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Abstract 

Wheat blast, caused by Magnaporthe oryzae pathotype triticum, has emerged as a serious 

problem for wheat production in South America and recently emerged as a threat to wheat 

production in Bangladesh. To prepare for the possible introduction of wheat blast in to the 

United States, it would be helpful to identify areas of the country most at risk for blast 

epidemics. Because wheat blast occurs primarily in tropical and subtropical regions of the world, 

cold winter temperatures may restrict the establishment of the blast pathogen in the United 

States. Therefore, the first objective of this research was to quantify the freeze-thaw tolerance of 

the wheat blast pathogen in naturally infected wheat rachises from Bolivia and to measure the 

viability of the conidia after exposure to various treatments. The results indicate that exposing 

the fungus in moist residue to multiple freeze-thaw cycles is more damaging than exposing the 

fungus in moist residue to longer, single freezes. When in dry residue, the fungus was not 

harmed by the freeze-thaw cycles. Freezing and thawing of the wheat blast fungus in moist 

residue significantly affected its ability to produce viable conidia.  

The second objective of this research was to identify environmental conditions that could 

be conducive for wheat blast epidemics by examining historical epidemics of rice blast, caused 

by Magnaporthe oryzae pathotype oryza. The dataset used in this analysis consisted of 60 site-

years of historical observations of rice blast levels from Arkansas, Louisiana, and Texas. These 

observations were coupled with monthly and weekly summaries of hourly weather variables 

based on temperature, relative humidity, precipitation, and regional moisture indices. 

Classification trees and logistic regression were used to identify variables associated with rice 

blast epidemics. The results indicate that rice blast epidemics are favored by cooler April 



  

temperatures and higher levels of precipitation in June. Preliminary models for rice blast based 

on these variables were able to correctly classify epidemic years with >75% accuracy. In the 

future, the results of this project will be used as part of a risk assessment for a wheat blast 

introduction and establishment in the United States. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

Table of Contents 

List of Figures ................................................................................................................................ vi 

List of Tables ................................................................................................................................ vii 

Acknowledgements ...................................................................................................................... viii 

Chapter 1 - Literature Review ......................................................................................................... 1 

Rice Blast (Magnaporthe oryzae pathotype oryza) .................................................................... 1 

Magnaporthe oryzae Disease Cycle ........................................................................................... 4 

Wheat Blast (Magnaporthe oryzae pathotype triticum) ............................................................. 6 

Literature Cited ......................................................................................................................... 10 

Chapter 2 - Effects of freezing on the survival and reproduction of Magnaporthe oryzae 

pathotype triticum, the causal agent of wheat blast ............................................................... 19 

Abstract ..................................................................................................................................... 19 

Introduction ............................................................................................................................... 20 

Materials and Methods .............................................................................................................. 22 

Results ....................................................................................................................................... 24 

Discussion ................................................................................................................................. 25 

Acknowledgments .................................................................................................................... 28 

Literature Cited ......................................................................................................................... 29 

Figures and Tables .................................................................................................................... 33 

Chapter 3 - Weather conditions favoring epidemics of rice blast in the Southern United States . 34 

Abstract ..................................................................................................................................... 34 

Introduction ............................................................................................................................... 34 

Materials and Methods .............................................................................................................. 36 

Results ....................................................................................................................................... 39 

Discussion ................................................................................................................................. 40 

Acknowledgments .................................................................................................................... 42 

Literature Cited ......................................................................................................................... 43 

Figures and Tables .................................................................................................................... 46 

Chapter 4 - Conclusions ................................................................................................................ 50 

  



vi 

List of Figures 

Figure 2.1 Average viable conidia production per replicate (5 rachises) by Magnaporthe oryzae 

pathotype triticum in naturally infected wheat residues exposed to one or more freeze-thaw 

(FT) cycles. ........................................................................................................................... 33 

Figure 3.1 Map of climate districts within Texas, Louisiana, and Arkansas that correspond to the 

Standard Precipitation Index and rice producing areas. ........................................................ 48 

Figure 3.2 Rice production timelines for the Southcentral US and associated weather variables 

that influence rice blast epidemics. ....................................................................................... 49 

 

  

file:///C:/Users/fisch/OneDrive/Documents/1%20Graduate%20Research/Thesis/Defense/TDFThesisone.docx%23_Toc455669991
file:///C:/Users/fisch/OneDrive/Documents/1%20Graduate%20Research/Thesis/Defense/TDFThesisone.docx%23_Toc455669991
file:///C:/Users/fisch/OneDrive/Documents/1%20Graduate%20Research/Thesis/Defense/TDFThesisone.docx%23_Toc455669991
file:///C:/Users/fisch/OneDrive/Documents/1%20Graduate%20Research/Thesis/Defense/TDFThesisone.docx%23_Toc455669992
file:///C:/Users/fisch/OneDrive/Documents/1%20Graduate%20Research/Thesis/Defense/TDFThesisone.docx%23_Toc455669992
file:///C:/Users/fisch/OneDrive/Documents/1%20Graduate%20Research/Thesis/Defense/TDFThesisone.docx%23_Toc455669993
file:///C:/Users/fisch/OneDrive/Documents/1%20Graduate%20Research/Thesis/Defense/TDFThesisone.docx%23_Toc455669993


vii 

List of Tables 

Table 2.1 Adjusted p-values for comparisons of mean viable conidia production per replicate (5 

rachises) by Magnaporthe oryzae pathotype triticum following one or more freeze-thaw 

cycles. .................................................................................................................................... 33 

Table 3.1 Important rice blast-associated weather variables defined by classification tree 

analysis. ................................................................................................................................. 46 

Table 3.2 Logistic regression results between the top moisture and temperature variables that 

favor rice blast epidemics. .................................................................................................... 47 

 

  



viii 

Acknowledgements 

 First I would like to thank my major professor, Dr. Erick De Wolf, for his continuous 

support and encouragement throughout my graduate program. Erick has taught me how to 

effectively communicate my research, better understand statistical programs, and about plant 

pathology in general. He has given me opportunities that have and will shape my career and life, 

and I am incredibly thankful. I would also like to thank my committee members Dr. Willliam 

Bockus and Dr. Barbara Valent for their support, suggestions, and great feedback. Dr. Bockus 

and Dr. Valent were wonderful to work with and I am so grateful they agreed to be on my 

committee. Thank you to Dr. Bethany Grabow and Dr. Christian Cruz for answering my many 

questions and assisting me on certain things with my research. Thank you to the BRI wheat blast 

team for generously compromising with me on lab space and time. I would also like to thank 

Timothy Todd for helping me with my SAS codes, interpreting the results, and answering all of 

my questions. I acknowledge Anna McClung, Shane Zhou, Don Groth, Yeshi Wamishe, Jarrod 

Hardke, and Rick Cartwright for the historical observations and information on rice blast in 

Texas, Louisiana, and Arkansas. Thank you to the KSU Department of Plant Pathology students, 

post docs, faculty, and office staff for making my Master’s an enjoyable and successful 

experience.  Finally, I would like to thank my dad and mom, family, and friends for their 

constant support and putting up with me when I was under a lot of stress.  

 

  



1 

Chapter 1 - Literature Review  

The heterothallic ascomycetous fungus, Magnaporthe oryzae, is the causal agent of the 

disastrous disease blast (Valent et al., 2013). Blast disease is associated with grasses of 

agricultural importance such as wheat (Triticum aestivum), rice (Oryza sativa), barley (Hordeum 

vulgare), and oats (Avena sativa) (Khang and Valent, 2010).  This fungal species is divided into 

host-specialized populations including the M. oryzae pathotype oryza (MoO) causing rice blast 

across the globe; the M. oryzae pathotype triticum (MoT) causing wheat blast in South America 

and Bangladesh; and the M. oryzae pathotype lolium (MoL) causing gray leaf spot on perennial 

and annual ryegrass and tall fescue in the United States and Japan (Valent et al., 2013; Malaker 

et al., 2016). Generally these pathotypes are unable to infect other host species, although MoL 

isolates in the U.S. are genetically similar to MoT isolates from South America (Tosa et al., 

2004). Some of the native MoL isolates have been shown to have the capability to infect wheat 

(Valent et al., 2013). The risk of introduction of wheat blast into the U.S. is high, not only 

because of the similarities between MoL and MoT isolates, but also due to the fungi’s seed-borne 

nature and increased trade and travel between the U.S. and South America (Valent et al., 2013).  

 Rice Blast (Magnaporthe oryzae pathotype oryza) 

Rice blast is one of the most important diseases of rice worldwide (Ou, 1985). Between 

10 and 30% of rice yields are lost to blast annually (Talbot, 2003). It is estimated that the yields 

lost to this disease would feed 60 million people a year (Khang and Valent, 2010). In the 

Southcentral United States, where most of the country’s rice is produced, yield losses can reach 

100% in fields during favorable years (uaex.edu). MoO infects all aboveground parts of the rice 

plant and can infect at all growth stages from seedling to grain formation (Ou, 1985). The 

pathogen is capable of causing leaf blast, collar rot, nodal blast, and panicle blast depending on 
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when and where the pathogen infects (Groth, 2006). Among these infection stages, panicle blast 

is the most destructive in terms of yield loss because it can cause incomplete grain filling and 

poor milling quality (Bonman et al., 1989; Webster and Gunnel, 1992). The main overwintering 

inoculum sources are infected residue, seed, and related host species (Guerber and TeBeest, 

2006). Sexual reproduction can occur in vitro through the mating types MAT1-1 and MAT1-2 

(Talbot, 2003). Despite the ability of MoO to perform sexual reproduction, most isolates sampled 

from the field are female-sterile or totally infertile resulting in low levels of fertility. This means 

the blast fungus is largely asexual on rice in the field (Khang and Valent, 2010).  

Crop management greatly affects rice blast severity.  Rice blast can be controlled by 

altering the planting date, avoiding overfertilization, maintaining flood depth, planting resistant 

cultivars, and applying fungicides (Chen et al., 2015). In the past decade, major work has been 

done to identify over 80 dominant resistance genes from rice or wild relatives in order to develop 

resistant cultivars (Khang and Valent, 2010; Ballini et al., 2008). Unfortunately, in many areas 

resistant varieties are quickly overcome by the disease due to the rapid genome evolution of the 

fungus (Khang and Valent, 2010). Some rice cultivars convey adult plant resistance as they 

mature. This means that less disease develops on more mature plants than on seedlings, and as 

the plant matures the infection is reduced. Hwang et al. (1987) demonstrated that cultivars 

conveying adult plant resistance had less yield loss than cultivars with low or no adult plant 

resistance (Hwang et al., 1987). Increased use of fertilizer, particularly nitrogen, makes rice blast 

infections more severe (Bonman, 1991; Kurschner et al., 1992), so it is important to use the 

recommended rates and not overfertilize. It has also been shown that loss of flood depth 

increases rice plant susceptibility to blast infection (Guerber and TeBeest, 2006; Khang and 

Valent, 2010). Maintaining water depths and preventing overfertilization will reduce the 
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susceptibility of rice to MoO and make for a less conducive environment for disease 

development. Single applications of azoxystrobin and trifloxystrobin are used to control blast in 

the southern United States (Groth, 2006). In a study by Groth (2006) it was found that a single 

application of azoxystrobin at heading effectively controlled blast, but two applications at boot 

and heading were more effective (Groth, 2006). Currently, fungicides remain the most popular 

choice of control for rice blast (Kaundal et al., 2006). 

Forecasting and simulation models have been developed in several rice producing 

countries including Italy, South Korea, Philippines, India, and Japan (Calvero et al., 1996; Biloni 

et al., 2006; Ishiguro and Hashimoto, 1991; Kaundal et al., 2006). For prediction models, 

weather factors such as temperature, relative humidity, precipitation, dew point, and wind speed 

are used to determine whether a blast epidemic is more or less likely to occur that year (Biloni et 

al., 2006; Calvero et al., 1996). These weather factors are based on the optimum developmental 

conditions for rice blast. Prediction models have the power to aid growers in making fungicide 

decisions more rationally by optimizing the timing and frequency of application of fungicides 

(Ou, 1985; Biloni et al., 2006; Kaundal et al., 2006).  To our knowledge, no prediction model 

has been developed for the Southcentral United States where rice is predominantly produced in 

the country. Weather variables that prove important in disease systems in other areas of the 

world won’t necessarily be important in a prediction model for the United States, but could give 

clues as to which weather factors may be useful.  

The literature largely agrees on the favorable conditions of rice blast development. Leaf 

wetness is one of the most important factors in the blast disease system and is required for 

conidia to germinate (Teng et al., 1991; Hamer et al., 1988). The optimum temperature for 

conidia to germinate is between 25-28°C (Sueda, 1928; Ou, 1985; Suzuki, 1969), and the 



4 

appressorium forms at an optimum temperature between 16 and 25°C (Suzuki, 1969). Conidia 

are produced at a relative humidity of 93%, and production increases as relative humidity 

increases (Ou, 1985; Suzuki, 1975). Sporulation does not occur below 9°C or above 35°C or 

below 89% relative humidity (Suzuki, 1975). Mycelium growth is most efficient at 93% relative 

humidity (Abe, 1941). Calvero et al. (1996) found in South Korea, consecutive days with relative 

humidity greater than 80%, number of days with relative humidity greater than 80%, consecutive 

days with precipitation, and number of days with precipitation were useful in predicting 

maximum lesion number, final lesion number, and panicle blast incidence. In the Philippines, the 

same researchers found mean maximum temperature, consecutive days with precipitation, 

number of days with wind speed greater than 3.5 ms-1, mean relative humidity, and precipitation 

frequency were important in predicting blast (Calvero et al., 1996). For predictive models in 

India, developed by Kaundal et al. (2006), rainfall was demonstrated to be the most important 

predictor followed by rainy days per week, minimum and maximum relative humidity, and 

minimum and maximum temperatures (Kaundal et al., 2006). Due to the water requirement for 

conidial germination appressorium function, and specific optimum temperatures for disease 

development, it is not unexpected that precipitation, relative humidity, and temperature are 

reoccurring variables in these models (Talbot, 2003; Khang and Valent, 2010; Bourett and 

Howard, 1990).  

 Magnaporthe oryzae Disease Cycle  

The rice blast disease cycle has been thoroughly studied and is described here. Wheat 

blast appears to follow a similar disease cycle (Tufan et al., 2009). Severe epidemics are sporadic 

and are more likely to occur when warm weather with high humidity occurs (Urashima et al., 

1993). The blast pathogen survives between growing seasons as mycelium in plant residue and 
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seeds (Agrios, 1997; Suzuki, 1975). A study done by Faivre-Rampant et al. (2013) on rice 

indicated that blast is primarily located in the seed coat and that conidia are produced shortly 

after the infected seed germinates. These conidia infect coleoptiles, primary roots, and produce 

mycelium that infect primary leaves and secondary roots (Faivre-Rampant et al., 2013). Once the 

temperature and humidity begin to rise in early spring, conidia are formed on the residue 

(Suzuki, 1975) and transported from plant to plant by water drops and wind. When a conidium 

lands on a host leaf surface, it produces an adhesive substance called spore tip mucilage which 

attaches it to the leaf (Hamer et al., 1989). At optimum conditions, the conidia germinate within 

two hours when free water is present (Hamer et al., 1988) and the temperature is between 25 and 

28°C for rice blast (Suzuki, 1969), and between 25 to 30°C for wheat blast (Cardoso et al., 

2008). The germ tube eventually swells and forms an appressorium (Bourett and Howard, 1990) 

at an optimum temperature of 16 and 25°C (Suzuki, 1969). At this stage a specialized hypha, the 

penetration peg, punctures the plant cuticle with the highest turgor pressure known in any 

organism (80 times atmospheric pressure) (Howard et al., 1991). Penetration can occur between 

10 and 32°C, but the optimum temperature is 24°C (Hemmi and Abe, 1932). After penetration, 

the hypha differentiates into a branched bulbous, invasive hypha that grows for 8-12 hours 

within the first infected plant cell (Kankanala et al., 2007). The invasive hyphae then move to 

adjacent plant cells presumably through plasmodesmata (Kankanala et al., 2007). The fungus 

uses a biotrophic invasion strategy and 7 to 8 days after infection, diamond shaped lesions are 

formed that reduces photosynthesis (Burrell, 1974; Kankanala et al., 2007). Lesions develop at 

an optimum temperature of 26 to 28°C, but can develop at varying temperatures after longer 

latent periods (Hemmi et al., 1939). Aerial conidiophores are formed within the lesions creating 

a gray appearance (Khang and Valent, 2010).  The conidiophore usually develops 5 or more 
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conidia arranged sympodially at the tips (Talbot, 2003), and are formed at optimum temperatures 

ranging from 25-28°C (Suzuki, 1975). Sporulation does not occur below 9°C or above 35°C or 

below 89% relative humidity, but sporulation does increase with relative humidity at 93% and 

above (Suzuki, 1975). The spread of blast occurs mainly via airborne conidia (Urashima et al., 

2007).  

 Wheat Blast (Magnaporthe oryzae pathotype triticum) 

Wheat blast was first detected by Igarashi in the Paraná State of Brazil in 1985 (Igarashi, 

1986, Urashima et al., 1993). Since then, the disease has spread to wheat producing areas in 

Brazil, Bolivia, Paraguay, Northern Argentina, and most recently, Bangladesh (Kohli et al., 

2011; Malaker et al., 2016). Similar to MoO, MoT is capable of infecting all aboveground parts 

of the wheat plant, but infection of the head is the most devastating phase of the disease (Kohli et 

al., 2011). Symptoms can occur on all parts of the head including awns, glumes, and the rachis 

(Igarashi, 1990). Infected rachises become bleached at and above the point of infection and 

results in shriveled seeds or completely prevents grain filling (Cruz, 2013; Igarashi, 1990). At the 

infection point of the rachis, the tissue begins to turn brown to black and will later become gray 

due to sporulation (Urashima et al., 2009). This can result in 100% yield losses in fields (Kohli et 

al., 2011). Predominantly, head blast has been observed in the field without leaf lesions and the 

contribution of inoculum from the leaves has been debated (Cruz et al., 2015). A recent study by 

Cruz et al. (2015) suggests older leaves of wheat may be more susceptible to blast than younger 

leaves (Cruz et al., 2015). In the same study, the researchers observed senescence of the three 

lowest leaves on the wheat plant, but no other obvious blast symptoms. At flowering the plants 

were sampled and substantial sporulation was found on the senesced, basal leaves of susceptible 

cultivars. This study suggests that the inoculum produced on infected lower leaves within wheat 
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fields may play a role in wheat blast outbreaks (Cruz et al., 2015). Blast of wheat, particularly 

head blast, is usually widespread throughout large production fields, which suggests there may 

be other sources of inoculum (Valent et al., 2013). It is often assumed in South America that the 

conidia causing head infections originate from blast infected weeds surrounding the fields. These 

weed sources include Digitaria sanguinalis, Echinocloa crusgalli, Cenchrus echinatus, among 

other species (Kohli et al., 2011).  

 Leaf lesions of wheat blast are very similar to rice blast in that the lesions are diamond 

shaped with tan centers and dark margins. When the lesions are sporulating they appear to be 

gray in the center (Valent et al., 2013). The sexual cycle of the blast pathogen has never been 

observed in nature on any host, but has been documented in the laboratory (Yaegashi and 

Udagawa, 1978). Wheat blast isolates taken from the field show high levels of sexual fertility. 

These isolates cross to form viable ascospores and microconidia (Urashima et al., 1993). 

Ascospores are produced in asci within perithecia (Yaegashi and Udagawa, 1978) and 

microconidia are produced within phialides, but their function is unknown (Chuma et al., 2009). 

The high level of sexual fertility in vitro suggests that the wheat blast pathogen may perform 

sexual recombination in the field (Valent et al., 2013).    

 Controlling wheat blast is challenging because of the lack of resistant varieties and 

ineffective fungicides when conditions are favorable (Valent et al., 2013). Wheat blast is not 

controlled by the same fungicides that are able to control rice blast (Khang and Valent, 2010). 

Mixtures of triazoles and strobilurins are used in South America and applied during heading to 

control blast in moderately resistant varieties (Kohli et al., 2011). Although, fungicides have 

been shown to be ineffective when sprayed on susceptible varieties during severe epidemic years 

(Urashima et al., 2009), a study by Cruz et al. (2015) suggests that applying fungicides to the 
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leaves, before heading, may also be effective in controlling blast (Cruz et al., 2015). U.S. winter 

wheat varieties and spring wheat varieties have been screened using blast isolates from Brazil 

and Bolivia. Kohli et al. (2011) reported that wheat varieties showing resistance to a select 

amount of blast isolates may not show resistance to natural field populations (Kohli et al., 2011), 

therefore it is important to test resistant varieties in field plots in South America as well. Very 

few resistance genes have been identified for wheat blast. Two have been identified in the variety 

Thatcher (Zhan et al., 2008), and resistant varieties that have been derived from the CIMMYT 

line, Milan, have been deployed throughout South America (Kohli et al., 2011). Adjusting the 

planting date of wheat is an important control strategy for South America, because the early 

planted wheat is more likely to be heading when the conditions are most conducive for blast 

(Mehta et al., 1992). Deep plowing of wheat residue and destroying alternate hosts are also 

control strategies used in South America (Valent et al., 2013; Mehta et al., 1992).  

Climate is an important factor in the distribution of blast. Kohli et al. (2011) reported that 

blast is favored by frequent rain for several days at an average temperature between 18 and 25°C 

during flowering. If these conditions are followed by hot, humid, and sunny days, a very 

conducive environment is created for blast to develop (Kohli et al., 2011). The maximum blast 

intensity observed by Cardoso et al. (2008) was at 30°C and increased with increasing wetting 

periods (Cardoso et al., 2008). According to these conditions, blast requires tropical and 

subtropical environments to survive (USDA: New Pest Response Guidelines). Similar to MoO, 

MoL overwinters in seeds and residue (Ou, 1985; Harmon et al., 2005). Gray leaf spot was 

reported by Harmon et al. (2005) to be significantly reduced by alternations of freezing and 

thawing (Harmon et al., 2005). In this study the conidial production was measured from samples 

of perennial ryegrass in the field and laboratory. Findings suggest that the fungus can survive 
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Indiana winters in infected residue, but the population is reduced significantly and may not be 

sufficient enough to serve as the primary inoculum source for summer outbreaks. Freeze-thaw 

cycles (24 hour periods of 4°C and -20°C) on fresh, infected residue reduced the population to 

undetectable levels. The results of this study suggest that there is a transition zone for the 

survival of MoL, and that the threat of this disease decreases with increasing latitude (Harmon et 

al., 2005). MoO has been reported to have sensitivity to cold temperatures (Ou, 1985). Findings 

reveal that only about one-fifth of hyphae survive for 50-60 days at -4 to -6°C (Abe, 1935; Ou, 

1985). 

Cruz (2013) predicted that MoT would not be able to survive overwintering in the low-

temperature regions of the U.S., but would not be limited in the lower half of the U.S. (Cruz, 

2013). According to this study, approximately 75% of the areas that produce winter wheat are 

not at risk for wheat blast outbreaks, but the remaining areas may experience conditions for 

wheat blast outbreaks. The states at greatest risk for wheat blast establishment are Alabama, 

Arkansas, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Michigan, 

Mississippi, Missouri, Nebraska, North Carolina, Ohio, Oklahoma, Pennsylvania, South 

Carolina, Tennessee, Texas, Virginia, and West Virginia (Cruz, 2013). Haley (2011) calculated 

the average number of freeze thaw days for each state. A freeze thaw day event is defined as any 

time the temperature crosses the freezing point (Haley, 2011). In December alone, eastern 

Kansas experiences 15-20 freeze thaw days and western Kansas experiences 20-25 freeze thaw 

days (Haley, 2011). Since wheat blast developed in tropical and subtropical regions, it is unclear 

as to whether the fungus would be able to survive the numerous freezing and thawing events it 

would be exposed to in parts of the United States.  
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Chapter 2 - Effects of freezing on the survival and reproduction of 

Magnaporthe oryzae pathotype triticum, the causal agent of wheat 

blast 

 Abstract 

Wheat blast, caused by Magnaporthe oryzae pathotype triticum (MoT), has emerged as a 

serious problem for wheat production in South America. To prepare for the possible introduction 

of wheat blast in the United States, it would be helpful to identify areas of the country most at 

risk for blast epidemics. Because wheat blast occurs primarily in tropical and subtropical regions 

of the world, cold winter temperatures may restrict the establishment of the blast fungus in the 

United States. Therefore, the objective of the research was to quantify the freeze-thaw tolerance 

of MoT in naturally infected wheat rachises from Bolivia and to measure the viability of the 

conidia after exposure to various treatments. Treatments included blast-infested rachises that 

were 1) moist and exposed to five freeze-thaw cycles, 2) moist and exposed to a single, five-day 

freeze with no thaw periods, 3) dry and exposed to five freeze-thaw cycles, 4) control with no 

freeze cycles, and 5) moist and exposed to a single, 24-hour freeze. Exposing the fungus in dry 

residue to five freeze-thaw cycles had no effect on its ability to produce viable conidia relative to 

the control. When the fungus was in moist residue however, five freeze-thaw cycles reduced the 

number of viable conidia produced by 66% relative to the control and 83% relative to the fungus 

in dry residue exposed to five freeze-thaw cycles. The fungus in moist residue exposed to a 

single 5-day freeze was not significantly affected compared to the control, but produced 65% 

less viable conidia than the fungus in dry residue exposed to five freeze-thaw cycles. The fungus 

in moist residue exposed to a single 24-hour freeze also was not significantly different from the 
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control, but produced 72% less viable conidia than the fungus in dry residue exposed to five 

freeze-thaw cycles. In conclusion, freezing and thawing of the wheat blast fungus in moist 

residue significantly affected its ability to produce viable conidia. 

 Introduction 

Magnaporthe oryzae pathotype triticum (MoT) is an ascomycetous fungus that causes 

wheat blast in South America. First identified by Igarashi in Brazil in 1985, the wheat blast 

pathogen has since spread to wheat producing areas in Brazil, Bolivia, Paraguay, Northern 

Argentina, and most recently, Bangladesh (Igarashi, 1986; Urashima et al., 1993; Kohli et al., 

2011; Malaker et al., 2016). Wheat blast is capable of infecting all aboveground parts of the 

wheat plant and can result in 100% yield loss in individual fields during conducive years. The 

most yield reducing phase is the infection of the spike (Kohli et al., 2011). Spike infections result 

in shriveled seeds and seed abortion causing severe losses in yield and grain quality (Igarashi, 

1990).  

Magnaporthe oryzae is divided into host specific populations called pathotypes. Two 

major pathotypes of Magnaporthe oryzae are already present in the United States: Magnaporthe 

oryzae pathotype oryza (MoO) which causes rice blast, and Magnaporthe oryzae pathotype 

Lolium (MoL) which causes a major turf grass disease, gray leaf spot, on perennial and annual 

ryegrass and tall fescue (Valent et al., 2013). The blast diseases are quite similar in that they 

have comparable disease cycles and overseason as mycelia and conidia in seeds and residue 

(Tufan et al., 2009; Ou, 1985; Harmon et al., 2005). MoL isolates from the United States and 

MoT isolates from South America are genetically similar, and some MoL isolates appear to have 

the ability to infect wheat (Tosa et al., 2004; Valent et al., 2013). A host shift of the MoL 

pathotype to MoT is a potential pathway of wheat blast introduction into the United States. 
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Climate has a large influence on the distribution and disease incidence of Magnaporthe 

oryzae. Harmon et al. (2005) reported that the gray leaf spot pathogen is reduced to undetectable 

levels by alternations of freezing and thawing in the laboratory. In fields located in Indiana, 

Harmon found MoL can survive the winters in infected residue, but the pathogen population is 

reduced significantly (Harmon et al., 2005). These results suggest that the threat of gray leaf spot 

decreases with increasing latitude and there is a transition zone for the pathogen’s survival. Since 

wheat blast and gray leaf spot are genetically similar, MoT could behave similarly to MoL and 

be restricted by winters in the United States. Although it has not been tested; the wheat blast 

pathogen is considered by some to need tropical and subtropical environments to survive and 

spread (USDA: New Pest Response Guidelines). If this is correct, MoT may not be able to 

survive the harsh winters of the United States’ Midwest (Cruz, 2013).    

The United States is currently the largest exporter of wheat in the world (USDA 2016). 

Despite being the largest exporter, the United States still imports wheat from Brazil (Cruz, 

2013). Due to the seed-borne nature of MoT, this pathogen may be introduced to the United 

States from Brazil, which could result in disease establishment (Valent et al., 2013). Cruz (2013) 

performed a quantitative pathway analysis to estimate the probability of MoT entry into the 

United States (Cruz, 2013). The analysis suggested that conditions in North Carolina were 

favorable for wheat blast in seven out of every ten years.   

To prepare for the possible introduction of wheat blast in to the United States by either a 

host shift of MoL or introduction of infested seed or residue from South America, it would be 

helpful to identify areas of the country most at risk for epidemics. Because of the results with 

MoL highlighted previously, a better understanding of the influence of freeze-thaw cycles on the 

blast fungus may be an important component of the risk assessment. In this study, our objective 
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was to evaluate the influence of freeze-thaw cycles on the reproduction potential of the blast 

fungus and germination rate of conidia.  

 Materials and Methods 

These experiments were performed in a biosafety level 3 laboratory (BSL-3) at the 

Biosecurity Research Institute on the Kansas State University campus. Naturally infested wheat 

spikes were used in the experiments to test native isolates of MoT from the field. The wheat blast 

susceptible variety “Atlax” was grown during the winter season in the Warnes province of Santa 

Cruz, Bolivia. It was planted April 15, 2015 and harvested August 10, 2015. A severe wheat 

blast epidemic developed at the site. The dry residue was harvested by hand and placed into 

plastic bags for storage. Before beginning the experiments, all parts of the plant (seeds, glumes, 

leaves, and rachises) were tested for sporulation. The spores produced were counted and it was 

concluded that the rachises had the best sporulation. To prepare the rachises for testing, the 

glumes and seeds were removed so only the rachis was remaining. The rachises were then mixed 

together so that they were chosen randomly for the treatments. One replicate of each treatment 

consisted of five rachises, not surface sterilized, placed in a glass Petri plate (10 cm) holding two 

filter paper disks (9 cm). For each treatment there were five replicates. The replicates of the first 

treatment were moistened with 3 mL of unsterilized, distilled water and randomly placed under 

continuous fluorescent illumination (25 µm/m2/s) at an average of 22°C for eight hours (Cruz et 

al., 2012). These conditions were considered incubation hours. After eight hours, the replicates 

were randomly placed into an Isotemp refrigerator freezer (Fisher Scientific) and experienced 

five freeze-thaw cycles. A freeze-thaw cycle is defined as 23 hours of freezing at approximately -

15°C and one hour of thawing under the continuous fluorescent illumination at approximately 

22°C. Each hour of thawing was considered an incubation hour. After the five freeze-thaw 
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cycles, the replicates experienced 72 additional incubation hours for a total of 84 incubation 

hours. The replicates of the second treatment were moistened with 3 mL of unsterilized, distilled 

water and had eight hours of incubation before placement in the freezer for a continuous five 

days with no thaw periods. After the 5-day freeze, the replicates experienced 76 additional 

incubation hours for a total of 84 incubation hours. The replicates of the third treatment were left 

un-moistened and exposed to five freeze-thaw cycles. After the freeze-thaw cycles, 3 mL of 

unsterilized, distilled water were added to the replicates and they were incubated for 84 hours. 

The fourth treatment was considered the control. The replicates were moistened with 3 mL of 

unsterilized, distilled water and then experienced 84 incubation hours with no freeze periods. 

The replicates of the fifth treatment were moistened with 3 mL of unsterilized, distilled water 

and had eight incubation hours before placement in the freezer and exposed to a single 24-hour 

freeze. After the 24-hour freeze, the replicates experienced 76 additional incubation hours for a 

total of 84 incubation hours. The treatments were started within five days of each other at 

specific times so that they would all be quantified on the same day. The day before 

quantification, each treatment replicate received 1 mL of additional unsterilized, distilled water. 

Once a treatment experienced 84 hours of incubation total, the five rachises from one 

replicate were placed in a 10 mL screw-cap tube with 3 mL of unsterilized, distilled water. The 

tube was rapidly swirled with a 150-watt digital vortex mixer for 40 seconds to create a conidial 

suspension. Next 10 µl were pipetted from the conidia solution into a C-Chip DHC-N01-5 

Neubauer improved hemocytometer (In Cyto). Conidia were counted at ×20 magnification with a 

compound light microscope (Olympus BHC). Conidia concentrations were calculated based on 

the total amount of conidia in four of the hemocytometer fields. After the conidia were counted, 

150 mL of the conidia solution was spread onto 1.5% water agar in Petri plates (6 cm) using a 
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sterile glass rod. These steps were carried out simultaneously for each replicate of the treatment. 

At least 12 hours after plating the conidial solution on water agar, the germination of conidia for 

each replicate was determined. The first 30 conidia found on the agar plate were recorded as 

either germinated or not germinated. If a germ tube was visible the conidium was considered 

germinated. The experiment was arranged in a complete randomized design and was repeated 

four times.  

The total conidia production and germination rates were multiplied together to calculate 

the amount of viable conidia produced per replicate. The viable conidia were averaged across 

replicates for each treatment, and analyzed using SAS PROC GLIMMIX (SAS Studio 3.4; SAS 

Institute Inc.) with a log normal distribution. The germination rates were analyzed separately 

using the GLIMMIX procedure in SAS with a Gaussian distribution. Run (repeat of experiment) 

and run-by-treatment were considered random effects and treatment a fixed effect. The treatment 

means were compared using Tukey’s honestly significant difference procedure (α=0.05). 

Covariance parameter estimates (run-by-treatment interaction) were checked on both analyses to 

confirm the experiments were reproducible across runs. There were no run-by-treatment 

interactions; therefore, results from all four repeats of the experiment were combined for 

analysis.   

 Results 

The reproduction of MoT from infested rachis pieces was influenced by exposure to 

freezing temperatures. However, the moisture status of the crop residue greatly influenced the 

response. In this analysis, exposing the fungus in dry residue to freeze-thaw cycles had no effect 

(p=0.2947) on its ability to produce viable conidia relative to the control (Figure 2.1, Table 2.1). 

However, when the fungus in moist residue was exposed to five freeze-thaw cycles the number 
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of viable conidia produced was decreased by 66% relative to the control. These treatments were 

found to be significantly different (p=0.0122) (Table 2.1).  The fungus in the moist residue 

exposed to five freeze-thaw cycles produced 83% less viable conidia than the fungus in the dry 

residue exposed to five freeze-thaw cycles. Significant differences were also found between 

these two treatments (p=0.0004). The fungus in the moist residue exposed to a single 5-day 

freeze did not produce significantly fewer conidia compared to the control (p=0.1931), but 

produced 65% less viable conidia than the fungus in the dry residue exposed to five freeze-thaw 

cycles. This resulted in significant differences between the treatments (p=0.0050). The fungus in 

moist residue exposed to a single 24-hour freeze was not significantly different from the control, 

but produced 72% less viable conidia than the fungus in the dry residue exposed to five freeze-

thaw cycles: this was significant (p=0.0061).  

The germination rates followed a similar pattern as the conidial production.  Fungus in 

the moist residue exposed to five freeze-thaw cycles, a single 5-day freeze, and a single 24-hour 

freeze had mean germination rates of 38%, 40%, and 42% respectively. However, fungus in dry 

residue exposed to five freeze-thaw cycles and the fungus exposed to no freezing had 

germination rates of 77% and 61%, respectively.   

 Discussion 

In this study, the wheat blast fungus in moistened wheat rachises was sensitive to 

freezing and thawing cycles. When the fungus experienced five freeze-thaw cycles in moistened 

residues, viable conidia production was reduced the most compared to single freeze events. This 

may be due to the variability in the spore counts and the reformation of ice crystals 

intracellularly during each freeze-thaw cycle. In a study by Morris et al. (1988), the effect of 

freezing and the viability after thawing of twenty different species of fungi was observed. One 



26 

ascomycete species, Sordaria fimicola, was included in the study and shown to survive one 

freeze-thaw regime in the absence of glycerol. Lower rates of cooling resulted in shrinkage of the 

hyphae whereas faster rates of cooling caused intracellular ice formation and less shrinkage. The 

study showed that the shrinkage of the hyphae and the formation of intracellular ice did not 

affect the fungus in any way and the recovery rate was 100% (Morris et al., 1988). The 

formation of ice crystals for one freezing and thawing period did not affect the ascomycete in 

this study which is consistent with our results. Five freeze-thaw cycles has a more severe effect 

on MoT hyphae, perhaps because of the reformation of ice crystals after each thaw period.    

MoT in dry residue exposed to five freeze-thaw cycles consistently gave the highest 

conidia counts and germination rates. This could be explained by reduced populations of 

competition fungi. Some of the competition fungi present may have been thermophilic, 

filamentous fungi (Griffin, 1994) that are unable to survive freezing temperatures, dry or 

moistened, but thrived in the control treatment, therefore suppressing the wheat blast fungus 

more.  

This study also enables estimates of the reproduction potential of the blast fungus on 

naturally infected wheat residues. For example; in Bolivia, the planting density of wheat varies 

from 300-350 seeds per square meter (Manual de recomendaciones técnicas - Cultivo de trigo). 

Each of these seeds will produce 1.5 to 2.5 heads depending on the variety, environment, and 

cultural practices which translates to 450-875 spikes per square meter (personal communication, 

Javier Kiyuna, May 2, 2016). After harvest, the rachis of the wheat spike would be left behind in 

the field. In a heavily blasted field in Bolivia, this translates to 9-18 million blast conidia per 

square meter that could potentially provide inoculum for next year’s wheat crop. If the residue 

were to undergo one freeze-thaw cycle while moistened, this would reduce the inoculum load to 



27 

5-10 million conidia per square meter. To compare, if the residue was exposed to five freeze-

thaw cycles while moistened, this would reduce the inoculum load even further to 3-6 million 

conidia per square meter. 

 In Kansas, the estimated results are similar. In the last five years the yield for winter 

wheat has ranged from 28-42 bushels per acre. Using the Estimating Wheat Yield guide from 

Kansas State University Research and Extension (MF-3044) (Martin et al., 2011), the estimated 

number of stems per foot for the yield range previously stated and 7.5-inch row spacing were 

used to create the range of 216-864 spikes per square meter. As with Bolivia, this range largely 

depends on cultural practices, variety, and the environment. After harvest, in a heavily infested 

wheat blast field, the fungus would be able to produce 4.5-18 million conidia per square meter. If 

the residue experienced one freeze-thaw cycle while moist, the population would be reduced to 

2.5-10 million conidia per square meter. If the residue was exposed to five freeze-thaw cycles 

while moist, the population would be reduced even more to 1.5-6 million conidia per square 

meter. According to these results, five freeze-thaw cycles are unlikely to stop an epidemic from 

occurring, although it reduces the population significantly.    

On average, northeast Kansas experiences 75-100 freeze-thaw events annually. In 

southern Texas, Louisiana, Florida, California, and Arizona, 0-25 freeze-thaw events occur 

annually (Haley, 2011). These areas coincide with acres planted to winter and durum wheat 

(NASS, 2015), and may be high risk areas for overwintering of wheat blast in the United States. 

This report is the first to quantify the freeze-thaw effects on MoT-infested residue. The 

study indicates that freezing and thawing of moistened, infested tissue significantly reduces 

viable conidia production by 66% when compared to the control. This work provides insights 

into the possible introduction and establishment of MoT into the United States, suggesting that 
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mild winters in areas of the United States where wheat is grown may contribute to the survival of 

the blast fungus and establishment in the United States. Areas in the United States where harsher 

winters occur would be less suitable for overwintering of the pathogen in residue and, 

consequently, less likely for wheat blast establishment and epidemics to occur; although more 

research is needed to support the findings reported here. Pathogen acclimation time, narrower 

temperature ranges, and longer cycles need to be tested in order to extend this research and more 

closely simulate naturally occurring environmental conditions. 
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Table 2.1 Adjusted p-values for comparisons of mean viable conidia production per 

replicate (5 rachises) by Magnaporthe oryzae pathotype triticum following one or more 

freeze-thaw cycles. 

 

Comparisons between treatments and the corresponding p-values (0.05).  

The average viable conidia produced is under the treatment in parentheses.  

* Indicates significant differences  

Treatment 

(Mean Viable  Conidia) 

Moist, 5 FT 

Cycles 

Moist, 5-day 

Freeze 

Dry, 5 FT 

Cycles 

No Freeze 

Cycles 

Moist, 24 

Hour Freeze 

Moist, 5 FT Cycles 

(35,138) 

 

-- 

 

0.5559 

 

0.0004* 

 

0.0122* 

 

0.4930 

Moist, 5-day Freeze 

(72,600) 

 

0.5559 

--  

0.0050* 

 

0.1626 

 

1.000 

Dry, 5 FT Cycles 

(210,338) 

 

0.0004* 

 

0.0050* 

--  

0.2947 

 

0.0061* 

No Freeze Cycles 

(103,438) 

 

0.0122* 

 

0.1626 

 

0.2947 

--  

0.1931 

Moist, 24 Hour Freeze 

(58,975) 

 

0.4930 

 

1.000 

 

0.0061* 

 

0.1931 

-- 
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Figure 2.1 Average viable conidia production per replicate (5 

rachises) by Magnaporthe oryzae pathotype triticum in naturally 

infected wheat residues exposed to one or more freeze-thaw (FT) 

cycles. 
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Chapter 3 - Weather conditions favoring epidemics of rice blast in 

the Southern United States 

 Abstract 

Wheat blast, caused by Magnaporthe oryzae pathotype triticum (MoT), has emerged as a 

serious problem for wheat production in South America and recently emerged as a threat in 

Bangladesh. To prepare for the possible introduction of wheat blast in to the United States, it 

would be helpful to identify areas of the country most at risk for blast epidemics. Therefore, the 

objective of this research was to identify environmental conditions that could be conducive for 

wheat blast epidemics by examining historical epidemics of rice blast, caused by Magnaporthe 

oryzae pathotype oryza (MoO). The dataset used in this analysis consisted of 60 site-years of 

historical observations of rice blast levels from Arkansas, Louisiana, and Texas. These 

observations were coupled with monthly and weekly summaries of hourly weather variables 

based on temperature, relative humidity, precipitation, and regional moisture indices. 

Classification trees and logistic regression were used to identify variables likely associated with 

rice blast epidemics. The results indicate that rice blast epidemics are favored by cooler April 

temperatures and high levels of precipitation in June. Preliminary models for rice blast, based on 

these variables, were able to correctly classify epidemic years with >75% accuracy. The results 

of this project will be incorporated into a risk assessment for the possible introduction of wheat 

blast in to the United States. 

 Introduction 

Wheat blast, caused by Magnaporthe oryzae pathotype triticum (MoT), is a fungal 

disease that first emerged in the Paraná State of Brazil in 1985 (Igarashi, 1986; Urashima et al., 
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1993). The pathogen has since spread to other wheat producing areas in South America, and 

most recently was detected in Bangladesh in February 2016 (Kohli et al., 2011; Malaker et al., 

2016). Wheat blast is capable of infecting all aboveground parts of the plant and can result in 

100% yield loss in fields during severe epidemics (Kohli et al., 2011). Currently, there is a lack 

of resistant wheat varieties and effective fungicides capable of controlling this disease (Valent et 

al., 2013).  

Because wheat blast is a relatively new disease, the disease cycle, epidemiology, and 

biology of the pathogen are not fully understood. Magnaporthe oryzae is grouped into 

pathotypes based on the host range of the specific isolates. Rice blast, caused by Magnaporthe 

oryzae pathotype oryza (MoO), and gray leaf spot, caused by Magnaporthe oryzae pathotype 

Lolium (MoL), which infects annual ryegrass, perennial ryegrass, and tall fescue, are both 

prevalent in the United States (Valent et al., 2013). Since rice blast and gray leaf spot are caused 

by the same fungal species as wheat blast, similar characteristics among their epidemiology may 

be found. A team of collaborators from the United States, Brazil, Bolivia, and Paraguay have 

joined together in an effort to fully characterize wheat blast, define control methods, and perform 

a risk assessment of disease establishment, among other objectives. Therefore, the objective of 

this research was to identify environmental conditions that are conducive for wheat blast 

epidemics by examining historical epidemics of rice blast.  

Rice blast predictive and simulation models have been created for rice producing areas of 

the world including Italy, South Korea, Philippines, India, and Japan (Calvero et al., 1996; Biloni 

et al., 2006; Ishiguro and Hashimoto, 1991; Kaundal et al., 2006). In general, these models use 

weather variables such as relative humidity, temperature, precipitation, dew point, and wind 

speed to determine the risk of rice blast epidemics (Biloni et al., 2006; Calvero et al., 1996). To 
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the best of our knowledge, no predictive models have been created for the rice producing regions 

of the Southern United States. Such a model could be very useful in aiding growers to make 

rational and timely fungicide decisions. 

A review of rice blast epidemiology literature indicates leaf wetness is a very important 

factor for conidia germination and rice blast development (Teng et al., 1991; Hamer et al., 1988). 

Moistened conidia are able to survive relative humidity as low as 80% for a short amount of 

time, but are not produced below 89% relative humidity (Suzuki, 1975; Calvero et al., 1996). 

The optimum temperature range for germination is 25-28°C and 16-25°C for appressorium 

development (Suzuki, 1969; Sueda, 1928; Ou, 1985). According to Suzuki (1975) sporulation 

does not occur below 9°C or above 35°C (Suzuki, 1975). Kohli et al. (2011) reported that wheat 

blast is favored by continuous rain for several days at an optimum temperature between 18 and 

25°C during flowering.  

 Materials and Methods 

Historical observations of rice blast levels from the Southcentral United States, where a 

majority of the country’s rice is produced, were obtained from collaborators in Arkansas, 

Louisiana, and Texas. For Arkansas, major epidemic years were acquired from the historical 

Arkansas Rice Disease Survey records and from Rice Disease Monitoring Plot Reports (provided 

by Dr. Rick Cartwright and Dr. Yeshi Wamishe). The years considered for Arkansas were 1986, 

1987, and 1992-2013. Out of these years, seven were classified as epidemics. For Louisiana, the 

rice blast disease levels were obtained from the Crowley Rice Research Station (provided by Dr. 

Don Groth). These observations were based on fungicide testing results and records of regional 

epidemics in Southern Louisiana. The years used for Louisiana were 1984-2013. Within these 

years, four were classified as epidemics. Dr. Anna McClung and Dr. Shane Zhou provided 
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historical rice blast epidemic information for Texas. The years used for Texas were 1993 and 

2009-2013. Within these years, two were classified as epidemics. For all three locations, the 

years that did not have rice blast information were omitted from the analysis. The total data set 

included 13 epidemic years and 47 non-epidemic years.  

Weather data was obtained from hourly importing weather stations maintained by the 

national weather service in key rice producing regions of Arkansas, Louisiana, and Texas. These 

locations included Stuttgart, Arkansas; Lafayette, Louisiana; and Port Arthur, Texas. The hourly 

weather data provided relative humidity (RH, %), precipitation (mm), and temperature (°C) for 

each year, and was summarized into monthly variables. Calendar years were edited to be specific 

to the rice season for these regions; therefore the biological year began in September and 

continued through August of the following year, as to represent temperature and moisture 

conditions likely to favor blast epidemics. In addition to hourly weather data, the standard 

precipitation index (SPI) was incorporated as a regional moisture index. The SPI is a probability 

index that provides a negative index for drought conditions and a positive index for wet 

conditions. The more negative the index is, the drier the soil conditions, and the more positive 

the index, the wetter the soil conditions (McKee et al., 1993; Guttman, 1999). The index 

typically ranges from -3 to 3; -3 representing very dry conditions and 3 representing very wet 

conditions. The monthly SPI was obtained from the National Climatic Data Center (NCDC). The 

climate districts were chosen based on where rice production occurs within each state and 

corresponded to the locations represented by hourly weather data (Figure 3.1).  

Weather variables were created based on previous modeling efforts and experiments 

conducted in controlled environments. Moisture variables considered were SPI, sum of hours 

greater than 80% RH, sum of hours greater than 89% RH, and sum of monthly precipitation. 
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Temperature variables used were: sum of hours within favorable ranges (9-35, 16-28, 16-25), 

average monthly temperatures, and combinations of these temperature and moisture variables. 

Classification trees (CT) were used to select variables most likely to be associated with 

epidemics and non-epidemics (JMP Pro 11.0, SAS Institute Inc., Cary, NC). The variables were 

selected based on their likelihood-ratio chi-square statistic (G2). In general terms, the higher the 

G2 the more likely that variable is adequate at classifying epidemics and non-epidemics 

correctly.  

To create variables more specific to the rice blast pathosystem, heading date variables 

were created. Specific heading dates provided by Don Groth were used for Lafayette. For 

Stuttgart and Port Arthur dates closest to 50% heading provided by the National Agricultural 

Statistics Service (NASS) were used for each year. The three weeks before the heading date were 

categorized as before heading and the three weeks (including the heading date) after heading 

were categorized as after heading. The heading date variables were combined with the original 

variables and analyzed in the same manner described previously using CT analyses and logistic 

regression.  

The top fifteen variables with the highest G2 were then used as independent variables in 

univariate and multivariate logistic regression models. The fit of the resulting models was 

evaluated based on the following criteria. The area under the receiver-operating characteristic 

(AUC) is scaled from 0.5 to 1. The closer the AUC is to one, the more epidemics and non-

epidemics there are being classified correctly. The Akaike Information Criterion (AIC) was also 

used to measure how well the model fit the data. The lower the AIC, the better quality of the 

model. Accuracy was evaluated in terms of true positives (epidemics classified correctly), true 

negatives (non-epidemics classified correctly), false positives (non-epidemics classified as 
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epidemics), false negatives (epidemics classified as non-epidemics), specificity (percentage of 

non-epidemics classified correctly), and sensitivity (percentage of epidemics classified 

correctly). The thresholds for determining model classification accuracy were based on Receiver 

Operating Characteristic (ROC) analysis. 

 Results 

The classification trees identified multiple representations of temperature as strongly 

associated with rice blast epidemics. Four of these variables summarized temperatures in April. 

Specifically, fewer hours within the April temperature ranges of 9-35°C, 16-28°C, 16-25°C, and 

mean temperatures less than 19°C favored epidemics (9-35_4, 16-28_4, 16-25_4, and Temp_4, 

Table 3.1). This timeframe represents planting and early stages of seedling development for the 

rice producing regions of Arkansas, Louisiana, and Texas (Figure 3.2). Mean temperature less 

than 15.8°C in March (Temp_3), mean temperature less than 27.6°C in June (Temp_6), more 

hours in the 16-28°C July temperature range (16-28_7), and more hours in the 9-35°C August 

temperature range (9-35_8) were among other temperature variables that were identified as 

potentially important. July represents the heading development stage, August largely represents 

after heading and harvest, and March is before planting of the rice. When the time period was 

restricted to heading, the top temperature variables, according to the CT analysis, were the 

temperature range of 9-35°C after heading (9-35_AH) and mean temperature less than 28°C after 

heading (Temp_AH).  These ranges represent optimum temperatures at which the pathogen 

would sporulate and develop. 

Several moisture variables were identified by the CT analysis as well. The strongest 

association was with SPI greater than -0.55 in June (SPI_6, Table 3.1) which corresponds to 

when the rice crop is heading or just prior to heading (Figure 3.2). SPI greater than -1.0 in 
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August (SPI_8) and precipitation greater than 205.6mm before heading (Prec_BH) were among 

the top moisture variables. August is at the end of the heading development stage and when 

harvest begins in the rice plant. The variables listed previously coincide with planting and 

heading of the rice, which is when it is very vulnerable to disease.   

The variables identified by the CT analysis were analyzed with logistic regression 

individually and combined with each other. The univariate model of SPI in June gave an AUC of 

.73, specificity of 77%, and sensitivity of 62% (Table 3.2). The univariate model of the 9-35°C 

temperature range in April gave an AUC of .72, specificity of 57%, and sensitivity of 85%. 

When SPI in June is paired with the 9-35°C temperature range in April, the AUC increases to 

.79, specificity is 77%, and the sensitivity is 85%. The mean temperature in April had an AUC of 

.71, specificity of 68%, and sensitivity of 85%. When paired with the SPI in June, the AUC is 

.77, specificity is 72%, and sensitivity is 85%. The remaining April temperature univariate 

models and bivariate models with SPI in June are similar to the results recorded here and are 

listed in Table 3.2. The heading date models did not fit the data as well, but could still be 

indicators of epidemic conditions. The mean temperature three weeks after heading had an AUC 

of .69, specificity of 49%, and sensitivity of 85%. When paired with the SPI in June the results 

were an AUC of .76, a specificity of 66%, and a sensitivity of 84%.   

 Discussion 

 This analysis documents the importance of moisture in the development of rice blast 

epidemics. The relationship with SPI was strongest in June. The average heading date of rice for 

the Lafayette data is July 1st, Stuttgart is August 1st, and Port Arthur is July 12th. Therefore the 

wetter conditions in June provide a more conducive environment for blast development right 

before heading. The heading date variable, precipitation three weeks before heading, had a strong 
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correlation with epidemics as well. Moisture during this time period would help establish the 

disease on the leaves and favor reproduction just as the crop is entering the heading stages of 

growth that are vulnerable to the panicle blast phase of the disease.  

Multiple temperature variables were also associated with blast epidemics. In general, cool 

temperatures in early spring appear to be most correlated with rice blast epidemics. April 

temperature had the strongest relationship and highest G2 statistic when compared to the other 

temperature variables considered in this analysis. Rice is being planted in late March and April in 

the Southern United States, and cool temperatures during this time period may have indirect 

effects on the blast development. For example cool temperatures may delay planting. This 

delayed planting could have several downstream effects such as causing the crop to head later 

during a time frame that has increased leaf wetness and conducive temperatures that favor 

panicle blast epidemics. The delaying of planting due to cool spring temperatures may also delay 

flooding of rice fields, which can predispose the crop to blast as well (Don Groth, personal 

communication).  

As mentioned previously, models from various rice producing regions around the world 

used RH, temperature, precipitation, among other variables to determine the risk of rice blast 

epidemics (Biloni et al., 2006; Calvero et al., 1996). Leaf wetness, high RH, and optimum 

temperature ranges are important factors for disease development according to the literature 

(Teng et al., 1991; Hamer et al., 1988; Suzuki, 1975; Calvero et al., 1996). In this study, the 

monthly summaries of moisture during heading and cool April temperatures appear to be the 

driving variables in predicting rice blast epidemics. The variables specific to three weeks before 

and after the heading date indicate that precipitation three weeks before heading and optimum 

temperatures the three weeks after heading favor rice blast development. These results suggest 
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that temperatures during heading are rarely limiting to the development of rice blast 

development. The system may be more driven by moisture that favors early disease 

establishment and inoculum at heading.  

The threat of a wheat blast introduction in to the United States by a host shift or through 

trade is a prevalent risk that is currently being analyzed. This study characterizes environmental 

conditions which favor rice blast that could be useful in a risk assessment for modeling where 

wheat blast is a threat in the United States. The most favorable environmental conditions 

identified in this study will be combined with models for Magnaporthe oryzae in wheat and turf 

grass in order to create an overall risk assessment for the United States. Another outcome of this 

study is the logistic regression models can be used as part of a rice blast forecasting system for 

the Southern United States. Once the forecasting system is in place, it could be used to help alert 

growers of weather patterns associated with rice blast epidemics.  
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 Figures and Tables 

Table 3.1 Important rice blast-associated weather variables defined by classification tree 

analysis. 

Variable G2 Variable Description 

Temp_4 12.1 Average monthly temperature in April 

16-28_4 11.8 Monthly sum of hours within this 

temperature range in April 

16-25_4 9.5 Monthly sum of hours within this 

temperature range in April 

SPI_6 9.3 Standard precipitation index in June 

Temp_3 9.3 Average monthly temperature in March 

16-28_7 9.2 Monthly sum of hours within this 

temperature range in July 

Prec_BH 8.7 Three week sum of precipitation before 

heading 

9-35_4 7.8 Monthly sum of hours within this 

temperature range in April 

9-35_8 7.3 Monthly sum of hours within this 

temperature range in August 

SPI_8 7.3 Standard precipitation index in August 

Temp_6 7.3 Average monthly temperature in June 

9-35_AH 6.5 Three week sum of hours within this 

temperature range after heading 

Temp_AH 5.2 Three week average of temperature after 

heading 

 

The CT analysis identified 13 variables that are most strongly associated with rice blast 

epidemics. The variable column contains the abbreviation for each variable, the G2 column 

shows the G2 for each variable given by the CT analysis, and the variable description column 
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defines each variable. The numbers and letters at the end of each variable represent the month or 

heading timeframe of that variable. For example: 4 represents April, 6 represents June, BH 

represents three weeks before heading, and AH represents three weeks after heading. Bolded 

variables are most strongly associated with rice blast epidemics based on the logistic 

regression analysis in Table 3.2. 

 

Table 3.2 Logistic regression results between the top moisture and temperature variables 

that favor rice blast epidemics. 

Variable 1 Variable 2 AUCa AICb Specificityc Sensitivity TPd  TN FP FN 

SPI_6 - .73159 60.8505 77% 62% 8 36 11 5 

- 9-35_4 .71686 63.324 57% 85% 11 27 20 2 

- 16-28_4 .72177 62.7563 57% 92% 12 27 20 1 

- Temp_4 .70867 63.7062 68% 85% 11 32 15 2 

- Temp_AH .68903 60.8796 49% 85% 11 23 24 2 

SPI_6 9-35_4 .79378 58.5545 77% 85% 11 36 11 2 

SPI_6 16-28_4 .78642 58.9091 74% 85% 11 35 12 2 

SPI_6 Temp_4 .76923 59.0236 72% 85% 11 34 13 2 

SPI_6 Temp_AH .76268 59.3733 66% 84% 11 31 16 2 

Logistic regression results between the top moisture and temperature variables that favor rice 

blast epidemics.  

a The area under the receiver-operating curve (AUC) is scaled from 0.5 to 1. More epidemics are 

being classified correctly if the AUC is closer to one. 

b The Akaike Information Criterion (AIC) measures the quality and fit of the model. Lower AICs 

are indicators of better models.  

c Specificity is the percentage of non-epidemics being classified correctly and sensitivity is the 

percentage of epidemics being classified correctly.  
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d TP (true positives) are epidemics classified correctly, TN (true negatives) are non-epidemics 

classified correctly, FP (false positives are non-epidemics) classified as epidemics, and FN (false 

negatives) are epidemics classified as non-epidemics.  

 

 

 

 

 

 

 

 

 

 

 

The solid circle within the colored climate districts corresponds to the location of the weather 

station that historical weather data was obtained from. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Map of climate districts within Texas, Louisiana, and 

Arkansas that correspond to the Standard Precipitation Index 

and rice producing areas.  
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TEMP_4 (average temperature in April) corresponds to the planting and seedling development 

stages of the rice crop. SPI_6 (Standard Precipitation Index in June) corresponds to the time 

period before the rice crop is heading and at the beginning of heading in some areas. The last 

variable (TEMP_AH) is the average temperature three weeks after heading.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Rice production timelines for the Southcentral US and associated weather 

variables that influence rice blast epidemics. 
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Chapter 4 - Conclusions 

This is the first report of the effect of freeze-thaw cycles on the reproduction of 

Magnaporthe oryzae pathotype triticum. The results document that multiple freeze-thaw cycles 

of the fungus on moist residue has a greater effect on conidia production than a single freeze 

event. Freeze-thaw cycles had little to no effect on the fungus when the residue was dry. The 

viable sporulation of the fungus was reduced by 66% relative to the control fungus. These results 

suggest that viable conidia are still being produced by the fungus. In the future it may be possible 

to expand or refine the results gained here by inoculating healthy wheat plants with the conidia 

solution made from each replicate. If disease establishment occurs, then the conidia are still able 

to cause disease. To take the study further, residue could be placed in an incubator that closely 

mimics the outside environment through more gradual transitions between temperature extremes. 

Therefore a better understanding of how the fungus would react to conditions in the United 

States would be measured. Because the freeze-thaw cycles that occur in Kansas are not as 

extreme as the ones used in this study, the fungus may be able to acclimate and survive better in 

the natural environment than indicated in this study. On the other hand, Kansas undergoes 

around 75-100 freeze-thaw cycles annually, even though not as extreme as the freeze-thaw 

cycles in this study, they could be more damaging because of the large number of cycles.     

Analysis of rice blast epidemics in the Southern United States indicated that epidemics 

are favored by cool April temperatures and high moisture before heading. When these variables 

were paired together, an accuracy of >79% resulted. The main objective for this study was to 

identify weather variables associated with rice blast epidemics that may be useful in a wheat 

blast risk assessment for the United States. The most favorable environmental variables 

identified will be combined with models for Magnaporthe oryzae in wheat and turf grass in order 
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to create an overall risk assessment for the United States. A risk assessment of wheat blast would 

provide insights into areas of the United States most at risk of a wheat blast introduction and 

establishment. The logistic regression models can be used to create a rice blast forecasting 

system for the Southern United States. The April temperature variables around planting and early 

seedling development could alert growers that early spring conditions are conducive for blast 

development. If there is high moisture in June, growers should monitor their fields closely for 

rice blast. The preliminary models from this study would need to be cross-validated and analyzed 

further to determine which ones are most accurate. Once the forecasting system is in place, it 

would alert growers of weather patterns associated with rice blast epidemics. When the risk of an 

epidemic is high, growers will be aware of the importance of scouting their fields so fungicide 

applications can occur in a timely manner.  

    

 

 

 

 

 

 

 

 

 

 


