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IKTRODUCTIOH

Bessel Functions are named after a German mathematician and astronomer

who lived from 1784 to I846, A Bessel Fxinction is the na;ae given to a func-

tion that is a solution of Bessel'a equation. He was not the first one to

use these functions but he was the first to give a systeaatic development of

their properties and sonse tables for the functions of lowest order. Functions

of the xero order had been used as early as 1732 by Daniel Bernoulli and I764

by L, Suler.

Bessel Functions are used to solve boundary value problems in heat,

electricity, hydrodynamics, elasticity, and vibration. Th^ are especially

applicable to problems involving cylindrical coordinates.

It has been the purpose of this paper to solve a few particular problems

involving Bessel Functions and to collect soma solutions of problems previous-

ly solved.
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DSRIVATICN OP A BESSSL FUNCnON

Any solution of the differential equation

(x2 - n^)/- 0,

knoim as Bessel's equation, is called a Bessel function. It will be shorn

later how this equation arises in the process of obtaining solutions of cer-

tain differential equations written in cylindrical coordinates.

A particular solution of Bessel's equation can always be found in the

form of a powers series multiplied by xP, where p is not necessarily an

integer, such as

y - xP 21 a .xJ ,
a^ / 0, or

(1) y - Yl^^^^^'

Differentiate termwise twice

dx j-o

^ - £ a^ (P*J) (P*j-1) xP*>2
^

Substitute in equation (l)

j-o
21 [x\ (P*j) (P*>1) xP*>2 + xa (p*j; xP*>l 4 (x2 - n2) a^P*j] - 0.

which may be written

(2) H [(p*j) (P*J-1) + (P*J) (x2 - n2)] a^xP^J - 0.

J-o



Divide through by xP and ejqpand the first tito terms of the series

(p2 - n2) aQ + aQx2 + [(p * 1)2 - n^] aj^x^aj^x3 =0.

Collect like powers of x. Equation (2) then becomes

(3) (p2-n2}a^^ C(p*i;2-n2] a^x £ |(p*j)2-n2]a.x'J+aj.2xj] -0.
o X ^ J

Since this is to be an identity in x, the coefficients of each power of

X aust ranish. The constant term vanishes if p - -n. The second term van-

ishes if a^^ - 0, and the coefficients of all the succeeding terms vanish if

a recursion formula, giving each coefficient in teras of some preceding term.

Letting p " n, the formula becomes

(4) J(2n + j) aj - -aj_2*

Since a.^ nnist be zero, it follows that

(5) a^ - a^ -
»2k-l

* ° • 1, 2, 3, )•

Replace j by 2j in (4)

-1
*2j • "Z *2j-2 •

2^j (n*J)

Replace j by j-1

-1
"2j-4

so that

(-1)2 ^

2^j(j-l) (n+j) (n*j-l)

Cwitinuing in this manner, it can be shown that

(-1)*^
*2j-2k
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so that when k we have the forBul& for in terms of

i-l)^ a,

"2j 22Jji (n+j) (n+j-1) (n+1)
(6) a,, - -rr; ' ^ (J - 1. 2, ).

Since was left as an arbitraiy constant, assign it the following

value:
^

a„
2°r(n*l)

Then (6) may be written

*2j

The function represented by equation (1) with the coefficients (5) and

(6) is called a Bessel function of the first kind of order n.

(-l)J

(7)

OafBRAL SOLUTIONS

Bessel* s equation arises in the process of solving the following partial

differential equations.

I.

II.

III.

a2u 1 au
^

1 P2u
^
a2u

^

r Sr r^a^' a.2'

1 1 a^u ^a^u 1 au
^

r ^r I'd? 'az^ k at

d\ 1 au 1 a^u

r dr r2 a^2
*
a.2 k2 9t2



5

Cas* I

To solve Laplace's equation

(1) afu ^ 1 £u
^ ]^ afu ^ afu

- 0,

let u - R(r) 2(z), where R is a function of r alone, B is a function of

3u 3u
li alone, arri Z ia a fiawtiwi of % alone. Then rr- • R»tDZ, -r- - RffiZ', etc.,

where the prime daiotes the ordinaT7 derivative with respect to the only

independent variable involved in the function, (l) can then be written

(2) R^fflZ i R'I'Z + i- Rfli"Z RJDZ" - .

Transposing the last terra and dividing by RiDZ, (2) beconies

, , R" 1 R' 1 ID" Z"
(3) + + — •

R r R r2 ffl Z

Since the mamber on the right is a function of z alone, it cannot vary

To solve (5) transpose the ri.^t msAter and the third tern of the left

r

with r and jJ, but it is equal to a function of r alone and ^ alone. There-

fore, it must be equal to a constant, say -X , so that

(4) Z» - A% - and

A solution of (4) is

(6) Z • A coah Xz B sinh As.

aeiBber and multiply by r^.

R»
+ r

R R ffi
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Following the same line of reasoning as before, since the right raember is a

function of it alone, it cannot raxy with r, etc. Therefore, let it equal the

constant Then

(7) iCH ^2j^ . 0;

(8) ^ — * ^ — * - - 0.

R R

A solution of (7) is

(9) ffi • C cos + D sin ji^.

Since u is a periodic function of ID with a period of 2if, let p n

(n 0, 1, 2, ). Then (9) becojues

(9a) ID - C cos nff D sin ni.

Multiply (8) by R: r2R" rR» {r^>^ - n2) R - 0.

This is Bessel's equation »d.th the parameter A and therefore

(10) R - J„ (At).

Case II

, , 1 1 ^2^ ^2^ 1
To solve (i; + + » - ,

J. ^j. 3^2 Y o%

let u - R(r) ^{i) Z(8) T(t) where R is a function of r alone, etc.

Then (l) can be written

(2) R"!DZT + - R'ffiZT +-5 KD^ZT + Rfl3Z"T - - RIDZT*.
r r2 k

Divide through by RBZT and equate to a constant, say

(3) T' + ko^T - and

(4) E.iSl.LE.E
R r R r2 » z
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A solution for (3) is

(5) T - Ae-^*^^ .

In (4) transpose the right aoBtter and the last term of the left laeniber

and equate to a constant Then,

R" 1 R« 1 II!" 2 Z"
-«- — — + — + «J « - — p*. Then,

R r R r^ ID Z

(6) Z" u^Z - and

R" 1 R» 1 ffi"

(7) — +oc2 - ,

R r R r2 CS

A solution for (6 J is

(8) Z - B cos pa C sin pu.

In (7) transpose the third terra, /nultiply by r^, and equate to a constant p^.

Then.

Hf R»— r —
R R B

1^— r — r^Coc-^ - ji'^) Then,

(9) IS" (9% « and

(10) r2 — r~ + r2(oc2 - ^2) _ p2 .

R R

A solution of (9) is

(11) ffi - D cos E sin but since u is a periodic function of ^

with a period of 27r, let|fl - n (n - 1, 2, 3, ). Then (11) becomes

(11a) ID « cos n^ • £ sin nd»

In (10) let (p«^ - « and multiply by R. It then beeosM

(12) r2R'' rR» + {t^)^ - n2)R . 0.

"Riis is Bessel's equation and therefore the solution is

(13) R - Jn(Ar).



Case III

To solve

(1) + + .

Let u - R(r) Z{%) T(t). Then (l) car. be written

11 1
(2) R''ffiZT - R'IDZT + — Bfll''ZT BiDZ"T = — HIDZT"

r r2 k2

Separate variables and equate to a constant as before.

Rtt 1 Ri 1 ffi" Z" 1 T" 2— + + — ^ — — «-oc , Then
R rR r^Qi Z k^T

(3) T" k^oc^T - and

, R" 1 R' 1 iC Z" 2
(4) — + + — oc'' » 0.

R r R r^ IS Z

A solution for (3) ia

(5) T - A co8«x;k t B sinock t.

Separate the variables in (4) and equate to a caistant.

—. + + + ixr " ]x , Then,

R r R r^ fl! Z

(6) Z" * ji^Z ' and

^ R" 1 R' 1 IJ» 5 5
(7) — + oc^ -

H"^
- 0.

R r R r^ ID

A solution for (6) is

(8) Z « C cos + D sin fxz.
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In (7) awltiply by r^, transpose the third term, and equate to a constant.

R R ffi

Then (9) ^^11 - and

(10) r2 — * r ~ + r2(oc2 _ p2) ^ ^2 .

R R

A solution of (9) !•

(11) B - E cos + F sin p^. Since u is a periodic function of ^

with a period of 2ir, we let ^ « n (n - 1, 2, 3, ). Then

(11a) iD 5 cos n^ F sin n«(.

In (10) aoltiply by R and let (oc2 - ji2) . )2, -men

(12) r^R" rR» (r^X^ - n2)R - 0.

This is Bessel's equation and therefore the solution is

(13) R = Jn(>^>-

PARTICUUR SOLUTIONS

Case I

» is the fundamental equation for: (1) Heat, steady state,

(2) potential, (3) elasticity, and (4) hydrodynaaiics. Since the saine dif-

ferential equation applies to each of these fields, it follows that a

solution of a particular problem in one field will also be a solution of a

problem with analagous boundary conditions of any of the other fields*

In a particular problem in heat a finite cylinder is given, with one

base kept at 0^, the convex surface is insulated and the temperature of the

other base is a function of Ute distance tro^m. the axis. The conditions

that must be fulfilled are:

KANSAS STATE COLLEGE LIBRARIES



(2) u (r,0) - 0, s r ^ a;

(3) ff;] - 0, S s S b;
J r-a

(A) u (r,b) - f(r).

Since the teiaperature is ayaunetric with respect to the % axis, - 0,

The general solution of (l) was previotjsly shown to be u « R(r) Z(2)

where

(5) Z = A cosh Aa B sinh Xz

(6) R - JJ/\r).

and R -
"^n^^)* since —-^ « 0, n - 0. Then

Applying condition (2) to equation (5) it becomes

A cosh B sinh 0-0. Since sinh - it leaves A cosh 0-0. To

satisfy this, A anist equal 0. Then

(7) Z - B sinhAz,

Applying condition (3) to equation (6) it becomes

(8) J'oCXa) - 0.

The only functions R(r) which will satisfy eqviation (3) are J'o(Xjr), where

Xj are the positive roots of equation (8).

The only particular solutions of u - R(r) Ziz) that will satisfy con-

ditions (1), (2), and (3) are

oo
(9) u (r,a) - AjJoC ainhA^z.

To satisfy condition (4) the coefficients A must be so chosen that



n

oo

(10) f{r) - JZ ^i^(A,r) BlnhX.b.

According to thm Pourlsr - Besscl expansion, this Is tru« if

(11) A, iilL j rf(r) ( ^jr) dr,

•hore Aj, (j • 1, 2, 3, - - - ), ar« the positive roots of

(12) XaJ»^(Aa) hJ„(Aa) - 0.

The conditions on ^ were given In equation (S). This Is a special case

of equatioQ (12) i^ere h • n * 0. Iherefore,

(13) Aj . — / r f(r) J^CAjr) dr.
^ sinh(Ajb) a2[j^(Aja)]2

^

However, in the special ease where h • n • 0, is to be taken as aero and

the first tens of the series is

• i / r f(r) dr.

sinh(A^b)

The soltttl<m can then be written

2
(U) tt (r,«) / r f(r) dr *

a2 oinh(Aj_b)

^ 2 slnh (A.a)

>2 , .V , / r f(r) J^( AjD dr.
a2 J^( Xja) 2 alnh( )^b)

The convex surface and one base of a cylinder of radius a and length b

are kept at constant te:i^ratura seroj the te:?remture cf each point of the

other base is a given function of the distance of the point froasi the center

of the base. The solution of the foliowin,. dlff«»r^tJ al equation with the
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boundary conditions will give the tonperature of ar\y point of the cylinder

after permanent temperatures have been established.

(1) + + 0;

dr^ r dr

(2i u (r 0) - 0, i r - a ;

(3) u (a, z) - 0, - z < b;

(4) u (r, b) - f(r), < r ^ a.

solution Is

oo sinh (X*z)

>1 sinh ( ^jb)
°

2 /

where A. - / r f(r) J ( kr) dr.

Let the potential on the surface of a hollow cylindrical ring at,

r " a, and at both bases, z o and z « c, be kept at zero and on the inside

at r - b let it be a function of the height z onlj , The solution of the

following differential equation with the boundaiy conditions will give the

potential inside the hollow cgrlindrical ring.

ar2
*

7 ^r
*

r2 a,rf2

'
3^2

'

(2) T (a, 4, %) - f(«);

(3) (b, 4, z) - 0,

(4) V (r, 4, 0) - 0;

(5) T (r, 4, c) - 0.

The solution is

a > b;
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cos
sin

PC?

H
k-l

where A

Case II

1 <9u
is the fundamental variable state heat equation.

k dt

Let the convex surface of a finite cylinder ?4th insulated bases be

kept at fceaperature aero and the initial temperature a function of Uie dis-

tance from the axis only. Since the function is independent of ^ and z,

the heat equation and the ooundary equations are:

(1) iji + - lil (0 < r <c, t >o);
r ar k dt

(2) u (c,t) - 0, (t >0);

(3) u (r.O) - f(r), (0 < r <c).

The general solution of (l) was previously shown to be u • R(r) T(t)

(4) R • r) and

(5) T - A e*^^^.

Since 0, n - 0. Therefore (4) becojats

(4a) R - J^ihr),



Applying condition (2) on (4a) it becomes

(6) Jo(Ac) - 0.

This will satisfy the condition if in Jq( Ajr) , X- are the positive

roots of equation (6),

EquaticHis (1) and {2) will be satisfied if

(7; u(r.t) - C Vo^¥^
j-1

To satisfy condition (3) the coefficients Aj nust be detsmined so that

00

(8) f(r) - H A J (A^r),
j-1

According to the Fourier-Bessel expansion, this is true if

(9) A. . — / r f(r) J (A.r) dr.

c2[j3^(AjC)]2>o
^

The solution can then be written

(10) u (r,t) - L ^ ^""l , e-^^^ / r f(r) J^(Xr) dr.

Let the surface of an infinite cylinder of radius c undergo heat trans-

fer into surrotindings kept at temperature zero, according to Newton's law.

The solution of the following differential equation with the boundary con-

ditions will give the temperature at a given point in the cylinder at a

given time.

r-T — » (0<r<c. t>0);
dr^ T dr kot

c ^^i-j^ - - hu (c.t), (t > 0);

u (r,0) - f(r), (0< r < c).
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The solution Is

u (r,t) . A,J ( V)
j-1

°

2 X?

wh«re i / r J„( A,r) f(r) dr.

(>^cW)[j(\c)]2
^

Case III

2 XV u • —— is the fimdamental vibration equation.
k2 5t2

X.«t a mexifcrane be stretched orer a fixed circular franM r • c in the

plane • • 0, with an initial dis placeiaont of z - f(r,)^). The diaplacement

of the jaenibrane will be found as the continuous solution of the following

differential equation with the given boundaiy conditions.

(1) ^ + i25*L^.L£fi-

(2) h]' 0, (Oi ri c, -Tr<,i( itT);

^^J t-0

(3) z(c,(i{,t) - 0, (-Tr< ^ ^TT, t > 0);

(4) z(r>,0) . f(r,^{), (0 - r - c, -IT < iz(
^ TT).

The general solution to equation (l) was previously shown to be

z - R(r) H^) T(t) where

(5) R - Jn(Ar),

(6) ffi A cos n^+B sin n^ and

(7) T - C cos Akt-iD sin Akt.

Differentiating (7) and applying condition (2), it beeooes
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_H - - AkC sin Akt + AkD cos Akt. Letting t - 0,

at

« - AkC sin XkO + AkD cos XkO, To satisfy this, D anist be aero. Therefore

(8) T - C cos Akt.

Applying condition (3) to (5) determines that the roots of (5) will have

to be any of the pofsitivo roots A^j of the equation

(9) J^CAc) - 0.

All the conditions except (4) will then be satisfied by the following

equation;

(10) z(r,^,t) - 2 H ^n^Kxi""^ ^^ij
^

n«o j"l

This last condition will be satisfied provided A^j and B^j are such that

n-o j"l

According to the Fourier-Bessel expansion, these are:

(11) A„, - ! / r JAX..r)dT jr{T,^) cos d*f,

(n - 1, 2, ),

'-n+l 'nj -I

The required solution is equation (1) with coefficients (11), (12),

and (13).
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CONCLUSIOll

The main results of this paper are the solution of particular problenis

given in Case I, Case II, a«i Case III. By the proper substitutions in these

equations the solution of certain types of problems in vibration, elasticity,

heat, electricity, and hydrodynairdcs ioay be fo\md.

Indebtedness is acknowledged to Dr. G. C. Munro and Dr. D, T. Sigley,

snjor instructors, for directing this study.
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