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PART I

INTRODUCTION

Internal friction or damping capacity is that property of a solid mate-

rial which results in energy absorption when the material is stressed cycli-

cally, A vibratory system is a good example of this, in which a part, or

parts, of the system experience a cyclic stress. If the system is not forced

after being set in motion, the free vibrations can be shown to decay or atten-

uate with time. Thus, the total vibratory energy of the system is decreasing

or a part is continually being lost or absorbed in the material due to inter-

nal friction.

Purpose of This Study . With the successful launching of the first nuclear

powerplant into space, new questions have been asked concerning the properties

of the surrounding structures, namely damping. How does the damping charac-

teristics of a structural member change as it is subjected to these hostile

environments? High temperatures and. magnetic fields usually associated with

space reactors may change the design criterion considerably.

The purpose of this study is to demonstrate the change in damping char-

acteristics with a variation of temperature and magnetic field in a vacuum

environment for a ferromagnetic material. The temperature range was suffi-

cient to reach the Curie Point of the metal.

The Original Concepts . Measuring material damping has long been a popular



pastime among experimental physicists. In 178U Coulomb (1) , in his "Memoir

on Torsion," not only hypothesized internal damping but also undertook exper-

iments which proved that damping was caused by internal losses in the mate-

rial. The original conception was that damping in solids was analogous to

viscous friction in fluids. Kelvin (2) was the first to present this theory,

however, his own experiments made in 1865 failed to verify this hypothesis.

The hysteresis phenomenon was presented by Hopkinson and Williams (3) in

1912 which postulated that the loss was due to the non-coincidence of the up-

ward and downward portions of the stress-strain diagram of a material under

cyclic loading. The stress-strain diagram for a complete stress cycle thus

corresponded to a closed loop as shown in Fig. 1.

In analyzing this further, Foppl (U) assumed that any strain may be con-

sidered to be composed of an elastic portion (€2el) an<^ a Plastic portion

^2ol^ ^or ^ne greatest stress O"^. The plastic portion is then considered

the cause of the hysteresis and energy loss. The greater the area of the

loop, the greater the damping capacity of the material.

During the past decade, the scientific and engineering interest in inter-

nal damping has increased greatly. As a result of these new interests, re-

search in damping continues at an increasingly high level as indicated by

recent bibliographic studies (1)(5).

Significance of Internal Damping . The significance of the damping capacity

as an engineering property of materials has received widespread recognition

in recent years. Wherever vibrational stresses are encountered (as in turbine,

"lumbers in parentheses refer to references in Part VIII. (page 3k)
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Figure 1. Typical Stress-Strain Hysteresis Loop for a Material Under

Cyclic Stress.



compressor, and propeller blades, shafts of various kinds, transmission cables,

etc.) the damping capacity of a material may prove to be of more importance

than such properties as fatigue strength (U).

Internal damping is, however, not always a desirable property of mate-

rials, as might be implied here. It is internal damping which is responsible

for the phenomenon of shaft "whirl" (5)(6). Also materials of high internal

friction heat up when subjected to vibratory stresses, resulting in a decrease

in the strength of the material. Despite the importance of damping capacity

as a criterion for the selection of materials for machine and structural parts,

relatively little work has been done until recently on damping capacities of

engineering materials.

Source of Internal Damping . During the last few decades, the origin of damp-

ing in metals has been traced to four sources (7): plastic flow, thermoelas-

tic effect, atomic diffusion, and magnetoelastic effect.

Plastic flow is certainly the most common cause of damping; in high

strength alloys, however, plastic flow occurs noticeably only at stress levels

beyond those for which the structure is designed. Damping due to the thermo-

elastic effect becomes noticeable only at a critical frequency whereas the

damping attributed to interstitial diffusion of atoms is important only at

low stress levels and is also associated with a critical frequency. Conse-

quently, only the magneto-mechanical effect contributes significantly to the

large damping capacity in high-strength alloys j and this, of course, is limit-

ed to ferromagnetic materials.

The energy dissipated during a stress-strain cycle as a result of the

magneto-mechanical effect is generally caused by irreversible magnetostrictive

strain. Every ferromagnetic material consists of so-called domains which are



more or less randomly oriented in an unmagnetized material. However, on the

application of a magnetic field, or a stress, these domains tend to align

themselves in the direction of the field, or in the direction of the tension

strain. This movement of the domains then results in an irreversible change

of the dimensions of the material which is called "magnetostriction."

Conversely, if such a bar is stretched by a mechanical force, the mag-

netization of the bar is changed. If the direction of the stress is reversed,

the magnetization again changes, so that an alternating stress will cause a

continous change in magnetization and local eddy currents will be produced

within the bar which add to the energy loss. A strong magnetic field pre-

vents the mechanical force from changing the magnetization and the eddy cur-

rent loss is eliminated.

Factors Affecting Damping . In spite of the work being done on the nature of

internal friction in solids, there is available no physical theory for this

phenomenon, except at the very lowest strains which are out of the range of

engineering interest. Seitz (8) has presented a good summary of these in his

book.

The factors of importance in regard to internal friction in the engineer-

ing range of stresses appears to be as follows: kind of material, stress or

strain amplitude, nature of stress or strain, and temperature (9). Several

investigations show that frequency has no effect in the range of engineering

interest (6)(U).

Very few studies have been conducted to compare the damping in different

materials. Hempel (9) does report, in a study of the damping properties of

cast irons, that the higher the tensile strength, the lower the damping

capacity.



The most important variable affecting internal friction in solids is the

stress or strain amplitude of the cyclic action. Hopkinson and Williams (3)

were among the first to indicate this stress dependency. The earliest invest-

igators found the energy loss per cycle (damping capacity) to vary about as

the fourth power of the stress amplitude. Later investigations, demonstrated

by Robertson and Yorgiadis (9), show that the damping capacity varies about

as the third power for a considerable range.

As to the effect of the nature of stress involved, there are few data

available since most of the experiments have only been performed in torsion.

There is evidence that the internal friction under shearing stress is differ-

ent from that under normal stress (U).

Temperature has been found to have significant effects upon the damping

capacity. Measurements by Contractor and Thompson (10) showed that for the

steels tested, the damping capacity increased rapidly with increase in temp-

erature for a considerable range. These results compare favorably with those

tests reported later in this report.



PART II

METHODS OF EXPRESSING DAMPING

Various methods of measuring and expressing damping have been used in

the past. Those having some application to engineering needs are discussed

briefly here in order to acquaint the reader with methods available.

Almost all descriptions of damping are derived from the linear, single

degree of freedom system with viscous damper in parallel with the spring,

and so a start of analysis is made from this point of view (11).

Amplification Factor . In a linear, single degree of freedom system, if a

constant sinusoidal excitation force is applied with gradually increasing

frequency, it will be found that the amplitude of vibration steadily increases

to a maximum and then decreases as the frequency is increased. The amplitude

reaches a maximum at one value of frequency, at which the driving force is ex-

actly in phase with the vibratory velocity. This amplitude is hence a measure

of damping since the applied force is completely dissipated in damping at the

resulting amplitude. The ratio between vibration amplitude at resonance and

that at zero frequency is therefore a true and dimensionless measure of damp-

ing (12) or

xres
A xst

Equivalent Dashpot Constant . At resonance, the amplitude of a viscously damp«

ed, single degree of freedom system is

Xres " -3T
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An equivalent dashpot constant can be defined as (13)

C J°eq o)xrQ3

for any damped system, even those which are not viscously damped.

Resonant Peak-Width Technique . With this technique, the frequency of the im-

pressed force is varied through the resonance condition while the energy in-

put is maintained constant. The amplitude of the vibrational response is a

maxinum when the impressed frequency is equal to the resonant frequency of the

specimen and decreases on either side.

If Af is the change in impressed frequency necessary to change the amp-

litude of the vibrational response from half-maximum on one side of resonance

to half-maximum on the other, then the internal friction at the resonant fre-

quency f is given by (lU)

-1 Af
Q ' "V3f7 •

The bandwidth method is a form of this technique (11). These methods

lend themselves readily to experimental measurements where a driving force

is used.

Quality Factor . The Q of a system is defined in terms of the ratio of the

energy dissipated to the energy stored. This has been defined as (15)

n , JQ_ 2ttW
w

k> AW

Foppl (U) presented his data in much the same way in terms of specific damp-

ing capacity. This is defined as the ratio of energy loss per cycle to the

vibrational energy of the member

AW
r W



Logarithmic Decrement , Probably the most widely used method of measuring

damping, and certainly the one in longest use, is that of measuring the de-

cay rate of torsional pendulum or flexural beam. This method is used in this

study since it is the easiest quantity to determine experimentally.

The logarithmic decrement is defined by

xn+l

where xn and xn+i are amplitudes of two successive vibrations. This can be

extended a3 shown in the derivation of the logarithmic decrement in Appendix

F to be

k> - —— In
n xn

where n is the number of cycles between x and Xy^.



PART III

TEST APPARATUS

A schematic diagram of the entire test system including instrumentation

is shown in Fig. 2. Photographs of the apparatus follow in Figs. 3» U» and

5 to further illustrate the system and its parts. An equipment list has been

included also in Appendix A.

Vacuum System . The vacuum chamber was constructed from a twelve inch diameter

seamless steel pipe, four feet long. A groove was cut in each end to receive

an "0" ring which formed the seal between the steel pipe and a glass plate.

Three-fourth inch thick plate glass was used. See Fig. 3»

Sealing the chamber around external connections was done by using one-

eighth inch neophreme rubber pressed between the two, flat, mating surfaces.

The outside air pressure provided the force to hold the seal. High vacuum

grease was used on all mating surfaces.

A Welch vacuum pump was used for evacuating the system. A "U" tube mer-

cury manometer and a Pirani gauge were employed together to measure the higher

and lower pressures respectively. The Pirani gauge was used only for pressures

lower than 2000 microns. The normal "pump down" time required to evacuate the

chamber to a pressure of 1000 microns was $Q minutes.

Beam Support . The cantilever beam support had to meet certain requirements

such as rigidity and being electrically and thermally insulated from the spec-

imen. A welded assembly was chosen which was bolted to a permanent base plate

within the chamber.

10
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One-fourth inch Transits plate was chosen as an acceptable electrical

insulator and also for its rigidity. Since Transite is a relatively good

thermal conductor, the beam had to be thermally isolated from the support in

order to reduce the temperature gradient along the beam. This was accomplish-

ed by reducing the conducting surface area. The effective area was actually

two intermittant lines rather than a surface. Figs. 5 and 6 best show this

arrangement.

Method of Heating Specimen . Electrical resistance heating was used to heat

the specimen since this was most convenient to achieve the higher temperatures.

This is the reason for the "U" shaped specimen. A welder supplied the neces-

sary AC current to heat the beam.

Heat Shielding of Internal Apparatus . In working with the higher temperatures

for long periods of time, much heat was lost by radiation in the evacuated

chamber. Since these high temperatures could not be tolerated in the magnetic

field coil and the glass ends, a method of shielding and cooling was devised.

A six inch diameter aluminum tube surrounding the entire length of the

beam acted as a radiation heat shield. This tube was inside the field coil,

concentric with it. The reflectivity of the inner surface was increased fur-

ther by lining it with aluminum foil. Sheets of foil were also used to shield

the glass end of the chamber.

In order to dissipate the heat absorbed by the aluminum, three-eighths

inch copper tubing was wound around the outside of the aluminum shield tube

for water cooling. This is shown in Fig. $. The cooling water was fed into

and out of the chamber through the brass electrical conductors carrying the

AC power to the specimen. This kept the number of chamber openings and seals

to a minimum and also eliminated any heat build-up in the power leads within
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the chamber.

Tests were conducted using the water cooled heat shield and are described

later. These tests indicated that the shield adversely affected the results

to such an extent that the purpose of this study could not be carried out.

An alternate method of heat shielding was then devised using two layers

of aluminum foil inside the plexiglass tube. These layers were separated by

a one-fourth inch air gap and placed such as not to make a complete electrical

circuit as did the previous shield. This was found to work satisfactorily

for periods of two hours, however it could not be used continously because of

eventual heat build-up within the chamber.

Deflecting Mechanism . The mechanism used to deflect the end of the cantilever

beam was merely a three-sixteenths inch brass rod extending into the chamber

from the top through a brass guide sealed by an "0" ring. The rod was moved

up and down and turned manually by the handle on top. See Fig. U. A "finger"

on the other end of the rod displaced and released the beam.

Magnetic Field Coil . The magnetic field was provided by a coil wound with

insulated wire on an eight inch diameter plexiglass tube. The length of the

coil was sufficient to completely enclose the beam y the center being concen-

tric with the beam center. The coil is shown in Figs, h and 5. A variable

DC power supply was used to excite the field.

Specimen . The specimen or beam tested was a f>/l6 inch diameter rod bent into

a "U" shape with a 5/8 inch radius and an effective length of 3U.5 inches.

The material was a hot-rolled, mild steel (1020). The reason for the "IT1

shape was to facilitate heating as mentioned previously.



PART IV

TEST INSTRUMENTATION

Strain and Temperature Sensing Devices , Lateral deflections of the cantilever

beam were measured by recording the strain at a point just outside the support ,

This was done so as to not induce additional damping into the system by the

lead wires. Since high temperatures were envolved in these tests, it was

necessary to employ special, high temperature, foil strain gages applied with

a ceramic adhesive. These gages were capable of withstanding a sustained

temperature of 1500 F.

The temperature of the beam was also monitored just outside the support.

A chromel-alumel thermocouple was used, the junction being silver soldered to

the beam to provide intimate contact.

Recording Instrumentation . The recording and other instrumentation are pic-

tured in Fig. 7 and shown schematically in Fig. 2. The cyclic strain measure-

ments from the strain gage were permanently recorded on chart paper from the

Sanborn Industrial Recorder. Typical output traces are shown in Appendix E.

The recorder was coupled with the Sanborn Strain Gage Amplifier. The cali-

bration procedure for these instruments is given in Appendix B.

The potential of the thermocouple or the beam temperature was read out

on a millivolt potentiometer with an internal cold reference junction. The

temperature was controlled with the variable output welder also shown in Fig.

7. In order to be consistent in varying the temperature of the beam, the high

heating current was monitored with a clamp-on ammeter.

18
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A DC current to excite the magnetic field was provided by one of two DC

power supplies shown. Two power supplies were used since neither of the two

provided the total range desired. The field current was measured with a

precision ammeter.



PART V

EXPERIMENTAL PROCEDURES

The strain gage and recorder were first calibrated to measure stress as

a function of recorder deflection for the temperature range to be investigated.

See Appendix B. Tests were then conducted to determine the effects of air

pressure upon damping and what pressure would be sufficient to render the

damping due to air drag insignificant. Appendix C shows these results. Pre-

liminary tests were also conducted to determine the saturation current for

the coil to insure that there was a sufficient field strength to align the

domains. The saturation curve is shown in Fig. 17, Appendix D.

To set the cantilever beam in motion, the tip of the beam was deflected

and released by the mechanism described earlier. A careful attempt was made

to deflect and release the beam in exactly the same manner each time. Since

the mode shape of a deflected cantilever beam is not exactly that of the nat-

ural mode of vibration, the beam was allowed to oscillate and damp into its

natural mode before recording any data.

Time and heating current were also recorded at each data point to insure

better repeatability of each test. This is shown in a table of typical data

in Appendix E. Two recordings were made at each temperature level; one with-

out the magnetic field and one with the field. The strain gage half-bridge

was balanced before making each recording.

Since the damping capacity is a function of the stress level, it was

necessary to take all data at the same level. A value of l£00 psi was chosen

21
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as a convenient level to work with. As mentioned earlier, the logarithmic

decrement was the method used to measure the damping. Since the damping ca-

pacity of this particular specimen was quite low, a range of 100 cycles was

used in taking measurements for most of the lower temperatures.

It should be noted here that the stress level investigated was always

centered in the range of n cycles, i.e., measurements of x and xn were always

made at points n/2 cycles on either side of the amplitude corresponding to

15)00 psi. This insured a closer average value for the logarithmic decrement.

The deflection corresponding to a stress of l£00 psi at each temperature level

was obtained from Fig. 15 in Appendix B. Peak to peak amplitudes were used

since this was easier to measure and only the ratios were involved in the cal-

culations. The logarithmic decrement was calculated from the equation derived

in Appendix F.



PART VI

TEST RESULTS

Early testing was conducted using the heat shield and cooling coils

described earlier and shown in Fig. 5. After examining the data, it was

found that the shield was adversely affecting the magnetic field to such an

extent that the purpose of this study could not be carried out.

An attempt to show magnetic saturation was made with the aluminum heat

shield in place as pictured in Fig. U. The results of two of these tests

are shown in Fig. 8, Also shown in Fig. 8 is the results of the same test

without the shield in place. It was observed that the damping was increased

considerably in the presence of a magnetic field with the shield in place;

however, it was decreased with the shield removed in the same field. An ex-

planation of this effect was not ventured due to the time available and brevity

of this report.

This method of removing heat was eliminated and the tests were continued

using foil radiation shields also described earlier. The results of these

tests are contained herein.

The test results showed that the presence of a magnetic field does alter

the damping characteristics. The logarithmic decrement was decreased measur-

ably and the magnetostrictive damping was shown to be a significant part of

the internal damping. This was consistent with the theory presented in the

introduction and compares favorably with that work done by Parker (16). This

lowering of the damping capacity is readily apparent in Figs. 9 through 12

23
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and also in Fig. 17, the saturation curve.

In examining the damping characteristics as a function of temperature,

it was found that the logarithmic decrement decreased somewhat with increas-

ing temperature and then increased rapidly with further increase above UOO F.

These results compared with those presented by Contractor and Thompson (10)

and were in agreement with a similar study conducted by Anderson (17) for the

lower temperature range.

Data were not available on the damping characteristics for higher temp-

eratures; however, as expected, the logarithmic decrement continued to in-

crease very rapidly above 500 F. It should be noted again that the tempera-

tures observed were those just outside the support and that a gradient exist-

ed along the beam, the free end being at a higher temperature. The tempera-

ture differences between the two ends are shown in Fig. 13.

The plot of logarithmic decrement versus temperature also shows that as

the temperature increased, the effect of the magnetic field or magnetostric-

tive damping decreased. This effect became negligible at about $$0 F as the

two curves approached each other. This indicates that the beam had reached

the Curie temperature, the point at which a ferromagnetic material loses its

magnetic properties. The Curie point for a steel of this type is 670 F which

seemed to be reasonable considering the gradient which existed along the beam.

Included in this study is a plot showing how the beam frequency changed

with temperature. The frequency change was almost linear in the range ob-

served, as shown in Fig. ll*. The decrease can be attributed to two factors,

namely, 1) change in the damping capacity which changes the damped natural

frequency and 2) the change in the modulus of elasticity of the material with

temperature change.
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PART VII

CONCLUSIONS AND RECOMMENDATIONS

It is concluded from these test results that, for the specimen tested

(1020 hot rolled steel), the effect of a magnetic field or magnetostrictive

damping is an easily measurable and significant portion of the total internal

damping. Since the viscous and pressure drag effects of air were negligible,

the remaining small portion of the internal damping can be attributed to

those sources mentioned earlier: plastic flow, thermoelastic effect, and

atomic diffusion. It was believed that since the effects of the above three

sources is by theory very small for the conditions tested, a significant part

of the remaining portion was due to external damping in the support. There-

fore, it is estimated that magnetostrictive damping may account for as much

as 7%% of the total internal damping in the lower temperature range.

With regard to the effect of temperature on damping, it is concluded

that the damping is lowered slightly with an increase in temperature above

80 F and remains relatively constant up to about 350-UOO F at which time the

damping increases sharply. This sharp increase, broadly speaking, appears

to be due to the sudden development of a "plastic" condition in the material.

It would be desirable to repeat these tests for several different ferro-

magnetic as well as non-ferromagnetic materials at different stress levels

in order to better compare materials for design purposes. Also it would be

noteworthy to examine the same parameters in very low temperature ranges.

Considering the limitations of the test apparatus used here, it would be
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desirable to change the testing apparatus as listed below:

1. Consider a free-free vibrating member so that ennr^y loss to the

supports in the form of heat and damping can be reduced.

2. Use a radiation furnace within the vacuum chamber to obtain con-

stant temperatures throughout the specimen and eliminate the necessity

for a "U" shaped beam.

3. Measure amplitudes of deflections with the use of an optical-

electronic transducer coupled with an oscillograph to eliminate any

lead wires being attached to the vibrating beam.

A recommendation is also made to further investigate the effects of

shielding and altering the damping properties with the use of non-ferromag-

netic shielding around the vibrating member. This is made in view of the

results obtained while using the aluminum heat shield within the field coil.

Reference is made to Fig. 8 of this report.
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APPENDIX A

EQUIPMENT LIST

The following is a list of the experimental equipment and measuring

instruments used during this experiment. Numbers refer to the notation in

Figs. U, 5, 6, and 7.

1. Vacuum Chamber

2. Vacuum Pump, Welch Scientific Company, model no. 1399

3. Mercury Manometer, King Engineering Corp., model no. BUS-36

U. Pirani Gauge, Consolidated Electrodynamics Corp., type GP-110,
to 2000 microns full scale

5>. Deflecting Mechanism

6. Magnetic Field Coil

7. Radiation Heat Shield and Cooling Coil

8. Beam Specimen

9. Cantilever Beam Support

10. Welder (AC Power Supply), Lincoln Company, model TM-500/500

11. Sanborn Recorder, Sanborn Company, model no. 127 T

Sanborn Strain Gage Amplifier, Sanborn Company, model no. LUO B

12. DC Power Supply, Consolidated Electrodynamics Corp., type no. B-131,

variable range

13. Millivolt Potentiometer, Leeds and Northrup Co., model 8696

1U. DC Ammeter, Weston Co., model 901, to 10 amp. range

15. AC Ammeter (clamp on), Bruno-New York Industries, to 600 amp range

16. Calibration Weights

17. DC Power Supply, Eico, model no. 106U, variable range
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APPENDIX B

CALIBRATION PROCEDURE

In order to find a relation between recorder pen doflection and the

maximum stress in the beam, it was necessary to first calculate stress as a

function of a concentrated load at the end. For a simply supported cantilever

beam with a concentrated load, the maximum bending stress is given by

o- - Mc/I .

In this case of a double rod, I is given by

I - 2(irR
i7U) -1x1^/32

and c D/2. The maximum stress is hence

(T - 16 Pl/irD3 .

For the specimen tested, with a diameter of 0.313 inches and a length

of 3U.50 inches, the stress-load relationship was found to be

a- - 5750 P

where P is the concentrated load in pounds.

The beam was then loaded progressively from no-load to 1.0 pound while

recording the stylus deflection. This was done at various temperatures to

determine the sensitivity at each temperature. A direct relationship was

hence obtained between the maximum stress and pen deflection for each temper-

ature. These linear relationships are shown in Fig. 15. These curves were

necessary in order to analyze all data at a constant stress level of 1500 psi.
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APPENDIX C

DETERMINATION OF EFFECTS OF AIR PRESSURE UPON DAMPINQ

Since all the tests were conducted in an evacuated environment, an

attempt has been made to show that the viscous effect and the pressure drag

of air has been eliminated or that it can be considered negligible. Fig. 16

shows the relationship between logarithmic decrement and the chamber pressure

for the specimen tested.

McWithey and Hayduk (18) have indicated that the viscous-air drag be-

comes insignificant below 10,000 microns or 10 mm Hg. Similar studies reported

by Dow (19) indicate also that the air drag becomes negligible below UOOO

microns. All tests were conducted at a pressure of between 1000 and 2000

microns, well below that mentioned above.
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APPENDIX D

DETERMINATION OF MAGNETIC SATURATION

Before performing any tests in the magnetic field, a saturation test

was conducted to determine if the field current was sufficiently strong to

eliminate magnetostrictive damping. To accomplish this, the logarithmic

decrement was measured while varying the field current over the range, to

U.2 amperes. This test was conducted in the evacuated chamber at room temp-

erature.

A definite level of saturation was found for the specimen to be 2.5

amperes as shown in Fig. 17. A field current of U.2 amperes was used in all

tests to insure complete saturation.
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APPENDIX F

DERIVATION OF LOGARITHMIC DECREMENT

In deriving the equation for the logarithmic decrement, it is assumed

that the system is vibrating in a single mode shape. The system is also

assumed to be viscously damped; that is, one in which the energy loss per

cycle is proportional to the square of the amplitude or stress. For the

simple system, the response will give a damped wave similar in general appear-

ance to Fig. 19 from which we may compute the system damping.

To develop the method, assume that the system is shock excited by dis-

placing the mass some distance x and then releasing it. It is reasonable

to assume the theoretical wave equation as the solution

c o e *^ a sin cOjt B cos cJjbj (l)

where u)n« undamped natural frequency, rad./sec

C " C/2m c^, damping ratio

u)d
° iJn Vi - £*, damped natural frequency, rad./sec

The boundary conditions are forced to be

t - , x - Xq

t-o , § -0

Applying these boundary conditions gives

B - x
Q ,

*oC^ m
xo C

U6
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Consequently, the displacement response is

Vl - £
2 cos <j.t C sin u).t

Vi- C 2
(2)

Applying certain trigonometric identities and simplifying, the dis-

placement is reduced to the form

x e

Vi - £ ;

cosCo^t - ^ ) (3)

where <j> tan
-1

Vl^

The equation of the envelope of this displacement response is the first

part of Eq. (3)

X( t ) -
x° e

(U)
Yl- c*

and this envelope will touch the response curve very close to the points at

which the argument of Eq. (3), (co
d
t -^), is equal to 360°, 720 , etc., as

indicated in Fig. 19. Thus Eq. (U) is very nearly a correct expression for

the maximum value of x, provided the correct time t is used.

To eliminate t, let tn be the time at one peak of the response curve

and note that the next peak is one period and hence T seconds later. Since

1 2tt
T£

the time at this next peak is given by

to
2tt

Using these values of time in conjunction with Eq. (U) gives the ratio of
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the peaks as

The natural logarithm of this ratio of successive peaks in the decay

curve is called the logarithmic decrement, and is

c i
Xl 2ttC

b c In -7— . ,

Since the rate of decay of the oscillatory motion is independent of the

initial conditions imposed on the system, the logarithmic decrement must be

independent of initial conditions. Furthermore, any two points on the curve

(Fig. 19) one period apart may serve to evaluate the logarithmic decrement,

*! *2 xn-2 . *n-l _ £
*2 x

3
xn-l *n

Hence

x
l -

xl
x
2

x
2

x
3

*n-l . n&
xn *

In
xl
xn 9

£ - 1 xlIn ~i-
n ^

Therefore the logarithmic decrement may be evaluated from two known amplitudes

n cycles apart.
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