

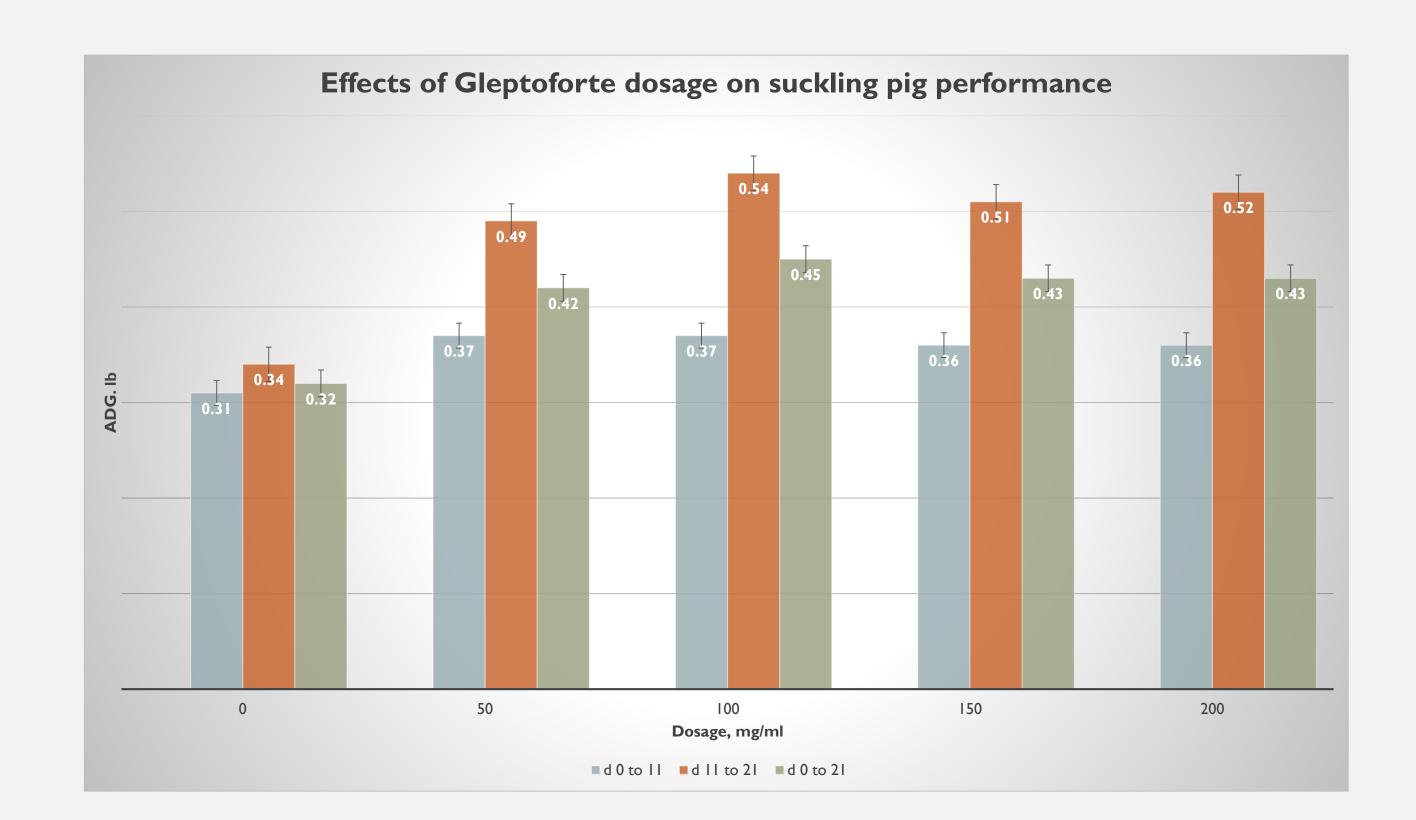
Effect of increasing GleptoForte dosage in newborn pigs on sow and litter performance

R.M. Karns, H. Williams, and C.K. Jones

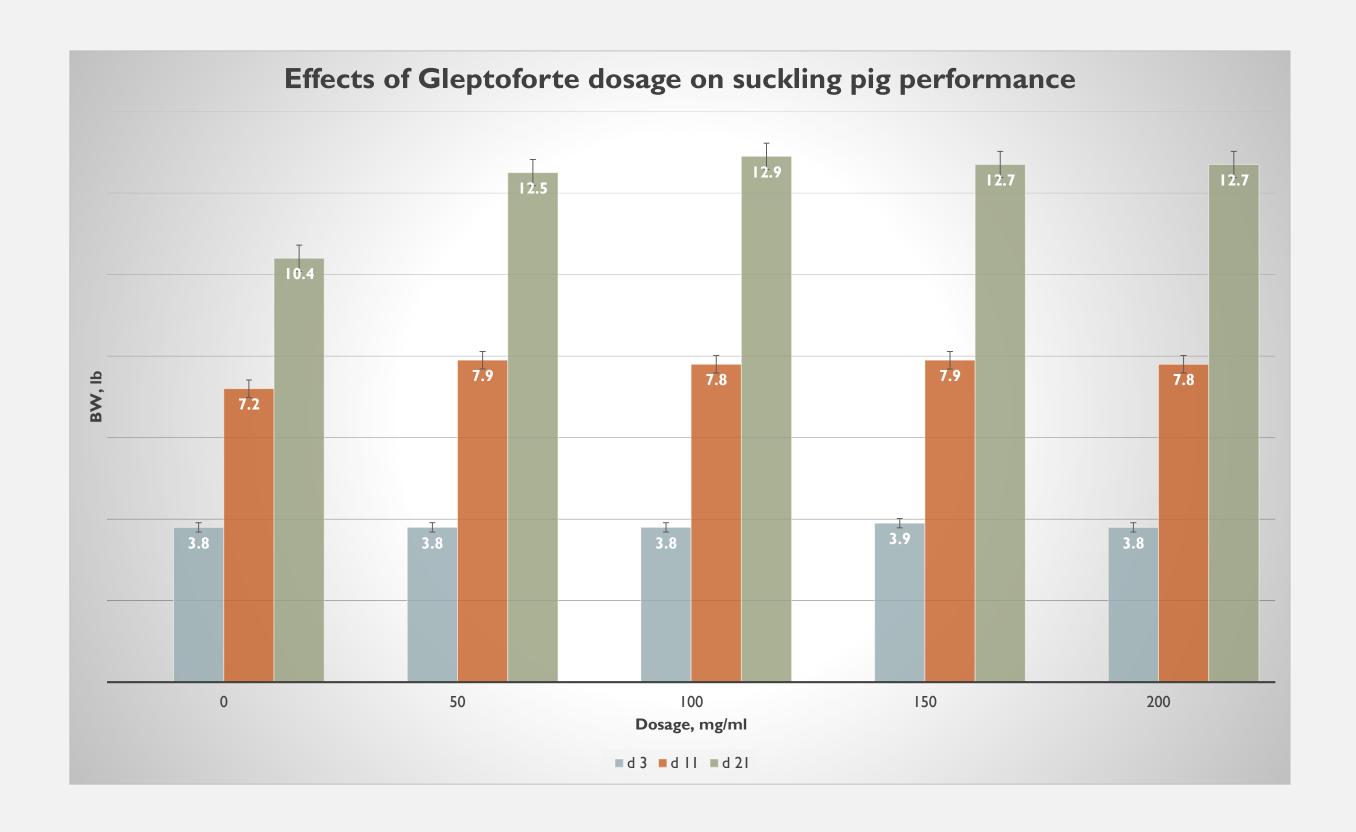
Department of Animal Sciences and Industry, Kansas State University, Manhattan

Introduction

- Iron deficiency is due to inadequate iron stores at birth and and rapid growth rate before weaning and can cause a decrease in number of circulating red blood cells, lethargy and mortality.
- Iron supplementation must be administered within 3 days of birth in newborn piglets.
- Gleptoforte is an injectable iron used to prevent anemia in piglets. Inadequate data is available to confirm the proper dosage needed.


Objectives

- To quantify effects of Gleptoforte on blood parameters
 Hemoglobin, Hematocrit, Serum Fe, and Total Iron Binding
 Capacity.
- To determine if 200 mg injection + 100 mg booster injection increases suckling performance.


Experimental Procedures

- 336 newborn piglets were used in a 21-d farrowing study to determine the effects of GleptoForte based on suckling pig performance and blood parameters.
- On day 3, all piglets were weighed and 6 gilts and 6 barrows per litter were assigned to a treatment by completely randomized design.
- Treatment consisted of 0, 50, 100, 150, 200, or 200 mg plus a 100 mg booster on d 11 of farrowing.
- Weigh day took place on d 3, 11, and 21 to compute ADG.
- On d 3, 11 and 21, 1 boar per treatment per litter was used for blood collection via jugular venipuncture.
 - Hematocrit
 - Hemoglobin
 - Serum Fe
 - Total Iron Binding Capacity
- The feed consumed by sows during lactation contained 110 mg/kg added iron from ferrous sulfate.

ADG

BW

Hematological Criteria

	Dosage, mg/ml							Probability, $P <$		
	0	50	100	150	200	200 + 100	SEM	Linear	Quadratic	200 vs. 200 + 100
Hgb (g/dl)										
d 3	8.4	8.3	8.3	8.3	8.2	8.4	0.25	0.719	0.85	0.613
d 11	5.7	8.3	9.9	10.1	10.7	10.5	0.235	0.001	0.001	0.703
d 21	4.6	6.8	9.3	11.3	12	12.8	0.217	0.001	0.001	0.011
Hct (%)										
d 3	28	27.1	27.6	27.4	27.4	28	0.806	0.809	0.749	0.699
d 11	20	29.2	34.3	35.8	36.5	36.2	0.66	0.001	0.001	0.722
d 21	16	23.4	30.9	37.3	38.8	40.9	0.715	0.001	0.001	0.046
Serum Fe (µg/d	11)									
d 3	26	24	30	29	25	24	3.82	0.816	0.463	0.838
d 11	19	29	101	149	162	157	8.73	0.001	0.558	0.675
d 21	22	15	25	53	86	113	7.85	0.001	0.001	0.019
TIBC (µg/dl)										
d 3	252	248	216	236	242	223	13.78	0.454	0.166	0.351
d 11	698	536	442	417	406	421	22.77	0.001	0.001	0.669
d 21	726	667	519	479	415	398	27.43	0.001	0.3446	0.67

Results and Conclusions

- A lack of iron injection resulted in the poorest growth and blood parameters of iron status of suckling piglets as expected.
- Administration of 100 mg of Gleptoforte resulted in the greatest growth performance.
- The administration of 200 mg + 100 mg of GleptoForte resulted in improved hematological criteria but did not influence suckling piglet growth performance compared to 200 mg alone.
- ADG and d 21 ending BW improved (quadratic; P=.001) with increasing dosage of Gleptoforte.