMF - 0LD(I))/2
290 0LD(I)=7EMF
300 NEX7 I

310 FOR 1=1 70 N/2
320 7(N-I)=7(I)
330 NEXT I

340 NEXT JFK
350 LFRINT TIME*
360 OF EN "O", 2, "NIRE5.DAT"
370 FOH 1=0 70 N/2
33 FRINT#2,C0S(I*PI/N)

f T( I), A*, C0S( ( I +N/2+1 ) *PI /N

)

,Td +N/2+1)
390 NEX7 I

400 370P
410 FOR 1=1 70 N/2
420 7FF(I)=0
430 FOR 1=0 70 N
440 7FP( I )=7?P ( I ) + 7( J) *G2( I, J)
450 NEX7 J

460 NEXT I

470 HE7URN
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1 The following program evaluates the classical Graetz
2 ' problem for ?e=l and He=l.
10 DEFDBL C

20 C L S

30 DIM C(25) ,C?(25), CP?<25>, COLD (25), GK25, 25)
40 DIM C10LD(25)

,
G2<25, 25) , CM (25)

50 PI = 3. 141592654#
60 OPEN "0", 3, "GEAETZ.DAT"
70 N=16
80 ALPHA=7.5
90 EETA=1
10 FE=1
110 H=. 00001
120 FOE 1=1 TO N-l: C(I)=1: NEXT I

130 OPEN" I" , 1, "G1N16. DAT
140 OPEN" I", 2, "G2N16. DAT
150 FOR 1=0 TO N

160 FOR J=0 TO N

170 INPUT#i,GKI, J)
180 NEXT J

190 NEXT I

200 FOR 1=0 TO N

210 FOR J=0 TO N
220 INPUT#2, G2< I, J)

230 NEXT J
240 NEXT I

250 '***##**##***########*##*###*#**#***#* #****#***#*#**#*
260 C(0)=0: C(N)=0
270 FOR JFK=1 TO 7501
280 GOSUE 650
290 FOR 1=1 TO N/2
300 - R=COS( I*PI/N)
310 IF I=N/2 THEN R=. 00005
320 TEMP= (CPP(I) + CP(I)/R)/(1 - E A 2)/PE
330 C(I)= C(I) H*(3*TEMP - C0LD(I))/2
340 COLD(I)=TEMP
350 NEXT I

360 FOR 1 = TO N/2: 'PRINT COS ( I*PI/N) , C ( I

)

370 C(N-I)=C(I)
380 CN(I)=C(I)
390 NEXT I

400 'IF JFK=20 THEN GOSUE 670
410 'IF JFK=30 THEN GOSUB 710
420 IF JFK=2500 OR JFK=5000 OR JFK=75O0 THEN GOSUE 610
430 IF JFK>7 THEN GOTO 580
440 CN ( N/2 + 1 ) =C (N/2-1 )

450 CN(N/2+2)=C (N/2-2)
460 C(l)= (11*CN(1) + CN(2))/12.25
470 FOR 1=2 TO N/2
480 R=COS ( I*FI/N)
490 RP1=C03( ( 1+1 ) *PI/N)
500 EF2=C0S( ( 1+2) *FI/N)
510 RM1=C0S( (I-1)*PI/N)



520 RM2=COS( (I-2)*PI/N)
530 . Xl= 2*<R -'HM1)/(RP1 - R)

540 X2=(RM2 - R)/(H - RF2)
550 Cm = (X2*CN(I-2)+Xl*CN(I-l.)+10*CN(I )+2#CN< 1 + 1!

+ CN( 1 + 2) )/'(13 + XI + X2)
560 NEXT I

570 FOR 1 = TO N/2: PRINT COS < I *P I /N) , C i I
) , CN ( I )

571 C(N-Ii=C(I)
575 NEXT I

58 NEXT JFK
59 CLOSE
60 STCF
610 FRINT#3,JFK
620 FOR 1 = TO N/2: ?RIMT#3, COS ( I *? I /N ) , C ( I ) : NEXT I

630 FEINT#3, "
"

640 RETURN
650 FOR 1=1 TO N/2
660 CF(I)=0
670 CPP(I)=0
68 FOR J=0 TO N
690 CF(I)=CF(I) + Gl( I, J)*C(J>
700 CFF( I)=CFF< I ) + G2(I, J)*C(J)
710 NEXT J
720 NEXT I

730 RETURN
740 FOR 1=0 TO N
750 C10LD< I)=COLD( I

)

760 NEXT I

770 RETURN
780 FOR 1=0 TO N

790 COLD (I )=C10LD( I

)

800 NEXT I

810 H=. 00005
820 RETURN
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1 ' THE FOLLOWING PROGHAM EVALUATES THE DIFFUSIVITY IN A
2 ' POROUS PLANAR SLA3. THE FIRST AND SECOND DERIVATIVE
3 ' ARE FILTERED WITH A DIGITAL FILTER.
10 DEFINT I

20 DEFINT J
30 CLS
40 DIM C(33), CP(33) ,CFP(33), C0LD(33) ,01(33,33)
50 DIM C10LD(33), 02(33, 33) , CN(33)
60 PI=3. i4I592654#
70 N=24
SO A=i. 443935
90 B=-7. 373196
100 CA=16. 15581
110 D=-7.9731B4
120 H=2
130 OPEN" I

" , 1, "G1N24. DAT
140 OPEN" I", 2, "G2H24.DAT
150 FOR 1=0 TO N
160 FOR J = TO M
170 INPUT#1,G1(I, J)

180 NEXT J
190 NEXT I

200 FOR 1=0 TO N
210 FOR J = TO N

220 IHPUT#2, G2( I, J)
230 NEXT J

240 NEXT I

250 '*********#****#***#****##*#***********#*******###*•***
260 FOR 1=1 TO N-l:C( I)=l: NEXT I

270 FOR JFK = 1 TO 500
280 GOSUE 670
290 FOR 1=1 TO N/2
300 DAE= (A + E*C(I) + CA*C(I) A 2 + D«C < I

)

A3 J *. 00001
310 DAEX= (E + 2*CA*C(I) + 3*D*C ( I

)

A 2 ) * . 00001
320 TEMP= DAEX*CP(I) A 2 + DAE*CPP(I)
330 C(I)= C(I) + H*(3*TEMF - COLD(I))/2
340 COLD(I)=TEM?
350 NEXT I

360 FOR 1=0 TO N/2: 'PRINT COS ( X*PI/N) , C ( X

)

370 IF C(I)>1 THEN CHK = 2
380 IF CHK = 2 THEN C(I)=1
390 PRINT COS( I*PI/N) , C( I )

40 C(N-I)=C(I)
410 CN(I)=C(I)
420 NEXT I

430 CHK = 1

440 'IF JFK=98 THEM GOSUE 670
450 'IF JFK=100 THEN GOSUE 710
460 IF 20*CINT( JFK/20 )0 JFK THEN GOTO 620
470 IF JFK>0 GOTO 620
48 CH( N/2+1 )=C( N/2- i)
490 CN( N/2+2) =C (N/2-2)
500 C(l)= (.25 + 11*CM(1! + CN(2))/12.25



510 FDR 1=2 TO N/2
520 R=C03(I*PI/N)

530 RP1=C03( ( I+1)*PI/N)
540 R?2=C03( (I+2)*PI/N>
550 RH1=CQ3< i I-1)*FI/N)
560 RM2=C03(

(

I-2)*?I/N>
570 XI= 2*(R - RM1)/(RF1 - R)

530 X2= (HM2 - R)/(R - RP2)
590 C(I )= (X2*CNCI-2)+Xl*CN(I-l)+10*CN(I)+2*CN(I + l)

+ CN(I+2) )/(13 + XI + X2)
60 NEXT I

610 FOR 1=0 TO N/26
611 PRINT C03( I*?I/N), C( I), CH( I)

612 C(N-I)=C(I)
613 NEXT I

620 NEXT JFK
630 0FEN"0",3, "5LAESH. DAT"
640 FOR 1=0 TO N/2: PRINT#3, COS ( I *P I /N ) , C ( I ) : NEXT I

650 CLOSE
660 STOP
670 FOR 1=1 TO N/2
680 C?(I)=0
690 C?F(I)=0
700 FOR J=0 TO N
710 CF(I)=C?(I> + GKX, J)*C(J)
720 C?P(I)=CP?(I) + G2(I,J)*C(J>
730 NEXT J
740 'IF AES(CPP(I)/CFP(1) X. 01 THEN CPP(I)=0
750 'IF AES(CP( I)/CP(1) )•;:. 01 THEN CF(I)=0
760 NEXT I

770 IF JFK>250 THEN RETURN
730 FOR 1=0 TO N/2: CN ( I ) =CP ( I ) : NEXT I

790 CF(1)= (14*CN(1) + CN(2))/15
3-00 FOR 1 = 2 TO N/2-2
810 R=COS( I*FI/N)
820 RP1=C0S( ( I+1)*PI/N)
830 RF2=C08( (I+2)*PI/N)
340 RM1=C0S( (I-1)*PI/N)
850 RH2=COS( (I-2)*?I/N)
360 Xl= 2*(R - HM1)/(RP1 - R)
870 X2= (HM2 - R)/(R - RP2)
880 CP(I)= (X2*CN( I-2)+Xl#CN(I-l)+13*CN(I)+2*CN( 1+1)

+ CN( 1+2) )/( 16+X1+X2)
890 NEXT I

900 FOR 1=0 TO N/2: CN( I ) =CP?( I ): NEXT i

910 CP?(1)= <14*CN(1) + CN<2))/15
920 FOR 1=2 TO N/2-2
930 R=COS(I*PI/N)
940 RP1=C0S( (I+1)#PI/N)
950 RP2=COS ( ( 1+2) *?I/N)
960 RN1=C0S £

(

I-1)#PI/N)
970 RM2=COS( (I-2)*?I/N5

6 3



980 Xi= 2*<R - EM1)/(R?1 - R)
990 X2= (RM2 - R)/(R - RP2)
10 00 CFPm = (X2*CN(I-2)+Xl*CN(I-l)+13*CN<I5+2*CN( 1 + 1)

+ CN( 1+2) )/<16+Xl+X2)

1010 NEXT I

10 20 RETURN

1 The following program evaluates the transient concen-
2 ' tration profile within a spherical nodule in which
3 ' diffusion and reaction is occuring simultaneously.
4 ' The reaction kinetics considered are those proposed
5 by Michaeiis-Menton for enzymes.
10 CLS
20 DIM C(25),C?(25), CP?(25), C0LD(25>, G1C25, 25)
30 DIM CN(25),G2(25, 25), C1QLD(25)
40 PI=3. 141592654*
50 H=16
60 AL?HA=7.5
70 EETA=i
30 H = . 00001
90 OPEN" I" , 1, "G1N16. DAT
100 OPEN" I" ,2, "G2N16.DAT
110 FOR 1=0 TO N

120 FOR J=0 TO N
130 INFUT*1,G1(X, J)
140 NEXT J

150 NEXT I

160 FOR 1=0 TO N
170 FOR J=0 TO N

130 INPUT#2, G2< I, .J)

19 NEXT J
200 NEXT I

220 C(0)=l:C(N)=l
230 FOR JFK=1 TO 277
240 GOSUE 530
250 FOR 1=1 TO N/2
260 R=CQS(I*FI/N)
270 IF I=N/2 THEM R=. 00005
280 TEMP=CPP(I )+2*CP(I )/R-AL?HA#C( I)/(BETA+C( I)

)

290 C(I)= C(I) + H*(3*TEMP - CQLD(I))/2
300 -COLD(I)=TEMP
310 NEXT I

320 FOR 1 = TO N/2: PRINT COS ( I *P I/N
)

, C ( I )

330 C(N-Z)*C(Z)
340 CN(I)=C(I)
350 NEXT I

360 IF JFK=20 THEM GOSUE 670

370 IF JFK=30 THEN GOSUE 710
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330 IF 7*CINT(JFK/7)=JFK THEN GOTO 331 ELSE GOTO 530
331 IF JFKM4 GOTO 530
385 I!;DEX =

390 CN(N/2+l)=C< N/2-1)
400 CH(N/2+2) =C (N/2-2)
410 C(l)= (.25 + 11#CN(1) + CN(2))/12.25
420 FOE 1=2 TO N/2
430 R»CQS(I*PI/N)
440 RP1=C0S( (1+1) *PI/N)
450 EP2=COS ( ( 1+2) *PI/N)
460 RM1=C0S( < I-i)*PI/N)
470 RM2=C0S( <I-2)*PI/N)
480 Xi = 2*(R - RM1)/(R?1 - E)
490 X2= (RM2 - E)/(E - RF2)
500 C( I)=(X2*CN( I-2)+Xl*CN(I-l)+10*CN(I >+2*CN( 1+1)

+ CN< 1+2) i/(13+Xl+X2i
505 IF CdKO THEN INDEX=1
510 NEXT I

5i5 IF INDEX=1 THEN GOTO 320
520 FOR 1=0 TO N/2
521 PRINT COS( I*PI/N) , C(I),CN( I)
522 C(N-I)=C(I)
5i5 IitAi I

530 NEXT JFK
540 0?EN !, 0",3, "NODP.DAT"
550 FOR 1 = TO N/2: FRINT#3, COS ( I *P I/N ) , C C I ) : NEXT I

560 CLOSE
570 STOP
580 FOR 1=1 TO N/2
590 CP(I)=0
60 C??(I)=0
610 FOR J=0 TO N
620 CP(I)=C?( I) + Gl( I, J)*C( J)
630 CPP( I ) =CPP( I ) + G2( I, J)*C(J)
640 NEXT J

650 NEXT I

660 RETURN
670 FOR 1=0 TO N
680 C10LD( I )=COLD( I)

690 NEXT I

70 RETURN
710 FOR 1=0 TO N
720 COLD(I)=C10LD( I)

730 NEXT I

740 H=.00 01
750 RETURN
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1' THE FOLLOWING PROGRAM ATTEMPTS TO CALCULATE FLOW PAST A
2' PITCHED FLAT PLATE.
10 CL3
20 DIM PC42, 26) , ?X(42, 26) , FY(42, 26) , FXX(42, 26) , ?7Y (42, 26)
30 DIM ?XXX(42, 26),PYYY(42, 26

)
, PXXY Y ( 42, 26), PXXY(42, 26)

40 DIM PYYT(42) ,?YYYT(42), ?YYX(42, 26)
50 'OPEN" I", #1, "FPLATE.DAT"
60 IMFUT "NUMBER OF ITERATIONS "; HUM
70 'FOR 1=1 TO 42
80 'FOR J = l TO 26
90 'INFUT#1,P(I, J)

|

10 'NEXT J : NEXT I

110 'CLOSEtl
120 HUM =mJM-l
130 CLS
140 MIT = 0: H = . 6666667: VIS = . 17
150 'GOTO 410
160 '******** INTIALIZE NODAL- POINT ************************
170 FOR 1=1 TO 42
180 FOR J=l TO 26
190 P(I,J)= -1.5625*1 + 3.125*J - 3.90625
200 IF J>9 THEN P ( T, J ) =-1. 5625* I +3. 125*J + 3.90625
210 NEXT Jl NEXT I

220 '******* INTIALIZE POINTS ON THE FLATE *****************
230 J = 9

240 FOR 1=11 TO 26
250 P(I,J)=0:PY(I,J)=0:?X(I,J)=0
260 NEXT I

270 '***** AVERAGE THE VALUES OF THE STREAM FUNCTION ON ft***

280 '*********** THE RIGHT AND LEFT BOUNDEIES **************
290 FOR 1=1 TO 42 STEP 41
300 FOR J=3 TO 24
310 P( I, J)=(?( I,.J-i) +P( I, J) +?( I, J + l) )/3
320 NEXT J : NEXT I

330 FOR 1=2 TO 10
340 FOR j=3 TO 24
350 P(I, J)=(P(I, J-2)+P(I, J)+P(I, J-1)+?(I, J+1)+P(I, J+2) )/5
360 P ( 1 + 25, J) = (P ( 1 + 25, J-2)+P ( 1 + 25, J) +P( 1 + 25, J-l)

+P( 1+25, J+l) +P( 1+25, J+2) )/5
370 NEXT J
38 NEXT I

390 FOR 1= 16 TO 26
400 P(Ii-2,7).= P(I + 2,7)/3-
410 ? ( I, 8) = P( I, 8 )/12
420 'P( I, 10)=P(I, 10)/12
430 'P(I + 2,11)= P(I+2, 11) *(29-I )/12
440 NEXT I

450 FOR 1=27 TO 32
460 P(I,S)= F(I,3)*(I-26)/12
470 ?(I,9)= P( I, ?) *( 1-26) /12
480 ?(I,7)= P( I, 10) *( 1-26) /3
49 NEXT I

500 FOR K=5 TO 19



510 PRINT USING"###. ### "; ?(20, 23-K)

,

Fi2i, 23-K), P<22, 23-K)
, P(23, 23-K), F (24, 23-K), P(25, 23- K),P C 26, 23-K

>
, p ( 27, 23-K

)

, ? ( 23, 23-K)
w i. iJtAl t'.

530 F03 1=3 TO 40
540 FOE 7=3 TO 24
550 '**** CALCULATE THE 1st, 2nd, Si 3rd DERIVATIVES *******
560 I? J= 9 AND I>10 AND K27 THEN GOTO 590
570 PX(I,.J)= (P(I+1,J) - P(I-1, J) J/2/H
580 FY(I,J)= (P(I,J+1) - P(I, J-l) )/2/H
590 PXX(I,J)= <P(I+i,J) - 2*P(I,J) + ?(I-1, J) )/H A

2

60 PXXXJ I,J)=(P(I+2,J)-2*P(I+l,J)+2*F(I-i,J)
-?( 1-2, J) >/2/H A 3

610 IF j= 9 AND 1)10 AND K27 THEN GOTO 710
620 FYYCI,J)= (PiI.J+1) - 2*F(I,J) + ?(I, J-l) )/H A

2

630 IF J = S AND I? 11 AND K26 THEM GOTO 670
640 IF J = i0 AND I; 11 AND K26 THEN GOTO 690
650 FYYY( I, J) = (P (I, J+2)~2*?( I , J + l ) +2*? ( I , J-l)

-?( I, J-2) )/2/H A 3
660 GOTO 750
670 PYYY(I,J)= ( P( I, J+1)-3*P(I, J)+3*P(I, J-l>-P« I, J-2) ) /H A 3
68 GOTO 750
690 PYYYd, J)= ( -P( I, J-1)+3*P( I, J)-3*P(I, J + l)+P( I, J+2) )/H''3
700 GOTO 750
710 PYYT(I) = (P( I, J + 2) - 2*P(I,J + 1) + P(I,J))/H A 2

720 FYYYT(I)= (-F(I,J)+ 3*P ! I , J+l ) -3*P ( I, J + 2 ) +F ( I , J + 3 ) ) /H''3
730 PYY(I

f
J)=(?( I, J-2) - 2*P(I,J-1) + P(I,J))/H A 2

PYYYf I, J)= (P( I, J)- 3*? (I, J-1)+3*P(I, J-2)-P( I, J-3) ) /H A 3
NEXT J
NEXT I

'***********#** CALULATE THE CROSS DERIVATIVES ******
FOR 1=3 TO 40
FOR J=3 TO 24
IF J= 9 AND I>10 AND K27 THEN GOTO 850
IF J=10 THEN GCSUB 1300
PXXYd, J)= (PXX( I, J+1)-FXX(I, J-l) )/2/H
PYYX(I,J)= (PYY(I+1,J)-FYY(I-1,J) J/2/H
PXXYY( I, J)= (PXX( I, J + 1)-2*PXX( I, J)+?XX( I, J-l) )/H A

2

NEXT J

NEXT I

'****»**** ITERATIVE EQUATION FOR PSI **************
FOE J=3 TO 24
FOR 1=3 TO 40
IF J= 9 AMD I>10 AND K27 THEN GOTO 10 80
A=(PY(I, J)*(PYYX(I, J)+PXXX(I, J) )-PX(I, J)*(PYYY( I, J)

+PXXY( I, J) ) )*H A 4/12/VIS
B=-H A 4*PXXYY(I, J)/6
IF J= 8 AND I>11 AND IC26 THEM GOTO 980
IF J = 10 AND I>11 AND K26 THEN 1030

C=-. 3333* (?( I-2,J)+?(I,J-2)+P(I+2,J)+F(I,J+2))
D=. 3333* (P( I-1,J)+?(I,J-1)+P(I+1,J!+P(I,J+1))
GOTO 1070
A= A*12/7

740
750
760
770
78
790
800
810
8 20
830
840
850
860
370
880
390
90
910

9 20
930
940
950
960
970
980



?90 E= B*12/7
1000 C = -;F(I,J-4! + Fil-Z'.J) + P(I+2,J))/7
1010.3= •+*(?( 1-1, J) + P(I + 1,.J) + P(I,,J-I) +?( i, j-3) )/?

- b * P i I , J - 2 )
/' 7

10 20 GOTO 1070
1030 A = A*12/7
1040 B = B*12/7
1050 C= -<F(I,J" + 4) + F(I-2,J) + P(I+2,J))/7
1060 D= 4#(P(I-l

f
J) + P(I+1,J) f Pd.J + l) +P(I,J+3))/7

- 6*P(I,J+2)/7
1070 P(

I

r J)=(A+B+C+D+90*P( I, J) )/100
10 8 NEXT I

1090 NEXT J

1100 J=2
1110 FOP 1=2 TO 41
1120 P(I, J)=(F(I, J-l)+P( I, J+l) )/2
1130 NEXT I

'1140 J=J>23
.1150 IF J>26 THEN 1160 ELSE 1110
1160 NIT=NIT+1
1170 IF NIT>NUM THEN 1180 ELSE 530
1180 FOR K = 5 TO 19
1190 PRINT USING"####. ### " ; P < 20, 23-K

)
, P ( 21, 23-K

)
, P ( 22, 23-K

)

, ?(23, 23-K) , F(24, 23-K) ,P(25, 23-K) ,P(26, 23-K) , P ( 27, 23-K)
, P (28, 23-K)

1200 'LFRINT USING "##.### " ; F ( 5, 17-K) , P ( 6, 17-K ) , P ( 7,17-K)
,?(8, 17-K),P(9, 17-K), P( 10, 17-K), P ( 11, 17-K

)
, P ( 12, 17-K)

,P(13, 17-K),F(14, 17-K),? (15, 17-K)
1210 NEXT K

1220 OFEN"0", #1, "FPLATE. DAT"
1230 FOR 1=1 TO 42
1240 FOR J=l TO 26
1250 FRINT#i,P(I, J)

1260 NEXT J
1270 NEXT I

1280 CLOSE
1290 END
1300 FOR L=ll TO 26
1310 PYY(L, 9)=PYYT(L)
1320 ?YYY(L, 9)=FYYYT(L)
1330 NEXT L
1340 RETURN

/j
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ABSTRACT

The objective of this work was the evaluation of pseudospectral

methods for their computational efficiency and applicablity to problems

in transport phenomena. This was accomplished by application of

Chebyshev pseudospectral methods to problems from each major area of

transport phenomena. The evaluation of the pseudospectral method was

based upon comparison to the analytic solution, if available, or finite

difference approximation otherwise. It was found that discontinuities

in the solution domain can result in serious deviations from the correct

solution; for example, the temperature discontinuity in thermal

entrance length problems led to the propagation of error within the

solution. Digital filtering was used successfully to damp out

oscillatory behavior in all cases studied.


