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Abstract Dispersal is a fundamental biological process that
results in the redistribution of organisms due to the interplay
between the mode of dispersal, the range of scales over
which movement occurs, and the scale of spatial heteroge-
neity, in which patchiness may occur across a broad range of
scales. Despite the diversity of dispersal mechanisms and
dispersal length scales in nature, we posit that a fundamental
scaling relationship should exist between dispersal and spa-
tial heterogeneity. We present both a conceptual model and
mathematical formalization of this expected relationship
between the scale of dispersal and the scale of patchiness,
which predicts that the magnitude of dispersal (number of
individuals) among patches should be maximized when the
scale of spatial heterogeneity (defined in terms of patch size
and isolation) is neither too fine nor too coarse relative to the
gap-crossing abilities of a species. We call this the “dispersal
scaling hypothesis” (DSH). We demonstrate congruence in
the functional form of this relationship under fundamentally
different dispersal assumptions, using well-documented iso-
tropic dispersal kernels and empirically derived dispersal
parameters from diverse species, in order to explore the
generality of this finding. The DSH generates testable hy-
potheses as to when and under what landscape scenarios
dispersal is most likely to be successful. This provides
insights into what management scenarios might be neces-
sary to either restore landscape connectivity, as in certain
conservation applications, or disrupt connectivity, as when
attempting to manage landscapes to impede the spread of an
invasive species, pest, or pathogen.
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Introduction

Dispersal is essential for maintaining population connectiv-
ity, which in turn is important for mitigating extinction risk
and the loss of genetic diversity within populations (With
and King 1999; Ezard and Travis 2006). For many species,
population connectivity has already been seriously disrupted
through the wholesale loss and fragmentation of their habitat
as a result of human land-use activities (Millennium
Ecosystem Assessment 2005a, c). The restoration of popu-
lation connectivity, such as by the creation of dispersal
corridors among isolated habitat fragments, is thus frequent-
ly advocated in conservation planning and reserve design
(Crooks and Sanjayan 2006). Conversely, some of the most
important environmental and public health threats we now
face are ultimately a consequence of “over-connectivity,” in
which the spread of a non-native species or disease has been
facilitated by human activity, leading to increased homoge-
nization of biotas and an elevated risk of global pandemics
(Millennium Ecosystem Assessment 2005b). To address the
threats of invasive or disease spread, control measures might
seek to disrupt dispersal—and thus connectivity among sites
or hosts—through landscape management techniques, in-
volving targeted habitat removal or an increase in spatial
heterogeneity (e.g., using mixed cultivars or inter-cropping
in agricultural fields) to slow the rate of invasive spread by
effectively increasing the distance among susceptible host
populations (Glass et al. 2002; Gomez et al. 2008; Mills et
al. 2010; Skelsey et al. 2010; Swei et al. 2011).

Clearly, dispersal can have different implications for
landscape management depending on the mode of spread
or transport, the nature of the landscape through which the
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organism moves, and whether its spread is deemed benefi-
cial, neutral, or harmful to humans or other species.
Typically, however, the different sorts of interactions
between dispersal and spatial heterogeneity have been
explored independently in different disciplines, which
reinforce the perception that there must be something
fundamentally different about how, for example, a bird
versus a plant pathogen disperses across the landscape. If
we ignore the obvious differences in terms of their spe-
cific mode of dispersal or the distance length scales over
which it occurs, however, might it nevertheless be pos-
sible to abstract a general scaling relationship for these
different systems that would enable us to predict under
what landscape scenarios dispersal is maximized? Such
scaling laws are ubiquitous in other areas of ecology
(e.g., Brown et al. 2002), and would facilitate identifica-
tion of the particular scales at which spatial heterogeneity
(landscape structure) should be targeted for the manage-
ment and the regulation of population connectivity.

In considering the relationship between spatial heteroge-
neity and dispersal, we are confronted with a fundamental
question: “At what spatial scale(s) is dispersal among hab-
itat patches maximized?” This is an important question as
identifying the scales at which dispersal is maximized (and
by corollary, reduced) may be a crucial factor in determining
how to manage landscapes for enhanced or reduced dispers-
al, as when restoring habitat connectivity to facilitate dis-
persal among isolated populations or conservation reserves
(where connectivity is generally beneficial) or when disrupt-
ing connectivity to prevent the spread of disease or an
invasive species (where connectivity is harmful). Whilst
dispersal among patches tends to increase with an increase
in the amount of habitat (or hosts, as the case may be) and
with the degree of habitat (or host) aggregation (With and
King 1999; King and With 2002), these results regarding the
effect of habitat on dispersal are in fact scale dependent. The
effects on dispersal are constrained by the scale of the
landscape, both in terms of the spatial grain or fine-scale
resolution of the landscape pattern (patch size) as well as the
distance separating habitat patches (patch isolation).
Assuming that population density is proportional to habitat
area, this can lead to conflicting hypotheses as to when and
at what scales dispersal—and thus connectivity—is maxi-
mized. If we scale the entire system relative to the organism,
then at finer spatial scales, the distance separating habitat
patches tend to be smaller, which should facilitate dispersal
among those patches. Conversely, at broader spatial scales,
the distance between habitat patches tend to be larger, which
decreases the likelihood of dispersal among patches beyond
some critical distance. From this, we might conclude that
dispersal among patches should be maximized at fine spatial
scales. However, smaller habitat patches contain and pro-
duce relatively fewer dispersal agents (e.g., populations are

smaller in small patches), which may reduce dispersal in
terms of numbers of individuals or propagules that disperse.
In contrast, larger habitat patches contain or can produce
relatively more dispersal agents, and also provide larger
“targets” that can accumulate or attract more dispersers
(e.g., larger habitat patches are perceived to have more
resources), which increase the likelihood that agents will
arrive at these more distant patches. This then suggests that
dispersal among patches should instead be maximized at
broader spatial scales. Thus, we have contrasting hypotheses
as to the scale of spatial heterogeneity at which dispersal
among patches is most likely to be maximized. To compli-
cate matters further, there may not be a positive correlation
between patch size and the distance between patches at
different scales; larger habitat patches can be separated by
smaller distances, and smaller patches by greater distances.

The idea of scale-dependent relationships in movement
responses to landscape structure is not new. For example,
under the gradient paradigm of landscape structure
(Whittaker 1967), successful movement is influenced by
environmental gradients that vary with distance from a
source (Janzen 1970; Connell 1971). Further, functionally
based definitions of landscape connectivity emphasize that a
given landscape will be differentially permeable to organ-
isms (i.e., connected) depending upon the scale of dispersal
relative to the scale of heterogeneity (Taylor et al. 1993;
With et al. 1997; Brooks 2003; Baguette and Van Dyck
2007). In network-based approaches, connections between
network elements (individuals, habitat patches, or popula-
tions) can be examined at different spatial scales to evaluate
the effect on overall network connectivity (Keitt et al. 1997;
Bunn et al. 2000; Brooks et al. 2008; Margosian et al. 2009).
Thus, while it is recognized that there may exist optimal
scales at which to investigate or manipulate ecological flows
(Betts et al. 2006; Betts et al. 2007; Pinto and Keitt 2008; de
Knegt et al. 2011), to our knowledge, a comprehensive
model of how the expected relationship between spatial
heterogeneity and dispersal changes across a range of scales
has not yet been developed.

Here, we present a new framework—the dispersal scaling
hypothesis (DSH)—that posits that the magnitude of dis-
persal (number of individuals) among patches (hereafter,
dispersal) should be maximized when the scale of spatial
heterogeneity (defined in terms of patch size and isolation)
is neither too fine nor too coarse relative to the gap-crossing
abilities of an organism (i.e., the ability or willingness to
traverse gaps — the intervening matrix between patches).
Conceptually, we can envision this emerging as a conse-
quence of antagonistic forces operating at different scales
(Fig. 1). As the scale of landscape pattern increases relative to
the organism (i.e., a coarse-grain patch structure), the size of
habitat patches and the quantity of dispersal agents both in-
crease (larger patches0larger populations0more dispersers).
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Similarly, larger habitat patches also make bigger “targets,”
or are perceived to be more attractive to dispersers. This
produces a “positive dispersal force” that increases dispersal
over longer distances (Fig. 1; blue line). However, the
distance between patches (patch isolation) will ultimately
increase, eventually exceeding the gap-crossing abilities of
the species. This decreases the probability of movement
among patches, resulting in an accompanying “negative
dispersal force” (Fig. 1; red line). Rescaling of landscape
pattern thus changes these competing dispersal forces, but
to different degrees, resulting in scale-dependent shifts in
dispersal. Dispersal is predicted to be maximized when the
product of these opposing forces is at its maximum positive
value: number of redistributed agents, y (number)0source
strength (number)×dispersal probability (number per square
meter)×receptor area (square meter). This maximum will
occur when the scale of spatial heterogeneity is neither too
fine nor too coarse relative to the gap-crossing abilities of
the organism; that is, at an intermediate range of scales
(Fig. 1).

The DSH further predicts that intermediate-scale optima
in dispersal will still exist for varying degrees of patch
isolation. For example, halving or doubling the degree of
patch isolation will tend to have a limited effect on dispersal
when the pattern of habitat patches is fine-grained relative to
the gap-crossing abilities of the organism, as gaps are easily
traversed regardless. By corollary, when the pattern of hab-
itat patches is coarse-grained relative to the organism, gaps
are less easily traversed and halving or doubling the degree
of patch isolation should have a greater effect on dispersal.
Thus, a parabolic relationship between dispersal and scale of
heterogeneity should still exist, although the interplay be-
tween the gap-crossing abilities of the organism and degree

of patch isolation will affect the scale at which optimum
dispersal occurs (Fig. 1; solid versus dashed lines).

In this paper, we develop an analytical approach that
incorporates scaling of spatial heterogeneity (both in terms
of patch size and patch isolation) to predict the spatial scale
at which dispersal is maximized. We parameterized this
model for a range of ecologically important species repre-
senting vastly different modes of dispersal, using empirical-
ly derived dispersal kernels from the literature, so as to
ground our results in ecological reality. We show that,
regardless of the species or dispersal process in question,
dispersal is maximized at an intermediate range of scales of
spatial heterogeneity, consistent with the expectations of the
DSH.

Methods

General concepts

We regard “spatial heterogeneity” here as the manifes-
tation of patchiness (discrete habitat patches) at a par-
ticular scale, which embodies the size of a patch and its
relative isolation. Patch isolation can be defined in
terms of Euclidean distance between patches or the
relative permeability of the intervening matrix between
patches (i.e., the effective isolation; Ricketts 2001). In
the context of our model, a “landscape” consists of a
single source patch (containing dispersing agents) and a
single target patch (receptor of dispersing agents) separated
in space by a particular (fixed) Euclidean distance or
effective isolation. Landscapes can be defined at any
spatial scale (as simply a spatially heterogeneous area;
Turner 1989), and spatial scaling refers to a factorial change
in both patch size and isolation. For analytical convenience,
wemake a number of simplifying assumptions with regards to
dispersal. We do not explicitly consider various phases of
dispersal, such as emigration and settlement (Royce 2007),
and instead define “dispersal” as successful movement (num-
ber of individuals or propagules) from a source to a target
habitat patch, which may incorporate “travel costs” (Travis et
al. 2012) as a component of the effective isolation between
patches. We do not differentiate the concept of “success”
any further with regard to the relative abilities of dispers-
ers in locating resources within the target patch, nor do
we consider the fate of dispersing agents that fail to reach
the target patch. Given these assumptions, dispersal results
purely from an interaction between the scale of heteroge-
neity and the gap-crossing abilities of the species of
interest. We thus view dispersal as a functional response
to landscape structure (i.e., functional connectivity between
source and target patches achieved through successful
movement; Baguette and Van Dyck 2007).

Scale

1

0

Source & target patch size
Dispersal probability
Dispersal among
patches

Fig. 1 Conceptual representation of the dispersal scaling hypothesis
(DSH). Scaling a heterogeneous (patchy) environment relative to the
gap-crossing abilities of a species produces antagonistic “dispersal
forces” that result in scale-dependent shifts in the magnitude of dis-
persal (number of individuals) among patches
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Dispersal kernels

Dispersal density (number per unit area) over a distance r
(length) is the product of a source production term (number)
and an “isotropic” density function, or dispersal kernel f(r)
(per unit area). Isotropic dispersal (movement that is invari-
ant with respect to direction) is a classic simplifying as-
sumption made in theoretical ecology and ecological
modeling, which serves as a first approximation from which
departures resulting from the relaxation of assumptions (i.e.,
directed dispersal) can later be evaluated (Turchin 1998).
We assume an exponential power distribution for the dis-
persal kernel, which has the advantage of a flexible shape
(Clark et al. 1998; Clark et al. 1999; Fayard et al. 2009). The
basic kernel is:

f ðrÞ ¼ 1

N
exp � r

a

� �ch i
ð1Þ

where a is a distance parameter (meter), c is a dimensionless
shape parameter, and N is a normalization constant:

N ¼
ð1
0

þ
2p
exp � r

a

� �ch i
d8 dr ¼ 2pa2Γ 2=cð Þ

c
ð2Þ

where Γ is the gamma function. The kernel can be concave
at the source and leptokurtic (c≤1), or convex and platy-
kurtic (c>1), or can incorporate other important and well-
known density functions as special cases. Among the most
common are the negative exponential (c01):

f ðrÞ ¼ 1

2pa2
exp � r

a

� �
ð3Þ

the Gaussian kernel (c02):

f ðrÞ ¼ 1

pa2
exp � r

a

� �2� �
ð4Þ

and the square root negative exponential (c01/2):

f ðrÞ ¼ 1

24pa2
exp �

ffiffiffiffi
r

a

r� �
ð5Þ

As a result of its flexibility, the exponential power distri-
bution has been applied in a number of theoretical studies
that address dispersal (Kot et al. 1996; Clark 1998; Clark et
al. 1998, 1999; Austerlitz et al. 2004; Bianchi et al. 2009;
Fayard et al. 2009; Estep et al. 2010; Crossman et al. 2011).

The three kernels differ strongly in shape (Fig. 2). The
Gaussian kernel appears as a bell shape if f(r) is plotted on a
linear axis (Fig. 2a) and as a parabola when plotted on a
logarithmic y-axis (Fig. 2b). The tails of the Gaussian kernel
have the least probability mass, relative to the center of the
distribution, of the three kernels. Differences in the thick-
ness of kernel tails are best seen when probability density is

plotted on logarithmic axes (Fig. 2b). The negative expo-
nential kernel has less probability mass near the center than
the Gaussian kernel but more in the tails. This kernel
appears as a triangle on logarithmic axes. The square root
negative exponential kernel has the least probability near the
center among the three distributions and the most in the
tails. Theoretical studies suggest that the shape of the dis-
persal kernel, in particular the fatness of the tail, has a major
effect on an organism’s potential to spread (Kot et al. 1996;
Clark et al. 1998). Both the negative exponential and the
Gaussian kernels are said to be “thin-tailed,” meaning that
the tails decline as fast as or faster than an exponential
function (Madden et al. 2007). If the kernel is thin tailed,
the population advances at a constant velocity (Mollison
1977). Ecologists interested in processes that operate at fine
spatial scales, such as the foraging behavior of small organ-
isms, often use thin-tailed kernels. In contrast, the decline of
the tails of the square root negative exponential kernel is
clearly less than exponential, and this type of kernel is
accordingly called “fat-tailed.” This kernel has an advantage

0.0

0.2

0.4

0.6

0.8

1.0
a

−5 −4 −3 −2 −1 0 1 2 3 4 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Distance (m)

b

P
ro

ba
bi

lit
y 

de
ns

ity
Fig. 2 Exponential power distributions used for dispersal. Negative
exponential (Eq. 3: solid line, c01), Gaussian (Eq. 4: dashed line, c0
2), and square root negative exponential (Eq. 5: dotted line, c01/2).
Probability density is expressed on a linear y-axis in a and on a
logarithmic axis in b to highlight differences in kernel shape. For
demonstration purposes, the scale parameter is a ¼ 1
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a common variance of 1
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over some alternative fat-tailed kernels, such as power func-
tions, because it does not have an infinite density at the
source (Clark et al. 1999). Kernels with fatter tails (Eq. 5)
lead to expansion in “leaps and bounds” ahead of the
expanding wave, which means accelerating expansion
(Mollison 1977; Shaw 1995; Kot et al. 1996). Ecologists
interested in processes that operate at broad spatial scales,
such as reforestation of habitat fragments and long-distance
population spread commonly employ fat-tailed kernels.

Influence of spatial scaling on dispersal among patches

We define a scale parameter r of dimension length (meter),
and use this to facilitate the spatial scaling of source and
target patches as well as the distance between them. We
assume square source and target patches with dimensions
r×r (square meter), giving a centroid to centroid gap dis-
tance between adjacent patches of r. Thus, as we increase r,
we concomitantly scale the source and target areas as well as
the distance between them. In order to alter the degree of
association between patch size and distance between
patches, we introduce b (–) as a multiplicative factor of
gap distance r. The distance between a source and target
patch with dimensions r×r then becomes b r. Various values
of b can be used to consider movement between any two
points within the source and target patches, or as a measure
of the “effective isolation” between patches due to the

resistance of the intervening matrix to dispersal (Fig. 3).
Including parameter b therefore allows us to view the inter-
vening matrix between patches from both a “structural” and
a “functional” perspective: the Euclidean interpatch distance
that must be traversed, which is a function of habitat con-
figuration; or the “effective isolation distance’ that must be
traversed, which incorporates the ability of organisms to
move through an intervening matrix of differing resistance
or permeabilities to movement (functional connectivity;
Wiens et al. 1993; Ricketts 2001). We treat these two inter-
pretations of the effects of b as synonymous, as in both
cases b alters distance of movement (the Euclidean distance
or effective isolation) and the likelihood of dispersal, and we
use four values of b (1/2, 2, 8, and 32) to approximate
varying degrees of patch isolation (Fig. 3). For analytical
convenience, we assume that the number of dispersal agents
is proportional to source area according to a density param-
eter, k (number per square meter) and that dispersers are a
random sample of the population. Again, this is a common
simplifying assumption in theoretical ecology from which
departures resulting from additional complexities (e.g., var-
iation in habitat quality) can later be evaluated. Under these
simplifying assumptions, the number of individuals, y
(number), dispersing from a source patch and landing in a
target patch of the same area is given by the product of the
source term, k r2 (a positive dispersal force that increases
with r; Fig. 1), the dispersal probability, f(a(b r) (a negative

r
(m

)

r (m)

2
r

(m
)

2 r (m)

a b c

d

Fig. 3 Spatial scaling of landscapes. Landscapes consist of a source
patch (containing dispersing agents) and a target patch (receptor of
dispersing agents), shown in white and gray, respectively. Source and
target patches have dimensions r×r (square meter), giving a dispersal
distance between the centroids of adjacent patches of r (meter). We use
the parameter b (–) as a multiplicative factor of the dispersal distance r;
the distance between source and target patches then becomes b r: a b
can be used to provide dispersal to and from any point within or among
patches that are adjacent, or b to and from any point between patches
separated in space. Alternatively, c b can be used to approximate an

intervening matrix between patches that is easy (b02) and difficult (b0
8) for the organism to traverse. Parameter b therefore alters the phys-
ical isolation of patches or their effective isolation owing to the resis-
tance of the landscape to movement between patches, i.e., it is a patch
isolation parameter. For a fixed value of b, d when we increase r we
concomitantly scale patch size and distance between patches. We use
four values of b: 1/2, 2, 8, and 32, to approximate varying degrees of
patch isolation. For each value of b, we use a monotonically increasing
series of r values to scale the spatial domain
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dispersal force that decreases with r; Fig. 1), and the target
area, r2 (a positive dispersal force that increases with r;
Fig. 1). Although errors are generated by the discretization
of spatial processes, this is common practice in the construc-
tion of parsimonious and analytically tractable ecological
models. For a monotonic series of r values and a fixed value
of b, we obtain a distribution of y values that reveals the
relationship between the scale of spatial heterogeneity
(patch size [f(r)], patch isolation [f(b r)]), and dispersal [f
(a,b r)] (hereafter, scaling distribution of dispersal). Any
dispersal model could be used, but for the density functions
given previously (Eqs. 3–5), the resultant formulae are:

yðrÞ ¼ kr4

2pa2
exp � br

a

� �
ð6Þ

yðrÞ ¼ kr4

pa2
exp � br

a

� �2
" #

ð7Þ

yðrÞ ¼ kr4

24pa2
exp �

ffiffiffiffiffi
br
a

r !
ð8Þ

Empirically derived values for k and a from the
literature were used to give a range of different dispers-
al modes for a variety of ecologically important organ-
isms: (1) the mosquito Culex erraticus, an important
vector for many pathogens including eastern equine
encephalitis virus, which is considered to be the most
dangerous endemic arbovirus in the USA (Jacob et al.
2010); (2) spores of the oomycete Phytophthora infestans,
causative agent of potato late blight, widely regarded as one of
the most costly constraints to attaining global food security
(Evans and Waller 2010); and (3) red maple (Acer rubrum)
seeds, one of the most abundant and widespread deciduous
trees in eastern North America (Abrams 1998). Scaling dis-
tributions of dispersal were calculated for these three species
using Eqs. 6–8, respectively, as the different dispersal kernels
in these formulae have previously been tested for these species
(Table 1).

Results

The relationship between dispersal and scale of spatial het-
erogeneity was remarkably similar among organisms that
exhibit vastly different modes of spread or transport
(Eqs. 6–8 parameterized for real organisms; Fig. 4).
Consistent with the conceptual model of the DSH (Fig. 1),
the scaling distribution of dispersal was parabolic in form in

Table 1 Parameters used to define dispersal processes

Dispersing agent c (–) a (m) k (no. m−2)

Culex erraticusa 1 1,603 22

Phytophthora infestansb 2 2.78 2.28·106

Acer rubrumc 0.5 30.8 73,100

a c and a from Estep et al. (2010), k from Ameen et al. (1994)
b c and a from Skelsey et al. (2005), k from Skelsey et al. (2010)
c Clark (1998)
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Fig. 4 Scaling distributions of dispersal. Panels show the interaction
between the scale of spatial heterogeneity (patch size [f(r)], patch
isolation [f(b r)]) and the gap-crossing abilities of the organism on
the number of redistributed agents among source and target patches, y,
under different dispersal assumptions: a exponential dispersal (Eq. 6)
of mosquitoes (C. erraticus) (Table 1); b Gaussian dispersal (Eq. 7) of
P. infestans sporangia; and c square root negative exponential dispersal
(Eq. 8) for red maple (A. rubrum) seeds. The set of four curves per
panel show the influence of increasing patch isolation (Euclidean
distance or effective isolation) on successful movement between
source and target patches. Solid data markers show the global maxi-
mum values of Eqs. 6–8
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each case, such that dispersal was maximized at an interme-
diate range of scales.

Increasing patch isolation (Euclidean distance or effec-
tive isolation between patches, b) served to decrease dis-
persal with a magnitude that increased with spatial scale
(Fig. 4). At fine spatial scales, dispersal was relatively
unaffected by patch isolation for these three organisms, as
noted by the congruence among all four curves in this
domain. At coarser spatial scales, however, there was a
much larger effect of patch isolation on dispersal. Beyond
the intermediate maxima, increasing isolation leads to de-
creased dispersal in spite of larger population sizes (0more
dispersers) within these large patches, because the gap-
crossing abilities of the organism are eventually exceeded
by the increasing interpatch distances or resistance of the
matrix to dispersal. Significantly, the effect of patch isola-
tion on the scaling distribution of dispersal remains un-
changed across a wide range of dispersal assumptions and
scales (Fig. 4a–c). In all cases, the scaling distribution of
dispersal is a parabolic function that attains a maximum
value at an intermediate range of scales.

Finding the precise spatial scale of maximum dispersal
for Eqs. 6–8 was a simple matter of finding the global
maximum for those functions. Some basic calculus yields:

4a/b, a
ffiffiffiffiffiffiffiffi
2 b=

p
, and 64a/b for Eqs. 6–8, respectively

(Fig. 4). That these global maxima are a function of the
dispersal distance and patch isolation parameters [f(a,b)]
confirms that dispersal is maximized when the scale of
spatial heterogeneity is neither too fine nor too coarse rela-
tive to the gap-crossing abilities of the organism.

Discussion

That dispersal should be maximized at intermediate scales
relative to the organism (DSH) is a novel hypothesis that
formalizes the relationship between the spatial scale of
patchiness and the gap-crossing abilities of species in spa-
tially heterogeneous landscapes. That this scaling relation-
ship holds across a diverse range of dispersal modes and
landscape structures (landscapes with different gap proper-
ties) suggests that, regardless of the absolute length scales at
which dispersal occurs, the relationship is a general and
reasonably robust one.

It should be noted, however, that the scaling transition
was dealt with in a linear way in this analysis, in that the
same isotropic dispersal process was applied across a range
of scales (patch sizes and distances between patches). Such
a linear scaling relationship may not be applicable in all
contexts. For example, animal movement may not exhibit a
similar response to spatial pattern across all scales: foraging
movements between small resource patches may differ from

long-distance movement between different habitat patches
or ecosystems. It could be argued that if an organism can
travel between intermediate-sized patches with intermediate
gap distances, it can also reach smaller patches separated by
shorter gap distances, meaning that dispersal would start to
become limiting at coarse scales but may not be reduced at
finer scales. Alternatively, resources at finer spatial scales
may fall below the perceptual range of the disperser, and
therefore may not be detected (Wiens 1989; Kotliar and
Wiens 1990; Lima and Zollner 1996). Thus, the fact that a
linear scaling process led to a parabolic ecological response
raises the question of whether such a non-linear scaling
relationship for dispersal in patchy landscapes might lead
to the evolution of optimal domains of movement behavior,
where individuals maximize their success by operating with-
in some intermediate range of scales bounded by patch size,
gap properties and the extent of their perceptual resolutions?
Although in this study we did not address the potential
effects of animal behavior (or other forms of non-random
dispersal) on predictions of the DHS, nor the potential
effects of other aspects of spatial heterogeneity, such as
clumping of habitat or variation in habitat quality, we have
explored these complexities within a different modeling
framework and can affirm that we obtain results that are
qualitatively similar to those of the analytical model pre-
sented here (Skelsey et al., in review).

The notion of antagonistic forces being responsible for
some maximum response level is generic to many different
biological and physical systems. For example, the Janzen–
Connell Hypothesis is a widely accepted explanation for the
maintenance of tree species biodiversity in tropical tree
communities (Janzen 1970; Connell 1971). It predicts that
seed deposition decreases with distance from a parent tree,
but those seeds that are deposited farthest from the parent
have a competitive advantage as they are more distant from
seed predators that are found more commonly around the
parent. This leads to a maximum response in seedling re-
cruitment at an intermediate distance from the parent tree.
Obviously, what qualifies as an “intermediate distance” will
depend on the tree species and the foraging range of its seed
predators. The DSH predicts a similar response but without
the need to invoke any form of interspecific interaction.
Furthermore, just as the DSH predicts that dispersal is
maximized when spatial heterogeneity is neither too fine
nor too coarse relative to the gap-crossing abilities of an
organism, in a similar vein, the intermediate disturbance
hypothesis (IDH; Grime 1973; Connell 1978) predicts that
species diversity is likely to be enhanced when ecological
disturbance is neither too rare nor too frequent. This is
because intermediate levels of disturbance allow both com-
petitive K-selected and opportunistic r-selected species to
coexist. What qualifies as an “intermediate level” of distur-
bance will depend on the type of disturbance and the relative
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sensitivity of different types of species to that distur-
bance within the system in question. Although the IDH
is a simplification of the complex interactions that occur
between species and their environment, it continues to
be a useful framework for understanding the influence
of disturbance on species diversity within communities
(e.g., Roxburgh et al. 2004). We view the DSH as a
similarly general framework for understanding the relation-
ship between scale and dispersal, and what constitutes an
“intermediate scale” is expected to be both species and land-
scape dependent.

The finding of intermediate-scale optima in dispersal in
patchy landscapes has important implications, as many spe-
cies in nature are distributed and operate across a wide range
of spatial scales. It is therefore imperative that we recognize
when and where dispersal is likely to have a pervasive
influence—and when it does not. Understanding that inter-
mediate scales have the potential to support the greatest
connectivity among sites or populations is a step toward
identifying the scales at which management can have great-
est impact. As information regarding the dispersal character-
istics of an organism or process becomes available, we can
use the DSH to predict the scale at which connectivity is
maximized or minimized (e.g., Eqs. 6–8). Such knowledge
could prove to be invaluable in a wide variety of fields
where management of dispersal or connectivity may be
required: from disruption of the spread of invasive species
and pathogens, to optimization of conservation reserve net-
works, to minimization of the environmental impacts of a
host of anthropogenic activities, such as habitat loss and
fragmentation caused by agriculture and industry.
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