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ABSTRACT 

Two peptides derived from the C1B domain of protein kinase C (PKC)  were shown to 

associate with classical PKC isozymes and modulate their activities. These C1B peptides 

are designated C1B1 (amino acid residues 101-112) and C1B5 (residues 141-151). Since 

PKC enzyme activity is shown to be involved in colon cancer development, the effect of 

C1B peptides on the growth of various human colon cancer cell lines was examined in 

vitro and in vivo. Sub-micromolar to micromolar levels of both C1B peptides induced 

approximately 60-70% growth attenuation in multiple colon cancer cell lines in a soft 

agar tumor colony assay; however, C1B5 peptide was not cytotoxic to normal colon 

epithelial cells in two dimensional culture. The effect of C1B5 peptide on colony growth 

of COLO205 cells was reversed by treatment with the PKC inhibitor, Ro-32-0432. 

C1B peptide treatment attenuated COLO205 cells via two mechanisms: 1) cell cycle 

arrest and 2) stimulation of apoptosis. This is evident in G2 arrest and increases in levels 

of cleaved caspase 3 and p53 phosphorylated at serine 20.  Intratumoral injection of C1B5 

peptide (20 mg/kg/day, every three days) markedly attenuated the growth of 

subcutaneous xenografts of COLO205 cells in SCID mice by 76% compared to the 

control. Taken together, these results strongly suggest that C1B peptides have negligible 

effects on normal tissues but are potentially effective chemotherapeutic agents for colon 

cancer. 

 

Key Words: C1B domein peptides, Protein kinase Cγ (PKCγ), PKCII, C1B domain, 

colon cancer, xenograft, COLO205 colon carcinoma cells, cancer therapy.  

 

Abbreviations: DAG, diacylglycerol; DMEM, Dulbecco's Modified Eagle Medium; 
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FBS, Fetal bovine serum; PKC, Protein kinase C; RIE-1, rat intestinal epithelial-1; TCF, 

a transcription factor in Wnt signaling  

 

Introduction 

  In the USA, colon cancer is the second leading cause of cancer mortality.  Of the 

estimated 102,900 new cases in 2010, 51,370 resulted in death.1 Recent research indicates 

that the causes of colon cancers are related to non-inherited factors or environmental 

factors, which can cause somatic mutations of specific genes such as RB1, p16, ras, or 

p53.2 However, few targeted molecular therapies have progressed to clinical trials for the 

treatment of colon cancer. Therefore, it is clear that novel treatment strategies are 

urgently needed. 

   Protein kinase C (PKC) is a family of serine/threonine kinases that plays a central role 

in cell proliferation, differentiation, and apoptosis.3-5 The PKC isozymes are divided into 

three subfamilies based on their structure and mode of action. The classic (or 

conventional) PKC subfamily includes α, βI, βII, and γ isozymes, which are activated by 

diacylglycerol (DAG) and phosphatidylserine in a calcium-dependent manner. The 

atypical PKCs (λ, ζ and ι) are activated by phosphatidylserine in a calcium-independent 

manner. The novel PKCs (δ, ε, θ and η) are activated by DAG and phosphatidylserine in a 

calcium-independent manner. Although PKCs have overlapping substrate specificities in 

vitro, they exhibit distinct patterns of tissue expression and intracellular localization. The 

structure of all PKCs is composed of an N-terminal regulatory region, which consists of a 

pseudosubstrate region and C1 and C2 domains (atypical PKCs lack the C2 domain), and 

a C-terminal catalytic region, which contains the C3 and C4 domains. The C1 domains in 

the conventional and novel PKCs are highly homologous and consist of a tandem repeat 
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of two cysteine-rich zinc-finger motifs (C1A, C1B). These subdomains are the binding 

sites for the PKC activator DAG and for its functional analogs, phorbol esters, which 

compete with DAG for the same binding site and can activate PKC.3, 6 

   Recently, Nguyen et al.7 demonstrated that synthetic C1B subdomain peptides C1B1 

and C1B5 bind to 14-3-3ε docking protein competitively, dissociate the docking protein 

and activate PKCγ. Since the C1B1 or C1B5 subdomain peptides potentially act as 

decoys and interact with multiple C1B domain-associated signaling proteins, they may 

affect cell proliferation, differentiation, and apoptosis through PKC regulation. However, 

the relationship between C1B subdomain peptide-dependent PKC regulation and 

carcinogenesis has not been rigorously studied.  

   The roles of the PKC family in cell growth, apoptosis, invasion, and differentiation are 

known to occur by transduction of mitogenic signaling pathways.8  The initial study 

showing that PKC is activated by phorbol esters suggested that PKCs are tumor 

promoters.3, 9 However, it has been reported that different PKC isozymes have distinct 

and sometimes opposing effects.10 For example, PKCδ expression has decreased 

azoxymethane-induced rat colon tumors and sporadic human colon tumors.11, 12 In 

addition, PKCδ activation in the human colon cancer cell line Caco-2 has been reported to 

induce differentiation and attenuate both anchorage-dependent and independent cell 

growth.13 In contrast to the observations suggesting that PKCδ attenuates tumor growth, 

studies suggest that PKCβII promotes tumor growth.  For example, PKCβII is 

progressively induced in azoxymethane-induced colon carcinogenesis in mice.14 Recent 

studies using transgenic mice over-expressing PKCβΙI show hyperproliferation of the 

colonic epithelium and high susceptibility to carcinogen-induced colon cancer.15, 16 These 

studies also revealed that PKCβII-dependent hyperproliferation of the colonic epithelium 
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is associated with reduction of glycogen synthase kinase 3β activity and increased 

β-catenin expression. These results indicate that PKCβII induces colonic epithelial 

hyperproliferation through activation of a PKCβII/β-catenin/T-cell factor (TCF; Wnt 

signaling) axis.15 In addition, inhibition of PKCβII-mediated hyperproliferation in the 

colonic epithelium by N-3 fatty acids has been shown to be associated with attenuated 

tumor growth.16 Therefore, PKCβII is suggested to be pro-oncogenic in colon 

tumorigenesis.   

   Due to the complexity of the relationship between PKC regulation and carcinogenesis, 

the present study was undertaken to determine whether synthetic C1B peptides regulate 

growth of human colon carcinoma cells. Here, we report that synthetic C1B peptide 

significantly attenuates the growth of human colon carcinoma cells in vitro and in vivo. 

Interestingly, C1B5 peptide was found to be associated with phosphorylation of PKCα/β 

II, which led to the induction of apoptosis of colon carcinoma cells. Expression of PKCγ 

in human colon carcinoma cell lines was negligible; hence C1B5 peptide-induced growth 

regulation of colon carcinoma cells seems independent from PKCγ activation. 

 

Results 

C1B peptides inhibit anchorage independent growth of colon cancer cell lines. 

Colony formation by COLO205 cells in soft agar was significantly inhibited by 

sub-micromolar to micromolar concentrations of C1B1 or C1B5 peptides (Fig. 1A-B).  

However, colony growth attenuation by C1B5 treatment was stronger than C1B1 

treatment at 0.1µM. Since nonspecific scrambled peptide did not affect colony formation 

(Fig.1A), C1B domain peptide-dependent attenuation of colony formation is suggested to 

be sequence-specific. We also tested the effect of C1B5 peptide on colony growth 
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attenuation in different colon carcinoma cell lines. As shown in Fig. 1D, C1B5 peptide at 

1μM significantly attenuated the colony formation of two other human colon carcinoma 

cell lines, SW620 and Caco-2. In contrast, micromolar concentrations of C1B5 peptide 

did not show significant effects on cell viability of either COLO205 or normal intestinal 

epithelial cells in standard two-dimensional (2D) cell culture (Fig. 2). 

  The C1B5 peptide-dependent inhibitory action was blocked by PKC inhibitor. 

As shown in Fig. 1, C1B5 treatment significantly attenuated the colony growth of 

COLO205 cells. Treatment with the Ca2+ dependent PKC isozyme inhibitor 

Ro-32-0432 alone did not show any effects on colony growth of COLO205 cells (Fig. 3).  

Interestingly, treatment with 1 µM Ro-32-0432 counteracted the inhibition of colony 

growth of COLO205 cells by C1B5 peptide (Fig. 3). Although the concentration of 

Ro-32-0432 used was high enough to inhibit other PKC isozymes, such as PKCγ and 

possibly PKCε, 17 but not various other kinases, 18 this result suggests that classical PKC 

plays an important role in colony growth attenuation by C1B5 treatment.  

  The C1B5 peptide induces G2 arrest of the cell cycle and apoptosis via 

phosphorylation of p53 at serine 20, which is followed by reduction of 

phosphorylation of PKCII. In an effort to investigate the mechanism by which 

C1B5 peptide treatment attenuates cell proliferation and viability of colon carcinoma 

cells, COLO205 cells were treated with 1µM C1B5 peptide for 72 hours and the cell 

cycle and apoptosis were analyzed by flow cytometry and Western blot analysis. As 

shown in Fig. 4, treatment with C1B5 significantly increased the G2 population (Figs. 4A 

and B) and the percentage of early- and late-stage apoptotic cells (Fig. 4C and D) as 

compared to the PBS treated control cells. Western blot analysis also indicated that C1B5 

peptide treatment significantly increased the levels of cleaved caspase 3 and 
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phosphorylation of p53 at serine 20 without changing total p53 levels for at least 72 hours 

after the C1B5 treatment (Figs. 4E and F).  These results clearly indicate that C1B5 

peptide treatment causes G2 arrest and stimulates apoptosis of COLO205 cells. Although 

the enzymatic activity of PKCγ is suggested to be activated by C1B5 treatment,7 Western 

blot analysis in the present study revealed that PKCγ expression in COLO205 cells was 

barely detectible and was unaltered by C1B5 treatment (data not shown).  In contrast, it 

has been shown that PKCII plays an important role in tumorigenesis of colon cancer; the 

inhibition of PKCII can cause the induction of apoptosis in glioma and colon cancer 

cells.19 

  To better understand the mechanism by which C1B5 treatment induces apoptosis in 

COLO205 cells, the effect of C1B5 on the early phosphorylation of PKCII and p53 at 

serines 15 and 20, the levels of total PKCα, total PKCII, total p53, and cleaved 

caspase-3 were analyzed by Western blot.  As shown in Fig. 5, C1B5 treatment 

significantly reduced phosphorylation of PKCII in COLO205 without altering the 

expression of PKCII at 30-minutes after C1B5 treatment.  In contrast, the expression of 

PKCα was increased as compared to the control group (Fig. 5 B).  The level of cleaved 

caspase-3 was increased by C1B5 treatment at the 6-hour time point (Fig. 5 D-E). 

Phosphorylation of p53 at serine 20, but not at serine 15, was increased in a 

time-dependent manner with upregulation of total p53 levels (Fig. 5 F-G). These results 

indicate that C1B5 not only affects cell cycle by inducing G2 arrest but reduces 

phosphorylation of PKCII, which may lead to apoptosis via phosphorylation of p53 at 

serine 20.20 

  The intratumoral injection of C1B5 peptide significantly attenuated tumor growth. 

COLO205 cells were inoculated subcutaneously to both flanks of SCID mice (1x107cells 
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per site). After allowing the tumors to grow to an average size of 150 mm3, C1B5 or a 

scrambled peptide solution (10 mg/ml saline at 20 mg/kg body weight) was injected into 

the tumors every three days, while control mice received PBS injections. While both the 

PBS- and the scrambled peptide-injected tumors showed rapid growth during the 

treatment, the tumors treated with the C1B5 peptide showed markedly smaller increases 

in volume (PBS, 950.7mm3; scrambled peptide, 890.7mm3; C1B5, 290.2mm3 at day 36, 

Fig. 6A). The average weight of C1B5 peptide treated tumors was also significantly 

smaller than that of PBS- and scrambled peptide-injected tumors (Fig. 6B). Histological 

examination of tumor sections shows that the C1B5 treated tumors have fewer mitotic 

figures than the scrambled peptide and PBS control groups (Fig. 6C).  These results 

clearly indicate that C1B5 peptide treatment is capable of attenuating the tumor growth of 

the COLO 205 cell line in vivo by attenuating cell proliferation.  

C1B5 treatment markedly attenuated cell proliferation and increased apoptosis 

in tumor tissues. To evaluate the effect of C1B5 treatment on cell proliferation and 

apoptosis in tumor cells, numbers of Ki-67 and TUNEL positive cells in tumor tissues 

were determined. The number of Ki-67 positive cells was significantly higher in control 

tumors than in C1B5-treated tumors (Figs. 7 A, B, and E). The average numbers of Ki-67 

positive cells in 10 randomly selected fields in PBS-treated and C1B5-treated mouse 

tumors were 210 ± 9.9 and 130 ± 8.5/field, respectively (p < 0.05). TUNEL positive cell 

numbers increased in C1B5 treated tumors (Figs. 7 C, D, and F). The average numbers 

of TUNEL positive cells in 10 randomly selected fields in PBS-treated and C1B5-treated 

mouse tumors were 1.5 ± 0.2 and 4.1 ± 0.4 /field, respectively (p < 0.05). These results 

indicate that treatment with C1B5 attenuated cell proliferation and increased apoptosis 

significantly. 
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Discussion 

The PKC family has been known to play important roles in cell growth, apoptosis, 

invasion, and differentiation.8 Although PKC was considered to play a role in tumor 

promotion in the past,3, 9 the role of PKC in tumorigenesis is now recognized to be very 

complex, with different PKC isozymes having distinct and sometimes opposing effects. 10, 

21 Moreover, it has been shown that over-expression of the same PKC isozyme can lead to 

different biological effects depending on the character of the cell.21-23 For instance, HT29 

or SW480 human colon carcinoma cells over-expressing PKCβI display increased 

doubling time, decreased saturation density, and loss of anchorage-independent growth in 

soft agar following exposure to phorbol ester, as well as decreased tumorigenicity in nude 

mice.22, 23 In contrast, it was reported that PKCβI over-expression stimulates growth of rat 

embryonic fibroblasts.21 However, PKCα over-expression attenuates growth of the same 

rat embryonic fibroblasts.21 Moreover, the atypical PKC isozyme, PKCδ has been 

demonstrated to inhibit colon cancer cell growth and enhance differentiation and 

apoptosis. 13  Taken together, these studies suggest that while PKCs play important roles 

in tumorigenesis and tumor growth, their effects depend on the isozyme and cell type. 

Therefore, the aim of the present study was to evaluate the effect of C1B domain peptides, 

putative PKC activators, on the growth of human colon carcinoma cells in vivo and in 

vitro. The present study provides strong evidence that C1B domain peptides have 

therapeutic potential; they attenuate growth of colon carcinoma cells in vitro and in vivo.  

   In the current work, we examined the attenuation effect of C1B domain peptides, C1B1 

and C1B5, on multiple human colon carcinoma cell lines. As described in the results, 

both peptides significantly attenuated colony growth of multiple colon carcinoma cell 
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lines (Fig. 1). Comparing the growth inhibitory potential of the two peptides indicated 

that C1B5 peptide appears to be more potent than C1B1 peptide (Fig. 1). This 

peptide-dependent cell growth attenuation was clearly visible in 3D cell growth (colony 

growth in soft agar) but not in 2D cell culture (Fig. 2), which is a unique characteristic of 

this cell growth inhibition. Furthermore, C1B peptides did not affect growth of normal 

colon epithelial cells in 2D culture; although 3D and 2D cultures are not comparable, 

normal colon epithelial cells do not grow in 3D culture (Fig. 2). These results indicate 

that this C1B5 peptide may be an ideal cancer-targeted therapeutic peptide, since this 

peptide selectively attenuates growth of cancer cells.  

   In human colon cancer, PKCβII is suggested to be an important factor regulating cell 

growth15, 16. This is also supported by a study showing that a PKCβII inhibitor, 

enzastaurin, attenuates colon cancer cell growth by reducing expression of PKCβII.24 

Enzastaurin was also shown to attenuate the growth of colon cancer xenografts by 

inducing apoptosis.19 Our findings indicate a potential mechanism by which C1B peptide 

attenuates cancer cell growth. In the present study, the analysis of apoptosis with flow 

cytometric detection of annexin V positive cells indicated that C1B5 treatment increased 

cell surface annexin V, an early sign of apoptosis (Fig. 4). The induction of apoptosis was 

also verified by Western blot analysis. At 48 and 72 hours after C1B5 treatment, the levels 

of cleaved caspase-3 and phosphorylated p53 in COLO205 cells were significantly higher 

than those of the control (Figs. 4 D, E, and F).  In addition, the in vivo study showed that 

the number of TUNEL positive cells in the C1B5 treatment group was significantly 

higher than in the PBS-control group, supporting the in vitro results that C1B5 attenuated 

tumor growth of COLO205 through apoptosis induction. 
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   It is well known that the tumor suppressor protein p53 plays a central role in mediating 

stress and DNA damage-induced growth arrest and apoptosis.25 Phosphorylation of p53 

at serine 20 is shown to be associated with apoptosis induction as a result of DNA damage 

by radiation or chemotherapy and is therefore a potential target to attenuate tumor 

growth.20 The relationship between PKCII and p53 has yet to be fully understood.  

However,  inhibition of PKCII can induce apoptosis.19 Therefore, to better understand 

the relationship between C1B5 growth attenuation and apoptosis in COLO205 cells, the 

level of phosphorylation of p53 at serine 20 in COLO205 after C1B5 treatment was 

evaluated.  Our results indicate that the phosphorylation of p53 at serine 20 was increased 

time dependently (Fig. 5).  To the best of our knowledge, this is the first report that C1B5 

peptide attenuates tumor cell growth by inducing apoptosis via phosphorylation of p53 at 

serine 20, which is followed by decreased phosphorylation and subsequent inhibition of 

PKCII. Although this study cannot rule out a possibility that the C1B peptide also 

modifies PKCγ and regulates tumor cell growth, the recent discovery of the direct 

interaction between C1B peptide and PKCII 26 strongly supports our result that C1B5 

attenuated tumor growth through inhibition of phosphorylation of PKCII. Negligible 

expression of PKCγ in COLO205 may also support the above conclusion. 

   Flow cytometric analysis showed that G2 arrest was induced in COLO205 cells treated 

with 1 µM C1B5 peptide for 72 hours.  This suggests that growth attenuation by C1B5 

might also be associated with cell cycle arrest. Indeed, histological analysis of tumors 

showed significantly fewer mitotic cells in the C1B5 peptide-treated tumors than in 

PBS-treated tumors (Fig. 6D). The cell cycle is known to be an important factor in tumor 

growth regulation. In colon cancer, Pysz et al.27 revealed that transcriptional inhibition of 

cyclin D1 might play a role in tumor growth attenuation in association with up-regulation 
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of PKCα. PKCα, one of the classic PKC isozymes, is activated at the point of growth 

arrest in intestinal crypts in situ,28, 29 and PKCα signaling promotes cell cycle withdrawal 

in non-transformed intestinal epithelial cells.30 The tumor suppressor role of PKCα in the 

intestine is supported by studies using PKCα knockout mice, which showed increased 

proliferative activity within intestinal crypts and spontaneous intestinal adenoma 

formation.31 The findings in the present study that C1B5 peptide treatment increased the 

expression of PKCα in COLO205 cells and induced G2 arrest are in strong agreement 

with the aforementioned reports and suggest that C1B5 peptide also affects tumor growth 

through up-regulation of PKCα leading to G2 arrest. The G2 arrest observed in the in vitro 

study is supported by the in vivo immunohistochemical analysis, in which the number of 

Ki-67 positive cells in the C1B5 treatment group was significantly lower than in the PBS 

control group. 

   In summary, the present study demonstrates that C1B peptides significantly attenuate 

growth of multiple human colon carcinoma cells in three-dimensional cell culture without 

affecting the growth of normal intestinal epithelial cells.  The C1B peptide-dependent cell 

growth attenuation is potentially mediated through PKCII, and the mechanism is 

associated with phosphorylation of p53 at serine 20, and therefore with activation of 

intrinsic apoptosis. Treatment with C1B5 peptide significantly attenuated colon 

carcinoma tumor growth in a mouse xenograft study. These results clearly indicate that 

C1B peptides can be used as cancer-targeted therapeutics for human colon cancer.  

 

Materials and Methods 

Materials. Two C1B domain peptides, C1B1 (PKC residues 101–112; 

HKFRLHSYSSPT) and C1B5 (PKC residues 141–151, RCVRSVPSLCG) and a 
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nonspecific random sequence peptide (SFGKCHLYPKV) were synthesized by the 

Kansas State University Biotechnology Core Facility (Kansas State University, 

Manhattan, KS). Antibodies against PKC, PKCβII, phospho-PKC /II (Thr 638 in 

PKCα/Thr 641 in PKC βII), and cleaved caspase-3, p53, phospho-p53 at Ser 20 were 

purchased from Cell Signaling Technology (Danvers, MA); and antibodies against 

PKCII and GAPDH were from Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal 

anti-Ki-67 antibody was from Abcam (Cambridge, MA). Horseradish 

peroxidase-conjugated anti-rabbit IgG antibody was from GE Healthcare (Uppsala, 

Sweden). Biotin-conjugated anti-rabbit IgG antibody was from Vector Laboratories 

(Burlingame, CA). Pierce SuperSignal Western Blotting substrate was from Pierce 

(Rockford, IL). RPMI 1640, low glucose Dulbecco's Modified Eagle Medium (DMEM) 

and Leibovitz's L-15 media were obtained from Mediatech, Inc. (Herndon, VA). Fetal 

bovine serum (FBS) was from Invitrogen (Carlsbad, CA).  

Cell lines and cell culture. Human colorectal adenocarcinoma cell lines (Caco-2, 

COLO 205, and SW620) and rat intestinal epithelial (RIE-1) were purchased from 

American Type Culture Collection (Manassas, VA). Caco-2 and COLO 205 cells were 

cultured with RPMI1640 medium supplemented with 10% FBS, 100 units/ml penicillin 

and 100 μg/ml streptomycin, and cultured in 5% CO2 humidified air at 37°C. SW620 

cells were cultured with Leibovitz's L-15 medium supplemented with 5% FBS, 100 

units/ml penicillin and 100 μg/ml streptomycin, and cultured in 5% CO2 humidified air at 

37°C. RIE-1 cells were maintained in DMEM supplemented with 10% FBS, 100 units/ml 

penicillin and 100 μg/ml streptomycin and cultured at 37°C under an atmosphere 

containing 5% CO2. 

  Effect of C1B5 on cell growth in vitro. RIE-1 or COLO205 cells were seeded at 3 x 
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105 cells per well in 24-well plates in 10% FBS-containing DMEM or RPMI1640, 

respectively. Cells were allowed to attach to culture dishes for 24 hours, then C1B5 

peptide (0.1 or 1M per well) was added to the wells. At various time points, the number 

of cells was counted using a hemocytometer. 

  Assay of anchorage-independent cell growth. The anchorage-independent growth of 

colon cancer cells was determined by culturing the cells in double layered soft agar. 

Either 2 x 104 or 5 x 104 cells in serum free Ham’s F-12 medium were mixed with 0.4 % 

agar (total volume of 0.5 ml) and placed on top of the bottom layer of 0.8% agar (0.5 ml). 

Both concentrations of agar were dissolved in serum free Ham’s F-12 medium. Various 

concentrations of the C1B peptides  in 100 µl Ham’s F-12 medium and/or 1 M 

Ro-32-0432 were placed on top of the soft agar one day after starting the culture. The 

cells were cultured for 7 days in 5% CO2 humidified air at 37°C. Colonies with diameters 

over 50 μm were counted by an automated colony counter (Olympus CKX41 inverted 

microscope equipped with computerized motor-driven stage, ALTRA20 CMOS camera 

and analysis software MicroSuite FiVE).  

  Cell cycle analysis. To analyze the effect of C1B5 on COLO 205 cells, cell cycle 

analysis was carried out using propidium iodide staining. In brief, 2.5x105 COLO205 

cells were seeded in 6-well plates and left overnight. The next day, cells were treated with 

1µM C1B5 and allowed to grow for 72 hours. At the end of the incubation, cells were 

collected by trypsinization and fixed overnight in 70% pre-chilled ethanol. After 

collection of the cells by centrifugation, cells were incubated in PBS containing 40 µg/ml 

propidium iodide and 100 µg/ml RNase A for 1 hour at room temperature. The 

fluorescence (excitation at 488 nm and emission at 585/42 nm) of 20,000 cells from each 

sample was measured with a FACS Calibur flow cytometer (Becton Dickinson, San Jose, 
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CA). Data were analyzed using ModFit software and the results were displayed as 

histograms.  

  Apoptosis detection by flow cytometry. COLO205 cells were seeded and cultured for 

72 hours in serum-free RPMI-1640 medium with or without 1μM C1B5 peptide. The 

proportion of apoptotic cells was analyzed using an Annexin V-FITC apoptosis detection 

kit (Biovision, Mountain View, CA) with fluorescence activated cell sorting (FACS) 

using FACS Vantage SE flow cytometer (BD Biosciences, San Jose, CA). 

  Western blot analysis. Total cellular protein was prepared using RIPA buffer 

supplemented with protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN). 

Protein samples were separated by 10% acrylamide SDS-PAGE, electrotransferred onto 

nitrocellulose membrane (GE Healthcare), and blocked with 4% bovine serum albumin 

(BSA) in PBST (0.1% Tween20 in PBS) for 1 hour at room temperature. The membranes 

were washed and incubated with antibodies against phospho-PKCα/βII (1:500), cleaved 

caspase-3 (1:1000), p53 Ser15 (1:500) and Ser20 (1:500), total p53 (1:500), PKCα 

(1:1000) or PKCβII (1:1000) with 0.1% BSA in PBST for 1 hour at room temperature. 

Subsequent incubation with a horseradish peroxidase-conjugated anti-rabbit IgG 

antibody at a 1:2000 dilution with 0.1% BSA in PBST was done for another 1 hour at 

room temperature.  The protein expression signal was detected with SuperSignal West 

Femto Maximum Sensitivity Substrate (Pierce Biotechnology, Rockford, IL). GAPDH 

was used as the loading control of sample by re-probing with an anti-GAPDH antibody at 

a 1:4000 dilution. The levels of the p53 phosphorylated at serine 20 was normalized by 

corresponding total p53 levels. 

  Xenografted tumor growth in SCID mice and tumor tissue collection. COLO205 

human colon carcinoma cells were subcutaneously injected into 6-week-old female 
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C.B-17 SCID mice (Charles River Laboratories, Inc. Wilmington, MA). The cancer cells 

(1 x 107 cells) suspended in 100 µl 0.6% agar in RPMI1640 medium were injected to the 

both flanks of each mouse. The tumor size was measured using a caliper every 3 days; 

tumor volume was estimated by the formula (length) x (width) 2 x 1/2. After tumor 

volume reached 150 mm3, C1B5 or scrambled peptide (20 mg/kg body weight) was 

injected intratumorally every 3 days (n=5). Sterile PBS was injected into the control 

groups (n=5). The mice were sacrificed three days after the last treatment, and the tumors 

were collected and weighed. All tumor tissues were fixed in 10% buffered-formalin and 

paraffin embedded for histologic examination. Thin sections, 4 m thick, were stained 

with hematoxylin and eosin (H&E). The mean number of mitotic figures in a high power 

field (400x) was calculated. All experiments were carried out under the approval of the 

Kansas State University IACUC and IBC. 

  Immunohistochemical determination of cell proliferation and TUNEL assay. 

Immunohistochemical analysis of cell proliferation in tumor tissues was carried out by 

counting the numbers of Ki-67 positive cells in tumors. After deparaffinization of the thin 

sections, heat-induced epitope unmasking was performed in citrate buffer, followed by 

incubation with 3% H2O2/methanol for 5 min to block endogenous peroxidase activity. 

Sections were incubated with polyclonal anti-Ki-67 antibody at 1:100 dilution for 1 h at 

37oC. Then, sections were reacted with a biotin-conjugated anti-rabbit IgG antibody 

(Vector Laboratories) at 1:100 dilution for 1 h at 37oC, followed by reaction with 

avidin–biotin peroxidase complex reagent (Vector Laboratories). Reactions were 

developed with 3, 3-diaminobenzodine tetrahydrochloride (Sigma) and counterstained 

lightly with hematoxylin.  
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  To determine apoptosis in the tumors, the DeadEndTM colorimetric TUNEL system 

(Promega, Madison, WI) was used according to the manufacturer’s protocol with slight 

modifications. The tissue sections were counterstained with methyl green after TUNEL 

staining.  

  The cell proliferation or apoptotic index was determined by counting either Ki-67 

positive cells or TUNEL positive cells, respectively, in 10 randomly selected fields at 

400x magnification. The cell proliferation or apoptotic index was expressed as the mean 

number of positive cells/field. 

  Statistical analysis. The means of the experimental groups were evaluated to confirm 

that they met the normality assumption. All the in vitro data were represented as mean ± 

standard error (SE) on graphs. Statistical analysis was carried out by  ANOVA and student t test as 

a post-hoc analysis. To evaluate the significance of overall differences in tumor size 

between two groups, statistical analysis was performed by ANOVA, using Fisher’s 

protected least significance difference (PLSD) as a post hoc test. A p-value less than 0.05 

was considered significant. All the tumor size data were represented as mean ± standard 

error on graphs. Statistical analyses were performed by Stat View software, version 5.0.1. 

(JMP, Cary, NC). 
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Figure legends 

Figure 1. C1B peptides significantly inhibit anchorage-independent growth of human 

colon cancer cells. Colonies over 50µm diameter were counted by an automated colony 

counter as described in the Materials and Methods. COLO205 cells (2 x 104) were 

cultured in soft agar in the presence or absence of various concentrations of C1B5 (A) or 

C1B1 peptide (B) for 7 days. (C) Colony size was also significantly smaller in the C1B 

peptide-treated group. Original magnification is x100. (D) C1B5 peptide (1 µM) 

effectively attenuated colony growth in two other human colon cancer cell lines, SW620 

and Caco-2. Data are expressed as mean ± S.E. Asterisks indicate significantly different 

values (P < 0.05) when compared with the control. 

 

Figure 2. C1B5 peptide did not affect the growth of RIE-1 normal intestinal epithelial 

cells or COLO 205 cells in 2D culture. Cells were cultured in the absence (white bars) or 

presence of 0.1 µM (gray bars) or 1 µM (black bars) C1B5 peptide for various time 

periods as indicated in the figure. Dead cells were stained with trypan blue and the cell 

numbers were analyzed using a hemocytometer. Data are expressed as mean ± S.E.  

 

Figure 3. Inhibition of anchorage independent growth by C1B5 peptide is reversed by 

PCK-specific inhibitor.  As in Figure 1, a soft agar assay was used and COLO205 

colonies were counted with an automated colony counter. Pretreatment with the PKC- 
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inhibitor, Ro-32-0432 (1 µM), counteracted C1B5-induced colony growth attenuation. 

These data are representative of two independent analyses with triplicate determinations. 

Data are expressed as mean ± S.E. An asterisk indicates significantly different value (P < 

0.05) when compared with the control. 

 

Figure 4. C1B5 peptide treatment significantly increased the G2 population (panels A and 

B), both early and late-stage apoptosis (panels C and D), and cleaved caspase 3 and 

phosphorylated p53 of COLO205 cells (panels E and F). COLO205 cells were incubated 

for 72 hours with 1 µM C1B5 peptide. Cells were dispersed by trypsinization and 

incubated with either propidium iodide for cell cycle analysis or annexin V-FITC for 

apoptosis analysis by flow cytometry as described in Materials and Methods. These 

data are representative of two independent analyses with triplicate determinations. Both 

early apoptosis (as shown in lower right quadrant) and late apoptosis (upper right 

quadrant) increased significantly with the addition of C1B5 (panel D). Samples for the 

Western blot analysis were collected either at 48 or 72 hours. Sample preparation and 

Western blot analysis were performed three times with duplicate determinations. The 

pictures in panel E represent typical blotting results. An asterisk indicates a significantly 

different value (P < 0.05) when compared with the control.  

   

Figure 5. The effect of C1B5 treatment on the expression of various PKC isozymes, PKC 

phosphorylation, cleaved caspase-3, total p53, and phosphorylated p53 in COLO205 was 

analyzed by Western blot analysis. C1B5 significantly decreased levels of 

phosphorylated PKCII after 30 minutes of exposure (Panels A and D). In contrast, the 

levels of non-phosphorylated PKCα and were increased by the C1B5 treatment (Panels 
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A, B and C). The level of cleaved caspase-3 was significantly increased at 6 hours (Panels 

A and E). The expression levels of total p53 and phosphorylated p53 at serine 20 were 

significantly increased after C1B5 treatment (Panels A, F, and G). Samples were prepared 

and subjected to Western blot analysis as described in Materials and Methods. Sample 

preparation and Western blot analysis were performed three times with duplicate 

determinations. The pictures in Panel A represent typical blotting results. Asterisks 

indicate significantly different values (P < 0.05) when compared with the 0 h time point. 

 

Figure 6. Intratumoral injection of C1B5 peptide significantly attenuated the growth of 

COLO205 subcutaneous xenografts in SCID mice (n= 5, panels A and B).  Histologically, 

the number of mitotic figures was significantly smaller in the C1B5 treated group tumors 

than in the scrambled peptide and PBS control group tumors (panels C and D).  The H&E 

sections show the mitotic figures (arrows, panel C, 400x magnification).  In this 

experiment, COLO205 cells were inoculated subcutaneously to both flanks of SCID mice 

at 1x107 cells per site.  When tumors reached an average volume of 150 mm3, C1B5, 

scrambled peptide or PBS was injected into the tumors. The treatment was initiated at day 

22 after tumor cell inoculation and repeated every 3 days for 15 days. Mice were 

sacrificed 3 days after the final treatment.  The number of mitotic figures in 10 randomly 

selected fields at high power field (400x) was counted and the mean number of mitotic 

figures was expressed. Data are expressed as mean ± S.E. Asterisks indicate significantly 

different values (P < 0.05) when compared with the PBS control. 

 

Figure 7. Immunohistochemical analysis of cell proliferation (panels A, B, and E) and 

apoptosis (panels C, D, and F) in COLO205 subcutaneous xenografts in SCID mice 
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treated intratumorally with either PBS (panels A and C) or C1B5 (panels B and D). 

Xenografts were collected as described in the Methods section. Cell proliferation in 

COLO205 xenografts was analyzed by counting the number of Ki-67 positive cells 

(panels A and B). Apoptosis was analyzed by counting TUNEL positive cells in the 

tumors (panels C and D). The average numbers of Ki-67 positive cells (E) and TUNEL 

positive cells (F) per high power field (400x) were determined by analyzing ten fields in 

each treatment group and are expressed in the bar graph. The original magnification of 

panels A-D was 400x. Asterisks indicate significantly different values (P < 0.05) when 

compared with the PBS control. 
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 



 25

Fig 2 
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Fig 3 
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Fig 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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