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INTRODUCTION

Comfort has been the continual goal of man since his earliest

existence. Human comfort is influenced in varying degrees by a

countless number of factors. The physical factors affecting human

comfort include lighting, sound, smell and touch as well as the

thermal environment. Although a satisfactory thermal environment

does not insure comfort, its relative importance for human comfort

is obvious.

In order to specify a satisfactory thermal environment it is

necessary to have a basic understanding of the cause-effect relation

that exists between the thermal environment and one's thermal comfort.

Although the exact relation undoubtedly varies from person to person,

the following concept was considered in the present study. The

thermal environment stimulates the temperature receptors embedded

within the human cutaneous tissue, which in turn give rise to

"thermal" sensations. As a result of this physiological process a

person experiences various degrees of warmth, coolness, or neutrality

(neither too warm nor too cool). In addition, the effect the thermal

environment causes on a person's general impression of comfort must

be considered. Comfort sensations differ from thermal sensations in

that they are not closely related with any distinct physiological

process, but instead reflect a person's relative general satisfaction

with his environment. If the thermal environment is to provide

thermal comfort it is necessary that both the thermal and comfort

sensations of its occupants be satisfied.



There has been considerable research in the area of thermal

comfort, especially since the early 1900' s. As a result of this

and continuing research man is coming to better understand how the

primary thermal variables, (air temperature, MRT*, relative humidity,

and air movement), affect thermal comfort.

The studies of Nevins (65) and McNall et al . (55) have estab-

lished criteria for thermally neutral conditions for people seated

and engaged in various levels of activity. The findings of these

studies are applicable for a uniform environment i.e. MRT equal to

air temperature. However the use of heated (or cooled) panels for

space heating and cooling introduces a departure from the uniform

environment, namely an MRT different than air temperature. The MRT

in such situations may be uniform, (all enclosure surfaces at one

temperature) , or more generally, asymmetric (enclosure surfaces with

different temperatures). A study by McNall (55) has defined zones

of thermal neutrality for the case of uniform MRT. However infor-

mation concerning the asymmetric MRT is at present incomplete.

The case of an asymmetric MRT gives rise to two questions of

primary importance to the environmental engineer:

1. Do the thermal sensations produced by an asymmetric

MRT differ significantly from those of the uniform

MRT?

2. Does an asymmetric MRT have a deleterious effect on

man's comfort sensations?

*MRT (mean radiant temperature) - that uniform temperature of
a black enclosure with which an object would exchange radiant energy
equal to the radiant exchange in its actual environment.



It is the purpose of this study to provide the information

to answer these questions. The types of asymmetric MRT investigated

were chosen to compliment and extend the works of previous inves-

tigators (56) (8) such that the results would be applicable to

those situations most frequently encountered in the field.



REVIEW OF LITERATURE

As man has progressed through the years he has conintually

strived to better understand how his environment could be altered

to provide a greater degree of comfort. During the 18th century

the discomfort of crowded rooms was felt to be primarily due to

overheating, but "bad air" was held partly responsible. Lavoisier,

after examining the composition of the air in occupied rooms, con-

cluded that the excess of carbon dioxide present was largely res-

ponsible for much discomfort. However in 1883 Hermans, a German

researcher, attributed the discomfort to heat and high humidity

rather than poor ventilation and chemical effects.

The chilling effect of the wind had long been recognized, for

as early as 1733 Arbuthnot explained that the wind caused its

chilling effect by dispersing the layer of warm air that invests

the body. In 1803 Sir John Leslie incorporated the chilling effect

of wind as the basis of a primative anemometer.

Tredgold, 1824, is the first researcher reportedly to be con-

cerned with the effect of radiant heat transfer. Tredgold found

that a lower indoor air temperature was required for comfort in the

presence of an open fire than when only the air was warmed. In

1857 the General Board of Health (England) , finding cold walls as

a cause of discomfort, specified as a requirement of comfort that

the temperature of the walls of a room should be at least as high

as the general temperature of the room.



By 1914 the importance of the four primary factors of the

thermal environment (air temperature, air velocity, air moisture

content, and the radiation exchange with the surrounds) had been

realized. At this time Dr. Leonard Hill introduced the kata-

thermometer, for the purpose of indicating the combined effects

of the various thermal factors on the heat loss from the human body.

The cooling rate of the heated kata- thermometer was a measure of the

"cooling power" of the environment, which Hill advocated as an

index of warmth in cool conditions.*

In 1894 the American Society of Heating and Ventiliating

Engineers (A.S .H.V.E.)** was formed, one of its goals being ex-

pansion of the existing knowledge of the requirements for comfort.

The A.S. H.V.E. Research Laboratory was established in 1919 at

Pittsburg, Pennsylvania. About that time the term "comfort zone"

was reportedly first introduced by Professor John Sheppard at Teacher's

Normal College in Chicago.

In 1923, Houghton, and Yaglou (43, 44) published the first

findings to come out of the A.S. H.V.E. laboratory at Pittsburg,

Pennsylvania. Their findings established "Lines of Equal Comfort",

defined "Effective Temperature" and determined the "Comfort Zone."

In their experiments subjects walked from one room, controlled with

respect to air temperature and humidity, to a second room. The con-

*The preceding summary has been taken from Bedford (2) and
Nevins (64) , both of whom are respected researchers in the area
of thermal comfort.

•

**A.S.H.V.E. was changed to American Society of Heating,
Refrigerating, and Air Conditioning Engineers (A.S.H.R.A.E.) in
1959.



ditions of the second room were adjusted until the instantaneous

evaluation of comfort sensations of the subjects were indentical

with their reaction to the first room. The results were then

plotted on a psychometric chart and were first known as lines of

equal warmth. The effective temperature (ET) was defined as an

arbitrary index which incorporates into a single value the effects

of air temperature, humidity, and air velocity on the thermal sen-

sations determined in the above experiments. The numerical value

of ET was taken as that value of still saturated air which would

cause equal sensations of warmth. The comfort zone was defined as

including those values of ET over which 507o or more of the people

were comfortable. On this basis for clothed, sedentary subjects

of both sexes Houghton and Yaglou (43) found the comfort zone limits

to be 62 and 69 F ET with a comfort line at 64 F ET. This comfort

line corresponds to 68 F dry bulb temperature at 45% relative

humidity.

In 1929 Yaglou and Drinker (77) revised the comfort chart by

the addition of a summer comfort zone. The comfort chart that was

published in 1929 is basically the same chart that appeared in the

1967 A.S.H.R.A.E. Handbook of Fundamentals, except that after care-

ful analysis of the original data, the winter and summer comfort

zones have been omitted. Subsequent studies by Koch and Jennings

(49) and Nevins et al . (65) indicate that for extended exposure ET

overestimates the effect of humidity on thermal comfort.

The definition of thermal comfort varies with individual re-

searchers. Glickman (31) defines comfort as "a derived state of

feeling based on a physiological balance of the individual to his



environments wherein the stimuli are of low intensity." Leopold

(52) defines comfort as the "absence of discomfort due to temp-

erature and atomospheric effects indoors." Nevins (63) states

that "criteria for thermal comfort are specifications for the in-

door environment in which an arbitrary percentage of the occupants

will express thermal comfort." Gagge (20) suggests that in addi-

tion to the obvious thermal sensations associated with thermal

comfort, the comfort sensations of the environment should be con-

sidered. THE A.S.H.R.A.E. standard (1) defines thermal comfort as

"that condition of mind which expresses satisfaction with the ther-

mal environment."

In the early 1930' s a series of investigations was initiated

at the John B. Pierce Laboratory of Hygiene, New Haven, Connecticut.

A relatively few number of subjects were exposed to many different

thermal environments. Utilizing the technique of partitional calor-

imetry, the effects of humidity, air temperature, air movement, and

and radiant temperature on the heat transfer from the human body

were evaluated (23) (72) (73) (74). A new parameter, operative

temperature, was developed by Gagge (22) at the Pierce Laboratory.

Operative temperature was defined as the uniform temperature of air

and surrounds with which the human body would experience heat losses

equal to those of the actual environment. Recently a series of

tests with subjects exposed to high- temperature sources have been

conducted at the Pierce Laboratory (26) (28) (30). The operative

temperature has been expanded to include thermal environments of

this nature. A unique device, the R-Meter is described by Gagge (29)
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which directly indicates the operative temperature of its spher-

ical sensor. The operative temperature for the human body can be

determined with corrections suggested by the author (29).

The analysis of heat transfer from the human body has been the

object of many additional studies. Significant contributions con-

cerning the radiative and conductive heat losses have been made by

Hardy and DuBois (34), Neilsen and Pedersen (66), and most recently

Colin and Houdas (12). The effective radiation area of the human

body for several body positions has been determined by Guibert

and Taylor (32), Hardy and DuBois (34), and Colin and Houdas (12).

Mitchell et al . (60) , has reported that the emissivity of the human

skin is 0.995 for both black and white skin. The evaporative (sweat)

losses of thermally neutral subjects is reported by Fanger (17)

to be proportional to their rate of heat production. The diffusion

of water vapor through the skin has been studied by Brebner (5).

Although this list is far from complete it is indicative of the

research activity in this area.

A series of environmental comfort studies have been conducted

at the A.S.H.R.A.E.- environmental test chamber after its relocation

at Kansas State University, Manhattan, Kansas. The typical proce-

dure has been to expose a relatively large number of untrained,

college age subjects to a discrete set of environments so that a

meaningful statistical analysis can be performed on the subjects 1

responses of thermal sensation. Thermally "neutral" conditions have

been established for persons engaged in several distinct levels of

activity (57) (65). It was the purpose of a subsequent related study



to measure these metabolic rates (58). It was at the A.S.H.R.A.E.

laboratory that Fanger (17) compiled the physiological data that

serves as the basis of the "Basic Comfort Equation." Fanger 's

comfort equation includes all the uniform environmental factors

which affect heat transfer from the human body. With additional

refinement it will be a valuable tool for specifying conditions of

thermal neutrality. In a recent study conducted by McNall et_al.

(55) the relative influence of air temperature was found to be 1.4

times as "important" as mean radiant temperature for the thermal

comfort of sedentary subjects. A "Thermally Neutral Zone" was

developed that included combinations of air temperature and mean

radiant temperature that would predictably elicit thermal sensations

of "neutral."

The use of radiant panels for indoor heating or cooling per-

forces the exposure of the occupants to an asymmetric radiant field.

If the asymmetry is too severe, even the thermally "neutral" occu-

pants may experience noticeable discomfort. Fanger (17) states

that the satisfaction of his comfort equation is only a necessary,

not a sufficient, condition for thermal comfort in environments

of this nature. Chrenko (8) (9) has investigated the effects of

radiant panels on the subjective impressions of "freshness" and

"pleasantness." Chrenko (8) reported that persons found significant

discomfort from exposure to heated panels when the mean radiant'

temperature at head level was 4 F higher than the balance of the

enclosure surface temperatures. However the comfort response of

subjects exposed to enclosure surfaces separated 12 F was found by

McNall et al . (56) to not be significantly different than the comfort

response of subjects exposed to uniform enclosure temperatures.
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Kaletzky (47) and Morse (61) have found that subjects cooled by

exposure to cool panels in a hot humid environment did not find the

environment acceptable. B«5je et al . (4) reports that repeated ex-

posure to cold panels can produce noteable stiffness and soreness

of exposed tissue.

In view of the somewhat incomplete and contradictory conclu-

sions on the effects of an asymmetric radiant field on human com-

fort, it was felt to be of practical value to conduct further re-

search in this area. It is the purpose of the present study to

simulate the types of asymmetric radiant fields that would be of

greatest practical value to the environmental engineer and determine^

their effect on both the thermal and comfort sensations of the par-

ticipating subjects.



METHODS

EXPERIMENTAL DESIGN

It was the purpose of this study to determine the effect of

an asymmetric MRT on the thermal and comfort sensations of seden-

tary subjects. The ballot used in obtaining the subjects' thermal

sensations is shown in Figure (1). This ballot consists of seven

subjective responses which the subject may use to describe his

thermal sensation at the time of voting. With the comfort ballot,

Figure (2), the subject was able to describe his comfort sensations,

at the time of voting, by one of the five responses listed. Both

ballots have been used in previous studies (55) (56). The ballots

were essentially given in pairs, at predetermined intervals during

testing. The exact procedure for ballot distribution and collection

is described in Procedure, page 31. Each pair of thermal and com-

fort ballots was considered to be a single vote describing the sub-

jects' thermal comfort at the time of voting.

The types of asymmetric MRT most generally encountered are those

where spaces are heated or cooled by either wall or ceiling panels.

For the results of this study to be of practical value it was ob-

vious that several distinct series of tests were needed.

Cool Wall Series

In this series of tests the long west wall of the test chamber

was maintained at a temperature 20 F lower than the balance surface

of the test chamber. The experimental combinations of MRT and air

temperature investigated are shown in Figure 3 and Table (1) lists

11
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Subject

Name No

.

Circle the number that describes how
you feel:

1. Cold

2. Cool

3. Slightly Cool

4. Neutral

5. Slightly Warm

6. Warm

7. Hot

Figure 1. The ballot used to evaluate the thermal
sensation response of the subjects.
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Subject

Name No .
_

Circle the letter that describes
your feeling:

A. Comfortable

B. Slightly Uncomfortable

C. Uncomfortable

D. Very Uncomfortable

E. Intolerable

Figure 2. The comfort ballot used to evaluate the
comfort sensation response of the subjects
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Table 1 .

Experimental Conditions of Test .Chamber Surface Temperatures and Air

Temperature Investigated

Cool Wall Series Hot Wall Series

Cond. Air Chamber Surface Temp. Cond.
No.

Air
Temp

.

Chamber Surface Temp.

No. Temp

.

West Wall Balance West Wall Balance

(?) (F) (F) (F) (F) (F)

1 84 60 80 1 78 130 55

2 74 66 86 2 84 130 55

3 90 65 86 3 78 130. 62

4 70 58 78 4 74 130 71

5 78 56 76 5 90 130 76

f 82 76 96 6 82 130 85

7 78 61 81 7 70 130 61 •

8

9

10

78

84

90

48 70

48 70

65 85

•

Cool Ceiling Series

Cond.

No.

Air
Temp.

Chamber Surface Temp.

Ceiling Balance

(F) (F) (F)

Control Series 1

2

79

79

52 80

51 80Cond. Air Chamber Surface Temp

No. Temp.

(F) (F)

1

2

78

78

78

78

Hot Ceiling Series

Cond.
No.

Air
Temp.

Chamber Surface Temp.

Ceiling Balance

3 7S 78 (F) (F) (F)

1 79 130 62

2 80 130 61

Water Vapor Partial Pressure : 0.435 in Hg, but reduced when necessary
to prevent moisture formation on cooled chi mber sv,irfaces
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the air and chamber surface temperatures for each Cool Wall tests.

Five subjects, facing north, were seated such that their radiation

shape factor to the west wall was 0.20, assuming the subjects to be

of spherical geometry with centers two feet above floor level. The

work of McNall et al . (56) reports that this is a valid assumption.

Figure (A-l) , Appendix (A), shows a plan view of the seating arrange-

ment used in this series. The photograph of Figure (4) pictures a

group of subjects during testing. A shape factor of 0.20, subject

to cooled wall, was considered to be about the most extreme exposure

one would encounter in typical situations. A Honeywell two-sphere

radiometer (69), described later, used to measure MRT, was also

placed so that its shape factor to the long wall was 0.20.

A linear statistical model was employed to relate the thermal

sensation responses of the subjects to the independent variables

considered. The model was:

Y - Y + bi(t -t ) + b 9 (t -t Ja a 2
X mrt mrt

where

:

Y = estimated thermal sensations vote

Y = mean thermal sensation vote

bl' D 9
= partial regression coefficients

t a = the indenpendent variable representing dry bulb air

temperature (t = mean t )

t = the independent variable representing the MRT as mea-
mrt r r o

sured by the Honeywell radiometer (t r mean t )J J mrt mrt
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An F test, described by Chow (7), was then used to determine if the

resultant regression plane derived for the Cool Wall series (asymmetric

MRT) and the regression plane reported by McNall et al . (55) derived

from uniform MRT data actually represent the same regression plane.

A non- significant value of F lead to acceptance of the null hypotheses,

that both groups of thermal sensation votes belong to the same re-

gression plane, and rejection of the alternative hypothesis, that the

two equations represent different regression planes. Availability

of the original data of McNall et al . (55) made possible this com-

parison of regression planes.

As stated in the introduction it was a primary objective of

this study to determine the effect of an asymmetric MRT on subject

comfort. Previous studies (20) (55) (56) have shown that any de-

viation from thermal neutrality increases the probability that a

subject will experience some degree of discomfort. It was felt
.

that only those comfort votes accompanied by a thermal sensation of

"neutral" would be meaningful in determining what effect, if any,

an asymmetric MRT has on subject comfort. The comfort votes that

met this requirement were than classified either "comfortable" (vote

of A) or "uncomfortable" (vote of B, C, D, or E) .
This same

criteria and classification of votes was performed on the thermal

comfort votes of subjects in an environment with uniform chamber

surface temperatures equal to air temperature. It was felt that a

uniform environment would cause minimal subject discomfort for the

testing procedure and would serve as a basis .for evaluation of the

effect of asymmetric MRT on subject comfort. The two-way class-

ification of the comfort votes for a given condition of asymmetric
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MRT and of the comfort votes for the uniform environment form a

2X2 contingency table. A chi-square test was then used to de-

termine if the two environments had significantly different prob-

abilities of producing subject discomfort.

Seven combinations of asymmetric MRT and air temperature were

selected for experimental points. The results of McNall et al . (55)

were consulted to choose combinations that would on the average

elicit thermal sensation votes of 3-5. Based on the results of

previous studies (55) (56) (57) an estimate of the variation of •

thermal sensation responses could be predicted. It was felt that

exposing ten subjects to each of seven experimental points would

provide sufficient data so the previously described comparisons could

be made. Thirty additional subjects were eventually used in the

Cool Wall series in order to better understand what was originally

regarded as unexplainable results.

Hot Wall Series

The experimental design of the Hot Wall series was essentially

the same as that of the Cool Wall series. However the long west

wall of the test chamber was always maintained at 130 F, with the

balance of the chamber surfaces chosen such that approximately the

same experimental points of the Cool Wall series were obtained.

The experimental combinations of MRT and air temperature are shown

in Figure (3) and Table (1) lists the air and chamber surface temp-

eratures for each Hot Wall test.

A slightly modified comfort ballot, Figure (5), was used during

the final three votes of each test of the Hot Wall series. If a

subject circled a comfort response other than A, "comfortable,"
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•Name No

.

Circle the letter that describes your feeling

A. Comfortable

,B. Slightly Uncomfortable

C. Uncomfortable

D. Very Uncomfortable

E. Intolerable

If you did not vote A circle the reasons that
cause your discomfort:

1. The room is too cool.

2. The room temperature is changing.

3. One side of my body feels warmer than the
other (or cooler)

.

4. The room is too warm.

5. Other (explain)

Figure 5. The modified comfort ballot used to determine
the cause of any subject discomfort.
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he was instructed to circle the reason(s) which contributed to his

discomfort. Four possible reasons were listed, with the subject in-

structed to describe the, cause of his discomfort if it was differ-

ent than those listed. It was hoped that the use of this ballot

would determine the cause of any discomfort.

Cool and Hot Ceiling Series

In this series of tests subjects were exposed to a heated or

cooled ceiling. The shape factor for all subjects to the temperature

controlled panels of the ceiling was approximately 0.12. Figure

(A-2) , Appendix (A), shows a plan view of the subjects' seating

arrangement in the chamber.

Only the comfort sensations were analyzed in this series, al-

though both ballots were necessarily used. In order to obtain an

adequate number of comfort votes for the previously described chi-

square test, combinations of MRT and air temperature were chosen

that were predicted to elicit thermal sensations of "neutral."

The experimental conditions of the Cool and Hot Ceiling series are

shown in Figure (3) and the air and chamber surface temperatures

for each ceiling test listed in Table (1).

Control Series

In this series subjects were exposed to an environment of

uniform surface temperatures equal to air temperature. 78 F was

selected, based on the results of Nevins et al . (65), so that a

predicted maximum of thermal comfort votes with "neutral" thermal

sensations would be obtained. The comfort sensations of votes meet-
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ing this criteria were then used in the chi-square test to deter-

mine if the asymmetric MRT in question produces a statistically

significantly higher probability of subject discomfort than does

a uniform environment. Three tests, with twelve subjects each,

were conducted.

The partial pressure of water vapor in the test room was

generally maintained at 0.435 inches of mercury (45% RH at 78 F,

dew point temperature of 55 F) . This was done to minimize vari-

ation in evaporative heat losses by diffusion of moisture from

the body and latent respiratory heat losses. For a give metabolic

rate both are reported (6) (54) to be dependent upon the water va-

por pressure gradient from the skin to the air. It was felt more

important for the purpose of this study to expose subjects to sur-

faces somewhat cooler than 55 F than strict adherance to a con-

stant water vapor partial pressure. Therefore, where necessary,

the water vapor partial pressure was reduced to prevent formation

of moisture on cooled chamber surfaces. The finding of Nevins

et. al . (65) show air moisture content for the conditions of this

study has little effect on a person's thermal sensation, further

justifying this decision.

Air velocity in the occupied area of the test chamber was

approximately 20-30 f.p.m., the illumination at desk top was 133

foot candles and the noise level was found to be 68 decibels on the

C-scale of a standard sound-level meter. Insofar as possible

these values were held constant throughout all testing. MRT was

measured with the Honeywell two-sphere radiometer (69) . It should

be reemphasized that the MRT indicated by the Honeywell radiometer

represents an integreated average of enclosure surface temperatures
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as "seen" by the radiometer. Thus a highly asymmetric radiant

field can be represented by a single value of MRT.



FACILITIES

This research project was carried out at the Institute of

Environmental Research, Department of Mechanical Engineering,

Kansas State University, Manhattan, Kansas.

All testing was performed in the Environmental Test Chamber

located at the Institute. This facility which was originally

located at the ASHRAE Laboratory at Cleveland, Ohio, was moved to

Kansas State University and placed in operation in 1963. The

chamber is 12 feet wide, 24' feet long, and has a ceiling of ad-

justable height. For all tests of this study the ceiling height

was maintained at eight feet. A floor plan view of this chamber

and adjoining facilities is shown in Figure (6).

All interior surfaces of the test chamber are aluminum panels

Attached to the exterior of these panels is copper tubing through

which heated or chilled water may be circulated.

By controlling the temperature of the circulating water, panel

surface temperatures can be maintained at any temperature within

the range of 40-150 F. Four separate circuits of tubing allow the

ceiling, floor, and walls of the chamber, or parts thereof, to be

controlled independently of one another.

Conditioned air enters the test chamber through perforated

inlet strips located between the ceiling panels and exits through

concealed slots around the perimeter of the floor. Separate heat-

ing and cooling coils located in the main ductwork are capable of

maintaining chamber air temperatures of 40-150 F. A capillary

24
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air washer, for humidification, and a sorbent dehumidifier are

capable of maintaining the test chamber at relative humidities

of 10% to 95%.

A 15 hp compressor supplies an insulated 500 gallon chilled

liquid supply tank. The chilled liquid (water) is circulated

through the tank and heat exchanger by a pump which also provides

adequate mixing in the tank. The temperature of the supply tank

liquid is controlled by a pnuematic thermostat. A smaller 220

gallon insulated hot- liquid storage tank is provided and maintained

with steam supplied by the University boilers. Utilizing a system

of pnuematically controlled mixing valves, liquid at the desired

temperatures can be circulated through the four independent panel

circuits. The entire system is remotely and automatically controlled

at the control room located adjacent to the pre-test room (Figure 7).

Both electronic and pneumatic controls are used in maintaining the

test chamber at the selected conditions. Both the air and liquid

circuits are represented schematically on the walls of the control

room. Lights located on this display indicate the equipment that

is in current use.

Test chamber air and wet bulb temperature are measured with

a motorized psychrometer and can be monitored continuously in the

control room. An indicating potentiometer is used to measure

chamber surface temperatures plus other air and liquid temperatures

in the control circuits. A physiological monitoring room is located

above the control room. Instrumentation for monitoring subject

body temperatures, and heart rate is available. Operant condition-
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ing and programming equipment is also located in this room.

A more detailed description of the original facility in

Cleveland including construction, design, piping circuits, elect-

ronic controls, etc., is available from Tasker, (70). A descrip-

tion of the present facility was included in the recent paper by

Nevins , et al . (65).

MRT was measured in the test chamber by means of a Honeywell

2-sphere radiometer (69). The radiometer has two spheres, one

gold-plated and polished, while the other sphere has a blackened

surface. Within each sphere are electric resistance heaters which

supply the power necessary to maintain both spheres at a common,

thermostatically controlled temperature higher than air temperature.

Since the spheres are geometrically identical, operate at the same

temperature, and are located in the same environment, the conduction

and convection heat losses for the spheres are equal. Hence the

difference in heat inputs to the two spheres is equivalent to the

difference of their radiation heat losses. The radiometer integrates

the difference in sphere heat input during a five minute interval.

Knowledge of this heat input difference and the set-point temperature

of the two spheres allows for evaluation of the non-directional mean

radiant temperature, MRT, from convenient operating curves accompany-

ing the radiometer. The average error has been measured as less than

.4 F (48). The radiometer was placed in a position similar to that

of one of the subjects. Its location for the Cool and Hot Wall series,

and both Ceiling series are shown in Figures (A-l) and (A-2) , Appendix

(A) , respectively.



PROCEDURE

All tests were conducted in the afternoon or evening during

the period January 1967 to October 1968 inclusive. Subjects

were selected from college age applicants and were randomly

assigned to a testing session. The subjects were naive in the

practice of voting on the thermal sensation and comfort sensa-

tions that were employed in the tests. It was felt that these

interpretations of the various responses on ballots were more

representative of the general population than subjects which had

been specially trained. No subject was allowed to participate

in more than one test of any series. A registered nurse and an

assistant served as monitors for each testing session. They

recorded data taken in both the pre-test room and the test chamber.

The subjects were given cotton twill uniforms to wear during

the testing. The underwear consisted of brassieres and underpants

for the women and shorts for the men. The subjects wore cotton

sweat socks, but no shoes. The insulation value for the complete

ensemble was approximately 0.6 clo. Figure (4) shows the subjects

dressed in this fashion.

The subjects remained in the pre-test room approximately

one-half hour before entering the test chamber. During this time

the nurse obtained each subject's height, clothed weight, oral

temperature and pulse rate. No subject with an oral temperature

greater than 99 F was allowed to participate in the testing.

29
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A summary of physical data for the subjects used in testing is

shown in Table 2. Additional information was taken (see Appendix E)

which might aid in explaining unusual subject response, i.e.

amount of alchol consumed in" the last 24 hours, amount of sleep

and work etc. Temperature of the pre-test room was maintained

at approximately 78 F and 45% RH. for all tests. Just prior to

entering the test chamber the subjects received an oral indoctr-

ination explaining the purpose and procedure of the test (see

Appendix B) . While in the pre-test room the nurse randomly

assigned each of the subjects to one of the numbered seating

positions in the test chamber.

Table 2

Physical Characteristics of Subjects Participating in the

Cool and Hot Wall Series

Sex
No.
Subj

of
s.

Age
(yr)

Height
(in)

Weight (lb) Surface Area
(nude)

Male

Female

85

85

19.9 z 1.8

19.8 : 1.8

r*
69.6 = 2.2

64.5 : 7.6

161.8 = 17.5 20.4 : 1.3

132.5 : 17.8 17.7 - 1.4

* Mean
** Standard deviation
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After pre-test preparations were completed the subjects were

taken into the test chamber adjacent to the pre-test room. Each

subject was seated in the class-room chair to which he had been

assigned. Two 1-foot square, two inch thick pads were provided

to each subject; one to sit on, the other to place his feet on

preventing direct contact of the subject's stocking feet and the

test room floor.

All testing sessions were of three hours duration. The

subjects were allowed to study, read or engage in limited conver-

sation during testing. However the subjects were instructed not

to discuss their votes so that independent opinions of thermal

comfort would be obtained. The subjects were allowed to drink

the supplied tap water ad lib, and the amount consumed by each

subject was recorded. Care was taken to prevent any of the sub-

jects from sleeping during testing.

The thermal sensation ballot was presented individually to

each subject immediately after he had taken his seat in the test

chamber. After sufficient time for voting, the thermal sensation

ballots were collected and approximately three minutes later the

subjects were given the comfort sensation ballot. After collect-

ing the comfort sensation ballots the nurse entered the votes on

the data sheet. Each pair of thermal and comfort votes thus

collected from each subject was considered to be one single vote

describing the subject's thermal and comfort sensations at the

time of voting. The same procedure was repeated at thirty minute
intervals thereafter, resulting in seven votes per subject, each
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indicating the thermal and comfort sensation of the subject at the

time of voting.

After the final votes had been collected the subjects re-

turned to the pre-test room. After their final weight had been

taken the subjects were paid and allowed to leave.



RESULTS

The purpose of this study was to determine the effect of an

asymmetric MRT on the thermal and comfort sensations of sedentary

subjects. Each vote of thermal comfort given by a subject con-

sisted of an evaluation of his thermal sensation and his comfort

sensation at the time of voting. Figure (8) shows the percentage

of thermal comfort votes with a comfort sensation response of A,

"comfortable," for thermal sensation responses of 3 through 5

("slightly cool" through "slightly warm") for the various series

conducted. The extremes of the thermal sensation scale were trun-

cated because of the relatively small number of votes of thermal

sensation for these responses. Figure (8) illustrates that sub-

jects feeling "slightly cool" tend to have a higher probability

of feeling "comfortable" than those feeling "slightly warm" in

similar surrounds. It is also apparent from Figure (8) that the

subjects participating in the Hot Wall series appear to have a

generally lower probability of feeling comfortable than the sub-

jects of the other series investigated.

It was found that the response of comfort sensation of thermally

"neutral" subjects participating the Cool Wall, Cool Ceiling and

Hot Ceiling series was not significantly different than that of the

thermally "neutral" subjects of the Control series. However, the

thermally "neutral" subjects participating in the Hot Wall series

displayed a statistically significantly lower probability of feeling

"comfortable" than the thermally "neutral" subjects of the Control

series. These findings are summarized in Table (3).

34 .
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Comfort Sensation Response of Thermally "Neutral" Subjects

Series

Comfortable Not Comfortable
(B,C,D, or E)

Total

VotesNo. of %
Votes

No. of 1
Votes

Control 89 79.5 23 20.5 109
+

Cool Wall 135 87.1 20 12.9 155
+

Hot Wall 47 59.5 32 40.5 79

Cool Ceiling 44 88.0 6 12.0 50

Hot Ceiling 52 78.8 14 21.2 66

Chi-Square
++

Values

Series Control S eries

Cool Waif 2.306

Hot Wall
+

8.059
**

Cool Ceiling 1.178

Hot Ceiling 0.077

*+
Based on first four votes
Corrected for continuity
p < .10

** p ^ .05
vVvViV p < .01
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The modified comfort ballot, Figure (5), used for the final

three votes of thermal comfort during the Hot Wall series, showed

that 60% of the thermally "neutral" subjects that voted "not com-

fortable" indicated that the sole cause of their discomfort was

due to one side of their body feeling warmer than the other.

Another 157. felt that uneven body surface temperature was a con-

tributing factor to their discomfort, while 25% gave a reason

other than uneven body temperature. Table (4) summarized these

findings. Although these findings are based on a relatively small

number of votes, it appears that uneven body temperature was a

significant cause of the discomfort of the thermally "neutral"

subjects of the Hot Wall series.

•

TABLE (4)

Results of the Modified Comfort Ballot for Thermally "Neutral"Subjects Participating in the Hot Wall Series

No. of
Votes With
Thermal
Sensations
of "Neutral"

34

Votes with Comfort
Sensation Response

of "Not Comfortable"
(B,C,D, or E)

No.

20 58.8

Indicated Cause of
Discomfort

*»

3 3 Other

Alone Contributing Than 3

12

(o?
?
cSoLr)>"°

ne SidS ° f my b°dy feels warmer <*« the other
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Table (4) indicates that only 41.2% of the thermally "neutral"

subjects voted comfortable, a significantly lower percentage than

shown in Table (3) for the Hot Wall series. It was felt that the

modified comfort ballot, Figure (5), may have increased the prob-

ability of a subject feeling not comfortable by suggesting causes

of discomfort which might otherwise have been ignored. For this

reason only the first four votes of thermal comfort, which did

not employ the modified comfort ballot, were used in the analysis

of comfort sensations for the Hot Wall series. Only the first four

votes of thermal comfort were considered in the comfort sensation

analysis of the Cool Wall series so that the number of thermally

"neutral" votes would more nearly equal the number obtained in the

Control series.

A second major purpose of this study was to determine if the

thermal sensations evoked by a given condition of asymmetric MRT

was significantly different than the relation reported by McNall,

etal. (55) for a uniform MRT. The regression equations relating

thermal sensation response with the independent variables of air

temperature and MRT, for the Cool Wall and Hot Wall series are

listed below. In order to determine if these regression planes

were significantly different from those developed for a uniform

MRT it was necessary to derive the regression equations based on

pooled data. These resultant regression equations are also listed.

Table (5) summarizes the supportive statistics associated with

following regression equations.
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Uniform MRT

Ym+f = 4.00 + 0.111(t a-78.88) + 0.077(trnrt-81.01) (1)
N = 160

Ym = 4.03 + 0.099(t„-78.88) + 0.066(tmrt.-81.01) (2)m
N = 80

Y£ = 3.99 + 0.122(t -78.88) + 0.088(tmrt-81. 01) (3)
N = 80

a

where

:

Y^.£ = estimated thermal sensation vote of college-age
males and females for a given combination of air
temperature and 'MRT

Ym = estimated thermal sensation vote of college-age
males for a given combination of air temperature
and MRT

Y,r = estimated thermal sensation vote of college-age
females for a given combination of air temperature
and MRT

t = the independent variable representing air dry bulb
temperature, F

t = the independent variable representing MRT (measured
by the Honeywell radiometer), F

N = number of subjects

Cool Wall Series

Ym+f = 3 -97 + 0.121(t
a
-80.69) + 0.056(tmrt

-80. 77) (4)

Ym = 3.90 + 0.076(t -80.77) + 0.040(tTTirt.-80.83) (5)m
N = 50

Y. = 4.03 + 0.165(t -80.61) + 0.072(t -80.70) (6)f n = 50 mrt
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Hot Wall Series

Y_. f = 4.49 + 0.124(t -79.53) + 0.035(tmrr-79.94) (7)
N = 70 .

Y = 4.44 + 0.054(t -79.49) + 0.058(tmrt-79.97) (8)m N = 35

Yf = 4.54 + 0.194(t P -79.57) + 0.009(t .-79.90) (9)
• N = 35

mrC

Uniform MRT and Cool Wall Series

Ym+f = 3.99 + 0.110(t -79.57) + .073(tmT..-80.92) (10)
N = 260

Ym = 3.98 + 0.085(tP -79.60) + 0.058(^.-80.94) (11)m
N = 130

a mrc

Yf = 4.01 + 0.135(t„-79.54) + 0.087(tmrt-80.89) (12)£
N = 130

a rt

Uniform MRT and Hot Wall Series

Y_. £ = 4.15 + 0.115(t_-79.07) + 0.064(tmr .-80.68) (13)
N = 230

Y =4.15 + 0.088(t -79.06) + 0.058(tmrt--80.70) (14)m N = 115

Yf =4.16 + 0.141(t -79.09) + 0.071(t -80.67) (15)1
n = 115 a mrt

*
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The regression analyses were performed on the average of the

votes of thermal sensation for each subject during the last hour

of exposure. This averaged vote was felt to be a better indication

of a subjects evaluation of his thermal sensation than any single

response. Previous studies (56) (58) indicated that equilibrium

,is reached before the third hour.

An analysis of variance was performed on the thermal sen-

sations of subjects of the Cool Wall and Hot Wall series. The

results, summarized in Appendix C, show that the thermal sensa-

tion responses were independent of seating position for both series,

Figure (9) shows lines representing predicted thermal sensa-

tions of 4, "neutral," for the different test series superimposed

on the "Thermally Neutral Zone" proposed by McNall, et al . (55).

The results are based on the regression equations developed for

males and females combined.

The regression equations of Table (5) indicate that:

1. The mean thermal sensation for the subjects par-

ticipating in the Hot Wall series was approximately

one-half vote higher than that of the subjects par-

ticipating in the Uniform MRT although mean MRT's

and air temperatures were nearly equal for both

tests.

2. The thermal responses of females participating in

the Hot Wall series were apparently insensitive to

changes of MRT for the range of MRT investigated.

Similarly the thermal sensations of males and fe-
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COOL WALL SERIES

UNIFORM MRT, MCNALL- ET. AL. (55)

/

'V

/

70 75 -SO So 90

DRY BULB TEMPERATURE, F

95

Figure 9, Lines of Predicted Thermal "Neutrality" for
the Males and Females of the Cool and Hot
Wall Series and the Uniform MRT Series



46

males combined of the Hot Wall series were in-

dependent of changes of MRT at the 5% probability

level. However the coefficient associated with

MRT was considered in the construction of the

thermally "neutral" line of Figure (9) since it

was felt further testing would expose a significant

effect of MRT on thermal sensation.

3. In general, the ratio of the coefficient of the

independent variable air temperature to the coeffi-

cient of MRT of the regression equations was higher

for both the Cool Wall series and Hot Wall series

than for the Uniform MRT.

4. The thermal sensation of females was more dependent

on air temperature than was the males. With the

exception of the Hot Wall series, females' thermal

sensation was also more highly dependent on MRT

than was the males.

5. The regression equations derived for the Cool Wall

series and the Hot Wall series were less efficient

than that of the Uniform MRT in predicting thermal

sensations. This is evidenced by the generally

lower correlations coefficients and higher standard

error of estimate associated with the former equa-

tions relative to the latter equations.
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6. All regression equations for predicting the thermal

sensation response of females displayed a larger

correlation coefficient than for the males; however,

the standard error of the predicted thermal sensation

was always greater for the females than the males.

To test the equality between sets of coefficients in two

linear regressions, the sum of squares of residuals assuming the

equality, and the sum of squares without assuming the equality,

are computed. The ratio of the difference between these two sums

to the latter sum, adjusted for the corresponding degrees of free-

dom is distributed as the F ratio under the null hypothesis, i.e.

both sets of coefficients equal. The computed F's and decisions

regarding the null hypothesis are shown in Table (6)

.

The results of Table (6) show that using the 5% significance

level, only the regression equation developed for males and females,

and females alone for the Cool Wall series are not significantly

different from the corresponding equations applicable for a uniform

MRT. Also, the regression equations for males and females were

found to be significantly different except in the case of a uniform

MRT.



Table 6

Computed F Ratios in Testing the Equality of Thermal Sensation
Regression Planes
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H
Q
(The two regression planes are equal) vs. Ha (planes not Equal)

Regression Equations Sex
Tested for Equality

F Decision

Uniform MRT and Cool Wall M+F 2.47 •Accept HQ

M 3.68** Reject EnJ o

F 1.56 Accept HQ

Uniform MRT and Hot Wall M+F 8.00*** Reject H

M 4*61*** Reject H

6.83*** Reject H
Q

Regression Equations Se"ries
Tested for Equality

F Decision

Males and Females Uniform MRT 1.45 Accept H

Cool Wall 9.07 Reject HQ

Hot Wall 5.50 Reject HQ

* = Significant at the 5% probability
** = Significant at the 1% probability

level
level



DISCUSSION

The energy balance for a person which describes the processes

of energy production, storage, and transfer may be represented by

the following equation:

M = E : R t cv i CD ± s i w ( 16 )

where

:

M = Rate of internal heat production

E = Rate of evaporative heat loss

R = Rate of radiative heat loss or gain

Cy= Rate of convective heat loss or gain

Cjy= Rate of conductive heat loss or gain

S = Storage Rate, change in internal energy

W = Rate of external mechanical work

All terms are considered to be per unit Du3ois surface area of the

body.

The subjects for all tests series were sedentary, therefore,

the rate of energy production, M, can be taken as constant. The

evaporative heat loss, E, consists of:

1. Insensible Perspiration; Evaporation of water from the

respiratory tract plus the diffusion of water vapor

through the skin.

2. Sensible Perspiration; Sweat secretion from the sweat

glands.
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Of these, only sensible perspiration is under the thermoregulatory

control of the human body. For sedentary subjects near thermally

"neutral" conditions regulatory sweating is assumed equal to zero.

Insensible perspiration by diffusion is reported by Brebner (5) to

be proportional to the difference between the saturated water vapor

pressure at the skin temperature and the partial pressure of water

vapor of the air. The evaporation of water from the respiratory

tract is reported by Fanger (17) to be a function of energy produc-

tion rate, M, and the water vapor partial pressure of air. Since

the water vapor partial pressure of air was maintained essentially

constant for all tests and energy production, M, was constant, the

insensible perspiration and hence total evaporative loss, E, of

equation (16) can be regarded as constant for both the Cool and Hot

Wall series.

For a sedentary subject in an environment near thermally

"neutral" conditions the rate of storage, S, is essentially zero

after two hours of exposure. Also the heat transferred by conduc-

tion is generally assumed zero because of the relatively small area

of the body in direct contact with other surfaces and the typically

low conductivities of such surfaces. Rearranging, the simplified

form of equation (16) applicable for the conditions of testing be-

comes

:

M-E=+R+Cv (17)

Based on the foregoing assumptions the left-hand side of equation

(17) can be taken as constant for the subjects of this study.
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The radiative energy exchange is represented by:

R = fr fcl e <r [Ttc i + 460)4 - (^ + 460)^j (18)

where

:

fr = the ratio of the effective radiation area of the

clothed body to the nude surface area (DuBois area)

fcl = the ratio of the clothed body surface area to the

nude surface area (DuBois area)

e = the emissivity of the outer surface of the clothed

body

a- _ the Stephan-Boltzmann constant (BTU/hr-ft 2-^)

t c i . the average temperature of the outer surface of the

clothed body (F)

tL„.«.= the mean radiant temperature of the environment (F)
mrt r

The linear coefficient of radiation heat exchange is defined by:

R = fcl frhr (tci-tmrt ) (BTU/hr-ft2) (19)

where

:

hr = linear radiation heat transfer coefficient (BTU/hr-ft 2-F)

Although hr is only an approximation, for the range of conditions

investigated the error incurred by its use is small.

The convective heat transfer is given by:

CV = fclMtcl-ta) (BTU/hr-ft 2
) (20)

where

:

hc = the convective heat transfer coefficient (BTU/hr-ft 2 -F)

ta = the air dry bulb temperature (F)
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The sensible heat loss, R + Cy, can be equated to the sensible

heat transfer from the surface of the skin to the outer surface of

the clothed body:

R + CV= Ct s - t c i ) (21)

.88 Icl

where

:

t s _ average skin temperature (F)

Ic l = total resistance to heat transfer from the skin to

the outer surface of the clothed body (clo)

Fanger (17) has found that for thermally "neutral" subjects, t"s ,

the average skin temperature, is a function of metabolic rate alone,

hence constant for sedentary subjects.

Substituting for R and Cy, equation (17) can now be written as:

M - E = frfclhr(tc l-tmrt ) + fc ihc (tcl-ta ) (22)

(BTU/hr-ft 2
)

If Fanger' s (17) assumption, that the average skin temperature

of thermally "neutral" subjects is a function of metabolic rate

alone, is valid, then the relation of air temperature and MRT nec-

essary for thermal "neutrality" can be obtained from equation (22).

From equation (21) for constant R + Cy, necessary to balance equation

(22), t c x is seen to be constant for constant ts . Differentiation

of (22) yeilds:

mrt = - c

dt f h ( 2 3)
a r r

Since the slope of the functional relation of air temperature and

MRT necessary for thermal "neutrality" is constant, the following
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form is allowed:

AW. = - *mrt = - ~c (24)

Ata frhr

That is to say if the air temperature were elevated 1 F then a

corresponding reduction in MRT by an amount (h /frh )F would be

required to keep a person in thermal "neutrality". The validity

of assuming a person's thermal sensations can be predicted on the

basis of the foregoing energy balance analysis can be determined

from the statistical analysis performed on the actual responses of

thermal sensations obtained from the subjects during testing. The

statistical model employed was of the form:

Y = Y + b! (ta-ta ) + b 2 (tmrt -trnrt ) (25)

For the conditions of MRT and air temperature, which would predic-

tably evoke equal responses of thermal sensation, the two are re-

lated by:

A
mrt ~ —

-

(26)
Ata b2

That is to say, a person in a given environment would predictably

experience no change in thermal sensation if an elevation of 1 F

were accompanied by a simultaneous reduction in MRT of (b 1 /b 2)F.

Table (5) summarizes the values of b]_/b 2 for the Cool and Hot Wall

experimental series as well as for the Uniform MRT results reported

by McNall, et al . (55).

It is necessary to determine a representative value of

hc /frhr for the conditions encountered during testing. hr is
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determined by the following:

(27)ii
r

= ecr (t cl + 46o) 4 - (tmrt + 460) 4

l*el " tmrt)

By using values of S6 F and 60 F for t c ]_
and MRT respectively,

with the emissivity of the outer surface of the clothed body taken

as 0.95, the numerical value of hr was found to be:

h _ (0.95H0.1714 10"8
) [(86+460)

4
-(80+460)

4
] ::: 1#o4

(86 - 80)
For the range of MRT investigated the maximum error incurred in

using the linear radiative heat transfer coefficient is approximately

3% (See Appendix E)

.

The value of fr , the ratio of the effective radiative area to

the nude surface area is a function of body position and clothing

ensemble. Winslow, Herrington and Gagge (72), using a heat balance

method, report values of fr ranging 0.7 to 0.74 for nude, semire-

clining subjects. Guibert and Taylor (32), employing a photographic

method, report a value of 0.7 for seated, nude subjects. Neilsen

and Pederson (66) found fr to be 0.6 for seated clothed subjects.

Because of the close similarity of subject's position and attire of

the present study and that of Neilsen and Pederson (66) the value

of 0.6 was taken for fr , with the resultant numerical product of

fr and hr being:

frhr = 0.624 (BTU/hr-ft2-F)

There have been several studies to evaluate the coefficient

of convective heat transfer, hc . Winslow, Gagge, and Herrington
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(72) report the following formula for hc :

hc = 0.152 v-5 (BTU/hr-ft 2-F) (28)

where

:

v = air velocity, fpm

In a recent study by Colin and Houdas (12) , the following formula

is recommended

:

hc _0. 472 + 0.045 v 67 (BTU/hr-ft 2-F) (29)

This formula accounts for free convection as well as forced convec-

tion since at low air velocities hc = 0.472. For free convection

h c is proportional to the temperature difference t c ]_
- t a , which is

probably larger for the nude experimental subjects used by Colin and

Houdas (26) than the clothed subjects of the present study. Evalua-

tion of hc by equations (28) and (29) , with air velocity taken as

25 f.p.m., results in numerical values of 0.760 and 0.860 respect-

ively. Using the average, hc is taken as:

h c = 0.810 (BTU/hr-ft 2-F)

The ratio, hc /frhr , representative for the conditions of the present

study is found to be:

h
c
/frhr

=1.30

It was found that the regression planes relating thermal sen-

sations with air temperature for the males and for the females of

the Uniform MRT were not significantly different, hence the regression

plane described by equation (1) for males and females combined is

also applicable for either sex alone. The ratio of b^/b2 of 1.43 is
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in relatively good agreement with the value assumed for h c /frhr>

especially considering the high variability generally associated

ith the subjective assessment of one's thermal sensation. However

based on the value of b]_/b2 it appears that the value of hc> relative

to frhr , may have been underestimated.

The results of the regression analysis performed on thermal

sensations of subjects participating in the Cool Wall series show a

value of bi/b 2 of about 2.2. Although this ratio is higher than that

observed for the Uniform MRT series, the regression planes for males

and females combined of the two series were found to be not signif-

icantly different. Therefore, Equation (10) is applicable, with

bi/b2 equal to 1.51 which, again, shows relatively good agreement

with the value taken for hc /fi-hr .

Because of the apparent equality of the regression planes de-

veloped from the votes of thermal sensations of the subjects of the

Cool Wall series and the Uniform MRT series, the "Thermally Neutral

Zone", Figure (8), proposed by McNall et al . (55), is applicable for

persons exposed with radiation shape factors of 0.20 to cool walls

at 50 F. It can be assumed that the same zone would be applicable

for less extreme combinations of radiation shape factors and cool

wall temperatures.

The regression analysis of the thermal sensations of subjects

of the Hot Wall series produced some unexpected results. The re-

sulting regression planes for males and females combined, males, and

females were all found to be significantly different from the

corresponding planes of the Uniform MRT series. As illustrated in
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Figure (8) the combinations of MRT and air temperature which would

predictably elicit thermal sensations of "neutral" for the Hot Wall

series are seen to be significantly lower than for the Uniform MRT

series. In fact a major portion of the thermally "neutral" line

for the Hot Wall series lies outside the "Thermally Neutral Zone"

proposed by McNall et al . (55). The thermal sensations of the sub-

jects of the Hot Wall series were obviously biased by the presence

of the heated wall. That is, the localized sensation of "warmth"

radiated by the heated wall apparently caused the subjects to feel

"warmer" than if they were subjected to an equal, but less asymmetric,

MRT as measured by the radiometer.

It is interesting to compare the average calculated heat losses

for subjects at thermally "neutral" conditions with their average

metabolic rates. The average metabolic rate of the sedentary sub-

jects was predicted from the results of McNall et al . (58). Since

the metabolic rates of males and females are different, each sex was

considered separately. The regression equation reported by Fanger

(17) was used to determine the average skin temperature, t s , for

thermally "neutral" subjects. The value of MRT equal to air temp-

erature that would predictably elicit thermal responses of "neutral"

was determined from the appropriate regression equations of Table (5).

By setting equations (21) and (22) equal, the average outer surface

clothing temperature could be found. R -f Cy was then calculated from

equation (21). The average evaporative heat loss of subjects, whose

average of vote of thermal sensation during the final hour of testing

was between 3.5 and 4.5 was determined from their net weight loss.
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From Table (7) it is noted that there is good agreement be-

tween the calculated and measured heat losses and the metabolic

rates for the subjects of the Cool Wall series. However, for the

Hot Wall series the calculated and measured heat losses exceed the

predicted metabolic rates by approximately 30% for both the males

and females. Figure (10), which shows the mean thermal sensation

with exposure time, indicates that the subjects of the Hot Wall

series had attained some degree of thermal equilibrium before the

third hour. This suggests that the human body reacts physiologically

to lower the average skin temperature, reducing R + Cy losses,

when exposed to unilateral radiant heating. It would seem the re-

gression equation for average skin temperature reported by Fanger (17)

does not hold for thermal environments of this nature.

Table 7

Metabloic Heat Production Compared to Heat Loss for the Average
Male and Female Whose Third Hour Average Thermal Sensation was
Between 3.5 and 4.5

Series Sex
M E R + Cy Total

(pred.) (meas . ) (calc.) (Heat
Loss)

Difference
(Heat Loss-
Heat Prod.)

(BTU/hr-ft 2
) %

Cool
Wall

Male

Female

19.31 9.11 10.37 19.48

17.06 6.55 11.43 17.98

0.9

5.4

Hot
Wall

Male

Female

19.31 9.77 15.26 25.03

17.06 8.15 14.02 22.17

29.7

29.9
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The thermal sensations of females of the Hot Wall series were

found to be independent of changes in MRT, while the males were

found to be slightly more sensitive to MRT changes than air temp-

erature changes. The reason for this inconsistency is not under-

stood. For both sexes, the estimated standard deviation of thermal

sensations for the Hot Wall series was larger than those found for

either the Uniform MRT and Cool Wall series. It is felt that this

was due to the localized heating, which caused some confusion in the

subject's evaluation of his own thermal sensation.

Because of the obvious difference of the regression planes for

the Hot Wall series and the Uniform MRT series the "Thermally Neutral

Zone" proposed by McNall et al . (55) is not applicable for persons

exposed with a radiation shape factor of 0.20 to a panel of 130 F.

For less extreme conditions of exposure to heated panels it is ass-

umed the "Thermally Neutral Zone" of McNall et al . (55) would be

applicable. Some basis for this assumption can be obtained from the

responses of thermal sensation of the subjects of the Hot Ceiling

series. The predicted mean thermal sensation, based on the regression

planes developed for the Hot Wall and Uniform MRT series is 4.42 and

4.05, respectively. The observed mean was 4.00, which suggests

that the thermal sensations of persons exposed with a 0.12 radia-

tion shape factor to 130 F panels is more accurately predicted by

use of the regression plane developed for Uniform MRT than that for

the Hot Wall series.

For a thermal environment to be satisfactory, from a comfort

standpoint, it must satisfy both the thermal and comfort sensations

of its occupants. Providing thermal "neutrality" is, in itself, not



61

sufficient for thermal comfort. The air movement, air moisture

content, and noise level etc., may be of such magnitude that even

the thermally "neutral" individual may experience discomfort. Where

radiant panels are used, it is possible that the localized heating

or cooling experienced by a person, due to the asymmetric MRT, may

be sufficient to cause noticeable discomfort.

The comfort sensations of the subjects participating in the

Cool Wall series were found to be not significantly different from

the comfort sensations of subjects in the Control series. There-

fore, although not all the thermally "neutral" subjects of the Cool

Wall series felt comfortable, the cause of their discomfort could

not be attributed to the asymmetric MRT.

The radiation shape factor by which each of the subjects were

exposed to the cool wall was 0.20. This radiation factor was de-

termined by assuming the subjects to be of spherical geometry, with

centers two feet above floor level. The results of the analysis of

variance, Appendix C, which indicates the response of thermal sen-

sation were independent of seating position, support this assumption.

The mean temperature of the cooled wall for the 10 tests was 60.3 F,

its lowest temperature being 48 F.

The Cool Ceiling series was undertaken to determine if the

presence of overhead cooling panels would cause discomfort to persons

It was felt that, although only a 0.12 radiation configuration

factor for subject to cooling panel was used, discomfort might be

experienced due to the exposure of the sensitive, exposed surfaces

of the face and forehead to the cool ceiling. Such was not the case,
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however. The average temperature of the ceiling was 51.5 F for

the two Cool Ceiling tests.

The results of the Cool Wall and Cool Ceiling indicate that

exposure of persons with radiation shape factors of 0.20 and 0.12

to 50 F lateral and overhead panels, respectively, should not cause

discomfort due to the asymmetry of the MRT. 50 F is felt to be the

lowest practical temperature the environmental engineer should en-

counter in typical situations because inside dew point temperatures

lower than 50 F would be unusual. Of course direct contact with

cooled panels would undoubtedly cause discomfort. Nevins (62)

reports that both males and females found floor temperatures of

60 F objectionable to foot comfort.

The subjects in the Hot Ceiling series indicated they felt

no noticeable discomfort which could be attributed to the presence

of a 130 F ceiling. Again, a 0.12 radiation shape factor, subject

to ceiling, was used. This result is somewhat in contradiction with

that of Chrenko (8) . Chrenko correlated frequence of "unpleasantness"

with EMRT, (elevated MRT). EMRT was defined as the elevation in MRT

at head level, due to the presence of a heated panel, assuming all

other enclosure surfaces were of uniform temperature. Chrenko (8)

suggests, based on his tests, that the EMRT should not exceed 4 F

where the length of exposure is greater than 30 minutes. The

calculated EMRT of the Hot Ceiling series was found to be 10 F. It

is. felt that the criteria proposed by Chrenko (8) is somewhat con-

servative for the following reason. There was no attempt by Chrenko
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to offset the EMRT by a corresponding reduction in air temperature

in order to maintain uniform thermal sensations. From Figure (8)

it is obvious that the probability of feeling "comfortable" varies

considerably with a person's thermal sensation. Therefore, it seems

imperative that the thermal sensations of subjects evaluating the

relative comfort of various degrees of MRT asymmetry should be con-

stant in order that the comfort comparison be of greatest meaning.

In the present study, this was accomplished by considering only the

comfort sensations of subjects who were thermally "neutral" at the

time of voting. Although Chrenko (9) reports that the primary

cause of his subjects' discomfort was not due to "general thermal

discomfort", it is difficult to understand how discomfort for that

reason was avoided.

The results of the Hot Wall series show that the probability

of a person feeling comfortable when exposed with a 0.20 radiation

factor to a 130 F panel is significantly lower than for a person in

a uniform environment. The modified comfort ballot, Figure (5),

was employed to determine the causes of discomfort for the subjects

of the Hot Wall series. The results, see Table (4), indicate that

it was indeed the asymmetric MRT which caused the increase in dis-

comfort relative to a uniform environment. The temperature of the

heated wall was 130 F for all tests. The results of the regression

analysis performed on the thermal sensations and the analysis of

the comfort sensations of the votes of thermal comfort of subjects

participating in the Hot Wall series, both indicate that thermal

environments of this type should be avoided.



SUMMARY AND CONCLUSIONS

The results of the statistical analyses performed on the

votes of thermal comfort of sedentary male and female subjects

wearing clothing with a insulation value of 0.6 clo in equilibrium

with environments with a partial pressure of water vapor of 0.435

inches Hg and air velocity of 20-30 fpm indicate that:

1. The thermal sensations of subjects exposed with radi-

ation shape facotrs of 0.20 to a wall 20 F cooler than

the balance of enclosure surfaces and the thermal sen-

sations of subjects exposed to uniform enclosure surface

temperatures belong to the same regression plane. There-

fore the "Thermally Neutral Zone" developed in an earlier

study for enclosure surfaces of uniform temperature

in applicable for environments of the former type.

2. The regression planes, relating thermal sensation with

air temperature and mean radiant temperature, developed

for subjects exposed with radiation shape factors of 0.20

to a wall at 130 F and for subjects exposed to uniform

enclosure surface temperatures were found to be signif-

icantly different. Although the previously mentioned

"Thermally Neutral Zone" is not applicable for thermal

environments of the former type, it is felt it applies

for less severe exposure to heated panels.

64
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3. Thermally "neutral" subjects exposed with radiation

shape factors of 0.12 to ceiling panels at 50 and

130 ? and radiation shape factors of 0.20 to wall panels

at 50 ? experienced no significant discomfort which could

be attributed to the asymmetry of the mean radiant

temperature.

4. Thermally "neutral" 'Subjects exposed with radiation

shape factors of 0.20 to wall panels at 130 F experi-

enced significant discomfort which was found to be caused

by the asymmetry of the mean radiant temperature.

The radiation shape factors were determined by assuming the

subjects to be of spherical geometry with centers two feet above

floor level. Mean radiant temperature, MRT, was measured with

the Honeywell 2-sphere radiometer.
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APPENDIX A

Figures A-l and A- 2 show a floor plan of tha seating

arrangements used during the Cool and Hot Wall series and

during the Cool and Hot Ceiling series.
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APPENDIX B

INDOCTRINATION INFORMATION: Read, to Subjects Before Each Test

The purpose of this test is to determine the effect of tem-

perature on how you feel. As soon as preparations are completed

in the pre-test room, we will take you into the room next door.

Select the chair which is marked with the number you have been

assigned and be seated. Do not move your chair from its original

location. This is important so let me repeat: "Do not move

your chair from its original location!"

During the test, you may read, study, or engage in quiet

conversation. You may smoke but keep it to a minimum. At

various intervals, you will be asked to vote on your feeling of

thermal sensation and your feeling of comfort. You will record

your votes on the two separate ballots provided. Do not discuss

your votes with one another. Remember we want to know the way

you feel at the time the ballot is handed to you!

Water will be provided and since the amount you drink will

be measured you should drink only out of the cup assigned to you,

but you may have all the water you wish.

When the test is completed return to the dressing room and •

get dressed. Place your uniforms and socks in one pile in the

dressing room.

All person's participating in these tests will sign a re-

ceipt for your pay, $5.00, which will be given to you at the end

of the test.

Are there any questions?
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APPENDIX C

Tables C-l and C-2 show the results of the analyses of

variance to determine if the thermal sensations of the subjects

of the Cool Wall and Hot Wall series were independent of their

seating position. A 5% level of significance was assumed.

Table C-l

Analysis of Variance to Determine Independence of Thermal

Sensation on Position for the Subjects Participating in

the Cool Wall Series

Source of
Variation

Degrees of
Freedom

Corrected Sum Mean
of Squares Square

Conditions 9

Position 4

Sex 1

Interactions

Cond :Pos 36

Cond:Sex 9

Pos:Sex 4

Error 36

Total 99

97.1100

1.8205

0.4462

15.3136

15.9919

1.2809

17.1608

149.0699

10.790

0.455

0.446

0.425

1.780

0.320

0.475

96 ns'

90 ns

67 ns

ns = not significant
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Table C-2

79

Analysis of Variance to Determine Independence of Thermal

Sensation on Position for the Subjects Participating in

the Hot Wall Series

Source of
Variation

Degrees of
Freedom

Corrected Sum
of Squares

Mean
Square

F

Conditions 6 55.1681 9.195

Position 4 3.3762 0.844 1.60 ns

Sex 1 0.1955 0.196
•

Interactions

Cond:Pos 24 13.4011 0.558 1.06 ns

Cond :Sex 6 14.0653 2.344

Pos :Sex 4 4.0209 1.005 1.90 ns

Error 24

69

12.6608 0.528

Total 102.8879



APPENDIX D

The linear radiation heat transfer coefficient was evaluated

by:

hr = e c j7td + 460)4 - (tmrt + 460)3

(tc l - tmrt)

where

:

hr = linear radiation heat transfer coefficient, BTU/hr-ft 2-F

e = emissivity of the outer surface of the clothed body

cf = the Stephan-Boltzmann constant, BTU/hr-ft 2-R4

t c i = the average temperature of the outer surface of the

clothed body, F

tmr t = mean radiant temperature, F

Table E-l shows the calculated values of hr for values of

t c i of 85-88 F for the range of t investigated. The maximum

error incurred by using a value of 1.04 for hr is seen to be

approximately 3%.
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Table D-l

81

The Calculated Value of the Linear Radiation

Coefficient for the Range of MRT Investigated

" The emissivity of the outer surface of the
clothed body taken as 0.95

1.04 - 1,01 = 1-07 - 1.04 - 0.03 = 37o
1.04 1.04



APPENDIX E

Prior to each testing session the subjects were questioned

by the nurse for information which might explain any unusual re-

sponse. On the following page is shown the data sheet used by the

nurse for this pupose.
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ABSTRACT

A study was conducted to determine the effect of asymmetric

mean radiant temperature (MRT) on the thermal and comfort sensa-

tions of sedentary subjects. Four separate series of tests were

performed in order to investigate the conditions of asymmetric

MRT most frequently encountered in the field. An experimental

design was selected such that direct comparison of the responses

of thermal sensations of the subjects of the present study could

be made with the corresponding responses of subjects exposed to

uniform enclosure temperatures from a previous study. The effect

of asymmetric MRT on subjects' comfort sensations was examined by

comparison of the comfort response of subjects exposed to an

asymmetric MRT with the comfort response of subjects exposed to

uniform enclosure temperatures equal to air temperature.

The results of the statistical analyses performed on the votes

of thermal comfort of sedentary male and female subjects wearing

clothing with an insulation value of 0.6 clo in equilibrium with

environments with a partial pressure of water vapor of 0.435

inches Hg and air velocity of 20-30 fpm indicate that:

1. The thermal sensations of subjects exposed with radiation

shape factors of 0.20 to a wall 20 F cooler than the bal-

ance of enclosure surfaces and the thermal sensations of

subjects exposed to uniform enclosure surface temperatures

belong to the same regression plane. Therefore the

"Thermally Neutral Zone" developed in an earlier study

for enclosure surfaces of uniform temperature is applicable

for environments of the former type.



2. The regression planes, relating thermal sensation -with

air temperature and mean radiant temperature, developed

for subjects exposed with radiation shape factors of

0.20 to a wall at 130 F and for subjects exposed to

uniform enclosure surface temperatures were found to be

significantly different. Although the previously men-

tioned "Thermally Neutral Zone" is not applicable for

thermal environments of the former type, it is felt it

applies for less severe exposure to heated panels.

3. Thermally "neutral" subjects exposed with radiation

shape factors of 0.12 to ceiling panels at 50 and 130 F

and radiation shape factors of 0.20 to wall panels at

50 F experienced no significant discomfort which could

be attributed to the asymmetry of the mean radiant tem-

perature.

4. Thermally "neutral" subjects exposed with radiation

shape factors of 0.20 to wall panels at 130 F experienced

significant discomfort which was found to be caused by

the asymmetry of the mean radiant temperature.

The radiation shape factors were determined by assuming the

subjects to be of spherical geometry with centers two feet above

floor level. Mean radiant temperature, MRT, was measured with the

Honeywell 2-sphere radiometer.


