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CHAPTER T
DESCRIPTION OF ARMA MODEL

Box and Jenkins define a time series as a set of observations gen-
erated sequentially in time [1]. If the set i1s continuous, the time
series is said to be continuous, If the set is discrete, the time
series is sald to be discrete. In this thesls, we consider only the
discrete time series where observations are made at some fixed inter-
val h, However, the value of the time interval h 1s often unimportant
in the appropriate model for the given time seriles,

As indicated by Casimer Micheal Stralkowski [2], a desirable mathe—
matical analysis of a time series should be general enough to accommo-
date all types of the time series and should be embody the following
qualities:

1. Parsimony of the model parameter, i.e. the models should

contain as few parameters as possible, |

2. The model should be simple te Interpret and apply.

3., The model should accommodate theoretical as well as empir—

ical information, i.e. should be empirical-mechanistic in
nature,

Box and Jenkins introduce the autoregressive model as a mathe-
matical model which is extremely useful in the representation of certain
préctically occuring series., In this model, the current value of the

process is expressed as a finite, linear aggregate of previous



v [3]s

values of the process and a random shock a
Another kind of model, of great practical importance in the repre-

sentation of the observed time series, is the so-called finite moving

average process, Box also introduces the moving average model as making

-~

z,, i.e., is the time serles observation zg minus its mean z, linearly

L2
dependent on a finite number of previous random shocks. [4]

To achieve greater flexibllity in the fitting of actual time series,
it 1s sometimes advantageous to include both autoregressive and moving-
average terms in the model, This model is the so-called autoregressive
moving-average model,

When the general autoregressive moving-average model is mentioned
later on in this thesis, it includes all possible models, either the
autoregressive process, moving-average process or autoregressive moving-
average process, However, if the autoregressive moving-average model
is mentioned, it includes only an autoregressive moving-average process,

The general autoregressive moving-—average model is capable of
representing any type of time series problem and is empirical-mechanistic
in nature., The parameters in the model are as parsimonious as possible
and are simple to interpret, In practice, it is frequently true that an
adequate representation of an actual time series can be obtained with
a low order model, The order of the model is usually not greater than
two and often less than two. Hence, it possesses the characteristics
of being a good mathematical model,

Recently, the general autoregressive moving-average model has been

developed to represent many practical time series occuring in nature,



Examples are: scientific phenomena, such as the movement of tide, the
vibrations of violin strings, the motion of the pendulum, etc [S]; in

a business situation, such as the common stock market, gasoline sales

by all oil company, international airline passenger fluctuation [6];

in an industrial production process, such as temperature variatiom,

gas furnance process; in a simulation process, such as an inventory con-
trol process [7]. Not only may this model be used to represent the on
golng process, but it may also be used to forecast future situations.

An iterative cycle of identification, fitting, diagnostic checking
and its forecasting are developed in this thesis to arrive at the appro-
priate function-stochastic model for the time series., This technique is
to be applied to three sets of data obtained from chemical process, inter-
national airline passenger situations and simulated inventory process
respectively, Both the nature of the system of the process and the

optimal forecasts of future values can be acquired from this methodology.

1.1, Linear Filter Model

The mathematical models we employ are based on the idea that a time
series in which successive values are highly dependent can be generated

from a series of independent "shocks' a,. [8]. These shocks are ran-

dom drawings from a fixed distribution, usually assumed normal with
mean zero and variance og, such a sequence of random variable 8., a__1s

899 is called a white noise process,

The white noise process a_ is supposed to transform the process z

t t

by what is called a "linear filter", as shown in Fig. 1.1. [8]. The
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Figure 1.1 Representation of a time series as
the output from a linear filter



linear filterning operation simply takes a weighed sum of previous ob-

servations, so that

W+ (B a

N
]

u+ a + wlat-l + wz a_o o L (1.1.1)

where U is a parameter that determines the "level" of the process; B is

and

the backward shift operator, i.e. B 2 =z 43

W(B) =1+, B+ Y, B+ ... (1,1,2)

is the linear function that transforms a, to Z, and is called the tramsfer
function of the filter, The sequence ¢l, ¢2, v+« formed by the weights |
may be finite or infinite, If this sequence is finite, or infinite and

convergent, the filter is said to be stable and the process Zis see Z,
to be stationary, {9]. The parameter ﬁ in (1.1.1) is then the mean about

which the process varies, Otherwise, z, is non-stationary and u has no

specific meaning except as a reference point for the level of the process.

1.2, Stationary Process

Stationary processes play a very important role in the time series
problem, Most of the time series phencmena occurring in nature, which
are non-stationary or seasonal process, have to be transformed to a
stationary process so that the appropriate model can be identified and
the forecast values obtained,

The stationary process is based on the assumption that the process

remains in equilibrum about a constant mean level, The time series is



said to be strictly stationary if it is independent of time differences;
that is, if the joint distribution associated with m observations

, made at any set of times t ceay tm, is the

Be1r Zpe vvrs Fpg 1* E20

ame as that associ t observati res
s ass ate with m observations 21430 Zeotk? > 2k

made at times t thus for a discrete process to

1k’ Sk ttrr i
be strictly stationary, the joint distribution of any set of observations
must be unaffected by shifting all of the observation times forward or
backward by any integer amount k,

In Fig, 1.2, the observations of series C and D appear to fluctuate
about a fixed mean with similiar pattern of irregularity., Series of
this type are said to be '"stationary in mean and variance". Series E,
éppears to fluctuate about a fixed mean but with a changing pattern
of irregularity, Series of this type are said to be "statlonmary in
the mean but nonstationary in variance"; Series A and B appear to drift
with time, but appear to exhibit constant patterns of irregularity if
allowance is made for the changing level and direction about which the
observations are fluctuating. Series of this type are said to be "non-
stationary in the mean". A more complete discussion of non-stationary
process is presented in Section 1.6,

The stationary process implies that the probability distribution

P(zt) is the same for all times t and may be written P(z). Hence its

process has a constant mean where

[= <]

W=Elz] = [ 2P da (1.2.1)

-
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Which defines the level about which the process fluctuate; and

with a constant variance

o]

2 =E [(z- =] (z- g)z P(z) dz (1.2.2)

-—O0

which measures its spread about the level u,

The mean u of the time series process can be estimated by

N>
A

]
z
e=1 °©
and the variance o2, can be approximated by
z

I (z, - D7 (1.2.4)

1,3, Autoregressive Model
The autoregressive model of order p, or abbreviated as AR(p), can
represent the given time series Zos Zp_1s Zpogr ceeo observed at a

constant time interval, as

~

LETTI N N N (1.3.1)

-~

z, =4y 2t 9y Zg

~

where z, = Z; - U, ¥ is the mean of time series observationm. a_ is as-

sumed random normal and independent,
(1.3.1) can be related as a '"dependent' variable z_ regressed on

-~ ~ ~

(1] L1]
a set of "independent" variable 219 Zppr v Zt—p’ plus an error

term a . The autoregressive model can also be written as



Zp =Py B T 9p Bpg Toeer T B T
or
(1-¢,B-0¢,8°~...-0 B z =a
1 2 P t t
where B" ; = ;
t t-m
or
$(B) 2, = a,
where (B) =1 - ¢, B = ¢ B - ¢_BP
l 2 L R p
The model contains p+2 unknown parameters yu, ¢l, ¢2,..., ¢p’ Ug,

which are estimated from the time series data, The additional parameter

Ug is the variance of the white noise process a.e

~

The finite parameter in the autoregressive model $(B) z,= a,

can be inverted to an infinite number of random shock a,, as

~

. i i,
z, = 6 (B) a_ = (B) a

where

¢”1 (B) = (B = 1+ 1y, B+, B2 T s (1.3.2)

Comparing (1.3.2) with (1.1.1) in section 1.1, for the auto-

regressive process to be statlonary, the ¢'s must be so chosen that
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the weights ¢l, wz, veey In P(B) form a convergent series. The auto-

regressive process can be thought of as the output zZ, from a linear

filter with transfer function ¢_1(B), where the input is white noise a,»

1.4, Moving Average Model
The autoregressive model which expresses the deviation z, of the

process as a finite weighted sum of p previous deviation 212 Zpopo

~

. zt—p, plus a random shock a,, can be inverted as an infinite weighted

sum of a's, The moving average model may be defined as a linear function

of a number of previous shocks a's, which can be finite or infinite, [10].
For the moving average model of order q, or abbreviated as MA(q),

the model form is

= — - - s ™ ..l
e e T R R (i)

(1.4.1) ié also called a moving average process of order q. It

may be written as,

-~

z, = 8(B) & | (1.4.2)

where

- z _ - B 1.4,3
8(B) = 1 -6, B - 6,B e = 8y B ( )

The model contains q+2 unknown parameters u, 8, ... eq, I which in
practice are determined from the data. The moving average process can
be thought of as the output ztfrOm a linear filter with transfer function

8(B), when the input is white noise a,
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1.5. Autoregressive Moving-Average Model

The first order moving-average model,

z, = a - 61 a _q = (1 ~ el B) a (1.5.1)

can be inverted to an infinite autoregressive process, as

a = (1-08 B "z
or
a =z +0 2z _;+062z ,+...
or
z, =0,z 1 -02 2 , U a, (1.5.2)

The higher order moving average modél can be inverted to an in-
finite autoregressive process by the same derivation, Hence, if the
process can be represent by MA(1l), it is impractical to obtain a non-
parsimonious representation in terms of an autoregressive model; Con-
versely, an autoregressive model of first order can not be parsimoniously
represented using a moving average process, To achieve greater flexi-
bility in fitting actual time series, it is sometimes advantageous to Iin-
clude both autoregressive and moving-average terms in the model. This

leads to the so-called autoregressive moving-average model, as,
Z + -l'+¢ A + a - 8 at_l"' ...—Bga_q (1.5.3)

or

$(B) Et = 0(B) a, (1.5.4)



12

which 1s also called the autoregressive moving-average process of order

{(p,q), or abbreviated as ARMA(p,q). The ARMA(p,q) employs ptq+2 un-—

known parameters u; ¢l’ i ¢p; Bl, T Gq; ci, that can be obtained from
the data,
(1.5,4) may be inverted to
1-8, B - -5 B4
g el _ 8(B) _ 1 e q
z, ) {B) 6(B) a, 5(B) a, = a

1— B"'-o-" Bp
¢1 4

The autoregressive moving-average process can then be thought of as
the output z, from a linear filter, whose transfer function is the ratio

of two polynomials 6(B) and ¢(B), when the input is white noise a .

1.6, Non-stationary Process

Non-stationary time series have the property that their mean or
variance or both may be changed with time, In other words, a non-
stationary time series is depend on the time difference., When there
is doubt about the choice of a nonstationary model or a stationary model
to represent a time series, it is advantageous to employ the nonstatiomary
model rather than the stationary alternative. [11], Because the trend
of a non-stationary time series can be transformed to a stationary pro-
cess by differencing the data, Thus the nonstationary time series oper-

ator p(B) can be defined as

p®) = $(8) (1-B)? (1.6.1)

where ¢(B) is a stationary operator. Thus a general model, which can

represent nonstationary behavior, is of the form



13

Y(B) z, = o(B) (1-BY) z_ = 6(B) a
aE

$(B) w, = 8(B) a_ (1.6.2)
where

v, = vz vz, = (1-B) z,

Nonstationary behavior can therefore be represented by a model
which calls for the d'th difference of the process to be stationary.
In practice, d is usually one or at most two.

The process defined by (1.6.2) provides a good way for describing
non-stationary time series and is célled an autoregressive moving-

average process of order (p,d,q), or abbreviated as ARMA(p,d,q).

1.7 Seasonal.Mbdel

A seasonal time series is defined as a series which exhibits
periodic behavior with period S; i.e. when similarities in the series
occur after S basic time intervals; |

The monthly international airline passenger in Fig. 1.3, for
example, is highly correlated twelve months apart, Sales of a particu-
lar product, like baseball equipment, will also be expected to have
the same highly correlated situation., The highest sales occuring during
tﬁe summer months and the months of December. Serles of this type are
called seasonal time series,

The fundamental part about seasonal time serles with period 5 is

that the observations which are S intervals apart are similiar, Therefore,
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Bszt = s will be a powerful tool to analyze seasonal time series,
The linking of the observation zt to an observation in the previous

period with period S by a general ARMA model is defined as [12],

s D _ s :
$(B"7) Vs z, = ® (B™) a, (1.7.1)

where

Vs = 1-B° and D is the number of seasonal difference.

3(8°), @ (8°) are polynomials in B° of degrees P and Q, respectively,
(1.7.1) is the autoregressive moving-average process which repre-

gents the seasonal time series, or abbreviated symbolically as ARMA(P,D,Q)S.

1.8, Multiplicative Model
Suppose that a time series has shown a tendency to increase over a
particular period and also to follow a seasonal pattern, Then the time

series may be represented by the form

D

s d _ 8
$(B) ¢(B") ¥ v,z = eq(B) @Q(B ) a, (1.8.1)

which is the multiplication of

s D _ 5
¢(B”) ?s z, = @ (B7) o (1.8.2)

and

$(B) 7 a, = 8(B) 3, | (1.8.3)

(1,8,2) and (1.8.3) are used to take care of seasonal fluctuations

and non-stationary trend respectively. [13]. a and a_ are defined as
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a white noise process; ¢(B) and 6(B) are polynominals in B of degrees
p and q, respectively, and V = Vl = 1-B, |

This most general autoregressive moving-average process is said to
be of order (p,d,q) x (P,D,Q)s. It represents the time series process

having a non-stationary trend and cyclic pattern and can also be denoted

symbolically as ARMA(p,d,q)x (P,D,Q)s.

1.9, The Selection of An Appropriate Model
The purpose of this thesis is to find an appropriate model to repre-~

sent a time series process and alsoc forecast its future value., The

method to select an appropriate model can be explained briefly in Fig.

1.4, The function at different stages can be illustrated aé follows.,

(1) The theory and practice are to be interacted to entertain the
appropriate model, The autocorrelation and the partial auto-
correlatién function and the knowledge of the system are employed
to suggest an appropriate parsimonious model., In addition, a
rough estimate of the model parameters can be achieved in the
process of model identification,

(2) The efficient estimate of parameters in the tentatively enter-
tained model is the heart of this stage. The rough estimates of
the parameters obtained during the identification stage can now
be used as the starting points for the least square estimation
of the parameters,

(3) The entertained model is subjected to a diagnostic check to test
the goodness of fit. If no inadequacy of fit s indicated, the

model is ready to use,
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Figure 1.4 Stages in the iterative approach
to model building
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{(4) If the model is adequate enough to represent the given time series
process, the future situation can be forecasted and its confidence

interval computed,

More details of medel building and its application will be deseribed

in the following chapters,

18
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CHAPTER II
MODEL IDENTIFICATION

Identification methods are the rough procedures applied to a.set
of time series data to indicate the kind of representational model
which is worthy of further investigation., The specific aim in the
identification stage is to obtain some idea about the number of par-
ameters and the degrees of differences needed in the appropriate model
and also to obtain initial estimates for the parameters. The tentative
models so obtained provide a starting point for the application of the -
more formal and efficient estimation methods in the stimation stage,

Our approach to identify an appropriate model from the general

autoregressive moving~average model family, which is

o(8) v° z, = 6(8) a

are as follows,
(a) To identify the possibility of nonstationary and cycle trend, the
original series z, is to be differenced as many time as needed.

For the monstationary time series,

¢(B) w, = 8(B) a,

d
where W, = (1-B) 2, = v z.3

For the seasonal time series,

s _ s
3(B”) W, = ® (B a,
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=D = _SP
where L VS zt (1-37) Zo»

(b) To identify the appropriate model form of the time series data,
The distribution of the time series can be well defined by its
theoretical autocorrelation function, its mean and varilance.
Every kind of model has its specific autocorrelations and partial
autocorrelation functien, In view of these facts, a powerful
technique for identifying a candidate model form can be achieved
by estimating the correlation and partial correlation pattern from
the data and mentally comparing them with the theoretical patterns.,
Then select the model which has the estimated correlation and partials
most similiar with the theoretical correlation and partials, Many
charts of lower order autoregressive moving-average models for this
purpose are constructed by Box and Jenkins [14]. The unique pat-
tern of tﬁe autocorrelation and partial autocorrelation of the
general ARMA process can be used not only to identify the model,

but to obtain the appropriate estimate of the parameters.

2,1, Autocorrelation Function

Each different type of autoregressive moving-average model has its
own specific autocorrelation coefficient pattern, The autocorrelation
coefficient process can be plotted out as a scatter diagram using pairs

of values (zt, ), of the time series, seperated by k lags apart,

Zitk

It is easy to select the appropriate model for the given time series

by the plotted form of its autocorrelation function., Theoretically,
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the autocorrelation coefficient at lag k is

-u)]
E¥k (2.1.1)

JE [z w2 B [z -

Ef(z,~w) (2

B =

And the covariance between z, and Ziike which is also called the

autocovariance at lag k, is

Y = Cov Lz, 2, ] = E [(z=0) (2] (2.1.2)

To estimate the autocorrelation coefficient and autocovariance,
Box and Jenkins recommends the following method [13], for autocovariance

is estimated as

N-k

A~

Tk

2

0~

1

(z z) (zt+k z), kel Ly 2, comg K (2,1.3)
t .

The estimated autocorrelation coefficient is
Dk=
with 4its variance
" k-1 . .
var [p,] = ={1+2 § p (2.1.4)
k Sl 3

The square root of (2.1.4) is called the large-lag standard error

{16]., It is based on the assumption that the theoretical autocorrelation
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Py are all essentially zero beyond some hypothesized lag k = q. The

large lag standard error approximated the standard deviation of Py for

suitably large lags (k>q). Hence, usually, i.gh or + ZSA is plotted
Dk P

as "control" lines about zero. This is an rough indication of whether
the autocorrelation coefficient is zero beyond some specific lag, or,
in other words, the autocorrelation function is being cut off after
a particular lag.

The theoretical autocorrelation matrix is usuvally symmetrical [17],
Py = P it is only necessary to plot the positive half of the auto-~
correlation matrix to analysis its process. When the autocorrelation

function is mentioned later, it means only the positive half of its

function,

2.2, Partial Autocorrelation Function

Every autoregressive, moving-average or autoregressive moving-average
model has its own specific partial autocorrelation function, Hence the
partial autocorrelation function is used as an auxiliary device to iden~
tify the appropriate model for a given time series among the general ARMA
family., The correlation, Py s represents the dependence between 2, and

2k However, the partial correlation, pé, represents the dependence

between 4, and =z given that observations z are known,

t-k’ t=k+1® **°2 Zee1

Hence, for the AR(p) model,

-~ ~ ~

z, = ¢l Zo1 + ¢2 Z, o + wae F ¢p zt—p + a, (2.2.1)

It can be observed that given the observations Zi_ 15 Bpgr sees
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zt—p’ no dependence exist between z, and the observation occuring before
time t-p. The partial correlation, p&, will therefore be zero when k>p.
In other words, the partial autocorrelation process of AR(p) model will
be cut off after lag p. For both the moving-average process MA(q)

2, =8 =0 @ 1708 g e T8, 84 (2.2.2)

and the autoregressive moving-average process ARMA(p,q)

oo -~

ztﬂ¢1 zt-—l+ ...+¢pz +a -B a = ...—Bqa (2.2.3)

t—p t 1 “t-1 t-q

can be inverted to the infinite autoregressive process, This implies
that the partial autocorrelation function of the moving-average process
or ARMA process tails off rather cuts off,

The estimation of the partial autocorrelation is developed by

Dubin as [18],

k
- p) . p
p S Ry kel
Pl = el k- (2.2.4)
1- 3 of .0
RIS

! = ' - 1 [} -
Pre1,3 ~ Pk,3 T PRHl Pk,k-gtl (1=1,2, .cs, K



with variance of the partial correlation coefficient as
Var(;' g il (2.2,5)
k n-k .o

The standard error, which is the square root of (2.2.5), can be
used as a rough indication of the lag q where the partial autocorrelation

is cut off.

2,3.1. The Autocorrelation Function of the Autoregressive Process
The specific autocorrelation pattern of the autoregressive process
is a powerful tool to distinguish it from MA or ARMA process. On the

autoregressive process

~

2, = ¢1 zZ. 1 + ¢2 Z._2 + ... F ¢p zt—p + a, (2,3.1)

Multiplying each term in (2.3.1) by Et-k

Zek 26 T %1 Peok Ze-1 T %2 Fpk Fee2 oy ¢p -k zt--p + Zr-k %t
(2.3.2)

Then take the expected value of (2.3.2), we obtain

E[zt—k zt] = ¢1 E [zt-k zt—l] + ¢2 E [zt-k zt~2] S .

bk zt_p] + E [z

+ ¢p E [z el at]

or

24



can only involve a, up to time t-k; for a, is beyond t-k, it

Zrok i

is uncorrelated with zt-k; so the expected value of E{;t_k at] vanishes.,

Dividing (2.3.4) by Yo» the autocorrelation function of the AR process is

pk = @1 pk"l + ¢2 pk-—-Z + LU + ¢p pk"p k > 0 (20315)
or
(L-¢,B~¢,B° = .. ~¢ BP p =0
l 2 + a9 p k
¢(B) py = 0 (2.3.6)

No matter how large a k we take in (2.3.5), Py is still cobtainable.
This fact implies that the autocorrelation function of an AR process
tails off rather than cuts off,

Box and Jenkins discuss the roots of ¢(B) in (2.3.6) and conclude
that the autocorrelation function of an autoregressive process is either
a damped exponential or damped sine wave or a mixture of damped expon-

ential and damped since wave [19].

2,3.2, The Partial Autocorrelation Function of AR Process and Yule-
Walker Equations
To decide which order of autoregressive process to fit an observed
time series is analogaous to decide the number of independent variables
to be included in a regression equation. For an AR process is finite

itself and MA process can be inverted to an infinite AR process, any

25
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general ARMA model can be expressed in AR form, either finite or in-
finite, Although the proper order of an AR model to fit the time
series is unknown, its parameter can be easily calculated,

For the autoregressive process

By substituting k = 1, 2, ..., p, in (2.3.1) one by one, and for

P = Py it yields,
Py = 8y +¢2 Pl +...f¢p pp_l
p2=¢l pl +¢2 + -l-+¢p pp_‘z
pp = ¢1 pp—'l + ¢2 pp__.z + Lt + ¢p (2.3-2)

(2.3.2) are the Yule-Walker equation [20], The matrix form of

Yule-Walker equations can be written as

) ) ( w

(°1 41 1opy Py e ppy

Py by g 4 L

= = P =
" : ! : P :
1
°p) ®p) °p-1 Pp-2 )
or

p_ =P ¢
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hence

Initially, which order of an AR process to fit is unknown; suppose
¢kj is the jth coefficient in an autoregressive process of order k, so

that ¢kk is the last coefficient. (2,3.1) can be written as

pj = ¢kl pj"l + iwe F ¢k(k—l) pj_.k_'_l + ¢kk pj""k j = l’ 2, seay k

(2.3.5)
Hence (2.3.2) can be extended to
{ ) (6 ) (5. )
1 Py Pg  wee Ppg| % P1
= ‘ (20306)
Pr-1 Pk-2 Pk-3 L) e (P
or the matrix form )
"k %% T Pk
e ‘

The quantity ¢kk 1s regarded as a partial autocorrelation function
[21). To the autoregressive parameter ¢kk’ the values between pl, see Py
have to be known. In other words, ¢kk is dependent on the observation

zl, tes g to zkc
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(2.3.7) can be used also as the rough estimate of the autoregressive

model parameter,

2.4.1., The Autocorrelation Function of a Moving-~Average Process
The moving-average process has its own specific autocorrelation

function, For MA process,

zt = at = 81 at_l T ess T eq at_q ) (2.4.1)

multiplying (2.4.,1) by =z which is

-k’
Zo S8 T8y 8 T e eq at_k_q, k=1, 2, .eay q T
then obtain
e Bopp = (B =8y 8 g - eew—0 8 Jla -6 a, 4"
R (2.4.3)

takes expectation value on (2,4.3),

- B

Elz, 2., ] ~El(a, -6y 8, ;8 _;-.c-0 8 Ja _, -8 a8 _, 4"

see = O )] (2.4.4)

q at-k-q

Here, the random variables a, are assumed uncorrelated [22],

t

=4 2 (2.4,5)

Then the solution of (2.4.4) is shown as (23],



2
(=8, + 0y 80+ 8y B0t euet ¥k eq) o k=1,2,.0.,9
Yk=
0 y k>q
with
_ 2 2 2
Y0—1+Gl+82+...+8q
e
Hence the autocorrelation coefficient, P = ¥ will be
0
5 5 y K=1,2,..., ¢
1+8, + ,..+8
1 q
P .
0 » K>gq

(2.4.7) reveals that the autocorrelation function of MA process
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(2,4.6)

(2,4.7)

is zero or cut off beyond a lag of q. This fact provides the means to

identify the model of the observed time series. (2.4.7) can also be

employed to obtain an approximate parameter estimate for the moving-

average model.

2.4,2, The Partial Autocorrelation of MA Process

The finite moving-average model z,. ¢ (B) a, can be inverted to

infinite autoregressive model ¢"1(B) z, = a, with an infinite number

an

of

parameters. In other words, the finite moving-average model can be ex-

pressed in terms of an autoregressive model with its order to be decided.

Here Box and Jenkins recommend the partial autocorrelation coefficient of

the moving-average process to be expressed by its inverted autoregressive

parameter as [24],
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- _ .k a2 _ a2(kt+1)
brexc 91{1 el}/{l 87 } (2.3:2,1)
with

(o, = = !

1 2

1+ 8]

and

Pg = ©

to decide Bl value,
From (2.4,2,1), if pl_is positive, then el is negative, so that ¢kk

is positive; Conversely, if Py is negative, 6, is positive, so that ¢kk

1
is negative., This implies that the partial autocorrelation function of
MA process is damped exponential, For k values in (2,4,2.,1) can be
substituted by any positive integer and ¢kk is still obtainable, the
process has a cut off after a lag of q, whereas the autocorrelation
function of the AR process talls off, whereas the partial autocorrelation

function of an AR process cuts off,

2,5, Autocorrelation and Its Partial for the Autoregressive Moving-

Average Process

~ -~ -~

B Ty B G Ty B TR SO Ry 08y
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or

¢ (B) ;t = 6(B) a, (2.5.1)

has its autocovariance function

Y = 90 Y1t oeee t ¢p Ykep + yza(k) -8 Yza(k"l) S e
eq Yza(k-q) (2.5.2)

(2.5.2) is obtained by multiplying (2.5.1) with Z 1 and then

taking the expected value, Suppose Yza(k) = E[zt_k at]; since z

depend only on random shock a, which have occurred up to time t-k, it

3
follows that [25],

Yza(k) = 0 k>0

Yoalk) #0 k<0 (2.5.3)
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Hence the autocorrelation function (2.5.2) will become

by dividing (2.5.4) with Yoo the autocorrelation function can be

expressed as,

P = 91 Py by Py p T e F ¢p Prcsp k>q+ 1 (2.5.5)

or

¢(B) P = 0 (2.5,6}

For any k value bigger than ¢+l in (2,.5.5), P is always obtainable,
Thus the autocorrelation function of an ARMA process tailé off rather than
cuts off, Box and Jenkins also investigate the roots of ¢(B) in (2,5.6),
and find the autocorrelation function of an ARMA process consists of a
-mixture of damped exponentials and/or damped sine wave, (2.5.5) can also
be used to estimate the rough parameter ¢ for the appropriate ARMA model.

(2.5.1) can be inverted as

Et = 1) 8(B) a,

For ¢-1(B) is an infinite series in B, Hence the partial auto-
correlation fﬁnction of an ARMA process will be infinite in extent. Box
and Jenkins conclude that the partial autocorrelation function will behave
like a mixture of damped exponentials and/or damped sine waves, depending

on the order of the ARMA process and the values of the parameters, [26],
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We now can conclude that the appropriate model wmay be an ARMA process
if the autocorrelation function and its partials tail off rather than cut
of £,

The first order ARMA model is the most common and practical to rep-
resent the appropriate ARMA process., An approximate value of the para-
meters of ARMA(l,d,l) process can be computed by [27],

(1 -9 Y4, = ¢4)
_ 1 %120 = 4y oA §

-1<9, <1

A general method for obtaining initial estimate of the parameter

for any ARMA process is derived by Box and Jenkins [28],

2,6, Identification of Appropriate Model

The autocorrelation function and the partial autocorrelation function
have been used as a powerful tool to identify the appropriate model for
a given time series., The low order model can represent the given time
series quite well., The order is usually no more than 2. Many charts
and tables have been constructed to describe the autocorrelation functions,
partial autocorrelation functions and to provides an estimate of parameters
for low order ARMA models, see Box and Jenkins [29]., The general process
to identify the appropriate model for a given time series can be summarized
as follows,
(a) For the non-stationary time serles, its autocorrelation function

will not die out quickly, or will fall off slowly, or is very nearly

linearly [30]. Therefore, a tendency for the autocorrelation function



(b)
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not to die out quickly is taken as an indication that a nonsta-
tionary time series may exist, Then we can treat the time series
as nonstationary in Zes but possibly as stationary in Vzt, or in
some higher difference.

It is assumed that the degree of difference d, which is required
for stationarity, has been reached when the autocorrelation function
of W, ™ Vd 2 dies out fairly quickly. In practice, d is normally
either 0, 1 or 2, It is usually sufficient to inspect about the
first 20 estimated autocorrelation of the time series,

The AR process has a autocorrelation function which is Infinite in
extent, but has a partial autocorrelation function that is zero
beyond a certain point. Conversely, the MA process has an auto-
correlation function of zero beyond a certain point, but with a
partial autocorrelation function which is infinite is extend,

Table 2,1, is the summary of the properties of AR, MA and ARMA

process.
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Table 2,1, Summary of Properties of Autoregressive, Moving-average and
ARMA Process

tall off

autoregressive moving-average ARMA
process process process
~ ...l - _.l ~
model in terms $(B) z_ = a 8 "(B) z_ = 8 "(B) 4(B) z_ = a
t t t t t
of previous
z's
~ -1 v ~ -1
model in terms Z_ =¢  (B) a z_ = 68(B) a z_=¢ (B) 6(B) a
t t t t t t
of previous
a's
autocorrelation infinite finite, infinite (damped
function (damped cut off exponentials
exponentials and/or damped
and/or .sine waves after
damped the first g-p
sine waves), lags), tail off
tail off .
partial auto- finite, infinite infinite (dominated
. correlation cut off (dominated by damped expo-
function by damped nentials and/or
exponentials sine waves after
and/or sine the first p—q
waves) , lags), tail off



CHAPTER III
MODEL ESTIMATION AND DIAGNOSTIC CHECK

The tentative formation of the model for the given time series is
obtained in the identification stage. The more efficlent estimate of
the parameters in the appropriate model will be computed so as to
construct a more perfect model, The rough estimated parameters obtained
in the identification stage will be used as the starting points, After
the model is built, it will be subject to diagnostic checks to test the
fit of the model. If the model is inadequate, the time series process
will be reviewed again and another modified model tried. If no lack of

fit i1s indicated, the model is ready to use,

3.1, Maximum Likelihood Estimation of Parameters of ARMA Model

After a candidate model has been selected, it is necessary to esti-
mate more accurate parameters to fit the time series data. The best
estimate, from many points of view, is the maximum likelihood estimate
[31].

For the ARMA process

~ -~ ~

zt = ¢l zt—l + e F ¢p Z

gmp ~ 01 Bpe1 7 8 Bpp T e

& a + a : : (3.1.1)

the random shocks 815 8y sssy By ees B are assumed normally inde-

pendently distributed, so,
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2
2 1l 20
£ag 2y vev 8y | 9, 8, 07) = ———e
‘ (2m)
1
) = _"—2' 5(9_,2,)
- 1 & 20 (3.1.2)
(2“)n72 0n .
where
2
5($,8) = Ja_ (By1y3)
and
By ™ By = By By ey Ty, By o Ty A T 0y S p e

+ 6 a (3.1.4

The likelihood function of 8, ¢ and 02, can be obtained by sub-

stituting the observed value of a inte (3.1.2), as

- 25 50,0 (3.1.5)

2 1 2
L($, 8, 0" | 815 8yy aes ) a e ¢

a

The likelihcod function is maximized when S(¢,08) is minimized, The
maximum likelihood estimates of ¢ and 8, denoted by ¢ and 8, corresponds

to the minimum sum of squares, S(¢, 6).

Differentiating (3,1.5) with respect to 02 reveals that the maximum

likelihood estimate of 02 is given by
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22 T ..% =

o“ ==5(8, 8

The maximum likelihood estimation of ¢, 6 are equal to the least
square estimate, which minimize the sum of squares of the residuals,
The parameters in the model can be linear or non-linear after extention.

d_D

For instance, a_ = ¢-1(B) 8(B) z, or a_ = $(B) @(Bs) v VS z,. Hence the

t

the non-linear parameter least square estimation procedure is employed
to meet every possible model, either linear or non-linear, [32], Sub-
routine UWHAUS in the Appendix is use& to obtain the estimated parameter
by a nonlinear least square method.

In order to insure that the estimation of parameters will converge
to the least square point and also save machine time, it is necessary to
obtain a good initial estimate of the parameters to start the computation.
The initial estiﬁate of parameters are obtained from autocorrelation and/
or partial autocorrelation functions as discussed on Chapter Two.

The general ARMA model can be transformed to an equation like (3.1.4)
in order to pursue the least square estimate of the parameters in the

model [33]. For starting the problem, the p values z., z

0* %10 By eee
d
Z—p+1 among the n=N-d W which is wy = v 245 and the q values 355 a_gs
s a—q+l of a are unknown, For the practical purpose, if the sample

size is moderately large, the unknown a's can be assumed zero and also

sacrifice the first p observations with an effective size of n-p [34].

3.2, Diliagnostic Check
After the model has been identified and the parameters estimated

for a time series, the model should be subject to investigation to test



the fit of the model. If there is evidences of serious inadequacy of
fit, the model will be adjusted and the modified model tried again.

No model form can ever represent the true time series absolutely.
However, the model should nave no indicated lack of fit under different
statistical tests, Box and Jenkins suggest many statistical tests for

the general autoregressive moving-average model,

3.2.1, Diagnostic Checks Applied to Residuals- Autocorrelation Check
Theoretically, the random shock in the ARMA process is assumed to
be white noise, Therefore, it is reasonable to expect that the study
of the ;t in the ARMA model can indicate the model inadequacy., The
autocorrelation function of the residual ;t is therefore a good device

to test the fit of the model., Assume a general ARMA model,

5(B) ;rt = 5(B) at.

where

being built from the interaction of the theory and practice discussed
in Chapter Two and Three, Thus the residuals of the model
a, = 6_1

& (B) ¢(B) w_

are subject to test. It is possible to show that, if the model 1is ade-

quate, then [35]

~ 1
a, = a + 0 (—)
n

39



As the series length increases, the ;t‘s beconme close.to the white
noise at's. Hence the estimated autocorrelation coefficient Yk(a), of
the a's, distributed approximately about zero with variance n~ , or,
with a standard error of n_lf2 [36]. We can use these fact to assess
the statistical significance of apparant departures of these autocor-
relations from zero, If all the estimated aﬁtocorrelation coefficients
of the residuals are inside the "control" line, then no inadequacy of
the model is indicated. However, if the estimated autocorrelation co-

efficients are out of the "control" line, the suspicion of the lack of

fit is hence aroused.

3.2.2, A Portmenteau Lack of Fit Test [37]

Box and Jenkins also suggest another statistical method to test
the model fit, Rather than consider the yk(;)'s individually, the first
few autocorrelation coefficients of the a's, suppose about 20, are taken
as a whole to test the fit of the model, Suppose we take the first k
autocorrelation coefficients Yk(Q)(k;l,Z,...K) from general ARMA(p,d,q)

process, then if the model is appropriate, the value of

ko
Q=n ) y(a
k=1

will be distributed as yx2(k-p-q), where n=N-d is the number of trans-

formed observations Wy where w, = dei, used to fit the model, On the

i
other hand, if the model is inappropriate, the average values of Q will
be inflated, Therefore, an appropriate, general, or "portmanteau'" test

of the fit of the model can be achieved by obtaining the value of Q and

comparing it with the percentage points on the 2 table, If Q is greater



than the percentage points on the x? table, then the inadequacy of the
model is indicated. Conversely, 1f Q is no greater than the critical

x2 value, then no inadequacy of the model is indicated.
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CHAPTER IV
FORECASTING

The model is supposed to represent the time series data adequately
as no lack of fit is indicated under the statistical investigation.
Then the appropriate model can represent the stochastic process as well
as be used to forecast the future situations, The approximation of the
forecast value of the time series process will be presénted in this

Chapter. The confident limits of the forecast value will be developed.

4,1, The Forecast Function of the ARMA Model

The forecast function of ARMA model, as indicated by Box and Jenkins,
has three model forms, either in terms of the difference equation, or in
terms of an Infinite weighted sum of previous random shock a,, or in
terms of an infinite weighted sum of previous observations plus a random
shock. The simplest and the most practical form is the difference
equation form, which will be discussed here [38]. TFor the general ARMA

model

¢ (B) z, = 8(B) a

where

@ (®) = ¢(8) v

the forecast value is defined as z £>1, and its estimated value is

t+e°

zt(i). In other words, the forecast z is said to be made at origin

t+R

t for lead time £ when we are currently standing at time t.



43

An observation Z 4 generated by the process may be expressed

directly in terms of the difference equation by

8

Zerg TP Tepo1 oot Y Phig Prbgoped T B1 Ppep-1 T 00

- Bq at+£~q + 2 ., (4,1.1)

Now, suppose, standing at time t, then the forecast function

zt(k) of Ztg will be a linear function of current and previous obser-

vations z Z o3 eee and also a linear function of current and

t? %e-1°

previous shocks Bis B 15 AL 53 ees} the forecast function may be written

as,

~ ~

~

u Zekieg ta,., (4.1.2)

oon_e

Box and Jenkins indfcate (4,1.2) is the minimum mean square error
forecast function [39]., To obtain the forecast wvalue zt(z), the right
hand side of the forecast function in (4.1.2)} should be treated as fol-

lows:
1) The zt—j (j=0,1,2,... ), which have already happened at time t,
are left unchanged.

2) The (j=0,1,2,... ), which have not yet happended, are replaced

“t+3

by their forecasts z, .

3) The a._ (j-0,1,2,... ), which have happened, are available from

Mol

£1)s

S R |
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4) The a (j=1,2,... ), which have not yet happened, are replaced

t+]

by zero.

4,2, The Confidence Limits of the Forecast Value

Suppose the forecasts at lead time 1,2,..., L, are required. To
obtain probability limits for these forecast value, it is necessary to
calculated the wedights wl’ wz, eaiE § ¢L—l’ which are the parameters of

the pure moving-average model; i1t may be written as,
- for the general ARMA model,
¢(B) z, = 6(B) a, (4.2.2)

Comparing (4.2.1) with (4.2.2), we can obtain

9(B) (LHy.B + 9,B° + ... ) = B(B) (4.2,3)
or

@(B) ¥(B) = 6(B) (4.2.4)

(1- B -1\02132 - s -\pp+d Bp+d)(1 + Y8+ ¢2B2 Fand 8

(1- 88 - 92132 =m0 59) (4.2.5)

As we equate the coefficients of powers of B in (4.2.5), we can
obtain the pure moving-average parameters in terms of general ARMA

parameters \p's and 6's, which are known. Then we obtain,



By =g =4y

Yo =¥ tY, - 8

g™ gl ¥ e Yy Vg ® 0, (4.2.6)
where

wo =1, ¢j =0 | for j <0
and

Bj =0 ) for i>q

If k is the greater of the integers ptd-1l and q, then for j>k, the

Yy's satisfy the difference equation [40];

+ +

zﬂ)j_z + LR p'*_dlpj_p_d

Y37 1¥a

Thus the y's can be easily calculated recusively.
Box and Jenkins suggest the variance of the forecast error 2 steps

ahead for any origin t is the expected value of ei (®) = [zt+£ - zt(ﬂ)}z,

it can be estiamted by [41]

' =1
v(g) = {1+ z

5. B
P} o
=1 @

3

Then assuming that the a's are normal, and given information up to

time t, the conditional probability distribution P(zt+2/zt, z ees ) of

t-1

a future value Zotg of the process will be normal with mean zt(z) and
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=1 2 1/2
standard deviation {1 + z ¥ } g,

=1 3

The variance o, can be estimated by Sa if the numbers of observations
on which such an estimate is based is at least fifty; Si is the minimum

sum of square of residual and can be acquired by §££LEL, [42],
n

Hence the approximate l-e probability limité zb+2(-) and zt+£(+) for
Zi4g aTE given by
& £-1 2 1/2
Zors () = zt(l)_i Me /2 {l + 2 wj} Sa (4.2.7)

i=1

Where uafz is the deviate exceeded by a proportion £/2 of the unit
normal distribution,

for 50% limits, UE/Z is 0,674

for 957 limits, Me/2 is 1.960

The Ziio (=) and Zitg (+) mean that, given the information avail-

able at origin t, there is a probability of l-e¢, that the actual value

Zipg,? when it occurs,will be within them; it can be expressed statistically

as,
Pr {zt+£ (-) < Zevs < Zpag ()} =1-¢ (4,2.8)
The confidence limits obtained here is applied to individual
forecasts z only and not jointly to the forecast values at all the

t+4
different lead times.

The Program FORCAT in the appendix will calculate the forecast

values as well as its confidence limits,
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CHAPTER FIVE
APPLICATION

The technique of model building for time series have been discussed
in previous chapters, The computer programs in the Appendix provides
the model calculations [43], The model has to be constructed by computer
calculation and human reasoning.

The process of model building is concerned with relating a class of
statistical models to the data at hand and involves much more than model
fitting. Thus, identification techniques, designed tc suggest what par-~
ticular kind of model might be worth considering, are developed first
and make use of the autocorrelation and partial autocorrelation function,
The fitting of the identified model to a time series using the likeli-
hood function can then supply maximum likelihood estimate of the para-
meters. The initially fitted model will not, necessarily provide ade-
quate representation., Hence diagnostic checks are developed to detect
model inadequacy and'thus, where necessary, to initiate a further iter-
ative cycle of identification, estimation and diagnostic checking. When
the forecast is the objective, the fitted statistical model with past
data is used directly to generate optimal forecasts by simple recursive
calculation,

The application of these techniques are presented by three examples
of time series, which are obtained from industry process [44], business

situation [45] and inventory simulation process [7] respectively.



5.1, Example One

A set of data shown on Table 5.1. about an industrial chemical
process is to be analyzed here, [44]. This series represent "uncontrol-
led" outputs of concentration from the chemical process. And they were
collected on full scale processes where it was necessary to maintain some
output quality characteristics as close as possible to a fixed level,
To achieve this control, another variable had been manipulated to apﬁroxi-
mately concel out variation in the output, However, the effect of these
manipulation on the output was in each case accurately known, so that it
was possible to compaﬁsate numerically for the control action. That is
to say, it was possible to calculate very nearly, the values of the series
that would have been cbtained if no corrective action been taken, It is
these compensated value which are recorded here and referred to as "the
uncontrolled" series [46].

The obtaining of the appropriate model will be explained step by
step in the following sub-sections. Not only will we understand the
‘system from the derived model, but we will acquire optimal forecast values

for the series,

5.1.1, TIdentification of the Model

Program IDENT calculates the autocorrelations and partial auto-
correlation of the time series. Since the series represent the "uncon-
trolled" behévior of the process output, we might expect it possess non-
stationary characteristics., So differences of data are taken to see what

kind of model can properly represent the series. The output of z, Vz

and sz are shown on Table 5.2., 5.3 and 5.4, respectively. The plotting
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TABLE 5-1 CHEMICAL PROCESS COCNCENTRATION READINGS:

17.0
16.5
1€7
170
17.1
17.6
17.5
17.1
17.6
173
17.6
17.2
17.1
17.3
17.3
17.C
l16.8
16.6
16.2
169
165
16.7
1€e6
167
16.9
17.3
175
165
16.6
16.9
17.2
16.8
17.1
l16.9
17.3
17.0
175
172
18.0
17«2

EVERY TWO HOURS
{READ RCWWISE FROM LEFT TGO RIGHT)

16.6
16.8
17«4
17.3
1T.4
17. 4
18.1
17.6
17.5
17.1
16.9
1648
16.9
17.0
17.4
169
16.7
l6e5
16.4
17.1
17.2
16.2
166
16.8
17.1
17.2
169
16.7
16.5
17.4
17.2
17.0
171
16.9
17.8
16.9
17-9
173
18.2
174

163
174
172
172
17.%
17.3
17.5
17.7
16.5
17.4
167
17+6
16.6
16.9
17.7
17.0
164
167
15.3
17.1
164
16«6
17-0
1663
16.8
17.3
16.9
16.8
17.0
17.1
174
174
171
17.0
17.8
17-1
17.0
17.4
17.6

16.1
17.1
174
174
17.5
17.0
174
17.4
17.8
169
168
17.2
18.0
17.3
168
166
16.5
16+4
loe4&
16,7
17.0
169
17.1
16. 6
170
172
169
16.7
167
17.0
17.2
17.2
174
l6.7
17.6
17-2
17.0
1T 4
17.8

17.1
17.0
174
16.8
174
17.8
17.4
17.8
17.3
17-3
168
16.6
17.2
16.8
16+9
167
l6.4%
16.4%
17.0
16.9
17-0
16+5
17.1
16.8
172
172
17.0
167
L6.7
16.8
169
172
17.2
16.9
175
174
17.0

17.0 -

LT.7

49



Table 5.2 Estimated Autocorrelations and its Partials of
Chemical Process Concentration Readings about =z

Lag Autocorrelations iiigigirelations
1 0.57 | 0.57
2 0.49 0.25
3 0.39 0.07
4 0.35 0.06
a 0.32 0.06
6 0.34 0.12
7 0.39 0.15
8 0.32 -0,03
9 0.30 0.01

10 0.25 -0.02

11 0.18 -0.07

12 0.16 -0.02

13 0.19 ' 0.06

14 0.23 0.08

15 0.14 -0.12

16 0.18 0.04

17 0«19 0.09

18 0.20 0.06

19 0.14 - ~-0.07

20 0.18 0.05

21 0.10 -0,10

22 0.12 0.05



Table 5.3 Estimated Autocorrelations and its Partials of
Chemical Process Concentration Readings about vz

Lag Autocorrelations i:igzgirelations
1 -0.41 -0.41
2 0.02 -0,18
3 -0,06 -0.16
4 -0.01 -0,14
5 -0.,07 -0.,19
6 -0.02 -0.21
7 0.14 ' ~0.00
8 -0.06 -0.04
9 0.03 -0,02
10 0.02 0.04
11 -0.04 -0.00
12 -0.06 -0.07
13 -0.01 ~0.10
14 0.16 0.10
15 ~-0.,17 -0.08
16 0.03 ' ~0.13
17 0.01 -0.,09
18 0.08 : 0.04
19 ~0.12 -0.07
20 0.15 0,09
21 -0,12 -0,07
22 0.04 0.02
23 ~-0.06 : -0.06
24 0.04 -0.04
25 0.00 -0.01



Table 5.4 Estimated Autocorrelations and Its Partials of
Chemcial Process Concentration Readings about v?z

Lag Autocorrelations igigigirelations
1 -0.65 - ~0.65
2 0.18 -0.42
3 -0.04 -0.31
4 0.03 ~-0.20
5 -0.04 -0.17
6 -0.04 -0.31
7 0.13 -0.17
8 -0.11 -0,14
9 0.04 -0,14

10 0.02 -0.05

11 -0.02 0.02

12 -0.02 0.02

13 -0.04 -0.16

14 D17 0.05

15 ~0.19 0.06

16 0.07 ' -0.00

17 -0.03 -0.12

18 0.09 0.01

19 -0.16 -0.12

20 0.19 0.07

21 -0.16 -0.02

22 0.10 0.06

23 - =0.08 0.01

24 0.05 -0.01

25 -0.01 0.01
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of the autocorrelation function and its partials for z, Vz and sz are
also shown on Fig. 5.1., 5.2., 5.3,, respectively.

From Fig, 5.1, the autocorrelation function decreases fairly regu-
larly after the first lag, and the partial autocorrelation has the ten-
dency of talling off; this is to suggest that the process might be ARMA
(1,0,1). However, the autocorrelation function of z does not fall quickly,
This suggests that the series might be nonstationary. The appropriate
estimate of the initial parameters can be calculated from

p = p = p ¢
1 2 : 2 171
1+ 07 - 24,0,

and hence we obtain ¢l = 0,86, 81 = (0,78; the model can thus be written

as
(1-0.86 B) 2, = (1-0.78 B) a {5.1,1.1)

From Fig., 5.2, the autocorrelation function are small after the
first lag, and the partial autocorrelation tails off, This suggests an
MA(l) process; the approximate estimate of initial parameters can be

calculated from

and hence 61 = 0,5; the model can thus be written as

Vzt = (1-0.5 B) a,

or
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(1-B) z,_ = (1-0.5B) a_ (5.1.1.2)

Comparing (5.1.1.,1) with (5.1.1.2), we see two possible result in
the same form., Either form might represent the time series. However,
in doubtful cases, it may be advantageous in employing the nonstationary
model rather than the stationary alternative. Hence, the MA(I1,1) is to
be adapted to represent the given time series and will be subjected to a

diagnostic check,

5,1,2, Efficient Estimation of Parameters

Program ESTIM performs the maximum likelihood estimate of the para-
meters in (5.1.1.2). The convergent situations 1s shown on Table 5.5.
Hence, the appropriate model to represent the time series can now be

written in more perfect form as

(5.1.1.3) will be subject to further test for the goodness of fit,
The statistical methods described in Section 3.2, are applied here to
investigate the model., The sample correlation coefficients of residuals
is also obtained from the output of program ESTIM and are shwon in Table
5.6, By the autocorrelation check method, we compare the autocorrelation
coefficients of residuals on Table 5,6, with the "control" line i_2n—1/2.
It is revealed that all the correlation coefficients of the residuals
are within the "control" lines. Thus ﬁhere is no suspicion of inadequacy
of the model,

To test the goodness of fit by the method of a portmanteau lack of

fit, the value of



Table 5.5 Iterative estimation of g, for
Chemical process concentration data

Iteration 9,

0.500
0.521
0.596
0.657
0.680
0.688
0.691
0.691

~ U B W RO



Table 5.6 The Sample Correlation Coefficients of Residuals
for the Chemical Process Concentration Data

Lag Correlation
1 0.091
2 0.010
3 ~-0.096
4 ~0.112
5 -0.118
6 0.003
7 0.146
8 0.022
9 0.041

10 0.001

11 -0.099

12 -0.119

13 -0.036

14 0.062

15 ~0.131

16 ~-0.010

17 0.045

18 0.073

19 -0.034

20 0.085

21 -0.091

22 =0,027

23 -0.058

24 0.037

0.041

N
wn
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ks |
a=n ] vA@ (5.1.1.4)
=1

i1s assumed distribute approximately as xz(k-p-q) if the model is ade-
quate, when r=N-d is the number of z's to fit the model, By taking the
first 20 autocorrelation coefficients on Table 5.6, to substitute on
(5.1,1.4), we obtain

20 A

Q=n ]} Yi(a) = 23,58
k=1

with 19 degrees of freedom. The 10% and 5% points for x? with 19 degree
of freedom, are 27.2 and 30,1 respectively. For 27.2 and 30.1 both far

greater than 23,58, there is no significant inadequacy of the model,

5.1,3. Forecasting
Now MA(1l,1) is supposed to represent the time series. The forecast
values and its individual confidence limits are obtained by Program

FORCAT. The forecast function can be written as

z = (1-0.7 B) a

t+L t+i

or

z - 0,7

e+ - Zpaa-1 T Bpag Bttg-1

The 8o beyond the present time is assumed as zero. Hence, for all
lead time, the forecasts at origin t will follow a straight line parallel
to the time axis, Table 5,7 shows the forecast values and its confidence

intervals. Fig. 5.4. shows parts of the chemical process and its forecast

values,



Table 5,7 Forecast Value and its 95% Confidence Limits
for the Chemical Process Concentration Data

Time Forecast Value Egaii ngii
198 17.501 16.879 18.124
199 17.501 16.850 18,153
200 17,501 16.822 18.181
201 17.501 16,785 18.207
202 17.501 16,770 18.233
203 17.501 16,745 18.258
204 11,504 16,721 18,282
205 17.501 16.698 18.305

206 17.501 16.675 18,328
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5.2, Examﬁle Two

The totals of international airline passengers for 1952, 53, and
54 shown on Fig. 1.3. is to be analyzed here, It 1s part of a longer
series (twelve years of data) quoted by Brown. [47]. The serles shows
a marked seasonal pattern since travel is at its highest in the late sum-
mer months,

Many other series, particularily sales data, show similiar seasonal
characteristics., In general, we say.that a series exhibits periodic
behavior with period S, when similarities in the series occur after S
basic time intervals. In this example, we can see apparantly from
Fig. 1.3., the basic time interval is one month and the period is S=12
months,

When we have series exhiﬁiting seasonal behavior with known period-
icity S, it is of value to set down the data in the form of a table con-
taining S columns, The logarithms of the alrline data taken by Box and
Jenkins is shown on Table 5.8. As indlicated by Box and Jenkins, logar-
ithm are often taken before analyzing sales data and other series of
this kind, because it is the percentage fluctuation which might be ex-

pected to be comparable at different sales volumes [48],

5.2,1, TIdentification of Model

Program IDENT provides the autocorrelation and its partials of the
original time series and their differences. The outputs are shown on
Table 5.94, 5,10., 5.11., 5.12, and Fig. 5.5.4 5.6., 3:7s; 5.8, re~

spectively,
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Table 5.9 Estimated Autocorrelations and its Partials for the
International Airline Passenger Data about =z

Lag Autocorrelation iiigigirelation
1 0.953 0.953
2 0.898 -0.118
3 0.851 0.055
4 0.808 0.023
5 0.779 i 0.115
6 0.756 0.044
7 0.737 0.040
8 D727 0.098
g 0.734 0.203

10 0.744 0.063

11 0.758 0.114

12 0.762 -0,050

13 0.717 -0.483

14 0.663 -0.037

15 0.618 - 0.045

16 0.576 ~0,043

17 0.544 0.027

18 0.51¢ 0.039 .

19 0.501 0.039

20 0.491 0.015

21 0.498 0.075

22 0.506 -0.036

23 0.517 0.053

24 0.521 0.03¢

25 0.484 -0.194

26 0.437 -0.037
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Table 5,10 Estimated Autocorrelations and its Partials for the
International Airline Passenger Data about vz

Lag Autocorrelation iii:igiralation
1 0.202 0.202
5 ~0.122 ~0.170
3 ~0.150 ~0.093
4 ~0.320 ~0.310
5 -0.083 0.010
6 0.021 -0.081
7 -0.110 -0.206
8 -0.335 -0.494
9 -0.116 ~0.188

10 -0.109 ~0.540

11 0.206 -0.291

13 0.842 ~ 0.585

13 0.218 0.025

. -0.141 -0.177

15 -0.117 0.115

16 -0.277 -0.001

17 -0.053 0.020

18 0.013 -0.109

19 -0.115 0.080

20 -0.337 -0.066
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Table 5,11 Estimated Autocorrelations and its Partials for the
International Airline Passenger Data about V,; z;

Lag Autoco;relation iiigigirelation
5 0.710 0.710
2 0.616 0.224
5 0.477 -0.047
4 0.435 0.098
5 0.383 0.049
6 0.313 -0.057
7 0.241 -0.050
8 0.193 0.006
9 0.151 -0.012

10 -0.004 -0.281

11 ~-0.118 ' -0.164

12 ~0.247 -0.153

13 -0.144 0.300

4 ~0.142 0.057

g -0.101 . 0.049

16 -0.144 -0.037

17 -0.096 0.126

18 ~0.108 -0.060

19 ~0.143 -0.147

20 -0.157 -0.015
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Table 5.12 Estimated Autocorrelation and its Partials for the
International Airline Passenger Data about v'vj,z;

Lag Autocorrelation iﬁiﬁigirelation
1 -0.336 -0.336
2 0.091 -0.024
3 -0.188 -0.186
4 0.009 -0.129
5 0.066 ; 0.033
6 0.016 0.025
7 -0.046 ~0.058
8 0,001 -0.013
9 0.167 0.212

10 -0.068 - 0.046

11 0.063 0.059 '

12 ~0.390 -0.343

13 0.156 ~-0,104

14 ~0.056 -0.079

15 0.139 -0.024

16 -0.127 ~-0.140

17 0.063 0.028

18 0.028 0.113

19 -0.024 ~0.016

55 ~0.106 -0.157
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Figure 5.5 Estimated Autocorrelation and its Partials
of the airline data about 2z,
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In Fig. 5.5., the autocorrelations for z are large and fail to die
out at higher lags. This implies the possibility of nonstationarity.

The highly correlated periods at lags 12, 24 suggest the seasonal period
of this time series 12,

In Fig. 5.6., while the first difference reduces the correlation in
general, a very heavy periodic component remains. This is inducted by
the large lag of 12,

In Fig., 5.7., simple differencing with réspect to a period of twelve
results in correlation which are first persistently positive and then
persistently negative. This implies that the cyclic component of twelve
periods and nonstationarity both exist in the time series.

In Fig., 5.8.,, the differencing Vlvl

12

throughout, The autccorrelation beyond the first lag are compartively

markedly reduces correlation

small, The partial autocorrelation has the tendency to tail off,
Besides, as indicated by Box and Jenkins, a simple and widely applicable
stochastic model for the analysis of nonstationary time series is MA(1)
[49]. Hence the model to represent the time series is suggested to be

V9,2, = (1~ 6B) (L - ® 319 a (5.2.1.1)

which will be subject to further investigation,
As with the seasonal model, by equating the observed correlation
|
to their expected values, approximate values can be obtained for the

parameters 9 and @ . On substituting the sample estimates 1= -0.34

and Pra = 10,39 in the expressions, which: is obtained from (2.4.7.),
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The rough estimate of parameters in (5.2,1.1) is 6=0.39 and @ = 0.48,

5.2.2, Efficient Estimate of Parameters.
Program ESTIM provides the maximum likelihood estimates of nonlinear
parameters of (5.2,1,1), Table 5,13 shows the converge situations of

parameters, The entertained model cof the time series can be expressed as

12

The program ESTIM also provides the sample correlations of residuals.
Table 5,14 shows the sample correlation coefficients of residuals of the
time series. The goodness of fit can be tested as follows.

(1) .By autocorrelation check, comparing the autocorrelation coefficients
of residuals on Table 5,14, with the '"control" line n—llz, few
individual correlations appear little large., However, among 20
random deviates one would expect some large deviation, We will
further investigate the model to check the goodness of fit,

(2) By the method of a portmanteau lack of fit test, the value of

k
Q=n } Yi(;)
=1
is approximately distributed as x?(k—p—q) if the médel is appro-

priate, Hence, by taking the first 20 autocorrelation of the a's

as a whole from Table 5,14,, we can ocbtain

20, .
Q=n ) T (8) = 20,44 [5:2.2.2)
k=1 \



Table 5.13 Iterative Estimation of § and ® for

the logged airline data

Iteration 6 ®
Starting Values 0.390 0.480
1 0.396 0.482
2 0.417 0.487
3 0.432 0.488
4 0.436 0.486
g 0.436 0.486
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Table 5.14 Correlation Coefficients of Residuals for
the Logged Airline Data

Lag Cbrrelation
1 0.026
2 0.014
.3 -0.138
4 ~0.177
5 0,035
6 0.113
7 -0.041
8 -0.031
9 -0.091
10 -0.162
11 -0.033
12 -0.011
13 0.034
14 0.027
15 0,033
16 -0,182
17 0.015
18 0.044
19 -0.084

no
Q

-00077
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Comparing Q with the value of x2(18) on x2 table, the 10% and 5%
points for x2 value, with 18 degrees of freedom, are 27,2 and 30.1,
respectively, The Q value in (5.2.2.2) 1is smaller than 27.2, no
indication of lack of fit is indicated., Hence (5.2.2.1) is proposed
as the appropriate model to represent the international airline

passenger situation.

5.2,3. Forecasting

Program FORCAT provides the forecast values and its confidence
limits of the model with given time series, The results are shown on
Table 5,15, and Fig. 5.9. We can predict the future business of the
international airline passengers is to be increased with the cyclic period
of twelve, Travel is at its highest in the summer months, while a secon-

dary peak occurs in the spring,

5,3. Example Three
A set of observations about an inventory simulation process shown

on Table 5,16. will be analyzed [7].

5.3.1. Identification of the Model
Program IDENT computes the autocorrelation and its partials for
the original time series and its differences., Table 5,17, 5.18. and
Fig. 5.10,, 5,11, show thé output of the autocorrelation and its partials,
In Fig, 5.10., the autocorrelatioﬁ function is damped exponentially
and tails off. While the partial autocorrelation is cut off after the

first lag., This suggests that the process might possibly be a first



Table 5.15 Forecast Value and its 95% Confidence Limits
for the International Airline Passenger Data

Time chic Lioit  Limit
145 6.117 6.047 6.188
146 6.053 5,972 6.134
147 6.122 6.032 6.213
148 6.217 6.118 64316
149 6.241 6.135 6.348
150 6.366 6.253 6.480
151 6.517 6.397 6.638
152 6.491 6.364 6.618
153 6.314 6.181 6.447
154 6.217 6.078 6.356
155 6.050 5.906 6.195
156 6.173 6,023 6.322
157 6.219 6.051 6.387
158 6.155 5.977 6.334
159 6.224 ' 6.036 6.412
160 6.319 G121 6.517
161 6.343 . 6.136 6.550
162 6.468 6.253 6.683
163 6.619 6.396 6.843
164 6.593 6.362 6.825

165 6.416 6.177 6.655
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TABLE 5+16

488.056
410.056
335.056
337.056
259.056
198.057
115.01¢C
176.010
1454010
109.01¢C

70.010
128.010

85.010

57.010

244914

87.01C

52.010

24.010

93.096
650.009
834,056
7634960
727.96C
711.056
734.056
6444056
599.009
566.009
5324009
€04+00¢
577.009
535.009
497.009
657.056
568056
488.006
464,009
527.009
4944009
4664006
601056
625.056
549,056
470.056
801.056

SIMULATED INVENTORY PRCCESS READINGS

(REAC ROWWISE FROM LEFT TO RIGHT)

47¢+(56
3G8.C56
316.C56
218.C56
251.C57
181.C57
108.514
170.C10
135.C10
1c3.C10
164.C10
123.C10

€0.C10

47.C10

24514

75.C10

47.C10

15.C10

85096
GC2.L56
81£.C56
159.660
115.56C
€S5.CE6
TL7.C56
£26.CC9
£64.CC9
£€3.CCY
526+CC9
€CC.CCH
£64.CC9
£31.CC9
487.CC9
€34.C56
555.C56
485.CC9
46C.CCS

-£21.CCS

491.CC9
46C.CCY
£E87.C56
€10.C56
£40.C56
45G.C56
187.C56

463.056
383.056
297.056
302.056
237.057
171.057
108.914
163.010
128.010

95.010
152.01¢0

114.010

T5.010
37.010
24.914%
72.010
42.010
1C9.096
79.096
883.056
189.C56
T49.560
759.056
679056

- 695.056

619.009
584,009
554,009
519.009
569.009
559.C09
526.009
481.009
6244056
529.056
476.009
449,009
512.009
485.009
641.056
572.056
6C0.056
522056
447,056
T71.056

449.056

-363.056

376.056
2BB8.056
225057
152.057
106.914%
156.010
124.010
90.010
149.010
104.010
T0.010
33.010
24+914
67.010
38.010
1030958
662.009
875.056
179.058
T47 960
152056
657056
678.056
617.009
581.009
542009
512.009
591.009
555,009
517.009
571009
607.056
514.056
472.009
443,009
510009
482.009
635.056
648.056
575056
504.056
425.05¢&
752.056

424,056

246.056
361056
2760586
212.057
130.057
188.010
150010
117.010

82.010
144.010

S8.010

66.010

28.010

18.914

60.010

27.010

98096
653.009
8494056
T&9«960
135.960
732056
T4T.056
E65.056
€08.009
572009
536009
S10e914
581.009
543009
506009
567009
586.056
500.056
466.009
438.009
503.009
474.009
616.056
£35.056
562056
487056
Bl4.056
138.056
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717.05¢
6444058
652.056
563.056
480.056
404.056
236.056
756,056
689.056
614.056
633.05¢6
585.056
507.056
432.056
450056
373.056
297.056
215.056
233.009
524.056
446056
381.056
417056
333.05¢%
259.05¢&
194.056
£20.056
559.056
4850586
4£09.056
Q22.056
94T7.056
878.056
801.056
T44.056
T54.056
£95.056
634.056
368056
G92.056
910.05¢
844.056
870.056
T98.056
712.056
6£30.056
554.056
573.05¢&
506.058
456.009

£65.C56
€35.C56
£34.056
E47.C56
457(56
AB6.C56
Bl6.C56
747.C56
t6T.CE6
&£C0.C58
€2l.C56
ET6.C56
496.C56
414.C56
433.C56
358.L56
275«C56
166.C56
221.CC9
506568
433.C56
364.L56
402.L56
AG5.L58
244.C56
184.C56
£13.C56
£42,C56
47C+CE6
350.L56
SC5.C5¢4
§37.C56
868.C56
162.(56
E24.C56
735.C56
EBC.C56
E2€EL58
G4G«SEQ
S8C.C56
£G5.(56
g27.CE6
856.C56
179.(58
£5G.L5¢4
£€12.C56
£40.C56
Eg2.LE6
491.C56
45C.CC9

687.056
607.960
616.056
521056
439.056
464.056
806.056
729.056
655.056
688056
6C9.056
558.056
481.056
396056
415.C56
341.056
264.056
273.056
579.C56
494.056
423.056
452.C56
3694.056
296.CE6
235.056
164.056
601.056

" 534.056

454.056
374.056
893.960
924.056

842.056

1716.05%6
797.C56
721.056
665.056
610.056
937.960
965.056
880.056
814.056

B47+056

756.056
6759.056
600.056
628.056
552.C56
483.009
445,009

677.056
599.960
598.056
506056
425.056
456.056
787.056
712.056
643.056
673.056
601.056
539.056
462.056
380.056
407.056
326,056
241.056
254056
567+056
473.056
410,056
434.056
374.056
278.056
2244056
249,055
590056
515+056
438.056
360.056
889.960
911.056
827+056
7654056
781.056
711.056
6564056
1001.056
10164056
956.056
866+056
799.056
822.056
7484056
663+056
579056
610.056
5384056
474.009
4444009

659.056
589.960
580.C56
495.056
415.056
84"1.056
177056
699056
£28.056
€50.056
593.056
526.056
450056
367960
391.056
312.056
226056
240009
539.056
463.056
397.056
425.056
351.056
264 .056
212.056
634.C56
575056
505.056
420056
340.056
962056
896056
g8l13.056
755056
110056
700056
647056
985.056
1CC3.056
93T7.056

- 854056

785.C56
809.056
725056
647056
571.056
595056
518.056
469. 009
435.009
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424.009
T66.056
701.056
631056
535.056
475.96C
B68B.056
799.056
T30.056
7163056
68BC.056
602.056
€33.056
580.056
515.056
428,056
356.05¢
683960
635960
591.9560
548.056
585.066
506.056
4160545
343.056
365.056
301.056
242 056
180.056
130.914
191.009
453.056
3B6.056
399.056
320.0%6
248056
1T1.056
197.056
130.056
81.009
97640586
891.056
916.056
833.056
1120586
791.056
708.056
620.056
854,056

732.C56
753.C56
€85.C56
€C8.C56
523.C56
543.C56
845.L56
784.C56
714.C56
T45.C56
€65.C56
£85.C56
€21.C56
£64.C56
502.C56
4C4.C56
343.C56
€71S€0
£25.560
€CS.C56
£€3G.€640
56B.C56
4G8.C56
4C3.C56
2254.5¢&0
352.C5¢6
288+CE6
22C.C56
167.C56
218.CCS
187.CCS
439.C56
273.C56
281.C56
306.C56
225.C56
15€¢.C56
184.C56
115.C56

75.CC9
G554CE6
569.C56
858.C56
£30.C56
156+.C56
T15.C56
€53.C56
€03.C56
$3G+(56

713.056
T43.056
665.056
597.056
506.056
528.056
838.056
173.C56
702.056
136.056
646.C56
573.056
608.056
553.056
488.056
397.056
325.056
661.960
609960
598.056
525,980
554.056
475.056
281.C56
407.056

- 341.056

278.056
211.056

151.009 -

206.009
S0C«C56
425.056
364.056
373.C56
290.056
204.056
150.056
171.056
103.056
666009
94l1.056
957.056
880.056
813.056
T36.056
T765.C56
684.C56
986.056
919.056

697.056
734,056
649.056
581.056
495,960
509,056
831.056
154-056
693.960
T11.056
624.056
555.056
598056
537.056
463.056
381056
T05+960
651.960
603.960
582.056
612.056
538.056
461.056
360.056
389.056
330.056
264056
200.056
143.009
204.009
484056
415.056
433.056
361.056
277056
199.056
126.056
154.056

90.009
659.009
928.056
943.056
869.056
796056
715.056
738.056
665056
982.056
904056

180.056
117-056
&£37.056
549.056
483960
488056
817056
T46+056
174056
694,056
613.056
538056
584056
524.056
451.056
273.056
695.950
643.960
599.960
562056
60440598
523.056
440,006
35G.056
279.056
318.056
255.056
191.056
132-91’!
198009
469.056
401.056
419.056
338.056
258.056
183056
212.0556
1420556

84009
651.009
905.056
629.056
B46+056
1844056
710.056
T20.056
638-056
971.056
882.056
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B77.056
T96.056
7284056
T44.056
E6T2.056
565056
531.056
927.056
852.056
780,056
697.056
718.05¢
649.056
584.056
6ll.056
52T.056
B36.056
738.056
661960
660056
577.056
595.056
500.05¢&
402.05%6
320.056
755056
683.056
608B.056
535.056
473056
484.056
-383.05¢6
317.056
336.056
659.056
570.056
509.056
457.96C
470.056
405.05¢%
335.056
265.960
229.961
217.056
236.056
561.056
475,056
414.056
328.056
928.056

B55.C56
18656
Bl0.C54
125+C56
€Eb1e(CH6
£E54.C56
GB6.(56
Gl2.CS56
840.C56
162<(CS56
7719+C56
TC3.L56
€36.C56
£E70.CS6
£62.C56
&EC9.C56
819.C56
T124.C56
T42.CE6
645.C56
554.C56
£72.L56
476.L56
286+CH6
2CE.LH6
134.(56
£66.C56
588.C56
€23.C56
458.C56
459.C56
270.C58
259.C56
320.C56
t4l.C56
£E88.C56
497.C56
443,660
452+(C56
397.C56
210.C56
263.560
223561
201.C56
225.C56
£43,C56
46T.C56
2G7.C56
61l2.C56
Sl2.(56

836.056
T76.056
B803.056
715.056
646.056
534.056
378.056
897.056
822.056
7150.056

T64.056

689.056
622.056

654056

575.056
459,056
797.056
T14.056
718.056
623.056
528.056
548.056
454,056
364.056
301.056
123.C56

. 645,056

570056
5C9.056
534,056
441.056
359,056
282.056
307.056
622.056
551.056
490.056
433.960
444,056
387.056
296.056
253.961
263056
189.056
211.056
518,056
456.056
383.056
GB3.056
903.056

829.056

759056 -

785.056
700.056
624.056
529.056
963.056
884.056
807.056
735.056
748.056
667.056
602,056
642.056
568.056
878.056
774+056
695.056
701.056
6144056
508.056
534,056
439.056
351.056
273.056
712.056
634.056
5564056
497.056
515.056
417.056
347,056
2664056
290.056
600.056
533.056
478.056
4254960
431.056
369.056
285.056
243.961
2484056
170.056
596.056
4954056
449.056
364.056
9563.056
890.056

807056
T42+056
T764.056
685056
598.056
512.056
G3B.056
868056
791.056
719.056
729.056
662.056
593.056
€30.056
554,056
866056
757+058
680056
688.056
593.056
495,056
518056

425056

239.0546
361.0564
694056
629056
549.056
490.056
502.056
297.056
333.056
353056
272056
580.056
521-056
471950
487 056
416056
354.056
269960
235.961
235.056
260.0556
585056
487056
440.056
346.056
G45.056
£75.0556
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850.056
782.056
704.056
T24.056
666.056

£36.C56
172.C56
787.C56
114.C56
€55.C56

830.056
152.056
767.056
100.056
640.056

Bl16.056
736.056
752.056
700056
615-056

801.056
724.056
741 C56

684056
600056
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Table 5.17 Sample Correlation and its Partials of the

Inventory Simulation Process about

Z¢

Lag Autocorrelatiqn ii§222irelation
1 0.96 0.96
5 0.92 -0.02
3 0.88 0.01
4 0.84 -0,07
5 0.80 -0.00
6 0.76 -0.01
7 0.72 -0.00
8 0.69 0.02
9 0.66 0.01

10 0.63 0.02
11 0.60 0.02
12 0.58 0.01
13 0.56 0.16
14 0.53 -0.00
15 0.52 ¢.03
16 0.51 0.02
17 0.49 0.01
18 0.48 0.02
19 0.46 -0,04
20 0.45 =0.00
21 '0.43 -0.03
22 0.41 -0.04
53 0.39 -0.05
4 0.37 0.01
25 0.35 0.02
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Table 5.18 Sample Correlation and 1ts Partials of the
Inventory Simulation Process about w2z,

Lag Autocorrelation iﬁigigirelation
1 ~0.000 000
2 -0.031 ~0:030
3 0.049 0.049
4 -0.021 -0.021
5 -0.014 A 0L
6 ~0.013 ~0.017
7 -0.041 =0.040
8 -0.029 ~0.030
9 -0.041 -0.043

10 ~0.040 ~0.039

11 ~0.020 ~0.,023

12 -0.032 ~0.033

13 -0.010 -0.012

14 -0.035 ' -0.042

15 -0.036 -0.040

16 ~0.017 - -0.028

17 -0.022 + ~0.030

18 0.039 0.031

19 0.001 ' -0.,010

20 0.024 0.019

g 0.037 0.022

22 0.039 0.032

23 -0.015 -0.025

24 ~0.028 -0.038

55 . 0032 ~0.032
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Figure 5.10 Estimated Autocorrelation and its Partials
of the simulated Inventory Process about 2z4
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Figure 5.11 Estimated Autocorrelation and its Partials
of the simulated inventory process about vz,
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order autoregressive process, The estimated parameter of AR(1l) can be

obtained by applying equation (2.3.7.)

so, the recommended model might be

(1 -0.968) z =a, (331D

In Fig. 5.11, the correlation dies out completely after the first

difference. This suggests a possible model might be

or

(1-B) z_ = a, | ' (5.3.1.2)

Comparing (5.3.1.1) with (5.3.1.2), the model form is similiar
except the parameter is a little different., The forecast value of
(5.3.1.2) are all the same beyond the lead time Z%l. However, the inven—
tory will be depleted little by little., Hence (5.3,1.1) is to be enter-
tained to represent the simulated inventory process and will be subjected

to diagnostic check,

5,3.2, Efficient Estimation of Parameter

Program ESTIM computes the maximum likelihood estimation of para-
meter of (5.3.1.,1) with given time series. After the first iteration,
the program is stopped execution with the efficient estimation parameter

of 6 = 0,96, Hence the tentative model is



(1)

(2)

90

¢

The process of testing the fit the model is explained as follows,
An autocorrelation check is based on the assumption that the

estimated autocorrelation of residuals Yk(a) are uncorrelated and

distributed approximately about zero with a standard error of n-llz,

if the model can represent the time series appropriately, Hence

comparing the residual autocorrelation coefficients shown on

1/2

Table 5,19, with the “control" line n

slightly larger than n—l/z. Hence, the model should be subjected

, 4 few correlations are

to more investigation,
To make a more formal assesment, the portmanteau lack of fit test

which is based on the assumption that if the model is appropriate,

k ~
the value of Q = n z Yi(a) 1s approximately distributed as
k=1

x%(k-p-q). Hence, taking 20 autocorrelation coefficients of res-

1dual as a whole, we obtain,

¥ 2
Q=n ) v, (a) = 13.68
k=1

with 19 degree of freedom, From x2 tables, the 10% and 5% points
for xz, with 19 degrees of freedom are 27,2 and 30.1 respectively.
For Q = 13,68 is smaller than 27,2, thus no lack of fit is in-
dicated. Hence the model of (5.3.2.1) is recommended to represent

the time series,



Table 5 19 Sample correlations of Residuals of the
Inventory Simulation Process Data

Lag Correlation
3 0.0112
2 -0,0194
3 0.0595
4 -0,0104
5 -0,0052
6 -0.0045
7 ~-0.0325
8 - -0.0213
g ~-0,0333

10 -0.0327

11 -0,0134

12 -0.0248

13 -0,0032

14 ~-0.0291

15 -0.0294

16 -0.0109

17 -0.0161

18 0.0451

19 0.0068

20 0.0300

21 0.0426

22 0.0436

23 -0,0110

24 -0.0238

25 -0,0183
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5.3.3., TForecasting

Program FORCAT provides the forecast values and its confidence in-
tervals, The outputs are shown on Table 5,20,, Fig. 5.12, respectively,

From Fig. 5,12, of the simulated inventory process, we see the
inventory is being replenished when it is depleted to some extent.
However, there is no definite replenishment cycle. Hence.the model
will not forecast replenishments. The AR(1l) of (1 - 0,96 B) z, = a,
can represent this process satisfactorily. From the forecast values
of Fig. 5.12., we can predict when the inventory stock will be dropped

to what level, and hence, can prepare in advance to order the needed

stock.



Table 5,20 Forecast Value and its 95% Confidence Limits
for the Simulated Inventory Process Data

Tme Ui Linit Limit
1001 576.053 443,28 708.82
1002 553.011 368.96 737.05
1003 530.890 309.88 751.89
1004 509.654 259,37 759.93
1005 489,268 214,75 763.78
1006 469,697 174,61 764.78
1007 450,909 138.05 763.76
1008 432.873 104,49 761.25
1009 415,558 73.49 757.61
1010 398.935 44,73 753.13
1011 382.978 17.94 748.01
1012 367.658 -7.08 742.39
1013 352,952 ~-30.51 736,42
1014 338,833 -52,.50 730.71
1015 325.280 ~73417 723,73
1016 312,269 -92,63 717.17
1017 299,778 ~-110.97 " 710.53
1018 287.787 ~128,289 703.86
1019 276,275 -144,64 697.19
1020 265,224 -160.11 690.56
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APPENDIX A
Program IDENT

A-1, Description of Program

Program IDENT is developed to provide the sample correlation and ‘
partial correlation functions so as to identify the appropriate model
for the given time series. The calculations performed are based on
equations (2,1.3), (2.1.4), (2.2.,4) and (2,2,5) in Chapter Two. Program
IDENT can accommodate stationary time series, non—sfationary time series
and seasonal time series. The program consisté of a main program and
three subroutines, Subroutine DIFFER performs data differences if
non~-stationary or seasonal time series is analyzed, Subroutine CORRCE
calculates the correlations and partial correlations of the time series.
Subroutine GRAPH is modified from IBM scientific subroutine PLOT to
plot out the correlations and partial correlations within + 1 range., The

flow chart of Program IDENT is constructed on next page.



START

l

C

Read in Data

D

1

Call Subroutine Differ
to Take Differences 1if
Nonstationary Or/And
Seasonal Time Series

 1s Analyzed
< Take Seasonal Differences >———-—"-1
|
t
I
@ake Nonstationary Differences jee=e————]
I

Call Subroutine

|,
GRAPH to Plot the

Autocorrelation
and its Partials

Call Subroutine CORRCE
to Calculate the Auto-
correlations and its
Partials

Continue

STOP
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A.2. Description of Input Data

VARIABLE

CARD 1\ PROGRAM FORMAT
1 KK (r10)
2 IDW (110)
3 IDB,IS (2110)
4 N (110)
Last N
Capds  2(I,1,1) (2X, (F20.5))

102

DESCRIPTION

Number of correlations
to be calculated.

Number of differences
required. For stationary
time series, a zero is
entered,

Number of seasonal differ-
ences followed by seasonal

- lag. For stationary time

serles, two zeros are
entered.

Number of observations in
original series.

Observations of original
series.
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A.3, Description of Output Data

The following output can be generated by Program IDENT.
1. Graphs of the sample correlations and partials of the original

time series and of the differenced time series,
2, Sample mean of observations; sample variance of observations;

Sample correlations, partials and standard errors.
3. Estimates of the autoregressive parameters for "candidate"

AR(p) models, with p taken from 1 to KK, based on the sample paftial

correlation function,
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APPENDIX A. PROGRAM IDENT

A.4 Computer Program



FORTRAN

00Nl
0002
0003
0Co4%

0005

0006
oco7
0008
noo9
0010
14} B
0012
0012
0014
0015
0016

Iv G L

OODDOOOOO0O0 O

EVEL

2C0

201

202

105

18 MAIN DATE = 71113 03/38/05

DIVMENSICN Z2(100043,2),N0OB{5+4),X{10001,P{1000}

COVMMON/AL/Z

COMMDNR/A2/NDB

COMMCN/AZ/X,P

READ IN DATA

FORMATI4I10) ’

KK TOCTAL NDOe. OF CORRELATIONS AND PARTIALS TO BE CALCULATED

IDW NC. OF DIFFERENCES REQUIRED.
FOR STATIONARY TIME SERIES, ZERO IS ENTERED.

1DB,IS NO. OF SEASONAL DIFFERENCES FOLLOWED BY SEASONAL LAG.

FOR STATIONARY TIME SERIES, TWC ZERDS ARE ENTERED.

N NO. OF OBSERVATIONS IN GRIGINAL SERIES.
2 DBSERVATIONS OF ORIGINAL SERIES.
READ (1+200) KK

REAC (1,200) 10W

READ (1,200) IDB,IS

REAC {1,200} N

FORMAT(2X, (F20+51))

READIL1,201) (Z(I1,141),T1=1+M)

CALL DIFFER(IDWyIDBs1SsNyMW, MO}

CO 202 J=1.MB

CO 202 F=1.MW

CALL CORRCE(KK,MyJ,IS)

END



FORTRAN IV G LEVEL

000l

0002
0003
0004

0co5
0006
0007
0008
0co9

0010
ooll
1)
0013
0Cl4

0cls
00ls
0017
ool
ool¢
0020
0021
0022
0023

s Nelel

3 NaNalalsl

aNaNalaNale!

151

153

154

152

156

157
155

18 DIFFER

106

. DATE = T1113 03/28/05

SUBROUTINE DIFFER(IDW,IDB,ISyN.MW,VB)
SUBRCUTINE CIFFER PERFORMS DIFFERENCING OPERATIONS ON THE DATA
IF NDN-STATIDNARY OR SEASONAL SERIES ARE ANALYZED.

CIFENSICN Z(1000,3,2),N0OB(5,%)
COFPCN/ALY2

CO¥MON/AZ2/NDB

CALCULATION OF NOB(M,J)
FR=IDh+1

FB=1DB+1

00 151 M=1,MW

CO 151 J=1,MB
NDB(M,J)=N+1-M+IS=J%*]5

DIFFERENCING WITH RESPECT TQ OWs NC« OF DIFFCRENCES

NOBEC=NCB{M,1} IS NO«. OF DBSERVATIONS AFTER DIFFERENCE

ZU1+M,12 1S THE OBSERVATIONS AFTER CIFFERENCE BY SUBSTRACTING
THE PRECEEDING OBS« FROM THE CURRENT (0BSe M IS THE DIFFERENCE NO,

IF(Mi-11152,152,153

DD 154 N=2,MN

NOBD=NOB (M1}

CC 154 1=1,NOBD
ZUTaMal)=Z (141 4M=1413=2¢1,M=1,1)
CIFFERENCING WITH RESPECT TO DB

NOBD=NQOB(M,J3) IS THE NO. OF QBSERVATIONS AFTER DIFFERENCES M AND

SEASONAL DIFFERENCES J.

ZO14MyJ) IS5 THE OBSERVATIONS AFTER SEASONAL DIFFERENCE,

4 IS THE SEASONAL DIFFERENLE NC.

IFf{rB-11 155,155,156

CO 137 M=1,MW

CO 157 J=2,MB

KNOBL=NCB{M,J)

CO 157 I=1,NOBD
T{TsMedI=Z(T+ISe My J-10=2{]4Me J~1)
CONTINUE

RETURN

END

INBEX HERE.

INDE:



FORTRAN IV G LEVEL

ocol

0002
€003
0CD4
0cos
0006
0007
0ooR
0009
o010

0011
0012
0013
0014
0015
0016
0017
ooi8
0019
oczo
cozi
0022
0023
0024

0025

0026
0027
0028
0029
0030
0031
0032

0033
0034
0035
no3s

0037
oo03g
0039
0040
0041
0042
0043
0C44
0045
0046
0C47
0048
0049
0050

[a Nalel

101

100

102

103

105

1C4

107

1C6

1c9

202

203

107

18 CORRCE CATE = T1113 03/38705
SUPROUTINE CORRCE(KK,My4L,15)

SUBRCUTINE CORRCE CALCULATES THE SAMPLE CORRELATIONS AND PARTIALS AND
THEIR STANCARD ERRCRSs.

DIMENSION ZDUMI{1000,342)yNOB{5:4),2(10001,X{1000),P{2000),C{1000)

CIMENSICN RllOO’,VARI100)75{1001'Tl100'100) VART(100),Ul100)
CIMENSICN E{250)

COMMON/AG/R

COMMIK/AL/ZDUM

CCHMCN/AZ/NCS

COMMON/AI/ X P

COMMONSAG/T
FORMAT{1H12Xs31HCORRELATION INFORMATION FOR DW=y 14,2X,3H0B=2414,2X,

12HS=,14/7)

IDW=k-1

ipB=L-1

RRITZ (3,101) IDW,.IDB,IS

hN=NOB(M,L)

CO 100 I=1,N

2U1=2CUM(I.M,L)

IBAR=0.

XN=N

CO 102 I=1.N

ZBAR=ZBAR+Z{1}

IBAR=IBAR/XN

CO=Ce

CC 103 I=1,N

CO=CC+{Z[T)=-2DBAR)*¥2

CO=CO/XN

CALCULATION OF R, ESTIMATED CORRELATICN FUNCTION

CC 104 K=],KK

C(K"—'OU

KN=N-K

CO 105 J=14NN

CIRI=CL{KI+{ZLUI=-IBARIX(Z(I+K)~ZBAR)

CILKY=C(KY/XN

R{K)=C(K)/CQ

CALCULATION OF T

IF{KK=-101) 106,106,107

KKK=101-1

CO TO 109

KKK=KK=1

RECLRSIVE RELATIONS FOR FINOING T(K.K), PARTIAL CURRELATIUNS
FUNCTICNy GIVEN R(K)e

Ti1,13=RI(1)

Tl24,2)={R{2)~ R(l)**:”(l---R(lH*Zl

T(Z21)=T(1l,1)=T{2,22%T(L,1)

CO0 203 K=2,KKK

B=0e

A=Ce

€O 202 J=1,K

A=A+ TIK,JI®RIK+1~J)

B=B+T(K,J}%*R(J)

A=R(K+1)-A

B=l.-B

TIK+1,K+1)=A/B

CO 203 J=1,4K

TIK4L g JI=T (K J)=TIK+l ,K+LIXT[KyK=J+1)



FORTRAN

0051
0052
0053
0054
0055
0056
0057
0058
0059
0060

0061
0062
0063
0064
0065
1]17.7.3

0067
0068
0069
0G70
0071

oa72
0aT3
0074
0Q75
0076
0077
0078
oc79
0080
0081
0082
0083
0c84
0085
0css
0087
00388
00489
0090
0091
0052
0093
0094
0095

IV G LEVEL

c
c

OOOGON

112

113

204

205

601

25C

108

i8 CORRCE "DATE = T1113 03738705
PLOT OUT AUTOCORRELATIOW AND PARTIAL AUTCCORRELATION FUNCTION

E IS PCLTTED FUNCTION

BO 112 K=1,KK

K1=KK+K

E(K)I=K

E(KLY=R(K)

Fl2%KK+1)=T{1¢1)

E(2*KK+#2)=T(2,2}

CO 113 K=2,KKK

K2={2%KK+214K-1

E(KZ2)1=T(K+1,K+1)

CALL GRAPH {1,E.KK,3,KK)

CALCULATION CF VAR AND VART

VAR(KY IS

AN ESTIMATE OF THE VARIANCE OF THE ESTIMATE OF THE CORRELATIOGNS,
WHICH CAN BE USED IN A ROUGH TEST FOR WHETHER CORRELATION R IS
EFFECTIVELY ZERD.

VAR{1)=1e/XN
S{11=R{1)/SCRT(VAR(1))

A=2. /XN

CO 204 K=2,KK s

VAR{K)=VAR{K=1)¢A% [R(K~1)%%2)

S{KI=RIK)/SCRT(VAR{K))

VART(K) 1S AN APPROXIMATE ESTIMATE OF THE VARIANCE OF THME SAMPLE
PARTIAL CORPELATIONS, GIVEN THAT THE MODEL IS AR{K-1)
KKK=KKK+1 :

£O 205 K=1,KKK

A=1.7 (N-K)

YART(K)=A

LOKI=T(K,K}/SURT [VART (K))

WRITE OUT

FCRMAT(/2X 4 SHIBAR= ,F2045,5%X, THVAR{Z)=,F20.5//7/)

WRITE (3,601) ZBAR,CO

SVAR=SQRT [ VAR LKK))

SVAT=SCRT {VART (KKK 1)

WRITE(3,250) SVAR,SVAT

FORMAT(/2X,12HSeDe (RIKK)}I=,F10e6,6%X,14HSeDe (PRIKKK) )=, FL0o6)
FORMAT (/2% 31HSAMPLE CORRELATICN CCEFFICIENTS//)
WRITE(3,300)

FORMAT(2X ¢ 2HR (313 42H) =, F1 045, 6X410HR/ SaDe({R)I=,F104+5)

€O 202 I=1,KK

WRITE (3,301} T,R(I),S(1)

FORMAT(////2X,39HSAMPLE PARTIAL CORRELATION COEFFIEIENTS//)
WRITE(3,303)

FORMAT(2X 4 3HPR{; [3,2H)=4F104556X,12HPR/SeDs (PRI=,F1045)
CO 305 I=1,KKK

WRITE(3,304) I,T{I,1),U{l}

FORMAT{1H12X, 25HAUTORGESSIVE PARAMETERS//)

WRITE(3,310)

FORMAT(2%+2HP=,13,5X,4HPHI{,[3,2H)=,F10+5)

CO 312 K=1,KKK

CO 312 f=1,K

WRITE(342115 KeloT(KyI?

RETURN

END



FORTRAN 1V G LEVEL

000l
ocoz

0003
0004
0005
00Gce
0007

0008
0009

0010

0011

0012
ool12
0014
n0l5
0016
col?
ogl18

0019
0020
0021
0022

0023

0024

0025
o026
0027
0028
0029

0030
0031
0032
0033
0034

[z NsNaNal [aRals]

R el

o0 OO0

(s N a g

LY RY B R

8
200

201

20
S1
92
21

45

109

18 GRAPH DATE = 71113 03/38/05
SUBROUTINE GRAPH (NO,A,NsMsNL?
DIFENSICN OUT(LOL)+YPRELLY4ANG(9),A{L) "

FORMAT(1H1,60XeTH CHART ,/7)

FCRMAT(1IH ,Flle4,5Ht »10141)

FCRFAT(10H *X(01l56708¢)

FORMAT( 10Al)

FCRFMATILH ,16X,101H. - . - .
1 . . - - - )
FORMAT{1HO:9X411F1Ce4//}

FCRMAT{10X, PLOT OF AUTO-CCORRELATION AND PARTIAL AUTO-CQORRELA
1TICN FUNCTICN®)

FORMAT(1OX ! PLOT OF AUTO-CCRRELATION FUNCTION')

I R Y R N N R R N PR ]

NLL=NL

PRINT TITLE

WRITE(3,+1) ;
GO TD (91492)+ NO
WRITE(3,200)

G0 10 21
WRITE(3,201)

GO T0 21

CONTINUE

DEVELOP BLANKS AND CIGITS FOR PRINTING

REWIND 4

WRITE(444)

REWINC 4 -
READ(435)BLANK,{ANGIT),1=1,9)
REWIND 4

FIND SCALE FOR BASE VARIABLE
XSCAL=CAIN)-A{L) }/ (FLDATINLL-1)}
FIND SCALE FOR CROSS VARIABLES

Ml=N+1

MZ=MEN

YMIN==1.

YMAX=41e
YSCAL=(YMAX-YMIN}/100.0

FIND BASE VARTABLE PRINT PGSITICN

XB=A{1})

FY=p-1

DG 108 I=1,NLL
F=1-1
XPR=XB+F*XS5CAL



FORTRAN

0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

0046
0047

0048
0046
0050
0051
0052
0053
0054
0055

IV G LEVEL
c
c

51

55

57

6C
C
c
c

108
C
c
c

86

E14)

1e GRAPH ' DATE = 71113
FINC CROSS VARIABLES

DO 55 IX=1,101
CUT(IX)=BLANK

CO 60 J=1,MY

LL=1+J*N
JP={(A(LLY=YMIN) /YSCAL)+10
CUT(JPY=ANG(J)
IF(JP.EC.51) GO TO 60
CUT(511=ANG(9)

IF (JP.EC.101) GO Ta 60
CUT(101)=ANG(9)
CONTINUE

PRINT LINE AND CLEARs OR SKI1P

RRITE(3,2) XPR,(OUTIIZ),1Z=1,10C1)
CONTINVE

PRINT CROSS VARJABLES MNUMBERS

WRITE{3,7)

YPR{1)=YMIN

PO 90 KN=1,9
YPR{IKN+1)=YPRIKN)I+YSCAL*10.0
YPRI11)=YMAX

WRITE(3,8) (YPR(LIR) ,IR=1,111%
RETURN :

ENC

110

03/38/0%
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APPENDIX B
PROGRAM ESTIM

B.l. Description of Program
Program ESTIM is developed to determine the least square estimatés

of the parameters of the models entertained as candidates for acceptance.
The program consists of the main program, and five subroutines; they are
subroutine MODEL, subroutine CALA, subroutine DIFFER, subroutine MULT and
subroutine UWHAUS. The main program provides the data needed for sub-
routine UWHAUS and calculates the autocorrelation function of the resi-
duals based on the least square estimates, Program UWHAUS is used in
conjunction with subroutine MODEL, CALA and MULT, and perform the oper-
ation of locating the least square estimates in an iterative manner, The
complete description of subroutine UWHAUS is presented on Section B.2,
Subroutine DIFFER performs the required differences on the original ob~
-gervations 1f seasonal or nonstationary time series is analyzed, Sub-
routine MODEL, CALA and MULT calculate the residuals of original time
serles required by subroutine UWHAUS for each set of parameter tested.

Its calculation is based on the following equation.

“~
~

S R R I L M L R L)

+ o200 + B a (B,1,1)

d ~ ‘
vhere Wt =V Zt and wt = Wt - u with E[Wt] = u. a is the residual of

general autoregressive model and is assumed as white noise process.
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The flow chart of program ESTIM is as follows.

START

Read in Data:

No. of Observation,
Time Series Obser—
vation, No. of
Models Analyzed.

< Model Number >—— wwwww =
|

Read in Data:

No, of Differences,
The Model Form Being
Analyzed,

Print Out the Model
Form d

Read in Data:
Parameters for the
Analyzed Model

Is This
eries Stationary

Yes

The First Analyzed

- —— e ot — — . — —— — —— — — et Pt o . y — T G f—— ——— —— — — — — — — — e



Yes

|

Compute the Mean of the
Time Series and Standard-
ized Data

Print Out Mean and Stan-
dardized Data

Call Subroutine DIFFER to
Take Differences if Non-

stationary or/and seasonal
Time Series is Analyzed

Define the data needed in the
argument of subroutine UWHAUS

Call Subroutine UWHAUS to locate
the least square estimate of
non-linear parameter

Call subroutine CALA to compute
the residual of time series using
the obtained estimated parameters

113



114

Print Out the Residual
of Time Series

Compute the Autocorre—
lation Function of the
Residual of the Series

Print Out the Auto-
correlation Function
of the Residual

e A ——— SR p— e — —— — Ak . o, St et e s, s S . st e

CONTINUE e~

STOP




B.2, Description of Input Data of Program ESTIM

CARD FORMAT

1 (110)
Next (2X,(F20,5))
N cards
Next {(I110)
card

VARTABLES
IN PROGRAM

ZD(1,1,1)

INDS

115

DESCRIPTION

Sample size of original
series,

Observations of
original series,

Number of models to
be fitted to original
series,

[For each model, add the following parameter input data]

Next (3110)
card
Next {(4110)
card

IPW

IDW

oW

IPB

1DB

1QB

IS

Number of autoregressive
parameters.,

Number of nonstationary

.differences,

Number of moving-average
parameters.,

The -largest power of
the shift operator
associated with the
seagonal autoregressive
parameters,

The number of seasonal
differences.

The largest power of
the shift operator,
associated with the
seasonal moving-average
parameters,

The seasonal lag.



VARTABLES
CARD FORMAT IN PROGRAM
Next (4110) I1
card
12
I3
14
Next (110,F20.5) J ,PHIW(J)
card
(110,F720.5) J,THETW (J)

116

DESCRIPTION

The number of auto—
regressive parameters,

The number of moving-
average parameters,

The number of non-
zero seasonal auto-
regressive parameters.

The number of non—
zero seasonal moving-
average parameters,

The initial estimated
value of the Jth
autoregressive parameter,
If I1=0, no card is
entered,

The initial value of
the Jth moving-
average parameter,
If I2=0, no card is
entered,

[Add the following cards, for seasonal models, only]

Next (110,F20.5) J,PHIB(J)
card

Next (110,F20,5) J, THETB(J)
card

The Jth non-zero

seasonal auto-

regressive parameters

with index J, corresponding
to the power of the’
adjacent shift operator

in the model.

The Jth non-zero
seasonal moving-
average parameter

with index J
corresponding to

the power of the
adjacent shift operator
in the model.
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B.3. Description of Output Data
The following data can be generated by Program ESTIM,

1, List of the initial estimates of the parameters,

2, For stationary time series only; a print out of the standardized
observations, in other words, the observations formed by sub-
tracting the sample mean from the original observations,

3, UWHAUS prints out summary Information at each iteration which can
be analyzed to determine the path in the parameter space taken
by the iterations to converge on the least square estimates,

4, Tabulation of the first 25 sample correlations of the residuals

based on the least square estimates.

B.4.1, Description of Subroutine UWHAUS

Subroutine UWHAUS is developed to obtain least squaré estimates
of parameters entering non-linearly into a mathematical model., An
iterative technique is used, the estimate at each iteration is ob-

. tained by a method due to Marquardt which combines the Gauss (Taylor
series) method and the method of steepest descent [51]. The main pro-
gram must be provided by the user to supply the input for subroutine
UWHAUS, Subroutine MODEL is to specify what mathematical model is to
be used, As for the general Auto-regressive Moving-average model, its
model form is equation (B.1l.1).

The thedry behind subroutine UWHAUS can be described as follows,

Suppose the mathematical model which is tentatively entertaining is

n = £(8,&) ( B.2.1)
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where 8 is a pxl vector of unknown parameters and £ is a vector of inde-
pendent variables.

Suppose n actual observations Y are made, When the uth observation
Y, is made, the value of the independent variable 15_54. Because of ex-
perimental error, an observation Yu, different from the model response,

ny. Hence,

+ € =1, .40y, D (8.2.2)

Marquardt also assuralthe theoretical optimum properties of least square
estimates, Some assumption on the errors, € have to be made: [50]

(1} The errors, £, are independent random variables with equal
variance from the same probabllity observation (independence
implies that knowledge of € does not give any information
about Ej’ i#3).

(2) The expected value of the errors is zero.

(3) The probability distribution of the error is the normal
(Gaussian) distribution with variance o2,

Under the assumption (1), (2), and (3), the least square estimate,

~

6, is a maximum likelihood estimates and thus had certain desirable

H
properties [51],

Now, from (B.2.2), it is desired to use the observed data to obtain
estimates of the unknown parameter, 8. An estimate of 8§, say B, obtained
by minimizing
n n

$(8) = 1 [Ynglt = T [Y-£(8,5)1° (B.2.3)

=1 =1
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as a function of 0, is frequently referred to as a least square estimate,
Subroutine UWHAUS is intended to provide a least square estimate of §
when the model (B.2.1) is nonlinear in the parameters, 8.

When dealing with the autoregressive moving-average problem, n, in
(B.2.2) is the random error a, in model (B.l.1l). The expected value of
the errors, which are Y, in (B.2.2), are assumed zero; this comforms with
the assumption of Box and Jenkins [52] and Marquardt [50], Hence, in the

case of an autoregressive moving-average model, (B,2.3) may be written

as,

2
Hy-fgl =
=1 u

o (B.2.4)

5(8) =
AL 1 t

| ~13
It ~p

Now, suppose Eﬁo) is an initial guess, the first order Taylor series

expansion about‘g(o) is

af (g, E )
0 0
n, (8 = ﬂu(_ﬂ_( )y + E (6= ( s 55— 150 (B.2.5)
i=1 b

uzl,doi n
or more compactly,

n(e) = 11(0) +X8
where X is the nxp matrix

af(e u'—'l,.oo n
“nxp { ‘ (0)}

i=l,lti P
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(0)

where § = 8 - 8" "is the pxl vector; n(8) is the nxl vector

(0) (0)) .

[f(g,gl), i sy f(gtgn)], and n is the nxl vector n(#
Now the approximation on the right hand side of (B.2.6) is linear
in the parameters §; by substituting (B.2,6) to (B,2.3), an approxi-

mation for 5(§) is,

(0)

58 = (y - n - X_Qm) (B,2.7)

where

-1/2

(D 1/2

- g 1/2 1/2

x' x 02 4 ap~t 2y Y (B.2.8)

LA
is the correction vector, which is adapted from Marquardt's algorithm;
[S6]. D is a pxp diagonal matrix whose i-th diagonal element is the
same as that of X'X; X 1s a non-negative number,

A should be decreased only if the progress is satisfactory, i.e.,
only 1f the sum of squares, $(8), at the new estimate is smaller than
at the old, Thus, at i-th iteration, the basic strategy as indicated
by Marquardt is as follows [50]:

Denote by S5(1) the value of 5(6) obtained by using X in (B.2.8) to

(i-1) (i~1)

get g(l) from 6 Let XA be the value of A from the previous

iteration., Let v > 1,

Compute S(k(i—l)) and S(A(i_l) Fo s
(W 18 500D sy < 5Dy, qer 2B 20D

@ 12505 1) 5 sy ana s0. 4Dy < 5D, qer 2 @ay GD
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(3) otherwise, increase A by successive multiplication by v until
h(i—l) o 6(1_1)). (i) _ A(i_l) o

for smallest w , S¢( } < 8¢ Let A
Hence, by the definition of § in {(B.2,.8), the new guess is

_g(l) =46 + EFO)’ and the next iteration can be started by expanding about

oD,

B.4.,2., Description of the variable in the Argument of Subroutine UWHAUS
UWHAUS 1s called from the main program with a FORTRAN statement of
the form:

CALL UWHAUS (NPROB, NOB, Y, NP, TH, DIFF, SIGNS, EPS1, EPS2, MIT, FLAM,

FNU, SCRAT)
NPROB is the problem ﬁumber.
NOB is the number of cbservations,
Y is a real one-dimensional array containing the vector of

observed function values; i.e., Y(I) is the Ith observed
funetion value, I=1,..., NOB.

"NP is an integer indicating the number of unknown parameters,

TH is a real one-dimensional array of the parameter values,
i.e. TH(J) is the Jth parameter value,.J =1, .uvs, NP,
It is very important to obtain reasonable starting guess
for the parameters; not only will the computation time be
decreased by a good choice of starting values, but there
is also the possibility of converging to a more reasonable
estimate.

DIFF is a real one-dimensional array containing a vector of

proportions in 6, for use in computing the difference



SIGNS

EPS1
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quotients of the model function values., The devivatives,

3E(0,E,)

T in (B.2.5) are approximated by difference quotients
i

within the program.

BE(B,E)  £(81, seey By + 80, wen 6, £) = £(8,E)

aei (ei + Aaioj— ai

o

Thus at any point in the calculations, the denominator of
the above difference quotient will be expressed as:
(TH(I)+DIFF(I)*TH(L))-TH(I)= DIFF(I) *TH(I)

In any case, DIFF(I) must satisfy 0 < |DIFF(1)| < 1,
(I=1,..., NP). Using a starting guess of zero for any
parameter 1s prohibited for this method of calculation.

is a real one—diﬁensional array indicating the existence

of a prior sign restrictions on each of the parameters.

If SIGNS(I) is set equal to any positive quantity, UWHAUS
will not allow the Ith parameter to change its sign during
the calculations, thus the Ith parameter, TH(I), retains

the same sign as the starting guess for that parameter.

If SIGNS(I) = 0, this feature is disabled for the Ith
parameter,

is a real conétant indicating the sum of squares convergence
criterion and is used to ﬁerminate the calculation based on
the relative change in the sum of squares from one iter;tion
to the next iteration, More precisely, if at the completion

of the ith iteration, it is true that



EPS2
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7 < EPS1
S(@-(1--1)) -

then the calculations are terminated, Roughly, this

means that if EPS1=10"

s the calculations will be stopped
i1f the sum of squares for the (i-1)st and ith iteration
agree to k decimal places, If EPS1 is set equal to zero,
this feature is disabled.

is a real constant which is the parameter convergence
criterion and is used to terminate the calculations

based on the relative change in the parameter values from
one iteration to the next iteration. Suppose that after
the ith iteration, the value of the jth parameter is

e?i) (3=1l,444, P)« If, at the completion of the ith

J
iteration, the following holds:

(1) _ -1
?j 9,

d < EPS2
egi'l) :

J

for all j=1,..., p, then the calculations are terminated,
Roughly, this means that if EPS2 = 1o‘k, the calculations
will be stopped if the value of each parameter afterlthe
ith iteration agree to k decimal place with the value of
the same parameter after the (i-1)st iteration. This
feature is disabled if EPS2 is set to zero,

is an integer constant (where 0 < MIT < 1000) which is the

maximum number of iterations to be performed. If the
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calculations have not been terminated for some other
reasons, they will be terminated when the number of

iteration equals MIT,

FLAM starting value for A .
FNU is the value of v .
SCRAT is an optimal parameters used to specify temporary

storage for use by UWHAUS, When present in the
calling sequence, SCRAT must be the name of an
array containing at least the number of storage
locations given by:

5*NP+2*NP2 + 2*NOB+NP*NOB

The contents of these locations will be destroyed

during execution of UWHAUS,

B.4.,3, The restrictions of subroutine UWHAUS
At the beginning of each problem run, UWHAUS checks the input
arguments to see that the following are obeyed:
(1) 1 < NP < 50;
(2) NOB > NP
(3) TH(I) # 0, I=1,..., NP, Each starting parameter guess is non-zero.
(4) 0 < |DIFF(T)| < 1, I=1,..., NP, Each difference proportion is
between 0 and 1 in absolute value.
(5) 0 < MIT < 1000, the maximum number of iteration is between 0 and

1000,

(6) FNU > 1, The starting value of v is greater than or equal to 1.
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If any of these restrictions are not obeyed, the message:

PARAMETER ERROR
will be printed on the printer output for the job, and control will be
returned to the main program.

The flow chart of subroutine UWHAUS is shown as follows, The no—
nations €1» 82,_g and jmax are the input argument EPS1, EPS2, DIFF and
MIT, respectively. Other notations have the same meanings as define

in Section B.4.

Enter
From
* Main Program

{

(: Print: n, p, Q(O), A

rint Qut:
" NO —am| "Parameter Error"

Self-Supplied
Subroutine Model-
Compute Values ] Compute: S(8
I
I

(0))

of Model for

- -
(:_ Print: S(g(o)) ij)

i
o

Initialization




| self-provided modey

| - compute values ofj—

| model for: ™
| g=eUD),, o UG-1)
| = mn
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r-subroutine MATIN
solve for Z: %~——~
1/2+ I_WWﬁ,
|
|

1

| L
oY %% xp
; (JJI)Z
!

self-prOV1ded 1
model:’  compute l
I values of model forl‘*
(1) i
|8 =8 !
- = ]

AE(0,E )
e {__EE_:zL_ | (j-l)} uxl,...n
i 8 i=1,...p
N INCEVIN
| .
~
§ = D'l/z(n'l/zx'xn'1/2+x(1)1)"ln'l/2x' T :
s -1/2 -1/2 - 2 3) 2,3y
Yy = angle between D ém and D X'y
k=1
(EFINT: v, det (02 xp71 +A(J)It>
o) . oG, ¢,
—~ - =m
€RINT: 8 ) )
KaK/2
DOES 2(J)
violate any sign Yes —
estrictions
No
compuTE: (o (1))
(%RINT: s(e )y :)
Sﬂi(lj)
—-uTv:Tj— - 1 < max(0,¢e No —-] ¥<30 No—
AR

Compute Parameter Estimation
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— Yes
o) _ oD
i i
» . < g Yes __,<::>
10720 4 |71
i
i=l,...p
Yes

Complete One Iteration
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PRINT:

Final Function Values and
Residuals

¥
rsubroutine MATINY Compute Approximate
g-- _] {T| Statistics:
:Compute (X'X) ° (™| 1) Correlation matrix
o 2) Variance of residuals
3) PRough 95% limits on
parameter estimates

| §

PRINT:
above-computed statistics

RETURN
TO
MAIN PROGRAM

Iterating Complete
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APPENDIX B. PROGRAM ESTIM

B.5 Computer Program
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FORTRAN 1V G LEVEL 18 MAIN CATE = 71113 03738750
c PRCGRAM ESTIM IS DEVELOPED TO OETERMINE THE LEAST SCUARES ESTIMES
C CF THE PARAMETERS OF MOpELS ENTERMINED AS CANDIDATEA FOR ACCEPTANCES
c THE PRCGRAVM ALSG DEVELOP THE APPROXIMATE COVARIANCE MATRIX FCR THE
c ESTIMATES, AND PROVIDES THE RESICUALS BASED ON THE LEAST SQUARES ESTIMATES
C

0¢o1
acoz
0003
0004
0Co5
0006

oooYy

ocos
acos
o010

001l
0012
0Cl13
0Cl4

0015
oals

0017
0018

0c19

0020
0g21
0022
0023
0024
0025
0026
0027
0028
0029
0030
0Q31
0032
0033
0034
0035

CINENSICN SCRAT(4018)
CINMENSICN R{100),C(L0G),S{100),VAR(100)
DIMENSICN B(20}
CIMENSICN ZERC{1000)
CIVENSICN DIFF{20},5IGNS{20)
COMMCN 20(1000,4+334NDOB{4,;3),7(1000),A(1000), PHILL100) THETA{100),
1 PHIW(L0O0), THETHI(100) 4PHIB{10C),THETB(100},L0C1{10),L0OC2¢{
2103 ,LCC3{10)4LOCACLI0) o112 EL ), JH21L), TI3LL), I14(1),TIP(1),11Q(L)
KCREP=0
C N SAMPLE SIZE OF ORIGINAL SERIES
REAC 2¢02, N ’
2021 FORMAT{2X,F20.5)
READ 2021,y (7D(T+1+1):1=1,N)
REAC IN CATA AND PRINT OQUT
ZC(T,41,1} OBSERVATIONS OF CRIGINAL SERIES
INDS NO. OF MCDELS TO BE FITTED TO CRIGINAL SERIES
I1PW NC. OF AUTDREGRESSIVE PARAMETERS
I1Dw NGCa CF NON-STATIONARY CIFFERENCES.
THIS IS ZERC FOR STATICNARY SERIESe
I1QW NGO« GCF MDVING AVERAGE PARAMETERS.
REAC 2002, INDS
CC 10 1CCP=1,INDS
20C2 FORMATIAILIO)
REAL 2602y IPW,IDW,I1QW
1P THE LARGEST PCWER OF YHE SHIFT OPERATOR ASSOCIATED WITH
THE SEASONAL ALUTOREGRESSIVE PARAMETERS.
ICE NCe OF SEASCNAL CIFFCRENCES
ICe LARGEST PCWER OF THE SKFIFT CPERATOR ASSOCIATEC WITH THE
SEASCNAL MOVING AVERAGE PARAMETERS.
18 SEASCNAL LAG.
FCR STATICKARY SERIES, THE FOLLCWING CARD IS BLANK
READ 20c2, IPB,IDB,IQB,1IS
20C3 FORMATIIHIZX,6HIARMA( 2134 1Hy o I3 o1He o I3:3HIX (2 13)1HyeI391HeI3,3HMX
li,13,1H¥22)
PRINT 2C03, [PWsIDW,TIQW,TIP8,IDB, IQB, IS
IP=IPw+IPB
IC=IQw+ICB
11P(11=1P
11Ct{1)=1Q
[PIC=IP+IQ
CO 2090 I=1,IPIQ
PHIW{[)=0.
PHIB[I1=0a
pHI(I)=0¢
THETW(I)=0.
THETB(I)=0.
2C9C THETA(I)=0.
10C FCORNMATI//7/72X,20HINITIAL GUESS VALUES///)
PRINT 100
2C04 FORMATITIQ.F20.5)
2CCS FORMAT(2Z2X,5FPHIW({,13,2H)=,F115)
2CCT FURMATI2X,SHPHIBI,13,2H)=,F11.5?
2006 FORMAT(2X,6HTHETWI 413+2H)=4F11e5)

OO0 0O0n

QOO0 0
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0036

0037
co3s
0039

0040
0C41
0042
0043
0044
0045
0046
0047
0048
0049
0050
0251
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0Cs5
0066
0067
ocss
0069
0070
0071
0072
0073

0074
0075
0076

zizKeNa

2¢CsH

o000

(sl e Nal

2010

2011
2CCS
2013

2Cl4
2012
2016

2C17
2015
2019

2¢20

2018

5000
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18 MATN DATE = 71113 03739740

FORMAT{2X46HTHETBLl13,2H)=,F11l.5)

I1 THE NOe« OF AUTCREGRESSIVE PARAMETERS

12 THE NC. OF MCVING AVERAGE PARAMETERS.

I3 THE NC. OF NCN-ZERO SEASONAL AUTOREGRESSIVE PARAMETERS.
14 THE NQOe. OF NCN-ZERO SEASCMAL MCVYING AVERAGE PARAMETERS.
REAC 20¢2s I1,12,13,14

k=0

IF{1112€69,2009,2010

PHIW{J) THE INITIAL GUESS VALUE OF THE JTH AUTOREGRESSIVE PARAMETERS.
LCCL(I) ASSOCIATED TFHESE Je

THTEW ([ J) THE INITIAL GUESS VALUE OF THE JTH MOVING AVERAGE PARAMETERS.
LOC2(I)» ASSOCIATEC THESE Je.

PHIB( )} THE JTH NON-ZERO SEASUNAL AUTOREGRESSIVE PA?AMETER,

CORRESPCNDING TO THE POMER OF THE ADJACENT SHIFT OPERATOR
IN THE MODELe.
LOC3({I)Y ASSOCIATED THOSE J.

THETB(J) THE JTH NCN-ZERO SEASCNAL MUVING AVERAGE PARAMETER.
LOC4&(I) ASSOCIATED THESE J»

EC 2011 I=1,11

READ 2004, J,PHIW{J)

LOC1(I=d

K=K+1

BI{K)=PHIN{I

PRINT 2C054+ JHPHIKWID)

IFtl2) 2C12,20125,2013

CC 2014 1I=1,12

REAC 20044, JeTHETH(J)

Ldc2(11=4

K=K+#1l

B{K)=THETWLD)

PRINT 2C06,Jy THETH(J)

IF(13) 2015,2015,2016

CaQ 2017 1I=1,13

READ 2004, JyPHIB(S)

LOC3tY=y

K=K+1

Bi{K)=PHIB(J)

PRINT 2007, J,PHIB{.)}

IF{14)2018,2018,2019 °

EC 2020 1=1,14

READ 20C4s Jo THETBLJ)

LOC4(1)=J

K=K+¢]

B(K)=THETB(J)

PRINT 2C08, J.THETB(SH)

ISUM=11+12+13+14

IT1{1)=1I1

112(1)1=12

I13{1)=13

[lal(li=14

IF({IDW)IICO0,9000,9001

CONTINYE

IF THIS IS AFTER FIRST MODEL, JUST GO TO 9001, NOT NECESSARY

TO COMPUTE AGAIN.

KCREP=KCREP+1
IF(KCREP=-116T721,672]1,9001
CONTINUE
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07T
octs
0079
coso
cosl
coB2
cos3
0034
00Bs
0086
0087
ccss
0089
0090

0091
cQ92
0093
0094

0095
0C9%
0a9?
0098
0c99
0100
0101
o102
0103
0104

0105
0106
0107
clo8
0109
ol10
all1
o1x2
0113
0ll4
0115
0116
0117
olis
o119
0120
0121
0122
0123
0124
0125

0126
0127
0128
0129

c

c

c

c
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ie MAIN DATE = 71113 03739740

XK=NK
IBAR=(.
CO 5002 I=1.N

SC02 IBAR=IBAR+IC(I,41,1)

ZBAR=ZBAR/XN
CO S0C3 [=1.N

SCC3 I0IT41412=2C11,1,41)-2ZBAR
S0C4 FORMAT(1H1ZX,17THSTANDARDIZED CATA///)

PRINT 9C04

S005 FORMATL2X,SHZBAR=yF20.5//7)

PRINT 9005,2B4R
PRINT 205y (ID(I41,1),0=1,N?

SCC1 CONTINUE

CALL CIFFER{IDW,IDByISsNsMnW,MB)
NCBB IS NCe. GF CBSERVATION AFTER CIFFERENCES AND SEASONAL DIFFERENCES.
NOBB=NCBI(¥W,MB)
CO 202z I=1,NORB
ZERCI{I)=0.

2022 Z11)1=1011+MueMB)

11

205

CAUSSHAUS DATA

EC 11 1=1,ISUM

CIFFiI)=-01

SIGNSIT)=0.

EPS1=0.

EPSZ=.00001

MIT=18

FLAM=50.

FANU=10.

ANPRCR=ICCP

CALL LWHAUSINPRDB,NCBB4IERD,ISUNMsB,CIFF,SIGNS)EFSL+EPS2,+MIT, FLAM,
1FNU,SCRAT

PUNCH CLT OF A FOR DIAGNOSTIC CHECKING
CALL CALA{NCBBR,+IP,IQ)

PRINT 2CC2+ NOBB

FCRMAT(2X,6F20.5)

FRIANT 205, {ALI),I=1,NOBA}

TC01 FORMAT(1H12X.19HDIAGNGSTIC CHECKING///)

PRINT 7001
CO 70C0 I=1,NOBB
IERO( DY =Z(1)-ALI)

7CC0 CONTINUE

102

KK=26

N=NCBE

XN=N

IBAR=Q.

CO 102 I=1.N
ZLTy=A110)
IBAR=ZBAR+Z(]1)
LBAR=ZBAR/XN
C0=0.

EQ 103 [=1,N

1C3 CO=CO+{Z(1)-ZBAR)**2

CO=CC/XN
CALCULATICN OF R
DO 1C4 K=1,KK
C‘K)=0.

AR=K=-K

CO 105 J=zlsNN
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0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
Ol44
0145
0146
0147
0148

Iv G LEVEL
1¢5

1C4

2C4
ico

3C5
ic1

acz2
1¢
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18 MAIN CATE = 71113 03739740

CUKI=CIKI+L2{JI-ZBARI*(Z{J+KI~ZBAR)

CIKI=CLK) /XN

RIK)=CtKy/CO

VARI1)=1./X%XN

S{1)=R{1)/SCRTI(VAR{]1})

AdA=2e /XN

E0 204 K=2,KK

VAR{K)=VAR{K~1)+AAAX(RIK~-12%%2)

SIKI=RIK) /SCRTI{VAR{K)) )
FORMATIIHLZXy 44HSAMPLE CORRELATION COEFFICIENTS OF RESIDUALSYS)
FRINT 300

FORFATIU//2%ySHIBAR=,F105//)

PRINT 3¢5+ ZIBAR
FORMAT(2X92ER1 I3, 2H)=4F10e5, 6X,10HR/S<De{R)=4F10a.5)

CC 362 I=1,KK

PRINT 3Cls I+RITIsSLI)

CCNTINUE .

sTQP

END
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0ool

OO0

0002
0co3
0004

0co5
0006
0007
ocos
0cog
0C10
0oLl
oai2
0013
0cl4 101
o108 -]
0016
0017 1p2
oclsa 1co
0019 1C4
0020
oozl
0n22 1C5
0023 Yokt
0024 1¢7
0025
06Q2é
0027 ioe
0028 1¢é
0029 110
0030
oc3t
0g32 111
0033 1Cs

0034

a6 o0

0035
0036
0037 50
0038
0039

18

MODEL

DATE = 71113

SUBROUTINE MODEL (NPROB,B,F,NOBB, ISUM}

SUBROUTINE EST CHANGE B(K) TO DIFFERENT PARAMETERS,
REAC IN DATA VECTOR PARAMETER.

THE MODEL.

CIMENSICN BIl)
CIMENSICN FLl1)

COMMON ZD110004+4,3),NOB(4,3)+2(1000),A{1000},

134

03739740

WHICH IS THE SAMc

THEN, COMPUTE THE VALUE OF

PHI[100),THETA(10Q},

1 PHIW(100),THETW(100)+PHIB(10C),THETBI(100),L0C1110),1.0C2¢
2102 ,LCC30L0)5L0C4 {10y ITTL{L s II12(12, 013410, 1141004 IIPIL),11Q(1)

IP=1IPIL)
IC=11Q¢(1)
IPIC=1IP+]IQ
I1=111{1)
12=112(1)
I3=1134{1)
E4=11411}
K=0
IF11171Q0,100,101
O 102 I=1,11
J=Lac1{I

K=K+l
PHIW(JY¥=B{K)
IFtI2)103,103,104
C0 105 I=1,12
JELEC2(T)

K=K+1
THETW{J)Y=B K}
IFII3)1C6,1C6,107
g 108 I=1,13
J=LGCIL(T)Y

K=K+1
PHIB(J)=BIK)
IF(I41109,109,110
CO 111 I=1,14
J=LCC4 (1)

K=K+]1
THETB{JY=B{K)
CALL MULTS

(PHTW, PHIB,PHI, IP)

PHITIY IS THE MINUS VALUE OF THE AUTOREGRESSIVE PARAMETERS
BY MULTIPLING NON-SEASONAL ANC SEASUNAL PARAMETERS TOGETHER.

CALL PULTS

{THETW,THETB,THETA,IQ)

TYHETA{1) IS THE MINUS VALUE OF THE MOVING AVERAGE PARAMETERS AFTER
MULTIPLYING NON-SEASCNAL AND SEASONAL PARAMETERs
CALL CALAINCEBB,IP, IQ)

CO s0 I=1,NOBB
FIIY==A{1}
RETURN

END

AS
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ocol

6o02

0co3
aco4
0cos
0006
oco7
0008
0Qo9
0010
ocll
goel2
0C13
0Cl4
0QL5
oaré
oolLv
ools
0019
o0o20

[alale gl

20¢

2cl
203
2C4

2(8
2Cs
2C7
211
212
eCeo

18 CALA

SUBROUTINE CALA(N,IPID, Q)

135

CATE = 71113 03739740

SUBROUTINE CALA IS TO CALCULATE THE VALUE OF MODEL BY TIME SERIES.

CPHI=PHI

COVMMON ZDI1COO0+4+3)4NDB(4,3),Z{1000),A(1000),CPHI(1Q00),THETA{100},
1 PHIW({1l00), THETW{100},PHIBL1GC),THETB{10M ,L0C1(10),L0C21
2100 .LCC3(10),L0C4{L0, IT1L{LI, 2200052230124 1140112,IP{1),1]Q(1)}

FIX INITAL VALUES
1F(1G-1PI01201,201,200
{START=1C

60 T0 203

ISTART=IPID

CC 204 [=1,ISTART

A{T)=Ca

ISTART=ISTART+1

CC 206 I=ISTART,N
AL1)=2(1)
IF(IPIDI207+207,208

CC 206 Jd=1,41PID
ACTr=ALII=CPHI(JI%Z{T~d)
IFCIQ) 206,206,211

CO 212 J=1,1Q
AUII=ALII4THETA(JII*ACT-J)
CCNTINUE

RETURN

END
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0Q01
0co2

0003
0004
0005
0Cos
ocoy

0cos8
0009
0010
ool1
celz

0013
0ol4
0015
001s
ca17
o018
0019
0020
0021

18 DIFFER

SUBRCUTINE CIFFER(IDW,IDB,ISsNsMu,MB)
CCMFCN  Z2(1C00y4+43),N0B{4,3),L(1000),A(1000),

CATE

136

71113 03739740

PHI{100), THETA{LOOY,

1 PHIW(100),THETW{100),PHIB(LO00), THETBI100),L0C1{10),L0C2¢
2103 LCC3110},L0CH0L00, 112010, JE2402,113{1), 104010, IIP(1),21Q41)

CALCULATICN CF NOB({M,J)
Mh=IDW+}

MB=ICB#1

CO 151 F=1,My

CC 151 J=1,MB

NOB(MyJ)=N+1l-M+] S~I*]5
CIFFERENCING WITH RESPECT 7O CW
IF{Mh=13152,152,153

CO 154 M=2,M4

NOBLC=KCB(M,1?

CC 154 I=1,NCBD

C LoV 1d=2{T41lsp=-1e0)=2{T,M=1,41)
CIFFERENCING WITH RESPECT TO C8
IF{ME=-1%155,155,156

LC 15T M=1,MHW

B3 157 J=2,Mp

NCBE=KCB({M,J}

CC 157 I=1,NCBD

ULy Med)=Z(I4+[Se¥yJ~-1)-2{1,Ms.J-12
CONTINUE

RETURN

END



FORTRAN

0ol

oco2
0co3
0004
ngos
0coé
0007
0008
0co9
0010
0011
0012
0013

Iv G LEVEL

o0

1C5
1co

102

1C4
101

137

ig MULTS BATE = 71113 03739740

SUBRCUTINE MULTS (PHIW,PHIB, PRI, IPWPB)
SUBROLUTINE MULTS IS TO MULTIPLE THE PARAMETERS OF NON-SEASONAL
ANC SEASCNAL MODELSa

CIMENSICN PHIW(100},PHIBU100),PHIC(1002)
IF{IPWPR)I101+101,4105

E0 10C I=1.IPwWPB

PHI{D)=PHIW{11+PHIBLD)
IF(IPWPBR-12101,101,102

CO 104 I=2,1PWPH

JDUM=1-1

CC 104 J=1,J0UM
PHI{I)=PHI{I}Y=-PHIB(JI*PHIW{I=-J)
CONTINUE

RETURK

END



FORTRAN IV G LEVEL
ocol

0co2
6co3
0co4
0005
0cos6
ocor
ocos
oco9
0010
coll
gol2
ocl3
0014

Qo153
0Cls

"SUBRCUTINE UWHAUS [NPROB,

1

1
2
2

18

MIT, FLAM,

[A=1
1B=TA+NP
IC=18+NP
ID=IC+NP
IE=Ip+NP
IF=1E+NP
IG=IF+NOB
IH=IG+NCB

UWHAUS

FNUe SCRAT)
CIMENSICN SCRAT(1)
CIMENSICN Y(1)4TH(1),DIFF{1),SIGNS(1}

IT = IH + NP * NCOB

IJ = IH

CALL HAUSS59(NPROB,

2FLAMFNU,SCRAT(TA),

SCRATIIE),
SCRATIId)
RETURN
ENC

SCRATUIF),
)

SCRAT{I8)Y,
SCRATILIG),

DATE =

SCRAT(IC),
SCRAT(IH},

71113

SCRATI(ID),
SCRATI(IId,

138
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NCBy YoNP THyDIFFs SIGNS+EPSL4EPS2y UWHA

UWHA

UWHA
UWHA
UWHA
UWHA

UWHA
UWHA
UWHA

NCB,YsNPyTH, DIFF,STIGNS,EPS1,EPS2Z,MITUNWHA

UWHA

UWHA
UWHA
UWHA

—
~OOENOCWE W

e e e b
DE~NCVPWN
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0001

- 0002
oco3
0C04
0005
0cos6
ocov
Qo8
0Cco9
0010
aclLl
0012
0013
0014
0015

00L6
0017
ools
0Cl9
0020
0021
0g22
0023
06024
0025
0026
o027

0oz8
0nz9
0030
0031
0032
0033

OO0 OO OO000O0

OcOoOO0O00

15
16

1g

4C
60

139

18 HAUS59 CATE = 71113 03/39/740

SUBRCUTINE KAUSS59INPRBQ, NBC» YeNQeTHsDIFZoSIGMS,EPLS,EP25,UWHA 20
IMIT,FLAN,FNU, CePeEsPHI,TB,F4R4A,C,CELZY

PROGRAM UWHAUS IS USED IN CONJUNCTION WITH SUBROUTINES EST, CALA

ANC MULTS,y AND PERFORMS THE OPERATION OF LOCATING THE LEAST SQUARES
ESTIVMATES IN AN ITERATIVE MANNERS

PROGRAM UWHAUS IS BASED ON A METHOC DUE TO MARQUARDT WHICH COMBINES

THE GAUSS (TAYLOR SERIES) METHOL AND THE METHOD OF STEEPEST ASCENT.

LWHAUS PRINTS OUT SUMMARY INFCRMATION AT EACH ITVERATION WHICH CAN BE
ANALYZED TC CETERMINE THE PATH IN THE PARAMETER SPACE

TAKEN BY THE ITERATICN TO CONVERAGE ON THE LEAST SQUARE ESTIMATES.

FORTRAN II VERSION UWHA 22

He Je« WERTZ UWHA 23

ADAPTED FOR THE UNIVAC 1108 (HJW 12/68) UnHA 24

UWHA 25

DIMENSICN THI{NQ), CIFZINQY, SIGKS{AQ). YINBO) UHHA 26
CEFENSICN CQ(NQ)y PINQYy E(NQ), PHI(NQ), TBI(NQ) UWHA 27
CIMEKSICN FI(NBOY, R(NBO) UWHA 28
DIMENSICN AINQ,NC), CINQ,NC), DELZ{NBO,NQ) UWHA 29
CIMENSICN THI1)4DIFZ{1),SIGNSIL)sYI1Y,Q(1),P(Ll),ELL]} 30
CIMENSICN PHI(L)+TE{L)4F{1)4R{1I,A{1),C{1),DELZ(L)} 31
CIMENSICN CO(2)
ACOS{X) = ATANISQRT{1.0/X*%%2 - 1.0)} UWHA 32
AP = N : UWHA 33
MPRCE = NPRBO UWHA 34
NCB = NBOQ UWHA 35
EPSl = EPL1S UWHA 36
EPSZ = EP2S UWHA 37
FRINY 1000y NPROByNGBsNP
PRINT 1cel UWHA 41
CALL GASS60(L,NP,TH,00)
PRINT 1CO02 UWHA 43

CALL GASS&Q(1+NP,DIFZ,0Q)
TEST INPUT VALUE

IF{MINDIKP=1,50-NP yNCB-NP,MIT=1,999-M1T)19%,15,15 UHHA 45
IF{FNL-1.0)%99, 99, 16 UWHA 46
CONTIKUE UWHA 47
C0 19 I=1.NP UWHA 48
TEVP = ABSIDIFZ{1)} UWHA 49
[F(AMIN1(1.0-TEMP, ABS(THI(I?}1)1)99, 99, 19 UWHA 50
CCATINUE UWHA 51
GA = FLAM UKHA 52
NIT = 1 UWHA 53
¥ARY=1 ; S4
FAY=1 55
LUCY=1 56

EFS1 CAN NCT BE NEGATIVE

EP32 LESS THAN COR EQUAL TO ZERC, EPS1 GREATER THAN ZERO» THEN MAY=3

EPS2 LESS THAN OR ECUAL ZEZRO, EPS1L LESS THAN OR EQUAL TO ZcRO, THEN MAY=2
EPS2 GREATER THAN ZERO, EPS1 GREATER THAN ZERO

EPS2 GREATER THAN ZERO, EPS1 LESS THAN DR EQUAL TO ZERO, THEN LUCY=2
SSC=SLM CF SCUARE CF RESIDUAL

IF(EPS1Y S, 10, 10 UWHA 5T
EPS1 = @ UWHA 58
IFIEPS2) 40, 40, 30 : UWHA 59
IFLEPS]) 60, 60y 50 UWHA 60
MAY=2 6l

GO 1C 70 UWHA 62
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0034
0035
0036
0037
0038
0039
. 0040
0041
0C42
0043

0044
0045
0046
0047
0048
0049
0as0
0051
ocs2
0053
0054

0055
Q056
0057
0058
0059
0060

0061
0062
00463
0064
0065
0Cé6
0067
0048
00569
0070
0QTl
0072
0073
0074
0075
oere
0c77
0078
oqQ79
ocao
0081
oQ82
0083
0084
0085

o000

50

ic
8
7¢

9cC

1c0

101

120

130

131

160

151
150
€66

153

18 HAUSS9
VAY=3
60 TO 70
IFI{EPS1) 80, 80s 70
LLCY=2
SSC = 0
CALL MCDEL{NPROB, TH, F, NOB, NP)
CO 90 I = 1, NOB
REIY = ytD) - FID)

SSC=SS5C+REI*RIT)
PRINT 1003, SSQ

GA = GA / FNU
INTCNT = O
PRINT 1004,
J5 = 1 - NOB
CC 130 J=1,NP

TE¥P = TH(D)

PLOI=DIFZ{N)*THI{ N

TH{JY= THIJI+P(J)

Ctdr=q

JS = JS + NOB _

CaLL MCCEL{NPROB, TH, DELZUJS?, N

NIT

CATE = 71113

BEGIN ITERATION

0B, NP)

140

CELZ IS THE NEW PRECICTED FUNCTION VALUE THROUGH THE MODIFIED PARAMETERS

TJd = Js-1 -

£o 12¢ 1 = 1, NOB

1J = 1) + 1

CELZ(TD) = CELZ(IJY = F(I
CrJ) = Q(J) + DELZILJ) * RID)"

C{dr= CtIIsPiyd

TH(J) = TEMP
GC TCI(131+414)s MARY
CC 150 I = 1,y NP

EO 151 J=1,l

SUM = 0

KJd = KCa*(J-1)

KI = NCBx{I-1)

CO 160 X = 1, NOB

Kl = KI + 1

KJd = KJ + 1

SUM = SUM +« DELZI(KI) = DELZ(KJ)

TEMP= SUM/IPLII*P(J))

JI = J + NPE[]I-]1)

ClJIY = TEMP

IJd = 1 + NP%{J-1)

C(l4}) = TEMP

E1I) = SCRTID(JI))

CONTINUE

CO 153 1 = 1, NP

IJ = I-NP

CO 153 J=1,1

Id = [J + NP

ALTJY = DILJY 2 (EL1M*E(J))

JI = J + NPE(I-1)
A{TJ)

AlJL) =

Q=XT*R (STEEPEST DESCENT?

A= SCALED ROMENT MATRIX

03739740

63
UWHA 64
UWHA 65

66
UWHA 67

68
UWHA 69
UWHA 70O
UWHA 71
UWHA T2
UWHA 73
UWHA 74
UWHA 75
UWHA 76
UWHA 77
UWHA 78
UWHA 79
UWHA 30
UWHA 8l
Uy4HA 82
UWHA 83
UWHA 84
UWHA B85
UwHA 87
UWHA 88
UWHA a9
uWHA 90
UWHE 91
UWHA 92
UWHA 93
UWHA 94

95
UWHA 946
UWHA 97
UWHA 98
UWHA 99
UWHA 100
UWHA 101
UWHA 102
UWHA 103
UWHA 104
UWHA 105
UWHA 106
UWHA 107
UWHA 108
UWHA 109
UWHA 110
UWHA 111
UWHA 112
UWHA 113
UWHA 114
UWHA 115
UWHA 116
UWHA 117
UWHA 118
UWHA 119



ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE
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0086
0087
aoas
0089
0C30
ocal

0092
QC93

0094
0Ce5
0C96
0097
0098
0¢99
0100
6101
ola2
0103
0104
Q105
0106
0107
0108
G105
0ll0
a1l
&l12
0113
0ll4
0115
0l1é
o117
o118
0l19
olzo
0121
clzz
0123
0124
0125
0126
0127
cl2s
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0l4l

231

170

22¢

1¢CC

222

221

23C

EE3
bES

1-L]

£62

4E9

225

241
24C

ie HAUS59

IT = - NP

CC 155 I=1.NP
PLIY=C(I}/ELDD
PHI{I)=P(I}

II =hAP + 1 + 11
CALLI) = ALTI) ¢ GA
1=1

CALL MATINI( A NP,P,I1,DET}

STEP=1.0

SUP1=0.

SUM2=Ce

SUM3=0.

CC 231 I[=1.NP
SUMI=PLI)*PHI{IY+5UN]
SUM2=P{IX1*P{I)¢SUM2

SUM3= PHI(I) & PHI(I) + SUM3
PHI(IY = P(1)

TEMP = SUML/SQRT(SUMZ*SUM3)
TEMP = AMINI(TEMP, 1l.0)
TEMP = 5T7«295%ACCSITEMP)
PRINT 1C41, DET, TEMP
CO 220 1 = 1, NP
PLIY = PHI(1I) *STEP / EL(T1)
TIBLIY = TH(LY + PLI)
COCNTIAUE
FRINT 7000

P/E

DATE = TI1113

= CORRECTION VECTOR

FCRMAT{ICHOTEST POIRT PARAMETER VALUES )

PRIKT 2CCo,
CC 221 1 = 1, NP
IF(SIGNS{I)) 221,

221, 222

{TB(IYy T = 1y NP)

IF(SIGN(LaCyTHII) I *SIGNIL<0,TBIIN}) 663, 221, 221

CCNTINUE

Sura=n

CALL MCDELINPROB,
CO 230 I=1,NOB
RID1=Y(T)-F{I)
SUMB=SUVMB+R{TI*RI(T)
PRINT 1043, SuMB

1B, F, NOB,

IF{SUMB - [1.0+EPS1)%55Q) 662, 662, 663

[IFC AMINLITEMP-30.0,
STEP=STEP/2.0
INTCNY = INTCNT + 1

IF{INTOCRT - 36) 170, 2700, 2700

GA=GA*FNU

INTCNT = INTCNT + 1

IFLINTCNT - 38) 66&¢ 2700, 2700

PRINT 1007

CC 669 1=1,NP

THID =TBL(I])

CALL GASSAQfLl, NP, TH, 00
PRINT 1040, GA, SUMB
CC TC (22542704265,
CO 24C I = 1, NP

MAY

GA)) 6652 665, 664

IFUABSIPUIN)IZI1eE=-20+ABSITH{T}I}-EPS2) 240, 240, 241

GC TC 1265,270) ,LuCY
CCATINUE

14]

03739/40

UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UwHA
UnWHA

UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UwHA
UWHA
UWHA
UWHA
UKHA
UWHA
UWHA
UWHA
UWHA
UkHA
UKHA
UwWria
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
U¥HA

URWHA
UKWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA

UWHA

UWHA
UWHA

UWHA

120
121
122
123
124
125
126
127

129
130
131
132
133
134
135
136
137
138
139
140
14l
142
143
lag
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
lé4
165
166
167
168
1569
17¢

172
172
174
175
17¢
173
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0142
0143
0144
0145
0146
0147
0148
0149
0150
0151

0152-

0153
0154
0155
0156
0157
o158
0159
0160
0161
0l62
0163
0164
0165
0166
0167
Gl68
0169
a170
0171
o172
o173
0174
al7s
0176
0177
0178
ol79
0180
0181
0182
0183
o184
0185
0186
0187
o188
0189

Q190
0191

0192
0193

265
266

210

27CC

18 HAUSS59

FRINT 1009, EPS2
Ge T0 280

CATE

= 71113

IF{ABSISUMB = SS5Q) ~ EPS1%55Q) 266, 266, 270

FRINT 1010+ EPS1

GC TC 280

SSQ=SUMB

NIT=NIT+1

IFI(NIT - MITY 100, 100, 280
PRINT 2710

2710 FORMAT(//115HO*%¥% THE SUM OF SCUARES CANNOT BE REDUCED
1CF SQUARES AT THE ENC OF THE LAST ITERATION - ITERATING STOPS /IUWHA

ana

280

7652

341

391

414

PRINT 1011
PRINT 2C01, {F(I), I = 1, NOB)
FRINT 1012
PRINT 2001, [R(I), I = 1, NOB)
§S¢=5UNB

IDF=NCB~-NP
1=0 '
CALL MATIN{ D,NP,P,1,DET)
CO 7692 I=1,NP

I1 = I # NP:[I-1)
E(IY = SCRTLD(IL))
DO 340 I=1,NP

JI = I + NP*([-1) =~ 1

1J = 1 + NP#{I~2)
LC 340 J = 1,4 NP

JI = JI + 1

ACJIY = DIJIY 7 (ELADY2E(4D)
IJ = 1IJ + NP

ALLJY = ACIT)
PRINT 10156 .
CALL GASS60(1,MP,E,CO)
IF{IDF) 341, 410, 341
SDEV = §5Q /7 IDF
FRINT 1Ci4, SDEV, IOF

SDEV = SQRT{SDEW)
CC 391 [=1,4NP
P{I}=TH{I)+2.0*E{]1}%*SDEY
TB(I1=TH(I)=2.0%E{ [1*S0EV
PRINT 1039
CALL GASSa0(2, NP, TB, P}
NARY=2
CO T0 101
CO 415 K = 1, NOB
TEFP = @
DO 42C I=1,NP
CC 420 J=1,NP
ISLB = Ks#NCB*(I-1)
CEBUGL = DELZ(ISUB}
CEBUGY = DELZIX + NOB¥({I-1})
ISLE = K+NCB®{J-1)
CEBLG2 DELZ({ISUB)
CEBLG2 DELZ(K + NOB*(J4-1))
14 = 1 ¢ NPafJ~1)
CERUGA

i«

END ITERATION

CUIUM/ADIFZIII*THII»*CIFZ{I*THII D

142
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UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UHHA
TO THE SUMUWHA

UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA

UWHA
UWHA
UWHA
UHHA
UKHA
UWHA
UwtiA
UWHA
UWHA
UWHA
UWHA
UWHA

UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA

UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA

178
179
180
181
182
183
184
185
1B&
1g7
138
189
190
191
192,
193
194
195
194
197
199

201
202
203
204
205
206
207
208
209
210
211
213

215
216
217
218
219
220
221
222

225
225
226
227
228
229
230
231
232
233
234
235
236
237
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FORTRAN IV G LEVEL 18 HAUS59 CATE = 71113 03/39/40Q
0194 42C TEMP = TEMP + DEBUGL * DEBUGZ ¥ OEBUG3 ’ UWHA
0195 TEMP = 2+.0*SQRTI(TEMPY*SDEV UWHA
0196 RUKI=F(K)+TEMP UWHA
0197 415 F({K)=FI(K)=-TEMP . UWHA
0198 FRINT lo008 UWHA
0199 1E=0 UWHA
0200 CO 425 1=1,N0B,10 UWHA
0201 IE=IE+10 UWHA
0202 IF(NOB~-TE)Y 430,435,435 UWHA
0203 430 IE=NOR UWHA
0204 435 PRINT 2001, {R{J}, J = I, 1E} UWHA
0205 425 PRINT 2C06y (FlJd)y J = Iy LED UWHA
0206 41C PRINT 1033, NPROB UWHA
0207 RETURN URHA
0208 $9 PRINT 1034 ‘ UWHA
0209 GO 710 410 UWHA
0210 1CCOCFORMAT(3IBHINON~LINEAR ESTIMATION, PROBLEM NUMBER I3,77 15, UWHA

1 144 CRSERVATIONS, 15, 11H PARAMETERS Il4, 17H SCRATCH REUQUIREDIUWHA
0211 1CC1 FORMAT{/25HOINITIAL PARAMETER VALUES 1} UWHA
0212 1CC2 FORMAT!/S54HCPROPCRTICNS USED IN CALCULATING DIFFERENMCE QUOTIENTS )YUWHA
0213 1CC3 FORMATI/25HOINITIAL SUM OF SQUARES = El2e 4} UWHA
0214 1CC4 FORMAT(/////745%X,13HITERATION NO- T4} UHHA
0215 1007 FCRMAT{/32HCPARAMETER VALUES VIA REGRESSION ) URHA
0216 1CGC8 FCGRMAT(////54HOAPPROX IMATE CONFICENCE LIMITS FOR EACH FUNCTION VALUWHA

1LE ] UnHA
0217 1CCSCFORMAT(/62HOI TERATION STOPS — RELATIVE CHANGE IN EACH PARAMETER | EUWHA

155 THAN E12.4) UWHA
o218 ICLCCFORMAT(/62HOITERATION STOPS = RELATIVE CHANGE IN SUM OF SQUARES LcuUWHA

1SS THAN E12.+4} UdHA
0219 1011 FORMATI2ZHLFINAL FUNCTION VALUES ) UWHA
0220 1012 FCRMATI////10HORESIQUALS ) UWHA
0221 1Cl4 FORMAT(//24HOVARIANCE OF RESIDUALS = 1E12+441H,y 14y UWHA

12CK BEGREES OF FREEDOM } UWHA
0222 1016 FORMATU////21HONORMALTZING ELEMENTS ) UkHA
0223 1633 FCRMAT(//19HOEND DOF PROBLEM NO« [3) UWHA
0224 1034 FORMAT(/16HOPARAMETER ERROR ) UWHA
0225 1039CFCRMATI/7IHOINDIVICUAL CONFIDENCE LIMITS FOR EACH PARAMETER (ON LIUWHA

1NEAR HYPCTHESIS] ] UWHA
0226 104CCFORMAT{ /IHOLAMBDA =E10.3,40X,33HS5UM OF SQUARES AFTER REGRESSION = UWHA

1E15.7) UWHA
0227 1041 FORMAT(14H DETERMINANT = FEl2+4, 6%y 25H ANGLE IN SCALED COORDe = UWHA

1 FS5.2y BHDEGREES ] UWHA
02238 1043 FORMAT{2BHOTEST POINT SUM DOF SQUARES = ElZ«%) UWHA
0229 2CC1 FCRMATI/JI0EL2.%) UWHA
0230 2CCé FORMATI10ELZ2.4) UWHA

0231

ENC UWHA

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
zZ6l
262
263
264
265
266
267
268
269
270
272
273
274
275
216
217
278
219
280
281
282
283
284
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0col1
gcoz
0c03
0004
0005
0co6
ocov
0008
oco9

€10

ogll
0012
0013
0014
0015
o0Cls
0017

ocls
cale
0020
0021
0oz2z2
0C23
0024
0025
0026
0027
0028
o0cz29

O OOoo

45C

50¢
55¢C

18 MATIN

SUBROUTINE MATINIA, NYAR, B, NB, DET)

CIMENSICN A(NVAR,1) + BINVAR,1}
CCMMON/GASPAR/DUMIES(T)Y, PIVOTM
PIVOTM = A(l,1)
DET = 1.0

'CC 550 ICOL = 1y NVAR

PIVOY = A{1COL, ICCL?
PIVOTF = AMINL{PIVCT, PIVOTM}
CET = PIvOT * DET

CIVIDE PIVOT ROW BY PIVOT ELEMERNT
A{ICCL, ICCL) = 1.0

PIVOT = AMAX1(PIVDT, Ll.E-20}
PIVCT = A(ICOL, ICOLI/PIVQT
CC 35C L=1,NVAR

A{ICCLy L) = ACICCL, LI®PIVOT
IF(NB -ECe 0) GO TQ 371
CC 370 L=1,\B

B(ICOL, L) = B{ICOL, L)*PIVOT

RECUCE NCN-PIVOT RCWS

CC 550 L1=1,NVAR
IF(LL1 «EC. ICOLY GC TQ 550
T = A(LL, ICQL)
AfLl, ICOLY = 0
CC 450 L=1,NVAR
Altl, L) = AfLl, L) = ACICOL, LO*T
IFINB .EQ. Q) GO TC 550
CC 50C L=1,NB
BiLly L? = B(L1l, L)-BUICOL,L»*T
CONTINUE
RETURN
END

CATE

Tl113

144

03/39/40
UWHA

UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA

UWHA
UWHA
UWHA
UWHA
UNHA
UWHA
UWHA
UWHA
UWHA
UWHA
UWHA
UAHA
UWHA
UWHA
UWHA
UWHA
URHA
UWHA
UWHA
UWHA
UWHA
UWHA

235

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
ov
308
309
310
311
3iz
3i3
314
315
316
317
3i8
319
320
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FORTRAN IV G LEVEL 18 GASS60 CATE = Ti113 03/39/40

ocool SUEBRCUTINE GASS&O0(ITYPE, NQy Ay 8)

ogo2 CIMENSICN AINGQY, B{NGQ)

0003 NP = NG UwHA 323
0004 NR = NPs10 UWHA 324
0cos LCW = 1 UWHA 325
000é LUP = 10 UWHA 326
0Qo7 10 IFL NR )1%5,20,30 UKHA 327
ocoa 15 RETURN UWHA 328
oco9 20 LUP=NP ) UWHA 329
0010 IF(LCW «GT« LUPY RETURN UWHA 330
oclil 3¢ PRINT 500+ (JyJ=LOW,LUP) UWHA 331
0012 GG TO (40+60)y ITYPE

0013 40 PRINT 6CCy (ALY d=LOW,LUP) UWHA 333
0014 GC TC 100 UWHA 334
oals &C FRINT €0Q0» (B(JY4J=LOW,LUP) UwWHA 335
0016 GQ TO 4¢ UWHA 336
o017 1€0 LCW = LCW + 10 : UWHA 343
0018 LUP = LUP + 10 UWHA 344
0QL9 NR = NR - 1} UWHA 345
0020 Ga 1C 10 UWHA 346
0021 50C FCRMAT(/1i8,9112) UWHA 347
0022 ECC FORMAT(L10ELZe4) UWHA 348

0023 ENC UWHA 352



APPENDIX C

PROGRAM FORCAT

C.1l., Description of program

Program FORCAT is developed to provide the forecast value and its

confidence interval for the appropriate model of the time series, which

may be stationary, nonstationary or/and seasonal., The program consists

of a main program and seven subroutines, The functions of subroutines

are as follows,

MULTS and EXPAND:

CALPSI

CALPIE

convert the general seasonal nonstationary model
into regular ARMA(p,q) forms. The form is used to
calculate the 7 weights (pure AR weights), Y weights
(pure MA weights), confidence intervals of forecast
values for the original series and the reduced
stationary model,

calculate the ¢ weights for the original model and
for the reduced stationary model. The calculations

are based on equation (4,2,6)

146

calculates the pure AR weights for the original model

and for the reduced stationary model., The calcu-
lation is based on equation (C.l.4). For pure

moving-average model, its form may be
z = (B) y (c.1.1)
where

B(B) = 1+ 9B + y,B° + ..
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For pure autoregressive model, its form may be

T(B) z

i
p

. . (C.1.2)

: 2
1 - ﬂlB - ﬁzﬂ - aas

]

where  7(B)
comparing (C.1l.,1) with (C.1.,2), we obtain

m(B) y(B) =1 (C.1.3)

equating the power of B in (C,1.3), getting

Tg ™ ¥y

=
|

2 SV~ VM

Ty = Vg = UpTy = YTy

or in more general equation

i-1
m= ¢1 - .2 wj “i—j (C.1.4)
j=1
hence, the 1 weights of pure AR model can be
calculated recursively.
FORCAT : calculate the forecasts and confidence interval
for the original time series, Its calculation is
based on equations (4,1.2) and (4.2.7).
CALA : calculate the residuals of the original time series.

PLOT : plot the forecast values and its confidence intervals,



START

[

READ IN DATA
1. Neo. of Forecasts to be
Calculated

148

2. Model Form to be Analyzed

l

Print out the Model Form

l

)

Read in the Parameters
of the Appropriate Model

\

Call Subroutine Mults --
Multiples the Parameters
of Seasonal Nonstationary
Model of AR Process. The
Operation is Skipped if the
Model is Non- AR Process

!

Subroutine Mults --

Multiple the Parameters of
Seasonal Nonstationary Model
of MA Process. The Operation
is Skipped if the Model is
Non MA Process.

Subroutine Expand ~-
Compute the Parameters
Associated with Powers of
Backward Shift Operator
About AR Process

l
O



A )

Subroutine Expand --

Compute the MA Parameters
Associated with the Powers

of The Backward Shift Oper-
ator if Seasonal Time Series is
Analyzed

v
Subroutine Mults -~
Multiple the Parameters
Associated with the Backward
Shift Operator of AR Process
about the Nonstationary and/
or Seasonal Model

l

Subroutine Mults --

Multiple the AR Parameters

with Parameters Purely Asso-

ciated with Backward Shift Operator
to Obtain General AR Parameters

|

Does the Model
Contain the AR
rocess

No

Yes

#

(j Print AR Parameter PHI (1) ;)

149



‘\“\\\poes the Model Con—f,,r/”//

tain the MA Process

No

Yes

)

Print out MA Parameters
THETA(I)

e

!

Does the Model Contain
the AR Parameters
: with Nonstati-

~
\. onary and/or
Seasonal Dif
erence

No

¥
,(: Print. General AR Parameters:>

-

Y

Subroutine CALPSI --
Calculate ¢ Weights,

PSII(1)

Subroutine CALPIE --
Calculate TL Weights,
PIE1(I)

150
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(j Print ¢ Weights and = Weights i)

L

Read in Data:
The no. of Observations,
The Time Series Observations

Subroutine CALA --
Calculate the Residuals of

the Time Series

/

rSubroutine Plot -:} Subroutine FORCAT --

! Plot the time l ___|Calculate the Forecast

i Series Process, . |Values and its Confidence
: Forecast Value, Interval

t Its Confidence

! Interval ! !

STOP
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C.2, Description of input data

variable FORMAT Description
card in program
first IFOR (110) number of forecasts
card to be calculated

next block of cards

same as the parameter input block given
in Appendix B for program ESTIM

next MAX (110) number of correlation
card to be calculated

next N (I110) the number of obser-
card vations to be read in.
next Z{1,n (2X%,(F20.5)) the observations of
cards the time series,

C.3. Description of output data
The following data can be generated by program FORCAT;

1. Print out parameters and model form,

2, Pure autoregressive and pure moving-average weights of the
original and reduced stationary form of the model.

3. Forecast values and confidence limits.,

4. Plot out the forecast values and confidence limits,
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APPENDIX C. PROGRAM FORCAT

C. 4 Computer Program
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FORTRAN IV G LEVEL 18 FAIN CATE = 71113 03/42/28

oo0al CIMENSICN PHIW(200),THETW{200),PHIR(200),THETB{200)
oco2 CIMENSICN PRI(200),THETA{200),CPHI(200)
0co3 CIVENSICN Z{15004134A(1500)
0004 CIMENSICN PIE(20C),PIEL(200),PSI(200),PSI1{2001)
0005 CIMENSICN C1(2001),C2(200,C1200)
0cos COMMCAZAL/PHIW/A2/ THETW/AI/PHIB/AG/THETB/AS/PHI/AG/THETA/AT/CPHI
po07 CUNNCN/AB/IWA/A9/X4P/ALO/PIE/ALL/PIEL/AL2/PSI/ZAL3/PEIL/ALA/RHD
ocos CCPMCN/ALS/PRHO
0co9 CCFMMCA/ALSE/TREND
c INSERT TO READ IN CATA AND PRINT OUT
0Clo 250 FORMATI(IL1O)
c MAX NUMBER OF CORRELATIOMS ANC PARTIAL TO BE CALCULATED
o0ail READ 250,MAX
c PROGRAM PARAMETERS
c ENC PRCGRAM PARAMETERS
c READ IN MCDEL FRCM PARAMETERS
0012 2CC2 FORMATIAILIO)
0g0i3 REALC 2002+ IPW,1DWs ICH
o0clé REAC 2002.IPB,10B,1QB,IS
C END READ IN MUODEL FCRM PARAMETERS
o REAC IN PARAMETERS
0015 2CC3 FCRMATILHIZ2X+6HIARMA(yI331Hyy 139 1HseI3,3H)X {3 1351HypI341He,1343HIX
1(+I341H) /7 /)
00ls PRINT 2CC34IPWsI0W,ICW,IPB,IDB,ICB,IS
0017 IP=IPH+IPB .
ocls IC=I0w+ICB
0019 IDS=IC8*IS
0020 IPIC=1P+IDW+IDS
0021 {C=1Cw+10B
022 cC 205C I=1,100
coz3 PHIMWII)=C»
0024 PHIBI1)=0.
0025 FHIII)=Q.
0c2é THETHW(I)=De
0a27 THETB(1)=0e
ooz8 THETA{I)=0.
0029 CPHI(I)}=0.
0¢30 Cl(I¥=0.
0031 C2(I1=0.
0032 206C ClI)=0e
0033 2CC4 FORFMATII10+F20.5)
0034 2CC5 FORMATI2X,S5HPHIW(,13,2H)=,F1l1+5)
0Q3as 20C7 FCRMATI(2X5HPHIB(,13,2H)=,Fl1.5})
0036 ZCC6l FCRMAT(2X,6HTHETW{4I3,2H)=yFlla5)
0037 2CCE FORMAT(2X,36HTHETR(,1342H)=+F11.5}
0038 2027 FCRMATI2Xy6HTREND(413,32H)=4,F11«5)
kL] READC 20C2s11+12,13,14
0040 IF(11)2¢C9,2009,2010
004l 2C10 CO 2011 1=1,11
0042 REAC 2004 +J,PHIWI{J)
0043 2C11 PRINT 2C05+JysPHIW(J)
0044 2c09 IF(1232012,2012,2013
0045 2013 CC 2014 I=1,12
004& REAL 2004 +Jy THETHL D)
0047 2C14 PRINT 2CCa¢Js THETH(J)
0048 2012 IF(I3)2C15,2015,2016
0C49 2016 CC 2017 I=1,I13

0050 REAC 2004, JyPHIBI(JD
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0051
0052
0053
0054
ao055
0056

aosT
ocse
0C59
0060
0051
0062
0063

0064
0065
0066
0ce7
Q068
0069
oc7o
0071
aar2
0073
0C74
oQ75
0076
acyv
0cT8
0079
0080
0csl
0032

0083
0084
0085
0Ccaé
aoar
oose

0CcB9

0090
0c91
0c92
0093
0C94
0095
00%6

0097

Qo0

O 00N

2017
2015
2019

2czc
20235

2021

107
108

110
111
1¢5
114
112
115
116
1121
117
112¢
70CC
1002

iccl
1Ccz2

£Co1
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18 MAIN DATE = 71113 03/42/28

PRINT 2007,JsPHIBLIY

IF{I4) 2025,2025,2C19

£O 2020 I=1,14

REAC 20044 J THETR(D)

PRINT 2C0B»Js THETB()

CONTINUE

ENC REAC IN PARAMETERS

CPERATICNS TO REDUCE SEASONAL TC NCN SEASONAL MODEL

CALL FULTS (PHIW,PHIB4+PHI,IP)

CALL MULTSI{THETW.THETB,THETA, IQ)

CALL EXFANDICL,ICW,1)

CALL EXPANDICZ,I10B,IS)

1CC=ICS+I0W

CALL MULTS(C1.,C2.C,ICC)

CALL MULTS (PHIZC,CPHI,IPID)

ENC CPERATICNS

PRINT CUT OF PERTINANT DATA

FORMAT{////2X+2THPHI, THETA, ANC CPHI VALUEW//)

PRINT 2C21

FCRNMAT(2Xy6H PHIl413,2H)=4F10.5)

FCRNMAT(2X y6HTHETA( 4 13,2H}=,FL045)

IF(IP)I109,109,110Q

COo 111 I=1,1P

PRINT 10T7sI4PHICI)

IF(IQ)112,4112,4113

CO 114 I=1,1Q

PRINT 1081, THUTALTY

CCATINUE

FORMAT(///7/72%Xy33HGENERAL AUTOREGGRESIVE PARAMETERS///)
PRINT 115

FCRMAT(ZX,6H CPHI{+13,2H4H)=,F10.5)

IFITIPIDI11204+112041121

CONTINUE

CC 117 I=1,IPID

PRINT 116,1,CPHICI)

CONTINUE

CALCULATICN OF PSI WEIGHTS

IF(IP=-437000,7000,7001

IF(10-2)7002,7002,7001

KCOZ=MAX

GC TO 7C03

KOCZ=200

CONTINUE

TC GET PURE MOVING AVERAGE PARAMETERS PSI FOR STATIONARY TIME SERIES
CALL CALPSI(PHI,THETA,PSIl,!P,IC,KCOZ)

TO GET PURE AUTOREGRESSIVE PARANMETERS PIE FOR STATIONARY TIME SERIES
CALL CALPIEIPSI1,PIE1l,MAX)

FORMATU////7/72%+&1HPST AND PIE WEIGHTS FOR STATIONARY SERIES/Z/)
PRINT 200
FORMAT{2Xy4HPST(+1342H) =4 F10. 64 TXy4HPIEL1342H)=4F1045)
CC 303 I=1,FAX

PRINT 202,1,PSITII),I PIEL{I)

IF{IPIC-1P15000,50C0,5001

IF IPIC=IP, MEANS NO ANY DIFFERENCES AND SEASONAL DIFFERENCE, SO WE CAN
LCCK CRIGINAL SERIES AS STATICNARY TIME SERIESe

TO GET PURE MOVING AVERAGES PARAMETERS PSI FDR ORIGINAL SERIES
CALL CALPSI{(CPHI,THETA,PSI,IPID,TQ,MAX}

TC GET PURE AUTOREGRESSIVE PARAMETERS FOR ORIGINAL SERIES
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0098
ace9
0100
0101
0l02
alo3
0104
0105
0lo0é
0107

0108
0109
0110
c1l11
0112
o113

0114
o115

Ecc2

5CC3

EQCC
£0Q5
£CC6
251
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18 MAIN CATE = 71113 03/42/28

CALL CALPIE(PSTI,PIE,MAX)
FORMATU///7/2Xy39HPST AND PIE WEIGHTS FOR ORIGINAL SERIES//)
PRINT 5§COQ2

CC 5003 1=1+MAX

PRINT 302,1,PSICIY,I,PIE(])

GO TO scas

CO 50C5 I=1,MAX

PSItIN=PSILII)

CCNTINUE

FORMAT(2X4F20.5)

IFCR NC OF FORECASTS TO BE CALCULATED, MAXIMUM FORECAST LAGs
REAC 250, 1FCR

READ 250Q4N

REAC 2514 (2(T,1),1I=1,N}

CALL TC GENERATE A(D)

SIG”A=0-

CALL CALA(N,IPID,IC,SIGMA)

FCRECASTING

CALL TC GENERATE FCRECASTS ANC KEPD INTERVAL
CALL FCRCATI(N,IPID,IQ,IFOR,SIGNMA)

ENC FCRCASTING

STOP

END



FORTRAN 1V G LEVEL

0gol

0002

0co3
0C04
0005
0Cos
oco7v
ocoa
0409
oclo
0011
0012
0013
0Clé4
0015
0016

0017
0Ccls8
acle
06020
0021
0022
o022

0Cc2s4
nez2s
0026
ocat
o028
0029
0030
0031

1cC.

1C3

1cl
1c2

1C4

11

112

112
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18 CALPSI DATE = 71113 03s42/728

SUBROLTINE CALPSI(CPHI,THETA, PSI,IPP, 1Q,MAX)
SUBROUTINE CALPST IS TO CALCULATE THE PURE MOVING AVERAGE WEIGHTS
FCR THE MCDEL

CIMENSICN CPHI{200),THETA(200),PSI{200)
FIX INITIAL VALUES 5O THAT IPP=1G=1PS!
IF(IPP-1G2100,101,102

ICLFM=1PP+1

DO 103 1=1DUM,IQ

CPHI{I)=0e

IPSI=1IC

GO TO 110

1PsI=1Q

GC TQ 110

ICLM=1G+]

DO 104 I=1DUM,IPP

THETA(IY=0.

CCNTINUE

IPSI=IPP

CONTINUE

ENC FIX

CALCULATION OF PSI(LYessPSTLIPSE)

CO 11 I=1,IPSI

PSI(I)=CPHI{I)-THETALD)

CC 112 I=2,IPSI

JouM=1-1

CC 112 J=1,JDUM
FSI(II=PST(IV+CPHT{JI*PST(T-J)

CONTINGE

ENC CALCULAYION

CALCULATICN CF PST(IPSI)yneanesase,PST{MAK)
[DLVP=TIPST+1

CO 113 I=IDuM,HAX

PSI(T)=0.

CO 113 J=1,IPSI
PSI(IN=PST(I)+CPHI(JI*PST(I-J)

CONTIAUE

RETURA

END



FORTRAN IV G

ocol
0002
0Cco3
0CO4
0005
0cCos
acor
0008
0co9
o0o
0Cll

LEVEL

10C

101

18 CALPIE

SUBRAOLTINE CALPIE(PSILPIE.MAX)
CIMENSICN PST(200)4,PIE(200)
CC 10C I=1,MAX

FIE(Dy=PSI(ID

£0 101 I=2,MAX

JCUM=1-1

CC 101 J=1,JCUM
FIE{I}=PIECL)-PSI{ D*PIELI-J?
CONTINUE

RETURA

END

DATE = 71113

158

03742/28
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ocol
oco2
0002

0004
0C05
006
0cov
0008
0009
0c10
0011
ool2
oc13
0014
0015
0016
0017
0018
0019
0020
0021
oc22
gcz3
0G24
0025
0026
0027
0oz
g029
0C30

200

2cl
2013
2C4

2C8
209
201
211
212
2C4
220

18 CALA DATE = 71113

SUBRCUTINE CALA(N,IPID,IQ,SIGNA)
CIMENSICN THETA{20C),CPHI(200),2(1500,1),A(1500)
COMFOMN/ABI I AFAG/THETAZAT/CPHI
FIX INITIAL VALUES
IF(IQ-IPID)I201.201 4,200

ISTART=IQ

GO 10 203

ISTART=IPID

CO 204 I=1,ISTART

ﬁll‘=ﬂo

ISTART=ISTART+1

CO 20& I=I1START4N

ACII=2(1,1}

IF(IPICY207,207,208

CO 209 J=1,IPIO
ALI¥=A(I)=CPHItUI*Z2(I~-J,1)
IFLIQ) 2064206,211

CO 212 J4=1,1Q
ACII=A1T)+THETA{ I *ALI~J}
CCNTINUE

FORFATILHL2X,27HPRINT CUT OF CATA AND ERROR//)
PRINT 220

159

03742728

FURPAT{ 2X.5HTIHE=;I4.2X'2HZH I412H’='F20-5|SX|2HA['I412H)=|F2005,

SIGMA=Q.

CO 218 I=1,.N

PRINT 217,T1,1,211,1)+1:AL12
SIGHMA=SIGRA+A(T)*ALTY
CONTINUE
SIGMA=SCQRT(SIGMA/N)

RETURN

ENO
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FORTRAN IV G LEVEL 18 FORCAT DATE = 71113 03742728
ocol SUBRCUTINE FCORCAT(IT,IPID,IQ, IFCR,SIGMA)
0co2 CIMENSICN H{1000)
0003 CIMENSICN G{3000)
0Co4 CIMENSICN CPHI{200),THETA(200)4PS1(200),+2{1500,1),A(1500)
Q005 CIVMENSICN ZHATI(1500),U(200)1,X1{2001,X2(200)
0006 COMMOM/AT/CPHI/AG/THETA/ALZ/PSI/AB/LyATAG/X P
0co7 1C0 FCRMAT{1HL2X,4BHFORECASTS AND 95 PER CENT LIMITS FOR BASE TIME =,1
la/¢14)
0Qo8 PRINT 100 LIT
0cos CC 101 I=1,1IT
oclo 101 ZHAT{II=Z(I,1)
0011 €ECCC CONTINUE
ool12 I7T1=17+1
0013 ITFCR=IT+IFOR
0Cl4 CC 102 1=IT1,ITFOR
00ls 102 ZHAT(1)=0Q.
0qQ16 K=1
oQL7 CC 103 I=1T1l.ITFCR
oolLa IF(IPID)104,104,105
0019 165 CO 1¢6 J=1,1PID
0020 1C6 ZHAT(T)=ZHAT{IV+CPEI(J)Y*ZHAT(I-J)
0021 1C4 IF(I1-IT-1Q) 107,107,3000
0022 107 CO 108 J=X,IQ
0023 108 ZHAT(ID)=ZHAT(I)=-THETA(K}*A{IT-J+K)
0024 K=K+l .
0a25 2C0C CONTINUE
0026 103 CCNTINUE _
(o CALCULATICN CF UPPER AND LOKER 95 PER CENT POINTS
nca2? CO 20c¢ [=141FQOR
0G28 200 Li{li=1.
0029 CC 201 I=2.IFCR
0030 L=1-1
0031 CO 202 J=1,L
0032 202 LIT) = {1)+PST(J2r**2
0033 LII)=1+96*SCRTIULI )IXSIGMA
0034 201 CCNTINUE
0Q03s Li1)=1.96%SIGMA
0036 CC 203 [=1,1IFQR
0037 X1([y=ZHAT(IT+D)=-UL]I)
0038 203 X2(I)=ZHAT(IT+D)+ulI)
0039 3C0 FCRMATU(Z2X4SHTIME=, 145X, 9HZHAT (4 14,2H)1=,F205,5X4 13HHPD INTERVAL=,
IF2Ce542%4F205)
0040 4CQ FORMAT(2X,6HSIGMA=,F20.5///)
0041 FRINT 400, SIGMA
0042 CG 361 I=1,IFQR
c THIS CC LOCP IS TO SUPPLY DATA TC SUBRCUTINE PLOT TO PRINT OUT
Cc THE FCRECAST VALUE ZHAT{Il)y THEIR CORRESPONDING UPPER AND LDWER LIMITS
0C43 I1=1+17
0044 Kl=IFCR+I
0045 K2=2*IFCQR+]
0046 K3=3%[FCR+1
0047 H(Il=1
0048 F{K1)=ZHAT(I1)
0C4a9 HIK2)=X11(1)
0050 H(K3)=X2{1)
0051 PRINT 3C04I1sIZHATIIL1D) oX1{I)X21{1)
0052 3101 CCNTINUE

Q0s3 CALL PLCTI(1,H,IFOR,4, IFOR,0}
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0054
0C55
0056
0057
0058
0059
0060
0C61
0C62

00563
0C64
0065

IV G LEVEL
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18 FORCAT CATE = 71113 03/7/462/28

CC 12¢ E=1,ITFCR

I1=1TFCR+l

Gil)=1

CLILY=ZHATI(I)

CALL PLCT(14G,ITFOR,2+ITFOR,0}
FORMATI[IHIZ2ZX,18H1+96%S <D« (ZHATLIL )Y/ / /)
PRINT 351
FCRMATI(2X42HL=,15,5%,5HU(L)=4 F20.5)

C0 353 I=1,IFCR

L{1) IS THE CONTROL LIMITS FOR CCRRESPCNDING FORECAST VALUE
PRINT 352.1,U(l}

RETURN

END
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0col
0002
0co3
0004
0005
0006
0Co7
ogos
0co9
oc10
0c1l
oor2
0ol3
0014
0015
0016
oCL7
0Cl8
0019
0Qz0
0021
0gz22
0023

251

120
250

18 EXPAND

SLBROLTINE EXPANDI(C,ID,15)
CIVMENSICN Ct200)
IF{1C)250,250,251
CONTINUE

CO 120 I=1,I0D

JAl=1

JA2=1

JA3=1

CO 14C J=1.ID
JAl=JA13]
IF(ID-1)132,132,133
JOUNM=1D=-]

CO 141 J=1,JDUM
JA2=JA2* Y

CO 142 Jt=1.,1
JA3=JA3% ]
Jdd={=1)**]
JIJ=JdJJx JAL/ | JA29 JA3)
ClI»ISy¥==JJdJ
CCNTIMJE

CCNTINUE

RETURN

END

CATE = 71113

162

03/42728



FORTRAN IV G LEVEL

0001
oco2
aco3
0Co%
0Cos
0Coé
0007
0008
0009
oc1o
ocoll
0012
0013

1C5
1C0O

162

1C4
101

18 MULTS CATE = 71113

SUBROUTINE MULTS{PHIW,PHIB,PHI,IPWPB)
CIMENSICN PHIW{200),PHIB(Z00),PHI(200)
IFIIPWwPEY101,101,105

CC 10C I=1,I1P%WrB
PHILI)=PFIWIIY+PHIBII)
IF{IPwPB-1)101,101,102

CC 104 I=2,1PWPB

JCuM=I-1

CC 104 J=1,J0UM
PHI(I)=PHI(I)=PHIB(J)*PHIW(I~-J)
CCKTIMUE

RETURK

END
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FORTRAN IV G LEVEL

acol
0co2

oco3
0Co4
0Co5
0Cos
ocov

0008
0009
co10
ocll

0ol2

00l3

00l4
0015
0Clé
ooL7
aqLs
CcaL9
ocz2o
0021
ao22
0c23
0024
0cz2s
0cz2é6

0027
aczs

0cz9
0030
0031
0032
0033
0034
0035
0C36

0037
0038
0039

(s NeXe [x] [z B aly

aNgXgl

[z Nalal

aond

1
2
4
5
7

a
2CC
2C1
202

10

11

12
14
15

lé
18

2¢
91
52

93
2l
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13 PLOT DATE = 71113 03/42/728
SUBRCOUTINE PLOT(NO,A,NyMsNL,NS?
CI®ENSICN OUT(101),YPRI11),ANG(9),211) "
FCRMAT{1HY,60X,7TH CHART +13.//)
FCRFAT(1H sFlle%,5H+ +101A)

FCRFMAT(LOH 123456789
FCRPAT( 10A1)

FORFAT{1H +16X3101He . a - .
- - - - - .)

FCRV¥AT(1HO,9X,11F10.4//)

FCRMAT( 10X,* PLCT OF FORCAST VALUE?®)

FORVATE 10X,? PLOT OF AUTO CCRR« FUNCTION'?

FCRFMATL 10X," PLCT OF SPECTRUM?®)

ALL=NL
IF(NS)16,16,10
SCRT BASE VARTABLE IN ASCENDING ORDER -

EQ 15 I=1,N
CO 14 J=1.N
IF{ALTI-A(J))14,14,11
L=I-N
LLt=J-N

CC 12 K=1,M
L=L+N
LL=LL+N
F=A(L)
AfL)=A(LL)
A{LL)=F
COKTIAUE
CCNTIMNUE

TEST NLL

IFIKLL)20,18,20
hLL=5Q

PRINT TITLE

WRITE{3,1)NO

GC TO (91,92+93),N0
WRITE{3,200)

GO0 70 21
WRITE{3,201)

GO 70 21
WRITE(3,202)
CCNTINUE

CEVELOP ALANKS ANC CIGITS FOR PRINTING
RERIND 4

WRITE(4+4)
REWINC 4



FORTRAN IV G LEVEL

0040
0041

0042

0043
0044
0045
0046
0c4?
0048
0C49
acs50
0051
0052
0053
0054

0055
0056
gest?
GC58
Qc59
0050

0061
0g62
0053
0C64
0Ccs5
0046
0067

0068
0C69
0070
007l
ocr2
0073
0074

0075
0076
0077
0078

GO0 [aNslgl

OO0 [aNaXalgl OO0

[z N eXg]

26

30
40

51
55
57

6C

80

a4

86

S¢

18 PLOT DATE = 71113

REACI44+S)IBLANKy{ANG(I Y 1=149)
REWINC 4

FIND SCALE FOR BASE VARIABLE
XSCAL=(AINI-A(LY )/ (FLOAT(NLL-1)?)
FIND SCALE FOR CRCSS VARIABLES

Fl=h+1

YMIN=A{N]1)

YMAX=YMIN

M2=pEN

CC 40 J=PM1,M2
IF(ALJY=-YVMINI28,28B,26
IF(A{J)=YMAX) 40, 40,30
YNIA=A(J)

GO 10 40Q

YMAX=A(J)

CCATIMNUE
YSCAL=([YMAX-YMIN)/100.0

FIND BASE VARIABLE PRINT POSITICN

XB=A{1)
=1
FY=¥~1
1=1
F=I=1
APR=XBE+FEXSCAL
IFLAILY-XPRISL,51,T0

FIND CROSS VARIABLES

CC 55 IX=1,101
CLT(IX)=BLANK

CO 60 J=1.MY

LL=L+J*N
JP=(LACLLY-YMIN)/YSCALY+1.0
CuTiJPr=ANGLJ)

CCNTINUE

PRINT LINE AND CLEAR, OR SKIP

RRITE(3,2)XPRy(0OUTIIZ),]2=1,101}
L=L+1

GO 1O 8¢

I=1+1

IF(I-ALL)Y45,84,86

XPR=A(N) :

Co 10 51

PRINT CROSS VARIABLES NUMBERS

WRITEC3,T)

YPRI1)=¥YMIN

CO 90 KK=1,9
YPR{KN+L)I=YPR(KN)+YSCAL*10.0

THIS CARC HAS BEEN REMOVED
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This thesis is concerned with the development of a stochastic model
{general autoregressive moving-average model) to represent a time series
and forecast its future values, An iterative model-building methodology,
including model identification, model estimation, model diagnostic
checking and employment of the model to forecast the time series are ex-
plored and illustrated in this thesis. |

Application of the general autoregressive moving-average model is
illustrated by identifying the appropriate model and forecasting for an
industrial chemical process, a simulated inventory system and inter-
national airline passenger fluctuation. The computer programming and
human judgement both contribute tolthese experiments,

From the computational results, it is found that the general auto-
regressive moving-average model not only represents the discrete time
series in the time domain, but also possess the characterlstics of
maximum simplicity and minimum number of parameters with representa-
tional adequacy,

Finally, further research is suggested to put the entertained model
under more strictly diagnoestic checks in order that it can represent

the time series process adequately,



