by

Steven Shyan-Ming Ko
B.S., Taiwan Cheng-Kung University
Taiwan, R.O.C., 1966

V

A MASTER'S THESIS

submitted in partial fulfillment of the requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1971

Approved by:

Major Professor

THIS BOOK **CONTAINS** NUMEROUS PAGES WITH THE ORIGINAL PRINTING BEING SKEWED DIFFERENTLY FROM THE TOP OF THE PAGE TO THE BOTTOM.

THIS IS AS RECEIVED FROM THE CUSTOMER.

LD 2668 74 1941 K589 C.2

ACKNOWLE DGEMENT

I would like to express my sincere gratitude to my major professor, Dr. L. E. Grosh, for his guidance in the preparation of this thesis. He not only suggested this research work but, more importantly, aroused my great interest in statistics.

Finally, I want to express thanks to Mrs. Marie Jirak for her invaluable assistance in typing this thesis.

TABLE OF CONTENTS

	page
ACKNOWLE DGEMENT	11
LIST OF TABLES	vi
LIST OF FIGURES	viii
CHAPTER I. DESCRIPTION OF GENERAL ARMA MODEL	1
1.1 Linear Filter Model	3
1.2 Stationary Process	5
1.3 Autoregressive Model	8
1.4 Moving-Average Model	10
1.5 Autoregressive Moving-Average Model	11
1.6 Non-Stationary Process	12
1.7 Seasonal Model	13
1.8 Multiplicative Model	15
1.9 The Selection of An Appropriate Model	16
CHAPTER II. MODEL IDENTIFICATION	19
2.1 Autocorrelation Function	20
2.2 Partial Autocorrelation Function	22
2.3.1 The autocorrelation Function of the Auto- regressive Process	24
2.3.2 The Partial Autocorrelation Function of AR Process and Yule-Walker Equations.	25
2.4.1 The Autocorrelation Function of Moving- Average Process	28
2.4.2 The Partial Autocorrelation of MA Process	29
2.5 Autocorrelation and its Parrials for the Autoregressive Moving-Average Process	30

	page
2.6 Identification of Appropriate Model	33
CHAPTER III. model estimation and diagnostic check	36
3.1 Maximum Likelihood Estimation of Parameters of ARMA Model	36
3.2 Diagnostic Check	38
3.2.1 Diagnostic Checks Applied to Residuals- Autocorrelation Check	39
3.2.2 A Portmenteau Lack of Fit Test	40
CHAPTER IV. FORECASTING	42
4.1 The Forecast Function of the ARMA model	42
4.2 The Confidence Limits of the Forecast Value	44
CHAPTER V. APPLICATION	47
5.1 Example One	48
5.1.1 Identification of the Model	48
5.1.2 Efficient Estimation of Parameters	57
5.1.3 Forecasting	60
5.2 Example Two	63
5.2.1 Identification of Model	63
5.2.2 Efficient Estimation of Parameters	74
5.2.3 Forecasting	77
5.3 Example Three	77
5.3.1 Identification of the Model	77
5.3.2 Efficient Estimation of Parameter	89
5.3.3 Forecasting	92
BIBLIOGRAPHY	95
APPENDIX A PROGRAM IDENT	100

	page
A.1 Description of Program	100
A.2 Description of Input Data	102
A.3 Description of Output Data	103
A.4 Computer Program	104
APPENDIX B. PROGRAM ESTIM	111
B.1 Description of Program	111
B.2 Description of Input Data of Program ESTIM	115
B.3 Description of Output Data	117
B.4.1 Description of Subroutine UWHAUS	117
B.4.2 Description of the variables in the Argument of Subroutine UWHAUS	121
B.4.3 The Restrictions of Subroutine UWHAUS	124
B.5 Computer Program	129
APPENDIX C. PROGRAM FORCAT	146
C.1 Description of Program	146
C.2 Description of Input Data	152
C.3 Description of Output Data	152
C.4 Computer Program	153

P X

LIST OF TABLES

			page
Table	2.1	Summary of properties of autoregressive, moving-average and ARMA process	35
Table	5.1	Chemical process concentration readings	49
Table	5.2	Estimated autocorrelations and its partials of chemical process concentration readings about z	50
Table	5.3	Estimated autocorrelations and its partials of chemical process concentration readings about $\forall \mathbf{z}$	51
Table	5.4	Estimated autocorrelations and its partials of chemical process concentration readings about $\forall^2 \mathbf{z}$	52
Table	5.5	Iterative estimation of $\boldsymbol{\theta}_1$ for chemical process concentration data	.58
Table	5.6	The sample correlation coefficients of residuals for the chemical process concentration data	59
Table	5.7	Forecast value and its 95% confidence limits for the chemical process concentration data	61
Table	5.8	Natural logarithm of monthly passenger totals (measured in thousands) in international air travel	64
Table	5.9	Estimated autocorrelation and its partials for the international airline passenger data about $\boldsymbol{z}_{\boldsymbol{t}}$	65
Tab le	5,10	Estimated autocorrelation and its partials for the international airline passenger data about $\forall z$	66
Table	5.11	Estimated autocorrelation and its partials for the international airline passenger data about ∇^l_{12} z	67
Table	5,12	Estimated autocorrelation and its partials for the international airline passenger data about $\nabla^1 \nabla^1_{12} z_t$	68
Table	5.13	Iterative estimation of $\boldsymbol{\theta}$ and \boldsymbol{H} for the logged airline data	75
Tab le	5.14	Correlation coefficients of residuals for the logged airline data	76
Table	5.15	Forecast value and its 95% confidence limits for the international airline passenger data	78

		page
Table 5.16	Simulated inventory process readings	80
Tab1e 5.17	Sample correlation and its partials of the inventory simulation process about \mathbf{z}_{t}	85
Table 5.18	Sample correlation and its partials of the inventory simulation process about $\nabla \mathbf{z}_{t}$	86
Table 5.19	Sample correlation of residuals of the inventory simulation process data	91
Table 5.20	Forecast value and its 95% confidence limits for the simulated inventory process data	93

LIST OF FIGURES

		page
Figure 1.1	Representation of a time series as the output from a linear filter	4
Figure 1.2	2 Typical time series	7
Figure 1.3	Totals of international airline passengers in thousands	14
Figure 1.4	Stages in the iterative approach to model building	17
Figure 5.1	Estimated autocorrelation and its partials of chemical process concentration readings about z	54
Figure 5.2	Estimated autocorrelation and its partials of chemical process concentration readings about ∇z	55
Figure 5.3	Estimated autocorrelation and its partials of chemical process concentration readings about $\nabla^2 z$	56
Figure 5.4	Part of chemical process and its forecast values	62
Figure 5.5	Estimated autocorrelation and its partials of the airline data about $\mathbf{z}_{\mathbf{t}}$	• 69
Figure 5.6	Estimated autocorrelation and its partials of the airline data about $\nabla \mathbf{z}_{t}$	70
Figure 5.7	Estimated autocorrelation and its partials of the airline data about ∇^1_{12} z	71
Figure 5.8	Estimated autocorrelation and its partials of the airline data about $\nabla^1 \nabla^1_{12}$ \mathbf{z}_t	72
Figure 5.9	Part of the airline passenger data and its forecast	79
Figure 5.1	.0 Estimated autocorrelation and its partials of the simulated inventory process about \mathbf{z}_{t}	87
Figure 5.1	.1 Estimated autocorrelation and its partials of the simulated inventory process about ∇z_t	88
Figure 5.1	2 Part of simulated inventory process and its forecast values	94

CHAPTER I

DESCRIPTION OF ARMA MODEL

Box and Jenkins define a time series as a set of observations generated sequentially in time [1]. If the set is continuous, the time series is said to be continuous. If the set is discrete, the time series is said to be discrete. In this thesis, we consider only the discrete time series where observations are made at some fixed interval h. However, the value of the time interval h is often unimportant in the appropriate model for the given time series.

As indicated by Casimer Micheal Stralkowski [2], a desirable mathematical analysis of a time series should be general enough to accommodate all types of the time series and should be embody the following qualities:

- Parsimony of the model parameter, i.e. the models should contain as few parameters as possible.
- 2. The model should be simple to interpret and apply.
- The model should accommodate theoretical as well as empirical information, i.e. should be empirical-mechanistic in nature.

Box and Jenkins introduce the autoregressive model as a mathematical model which is extremely useful in the representation of certain practically occurring series. In this model, the current value of the process is expressed as a finite, linear aggregate of previous

values of the process and a random shock a. [3].

Another kind of model, of great practical importance in the representation of the observed time series, is the so-called finite moving average process. Box also introduces the moving average model as making z_t , i.e., is the time series observation z_i minus its mean \overline{z} , linearly dependent on a finite number of previous random shocks. [4]

To achieve greater flexibility in the fitting of actual time series, it is sometimes advantageous to include both autoregressive and moving-average terms in the model. This model is the so-called autoregressive moving-average model.

When the general autoregressive moving-average model is mentioned later on in this thesis, it includes all possible models, either the autoregressive process, moving-average process or autoregressive moving-average process. However, if the autoregressive moving-average model is mentioned, it includes only an autoregressive moving-average process.

The general autoregressive moving-average model is capable of representing any type of time series problem and is empirical-mechanistic in nature. The parameters in the model are as parsimonious as possible and are simple to interpret. In practice, it is frequently true that an adequate representation of an actual time series can be obtained with a low order model. The order of the model is usually not greater than two and often less than two. Hence, it possesses the characteristics of being a good mathematical model.

Recently, the general autoregressive moving-average model has been developed to represent many practical time series occuring in nature.

Examples are: scientific phenomena, such as the movement of tide, the vibrations of violin strings, the motion of the pendulum, etc [5]; in a business situation, such as the common stock market, gasoline sales by all oil company, international airline passenger fluctuation [6]; in an industrial production process, such as temperature variation, gas furnance process; in a simulation process, such as an inventory control process [7]. Not only may this model be used to represent the on going process, but it may also be used to forecast future situations.

An iterative cycle of identification, fitting, diagnostic checking and its forecasting are developed in this thesis to arrive at the appropriate function-stochastic model for the time series. This technique is to be applied to three sets of data obtained from chemical process, international airline passenger situations and simulated inventory process respectively. Both the nature of the system of the process and the optimal forecasts of future values can be acquired from this methodology.

1.1. Linear Filter Model

The mathematical models we employ are based on the idea that a time series in which successive values are highly dependent can be generated from a series of independent "shocks' a_t . [8]. These shocks are random drawings from a fixed distribution, usually assumed normal with mean zero and variance σ_a^2 , such a sequence of random variable a_t , a_{t-1} , is called a white noise process.

The white noise process a_t is supposed to transform the process z_t by what is called a "linear filter", as shown in Fig. 1.1. [8]. The

THIS BOOK CONTAINS NUMEROUS PAGES WITH DIAGRAMS THAT ARE CROOKED COMPARED TO THE REST OF THE INFORMATION ON THE PAGE. THIS IS AS RECEIVED FROM

CUSTOMER.

Figure 1.1 Representation of a time series as the output from a linear filter

linear filterning operation simply takes a weighed sum of previous observations, so that

$$z = \mu + \psi(B) a_t$$

= $\mu + a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots$ (1.1.1)

where μ is a parameter that determines the "level" of the process; B is the backward shift operator, i.e. B $z_t = z_{t-1}$; and

$$\psi(B) = 1 + \psi_1 B + \psi_2 B + \dots$$
 (1.1.2)

is the linear function that transforms a_t to z_t and is called the transfer function of the filter. The sequence ψ_1 , ψ_2 , ... formed by the weights may be finite or infinite. If this sequence is finite, or infinite and convergent, the filter is said to be stable and the process z_1 , ... z_t to be stationary. [9]. The parameter μ in (1.1.1) is then the mean about which the process varies. Otherwise, z_t is non-stationary and μ has no specific meaning except as a reference point for the level of the process.

1.2. Stationary Process

Stationary processes play a very important role in the time series problem. Most of the time series phenomena occurring in nature, which are non-stationary or seasonal process, have to be transformed to a stationary process so that the appropriate model can be identified and the forecast values obtained.

The stationary process is based on the assumption that the process remains in equilibrum about a constant mean level. The time series is

In Fig. 1.2, the observations of series C and D appear to fluctuate about a fixed mean with similiar pattern of irregularity. Series of this type are said to be "stationary in mean and variance". Series E, appears to fluctuate about a fixed mean but with a changing pattern of irregularity. Series of this type are said to be "stationary in the mean but nonstationary in variance"; Series A and B appear to drift with time, but appear to exhibit constant patterns of irregularity if allowance is made for the changing level and direction about which the observations are fluctuating. Series of this type are said to be "nonstationary in the mean". A more complete discussion of non-stationary process is presented in Section 1.6.

The stationary process implies that the probability distribution $P(z_t)$ is the same for all times t and may be written P(z). Hence its process has a constant mean where

$$\mu = E[z_t] = \int_{-\infty}^{\infty} z P(z) dz.$$
 (1.2.1)

Figure 1.2 Typical Time Series

Which defines the level about which the process fluctuate; and with a constant variance

$$\sigma_z^2 = E[(z - \mu)^2] = \int_{-\infty}^{\infty} (z - \mu)^2 P(z) dz$$
 (1.2.2)

which measures its spread about the level μ_{\bullet}

The mean μ of the time series process can be estimated by

$$\hat{z} = \frac{1}{N} \sum_{t=1}^{N} z_t$$

and the variance $\sigma_{\mathbf{z}}^2$, can be approximated by

$$\hat{\sigma}_{z}^{2} = \frac{1}{N} \sum_{t=1}^{N} (z_{t} - \bar{z})^{2}$$
 (1.2.4)

1.3. Autoregressive Model

The autoregressive model of order p, or abbreviated as AR(p), can represent the given time series z_t , z_{t-1} , z_{t-2} , ..., observed at a constant time interval, as

$$\tilde{z}_{t} = \phi_{1} \tilde{z}_{t-1} + \phi_{2} \tilde{z}_{t-2} + \dots + \phi_{p} \tilde{z}_{t-p} + a_{t}$$
 (1.3.1)

where $z_i = z_i - \mu$, μ is the mean of time series observation. a_t is assumed random normal and independent.

(1.3.1) can be related as a "dependent" variable z_t regressed on a set of "independent" variable z_{t-1} , z_{t-2} , ..., z_{t-p} , plus an error term a_t . The autoregressive model can also be written as

$$z_{t} - \phi_{1} z_{t-1} - \phi_{2} z_{t-2} - \cdots - \phi_{p} z_{t-p} = a_{t}$$

or

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) \tilde{z}_t = a_t$$

where $B^{m} \tilde{z}_{t} = \tilde{z}_{t-m}$

or

$$\phi(B) \stackrel{\sim}{z}_{t} = a_{t}$$

where $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - ... - \phi_p B^p$

The model contains p+2 unknown parameters μ , ϕ_1 , ϕ_2 ,..., ϕ_p , σ_a^2 , which are estimated from the time series data. The additional parameter σ_a^2 is the variance of the white noise process a_t .

The finite parameter in the autoregressive model $\phi(B)$ $z_t = a_t$ can be inverted to an infinite number of random shock a_t , as

$$z_{t} = \phi^{-1}(B) \ a_{t} = \psi(B) \ a_{t}$$

where

$$\phi^{-1}$$
 (B) = ψ (B) = 1 + ψ ₁ B + ψ ₂ B² + ... (1.3.2)

Comparing (1.3.2) with (1.1.1) in section 1.1, for the autoregressive process to be stationary, the ϕ 's must be so chosen that

the weights $\psi_1,\ \psi_2,\ \dots$, in $\psi(B)$ form a convergent series. The autoregressive process can be thought of as the output z_t from a linear filter with transfer function $\phi^{-1}(B)$, where the input is white noise a_t .

1.4. Moving Average Model

The autoregressive model which expresses the deviation z_t of the process as a finite weighted sum of p previous deviation z_{t-1} , z_{t-2} , ..., z_{t-p} , plus a random shock a_t , can be inverted as an infinite weighted sum of a's. The moving average model may be defined as a linear function of a number of previous shocks a's, which can be finite or infinite. [10].

For the moving average model of order q, or abbreviated as MA(q), the model form is

$$\bar{z}_{t} = a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \dots - \theta_{g} a_{t-g}$$
 (1.4.1)

(1.4.1) is also called a moving average process of order q. It may be written as,

$$z_{+} = \theta(B) a_{+} \tag{1.4.2}$$

where

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_g B^g$$
 (1.4.3)

The model contains q+2 unknown parameters μ , θ , ... θ_q , σ_a^2 , which in practice are determined from the data. The moving average process can be thought of as the output z_t from a linear filter with transfer function $\theta(B)$, when the input is white noise a_t .

1.5. Autoregressive Moving-Average Model
The first order moving-average model,

$$\tilde{z}_{t} = a_{t} - \theta_{1} a_{t-1} = (1 - \theta_{1} B) a_{t}$$
 (1.5.1)

can be inverted to an infinite autoregressive process, as

$$a_{t} = (1 - \theta_{1} B)^{-1} \tilde{z}_{t}$$

or

$$a_{t} = \tilde{z}_{t} + \theta_{1} \tilde{z}_{t-1} + \theta_{1}^{2} \tilde{z}_{t-2} + \dots$$

or

$$\tilde{z}_{r} = -\theta_{1} \tilde{z}_{r-1} - \theta_{1}^{2} \tilde{z}_{t-2} - \dots + a_{t}$$
 (1.5.2)

The higher order moving average model can be inverted to an infinite autoregressive process by the same derivation. Hence, if the process can be represent by MA(1), it is impractical to obtain a non-parsimonious representation in terms of an autoregressive model; Conversely, an autoregressive model of first order can not be parsimoniously represented using a moving average process. To achieve greater flexibility in fitting actual time series, it is sometimes advantageous to include both autoregressive and moving-average terms in the model. This leads to the so-called autoregressive moving-average model, as,

$$\tilde{z}_{t} = \phi_{1} \tilde{z}_{t-1} + \dots + \phi_{p} \tilde{z}_{t-p} + a_{t} - \theta_{1} a_{t-1} - \dots - \theta_{g} a_{t-q}$$
 (1.5.3)

or

$$\phi(B) \tilde{z}_{t} = \theta(B) a_{t} \tag{1.5.4}$$

which is also called the autoregressive moving-average process of order (p,q), or abbreviated as ARMA(p,q). The ARMA(p,q) employs p+q+2 unknown parameters μ ; ϕ_1 , ... ϕ_p ; θ_1 , ... θ_q ; σ_a^2 , that can be obtained from the data.

(1.5.4) may be inverted to

$$\tilde{z}_t = \phi^{-1}$$
 (B) θ (B) $a_t = \frac{\theta(B)}{\phi(B)} a_t = \frac{1 - \theta_1 B - \dots - \theta_q B^q}{1 - \phi_1 B - \dots - \phi_p B^p} a_t$

The autoregressive moving-average process can then be thought of as the output z_t from a linear filter, whose transfer function is the ratio of two polynomials $\theta(B)$ and $\phi(B)$, when the input is white noise a_t .

1.6. Non-stationary Process

Non-stationary time series have the property that their mean or variance or both may be changed with time. In other words, a non-stationary time series is depend on the time difference. When there is doubt about the choice of a nonstationary model or a stationary model to represent a time series, it is advantageous to employ the nonstationary model rather than the stationary alternative. [11]. Because the trend of a non-stationary time series can be transformed to a stationary process by differencing the data. Thus the nonstationary time series operator $\varphi(B)$ can be defined as

$$\varphi(B) = \phi(B) (1-B)^{d}$$
 (1.6.1)

where $\phi(B)$ is a stationary operator. Thus a general model, which can represent nonstationary behavior, is of the form

$$\psi(B) z_t = \phi(B) (1-B^d) z_t = \theta(B) a_t$$

or

$$\phi(B) w_{t} = \theta(B) a_{t}$$
 (1.6.2)

where

$$w_t = \nabla^d z_t; \quad \nabla z_t = (1-B) z_t$$

Nonstationary behavior can therefore be represented by a model which calls for the d'th difference of the process to be stationary. In practice, d is usually one or at most two.

The process defined by (1.6.2) provides a good way for describing non-stationary time series and is called an autoregressive moving-average process of order (p,d,q), or abbreviated as ARMA(p,d,q).

1.7. Seasonal Model

A seasonal time series is defined as a series which exhibits periodic behavior with period S; i.e. when similarities in the series occur after S basic time intervals.

The monthly international airline passenger in Fig. 1.3, for example, is highly correlated twelve months apart. Sales of a particular product, like baseball equipment, will also be expected to have the same highly correlated situation. The highest sales occurring during the summer months and the months of December. Series of this type are called seasonal time series.

The fundamental part about seasonal time series with period S is that the observations which are S intervals apart are similiar. Therefore,

Totals of international airline passengers in thousands Figure 1.3

 $B^{S}z_{t}=z_{t-S}$ will be a powerful tool to analyze seasonal time series. The linking of the observation z_{t} to an observation in the previous period with period S by a general ARMA model is defined as [12],

$$\Phi(B^{S}) \nabla_{S}^{D} z_{t} = \bigoplus (B^{S}) a_{t}$$
 (1.7.1)

where

 $\nabla_{s} = 1 - B^{s}$ and D is the number of seasonal difference.

 $\Phi(B^S)$, $\bigoplus (B^S)$ are polynomials in B^S of degrees P and Q, respectively.

(1.7.1) is the autoregressive moving-average process which represents the seasonal time series, or abbreviated symbolically as $ARMA(P,D,Q)_{g}$.

1.8. Multiplicative Model

Suppose that a time series has shown a tendency to increase over a particular period and also to follow a seasonal pattern. Then the time series may be represented by the form

$$\phi(B) \ \phi(B^{S}) \ \nabla^{d} \ \nabla^{D}_{S} \ z_{t} = \theta_{g}(B) \ \bigoplus_{O} (B^{S}) \ a_{t}$$
 (1.8.1)

which is the multiplication of

$$\phi(B^{S}) \nabla_{S}^{D} z_{t} = \bigoplus (B^{S}) \alpha_{t}$$
 (1.8.2)

and

$$\phi(B) \nabla^{d} \alpha_{t} = \theta(B) \alpha_{t}$$
 (1.8.3)

(1.8.2) and (1.8.3) are used to take care of seasonal fluctuations and non-stationary trend respectively. [13]. α_{t} and a_{t} are defined as

a white noise process; $\phi(B)$ and $\theta(B)$ are polynominals in B of degrees p and q, respectively, and $\nabla = \nabla_1 = 1 - B$.

This most general autoregressive moving-average process is said to be of order $(p,d,q) \times (P,D,Q)_s$. It represents the time series process having a non-stationary trend and cyclic pattern and can also be denoted symbolically as $ARMA(p,d,q) \times (P,D,Q)_s$.

1.9. The Selection of An Appropriate Model

The purpose of this thesis is to find an appropriate model to represent a time series process and also forecast its future value. The method to select an appropriate model can be explained briefly in Fig. 1.4. The function at different stages can be illustrated as follows.

- (1) The theory and practice are to be interacted to entertain the appropriate model. The autocorrelation and the partial autocorrelation function and the knowledge of the system are employed to suggest an appropriate parsimonious model. In addition, a rough estimate of the model parameters can be achieved in the process of model identification.
- (2) The efficient estimate of parameters in the tentatively entertained model is the heart of this stage. The rough estimates of the parameters obtained during the identification stage can now be used as the starting points for the least square estimation of the parameters.
- (3) The entertained model is subjected to a diagnostic check to test the goodness of fit. If no inadequacy of fit is indicated, the model is ready to use.

Figure 1.4 Stages in the iterative approach to model building

(4) If the model is adequate enough to represent the given time series process, the future situation can be forecasted and its confidence interval computed.

More details of model building and its application will be described in the following chapters.

CHAPTER II

MODEL IDENTIFICATION

Identification methods are the rough procedures applied to a set of time series data to indicate the kind of representational model which is worthy of further investigation. The specific aim in the identification stage is to obtain some idea about the number of parameters and the degrees of differences needed in the appropriate model and also to obtain initial estimates for the parameters. The tentative models so obtained provide a starting point for the application of the more formal and efficient estimation methods in the stimation stage.

Our approach to identify an appropriate model from the general autoregressive moving-average model family, which is

$$\phi(B) \nabla^{d} z_{t} = \theta(B) a_{t}$$

are as follows.

(a) To identify the possibility of nonstationary and cycle trend, the original series $\mathbf{z}_{\mathbf{t}}$ is to be differenced as many time as needed. For the nonstationary time series,

$$\phi(B) w_t = \theta(B) a_t$$

where
$$w_t = (1-B)^d z_t = \nabla^d z_t$$
;

For the seasonal time series,

$$\Phi(B^S) w_t = \bigoplus (B^S) a_t$$

where
$$w_t = \nabla_s^D z_t = (1-B^S)^p z_t$$
.

To identify the appropriate model form of the time series data. (b) The distribution of the time series can be well defined by its theoretical autocorrelation function, its mean and variance. Every kind of model has its specific autocorrelations and partial autocorrelation function. In view of these facts, a powerful technique for identifying a candidate model form can be achieved by estimating the correlation and partial correlation pattern from the data and mentally comparing them with the theoretical patterns. Then select the model which has the estimated correlation and partials most similiar with the theoretical correlation and partials. Many charts of lower order autoregressive moving-average models for this purpose are constructed by Box and Jenkins [14]. The unique pattern of the autocorrelation and partial autocorrelation of the general ARMA process can be used not only to identify the model, but to obtain the appropriate estimate of the parameters.

2.1. Autocorrelation Function

Each different type of autoregressive moving-average model has its own specific autocorrelation coefficient pattern. The autocorrelation coefficient process can be plotted out as a scatter diagram using pairs of values (\mathbf{z}_{t} , $\mathbf{z}_{\mathsf{t+k}}$), of the time series, separated by k lags apart. It is easy to select the appropriate model for the given time series by the plotted form of its autocorrelation function. Theoretically,

the autocorrelation coefficient at lag k is

$$\rho_{k} = \frac{E[(z_{t}^{-\mu}) (z_{t+k}^{-\mu})]}{\int E[(z_{t}^{-\mu})^{2}] E[(z_{t+k}^{-\mu})^{2}]}$$
(2.1.1)

And the covariance between \mathbf{z}_t and \mathbf{z}_{t+k} , which is also called the autocovariance at lag k, is

$$\gamma_k = \text{Cov} [z_t, z_{t+k}] = E [(z_t - \mu) (z_{t+k} - \mu)]$$
 (2.1.2)

To estimate the autocorrelation coefficient and autocovariance,

Box and Jenkins recommends the following method [15], for autocovariance
is estimated as

$$\hat{\gamma}_{k} = \frac{1}{N} \sum_{t=1}^{N-k} (z_{t} - \bar{z}) (z_{t+k} - \bar{z}), \quad k = 0, 1, 2, ..., K$$
 (2.1.3)

The estimated autocorrelation coefficient is

$$\rho_{k} = \frac{\hat{\gamma}_{k}}{\hat{\gamma}_{0}}$$

with its variance

$$Var \left[\hat{\rho}_{k}\right] \simeq \frac{1}{N} \left\{ 1 + 2 \sum_{j=1}^{k-1} \hat{\rho}_{j}^{2} \right\}$$
 (2.1.4)

The square root of (2.1.4) is called the large-lag standard error [16]. It is based on the assumption that the theoretical autocorrelation

 ho_k are all essentially zero beyond some hypothesized lag k=q. The large lag standard error approximated the standard deviation of ho_k for suitably large lags (k>q). Hence, usually, $+\hat{\sigma}_{h}$ or $+2\hat{\sigma}_{h}$ is plotted $\hat{\rho}_{k}$

as "control" lines about zero. This is an rough indication of whether the autocorrelation coefficient is zero beyond some specific lag, or, in other words, the autocorrelation function is being cut off after a particular lag.

The theoretical autocorrelation matrix is usually symmetrical [17], $\rho_{-k} = \rho_k, \ \text{it is only necessary to plot the positive half of the autocorrelation matrix to analysis its process. When the autocorrelation function is mentioned later, it means only the positive half of its function.$

2.2. Partial Autocorrelation Function

Every autoregressive, moving-average or autoregressive moving-average model has its own specific partial autocorrelation function. Hence the partial autocorrelation function is used as an auxiliary device to identify the appropriate model for a given time series among the general ARMA family. The correlation, ρ_k , represents the dependence between z_t and z_{t-k} . However, the partial correlation, ρ_k^{\dagger} , represents the dependence between z_t and z_{t-k} , given that observations z_{t-k+1} , ..., z_{t-1} are known. Hence, for the AR(p) model,

$$z_t = \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t$$
 (2.2.1)

It can be observed that given the observations z_{t-1}, z_{t-2}, \dots

 z_{t-p} , no dependence exist between z_t and the observation occurring before time t-p. The partial correlation, ρ_k^{\dagger} , will therefore be zero when k>p. In other words, the partial autocorrelation process of AR(p) model will be cut off after lag p. For both the moving-average process MA(q)

$$\tilde{z}_{t} = a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \dots - \theta_{q} a_{t-q}$$
 (2.2.2)

and the autoregressive moving-average process ARMA(p,q)

$$\tilde{z}_{t} = \phi_{1} \tilde{z}_{t-1} + \dots + \phi_{p} \tilde{z}_{t-p} + a_{t} - \theta_{1} a_{t-1} - \dots - \theta_{q} a_{t-q}$$
 (2.2.3)

can be inverted to the infinite autoregressive process. This implies that the partial autocorrelation function of the moving-average process or ARMA process tails off rather cuts off.

The estimation of the partial autocorrelation is developed by Dubin as [18].

$$\rho_{k+1}' = \frac{-\sum_{j=1}^{k} \rho_{k,j}' \rho_{k+1-j}}{k}$$

$$1 - \sum_{j=1}^{k} \rho_{k,j}' \rho_{j}$$
(2.2.4)

$$\rho_{k+1,j}^{\prime} = \rho_{k,j}^{\prime} - \rho_{k+1}^{\prime} \quad \rho_{k,k-j+1}^{\prime} \quad (j = 1, 2, ..., K)$$

$$\rho_0' = 1$$

$$\rho_1' = \rho_1$$

with variance of the partial correlation coefficient as

$$Var(\hat{\rho}_{k}') \simeq \frac{1}{n-k}$$
 (2.2.5)

The standard error, which is the square root of (2.2.5), can be used as a rough indication of the lag q where the partial autocorrelation is cut off.

2.3.1. The Autocorrelation Function of the Autoregressive Process

The specific autocorrelation pattern of the autoregressive process is a powerful tool to distinguish it from MA or ARMA process. On the autoregressive process

$$\tilde{z}_{t} = \phi_{1} \tilde{z}_{t-1} + \phi_{2} \tilde{z}_{t-2} + \dots + \phi_{p} \tilde{z}_{t-p} + a_{t}$$
 (2.3.1)

Multiplying each term in (2.3.1) by \tilde{z}_{t-k}

$$\tilde{z}_{t-k}$$
 $\tilde{z}_{t} = \phi_1 \tilde{z}_{t-k} \tilde{z}_{t-1} + \phi_2 \tilde{z}_{t-k} \tilde{z}_{t-2} + \dots \phi_p \tilde{z}_{t-k} \tilde{z}_{t-p} + \tilde{z}_{t-k} a_t$

$$(2.3.2)$$

Then take the expected value of (2.3.2), we obtain

$$E[\tilde{z}_{t-k} \tilde{z}_{t}] = \phi_1 E[\tilde{z}_{t-k} \tilde{z}_{t-1}] + \phi_2 E[\tilde{z}_{t-k} \tilde{z}_{t-2}] + \dots$$

$$+ \phi_p E[\tilde{z}_{t-k} \tilde{z}_{t-p}] + E[\tilde{z}_{t-k} a_t]$$

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2} + \dots + \phi_p \gamma_{k-p} \qquad k > 0$$
 (2.3.4)

 z_{t-k} can only involve a_i up to time t-k; for a_t is beyond t-k, it is uncorrelated with z_{t-k} ; so the expected value of $E[\tilde{z}_{t-k} \ a_t]$ vanishes. Dividing (2.3.4) by γ_0 , the autocorrelation function of the AR process is

$$\rho_{k} = \phi_{1} \rho_{k-1} + \phi_{2} \rho_{k-2} + \dots + \phi_{p} \rho_{k-p} \qquad k > 0$$
 (2.3.5)

or

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) \rho_k = 0$$

$$\phi(B) \rho_k = 0 \qquad (2.3.6)$$

No matter how large a k we take in (2.3.5), $\rho_{\rm k}$ is still obtainable. This fact implies that the autocorrelation function of an AR process tails off rather than cuts off.

Box and Jenkins discuss the roots of $\phi(B)$ in (2.3.6) and conclude that the autocorrelation function of an autoregressive process is either a damped exponential or damped sine wave or a mixture of damped exponential and damped since wave [19].

2.3.2. The Partial Autocorrelation Function of AR Process and Yule-Walker Equations

To decide which order of autoregressive process to fit an observed time series is analogaous to decide the number of independent variables to be included in a regression equation. For an AR process is finite itself and MA process can be inverted to an infinite AR process, any general ARMA model can be expressed in AR form, either finite or infinite. Although the proper order of an AR model to fit the time series is unknown, its parameter can be easily calculated.

For the autoregressive process

$$\rho_{k} = \phi_{1} \rho_{k-1} + \phi_{2} \rho_{k-2} + \dots + \phi_{p} \rho_{k-p} \qquad k > 0$$
 (2.3.1)

By substituting k = 1, 2, ..., p, in (2.3.1) one by one, and for $\rho_{-k} = \rho_k, \text{ it yields,}$

$$\rho_{1} = \phi_{1} + \phi_{2} \rho_{1} + \cdots + \phi_{p} \rho_{p-1}$$

$$\rho_{2} = \phi_{1} \rho_{1} + \phi_{2} + \cdots + \phi_{p} \rho_{p-2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\rho_{p} = \phi_{1} \rho_{p-1} + \phi_{2} \rho_{p-2} + \cdots + \phi_{p}$$
(2.3.2)

(2.3.2) are the Yule-Walker equation [20]. The matrix form of Yule-Walker equations can be written as

$$\rho_{\mathbf{p}} = \begin{pmatrix} \rho_{1} \\ \rho_{2} \\ \vdots \\ \rho_{\mathbf{p}} \end{pmatrix} \qquad \qquad \phi_{\mathbf{p}} = \begin{pmatrix} \phi_{1} \\ \phi_{2} \\ \vdots \\ \phi_{\mathbf{p}} \end{pmatrix} \qquad \qquad P_{\mathbf{p}} = \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \cdots & \rho_{\mathbf{p}-1} \\ \rho_{1} & 1 & \cdots & \rho_{\mathbf{p}-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{\mathbf{p}-1} & \rho_{\mathbf{p}-2} & 1 \end{pmatrix}$$

or

$$\rho_{\mathbf{p}} = P_{\mathbf{p}} \phi$$

hence

$$\phi = P_p^{-1} \rho_p$$

Initially, which order of an AR process to fit is unknown; suppose ϕ_{kj} is the jth coefficient in an autoregressive process of order k, so that ϕ_{kk} is the last coefficient. (2.3.1) can be written as

$$\rho_{j} = \phi_{k1} \rho_{j-1} + \dots + \phi_{k(k-1)} \rho_{j-k+1} + \phi_{kk} \rho_{j-k} \qquad j = 1, 2, \dots, k$$
(2.3.5)

Hence (2.3.2) can be extended to

$$\begin{pmatrix}
1 & \rho_{1} & \rho_{2} & \cdots & \rho_{k-1} \\
\rho_{1} & 1 & \rho_{1} & \cdots & \rho_{k-2} \\
\vdots & \vdots & \vdots & \vdots \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & 1
\end{pmatrix}
\begin{pmatrix}
\phi_{k1} \\
\phi_{k2} \\
\vdots \\
\phi_{kk}
\end{pmatrix}
=
\begin{pmatrix}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{p}
\end{pmatrix}$$
(2.3.6)

or the matrix form

$$P_{k} \phi_{k} = \rho_{k}$$

$$\phi_{k} = P_{k}^{-1} \rho_{k}$$
(2.3.7)

The quantity ϕ_{kk} is regarded as a partial autocorrelation function [21]. To the autoregressive parameter ϕ_{kk} , the values between ρ_1,\ldots,ρ_k have to be known. In other words, ϕ_{kk} is dependent on the observation $z_1,\ldots,$ to z_k .

(2.3.7) can be used also as the rough estimate of the autoregressive model parameter.

2.4.1. The Autocorrelation Function of a Moving-Average Process

The moving-average process has its own specific autocorrelation function. For MA process,

$$z_t = a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$
 (2.4.1)

multiplying (2.4.1) by z_{t-k} , which is

$$z_{t-k} = a_{t-k} - \theta_1 a_{t-k-1} - \dots - \theta_q a_{t-k-q}, k = 1, 2, \dots, q$$
 (2.4.2)

then obtain

$$z_{t} z_{t-k} = (a_{t} - \theta_{1} a_{t-1} - \dots - \theta_{q} a_{t-q})(a_{t-k} - \theta_{1} a_{t-k-1} - \dots - \theta_{q} a_{t-k-q})$$

$$\dots - \theta_{q} a_{t-k-q}$$
(2.4.3)

takes expectation value on (2.4.3),

$$E[z_{t} z_{t-k}] = E[(a_{t} - \theta_{1} a_{t-1} a_{t-1} - \dots - \theta_{q} a_{t-q})(a_{t-k} - \theta_{1} a_{t-k-1} - \dots - \theta_{q} a_{t-k-q})]$$

$$(2.4.4)$$

Here, the random variables a_t are assumed uncorrelated [22],

$$\gamma_k = E[a_t, a_{t-k}] = \begin{cases} \sigma_a^2, & k = 0 \\ 0, & k \neq 0 \end{cases}$$
 (2.4.5)

Then the solution of (2.4.4) is shown as [23],

$$\gamma_{k} = \begin{cases} (-\theta_{k} + \theta_{1} \theta_{k+1} + \theta_{2} \theta_{k+2} + \dots + \theta_{q-k} \theta_{q}) \sigma_{a}^{2}, & k = 1, 2, \dots, q \\ 0, & k > q \end{cases}$$
(2.4.6)

with

$$\gamma_0 = 1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2$$

Hence the autocorrelation coefficient, $\rho_k = \frac{\gamma_k}{\gamma_0}$, will be

$$\rho_{k} \begin{cases}
\frac{-\theta_{k} + \theta_{1} \theta_{k+1} + \dots + \theta_{q-k} \theta_{q}}{1 + \theta_{1}^{2} + \dots + \theta_{q}^{2}}, & K = 1, 2, \dots, q \\
0, & K > q
\end{cases}$$
(2.4.7)

(2.4.7) reveals that the autocorrelation function of MA process is zero or cut off beyond a lag of q. This fact provides the means to identify the model of the observed time series. (2.4.7) can also be employed to obtain an approximate parameter estimate for the moving-average model.

2.4.2. The Partial Autocorrelation of MA Process

The finite moving-average model $z_t = \phi(B)$ a_t can be inverted to an infinite autoregressive model $\phi^{-1}(B)$ $z_t = a_t$ with an infinite number of parameters. In other words, the finite moving-average model can be expressed in terms of an autoregressive model with its order to be decided. Here Box and Jenkins recommend the partial autocorrelation coefficient of the moving-average process to be expressed by its inverted autoregressive parameter as [24],

$$\phi_{kk} = -\theta_1^k \left\{ 1 - \theta_1^2 \right\} / \left\{ 1 - \theta_1^{2(k+1)} \right\}$$
 (2.3.2.1)

with

$$\rho_1 = -\frac{\theta_1}{1 + \theta_1^2}$$

and

$$\rho_0 = 0$$

to decide θ_1 value.

From (2.4.2.1), if ρ_1 is positive, then θ_1 is negative, so that ϕ_{kk} is positive. Conversely, if ρ_1 is negative, θ_1 is positive, so that ϕ_{kk} is negative. This implies that the partial autocorrelation function of MA process is damped exponential. For k values in (2.4.2.1) can be substituted by any positive integer and ϕ_{kk} is still obtainable, the process has a cut off after a lag of q, whereas the autocorrelation function of the AR process tails off, whereas the partial autocorrelation function of an AR process cuts off.

2.5. Autocorrelation and Its Partial for the Autoregressive Moving-Average Process

$$z_{t} = \phi_{1} z_{t-1} + \cdots + \phi_{p} z_{t-p} + a_{t} - \theta_{1} a_{t-1} - \cdots - \theta_{q} a_{t-q}$$

or

$$\phi(B) \tilde{z}_t = \theta(B) a_t \qquad (2.5.1)$$

has its autocovariance function

$$\gamma_{k} = \phi_{1} \gamma_{k-1} + \dots + \phi_{p} \gamma_{k-p} + \gamma_{za}(k) - \theta_{1} \gamma_{za}(k-1) - \dots - \theta_{q} \gamma_{za}(k-q)$$
(2.5.2)

(2.5.2) is obtained by multiplying (2.5.1) with z_{t-k} and then taking the expected value. Suppose $\gamma_{za}(k) = E[z_{t-k} \ a_t]$; since z_{t-k} depend only on random shock a_j which have occurred up to time t-k, it follows that [25],

$$\gamma_{za}(k) = 0 \qquad k > 0$$

$$\gamma_{za}(k) \neq 0 \qquad k \leq 0$$
 (2.5.3)

Hence the autocorrelation function (2.5.2) will become

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2} + \dots + \phi_p \gamma_{k-p} \qquad k \ge q + 1$$
 (2.5.4)

by dividing (2.5.4) with γ_0 , the autocorrelation function can be expressed as,

$$\rho_{k} = \phi_{1} \rho_{k-1} + \phi_{2} \rho_{k-2} + \dots + \phi_{p} \rho_{k-p} \qquad k \ge q + 1 \qquad (2.5.5)$$

or

$$\phi(B) \rho_k = 0$$
 (2.5.6)

For any k value bigger than q+1 in (2.5.5), ρ_{k} is always obtainable. Thus the autocorrelation function of an ARMA process tails off rather than cuts off. Box and Jenkins also investigate the roots of $\phi(B)$ in (2.5.6), and find the autocorrelation function of an ARMA process consists of a mixture of damped exponentials and/or damped sine wave. (2.5.5) can also be used to estimate the rough parameter ϕ for the appropriate ARMA model. (2.5.1) can be inverted as

$$\tilde{z}_t = \phi^{-1}(B) \theta(B) a_t$$

For $\phi^{-1}(B)$ is an infinite series in B. Hence the partial autocorrelation function of an ARMA process will be infinite in extent. Box and Jenkins conclude that the partial autocorrelation function will behave like a mixture of damped exponentials and/or damped sine waves, depending on the order of the ARMA process and the values of the parameters. [26].

We now can conclude that the appropriate model may be an ARMA process if the autocorrelation function and its partials tail off rather than cut off.

The first order ARMA model is the most common and practical to represent the appropriate ARMA process. An approximate value of the parameters of ARMA(1,d,1) process can be computed by [27],

$$\rho_{1} = \frac{(1 - \theta_{1} \phi_{1})(\phi_{2} - \phi_{1})}{1 + \theta_{1}^{2} - 2 \phi_{1} \theta_{1}} - 1 < \phi < \phi$$

$$\rho_2 = \rho_1 \phi_1 \qquad \qquad -1 < \theta_1 < 1$$

A general method for obtaining initial estimate of the parameter for any ARMA process is derived by Box and Jenkins [28].

2.6. Identification of Appropriate Model

The autocorrelation function and the partial autocorrelation function have been used as a powerful tool to identify the appropriate model for a given time series. The low order model can represent the given time series quite well. The order is usually no more than 2. Many charts and tables have been constructed to describe the autocorrelation functions, partial autocorrelation functions and to provides an estimate of parameters for low order ARMA models, see Box and Jenkins [29]. The general process to identify the appropriate model for a given time series can be summarized as follows.

(a) For the non-stationary time series, its autocorrelation function will not die out quickly, or will fall off slowly, or is very nearly linearly [30]. Therefore, a tendency for the autocorrelation function not to die out quickly is taken as an indication that a nonstationary time series may exist. Then we can treat the time series as nonstationary in z_t , but possibly as stationary in ∇z_t , or in some higher difference.

It is assumed that the degree of difference d, which is required for stationarity, has been reached when the autocorrelation function of $w_t = \nabla^d z_t$ dies out fairly quickly. In practice, d is normally either 0, 1 or 2. It is usually sufficient to inspect about the first 20 estimated autocorrelation of the time series.

(b) The AR process has a autocorrelation function which is infinite in extent, but has a partial autocorrelation function that is zero beyond a certain point. Conversely, the MA process has an autocorrelation function of zero beyond a certain point, but with a partial autocorrelation function which is infinite is extend. Table 2.1. is the summary of the properties of AR, MA and ARMA process.

Table 2.1. Summary of Properties of Autoregressive, Moving-average and ARMA Process

	autoregressive process	moving-average process	ARMA process
model in terms of previous z's	$\phi(B) \tilde{z}_t = a_t$	$\theta^{-1}(B) \tilde{z}_t = a_t$	$\theta^{-1}(B) \phi(B) \tilde{z}_t = a_t$
model in terms of previous a's	$\tilde{z}_t = \phi^{-1}$ (B) a_t	$z_t = \theta(B) a_t$	$\tilde{z}_t = \phi^{-1}(B) \theta(B) a_t$
autocorrelation function	infinite (damped exponentials and/or damped sine waves), tail off	finite, cut off	infinite (damped exponentials and/or damped sine waves after the first q-p lags), tail off
partial auto- correlation function	finite, cut off	infinite (dominated by damped exponentials and/or sine waves), tail off	infinite (dominated by damped expo- nentials and/or sine waves after the first p-q lags), tail off

CHAPTER III

MODEL ESTIMATION AND DIAGNOSTIC CHECK

The tentative formation of the model for the given time series is obtained in the identification stage. The more efficient estimate of the parameters in the appropriate model will be computed so as to construct a more perfect model. The rough estimated parameters obtained in the identification stage will be used as the starting points. After the model is built, it will be subject to diagnostic checks to test the fit of the model. If the model is inadequate, the time series process will be reviewed again and another modified model tried. If no lack of fit is indicated, the model is ready to use.

3.1. Maximum Likelihood Estimation of Parameters of ARMA Model

After a candidate model has been selected, it is necessary to estimate more accurate parameters to fit the time series data. The best estimate, from many points of view, is the maximum likelihood estimate [31].

For the ARMA process

$$\tilde{z}_{t} = \phi_{1} \tilde{z}_{t-1} + \dots + \phi_{p} \tilde{z}_{t-p} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \dots - \theta_{q} a_{t-q} + a_{t}$$
(3.1.1)

the random shocks $a_1, a_2, \dots, a_t, \dots a_n$ are assumed normally independently distributed, so,

$$f(a_1 a_2 \dots a_n \mid \underline{\phi}, \underline{\theta}, \sigma^2) = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\frac{1}{2\sigma^2} \sum_{\alpha} a_{\underline{t}}^2}$$

$$= \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\frac{1}{2\sigma^2} S(\underline{\phi},\underline{\theta})}$$
(3.1.2)

where

$$S(\underline{\phi},\underline{\theta}) = \sum_{t} a_{t}^{2}$$
 (3.1.3)

and

$$a_{t} = \tilde{z}_{t} - \phi_{1} \tilde{z}_{t-1} - \dots - \phi_{p} \tilde{z}_{t-p} + \theta_{1} a_{t-1} + \theta_{2} a_{t-2} + \dots$$

$$+ \theta_{q} a_{t-q} \qquad (3.1.4)$$

The likelihood function of $\underline{\theta}$, $\underline{\phi}$ and σ^2 , can be obtained by substituting the observed value of a into (3.1.2), as

$$L(\underline{\phi}, \underline{\theta}, \sigma^2 \mid a_1, a_2, \dots a_n) \propto \frac{1}{\sigma^n} e^{-\frac{1}{2\sigma^2} S(\underline{\phi}, \underline{\theta})}$$
(3.1.5)

The likelihood function is maximized when $S(\underline{\phi},\underline{\theta})$ is minimized. The maximum likelihood estimates of $\underline{\phi}$ and $\underline{\theta}$, denoted by $\hat{\underline{\phi}}$ and $\hat{\underline{\theta}}$, corresponds to the minimum sum of squares, $S(\hat{\underline{\phi}}, \hat{\underline{\theta}})$.

Differentiating (3.1.5) with respect to σ^2 reveals that the maximum likelihood estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{n} S(\hat{\phi}, \hat{\theta})$$

The maximum likelihood estimation of $\underline{\phi}$, $\underline{\theta}$ are equal to the least square estimate, which minimize the sum of squares of the residuals. The parameters in the model can be linear or non-linear after extention. For instance, $a_t = \phi^{-1}(B) \theta(B) z_t$ or $a_t = \phi(B) \phi(B^S) \nabla^d \nabla^D_S z_t$. Hence the the non-linear parameter least square estimation procedure is employed to meet every possible model, either linear or non-linear, [32]. Subroutine UWHAUS in the Appendix is used to obtain the estimated parameter by a nonlinear least square method.

In order to insure that the estimation of parameters will converge to the least square point and also save machine time, it is necessary to obtain a good initial estimate of the parameters to start the computation. The initial estimate of parameters are obtained from autocorrelation and/or partial autocorrelation functions as discussed on Chapter Two.

The general ARMA model can be transformed to an equation like (3.1.4) in order to pursue the least square estimate of the parameters in the model [33]. For starting the problem, the p values z_0 , z_{-1} , z_{-2} , ... z_{-p+1} among the n=N-d w_i , which is $w_i = \nabla^d z_i$, and the q values a_0 , a_{-2} , ... a_{-q+1} of a are unknown. For the practical purpose, if the sample size is moderately large, the unknown a's can be assumed zero and also sacrifice the first p observations with an effective size of n-p [34].

3.2. Diagnostic Check

After the model has been identified and the parameters estimated for a time series, the model should be subject to investigation to test

the fit of the model. If there is evidences of serious inadequacy of fit, the model will be adjusted and the modified model tried again.

No model form can ever represent the true time series absolutely. However, the model should nave no indicated lack of fit under different statistical tests. Box and Jenkins suggest many statistical tests for the general autoregressive moving-average model.

3.2.1. Diagnostic Checks Applied to Residuals- Autocorrelation Check

Theoretically, the random shock in the ARMA process is assumed to
be white noise. Therefore, it is reasonable to expect that the study
of the â in the ARMA model can indicate the model inadequacy. The
autocorrelation function of the residual â is therefore a good device
to test the fit of the model. Assume a general ARMA model,

$$\phi(B) \stackrel{\sim}{w_t} = \theta(B) a_t$$

where

$$w_t = z_t - \mu$$

being built from the interaction of the theory and practice discussed in Chapter Two and Three. Thus the residuals of the model

$$\hat{a}_t = \hat{\theta}^{-1}(B) \hat{\phi}(B) \hat{w}_t$$

are subject to test. It is possible to show that, if the model is adequate, then [35]

$$\hat{a}_t = a_t + 0 \left(\frac{1}{n}\right)$$

As the series length increases, the a_t 's become close to the white noise a_t 's. Hence the estimated autocorrelation coefficient $\gamma_k(a)$, of the a's, distributed approximately about zero with variance n^{-1} , or, with a standard error of $n^{-1/2}$ [36]. We can use these fact to assess the statistical significance of apparant departures of these autocorrelations from zero. If all the estimated autocorrelation coefficients of the residuals are inside the "control" line, then no inadequacy of the model is indicated. However, if the estimated autocorrelation coefficients are out of the "control" line, the suspicion of the lack of fit is hence aroused.

3.2.2. A Portmenteau Lack of Fit Test [37]

Box and Jenkins also suggest another statistical method to test the model fit. Rather than consider the $\gamma_k(\hat{a})$'s individually, the first few autocorrelation coefficients of the a's, suppose about 20, are taken as a whole to test the fit of the model. Suppose we take the first k autocorrelation coefficients $\gamma_k(\hat{a})(k=1,2,...K)$ from general ARMA(p,d,q) process, then if the model is appropriate, the value of

$$Q = n \sum_{k=1}^{k} \gamma_k^2(a)$$

will be distributed as $\chi^2(k-p-q)$, where n=N-d is the number of transformed observations w_i , where $w_i = \nabla^d z_i$, used to fit the model. On the other hand, if the model is inappropriate, the average values of Q will be inflated. Therefore, an appropriate, general, or "portmanteau" test of the fit of the model can be achieved by obtaining the value of Q and comparing it with the percentage points on the χ^2 table. If Q is greater

than the percentage points on the χ^2 table, then the inadequacy of the model is indicated. Conversely, if Q is no greater than the critical χ^2 value, then no inadequacy of the model is indicated.

CHAPTER IV

FORECASTING

The model is supposed to represent the time series data adequately as no lack of fit is indicated under the statistical investigation.

Then the appropriate model can represent the stochastic process as well as be used to forecast the future situations. The approximation of the forecast value of the time series process will be presented in this Chapter. The confident limits of the forecast value will be developed.

4.1. The Forecast Function of the ARMA Model

The forecast function of ARMA model, as indicated by Box and Jenkins, has three model forms, either in terms of the difference equation, or in terms of an infinite weighted sum of previous random shock a_j, or in terms of an infinite weighted sum of previous observations plus a random shock. The simplest and the most practical form is the difference equation form, which will be discussed here [38]. For the general ARMA model

$$\varphi(B) z_t = \theta(B) a_t$$

where

$$\varphi(B) = \varphi(B) \nabla^{\mathbf{d}}$$

the forecast value is defined as $z_{t+\ell}$, $\ell \ge 1$, and its estimated value is $z_t(\ell)$. In other words, the forecast $z_{t+\ell}$ is said to be made at origin t for lead time ℓ when we are currently standing at time t.

An observation $z_{t+\ell}$ generated by the process may be expressed directly in terms of the difference equation by

$$z_{t+\ell} = \varphi_1 z_{t+\ell-1} + \dots + \varphi_{p+d} z_{t+\ell-p-d} - \theta_1 a_{t+\ell-1} - \dots$$

$$- \theta_q a_{t+\ell-q} + a_{t+\ell}$$
(4.1.1)

Now, suppose, standing at time t, then the forecast function $\hat{z}_{t}(\ell)$ of $z_{t+\ell}$ will be a linear function of current and previous observations z_{t} , z_{t-1} , z_{t-2} , ... and also a linear function of current and previous shocks a_{t} , a_{t-1} , a_{t-2} , ...; the forecast function may be written as,

$$\hat{z}_{t}(l) = \psi_{1} \hat{z}_{t+l-1} + \dots + \psi_{p+d} \hat{z}_{t+l-p-d} - \theta_{1} a_{t+l-1} - \dots - \theta_{q} a_{t+l-q} + \hat{a}_{t+l}$$
(4.1.2)

Box and Jenkins indicate (4.1.2) is the minimum mean square error forecast function [39]. To obtain the forecast value $\hat{z}_t(\ell)$, the right hand side of the forecast function in (4.1.2) should be treated as follows:

- The z_{t-j} (j=0,1,2,...), which have already happened at time t, are left unchanged.
- 2) The z_{t+j} (j=0,1,2,...), which have not yet happended, are replaced by their forecasts \hat{z}_t (j).
- 3) The a_{t-j} (j-0,1,2,...), which have happened, are available from z_{t-j} z_{t-j-1} (1).

4) The a_{t+j} (j=1,2,...), which have not yet happened, are replaced by zero.

4.2. The Confidence Limits of the Forecast Value

Suppose the forecasts at lead time 1,2,..., L, are required. To obtain probability limits for these forecast value, it is necessary to calculated the weights ψ_1 , ψ_2 , ..., ψ_{L-1} , which are the parameters of the pure moving-average model; it may be written as,

$$z_{t} = \psi(B) a_{t} \tag{4.2.1}$$

for the general ARMA model,

$$\varphi(B) z_t = \theta(B) a_t \tag{4.2.2}$$

Comparing (4.2.1) with (4.2.2), we can obtain

$$\varphi(B) (1+\psi_1 B + \psi_2 B^2 + \dots) = \theta(B)$$
 (4.2.3)

or

$$\varphi(B) \quad \psi(B) = \theta(B) \tag{4.2.4}$$

$$(1 - \psi_1 B - \psi_2 B^2 - \dots - \psi_{p+d} B^{p+d}) (1 + \psi_1 B + \psi_2 B^2 + \dots) =$$

$$(1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q)$$
 (4.2.5)

As we equate the coefficients of powers of B in (4.2.5), we can obtain the pure moving-average parameters in terms of general ARMA parameters ϕ 's and θ 's, which are known. Then we obtain,

$$\psi_1 = \varphi_1 - \theta_1$$

$$\psi_2 = \psi_1 \psi_1 + \psi_2 - \theta_2$$

$$\dot{\psi}_{j} = {}_{1}\psi_{j-1} + \dots + \psi_{p+d} \psi_{j-p-d} - \theta_{j}$$
(4.2.6)

where

$$\psi_0 = 1$$
, $\psi_j = 0$ for $j < 0$

and

$$\theta_j = 0$$
 for $j > q$

If k is the greater of the integers p+d-1 and q, then for j>k, the ψ 's satisfy the difference equation [40];

$$\psi_{j} = 1^{\psi_{j-1}} + 2^{\psi_{j-2}} + \cdots + p+d^{\psi_{j-p-d}}$$

Thus the ψ 's can be easily calculated recusively.

Box and Jenkins suggest the variance of the forecast error ℓ steps ahead for any origin t is the expected value of $\hat{e}_t^2(\ell) = \{z_{t+\ell} - \hat{z}_t(\ell)\}^2$, it can be estiamted by [41]

$$v(l) = \{1 + \sum_{j=1}^{l-1} \psi_j^2\} \sigma_a^2$$

Then assuming that the a's are normal, and given information up to time t, the conditional probability distribution $P(z_{t+\ell}/z_t, z_{t-1}, \dots)$ of a future value $z_{t+\ell}$ of the process will be normal with mean $z_t(\ell)$ and

standard deviation
$$\left\{1 + \sum_{j=1}^{\ell-1} \psi_j^2\right\}^{1/2} \sigma_a$$
.

The variance σ_a can be estimated by S_a if the numbers of observations on which such an estimate is based is at least fifty; S_a^2 is the minimum sum of square of residual and can be acquired by $\frac{S(\hat{\phi}, \hat{\theta})}{n}$, [42].

Hence the approximate 1- ϵ probability limits $z_{t+\ell}$ (-) and $z_{t+\ell}$ (+) for $z_{t+\ell}$ are given by

$$z_{t+\ell} \stackrel{(+)}{=} \hat{z}_{t}^{(\ell)} + \mu_{\epsilon/2} \left\{ 1 + \sum_{j=1}^{\ell-1} \psi_{j}^{2} \right\}^{1/2} s_{a}$$
 (4.2.7)

Where $\mu_{\epsilon/2}$ is the deviate exceeded by a proportion $\epsilon/2$ of the unit normal distribution,

for 50% limits, $\mu_{c/2}$ is 0.674

for 95% limits, $\mu_{\epsilon/2}$ is 1.960

The z_{t+l} (-) and z_{t+l} (+) mean that, given the information available at origin t, there is a probability of 1- ϵ , that the actual value z_{t+l} , when it occurs will be within them; it can be expressed statistically as,

$$P_{r} \{z_{t+\ell} (-) < z_{t+\ell} < z_{t+\ell} (+)\} = 1 - \epsilon$$
 (4.2.8)

The confidence limits obtained here is applied to individual forecasts $z_{t+\ell}$ only and not jointly to the forecast values at all the different lead times.

The Program FORCAT in the appendix will calculate the forecast values as well as its confidence limits.

CHAPTER FIVE

APPLICATION

The technique of model building for time series have been discussed in previous chapters. The computer programs in the Appendix provides the model calculations [43]. The model has to be constructed by computer calculation and human reasoning.

The process of model building is concerned with relating a class of statistical models to the data at hand and involves much more than model fitting. Thus, identification techniques, designed to suggest what particular kind of model might be worth considering, are developed first and make use of the autocorrelation and partial autocorrelation function. The fitting of the identified model to a time series using the likelihood function can then supply maximum likelihood estimate of the parameters. The initially fitted model will not, necessarily provide adequate representation. Hence diagnostic checks are developed to detect model inadequacy and thus, where necessary, to initiate a further iterative cycle of identification, estimation and diagnostic checking. When the forecast is the objective, the fitted statistical model with past data is used directly to generate optimal forecasts by simple recursive calculation.

The application of these techniques are presented by three examples of time series, which are obtained from industry process [44], business situation [45] and inventory simulation process [7] respectively.

5.1. Example One

A set of data shown on Table 5.1. about an industrial chemical process is to be analyzed here. [44]. This series represent "uncontrolled" outputs of concentration from the chemical process. And they were collected on full scale processes where it was necessary to maintain some output quality characteristics as close as possible to a fixed level. To achieve this control, another variable had been manipulated to approximately concel out variation in the output. However, the effect of these manipulation on the output was in each case accurately known, so that it was possible to compensate numerically for the control action. That is to say, it was possible to calculate very nearly, the values of the series that would have been obtained if no corrective action been taken. It is these compensated value which are recorded here and referred to as "the uncontrolled" series [46].

The obtaining of the appropriate model will be explained step by step in the following sub-sections. Not only will we understand the system from the derived model, but we will acquire optimal forecast values for the series.

5.1.1. Identification of the Model

Program IDENT calculates the autocorrelations and partial autocorrelation of the time series. Since the series represent the "uncontrolled" behavior of the process output, we might expect it possess nonstationary characteristics. So differences of data are taken to see what kind of model can properly represent the series. The output of z, ∇z and $\nabla^2 z$ are shown on Table 5.2., 5.3 and 5.4. respectively. The plotting

TABLE 5-1 CHEMICAL PROCESS CONCENTRATION READINGS:
EVERY TWO HOURS
(READ ROWWISE FROM LEFT TO RIGHT)

17.0	16.6	16.3	16.1	17-1
16.9	16.8	17.4	17-1	17.0
16.7	17.4	17-2	17-4	17-4
17.0	17.3	17.2	17-4	16.8
17-1	17.4	17.4	17.5	17.4
17.6	17.4	17.3	17.0	17-8
17-5	18 • 1	17.5	17.4	17.4
17.1	17.6	17.7	17.4	17.8
17-6	17.5	16.5	17.8	17.3
17-3	17.1	17.4	16.9	17-3
17.6	16.9	16.7	16.8	16-8
17-2	16.8	17.6	17.2	16.6
17-1	16.9	16.6	18.0	17-2
17.3	17.0	16.9	17.3	16.8
17-3	17.4	17.7	16.8	16.9
17.0	16.9	17.0	16-6	16.7
16.8	16.7	16.4	16.5	16.4
16.6	16.5	16.7	16.4	16.4
1.6 - 2	16.4	16.3	16.4	17.0
16.9	17-1	17.1	16.7	16.9
16.5	17.2	16.4	17.0	17.0
16.7	16.2	16.6	16.9	16.5
16-6	16.6	17-0	17-1	17-1
16.7	16.8	16.3	16.6	16.8
16.9	17.1	16.8	17.0	17.2
17.3	17.2	17-3	17-2	17.2
17.5	16.9	16-9	16.9	17.0
16.5	16.7	16.8	16.7	16.7
16.6	16.5	17.0	16.7	16.7
16.9	17.4	17.1	17-0	16.8
17.2	17.2	17.4	17.2	16.9
16.8	17.0	17.4	17.2	17-2
17-1	17-1	17.1	17.4	17.2
16.9	16.9	17.0	16.7	16.9
17.3	17.8	17.8	17.6	17.5
17.0	16.9	17-1	17.2	17-4
17.5	17.9	17.0	17.0	17.0
17.2	17.3	17.4	17-4	17.0
18.0	18.2	17.6	17.8	17.7
17.2	17-4			

Table 5.2 Estimated Autocorrelations and its Partials of Chemical Process Concentration Readings about z

Lag	Autocorrelations	Partial Autocorrelations	
1	0.57	0.57	
2	0.49	0.25	
3	0.39	0.07	39
4	0.35	0.06	
5	0.32	0.06	
6	0.34	0.12	
7	0.39	0.15	
8	0.32	-0.03	
9	0.30	0.01	
10	0.25	-0.02	
11	0.18	-0.07	
12	0.16	-0.02	
13	0.19	0.06	
14	0.23	0.08	
15	0.14	-0.12	25 NATE
16	0.18	0.04	
17	0.19	0.09	
18	0.20	0.06	
19	0.14	-0.07	
20	0.18	0.05	
21	0.10	-0.10	
22	0.12	0.05	

Table 5.3 Estimated Autocorrelations and its Partials of Chemical Process Concentration Readings about $\forall\,z$

	•		
Lag	Autocorrelations	Partial Autocorrelations	
1	-0.41	-0.41	
2	0.02	-0.18	194
3	-0.06	-0.16	
4	-0.01	-0.14	
5	-0.07	-0.19	
6	-0.02	-0.21	
7	0.14	-0.00	
8	-0.06	-0.04	
9	0.03	-0.02	
10	0.02	0.04	
11	-0.04	-0.00	
12	-0.06	-0.07	
13	-0.01	-0.10	
14	0.16	0.10	
15	-0.17	-0.08	
16	0.03	-0.13	
17	0.01	-0.09	
18	0.08	0.04	
19	-0.12	-0.07	
20	0.15	0.09	
21	-0.12	-0.07	
22	0.04	0.02	
23	-0.06	-0.06	
24	0.04	-0.04	
25	0.00	-0.01	

Table 5.4 Estimated Autocorrelations and Its Partials of Chemcial Process Concentration Readings about $\mathbf{v}^{\mathbf{z}}$

			165 6 8
Lag	Autocorrelations	Partial Autocorrelations	
1	-0.65	-0.65	
2	0.18	-0.42	
3	-0.04	-0.31	
4	0.03	-0.20	
5	-0.04	-0.17	
6	-0.04	-0.31	
7	0.13	-0.17	
8	-0.11	-0.14	
9	0.04	-0.14	
10	0.02	-0.05	
11	-0.02	0.02	
12	-0.02	0.02	
13	-0.04	-0.16	
14	0.17	0.05	
15	-0.19	0.06	
16	0.07	-0.00	
17	-0.03	-0.12	
18	0.09	0.01	
19	-0.16	-0.12	
20	0.19	0.07	
21	-0.16	-0.02	
22	0.10	0.06	
23	-0.08	0.01	
24	0.05	-0.01	
25	-0.01	0.01	

of the autocorrelation function and its partials for z, ∇z and $\nabla^2 z$ are also shown on Fig. 5.1., 5.2., 5.3., respectively.

From Fig. 5.1, the autocorrelation function decreases fairly regularly after the first lag, and the partial autocorrelation has the tendency of tailing off; this is to suggest that the process might be ARMA (1,0,1). However, the autocorrelation function of z does not fall quickly. This suggests that the series might be nonstationary. The appropriate estimate of the initial parameters can be calculated from

$$\rho_{1} = \frac{(1-\theta_{1}\phi_{1})(\phi_{1}-\theta_{1})}{1+\theta_{1}^{2}-2\phi_{1}\theta_{1}}, \qquad \rho_{2} = \rho_{1}\phi_{1}$$

and hence we obtain $\phi_1 = 0.86$, $\theta_1 = 0.78$; the model can thus be written as

$$(1-0.86 \text{ B}) z_t = (1-0.78 \text{ B}) a_t$$
 (5.1.1.1)

From Fig. 5.2, the autocorrelation function are small after the first lag, and the partial autocorrelation tails off. This suggests an MA(1) process; the approximate estimate of initial parameters can be calculated from

$$\rho_1 = \frac{-\theta_1}{1+\theta_1^2}$$

and hence $\theta_1 \simeq 0.5$; the model can thus be written as

$$\nabla z_{+} = (1-0.5 \text{ B}) a_{+}$$

Figure 5.1 Estimated Autocorrelation and its Partials of Chemical Process Concentration Readings about z

Figure 5.2 Estimated Autocorrelation and its Partials of Chemical Process Concentration Readings about ∇z

Figure 5.3 Estimated Autocorrelation and its Partials of Chemical Process Concentration Readings about $\nabla^2 z$

$$(1-B) z_{+} = (1-0.5 B) a_{+}$$
 (5.1.1.2)

Comparing (5.1.1.1) with (5.1.1.2), we see two possible result in the same form. Either form might represent the time series. However, in doubtful cases, it may be advantageous in employing the nonstationary model rather than the stationary alternative. Hence, the MA(1,1) is to be adapted to represent the given time series and will be subjected to a diagnostic check.

5.1.2. Efficient Estimation of Parameters

Program ESTIM performs the maximum likelihood estimate of the parameters in (5.1.1.2). The convergent situations is shown on Table 5.5.

Hence, the appropriate model to represent the time series can now be written in more perfect form as

$$\nabla z_{t} = (1-0.7 \text{ B}) a_{t}$$
 (5.1.1.3)

(5.1.1.3) will be subject to further test for the goodness of fit. The statistical methods described in Section 3.2. are applied here to investigate the model. The sample correlation coefficients of residuals is also obtained from the output of program ESTIM and are shwon in Table 5.6. By the autocorrelation check method, we compare the autocorrelation coefficients of residuals on Table 5.6. with the "control" line $\pm 2n^{-1/2}$. It is revealed that all the correlation coefficients of the residuals are within the "control" lines. Thus there is no suspicion of inadequacy of the model.

To test the goodness of fit by the method of a portmanteau lack of fit, the value of

Table 5.5 Iterative estimation of θ_i for Chemical process concentration data

Iteration	Θ,	
0	0.500	
1	0.521	
2	0.596	
3	0.657	
4	0.680	
5	0.688	
6	0.691	
7	0.691	

Table 5.6 The Sample Correlation Coefficients of Residuals for the Chemical Process Concentration Data

	Lag	Correlation	
	1	0.091	Y
	2	0.010	
	3	-0.096	9 2 0
	4	-0.112	
	5	-0.118	
	6	0.003	
	7	0.146	
	8	0.022	
	9	0.041	
	10	0.001	
	11	-0.099	
	12	-0.119	
	13	-0.036	
	14	0.062	
	15	-0.131	
2	16	-0.010	
	17	0.045	
	18	0.073	29
	19	-0.034	
	20	0.085	
	21	-0.091	
	22	-0.027	
	23	-0.058	**
	24	0.037	
	25	0.041	

$$Q = n \sum_{k=1}^{k} \gamma_k^2(\hat{a})$$
 (5.1.1.4)

is assumed distribute approximately as $\chi^2(k-p-q)$ if the model is adequate, when n=N-d is the number of z's to fit the model. By taking the first 20 autocorrelation coefficients on Table 5.6. to substitute on (5.1.1.4), we obtain

$$Q = n \sum_{k=1}^{20} \gamma_k^2(\hat{a}) = 23.58$$

with 19 degrees of freedom. The 10% and 5% points for χ^2 with 19 degree of freedom, are 27.2 and 30.1 respectively. For 27.2 and 30.1 both far greater than 23.58, there is no significant inadequacy of the model.

5.1.3. Forecasting

Now MA(1,1) is supposed to represent the time series. The forecast values and its individual confidence limits are obtained by Program FORCAT. The forecast function can be written as

$$z_{t+1} = (1-0.7 \text{ B}) a_{t+1}$$

or

$$z_{t+\ell} = z_{t+\ell-1} + a_{t+\ell} - 0.7 a_{t+\ell-1}$$

The $a_{t+\ell}$ beyond the present time is assumed as zero. Hence, for all lead time, the forecasts at origin t will follow a straight line parallel to the time axis. Table 5.7 shows the forecast values and its confidence intervals. Fig. 5.4. shows parts of the chemical process and its forecast values.

Table 5.7 Forecast Value and its 95% Confidence Limits for the Chemical Process Concentration Data

Time	Forecast Value	Upper Limit	Lower Limit	resulta Assista Stati David Sp
198	17.501	16.879	18.124	
199	17.501	16.850	18.153	
200	17.501	16.822	18.181	
201	17.501	16.795	18.207	
202	17.501	16.770	18.233	
203	17.501	16.745	18.258	
204	17.501	16.721	18.282	
205	17.501	16.698	18.305	
206	17.501	16.675	18.328	

Figure 5.4 Part of Chemical Process and its Forecast vaules

5.2. Example Two

The totals of international airline passengers for 1952, 53, and 54 shown on Fig. 1.3. is to be analyzed here. It is part of a longer series (twelve years of data) quoted by Brown. [47]. The series shows a marked seasonal pattern since travel is at its highest in the late summer months.

Many other series, particularily sales data, show similiar seasonal characteristics. In general, we say that a series exhibits periodic behavior with period S, when similarities in the series occur after S basic time intervals. In this example, we can see apparantly from Fig. 1.3., the basic time interval is one month and the period is S=12 months.

When we have series exhibiting seasonal behavior with known periodicity S, it is of value to set down the data in the form of a table containing S columns. The logarithms of the airline data taken by Box and Jenkins is shown on Table 5.8. As indicated by Box and Jenkins, logarithm are often taken before analyzing sales data and other series of this kind, because it is the percentage fluctuation which might be expected to be comparable at different sales volumes [48].

5.2.1. Identification of Model

Program IDENT provides the autocorrelation and its partials of the original time series and their differences. The outputs are shown on Table 5.9., 5.10., 5.11., 5.12. and Fig. 5.5., 5.6., 5.7., 5.8. respectively.

NATURAL LOGARITHMS OF MONTHLY PASSENGER TOTAALS(MEASURED IN THOUSANDS) IN INTERNATIONAL AIR TRAVEL TABLE 5.8

DEC.	4.771	4.942	5.112	5.268	5.303	5.434	5.628	5.724	5.817	5.820	6.004	890.9
NOV.	4.664	4.736	4.984	5.147	5.193	5.313	5.468	5.602	5.720	5.737	5.892	996°5
0CT.	4.779	4.890	5.088	5.252	5.352	5.434	5.613	5.724	5.849	5.883	600.9	6.133
SEPT.	4.913	5.063	5.215	5.342	5.468	5.557	5.743	5.872	6.001	6.001	6.138	6.230
AUG.	166.4	5.136	5.293	5.489	5.606	5.680	5.849	900.9	6.146	6.225	6.326	6.407
JULY	4.997	5.136	5.293	5.438	5.576	5.710	5.897	6.023	6.146	961.9	906.9	6.433
JUNE	4.905	5.004	5.182	5.384	5.493	5.576	5,753	5.924	6.045	6.075	6.157	6.282
MAY	4.796	4.828	5.147	5.209	5.434	5.455	5.598	5.762	5.872	5.894	6.040	6.157
APR.	4.860	4.905	5.094	5.199	5.460	5.425	5.595	5.746	5.852	5.852	5.981	6.133
MAR.	4.883	676.4	5.182	5.263	5.464	5.460	5.587	5.759	5.875	5.892	900.9	6.038
FEB.	4.771	4.836	5.011	5.193	5.278	5.236	5.451	5.624	5.707	5.762	5.835	5.969
JAN.	4.718	4.745	4.917	5.142	5.278	5.318	5.489	5.649	5.753	5.829	5.886	6.023
	576	95C	951	952	953	954	556	956	957	956	556	096

Table 5.9 Estimated Autocorrelations and its Partials for the International Airline Passenger Data about z_{t}

Lag	Autocorrelation	Partial Autocorrelation	
 1	0.953	0.953	
2	0.898	-0.118	
3	0.851	0.055	
4	0.808	0.023	
5	0.779	0.115	
6	0.756	0.044	
7	0.737	0.040	
8	0.727	0.098	**
9	0.734	0.203	
10	0.744	0.063	
11	0.758	0.114	40
12	0.762	-0.050	
13	0.717	-0.483	
14	0.663	-0.037	i,
15	0.618	0.045	
16	0.576	-0.043	
17	0.544	0.027	
18	0.519	0.039	30
19	0.501	0.039	
20	0.491	0.015	Ø.
21	0.498	0.075	÷
22	0.506	-0.036	
23	0.517	0.053	
24	0.521	0.039	
25	0.484	-0.194	
26	0.437	-0.037	

Table 5.10 Estimated Autocorrelations and its Partials for the International Airline Passenger Data about vz_t

Lag	Autocorrelation	Partial Autocorrelation	7
1	0.202	0.202	
2	-0.122	-0.170	
3	-0.150	-0.093	
4	-0.320	-0.310	
5	-0.083	0.010	
6	0.021	-0.081	
7	-0.110	-0.206	
8	-0.335	-0.494	
9	-0.116	-0.188	
10	-0.109	-0.540	
11	0.206	-0.291	
12	0.842	0.585	
13	0.218	0.025	
14	-0.141	-0.177	
15	-0.117	0.115	
16	-0.277	-0.001	
17	-0.053	0.020	
18	0.013	-0.109	
19	-0.115	0.080	
20	-0.337	-0.066	

Table 5.11 Estimated Autocorrelations and its Partials for the International Airline Passenger Data about ∇_{i2} z_t

Lag	Autocorrelation	Partial Autocorrelation
1	0.710	0.710
2	0.616	0.224
3	0.477	-0.047
4	0.435	0.098
5	0.383	0.049
6	0.313	-0.057
7	0.241	-0.050
8	0.193	0.006
9	0.151	-0.012
10	-0.004	-0.281
11	-0.118	-0.164
12	-0.247	-0.153
13	-0.144	0.300
14	-0.142	0.057
15	-0.101	0.049
16	-0.144	-0.037
17	-0.096	0.126
18	-0.108	-0.060
19	-0.143	-0.147
20	-0.157	-0.015

Table 5.12 Estimated Autocorrelation and its Partials for the International Airline Passenger Data about $v'v'_{i2}z_t$

Lag	Autocorrelation	Partial Autocorrelation
1	-0.336	-0.336
2	0.091	-0.024
3	-0.188	-0.186
4	0.009	-0.129
5	0.066	0.033
6	0.016	0.025
7	-0.046	-0.058
8	0.001	-0.013
9	0.167	0.212
10	-0.068	0.046
11	0.063	0.059
12	-0.390	-0.343
13	0.156	-0.104
14	-0.056	-0.079
15	0.139	-0.024
16	-0.127	-0.140
17	0.063	0.028
18	0.028	0.113
19	-0.024	-0.016
20	-0.106	-0.157

Figure 5.5 Estimated Autocorrelation and its Partials of the airline data about \mathbf{z}_{t}

Figure 5.6 Estimated Autocorrelation and its Partials of the airline data about ∇z_t

Figure 5.7 Estimated Autocorrelation and its Partials of the airline data about $\nabla_{iz}\mathbf{z_t}$

Figure 5.8 Estimated Autocorrelation and its Partials of the airline data about $v'v_{tz}$

In Fig. 5.5., the autocorrelations for z are large and fail to die out at higher lags. This implies the possibility of nonstationarity. The highly correlated periods at lags 12, 24 suggest the seasonal period of this time series 12.

In Fig. 5.6., while the first difference reduces the correlation in general, a very heavy periodic component remains. This is inducted by the large lag of 12.

In Fig. 5.7., simple differencing with respect to a period of twelve results in correlation which are first persistently positive and then persistently negative. This implies that the cyclic component of twelve periods and nonstationarity both exist in the time series.

In Fig. 5.8., the differencing $\nabla^1 \nabla^1_{12}$ markedly reduces correlation throughout. The autocorrelation beyond the first lag are compartively small. The partial autocorrelation has the tendency to tail off. Besides, as indicated by Box and Jenkins, a simple and widely applicable stochastic model for the analysis of nonstationary time series is MA(1) [49]. Hence the model to represent the time series is suggested to be

$$\nabla \nabla_{12} z_{t} = (1 - \theta B) (1 - \bigoplus B^{12}) a_{t}$$
 (5.2.1.1)

which will be subject to further investigation.

As with the seasonal model, by equating the observed correlation to their expected values, approximate values can be obtained for the parameters θ and \bigoplus . On substituting the sample estimates $\rho_1 = -0.34$ and $\rho_{12} = -0.39$ in the expressions, which is obtained from (2.4.7.),

$$\rho_1 = \frac{-\theta}{1+\theta^2}, \qquad 12 = \frac{-\bigoplus}{1+\bigoplus 2}$$

The rough estimate of parameters in (5.2.1.1) is $\theta \approx 0.39$ and $\Theta \approx 0.48$. 5.2.2. Efficient Estimate of Parameters.

Program ESTIM provides the maximum likelihood estimates of nonlinear parameters of (5.2.1.1). Table 5.13 shows the converge situations of parameters. The entertained model of the time series can be expressed as

$$\nabla \nabla_{12} z_t = (1 - 0.436 \text{ B}) (1 - 0.486 \text{ B}^{12}) a_t$$
 (5.2.2.1)

The program ESTIM also provides the sample correlations of residuals.

Table 5.14 shows the sample correlation coefficients of residuals of the time series. The goodness of fit can be tested as follows.

- (1) By autocorrelation check, comparing the autocorrelation coefficients of residuals on Table 5.14. with the "control" line n^{-1/2}, few individual correlations appear little large. However, among 20 random deviates one would expect some large deviation. We will further investigate the model to check the goodness of fit.
- (2) By the method of a portmanteau lack of fit test, the value of

$$Q = n \sum_{k=1}^{k} \gamma_k^2(\hat{a})$$

is approximately distributed as $\chi^2(k-p-q)$ if the model is appropriate. Hence, by taking the first 20 autocorrelation of the a's as a whole from Table 5.14., we can obtain

$$Q = n \sum_{k=1}^{20} \gamma_k^2(\hat{a}) = 20.44$$
 (5.2.2.2)

Table 5.13 Iterative Estimation of θ and Θ for the logged airline data

The	^		
Iteration	θ	·®	
Starting Values	0.390	0.480	
1	0.396	0.482	
2	0.417	0.487	
3	0.432	0.488	
4	0.436	0.486	
5	0.436	0.486	

Table 5.14 Correlation Coefficients of Residuals for the Logged Airline Data

<u> </u>	
Lag	Correlation
1	0.026
2	0.014
. 3	-0.138
4	-0.177
5	0.035
6	0.113
7	-0.041
8	-0.031
9	-0.091
10	-0.162
11	-0.033
12	-0.011
13	0.034
14	0.027
15	0.033
16	-0.182
17	0.015
18	0.044
19	-0.084
20	-0.077

Comparing Q with the value of $\chi^2(18)$ on χ^2 table, the 10% and 5% points for χ^2 value, with 18 degrees of freedom, are 27.2 and 30.1, respectively. The Q value in (5.2.2.2) is smaller than 27.2, no indication of lack of fit is indicated. Hence (5.2.2.1) is proposed as the appropriate model to represent the international airline passenger situation.

5.2.3. Forecasting

Program FORCAT provides the forecast values and its confidence limits of the model with given time series. The results are shown on Table 5.15. and Fig. 5.9. We can predict the future business of the international airline passengers is to be increased with the cyclic period of twelve. Travel is at its highest in the summer months, while a secondary peak occurs in the spring.

5.3. Example Three

A set of observations about an inventory simulation process shown on Table 5.16. will be analyzed [7].

5.3.1. Identification of the Model

Program IDENT computes the autocorrelation and its partials for the original time series and its differences. Table 5.17, 5.18. and Fig. 5.10., 5.11. show the output of the autocorrelation and its partials.

In Fig. 5.10., the autocorrelation function is damped exponentially and tails off. While the partial autocorrelation is cut off after the first lag. This suggests that the process might possibly be a first

Table 5.15 Forecast Value and its 95% Confidence Limits for the International Airline Passenger Data

	Time	Forecast Value	Upper Limit	Lower Limit
	145	6.117	6.047	6.188
a 3	146	6.053	5.972	6.134
	147	6.122	6.032	6.213
4	148	6.217	6.118	6.316
	149	6.241	6.135	6.348
,	150	6.366	6.253	6.480
	151	6.517	6.397	6.638
10	152	6.491	6.364	6.618
·	153	6.314	6.181	6.447
	154	6.217	6.078	6.356
	155	6.050	5.906	6.195
8	156	6.173	6.023	6.322
	157	6.219	6.051	6.387
	158	6.155	5.977	6.334
1	159	6.224	6.036	6.412
:	160	6.319	6.121	6.517
	161	6.343	6.136	6.550
-	162	6.468	6.253	6.683
1	163	6.619	6.396	6.843
:	164	6.593	6.362	6.825
1	165	6.416	6.177	6.655

Part of the airline passenger data and its forecast Figure 5.9

TABLE 5-16 SIMULATED INVENTORY PRCCESS READINGS (REAC ROWWISE FROM LEFT TO RIGHT)

488.056	476 • C56	463.056	449.056	424.056
410.056	398.C56	383.056	363.056	346.056
335.056	316.C56	297.056	376.056	361 • 056
337.056	318.C56	302.056	288 • 056	276 • 056
259.056	251.C57	237-057	225-057	212.057
198.057	181 • C57	171-057	152.057	130-057
115.01C	108-514	108.914	106-914	188.010
176.010	170.C10	163.010	156.010	150-010
145.010	139.C10	128 - 010	124.010	117.010
109.01C	103.C10	95.010	90.010	82.010
70.010	164.C10	152.010	149.010	144.010
128.010	123.C10	114.010	104-010	98-010
85.010	80.C10	75.010	70-010	66.010
57.010	47.C10	37.010	33.010	28.010
24.914	24.514	24.914	24-914	18.914
87.010	79.C10	72.010	67.010	60.010
52.010	47.C10	42.010	38.010	27.010
24.010	19.C10	109.096	103.096	98 • 096
93.096	85 • C96	79.096	662.009	653.009
650.009	902.056	883.056	875.056	849.056
834.056	816.C56	789.056	779.056	769-960
763.960	759.960	749.960	747.960	735-960
727.960	719.560	759 • 056	752 • 056	732 • 056
711.056	699.056	679.056	657•056	747.056
734 • 056	717.C56	695.056	678.056	665.056
644.056	626.CC9	619.009	617.009	608.009
599.009	594.CC9	584.009	581.009	572 • 009
566.009	563.CC9	554.009	542 • 009	536 • 009
532 • 009	526 • CC9	519.009	512.009	510-914
604+009	600.CC9	599.009	591.009	581.009
577.009	564.CC9	559.009	555.009	543 • 009
535.009	531.009	526.009	517.009	506 • 009
497.009	487.CC9	481.009	571 • 009	567-009
657.056	634 • C56	624.056	607-056	586.056
568 • 056	555 • C56	529.056	514.056	500.056
488.009	485 • CC9	476.009	472.009	466.009
464.009	460.CC9	449.009	443.009	438 • 009
527.009	521.CC9	512.009	510+009	503 • 009
494.009	491 • CC9	485.009	482.009	474 • 009
466 • 009	46C.CC9	641-056	635.056	616.056
601.056	587.C56	572.056	648.056	635.056
625.056	610.C56	600.056	575.056	562 - 056
549.056	540.656	522.056	504 • 056	487.056
470.056	459 • C56	447.056	425.056	814.056
801.056	787.C56	771-056	752.056	738-056

717.056	695.C56	687.056	677.056	659.056
644.056	635.C56	607.960	599.960	589.960
652.056	634.C56	616.056	598.056	580.C56
563.056	547.C56	521.056	506-056	495.056
480.056	457.C56	439.056	425.056	415.056
404.056	386.C56	464.056	456.056	844.056
836.056	816.C56	806.056	787.056	777-056
756.056	747.C56	729.056	712.056	699 • 056
689.056	667.056	655.056	643 • 056	628-056
614.056	600.056	688 • 056	673.056	650.056
633 • 056	621.056	609.056	601.056	593.056
585.056	576.C56			
		558.056	539.056	526.056
507.056	496.C56	481.056	462.056	450-056
432-056	414 • C56	396 • 056	380.056	367-960
450 • 056	433.C56	415.056	407.056	391 • 056
373.056	358 • C56	341.056	326.056	312.056
297.056	279.C56	264.056	241.056	226-056
215.056	199.C56	273.056	254.056	240 • 009
233.009	227.CC9	579.056	567.056	539 • 056
524•056	506 • C56	494-056	473-056	463.056
446.056	433.C56	423.056	410.056	397.056
381.056	364.C56	452.056	434.056	425.056
417.056	402.C56	394.056	374.056	351 • 056
333.056	305.056	296 • 056	278.056	264.056
259+056	244.C56	235.056	224.056	212.056
194.056	184.C56	164.056	249.056	634.056
620.056	613.C56	601.056	590.056	575 - 056
559.056	542.C56	534 • 056	515 • 056	505 - 056
485.056	470.C56	454-056	438-056	420.056
409.056	390.C56	374.056	360.056	340-056
922.056	905.C56	893.960	889.960	962-056
947.056	937.C56	924.056	911-056	896 - 056
878.056	868.C56	842.056	827-056	813-056
801-056	792.C56	776.056	765.056	755.056
744.056	824.C56	797.056	781.056	770-056
754.056	735.C56	721.056	711.056	700-056
695.056	680.C56	665.056	656 • 056	647.056
634.056	626 • C56	610-056	1001.056	985.056
968 • 056	949.960	937.960	1016.056	1003.056
992.056	580.C56	965.056	956.056	937.056
910.056	895.C56	880.056	866 • 056	
844.056	827.C56	814-056		854 • 056
870.056	856 • C56		799.056	785 • C56
798.056	779.C56	847 • 056	822.056	809.056
		756.056	748.056	725 • 056
712.056 630.056	699.C56	679.056	663.056	647 • 056
	612.056	600-056	579.056	571.056
554.056	640•C56	628.056	610.056	595.056
573 • 056	562.056	552.056	538.056	518.056
506.056	491.056	483.009	474.009	469.009
456.009	450.CC9	445.009	444-009	435 • 009

424-009	732.C56	713.056	697.056	780.056
766.056	753.C56	743.056	734.056	717-056
701-056	685.C56	665.056	649.056	637-056
631.056	6C8 • C56	597-056	581.056	549.056
535.056	523.C56	506.056	495.960	483.960
475.96C	543.C56	528.056	509.056	488 • 056
868.056	849.C56	838.056	831 • 056	817-056
799.056	784.C56	773.056	754-056	746-056
730.056	714•C56	702.056	693.960	774-056
	745.C56			
763 • 056		736.056	711-056	694.056
680.056	665.C56	646.056	624.056	613.056
602.056	585.C56	573.056	555-056	538-056
633.056	621.C56	608 • 056	598 • 056	584-056
580.056	564.C56	553.056	537.056	524.056
515.056	502.C56	488.056	463.056	451-056
428.056	404.C56	397.056	381-056	373-056
356.056	343.C56	325.056	705.960	695.960
683.960	671.560	661-960	651.960	643.960
635.960	625.960	609.960	603.960	599.960
591.960	609.056	598.056	582.056	562.056
548 • 056	539.960	525.960	612-056	604 • 056
585.056	568.C56	554.056	538 • 056	523.056
506+056	498 • C56	475.056	461.056	440.056
416.056	403.056	381.056	360.056	350.056
343.056	325.960	407.056	389.056	379.056
365.056	352.C56	341.056	330.056	318.056
301.056	288•C56	278 • 056	264.056	255.056
242 • 056	220.C56	211.056	200.056	191-056
180.056	167.C56	151.009	143.009	132-914
130.914	218.CC9	206.009	204 • 009	198 • 009
191.009	187.CC9	500-056	484.056	469.056
453.056	439.056	425-056	415.056	401-056
386.056	373.C56	364.056	433.056	419.056
399.056	381.C56	373.C56	361.056	338 • 056
320.056	306.C56	290.056	277.056	258-056
248.056	229 · C 56	204.056	199.056	183.056
171.056	156.C56	150.056	126.056	212.056
197.056	184.C56	171.056	154.056	142 - 056
130.056	115.056	103.056	90.009	84-009
81.009	75.CC9	666.009	659.009	651 • 009
976 • 056	955 • C56	941-056	928-056	905-056
991-056	969.056	957.056	943.056	929.056
916.056	898.C56	880.056	869.056	846 • 056
833.056	830.C56	813.056	796-056	784-056
772.056	756 . C56	736.056	715.056	710-056
791.056	775.C56	765.056	738.056	720.056
708.056	693.C56	684.C56	665 • 056	638-056
620.056	603.C56	986.056	982 • 056	971-056
954.056	939.C56	919.056	904.056	882.056

			M	
877.056	855.C56	836.056	829.056	807-056
796.056	786-C56	776.056	759.056	742 - 056
728 - 056	810.C56	803.056	785.056	764.056
744.056	725.056	715.056	700-056	685-056
672.056	661 • C56	646 • 056	624.056	598.056
565.056	554.C56	534.056	529.056	512.056
591.056	986.C56	978.056	963.056	938.056
927.056	912.C56	897.056	884-056	868 • 056
852.056	840.C56	822.056	807.056	791-056
780.056	763-C56	750.056	735-056	719.056
697.056	779.C56	764.056	748.056	729.056
718.056	703.C56	689.056	667.056	662.056
649.056	636.C56	622.056	602.056	593 • 056
584.056	570 • C56	654.056	642.056	630.056
611-056	592.C56	575.056	568.056	554.056
527.056	509.C56	499.056	878.056	866 • 056
836.056	819.C56	797.056	774.056	757 • 056
738.056	724.C56	714-056	695.056	680.056
661.960	742.C56	718.056	701.056	688.056
660.056	645.C56	623.056	614-056	593.056
577.056	554.C56	528.056	508.056	495.056
585.056	572.C56	548.056	534.056	518 • 056
500.056	476.C56	454.056	439.056	425 • 056
402.056	386 • C56	364.056	351.056	339.056
320.056	306.C56	301.056	273.056	361.056
755.056	734.C56	723.056	712.056	694 • 056
683.056	666.C56	645.056	634 • 056	629-056
608.056	588.C56	570.056	556 • 056	549 • 056
535.056	523•C56	509.056	497.056	490.056
473 • 056	458.C56	534.056	515.056	502.056
484.056	459.C56	441.056	417.056	397.056
383.056	370.C56	359.056	347.056	333 • 056
317.056	299.C56	282.056	266+056	353 • 056
336.056	320.C56	307.056	290.056	272-056
659.056	641.C56	622.056	600.056	580.056
570.056	558.C56	551.056	533.056	521 • 056
509.056	497.C56	490.056	478.056	471 • 960
457.960	443.960	433.960	425 • 960	487.056
470.056	452•C56	444.056	431.056	416.056
405.056	397 • C56	387.056	369.056	354.056
335.056	310.C56	296.056	285.056	269-960
265.960	263.960	253.961	243.961	235.961
229.961	223.961	263.056	248.056	235.056
217.056	201.C56	189.056	170.056	260-056
236.056	225.C56	211.056	596.056	585 • 056
561.056	543.C56	518.056	495 • 056	487-056
475.056	467.C56	456.056	449.056	440-056
414.056	397•C56	383.056	364.056	346.056
328-056	912+C56	983.056	963.056	945 • 056
928.056	912.056	903.056	890.056	875.056

850-056	836 • C56	830.056	816.056	801.056
782.056	772.056	752.056	736-056	724.056
704.056	787.C56	767.056	752.056	741 - 056
724.056	714.C56	700.056	700-056	684 - 056
666.056	655.C56	640.056	615-056	600 • 056

Table 5.17 Sample Correlation and its Partials of the Inventory Simulation Process about $\mathbf{z_t}$

Lag Autocorrelation		Partial Autocorrelation	
1	0.96	0.96	
2	0.92	-0.02	
3	0.88	0.01	
4	0.84	-0.07	
5	0.80	-0.00	
6 ,	0.76	-0.01	
7	0.72	-0.00	
8	0.69	0.02	
9	0.66	0.01	
10	0.63	0.02	
11	0.60	0.02	
12	0.58	0.01	
13	0.56	0.16	
14	0.53	-0.00	
15	0.52	0.03	
16	0.51	0.02	
17	0.49	0.01	
18	0.48	0.02	
19	0.46	-0.04	
20	0.45	-0.00	
21	0.43	-0.03	
22	0.41	-0.04	
23	0.39	-0.05	
24	0.37	0.01	
25	0.35	0.02	

Table 5.18 Sample Correlation and its Partials of the Inventory Simulation Process about $\forall z_t$

Lag	Autocorrelation	Partial Autocorrelation	
1	-0.000	-0.000	
2	-0.031	-0.030	
3	0.049	0.049	
4	-0.021	-0.021	
5	-0.014	-0.011	
6	-0.013	-0.017	
7	-0.041	-0.040	
8	-0.029	-0.030	
9	-0.041	-0.043	
10	-0.040	-0.039	
11	-0.020	-0.023	
12	-0.032	-0.033	
13	-0.010	-0.012	
14	-0.035	-0.042	
15	-0.036	-0.040	
16	-0.017	-0.028	
17	-0.022	-0.030	
18	0.039	0.031	
19	0.001	-0.010	
20	0.024	0.019	
21	0.037	0.022	
22	0.039	0.032	
23	-0.015	-0.025	
24	-0.028	-0.038	
25	-0.022	-0.032	

Figure 5.10 Estimated Autocorrelation and its Partials of the simulated Inventory Process about $z_{\mathbf{t}}$

Figure 5.11 Estimated Autocorrelation and its Partials of the simulated inventory process about ∇z_t

order autoregressive process. The estimated parameter of AR(1) can be obtained by applying equation (2.3.7.)

$$\hat{\phi} = \rho_1 = 0.96$$

so, the recommended model might be

$$(1 - 0.96 \text{ B}) z_t = a_t$$
 (5.3.1.1)

In Fig. 5.11, the correlation dies out completely after the first difference. This suggests a possible model might be

$$\nabla z_t = a_t$$

or

$$(1-B) z_t = a_t (5.3.1.2)$$

Comparing (5.3.1.1) with (5.3.1.2), the model form is similiar except the parameter is a little different. The forecast value of (5.3.1.2) are all the same beyond the lead time l=1. However, the inventory will be depleted little by little. Hence (5.3.1.1) is to be entertained to represent the simulated inventory process and will be subjected to diagnostic check.

5.3.2. Efficient Estimation of Parameter

Program ESTIM computes the maximum likelihood estimation of parameter of (5.3.1.1) with given time series. After the first iteration, the program is stopped execution with the efficient estimation parameter of $\theta = 0.96$. Hence the tentative model is

$$(1 - 0.96 \text{ B}) z_t = a_t$$
 (5.3.2.1)

The process of testing the fit the model is explained as follows.

- (1) An autocorrelation check is based on the assumption that the estimated autocorrelation of residuals $\gamma_k(a)$ are uncorrelated and distributed approximately about zero with a standard error of $n^{-1/2}$, if the model can represent the time series appropriately. Hence comparing the residual autocorrelation coefficients shown on Table 5.19. with the "control" line $n^{-1/2}$, a few correlations are slightly larger than $n^{-1/2}$. Hence, the model should be subjected to more investigation.
- (2) To make a more formal assessment, the portmanteau lack of fit test which is based on the assumption that if the model is appropriate, the value of Q = n $\sum_{k=1}^{k} \gamma_k^2(\hat{a})$ is approximately distributed as $\chi^2(k-p-q)$. Hence, taking 20 autocorrelation coefficients of residual as a whole, we obtain,

$$Q = n \sum_{k=1}^{k} \gamma_k^2(a) = 13.68$$

with 19 degree of freedom. From χ^2 tables, the 10% and 5% points for χ^2 , with 19 degrees of freedom are 27.2 and 30.1 respectively. For Q = 13.68 is smaller than 27.2, thus no lack of fit is indicated. Hence the model of (5.3.2.1) is recommended to represent the time series.

Table 5.19 Sample correlations of Residuals of the Inventory Simulation Process Data

Lag	Correlation	
1	0.0112	
2	-0.0194	
3	0.0595	
4	-0.0104	
5	-0.0052	
6	-0.0045	
7	-0.0325	
8	-0.0213	
9	-0.0333	
10	-0.0327	
11	-0.0134	
12	-0.0248	
13	-0.0032	
14	-0.0291	
15	-0.0294	
16	-0.0109	
17	-0.0161	
18	0.0451	
19	0.0068	
20	0.0300	
21	0.0426	
22	0.0436	
23	-0.0110	
24	-0.0238	
25	-0.0183	

5.3.3. Forecasting

Program FORCAT provides the forecast values and its confidence intervals. The outputs are shown on Table 5.20., Fig. 5.12. respectively.

From Fig. 5.12. of the simulated inventory process, we see the inventory is being replenished when it is depleted to some extent. However, there is no definite replenishment cycle. Hence the model will not forecast replenishments. The AR(1) of (1 - 0.96 B) $z_t = a_t$ can represent this process satisfactorily. From the forecast values of Fig. 5.12., we can predict when the inventory stock will be dropped to what level, and hence, can prepare in advance to order the needed stock.

Table 5.20 Forecast Value and its 95% Confidence Limits for the Simulated Inventory Process Data

The second secon			
Time	Forecast Value	Upper Limit	Lower Limit
1001	576.053	443.28	708.82
1002	553.011	368.96	737.05
1003	530.890	309.88	751.89
1004	509.654	259.37	759.93
1005	489.268	214.75	763.78
1006	469.697	174.61	764.78
1007	450.909	138.05	763.76
1008	432.873	104.49	761.25
1009	415.558	73.49	757.61
1010	398.935	44.73	753.13
1011	382.978	17.94	748.01
1012	367.658	-7.08	742.39
1013	352.952	-30.51	736.42
1014	338.833	-52.50	730.71
1015	325.280	-73.17	723.73
1016	312.269	-92.63	717.17
1017	299.778	-110.97	710.53
1018	287.787	-128,289	703.86
1019	276.275	-144.64	697.19
1020	265.224	-160.11	690.56

Figure 5.12 Part of Simulated Inventory Process and its Forecast Values

BIBLIOGRAPHY

- [1] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970. pp. 23, Sec. 2.1.1.
- [2] C.M. Stralkowski, "Lower Order Autoregressive-moving Average Stochastic Models and Their use for the Characterization of Abrasive Cutting Tools", Ph.D. Thesis, University of Wisconsin, 1968, pp 11, Sec. 2.1.
- [3] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 23, Sec. 2.1.1
- [4] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 10, Sec. 1.2.
- [5] C. M. Stralkowski, S.M. Wu, and R.E. DeVor, "Chart for the Interpretation and Estimation of the Second Order Autoregressive Model", Technometrics, Vol. 12, No. 3, Aug. 1970, pp. 669-685.
- [6] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 524.
- [7] Gadad, S.V., "Numerical Optimization of a Stochastic Inventory System Under Constraint". Master Thesis, Kansas State University. 1971.
- [8] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>,
 Holden Day, Co., 1970, pp. 8, Sec. 1.2.1.
- [9] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 9, Sec. 1.2.1.
- [10] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 10, Sec. 1.2.
- [11] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>,
 Holden Day, Co., 1970, pp. 192, Sec. 6.3.5.

- [12] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1 0, pp. 304, Sec. 9.1.3.
- [13] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 305, Sec. 9.1.3.
- [14] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u> Control, Holden Day, Co., pp. 517.
- [15] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u> Control, Holden Day, Co., pp. 200.
- [16] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 178, Sec. 6.2.2
- [17] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 30, Sec. 2.1.4.
- [18] Durbin, J. (1960), "The Fitting of Time Series Models", Rev. Int. Inst. Stat., 28, 233.
- [19] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u> Control, Holden Day, Co., 1 70, pp. 54, Sec. 3.2.1.
- [20] G.U. Yule, "On a Method of Investigating Periodicties in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers", Phil-Trans., A226, 267, 1927.
- [21] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 64, Sec. 3.2.5.
- [22] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>,
 Holden Day, Co., 1970, pp. 46, Sec. 3.1.1.
- [23] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>,
 Holden Day, Co., 1970, pp. 68, Sec. 3.3.2.
- [24] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 70, Sec. 3.3.3.

- [25] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 75, Sec. 3.4.2.
- [26] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u> Control, Holden Day, Co., 1970, pp. 76, Sec. 3.4.2.
- [27] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 77, Sec. 3.4.3.
- [28] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u>
 Control, Holden Day, Co., 1970, pp. 201, Appendix A6.2.
- [29] Box, G.E.P. and Jenkins. <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 517-520.
- [30] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u>
 Control, Holden Day, Co., 1970, p. 175, Sec. 6.2.1.
- [31] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u> Control, Holden Day, Co., 1970, p. 208, Sec. 7.1.1.
- [32] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 210, Sec. 7.1.2.
- [33] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 209, Sec. 7.1.2.
- [34] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 219, Sec. 7.1.5.
- [35] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 289, Sec. 8.2.1.
- [36] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 290, Sec. 8.2.1.
- [37] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and</u> Control, Holden Day, Co., 1970, pp. 2902 pp. 3, Sec. 8.2.2.

- [38] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 127, Sec. 5.1.
- [39] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 130-131, Sec. 5.1.2.
- [40] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 134, Sec. 5.2.2.
- [41] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 135, Sec. 5.2.3.
- [42] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>,
 Holden Day, Co., 1970, pp. 269, Appendix A7.4.
- [43] C.M. Stralkowski, "Lower Order Autoregressive-moving Average Stochastic Models and Their Use for the Characterization of Abrasive Cutting Tools," Ph.D. Thesis, University of Wisconsin, 1968. Appendix A. B. C. D.
- [44] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 525.
- [45] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 531.
- [46] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 85, Sec. 4.1.1.
- [47] R. G. Brown, Smoothing, Forecasting and Preduction of Discrete

 <u>Time Series</u>, Prentice-Hall, New Jersey, 1962.
- [48] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 303, Sec. 9.1.3.
- [49] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 313, Sec. 9,2,3.

- [50] Marquardt, D. L. (1963), "An Algorithm for Least-Square Estimation of Non-linear Parameters". J. Soc. Indust. Appl. Math., 2, pp. 431-441.
- [51] Mood, A. M. Introduction to the Theory of Statistics, McGraw-Hill Book Company, Inc., New York, 1950, pp. 158-161.
- [52] Box, G.E.P. and Jenkins, <u>Time Series Analysis Forecasting and Control</u>, Holden Day, Co., 1970, pp. 214, Sec. 7.1.4.

APPENDIX A

Program IDENT

A-1. Description of Program

Program IDENT is developed to provide the sample correlation and partial correlation functions so as to identify the appropriate model for the given time series. The calculations performed are based on equations (2.1.3), (2.1.4), (2.2.4) and (2.2.5) in Chapter Two. Program IDENT can accommodate stationary time series, non-stationary time series and seasonal time series. The program consists of a main program and three subroutines. Subroutine DIFFER performs data differences if non-stationary or seasonal time series is analyzed. Subroutine CORRCE calculates the correlations and partial correlations of the time series. Subroutine GRAPH is modified from IBM scientific subroutine PLOT to plot out the correlations and partial correlations within + 1 range. The flow chart of Program IDENT is constructed on next page.

A.2. Description of Input Data

CARD	VARIABLE IN PROGRAM	FORMAT	DESCRIPTION
1	KK	(110)	Number of correlations to be calculated.
2	IDW	(110)	Number of differences required. For stationary time series, a zero is entered.
3	IDB,IS	(2110)	Number of seasonal differ- ences followed by seasonal lag. For stationary time series, two zeros are entered.
4	N	(110)	Number of observations in original series.
Last N Cards	Z(I,1,1)	(2x,(F20.5))	Observations of original series.

- A.3. Description of Output Data

 The following output can be generated by Program IDENT.
- Graphs of the sample correlations and partials of the original time series and of the differenced time series.
- Sample mean of observations; sample variance of observations;
 Sample correlations, partials and standard errors.
- 3. Estimates of the autoregressive parameters for "candidate"
 AR(p) models, with p taken from 1 to KK, based on the sample partial correlation function.

APPENDIX A. PROGRAM IDENT

A.4 Computer Program

```
FORTRAN IV G LEVEL 18
                                          MAIN
                                                              DATE = 71113
                                                                                     03/38/05
                    DIMENSION Z(1000,3,2),NOB(5,4),X(1000),P(1000)
 0001
 0002
                    COMMON/A1/Z
 0003
                    COMMON/A2/NOB
 0004
                    COMMON/A3/X,P
              C
                    READ IN DATA
 0005
                200 FORMAT(4110)
              C
                            TOTAL NO. OF CORRELATIONS AND PARTIALS TO BE CALCULATED
                    KK
              000
                            NO. OF DIFFERENCES REQUIRED.
                    IDW
                            FOR STATIONARY TIME SERIES. A ZERO IS ENTERED.
             000000
                    IDB. IS NO. OF SEASONAL DIFFERENCES FOLLOWED BY SEASONAL LAG.
                             FOR STATIONARY TIME SERIES, TWC ZEROS ARE ENTERED.
                            NO. OF OBSERVATIONS IN ORIGINAL SERIES.
                          OBSERVATIONS OF ORIGINAL SERIES.
 0006
                    READ (1.200) KK
                    READ (1,200) IDW
READ (1,200) IDB,IS
 0007
 0008
 0009
                    READ (1,200) N
 0010
                201 FORMAT(2X, (F20-51)
 0011
                    READ(1,201) (Z(I,1,1), I=1,N)
 0012
                    CALL DIFFER(IDW, IDB, IS, N, MW, MB)
 0013
                    CO 202 J=1.MB
CO 202 F=1.MW
 0014
 0015
                   CALL CORRCE(KK,M,J,IS)
               202
 0016
                    END
```

```
FORTRAN IV G LEVEL 18
                                           DIFFER
                                                              . DATE = 71113
                                                                                       03/38/05
                     SUBROUTINE DIFFER(IDW, IDB, IS, N, FH, FB)
 0001
              C
                     SUBROUTINE DIFFER PERFORMS DIFFERENCING OPERATIONS ON THE DATA
              C
                     IF NON-STATIONARY OR SEASONAL SERIES ARE ANALYZED.
              C
 0002
                     CIPENSICN Z(1000,3,2), NOB(5,4)
 0003
                     COPPON/A1/Z
 0004
                     COPMON/A2/NOB
              C
                     CALCULATION OF NOB(M,J)
 0005
                     PW=IDW+1
 0006
                     PB=IDB+1
 0007
                     DO 151 M=1.MW
 0008
                     CO 151 J=1.MB
 0009
                151 NOB(M, J)=N+1-M+IS-J*IS
                     DIFFERENCING WITH RESPECT TO DW, NG. OF DIFFERENCES
              C
                     NOBC=NCB(M.1) IS NO. OF OBSERVATIONS AFTER DIFFERENCE
                     Z(I.M.1) IS THE OBSERVATIONS AFTER DIFFERENCE BY SUBSTRACTING THE PRECEDING OBS. FROM THE CURRENT OBS. M IS THE DIFFERENCE NO. INDE:
              C
              C
 0010
                     IF(MH-1)152,152,153
                153 DO 154 M=2,MW
 0011
 0012
                     NOBD=NOB(M,1)
                     CO 154 I=1,NOBD
 0013
 0014
                154 Z(I,M,1)=Z(I+1,M-1,1)-Z(I,M-1,1)
              C
                     DIFFERENCING WITH RESPECT TO DB
                     NOBD=NOBIM, J) IS THE NO. OF OBSERVATIONS AFTER DIFFERENCES M AND
              C
                     SEASONAL DIFFERENCES J.
              C
                     Z(1, M. J) IS THE OBSERVATIONS AFTER SEASONAL DIFFERENCE.
              C
                     J IS THE SEASONAL DIFFERENCE NO. INDEX HERE.
 OC15
                152 IF(PB-1) 155,155,156
 0016
                156 DO 157 M=1.MW
 0017
                     CO 157 J=2, MB
 0018
                     NOBC=NOB(M,J)
 0019
                     DO 157 I=1,NOBD
 0020
                157 Z(I_{+}M_{+}J)=Z(I+IS_{+}M_{+}J-1)-Z(I_{+}M_{+}J-1)
 0021
                155 CONTINUE
 0022
                     RETURN
 0023
                     END
```

0050

```
FORTRAN IV G LEVEL 18
                                        CORRCE
                                                          DATE = 71113
                                                                                 03/38/05
                   PLOT OUT AUTOCORRELATION AND PARTIAL AUTCCORRELATION FUNCTION
             C
                   E IS POLITED FUNCTION
0051
                   DO 112 K=1,KK
0052
                   K1=KK+K
0053
                   E(K)=K
0054
               112 E(K1)=R(K)
0055
                   E(2*KK+1)=T(1+1)
0056
                   E(2*KK+2)=T(2,2)
0057
                   CO 113 K=2,KKK
0058
                   K2={2*KK+2}+K-1
0059
               113 E(K2)=T(K+1,K+1)
0060
                   CALL GRAPH (1, E, KK, 3, KK)
                   CALCULATION OF VAR AND VART
             C
                   VARIKE IS
             C
                   AN ESTIMATE OF THE VARIANCE OF THE ESTIMATE OF THE CORRELATIONS.
             C
                   WHICH CAN BE USED IN A ROUGH TEST FOR WHETHER CORRELATION R IS
             C
                   EFFECTIVELY ZERO.
             C
0061
                   VAR(1)=1./XN
                   S(1)=R(1)/SCRT(VAR(1))
0062
0063
                   A=2./XN
0064
                   CO 204 K=2,KK
                   VAR(K)=VAR(K-1)+A*(R(K-1)**2)
0065
0066
               204 S(K)=R(K)/SCRT(VAR(K))
             C
                   VARTIK) IS AN APPROXIMATE ESTIMATE OF THE VARIANCE OF THE SAMPLE
                   PARTIAL CORRELATIONS, GIVEN THAT THE MODEL IS AR(K-1)
                   KKK=KKK+1
0067
                   CO 205 K=1,KKK
0068
0069
                   A=1-/(N-K)
0070
                   VART (K)=A
0071
               205 L(K)=T(K,K)/SQRT(VART(K))
                   WRITE OUT
0072
               601 FCRMAT(/2x,5HZBAR=,F20.5,5x,7HVAR(Z)=,F20.5///)
0073
                   WRITE (3,601) ZBAR,CO
0074
                   SVAR=SQRT(VAR(KK))
0075
                   SVAT=SCRT (VART (KKK))
0076
                   WRITE(3,250) SVAR, SVAT
0077
                   FORMAT(/2X,12HS.D.(R(KK))=,F10.6,6X,14HS.D.(PR(KKK))=,F10.6)
0078
               300 FORMAT(/2X, 31HSAMPLE CORRELATION COEFFICIENTS//)
0079
                   WRITE(3,300)
0080
               3C1 FORMAT(2X,2HR(,13,2H)=,F10.5,6X,10HR/S-D.(R)=,F10.5)
0081
                   CD 302 I=1,KK
0082
               302 WRITE (3,301) I,R(1),S(1)
0083
               303 FORMAT(////2X,39HSAMPLE PARTIAL CORRELATION COEFFICIENTS//)
0084
                   WRITE(3,303)
0085
               304 FORMAT(2X,3HPR(,13,2H)=,F10.5,6X,12HPR/S.D.(PR)=,F10.5)
0086
                   DO 305 I=1,KKK
0087
               305 hRITE(3,304) [,T(1,1),U(1)
0088
               310 FORMAT(1H12X, 25HAUTORGESSIVE PARAMETERS//)
0089
                   WRITE(3+310)
0090
              311 FORMAT(2X,2HP=,13,5X,4HPHI(,13,2H)=,F10-5)
0091
                   CO 312 K=1,KKK
0092
                   CO 312 I=1,K
0093
               312 hRITE(3,311; K,1,T(K,1)
0094
                   RETURN
0095
                   END
```

```
FORTRAN IV G LEVEL 18
                                                              DATE = 71113
                                          GRAPH
                                                                                     03/38/05
 0001
                    SUBROUTINE GRAPH (NO, A, N, M, NL)
              C
 0002
                    DIFENSION OUT (101), YPR(11), ANG(9), A(1)
              C
                  1 FORMATIIH1,60X,7H CHART ,//)
 0003
                  2 FCRMAT(1H ,F11-4,5H+
4 FCRMAT(10H *X015678+)
 0004
                                              ,101A1)
 0005
 0006
                  5 FORMAT( 10A1)
                  7 FORPAT (1H , 16X, 101H.
 0007
                  8 FORMAT(1H0,9X,11F10.4//)
 0008
 0009
                200 FORMAT(10X,
                                       PLOT OF AUTO-CORRELATION AND PARTIAL AUTO-CORRELA
                   ITION FUNCTION')
 0010
                201 FORMAT(10X.
                                       PLOT OF AUTO-CORRELATION FUNCTION')
              C
              C
 0011
                    NLL=NL
              C
              C
                       PRINT TITLE
 0012
                 20 MRITE(3,1)
 0013
                    GO TO (91,92), NO
                 91 WRITE(3,200)
 0014
 0015
                    GD TO 21
 0016
                 92 WRITE(3,201)
 0017
                    GO TO 21
 0018
                 21 CONTINUE
             C
                       DEVELOP BLANKS AND DIGITS FOR PRINTING
             C
0019
                    REWIND 4
 0020
                    WRITE 14,41
 0021
                    REWIND 4
 0022
                    READ(4,5)BLANK, (ANG(I), I=1,9)
 0023
                    REWIND 4
             C
             C
                       FIND SCALE FOR BASE VARIABLE
             C
0024
                    XSCAL = (A(N)-A(1))/(FLOAT(NLL-1))
             C
                       FIND SCALE FOR CROSS VARIABLES
             C
0025
                    M1=N+1
                    42= 4 N
 0026
0027
                    YMIN=-1.
0028
                    YMAX=+1.
0029
                    YSCAL=(YMAX-YMIN)/100.0
             C
             C
                       FIND BASE VARIABLE PRINT POSITION
             C
0030
                    XB=A(1)
0031
                    MY=#-1
                    DO 108 I=1,NLL
0032
                 45 F=I-1
0033
0034
                    XPR=XB+F*XSCAL
             C
```

```
FORTRAN IV G LEVEL 18
                                        GRAPH
                                                            DATE = 71113
                                                                                  03/38/05
                       FIND CROSS VARIABLES
             C
             C
 0035
                51 DO 55 IX=1,101
 0036
                55 CUT(IX)=BLANK
 0037
                57 CB 60 J=1,MY
 0038
                   LL=1+J*N
 0039
                    JP=((A(LL)-YMIN)/YSCAL)+1.0
 0040
                   CUT(JP)=ANG(J)
 0041
                   IF(JP.EC.51) GO TO 60
 0042
                   CUT(51)=ANG(9)
0043
                   IF (JP-EQ-101) GO TO 60
 0044
                   CUT(101)=ANG(9)
                60 CONTINUE
0045
             C
                       PRINT LINE AND CLEAR, OR SKIP
             C
0046
                   hRITE(3,2) XPR, (OUT([Z), [Z=1,101)
               108 CONTINUE
 0047
             CCC
                       PRINT CROSS VARIABLES NUMBERS
0048
                86 WRITE(3,7)
0049
                   YPR(1)=YMIN
0050
                   DO 90 KN=1.9
 0051
                90 YPR(KN+1)=YPR(KN)+YSCAL+10.0
0052
                   YPR(11)=YMAX
0053
                   WRITE (3,8) (YPR(IR), IR=1,11)
0054
                   RETURN
0055
                   ENC
```

APPENDIX B

PROGRAM ESTIM

B.1. Description of Program

Program ESTIM is developed to determine the least square estimates of the parameters of the models entertained as candidates for acceptance. The program consists of the main program, and five subroutines; they are subroutine MODEL, subroutine CALA, subroutine DIFFER, subroutine MULT and subroutine UWHAUS. The main program provides the data needed for subroutine UWHAUS and calculates the autocorrelation function of the residuals based on the least square estimates. Program UWHAUS is used in conjunction with subroutine MODEL, CALA and MULT, and perform the operation of locating the least square estimates in an iterative manner. The complete description of subroutine UWHAUS is presented on Section B.2. Subroutine DIFFER performs the required differences on the original observations if seasonal or nonstationary time series is analyzed. Subroutine MODEL, CALA and MULT calculate the residuals of original time series required by subroutine UWHAUS for each set of parameter tested. Its calculation is based on the following equation.

$$a_{t} = \tilde{w}_{t} - \phi_{1} \tilde{w}_{t-1} - \phi_{2} \tilde{w}_{t-2} - \dots - \phi_{p} w_{t-p} + \theta_{1} a_{t-1} + \theta_{2} a_{t-2} + \dots + \theta_{q} a_{t-q}$$
(B.1.1)

where $W_t = \nabla^d Z_t$ and $\tilde{W}_t = W_t - \mu$ with $E[W_t] = \mu$. a_t is the residual of general autoregressive model and is assumed as white noise process.

The flow chart of program ESTIM is as follows.

B.2. Description of Input Data of Program ESTIM

CARD	FORMAT	VARIABLES IN PROGRAM	DESCRIPTION	
1	(110)	N	Sample size of original series.	
Next N cards	(2X,(F20.5))	ZD(I,1,1)	Observations of original series.	
Next card	(110)	INDS	Number of models to be fitted to original series.	
[For each	n model, add the	following parameter	r input data]	
Next card	(3110)	IPW	Number of autoregressive parameters.	
	g.	IDW	Number of nonstationary differences.	
		IQW	Number of moving-average parameters.	
Next card	(4110)	IPB	The largest power of the shift operator associated with the seasonal autoregressive parameters.	
	-47	IDB	The number of seasonal differences.	
		IQB	The largest power of the shift operator, associated with the seasonal moving-average parameters.	
		IS	The seasonal lag.	

		VARIABLES			
CARD	FORMAT	IN PROGRAM	DESCRIPTION		
Next card	(4110)	11	The number of auto- regressive parameters.		
		12	The number of moving- average parameters.		
		13	The number of non- zero seasonal auto- regressive parameters.		
		14	The number of non- zero seasonal moving- average parameters.		
Next card	(I10,F20.5)	J,PHIW(J)	The initial estimated value of the Jth autoregressive parameter. If I1=0, no card is entered.		
	(I10,F20.5)	J,THETW(J)	The initial value of the Jth moving-average parameter. If I2=0, no card is entered.		
[Add th	e following cards,	for seasonal models,	only]		
Next card	(I10,F20.5)	J,PHIB(J)	The Jth non-zero seasonal auto- regressive parameters with index J, corresponding to the power of the adjacent shift operator in the model.		
Next card	(I10,F20.5)	J,THETB(J)	The Jth non-zero seasonal moving-average parameter with index J corresponding to the power of the adjacent shift operator in the model.		

B.3. Description of Output Data

The following data can be generated by Program ESTIM.

- 1. List of the initial estimates of the parameters.
- 2. For stationary time series only; a print out of the standardized observations, in other words, the observations formed by subtracting the sample mean from the original observations.
- 3. UWHAUS prints out summary information at each iteration which can be analyzed to determine the path in the parameter space taken by the iterations to converge on the least square estimates.
- 4. Tabulation of the first 25 sample correlations of the residuals based on the least square estimates.

B. 4.1. Description of Subroutine UWHAUS

Subroutine UWHAUS is developed to obtain least square estimates of parameters entering non-linearly into a mathematical model. An iterative technique is used, the estimate at each iteration is obtained by a method due to Marquardt which combines the Gauss (Taylor series) method and the method of steepest descent [51]. The main program must be provided by the user to supply the input for subroutine UWHAUS. Subroutine MODEL is to specify what mathematical model is to be used. As for the general Auto-regressive Moving-average model, its model form is equation (B.1.1).

The theory behind subroutine UWHAUS can be described as follows. Suppose the mathematical model which is tentatively entertaining is

$$\eta = f(\underline{\theta},\underline{\xi}) \tag{\beta.2.1}$$

where $\underline{\theta}$ is a pxl vector of unknown parameters and $\underline{\xi}$ is a vector of independent variables.

Suppose n actual observations Y are made. When the uth observation Y_u is made, the value of the independent variable is $\underline{\xi}_4$. Because of experimental error, an observation Y_u , different from the model response, η_u . Hence,

$$Y_{ij} = \eta_{ij} + \epsilon_{ij}, \quad u = 1, ..., n$$
 (B.2.2)

Marquardt also assured the theoretical optimum properties of least square estimates. Some assumption on the errors, ϵ , have to be made: [50]

- (1) The errors, ε , are independent random variables with equal variance from the same probability observation (independence implies that knowledge of ε_i does not give any information about ε_i , $i \neq j$).
- (2) The expected value of the errors is zero.
- (3) The probability distribution of the error is the normal (Gaussian) distribution with variance σ^2 .

Under the assumption (1), (2), and (3), the least square estimate, $\hat{\theta}$, is a maximum likelihood estimates and thus had certain desirable properties [51].

Now, from (B.2.2), it is desired to use the observed data to obtain estimates of the unknown parameter, $\underline{\theta}$. An estimate of $\underline{\theta}$, say $\underline{\hat{\theta}}$, obtained by minimizing

$$S(\underline{\theta}) = \sum_{u=1}^{n} [Y_{u} - \eta_{u}]^{2} = \sum_{u=1}^{n} [Y_{u} - f(\underline{\theta}, \underline{\xi}_{u})]^{2}$$
(B.2.3)

1

as a function of $\underline{\theta}$, is frequently referred to as a least square estimate. Subroutine UWHAUS is intended to provide a least square estimate of $\underline{\theta}$ when the model (B.2.1) is nonlinear in the parameters, $\underline{\theta}$.

When dealing with the autoregressive moving-average problem, η_u in (B.2.2) is the random error a_t in model (B.1.1). The expected value of the errors, which are Y_u in (B.2.2), are assumed zero; this comforms with the assumption of Box and Jenkins [52] and Marquardt [50]. Hence, in the case of an autoregressive moving-average model, (B.2.3) may be written as,

$$S(\underline{\theta}) = \sum_{u=1}^{n} [Y_u - \eta_u]^2 = \sum_{u=1}^{n} a_t^2$$
(B.2.4)

Now, suppose $\underline{\theta}^{(0)}$ is an initial guess, the first order Taylor series expansion about $\underline{\theta}^{(0)}$ is

$$\eta_{\mathbf{u}}(\underline{\theta}) \simeq \eta_{\mathbf{u}}(\underline{\theta}^{(0)}) + \sum_{\mathbf{i}=1}^{\mathbf{p}} (\theta_{\mathbf{i}} - \theta_{\mathbf{i}}^{(0)}) \frac{\partial f(\theta, \xi_{\mathbf{u}})}{\partial \theta_{\mathbf{i}}} \Big|_{\underline{\theta}} (0)$$
(B.2.5)

u=1,... n

or more compactly,

$$\underline{n}(\underline{\theta}) \simeq \underline{n}^{(0)} + X \underline{\delta}$$

where X is the nxp matrix

$$\mathbf{x}_{\text{nxp}} = \left\{ \frac{\partial f(\underline{\theta}, \underline{\xi}_{\mathbf{u}})}{\partial \theta_{\mathbf{i}}} \mid_{\underline{\theta}} (0) \right\}, \qquad \mathbf{u} = 1, \dots, n$$

where $\underline{\delta} = \underline{\theta} - \underline{\theta}^{(0)}$ is the pxl vector; $\underline{\eta}(\theta)$ is the nxl vector $[\underline{f}(\underline{\theta},\underline{\xi}_1), \ldots, \underline{f}(\underline{\theta},\underline{\xi}_n)]$, and $\underline{\eta}^{(0)}$ is the nxl vector $\underline{\eta}(\theta^{(0)})$.

Now the approximation on the right hand side of (B.2.6) is linear in the parameters $\underline{\delta}$; by substituting (B.2.6) to (B.2.3), an approximation for $S(\underline{\theta})$ is,

$$S(\underline{\theta}) \simeq (\underline{y} - \underline{\eta}^{(0)} - X \delta_{\underline{m}})' (\underline{y} - \eta^{(0)} - X \underline{\delta}_{\underline{m}})$$
 (B.2.7)

where

$$\underline{\delta}_{m} = D^{-1/2} (D^{-1/2} X' X D^{-1/2} + \lambda I)^{-1} D^{-1/2} X' \underline{\gamma}$$
 (B.2.8)

is the correction vector, which is adapted from Marquardt's algorithm; [50]. D is a pxp diagonal matrix whose i-th diagonal element is the same as that of $X^{\dagger}X$; λ is a non-negative number.

 λ should be decreased only if the progress is satisfactory, i.e., only if the sum of squares, $S(\underline{\theta})$, at the new estimate is smaller than at the old. Thus, at i-th iteration, the basic strategy as indicated by Marquardt is as follows [50]:

Denote by $S(\lambda)$ the value of $S(\underline{\theta})$ obtained by using λ in (B.2.8) to get $\underline{\theta}^{(i)}$ from $\underline{\theta}^{(i-1)}$. Let $\lambda^{(i-1)}$ be the value of λ from the previous iteration. Let $\nu > 1$.

Compute $S(\lambda^{(i-1)})$ and $S(\lambda^{(i-1)}/\nu)$.

(1) if
$$S(\lambda^{(i-1)}/\nu) \leq S(\underline{\theta}^{(i-1)})$$
, let $\lambda^{(i)} = \lambda^{(i-1)}/\nu$

(2) if
$$S(\lambda^{(i-1)}/\nu) > S(\underline{\theta}^{(i-1)})$$
, and $S(\lambda^{(i-1)}) \leq S(\underline{\theta}^{(i-1)})$, let $\lambda^{(i)} = \lambda^{(i-1)}$

- (3) otherwise, increase λ by successive multiplication by ν until for smallest w, $S(\lambda^{(i-1)} \nu^W) \leq S(\underline{\theta}^{(i-1)})$. Let $\lambda^{(i)} = \lambda^{(i-1)} \nu^W$ Hence, by the definition of $\underline{\delta}$ in (B.2.8), the new guess is $\underline{\theta}^{(1)} = \underline{\hat{\delta}} + \underline{\theta}^{(0)}$, and the next iteration can be started by expanding about $\underline{\theta}^{(1)}$.
- B.4.2. Description of the variable in the Argument of Subroutine UWHAUS

 UWHAUS is called from the main program with a FORTRAN statement of
 the form:

CALL UWHAUS (NPROB, NOB, Y, NP, TH, DIFF, SIGNS, EPS1, EPS2, MIT, FLAM, FNU, SCRAT)

NPROB is the problem number.

NOB is the number of observations.

is a real one-dimensional array containing the vector of observed function values; i.e., Y(I) is the Ith observed function value, I=1,..., NOB.

NP is an integer indicating the number of unknown parameters.

is a real one-dimensional array of the parameter values.

i.e. TH(J) is the Jth parameter value, J = 1, ..., NP.

It is very important to obtain reasonable starting guess for the parameters; not only will the computation time be decreased by a good choice of starting values, but there is also the possibility of converging to a more reasonable estimate.

DIFF is a real one-dimensional array containing a vector of proportions in $\underline{\theta}$, for use in computing the difference

quotients of the model function values. The devivatives,

$$\frac{\partial f(\underline{\theta},\underline{\xi}_{\mathbf{u}})}{\partial \theta_{\mathbf{i}}}$$
 in (B.2.5) are approximated by difference quotients

within the program.

$$\frac{\partial f(\underline{\theta},\underline{\xi}_{\mathbf{u}})}{\partial \theta_{\mathbf{i}}} \simeq \frac{f(\theta_{1},\ldots,\theta_{\mathbf{i}} + \Delta\theta_{\mathbf{i}},\ldots\theta_{\mathbf{p}},\underline{\xi}_{\mathbf{u}}) - f(\underline{\theta},\underline{\xi}_{\mathbf{u}})}{(\theta_{\mathbf{i}} + \Delta\theta_{\mathbf{i}}0) - \theta_{\mathbf{i}}}$$

Thus at any point in the calculations, the denominator of the above difference quotient will be expressed as:

(TH(I)+DIFF(I)*TH(I))-TH(I)= DIFF(I)*TH(I)

In any case, DIFF(I) must satisfy 0 < |DIFF(I)| < 1,

(I=1,..., NP). Using a starting guess of zero for any parameter is prohibited for this method of calculation. is a real one-dimensional array indicating the existence of a prior sign restrictions on each of the parameters.

If SIGNS(I) is set equal to any positive quantity, UWHAUS will not allow the Ith parameter to change its sign during the calculations, thus the Ith parameter, TH(I), retains the same sign as the starting guess for that parameter.

If SIGNS(I) = 0, this feature is disabled for the Ith parameter.

is a real constant indicating the sum of squares convergence criterion and is used to terminate the calculation based on the relative change in the sum of squares from one iteration to the next iteration. More precisely, if at the completion of the ith iteration, it is true that

SIGNS

$$\left| \frac{S(\underline{\theta}^{(i)}) - S(\underline{\theta}^{(i-1)})}{S(\underline{\theta}^{(i-1)})} \right| \leq EPS1$$

then the calculations are terminated. Roughly, this means that if $EPS1=10^{-k}$, the calculations will be stopped if the sum of squares for the (i-1)st and ith iteration agree to k decimal places. If EPS1 is set equal to zero, this feature is disabled.

EPS2 is a real constant which is the parameter convergence criterion and is used to terminate the calculations based on the relative change in the parameter values from one iteration to the next iteration. Suppose that after the ith iteration, the value of the jth parameter is $\theta_j^{(i)}$ (j=1,..., p). If, at the completion of the ith iteration, the following holds:

$$\left| \begin{array}{c} \theta_{\mathbf{j}}^{(\mathbf{i})} - \theta_{\mathbf{j}}^{(\mathbf{i}-1)} \\ \theta_{\mathbf{j}}^{(\mathbf{i}-1)} \end{array} \right| < EPS2$$

MIT

for all j=1,..., p, then the calculations are terminated. Roughly, this means that if EPS2 = 10^{-k} , the calculations will be stopped if the value of each parameter after the ith iteration agree to k decimal place with the value of the same parameter after the (i-1)st iteration. This feature is disabled if EPS2 is set to zero.

is an integer constant (where 0 < MIT < 1000) which is the maximum number of iterations to be performed. If the

calculations have not been terminated for some other reasons, they will be terminated when the number of iteration equals MIT.

FLAM starting value for λ .

FNU is the value of ν .

storage for use by UWHAUS. When present in the calling sequence, SCRAT must be the name of an array containing at least the number of storage locations given by:

 $5*NP+2*NP^2 + 2*NOB+NP*NOB$

The contents of these locations will be destroyed during execution of UWHAUS.

B.4.3. The restrictions of subroutine UWHAUS

At the beginning of each problem run, UWHAUS checks the input arguments to see that the following are obeyed:

- (1) 1 < NP < 50;
- (2) NOB > NP
- (3) TH(I) \neq 0, I=1,..., NP. Each starting parameter guess is non-zero.
- (4) 0 < |DIFF(I)| < 1, I=1,..., NP. Each difference proportion is between 0 and 1 in absolute value.
- (5) 0 < MIT < 1000, the maximum number of iteration is between 0 and 1000.
- (6) FNU \geq 1. The starting value of ν is greater than or equal to 1.

If any of these restrictions are not obeyed, the message:

PARAMETER ERROR

will be printed on the printer output for the job, and control will be returned to the main program.

The flow chart of subroutine UWHAUS is shown as follows. The nonations ϵ_1 , ϵ_2 , $\underline{\wedge}$ and j_{max} are the input argument EPS1, EPS2, DIFF and MIT, respectively. Other notations have the same meanings as define in Section B.4.

Compute Parameter Estimation

Complete One Iteration

Iterating Complete

APPENDIX B. PROGRAM ESTIM

B.5 Computer Program

```
FORTRAN IV G LEVEL 18
                                         MAIN
                                                            CATE = 71113
                                                                                  03/39/40
             C
                    PROGRAM ESTIM IS DEVELOPED TO DETERMINE THE LEAST SQUARES ESTIMES
             C
                    CF THE PARAMETERS OF MODELS ENTERMINED AS CANDIDATEA FOR ACCEPTANCE.
             C
                    THE PREGRAM ALSO DEVELOP THE APPROXIMATE COVARIANCE MATRIX FOR THE
             C
                    ESTIMATES, AND PROVIDES THE RESIDUALS BASED ON THE LEAST SQUARES ESTIMATES
             C
 0001
                    CIMENSICN SCRAT(4018)
 0002
                    CIMENSICN R(100), C(100), S(100), VAR(100)
 0003
                    DIMENSION B(20)
 0004
                    CIMENSICN ZERO(1000)
 0005
                    CIMENSICH DIFF(20).SIGNS(20)
                    COMMON ZD(1000,4,3),NOB(4,3),Z(1000),A(1000), PHI(100),THETA(100),
 0006
                              PHIW(100), THETW(100), PHIB(100), THETB(100), LOC1(10), LOC2(
                   210),LCC3(10),LOC4(10), II1(1), II2(1), II3(1), II4(1), IIP(1), IIQ(1)
 0007
                    KCREP=0
             C
                     N
                         SAMPLE SIZE OF ORIGINAL SERIES
                    REAC 2002, N
 0008
              2021 FORMATI2X, F20.51
 0009
 0010
                    READ 2021, (7D(I,1,1), I=1,N)
             C
                    READ IN DATA AND PRINT OUT
             C
                                 OBSERVATIONS OF ORIGINAL SERIES
                    ZD(1,1,1)
                            NO. OF MCDELS TO BE FITTED TO CRIGINAL SERIES
             C
                    INDS
                           NO. OF AUTOREGRESSIVE PARAMETERS
             C
                    IPW
             Č
                           NG. CF NON-STATIONARY CIFFERENCES.
                    IDh
             C
                           THIS IS ZERC FOR STATIONARY SERIES.
                    ICH
                           NO. OF MOVING AVERAGE PARAMETERS.
 0011
                    REAC 2002, INDS
 0012
                    DO 10 IDEP=1, INDS
 0013
              2002 FORMAT(4110)
 0014
                    PEAC 2002, IPW. IDW. IQW
             C
                           THE LARGEST POWER OF THE SHIFT OPERATOR ASSOCIATED WITH
             C
                                THE SEASONAL AUTOREGRESSIVE PARAMETERS.
             Č
                           NC. OF SEASONAL DIFFERENCES
                    ICE
                    ICB
                           LARGEST POWER OF THE SHIFT OPERATOR ASSOCIATED WITH THE
             Č
                           SEASCNAL MOVING AVERAGE PARAMETERS.
                    IS
                          SEASONAL LAG.
                    FOR STATICNARY SERIES, THE FOLLOWING CARD IS BLANK
 0015
                    READ 20C2, IPB, IDB, IQB, IS
 0016
              2003 FORMAT(1H12X,6HIARMA(,I3,1H,,I3,1H,,I3,3H)X(,I3,1H,,I3,1H,,I3,3H)X
                  1(,13,1H)//)
 0017
                    PRINT 2003, IPW, IDW, IQW, IPB, IDB, IQB, IS
 0018
                    IP=IPW+IPB
 0019
                    IC=IQH+ICB
 0020
                    IIP(1)=IP
 0021
                    IIC(1)=IQ
 0022
                    IPIC= IP+IQ
                   CO 2090 I=1, IPIQ
 0023
 0024
                    -0=(1)#IH9
 0025
                   PHI8(1)=0.
 0026
                    PHI(I)=0.
 0027
                   THETW([)=0.
 0028
                    THETB(I)=0.
 0029
              2090 THETA(1)=0.
 0030
              100 FORMATI///2X, 20HINITIAL GUESS VALUES///)
 0031
                    PRINT 100
              2004 FORMAT(110.F20.5)
 0032
 0033
              2CC5 FCRMAT(2X,5PPHIW(,13,2H)=,F11.5)
 0034
              2CC7 FORMAT(2X,5HPHIB(,13,2H)=,F11.5)
 0035
              2006 FORMAT(2X, 6HTHETW(, 13, 2H)=,F11.5)
```

```
FORTRAN IV G LEVEL 18
                                         MAIN
                                                            DATE = 71113
                                                                                  03/39/40
              2CC8 FORMAT(2x,6HTHETB(,13,2H)=,F11.5)
 0036
             C
                          THE NO. OF AUTCREGRESSIVE PARAMETERS
                    11
                          THE NC. OF MCVING AVERAGE PARAMETERS.
             C
                    12
             C
                          THE NC. OF NCN-ZERO SEASONAL AUTOREGRESSIVE PARAMETERS.
                    13
             C
                          THE NO. OF NON-ZERO SEASONAL MOVING AVERAGE PARAMETERS.
                    14
 0037
                    REAC 2002, 11,12,13,14
0038
                    K = 0
                    IF(11)2009,2009,2010
0039
             C
                               THE INITIAL GUESS VALUE OF THE JTH AUTOREGRESSIVE PARAMETERS.
                    PHIW(J)
             C
                               LCC1(I) ASSOCIATED THESE J.
             C
                   THTEW(J)
                                THE INITIAL GUESS VALUE OF THE JTH MOVING AVERAGE PARAMETERS.
                                LOC2(I) ASSOCIATED THESE J.
             C
             C
                    PHIB(J)
                               THE JTH NON-ZERO SEASONAL AUTOREGRESSIVE PARAMETER.
             C
                               CORRESPONDING TO THE POWER OF THE ADJACENT SHIFT OPERATOR
             C
                               IN THE MODEL.
             C
                               LOC3(I) ASSOCIATED THOSE J.
             C
                    THETB (J)
                               THE JTH NON-ZERO SEASONAL MOVING AVERAGE PARAMETER.
                               LOC4(I) ASSOCIATED THESE J.
0040
              2010 CC 2011 I=1, I1
 0041
                   READ 2004, J. PHIW(J)
0042
                   LOC1(1)=J
                    K=K+1
0043
                   B(K)=PHIW(J)
0044
0045
              2011 PRINT 2005, J, PHIW(J)
0046
              2009 IF(I2) 2012,2012,2013
              2013 CC 2014 I=1, I2
0047
0048
                   READ 2004, J. THETW(J)
0049
                   L002(11=J
0050
                    K = K + 1
0051
                   B(K)=THETW(J)
0052
              2C14 PRINT 2CO6, J, THETW(J)
0053
              2012 IF(13) 2015,2015,2016
0054
              2016 CO 2017 I=1.13
0055
                   READ 2004, J. PHIB(J)
0056
                   LOC3(I)=J
0057
                    K=K+1
0058
                   B(K)=PHIB(J)
0059
              2C17 PRINT 2007, J, PHIB(J)
0060
              2015 IF(14)2018,2018,2019
              2019 CC 2020 I=1.14
0061
0062
                   READ 2004, J. THETB(J)
0063
                   LOC4(1)=J
0064
                    K=K+1
0065
                   B(K)=THETB(J)
0066
              2020 PRINT 2008, J, THETB(J)
0067
              2018 ISUM=I1+I2+I3+I4
8 600
                   II1(1)=I1
0069
                   112(1)=12
0070
                   113(1)=13
0071
                   I14(1)=14
0072
                   IF(IDh)9000,9000,9001
0073
              9000 CONTINUE
             C
                   IF THIS IS AFTER FIRST MODEL, JUST GO TO 9001, NOT NECESSARY
             C
                   TO COMPUTE AGAIN.
0074
                   KCREP=KCREP+1
0075
                   IF(KCREP-1)6721,6721,9001
0076
              6721 CONTINUE
```

```
FORTRAN IV G LEVEL 18
                                         MAIN
                                                             DATE = 71113
                                                                                    03/39/40
 0077
                    XN=N
 0078
                    ZBAR=C.
 0079
                    CO 9002 I=1.N
 0080
              9002 ZBAR=ZBAR+ZC(1,1,1)
 0081
                    ZBAR=ZBAR/XN
 0082
                    DO 9003 [=1.N
              9003 ZD(I,1,1)=ZC(I,1,1)-ZBAR
 0083
 0084
               SOC4 FORMAT (1H12X, 17HST ANDARDIZED CATA///)
                    PRINT 9004
 0085
               9005 FORMAT(2X,5HZBAR=,F20-5///)
 0086
                    PRINT 9005, ZBAR
 0087
 0088
                    PRINT 205, (ZD(I,1,1), I=1,N)
 0089
              SCC1 CONTINUE
 0090
                    CALL CIFFER(IDW, IDB, IS, N, MW, MB)
             C
                     NCBB IS NC. OF CBSERVATION AFTER DIFFERENCES AND SEASONAL DIFFERENCES.
 0091
                    NOBB=NCB(PW, MB)
 0092
                    CO 2022 I=1, NOBB
 0093
                    ZERC(I)=0.
 0094
              2022 Z(I)=ZD(I,MW,MB)
                    GAUSSHAUS DATA
 0095
                    EC 11 I=1, ISUM
 0096
                    CIFF(I)=.01
 0097
              11
                    SIGNS(I)=0.
 0098
                    EPS1=0.
 0099
                    EPS2= . 00001
                    MIT=18
 0100
 0101
                    FLAM=50.
                    FNU=10.
0102
 0103
                    NPRC8=IDCP
 0104
                    CALL UNHAUS(NPROB, NCBB, ZERO, ISUM, B, DIFF, SIGNS, EFS1, EPS2, MIT, FLAM,
                   1FNU.SCRATI
             C
                    PUNCH CUT OF A FOR DIAGNOSTIC CHECKING
 0105
                    CALL CALA(NCBB, IP, IQ)
 0106
                    PRINT 2002, NOBB
 0107
              205 FCRMAT (2X, 6F20.5)
0108
                    PRINT 205, (A(I), I=1, NOB8)
              7CC1 FORMAT(1H12X.19HDIAGNOSTIC CHECKING///)
0109
0110
                    PRINT 7001
0111
                    CO 70CO I=1,NOBB
0112
                    ZERO(1)=Z(1)-A(1)
0113
              7CCO CONTINUE
0114
                    KK=25
 0115
                    N=NCBB
0116
                    XN=N
0117
                    ZBAR=0.
                    CO 102 I=1.N
0118
0119
                    CID=A(I)
0120
              1C2 ZBAR=ZBAR+Z(I)
0121
                    ZBAR=ZBAR/XN
0122
                    CO=0.
0123
                    CO 103 I=1,N
               103 CO=CO+(Z(I)-ZBAR)++2
0124
0125
                    CO=CC/XN
             C
                    CALCULATION OF R
0126
                    DO 104 K=1,KK
0127
                    C(K)=0.
0128
                    NN=N-K
0129
                    CO 105 J=1,NN
```

FORTRAN	14	G	LEVEL	18	MA	IN	CATE = 71113	03/39/40
0130			105	C(K)=C(K)+(Z(J)-ZBAR)*	(Z(J+K)-ZBAR	1	4
0131				C(K)=C(K)/XN			
0132			104	R(K)=C(K)/CO			
0133				VAR [1]=1	·/XN			
0134				S(1)=R(1	I/SCRT (VAR (1))			
0135				AAA=2./X	N			
0136				CO 204 K	=2,KK			
0137				VAR(K)=V	AR(K-1)+AAA*(R	(K-1)**2)		37
0138			204	S(K)=R(K)/SCRT(VAR(K))			
0139			300	FORMAT(1	H12X, 44HSAMPLE	CORRELATION	COEFFICIENTS OF	RESIDUALS//)
0140				PRINT 30	0			
0141			305	FORMATI/	/2X,5HZBAR=,F10	0.5//)		
0142				PRINT 30	5. ZBAR			
0143			301	FORMAT (2	X, 2HR (, [3, 2H) =	F10.5, 6x, 10	HR/S.D.(R)=+F10-5	5)
0144				DO 302 I				
0145			302	PRINT 30	1, I,R(I),S(I)			
0146			1 C	CONTINUE	\$			
0147				STOP	12 m			
0148				END				

```
FORTRAN IV G LEVEL 18
                                           MODEL
                                                               DATE = 71113
                                                                                      03/39/40
                     SUBROUTINE MODEL (NPROB, B, F, NOBB, ISUM)
 0001
              C
                     SUBROUTINE EST CHANGE B(K) TO DIFFERENT PARAMETERS, WHICH IS THE SAME AS
              C
                     READ IN DATA VECTOR PARAMETER.
                                                            THEN, COMPUTE THE VALUE OF
              C
                      THE MODEL.
              C
 0002
                     CIMENSICH B(1)
                    DIMENSION F(1)
 0003
 0004
                    COMMON ZD(1000,4,3),NDB(4,3),Z(1000),A(1000), PHI(100),THETA(100),
                                PHIW(100), THETW(100), PHIB(100), THETB(100), LOC1(10), LOC2(
                   210),LCC3(10),LOC4(10), H11(1), H12(1), H3(1), H4(1), HP(1), HIQ(1)
 0005
                     IP=IIP(1)
                     IC=IIC(1)
 0006
 0007
                     IPIC=IP+IQ
 0008
                     11=111(1)
 0009
                     12=112(1)
 0010
                     13=113(1)
 0011
                     14=[[4(1)
 0012
                    K=0
 0013
                    IF(I1)100,100,101
 0014
                101 CO 102 I=1.11
 0015
                     J=LOC1(I)
 0016
                     K=K+1
 0017
                102 PHIW(J)=B(K)
 0018
                100 IF(I2)103,103,104
 0019
                104 DO 105 I=1,I2
 0020
                     J=LCC2(I)
 0021
                     K=K+1
 0022
                105 THETW(J) =B(K)
 0023
                103 IF(13)1C6.1C6.107
 0024
                107 CO 108 I=1,13
 0025
                     J=LGC3(I)
 0026
                     K=K+1
 0027
                108 PHIB(J)=B(K)
 0028
                106 IF(I4)109,109,110
                110 CO 111 I=1,14
 0029
 0030
                     J=LCC4(I)
 0031
                     K=K+L
 0032
                111 THETB(J)=B(K)
                109 CALL MULTS (PHIW, PHIB, PHI, IP)
PHI(I) IS THE MINUS VALUE OF THE AUTOREGRESSIVE PARAMETERS
 0033
                      BY MULTIPLING NON-SEASONAL AND SEASONAL PARAMETERS TOGETHER.
              C
                    CALL MULTS (THETW, THETB, THETA, IQ)
THETA(I) IS THE MINUS VALUE OF THE MOVING AVERAGE PARAMETERS AFTER
 0034
              C
                     MULTIPLYING NON-SEASONAL AND SEASONAL PARAMETER.
              C
 0035
                     CALL CALAINCEB, IP, IQ)
 0036
                     CO 50 I=1,NOBB
 0037
                50
                    F(I)=-A(I)
 0038
                     RETURN
 0039
                    END
```

```
FORTRAN IV G LEVEL 18
                                        CALA
                                                           DATE = 71113
                                                                                 03/39/40
                   SUBROUTINE CALA(N, IPID, 19)
 0001
                   SUBROUTINE CALA IS TO CALCULATE THE VALUE OF MODEL BY TIME SERIES.
             C
             000
                  CPHI=PHI
 0002
                   COMMON ZD(1000,4,3),NOB(4,3),Z(1000),A(1000),CPHI(100),THETA(100),
                              PHIW(100), THETW(100), PHIB(100), THETB(100), LOC1(10), LOC2(
                  210),LCC3(10),LOC4(10),III(1),II2(1),II3(1),II4(1),IIP(1),IIQ(1)
             C
                   FIX INITAL VALUES
                   IF(IQ-IPID)201,201,200
 0003
 0004
               200 ISTART=IC
                   GO TO 203
 0005
               201 ISTART=IPID
 0006
               203 CC 204 I=1, ISTART
 0007
 0008
               2C4 A(I)=C.
 0009
                   ISTART=ISTART+1
                   CC 206 I=ISTART,N
 0010
                   A(1)=Z(1)
 0011
 0012
                   IF(IPID)207,207,208
 0013
               208 CC 209 J=1, [P[D
 0014
               2C9 A(I)=A(I)-CPHI(J)*Z(I-J)
               207 IF(10) 206,206,211
 0015
               211 CO 212 J=1.IQ
 0016
               212 A(I)=A(I)+THETA(J)*A(I-J)
 0017
 0018
              2C6 CONTINUE
                   RETURN
 0019
 0020
                   END
```

```
FORTRAN IV G LEVEL 18
                                         DIFFER
                                                            DATE = 71113
                                                                                   03/39/40
                    SUBROUTINE CIFFER (IDW, IDB, IS, N, MW, MB)
 0001
 0002
                    CCMMON Z(1000,4,3),NOB(4,3),C(1000),A(1000), PHI(100),THETA(100),
                               PHIW(100), THETW(100), PHIE(100), THETB(100), LOC1(10), LOC2(
                   210),LCC3(10),LOC4(10),II1(1),II2(1),II3(1),II4(1),IIP(1),IIQ(1)
             C
                    CALCULATION OF NOB(M, J)
 0003
                    MW=IDW+1
 0004
                    MB=ICB+1
 0005
                    CO 151 M=1, MW
 0006
                    DO 151 J=1, MB
              151
                    NOB(M,J)=N+1-M+IS-J*IS
 0007
                    CIFFERENCING WITH RESPECT TO CW
 0008
                    IF(Mh-1)152,152,153
 0009
                153 DO 154 M=2.MW
 0010
                    NOBC=NCB(M,1)
                    CC 154 I=1,NCBD
 0011
                154 Z(I, M, 1) = Z(I+1, M-1, 1) - Z(I, M-1, 1)
 0012
             C
                    DIFFERENCING WITH RESPECT TO DB
 0013
                152 IF(ME-1:155,155,156
                156 CC 157 M=1,MW
 0014
 0015
                    DO 157 J=2.MB
 0016
                    NCBD=NCB(M,J)
 0017
                    CC 157 I=1,NOBD
                157 Z(I,M,J)=Z(I+IS,M,J-1)-Z(I,M,J-1)
 0018
 0019
                155 CONTINUE
 0020
                    RETURN
                    END
 0021
```

```
FORTRAN IV G LEVEL 18
                                           MULTS
                                                               DATE = 71113
                                                                                      03/39/40
                     SUBROUTINE MULTS (PHIW, PHIB, PHI, IPWPB)
SUBROUTINE MULTS IS TO MULTIPLE THE PARAMETERS OF NON-SEASONAL
 0001
              C
C
                     AND SEASONAL MODELS.
                     CIMENSICN PHIW(100), PHIB(100), PHI(100)
 0002
                     IF(IPhPB)101,101,105
 0003
 0004
                105 EO 100 I=1, IPWPB
                1CO PHI(I)=PHIW(I)+PHIB(I)
 0005
 0006
                     IF(IPWPB-1)101,101,102
                102 DO 104 I=2, IPWPB
 0007
                     JDUM=I-1
 8000
                     CO 104 J=1,JOUM
 0009
 0010
                1C4 PHI(I)=PHI(I)-PHIB(J)*PHIW(I-J)
 0011
                101 CONTINUE
                     RETURN
 0012
 0013
                     END
```

FORTRAN 1	IV G LEVI	L 18	UWHAUS	DATE =	71113	03/39/40	
0001			UWHAUS (NPROB.	NCB, Y, NP, TH, DI	FF,SIGNS,EPS1,E		1
0003		CIMENSION S	, FNU, SCRAT)			UWHA	2
0002							3
0003			(1),TH(1),DIFF(1),	S1GNS(1)			
0004		IA=1					4
0005		IB=IA+NP				UWHA	5
0006		IC=I8+NP				UWHA	6
0007		ID=IC+NP				UWHA	6
0008		IE=ID+NP				UWHA	8
0009		IF=IE+NP					9
0010		IG=IF+NOB					10
0011		IH=IG+NOB				UWHA	11
0012		II = IH + N	P * NCB			UWHA	12
0013		IJ = IH				AHWU	13
0014		CALL	HAUS59(NPROB.	NCB, Y, NP, TH, DI	FF.SIGNS.EPS1.E	PS2.MITUWHA	14
		1 .FLAM, FNU	SCRAT([A), SCRATE	u a a a a la l	그리 마다면서 함께 100 에어에게 하면 내가 되었다. 그게 아니아 아니아 그 모든	UWHA	15
			. SCRAT(IF). SCRAT	# 1 man 1 februarie		(100)	16
	¥	3 SCRAT(IJ)				UWHA	17
0015		RETURN	2₹ ×			UWHA	18
0016		END				AHWU	19

UWHA

62

0033

GO TC 70

```
03/39/40
FORTRAN IV G LEVEL 18
                                          HAUS59
                                                           CATE = 71113
 0034
                    MAY=3
               50
                                                                                                  63
                    GD TO 70
 0035
                                                                                            UWHA
                                                                                                   64
 0036
               30
                    IF(EPS1) 80, 80, 70
                                                                                            UNHA
                                                                                                   65
 0037
               80
                    LUCY=2
                                                                                                   66
 0038
                 70 SSC = 0
                                                                                            UWHA
                                                                                                   67
 0039
                    CALL MCDEL (NPROB, TH, F, NOB, NP)
                                                                                                   68
. 0040
                    EC 90 [ = 1. NOB
                                                                                            UWHA
                                                                                                  69
                    RfI) = Y(I) - F(I)
                                                                                            HWHA
 0041
                                                                                                  70
 0042
                 9C SSC=SSC+R(I)*R(I)
                                                                                            UWHA
                                                                                                   71
 0043
                    PRINT 1003, SSQ
                                                                                            UWHA
                                                                                                   72
                                                                                            UWHA
                                                                                                  73
             C
                                                                   BEGIN ITERATION
                                                                                            UWHA
                                                                                                  74
             C
                                                                                            AHWU
                                                                                                  75
 0044
               100
                    GA = GA / FNU
                                                                                            UWHA
                                                                                                  76
 0045
                    INTCNT = 0
                                                                                            UWHA
                                                                                                   77
 0046
                    PRINT 1004, NIT
                                                                                            UWHA
                                                                                                   78
 0047
              101
                    JS = 1 - NOB
                                                                                            UWHA
                                                                                                  79
                    CG 130 J=1,NP
TEPP = TH(J)
 0048
                                                                                            LIWHA
                                                                                                  80
 0049
                                                                                            UWHA
                                                                                                  81
 0050
                    P(J)=DIFZ(J)*TH(J)
                                                                                            UWHA
                                                                                                   82
 0051
                    TH(J) = TH(J) + P(J)
                                                                                            UWHA
                                                                                                  83
 0052
                    0=(1)2
                                                                                            UWHA
                                                                                                  84
 0053
                    JS = JS + NOB
                                                                                            UWHA
                                                                                                  85
                    CALL MCCEL(NPROB, TH, DELZIJS), NOB, NP)
 0054
             C
                    CELZ IS THE NEW PRECICTED FUNCTION VALUE THROUGH THE MODIFIED PARAMETERS
 0055
                    IJ = JS-1
 0056
                    CO 120 I = 1, NOB
                                                                                            AHWIJ
                                                                                                  88
 0057
                    IJ = IJ + I
                                                                                            AHWU
                                                                                                  89
 0058
                    DELZ(IJ) = DELZ(IJ) - F(I)
                                                                                            AHWU
                                                                                                   46
                    C(J) = C(J) + DELZ(IJ) + R(I)
 0059
              120
                                                                                            AHWU
                                                                                                   31
 0060
                    (L)9((L)0 =(L)3
                                                                                            UWHA
                                                                                                  92
             C
                                                        Q=XT*R (STEEPEST DESCENT)
                                                                                            AHWU
                                                                                                  93
 0061
                130 TH(J) = TEMP
                                                                                            UWHA
                                                                                                  94
                    GC TC(131,414), MARY
 0062
                                                                                                   95
 0063
               131
                    CC 150 I = 1, NP
                                                                                            UWHA
                                                                                                  96
 0064
                    CO 151 J=1,I
                                                                                            UWHA
                                                                                                  97
 0065
                    SUM = 0
                                                                                            AHWU
                                                                                                  98
                    KJ = NCB*(J-1)
 0066
                                                                                                  99
                                                                                            AHWU
 0067
                    KI = NO8 * (I-1)
                                                                                            UWHA 100
 8 200
                    CO 160 K = 1, NOB
                                                                                            UWHA 101
 0069
                    KI = KI + 1
                                                                                            UWHA 102
 0070
                    KJ = KJ + 1
                                                                                            UWHA 103
 0071
              160
                    SUM = SUM + DELZ(KI) * DELZ(KJ)
                                                                                            UWHA 104
 0072
                    TEMP= SUM/(P(I)*P(J))
                                                                                            UWHA 105
 0073
                    JI = J + NP*(I-1)
                                                                                            UWHA 106
 0074
                    C(JI) = TEMP
                                                                                            UWHA 107
                    IJ = I + NP*(J-1)
0075
                                                                                            UWHA 108
              151
                    C(IJ) = TEMP
 0076
                                                                                            UWHA 109
 0077
              150
                    E(I) = SQRT(D(JI))
                                                                                            UWHA 110
                                                                                            UWHA 111
 0078
              666
                    CONTINUE
 0079
                    CO 153 I = 1, NP
                                                                                            UWHA 112
 0080
                    IJ = I-NP
                                                                                            UWHA 113
 0081
                    CO 153 J=1.I
                                                                                            UWHA 114
 0082
                    IJ = IJ + NP
                                                                                            UWHA 115
 0083
                    A(IJ) = D(IJ) / (E(I)*E(J))
                                                                                            UWHA 116
 0084
                    JI = J + NP*(I-1)
                                                                                            UWHA 117
 0085
              153
                    (LI)A = (IL)A
                                                                                            UWHA 118
             C
                                                       A= SCALED HOHENT MATRIX
                                                                                            UWHA 119
```

ILLEGIBLE

THE FOLLOWING DOCUMENT (S) IS ILLEGIBLE DUE TO THE PRINTING ON THE ORIGINAL BEING CUT OFF

ILLEGIBLE

```
HAUS59
                                                        DATE = 71113
FORTRAN IV G LEVEL 18
                                                                              03/39/40
                   II = - NP
                                                                                      UNHA 120
                   CC 155 I=1.NP
                                                                                      UWHA 121
 0087
 0088
                   P(I)=C(I)/E(I)
                                                                                       UWHA 122
 0089
                   PHI(I)=P(I)
                                                                                      UWHA 123
                   II = NP + 1 + II
 0090
                                                                                      UWHA 124
              155 A(11) = A(11) + GA
 0091
                                                                                      UWHA 125
                                                                                      UWHA 126
 0092
                   1 = 1
                                                                                      UWHA 127
                   CALL MATINE A,NP,P,I,DET)
0093
             ¢
                                                     P/E = CORRECTION VECTOR
                                                                                      UWHA 129
 0094
                    STEP=1.0
                                                                                      UWHA 130
 0095
                   SUM1=0.
                                                                                      UNHA 131
                   SUM2=C.
0096
                                                                                      UWHA 132
 0097
                   SUM3=0.
                                                                                      UWHA 133
                   CC 231 I=1.NP
0098
                                                                                      UWHA 134
0099
                   SUM1=P(I) *PHI(I)+SUM1
                                                                                      UWHA 135
0100
                   SUM2=P(1)*P(1)+SUM2
                                                                                      UWHA 136
 0101
                   SUM3 = PHI(I) * PHI(I) + SUM3
                                                                                      UWHA 137
              231 PHI(I) = P(I)
                                                                                      UWHA 138
 0102
                    TEMP = SUM1/SQRT(SUM2*SUM3)
0103
                                                                                      UWHA 139
0104
                   TEMP = AMINI(TEMP, 1.0)
                                                                                      UWHA 140
0105
                   TEMP = 57.295 *ACCS (TEMP)
                                                                                      UWHA 141
                   PRINT 1C41, DET, TEMP
 0106
                                                                                      UWHA 142
              170 DO 220 I = 1, NP
0107
                                                                                      UWHA 143
 2108
                   P(I) = PHI(I) *STEP / E(I)
                                                                                      UWHA 144
0109
                   TB(I) = TH(I) + P(I)
                                                                                      UWHA 145
0110
              220 CONTINUE
                                                                                      UWHA 146
 0111
                   PRINT 7000
                                                                                      UWHA 147
0112
              TOCC FORMATIBOHOTEST POINT PARAMETER VALUES
                                                                                      UWHA 148
0113
                   PRINT 2006, (TB(I), I = 1, NP)
                                                                                      UWHA 149
0114
                   CO 221 I = 1, NP
                                                                                      UWHA 150
0115
                   IF(SIGNS(I)) 221, 221, 222
                                                                                      UWHA 151
              222 IF(SIGN(1.0,TH(I)) #SIGN(1.0,TB(I))) 663, 221, 221
0116
                                                                                      UNHA 152
              221 CCNTINUE
0117
                                                                                      UWHA 153
0118
                   SUM8=0
                                                                                      UWHA 154
0119
                   CALL MCDELINPROB, TB, F, NOB, NP)
                                                                                            155
0120
                   CO 230 I=1.NOB
                                                                                      UWHA 156
0121
                   R(I)=Y(I)-F(I)
                                                                                      UWHA 157
0122
             23C
                   SUMB=SUMB+R(I)*R(I)
                                                                                      UWHA 158
0123
                   PRINT 1043, SUMB
                                                                                      UWHA 159
                   IF(SUMB - (1.0+EPS1)*SSQ) 662, 662, 663
0124
                                                                                      UWHA 160
0125
             663 IF( AMINI(TEMP-30.0, GA)) 665, 665, 664
                                                                                      UWHA 161
0126
             665
                   STEP=STEP/2.0
                                                                                      UWHA 162
0127
                   INTCNT = INTCNT + 1
                                                                                      UWHA 163
0128
                   IF(INTCNT - 36) 170, 2700, 2700
                                                                                      UWHA 164
0129
              664 GA=GA*FNU
                                                                                      UWHA 165
0130
                   INTCNT = INTCNT + 1
                                                                                      UWHA 166
                   IF(INTENT - 36) 666, 2700, 2700
0131
                                                                                      UWHA 167
0132
             662 PRINT 1007
                                                                                      UWHA 168
0133
                   CC 669 I=1,NP
                                                                                      UWHA 169
0134
             669
                   TH(I)=TB(I)
                                                                                      UWHA 170
0135
                   CALL GASS60(1, NP, TH, 00)
0136
                   PRINT 1040, GA, SUMB
                                                                                      UWHA 172
0137
                   GC TC (225,270,265), MAY
                                                                                           173
             225 CO 24C I = 1. NP
0138
                                                                                      UWHA 174
0139
                   IF(ABS(P(I))/(1.E-20+ABS(TH(I)))-EPS2) 240, 240, 241
                                                                                      UWHA 175
             241 GC TC (265,270) ,LUCY
0140
                                                                                           176
0141
              24C CCNTINUE
                                                                                      UWHA 177
```

```
FORTRAN IV G LEVEL 18
                                         HAUS59
                                                      DATE = 71113
                                                                                 03/39/40
                   PRINT 1009, EPS2
GO TO 280
0142
                                                                                         UWHA 178
0143
                                                                                         UWHA 179
                  IF(ABS(SUMB - SSQ) - EPS1*SSQ) 266, 266, 270
0144
              265
                                                                                         HWHA 180
 0145
              266
                  PRINT 1010 - EPS1
                                                                                         UWHA 181
                                                                                         UWHA 182
0146
                   GC TC 280
             270
                   SSQ=SUPB
                                                                                         UWHA 183
0147
0148
                   NIT=NIT+1
                                                                                         UWHA 184
                   IF(NIT - MIT) 100, 100, 280
0149
                                                                                         UWHA 185
0150
              27CC PRINT 2710
                                                                                         UNHA 186
              2710 FORMAT(//115HO**** THE SUM OF SQUARES CANNOT BE REDUCED TO THE SUMUWHA 187
0151
                  1CF SCUARES AT THE ENC OF THE LAST ITERATION - ITERATING STOPS
                                                                                       /)UWHA 188
             C
                                                                                         UWHA 189
             C
                                                                 END ITERATION
                                                                                         UWHA 190
             C
                                                                                         UWHA 191
              280 PRINT 1011
PRINT 2001, (F(I), I = 1, NOB)
                                                                                         UWHA 192
0152
0153
                                                                                         UWHA 193
                   PRINT 1012
0154
                                                                                         UWHA 194
                                                                                         UWHA 195
 0155
                   PRINT 2001, (R(I), I = 1, NOB)
                                                                                         UWHA 196
0156
                   SSC=SUMB
0157
                   IDF=NC8-NP
                                                                                         UWHA 197
0158
                   1=0
                                                                                         UWHA 199
0159
                   CALL MATINE D, NP, P, I, DET)
0160
                   CO 7692 I=1,NP
                                                                                         UWHA 201
                                                                                         UWHA 202
                   II = I + NP*(I-1)
0161
              7692 E(I) = SCRT(D(II))
                                                                                         UWHA 203
0162
                                                                                         UWHA 204
                   DO 340 I=1.NP
0163
0164
                   JI = I + NP + (I-1) - 1
                                                                                         UWHA 205
0165
                   IJ = I + NP*(I-2)
                                                                                         UWHA 206
0166
                   DO 340 J = I , NP
                                                                                         UWHA 207
0167
                    JI = JI + 1
                                                                                         UWHA 208
                                                                                         UWHA 209
                   A(JI) = D(JI) / (E(I) \pm E(J))
0168
0169
                   IJ = IJ + NP
                                                                                         UWHA 210
                                                                                         UWHA 211
0170
              340
                    A(IJ) = A(JI)
0171
                   PRINT 1016
                                                                                         UWHA 213
                   CALL GASS60(1,NP,E,00)
0172
0173
                   IF(IDF) 341, 410, 341
                                                                                         UWHA 215
0174
              341 SDEV = SSQ / IDF
                                                                                         UWHA 216
                                                                                         UWHA 217
0175
                   PRINT 1014, SDEV, IDF
0176
                    SDEV = SQRT(SDEV)
                                                                                         UWHA 218
                   CO 391 I=1.NP
0177
                                                                                         UWHA 219
                                                                                         UWHA 220
0178
                   P(I)=TH(I)+2.0*E(I)*SDEV
0179
             391
                   TB(I)=TH(I)-2.0*E(I)*SDEY
                                                                                         UWHA 221
                   PRINT 1039
0180
                                                                                         UWHA 222
0181
                   CALL GASS60(2, NP, TB, P)
                   MARY=2
0182
0183
                   GO TO 101
                                                                                         UWHA 225
0184
                   CO 415 K = 1. NOB
                                                                                         UWHA 226
0185
                   TEMP = 0
                                                                                         UWHA 227
0186
                   DO 420 I=1.NP
                                                                                         UWHA 228
0187
                   CC 420 J=1.NP
                                                                                         UWHA 229
0188
                   ISUB = K+NCB*(I-1)
                                                                                         UWHA 230
                                                                                         UWHA 231
0189
                   DEBUG1 = DELZ(ISUB)
             ¢
                   CEBUG1 = DELZ(K + NOB*(I-1))
                                                                                         UWHA 232
0190
                   ISLB = K+NCB*(J-1)
                                                                                         UWHA 233
0191
                   DEBLG2 = DELZ(ISUB)
                                                                                         UWHA 234
             C
                   CEBUG2 = DELZ(K + NOB*(J-1))
                                                                                         UWHA 235
                                                                                         UWHA 236
0192
                   IJ = I + NP*(J-1)
0193
                   CEBUG3 = D(IJ)/(DIFZ(I)*TH(I)*CIFZ(J)*TH(J))
                                                                                         UWHA 237
```

```
FORTRAN IV G LEVEL 18
                                        HAUS59
                                                          CATE = 71113
                                                                                03/39/40
 0194
                  TEMP = TEMP + DEBUG1 * DEBUG2 * DEBUG3
              420
                                                                                       UWHA 238
 0195
                    TEMP = 2.0*SCRT(TEMP)*SDEV
                                                                                       UWHA 239
 0196
                   R(K)=F(K)+TEMP
                                                                                       UWHA 240
 0197
                   F(K)=F(K)-TEMP
              415
                                                                                       UWHA 241
 0198
                   PRINT 1008
                                                                                       UWHA 242
 0199
                   1E=0
                                                                                       UWHA 243
 0200
                   CO 425 I=1.NOB.10
                                                                                       UWHA 244
                                                                                       UWHA 245
 0201
                   IE=IE+10
 0202
                   IF(NO8-IE) 430,435,435
                                                                                       UWHA 246
               430 IE=NOB
 0203
                                                                                       UWHA 247
 0204
              435
                   PRINT 2001, (R(J), J = I, IE)
                                                                                       UWHA 248
                   PRINT 2006, (F(J), J = I, IE)
 0205
              425
                                                                                       UWHA 249
 0206
              410
                   PRINT 1033, NPROB
                                                                                       UWHA 250
 0207
                   RETURN
                                                                                       UNHA 251
              99
                   PRINT 1034
                                                                                       UWHA 252
 0208
                   GO TO 410
 0209
                                                                                       UWHA 253
              10COCFORMAT(38H1NON-LINEAR ESTIMATION, PROBLEM NUMBER
                                                                        13,// 15,
                                                                                       UWHA 254
 0210
                     14H CESERVATIONS, 15, 11H PARAMETERS 114, 17H SCRATCH REQUIRED JUHHA 255
 0211
              1001 FORMAT(/25HOINITIAL PARAMETER VALUES )
                                                                                       UWHA 256
              1002 FORMAT(/54HOPROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS ) UWHA 257
 0212
 0213
              1003 FORMATI/25HOINITIAL SUM OF SQUARES =
                                                           E12.4)
                                                                                       UWHA 258
 0214
              1CC4 FORMAT(////45X,13HITERATION NO.
                                                      14)
                                                                                       UWHA 259
 0215
              1007 FORMATI/32HOPARAMETER VALUES VIA REGRESSION )
                                                                                       UNHA 260
              1008 FORMAT(////54HOAPPROXIMATE CONFIDENCE LIMITS FOR EACH FUNCTION VALUWHA 261
 0216
                  11F
                                                                                       UWHA 262
 0217
              10090FORMATI/62HOITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LEUWHA 263
                  155 THAN E12.4)
                                                                                       UWHA 264
              1010CFORMAT(/62HOITERATION STOPS - RELATIVE CHANGE IN SUM OF SQUARES LEWHA 265
 0218
                  155 THAN
                            E12.4)
                                                                                       UNHA 266
 0219
              1011 FORMAT(22H1FINAL FUNCTION VALUES )
                                                                                       UWHA 267
 0220
              1012 FCRMAT(////10HORESIDUALS )
                                                                                       UWHA 268
              1014 FORMATI//24HOVARIANCE OF RESIDUALS =
                                                                                       UWHA 269
 0221
                                                            ,E12.4,1H, [4,
                  12CH DEGREES OF FREEDOM
                                                                                       UWHA 270
 0222
              1016 FORMATI////21HONORMALIZING ELEMENTS
                                                                                       UWHA 272
              1033 FORMAT(//19HOEND OF PROBLEM NO. 13)
 0223
                                                                                       UWHA 273
 0224
              1034 FORMAT(/16HOPARAMETER ERROR
                                                                                       UWHA 274
              1039CFCRMAT(/71H0INDIVICUAL CONFIDENCE LIMITS FOR EACH PARAMETER (ON LIUWHA 275
 0225
                  INEAR HYPOTHESIS)
                                                                                       UWHA 276
0226
              104CCFORMAT(/9HOLAMBDA =E10.3,40X,33HSUM OF SCUARES AFTER REGRESSION ≈ UWHA 277
                  1615.7)
                                                                                       UWHA 278
 0227
              1041 FORMAT(14H DETERMINANT = E12.4, 6x, 25H ANGLE IN SCALED COORD. = UWHA 279
                  1 F5.2, 8HDEGREES
                                                                                       UWHA 280
                                       •
 0228
              1043 FORMATIZEHOTEST POINT SUM OF SQUARES =
                                                                                       UWHA 281
                                                              E12.4)
 0229
              2CC1 FCRMAT(/10E12.4)
                                                                                       UWHA 282
              2006 FORMAT(10E12.4)
                                                                                       UWHA 283
 0230
                   ENC
                                                                                       UWHA 284
0231
```

FORTRAN	IV G LEVEL	18	MATIN	CATE = 71113	03/39/40
0001			(A, NYAR, B, NB, DET)		UWHA 285
0002		CIMENSICH ALNVAR	,1) , B(NVAR,1)	(F)	
0003		CCMMON/GASPAR/DU	MIES(7), PIVOTM		UWHA 287
0004		PIVOTM = A(1,1)	¥		UWHA 288
0005		DET = 1.0			UWHA 289
0006		CC 550 ICOL = 1,			UWHA 290
0007		PIVOT = A(ICOL.			UWHA 291
0008		PIVOTP = AMINI(P			UWHA 292
0009		DET = PIVOT * D	ET		UWHA 293
	C C				UWHA 294
	С	DIVIDE PIVOT ROW	BY PIVOT ELEMENT		UWHA 295
	С		22		UWHA 296
0010	_	A(ICCL, ICCL) =	1.0		UWHA 297
	С				298
0011		PIVOT = AMAXICPI	·= ````````````````````````````````````		UWHA 299
0012		PIVCT = A(ICOL,	10003791701		UWHA 300
0013	252	DC 35C L=1,NVAR	*****		UWHA 301
0014	350	A(ICCL, L) = A(20 800 전 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		UWHA 302
0015		IF(NB .EC. 0) GO	10 311		UWHA 303
0016	270	DC 370 L=1,NB	TOOL INTRINGT	193	UWHA 304
0017	370	B(ICOL, L) = B([CUL, L)*PIVUI		UWHA 305
	C C	REDUCE NON-PIVOT	BURE		UWHA 306 UWHA 307
	č	REDUCE NGN-PIVOI	RUMS		UWHA 308
0018	371	CC 550 L1=1,NVAR			UWHA 309
0019	311	IFILL -EC. ICOL			UWHA 310
0020		T = A(L1, ICOL)	, 60 14 330		UWHA 311
0021		A(L1. [COL) = 0			UWHA 312
0022		CC 450 L=1.NVAR	• "		UNHA 313
0023	45C	- 14 THE NEW YORK NE	, L) - A(ICOL, L)+T		UNHA 314
0024		IF (NB . EQ. 0) GO			UNHA 315
0025		CC 500 L=1.NB			UWHA 316
0026	500	B(L1, L) = B(L1	, L)-B(ICOL,L)*T		UWHA 317
0027		CONTINUE	The region of the State of the		UWHA 318
0028		RETURN			UWHA 319
0029		END			UWHA 320

FORTRAN 1	IV G LEVEL	18	GASS60	CATE = 71113	03/39/40
0001		SUBROUTINE GASSEO	(ITYPE, NO. A. B)	
0002		DIMENSION A(NO),	B(NQ)		
0003		NP = NC			UWHA 323
0004		NR = NP/10			UWHA 324
0005		LCW = 1			UWHA 325
0006		LUP = 10			UWHA 326
0007	10	IF(NR)15,20,30			UWHA 327
0008	15	RETURN			BSE AHWU
0009	20	LUP=NP			UWHA 329
0010		IF(LCW .GT. LUP)			UWHA 330
0011	30	PRINT 500, (J.J=L			UWHA 331
0012		GO TO (40,60), IT			
0013	40	PRINT 6CC, (A(J), J	=LCW,LUP)		UWHA 333
0014		GC TO 100			UWHA 334
0015	6 C	PRINT 600, (B(J),	J=LOW,LUP)		UWHA 335
0016		GO TO 40			UWHA 336
0017	100	LCW = LCW + 10	SF.		UWHA 343
0018		LUP = LUP + 10			UWHA 344
0019		NR = NR - 1			UWHA 345
0020	Approximation (GO TC 10			UWHA 346
0021	50C	FCRMAT(/18,9112)			UWHA 347
0022	6 C C	FORMAT(10E12-4)			UWHA 348
0023		END			UWHA 352

APPENDIX C

PROGRAM FORCAT

C.1. Description of program

Program FORCAT is developed to provide the forecast value and its confidence interval for the appropriate model of the time series, which may be stationary, nonstationary or/and seasonal. The program consists of a main program and seven subroutines. The functions of subroutines are as follows.

MULTS and EXPAND: convert the general seasonal nonstationary model into regular ARMA(p,q) forms. The form is used to calculate the π weights (pure AR weights), ψ weights (pure MA weights), confidence intervals of forecast values for the original series and the reduced stationary model.

CALPSI calculate the ψ weights for the original model and for the reduced stationary model. The calculations are based on equation (4.2.6)

: calculates the pure AR weights for the original model CALPIE and for the reduced stationary model. The calculation is based on equation (C.1.4). For pure moving-average model, its form may be

$$\tilde{z} = \psi(B) \ a_{+} \tag{C.1.1}$$

where

$$\psi(B) = 1 + \psi_1 B + \psi_2 B^2 + \dots$$

For pure autoregressive model, its form may be

$$\pi(B) \tilde{z}_{t} = a_{t}$$
 (C.1.2)

where $\pi(B) = 1 - \pi_1 B - \pi_2 B^2 - \dots$

comparing (C.1.1) with (C.1.2), we obtain

$$\pi(B) \quad \psi(B) = 1$$
 (C.1.3)

equating the power of B in (C.1.3), getting

$$\pi_1 = \psi_1$$

$$\pi_2 = \psi_2 - \psi_1 \pi_1$$

$$\pi_3 = \psi_3 - \psi_2 \pi_1 - \psi_1 \pi_2$$

:

or in more general equation

$$\pi_{i} = \psi_{i} - \sum_{j=1}^{i-1} \psi_{j} \pi_{i-j}$$
 (C.1.4)

hence, the $\boldsymbol{\pi}$ weights of pure AR model can be calculated recursively.

FORCAT

: calculate the forecasts and confidence interval for the original time series. Its calculation is based on equations (4.1.2) and (4.2.7).

CALA

: calculate the residuals of the original time series.

PLOT

: plot the forecast values and its confidence intervals,

START READ IN DATA No. of Forecasts to be Calculated Model Form to be Analyzed Print out the Model Form Read in the Parameters of the Appropriate Model Call Subroutine Mults --Multiples the Parameters of Seasonal Nonstationary Model of AR Process. The Operation is Skipped if the Model is Non- AR Process Subroutine Mults --Multiple the Parameters of Seasonal Nonstationary Model of MA Process. The Operation is Skipped if the Model is Non MA Process. Subroutine Expand --Compute the Parameters Associated with Powers of Backward Shift Operator About AR Process

C.2. Description of input data

card	variable in program	FORMAT	Description			
first card	IFOR	(110)	number of forecasts to be calculated			

next block of cards

same as the parameter input block given in Appendix B for program ESTIM

next card	MAX	(110)	number of correlation to be calculated		
next card	N	(110)	the number of obser- vations to be read in.		
next cards	Z(I,1)	(2x,(F20.5))	the observations of the time series.		

C.3. Description of output data

The following data can be generated by program FORCAT;

- 1. Print out parameters and model form.
- Pure autoregressive and pure moving-average weights of the original and reduced stationary form of the model.
- 3. Forecast values and confidence limits.
- 4. Plot out the forecast values and confidence limits.

APPENDIX C. PROGRAM FORCAT

C. 4 Computer Program

```
MAIN
                                                            CATE = 71113
FORTRAN IV G LEVEL 18
                                                                                  03/42/28
 0001
                    CIMENSICN PHIW(200), THETW(200), PHIB(200), THETB(200)
                    CIMENSICN PHI(200), THETA(200), CPHI(200)
 0002
 0003
                    CIMENSICN Z(1500,1),A(1500)
                   CIMENSICN PIE(200), PIE1(200), PS1(200), PS11(200)
 0004
 0005
                    CIMENSICN C1(200), C2(200), C(200)
                    CCMMCN/A1/PHIW/A2/THETW/A3/PHIB/A4/THETB/A5/PHI/A6/THETA/A7/CPHI
 0006
                   CCMMCN/48/Z,4/49/X,P/A10/PIE/A11/PIE1/A12/PSI/A13/PSI1/A14/RHQ
 0007
 0008
                    CCFFCN/A15/PRHO
                    CCMMCN/A16/TREND
 0009
                    INSERT TO READ IN CATA AND PRINT OUT
 0010
              250 FORMAT(110)
                    MAX NUMBER OF CORRELATIONS AND PARTIAL TO BE CALCULATED
             C
 0011
                    READ 250. MAX
             C
                    PROGRAM PARAMETERS
             C
                    ENC PROGRAM PARAMETERS
                    READ IN MCDEL FROM PARAMETERS
             C
 0012
               2CC2 FORMAT(4I10)
                   REAC 2002, IPW, IDW, ICW
0013
 0014
                    READ 2002, IPB, IDB, IQB, IS
                    END READ IN MODEL FORM PARAMETERS
                    READ IN PARAMETERS
0015
              2CC3 FCRMAT(1H12X,6HIARMA(,13,1H,,13,1H,,13,3H)X(,13,1H,,13,1H,,13,3H)X
                   1(,13,1H)//)
 0016
                    PRINT 2003, IPW, IDW, IQW, IPB, IDB, IQB, IS
 0017
                    IP=IPW+IPB
 0018
                    IC=IQW+ICB
                    IDS=IC8+IS
 0019
 0020
                    IPID=IP+IDW+IDS
0021
                    ID=ICh+IDB
 0022
                    DC 2090 I=1,100
 0023
                    PHIW(I)=C.
 0024
                    PHIB(1)=0.
 0025
                    PHI(I)=0.
 0026
                    THETW(I)=0.
 0027
                    THETB(I)=0.
 0028
                    THETA(I)=0.
                    CPHI(I)=0-
 0029
0030
                   C1(I)=0.
 0031
                   C2(1)=0.
 0032
              2090 C(I)=0.
 0033
              2CC4 FORMAT(110,F20.5)
 0034
              2CC5 FORMAT(2X,5HPHIW(,13,2H)=,F11.5)
 0035
              2CC7 FCRMAT(2x,5HPHIB(,13,2H)=,F11.5)
 0036
              2CC6 FCRMAT(2X,6HTHETW(,13,2H)=,F11.5)
 0037
              2CC8 FORMAT(2X,6HTHETB(,13,2H)=,F11.5)
 0038
              2027 FCRMAT(2X,6HTREND(,13,2H)=,F11.5)
 0039
                    READ 2002, 11, 12, 13, 14
                    IF(I1)20C9,2009,2010
 0040
              2010 DO 2011 I=1.11
0041
 0042
                    REAC 2004, J, PHIWIJ)
 0043
              2C11 PRINT 2C05, J, PHIW(J)
              2009 IF(12)2012,2012,2013
0044
 0045
              2013 CO 2014 I=1.I2
 0046
                    READ 2004, J, THETW(J)
 0047
              2C14 PRINT 2CC6, J, THETH(J)
0048
              2012 IF(13)2015,2015,2016
              2016 CC 2017 I=1.13
 0049
0050
                   READ 2004, J, PHIB(J)
```

```
FORTRAN IV G LEVEL 18
                                        MAIN
                                                           DATE = 71113
                                                                                  03/42/28
 0051
              2017 PRINT 2007, J. PHIB(J)
              2015 IF(I4) 2025,2025,2019
0052
 0053
              2019 CO 2020 I=1,14
                   REAC 2004, J. THETB(J)
 0054
0055
              2C2C PRINT 2COB, J, THETB(J)
0056
              2025 CONTINUE
                   END READ IN PARAMETERS
                   CPERATIONS TO REDUCE SEASONAL TO NON SEASONAL MODEL
0057
                   CALL FULTS (PHIW, PHIB, PHI, IP)
0058
                   CALL PULTS (THETW, THETB, THETA, IQ)
0059
                   CALL EXPAND(C1, ICW, 1)
                   CALL EXPAND(C2, IDB, IS)
0060
                   IDC=ICS+IDW
0061
                   CALL MULTS(C1,C2,C,IDC)
0062
                   CALL MULTS (PHI, C, CPHI, IPID)
0063
                   ENC OPERATIONS
             C
             C
                   PRINT CUT OF PERTINANT DATA
0064
              2021 FORMAT(////2x,27HPHI, THETA, AND CPHI VALUEW//)
0065
                   PRINT 2021
0066
              107 FCRMAT(2x,6H PHI(,13,2H)=,F10.5)
              108 FORMAT (2X,6HTHETA(,13,2H)=,F10.5)
0067
0068
                   IF(IP)109,109,110
0069
              110
                   CO 111 I=1.IP
0070
              111
                   PRINT 107, I, PHI(I)
0071
              109
                   IF([0)112,112,113
0072
              113
                   CO 114 I=1.10
0073
                   PRINT 108, I, THUTALLE
              114
0074
              112
                   CCNTINUE
0075
              115
                   FORMAT(////2x,33HGENERAL AUTOREGGRESIVE PARAMETERS///)
0076
                   PRINT 115
                  FCRMAT(2X, 6H CPHI(, 13, 2H)=, F10.5)
              116
0077
0078
                   IF(IPID)1120,1120,1121
0079
              1121 CONTINUE
0080
                   CO 117 I=1, IPID
 0081
              117
                   PRINT 116, I, CPHI(I)
0082
              112C CONTINUE
                   CALCULATION OF PSI WEIGHTS
0083
                   IF(IP-4)7000,7000,7001
0084
              7CCC IF(IQ-2)7002,7002,7001
0085
              7002 KDOZ=MAX
0086
                   GC TO 7003
0087
              7CC1 KDCZ=200
0088
              7CC3 CONTINUE
                   TC GET PURE MOVING AVERAGE PARAMETERS PSI FOR STATIONARY TIME SERIES
0089
                   CALL CALPSI(PHI, THETA, PSI1, IP, IC, KCOZ)
                   TO GET PURE AUTOREGRESSIVE PARAMETERS PIE FOR STATIONARY TIME SERIES
                   CALL CALPIE(PSI1, PIE1, MAX)
0090
0091
              300 FORMAT(////2x,41HPSI AND PIE WEIGHTS FOR STATIONARY SERIES//)
0092
                   PRINT 300
0093
              302
                   FDRMAT(2X,4HPSI(,13,2H)=,F10.6,7X,4HPIE(,13,2H)=,F10.6)
0094
                   CC 303 I=1. MAX
0095
              303
                   PRINT 302.1.PSI111),I,PIE1(I)
0096
                   IF(IPID-IP)5000,5000,5001
                   IF IPIC=IP, MEANS NO ANY DIFFERENCES AND SEASONAL DIFFERENCE, SO WE CAN
             Ç
             C
                   LCCK CRIGINAL SERIES AS STATICNARY TIME SERIES.
             C
                   TO GET PURE MOVING AVERAGE PARAMETERS PSI FOR ORIGINAL SERIES
0097
              5001 CALL CALPSI(CPHI, THETA, PSI, IPIO, IQ, MAX)
                   TO GET PURE AUTOREGRESSIVE PARAMETERS FOR ORIGINAL SERIES
```

FORTRAN	IV G	LEVEL	18 P	AIN	CATE = 71113	03/42/28
0098			CALL CALPIE(PSI, PIE, M			
0099		5002	FORMATI////2X,39HPSI	AND PIE WEIGHTS	FOR ORIGINAL SERIES/	/)
0100			PRINT 5002			
0101			CC 5003 [=1,MAX			
0102		5003	PRINT 302, I, PSI(I), I,	PIE(I)		
0103			GO TO 5006			
0104		50CC	CO 5005 [=1,MAX	3		
0105		5005	PSI(I)=PSI1(I)		¥	
0106		5006	CONTINUE			
0107		251	FORMAT(2X, F20.5)			
		С	IFOR NO OF FORECASTS	TO BE CALCULATED	D. MAXIMUM FORECAST L	AG.
0108			READ 250, IFGR			
0109			READ 250.N			
0110			REAC 251, (Z(Y,1), I=1,	N)		
		С	CALL TO GENERATE A(1)			
C111			SIGMA=0.			
0112			CALL CALA(N, IPID, IC, S	IGMA)		•
		C	FCRECASTING			
		C	CALL TO GENERATE FORE	CASTS AND HPD IN	TERVAL	
0113			CALL FORCATIN, IPID, IC	, IFOR, SIGMA)		
		C	END FCRCASTING			
0114			STOP			
0115			END			

```
FORTRAN IV G LEVEL 18
                                        CALPSI
                                                            DATE = 71113
                                                                                  03/42/28
0001
                    SUBROLTINE CALPSI(CPHI, THETA, PSI, IPP, IC, MAX)
                    SUBROUTINE CALPSI IS TO CALCULATE THE PURE MOVING AVERAGE WEIGHTS
             C
             C
                    FCR THE MCDEL
0002
                    DIMENSION CPHI(200), THETA(200), PSI(200)
             C
                    FIX INITIAL VALUES SO THAT IPP=1C=IPSI
0003
                    IF(IPP-IC)100,101,102
0004
              1CC IDLY=IPP+1
                   DO 103 I=IDUM. 1Q
0005
                   CPHI(1)=0.
0006
              103
0C07
                    IPSI=IC
0008
                   GO TO 110
0009
                   IPS I= IQ
              101
0010
                   GC TO 110
0011
              102
                   IDUM=IC+1
                   DO 104 I=IDUM, IPP
0012
0013
                   THETA(I)=0.
0014
              104
                   CENTINUE
0015
            c<sup>110</sup>
                   IPSI=IPP
0016
                   CONTINUE
                    ENC FIX
                   CALCULATION OF PSI(1) ... PSI(IPSI)
0017
                   CO 11 I=1, IPSI
0018
                11 PSI(I)=CPHI(I)-THETA(I)
0019
                   CC 112 I=2, IPSI
                    JDUM=1-1
0020
1500
                   CO 112 J=1, JDUM
                   FSI(I)=PSI(I)+CPHI(J)*PSI(I-J)
0022
0023
              112
                   CONTINUE
                   ENC CALCULATION
             C
                   CALCULATION OF PSI(IPSI), ...., PSI(MAX)
0024
                    IDUP=IPSI+1
0025
                   CO 113 I=IDUM, MAX
0026
                   PSI(I)=0.
0027
                   CO 113 J=1, IPSI
8500
                   PSI(I)=PSI(I)+CPHI(J)*PSI(I-J)
0029
              113
                   CONTINUE
0030
                   RETURN
                   END
0031
```

FORTRAN	IV G	LEVEL	18	CALPIE	DATE = 71113	03/42/28
0001			SLEROLTIN	E CALPIE(PSI, PIE, MAX)		
0002			DIMENSION	PSI(200),PIE(200)		
0003			CC 10C I=	1,MAX		
0004		100	PIE(I)=PS	I(I)		
0005			CO 101 I=2	2,MAX		
0006			JDUP=1-1		**	
0007			CG 101 J=1	1,JDUM		
0008			FIE(I)=PI	E(I)-PSI(J)*PIE(I-J)		
0009		101	CONTINUE			
0010			RETURN			
0011			END			

```
FORTRAN IV G LEVEL 18
                                      CALA
                                                       DATE = 71113
                                                                             03/42/28
                  SUBROUTINE CALA(N, IPID, IQ, SIGMA)
 0001
 0002
                  DIMENSION THETA(200), CPHI(200), Z(1500,1), A(1500)
                  COPPON/A8/Z,A/A6/THETA/A7/CPHI
 0003
                  FIX INITIAL VALUES
            C
0004
                  IF(IQ-IPID)201,201,200
0005
             200 ISTART=IQ
 0006
                  GC TC 203
             2C1
                 ISTART=IPID
 0007
 8000
             203 CO 204 I=1, ISTART
0009
             204 A(I)=0.
                  ISTART = ISTART+1
0010
                  CO 206 I=ISTART.N
 0011
                  A([)=Z([,1)
0012
                  IF(IPIC)207,207,208
 0013
             0014
0015
              207 IF(IQ) 206,206,211
0016
 0017
             211 CO 212 J=1, IQ
0018
             212 A(I)=A(I)+THETA(J)*A(I-J)
0019
             206
                  CENTINUE
             220 FORMAT(1H12X,27HPRINT OUT OF CATA AND ERROR//)
0020
                  PRINT 220
0021
             217 FORMAT(2X,5HTIME=,14,2X,2HZ(,14,2H)=,F20-5,5X,2HA(,14,2H)=,F20-5)
0022
                  SIGMA=0.
0023
 0024
                  DO 218 I=1,N
                  PRINT 217, I, I, Z(I, 1), I, A(I)
0025
 0026
                  SIGNA=SIGNA+A(I)*A(I)
0027
             218 CONTINUE
0028
                  SIGMA=SCRT(SIGMA/N)
0029
                  RETURN
0030
                  END
```

```
DATE = 71113
                                                                                  03/42/28
FORTRAN IV G LEVEL 18
                                        FORCAT
                    SUBROUTINE FORCAT (IT, IPID, IQ, IFCR, SIGMA)
 0001
                    CIMENSICN H(1000)
0002
0003
                    CIMENSICH G(3000)
                    CIMENSICN CPHI(200), THETA(200), PSI(200), Z(1500,1), A(1500)
 0004
0005
                   CIMENSICN ZHAT(1500), U(200), X1(200), X2(200)
 0006
                    COMMON/A7/CPHI/A6/THETA/A12/PSI/A8/Z,A/A9/X,P
 0007
                   FCRMAT(1H12X, 48HFORECASTS AND 95 PER CENT LIMITS FOR BASE TIME #,1
                   14///1
0008
                   PRINT 100 ,IT
0009
                   CC 101 I=1,IT
 0010
              101
                   ZHAT(I) = Z(I,1)
0011
              SCCC CONTINUE
0012
                    IT1=1T+1
                    ITFCR=IT+IFOR
0013
 0014
                    DC 102 I=IT1, ITFOR
              102 ZHAT(1)=0.
0015
 0016
                    K=1
0017
                   CC 103 I=IT1.ITFOR
                    IF(IPID)104,104,105
0018
              105 CO 106 J=1, IPID
0019
0020
              106
                   ZHAT(I)=ZHAT(I)+CPFI(J)*ZHAT(I-J)
0021
               104 IF(I-IT-IQ) 107,107,3000
              107 CO 108 J=K, IQ
0022
0023
              108 ZHAT(I)=ZHAT(I)-THETA(K)*A(IT-J+K)
0024
                    K=K+1
              3CCC CONTINUE
0025
0026
              103
                   CCNTINUE
                    CALCULATION OF UPPER AND LOWER 95 PER CENT POINTS
0027
                    CO 200 I=1, IFOR
0028
              200
                   U(I)=1.
 0029
                    CC 201 I=2.IFCR
0030
                   L=I-1
0031
                    CO 202 J=1.L
               202 L(I)=U(I)+PSI(J)**2
 0032
 0033
                    L(I)=1.96*SCRT(U(I))*SIGMA
0034
              201 CONTINUE
0035
                    U(1)=1.96*SIGMA
 0036
                    CC 203 I=1, IFOR
0037
                    X1(I)=ZHAT(IT+I)-U(I)
0038
              203
                   X2(I)=ZHAT(IT+1)+U(I)
              3CO FCRMAT(2x,5HTIME=,14,5x,5HZHAT(,14,2H)=,F20.5,5x,13HHPD INTERVAL=,
0039
                  1F2C-5,2X,F20-5)
0040
              4C0
                   FORMAT(2x, 6HS IGMA=, F20.5///)
0041
                    PRINT 400, SIGMA
0042
                   CO 301 I=1, IFOR
                    THIS CO LOOP IS TO SUPPLY DATA TO SUBROUTINE PLOT TO PRINT OUT
                    THE FCRECAST VALUE ZHAT(II), THEIR CORRESPONDING UPPER AND LOWER LIMITS
0043
                    I1=I+IT
0044
                    K1=IFCR+I
0045
                   K2=2*IFOR+I
0046
                    K3=3*1FCR+1
0047
                   H(I)=I
0048
                   F(K1)=ZHAT(I1)
0049
                   h(K2)=X1(1)
0050
                   H(K3) = X2(I)
0051
                    PRINT 300, [1, [, ZHAT([1]), X1([), X2([)
0052
              301
                   CCNTINUE
0053
                    CALL PLCT(1,H,IFOR,4,IFOR,0)
```

FORTRAN	I۷	G LEVEL	18	FORCAT	CATE =	71113	03/42/28
0054			CC 120 I=1.I	TFOR	E.		
0055			I1=ITFCR+I				
0056			G(I)=[
0057		120	G(I1)=ZHAT(I)	9		
0058			CALL PLCT(1,	G, ITFOR, 2, ITFOR, 0)			
0059		351	FORMAT (1H12X	,18H1 - 96 + S - D - (ZHAT	(L))///)		
0060			PRINT 351				
0061		352	FORMAT (2X, 2H)	L=, [5, 5x, 5HU(L)=, F;	20.5)		
0062			CO 353 I=1,I	FOR			
		С	L(I) IS THE	CONTROL LIMITS FOR	CCRRESPONDING	FORECAST	VALUE
0063		353	PRINT 352.1.	J(I)			
0064			RETURN				
0065			END				

FORTRAN I	V G LEVEL	18	EXPAND	DATE = 71113	03/42/28
0001		SUBROLTINE EXPAN	D(C.ID.IS)		
0002		CIMENSION C(200)		w	
0003		IF(IC)250,250,25	1		
0004	251	CONTINUE			
0005		CO 120 I=1,IO			
0006		JA1=1			
0007		JA2=1			
0008		JA3=1			
0009		CO 140 J=1.ID			
0010	140	L*IAL=IAL			
0011		IF(ID-I)132,132,	133		
0012	133	JDUM=ID-I			
0013		CO 141 J=1.JDUM			
0014	141	JA2=JAZ*J			
0015	132	CO 142 J=1,I			
0016	142	JA3=JA3*J			
0017		[**([-]= LLL			
OC18		JJJ=JJJ*JA1/(JA2	*JA31		
0019		C(I*IS)=-JJJ			
0020	120	CENTINUE			i i
0021	250	CONTINUE			58
0022		RETURN			
0023		END			

FORTRAN	IV	G	LEVEL	18	MU	LTS	DATE =	7111	3	03/42/28
0001				SUBROUTI	NE MULTS (PHIW,	PHIB, PHI, 1PWPB)				
0002				CIMENSIC	N PHIW(200), PH	IB(200), PHI(200)				
0003				IFTIPHPE	1101,101,105					
0004			105	CC 10C I	=1,IPWPB					
0005			100	PHI(I)=P	PIW(I)+PHIB(I)					
0006				IFTIPHPB	-1)101,101,102					
0007			102	CC 104 I	=2,IPWPB					
0008				JDUM=I-1	34	14				
0009				CC 104 J	=1,JDUM					
0010			104	PHI(I)=P	HI(I)-PHIB(J)*	PHIW(I-J)				
0011			101	CONTINUE						
0012				RETURN						
0013				END						

```
FORTRAN IV G LEVEL 18
                                         PLOT
                                                             DATE = 71113
                                                                                    03/42/28
 0001
                    SUBROUTINE PLOT (NO.A.N.M.NL.NS)
             C
0002
                    CIPENSICN OUT(101), YPR(11), ANG(9), A(1)
             C
0003
                  1 FCRMAT(1H1,60X,7H CHART ,13,//)
                  2 FCRFAT(1H ,F11.4,5H+
4 FCRFAT(10H 123456789)
0 C Q 4
0C05
 0006
                  5 FERPAT( 10A1)
0007
                  7 FORFAT(1H ,16X,101H.
                                                                             .)
                  1
0008
                  8 FCRYAT(1H0,9X,11F10-4//)
                                       PLOT OF FORCAST VALUE !!
                2CC FCRMAT( 10X,
0009
0010
                2C1 FORPATE 10X.
                                      PLOT OF AUTO CCRR. FUNCTION.)
                202 FCRMATE 10X.
0011
                                       PLOT OF SPECTRUM')
             C
             C
0012
                    NLL=NL
             C
0013
                    IF(NS)16,16,10
             C
                       SCRT BASE VARIABLE IN ASCENDING ORDER .
                 10 CO 15 I=1,N
0014
0015
                    CO 14 J=1.N
                    IF(A(I)-A(J))14,14,11
0016
0017
                 11 L=I-N
0018
                    LL=J-N
0019
                    CC 12 K=1.M
0020
                    L=L+N
0021
                    LL=LL+N
0022
                    F=A(L)
                    A(L)=A(LL)
0023
0024
                 12 A(LL)=F
0025
                 14 CONTINUE
0026
                15 CONTINUE
             C
                       TEST NLL
             C
                16 IF(NLL)20,18,20
0027
0028
                 18 NLL=50
             C
             C
                       PRINT TITLE
             C
0029
                 20 WRITE(3,1)NO
0030
                    GO TO (91,92,93),NO
0031
                 91 WRITE(3,200)
0032
                    GO TO 21
                 92 HRITE(3,201)
0033
0034
                    GD TO 21
0035
                 93 KRITE(3,202)
0036
                 21 CONTINUE
             C
             C
                       DEVELOP BLANKS AND DIGITS FOR PRINTING
             C
0037
                    REMIND 4
0038
                    hRITE(4,4)
                    REWING 4
0039
```

```
FORTRAN IV G LEVEL 18
                                                            DATE = 71113
                                         PLOT
                                                                                  03/42/28
0040
                    REAC(4,5)BLANK, (ANG(I), I=1,9)
0041
                    REWINC 4
             c
                       FIND SCALE FOR BASE VARIABLE
             C
0042
                    XSCAL=(A(N)-A(1))/(FLOAT(NLL-1))
             C
                       FIND SCALE FOR CRCSS VARIABLES
             C
0043
                    #1=K+1
0044
                    YMIN=A(M1)
0045
                    YMAX=YMIN
                    #2=##N
0046
0047
                    DC 40 J=M1.M2
                    IF(A(J)-YMIN)28,28,26
0048
                26 IF(A(J)-YMAX)40,40,30
0049
0050
                28 YMIN=A(J)
0051
                   GO TO 40
0052
                (L)A=XAMY OE
                40 CONTINUE
0053
0054
                    YSCAL=(YMAX-YMIN)/100.0
             C
                       FIND BASE VARIABLE PRINT POSITION
             C
0055
                   XB=A(1)
0056
                   L=1
                   MY=#-1
0057
0058
                   I = 1
0059
                45 F=I-1
                    XPR=XB+F*XSCAL
0050
                                                THIS CARD HAS BEEN REMOVED
             C
                    IF(A(L)-XPR)51,51,70
             C
                       FIND CROSS VARIABLES
0061
                51 CC 55 IX=1,101
0062
                55 CUT([X)=BLANK
                57 CO 60 J=1,MY
0063
0064
                   LL=L+J*N
0065
                    JP=((A(LL)-YMIN)/YSCAL)+1.0
0066
                   CUT(JP) = ANG(J)
0067
                60 CONTINUE
             C
             C
                       PRINT LINE AND CLEAR, OR SKIP
             C
0068
                   hRITE(3,2)XPR,(OUT(IZ),IZ=1,101)
0069
                   L=L+1
0070
                   GO TO 80
0071
                80 I=I+1
0072
                    IF(I-ALL)45,84,86
0073
                84 XPR=A(N)
0074
                   GO TO 51
             C
                       PRINT CROSS VARIABLES NUMBERS
             C
                86 WRITE(3,7)
0075
0076
                   YPR(I)=YMIN
0077
                   CO 90 KN=1,9
0078
                9C YPR(KN+1)=YPR(KN)+YSCAL*10.0
```

by

Steven Shyan-Ming Ko

B.S., Taiwan Cheng-Kung University, 1966

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

This thesis is concerned with the development of a stochastic model (general autoregressive moving-average model) to represent a time series and forecast its future values. An iterative model-building methodology, including model identification, model estimation, model diagnostic checking and employment of the model to forecast the time series are explored and illustrated in this thesis.

Application of the general autoregressive moving-average model is illustrated by identifying the appropriate model and forecasting for an industrial chemical process, a simulated inventory system and international airline passenger fluctuation. The computer programming and human judgement both contribute to these experiments.

From the computational results, it is found that the general autoregressive moving-average model not only represents the discrete time
series in the time domain, but also possess the characteristics of
maximum simplicity and minimum number of parameters with representational adequacy.

Finally, further research is suggested to put the entertained model under more strictly diagnostic checks in order that it can represent the time series process adequately.