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Abstract 

The topic of infectious disease epidemics has recently attracted substantial attentions in 

research communities and it has been shown that the changes of human behaviors have significant 

impacts on the dynamics of disease transmission. However, the study and understanding of human 

reactions into spread of infectious disease are still in the very beginning phase and how human 

behaviors change during the spread of infectious disease has not been systematically investigated. 

Moreover, the study of human behaviors includes not only various enforced measures by public 

authorities such as school closure, quarantine, vaccination, etc, but also the spontaneous self-

protective actions which are triggered by risk perception and fear of diseases. Hence, the goal of 

this research is to study the impacts of human behaviors to the epidemic from these two 

perspectives: spontaneous behavioral changes and public intervention strategies.   

For the sake of studying spontaneous changes of human behaviors, this research first time 

applied evolutionary spatial game into the study of human reactions to the spread of infectious 

disease. This method integrated contact structures and epidemics information into the individuals’ 

decision processes, by adding two different types of information into the payoff functions: the 

local information and global information. The new method would not only advance the field of 

game theory, but also the field of epidemiology. In addition, this method was also applied to a 

classic compartmental dynamic system which is a widely used model for studying the disease 

transmission. With extensive numerical studies, the results first proved the consistency of two 

models for the sake of validating the effectiveness of the spatial evolutionary game. Then the 

impacts of changes of human behaviors to the dynamics of disease transmission and how 

information impacts human behaviors were discussed temporally and spatially.  



 

In addition to the spontaneous behavioral changes, the corresponding intervention 

strategies by policy-makers played the key role in process of mitigating the spread of infectious 

disease. For the purpose of minimizing the total lost, including the social costs and number of 

infected individuals, the intervention strategies should be optimized.  Sensitivity analysis, stability 

analysis, bifurcation analysis, and optimal control methods are possible tools to understand the 

effects of different combination of intervention strategies or even find an appropriate policy to 

mitigate the disease transmission. One zoonotic disease, named Zoonotic Visceral Leishmaniasis 

(ZVL), was studied by adopting different methods and assumptions. Particularly, a special case, 

backward bifurcation, was discussed for the transmission of ZVL.  

 Last but not least, the methodology and modeling framework used in this dissertation can 

be expanded to other disease situations and intervention applications, and have a broad impact to 

the research area related to mathematical modeling, epidemiology, decision-making processes, and 

industrial engineering. The further studies can combine the changes of human behaviors and 

intervention strategies by policy-makers so as to seek an optimal information dissemination to 

minimize the social costs and the number of infected individuals. If successful, this research should 

aid policy-makers by improving communication between them and the public, by directing 

educational efforts, and by predicting public response to infectious diseases and new risk 

management strategies (regulations, vaccination, quarantine, etc.). 
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The topic of infectious disease epidemics has recently attracted substantial attentions in 

research communities and it has been shown that the changes of human behaviors have significant 

impacts on the dynamics of disease transmission. However, the study and understanding of human 

reactions into spread of infectious disease are still in the very beginning phase and how human 

behaviors change during the spread of infectious disease has not been systematically investigated. 

Moreover, the study of human behaviors includes not only various enforced measures by public 

authorities such as school closure, quarantine, vaccination, etc, but also the spontaneous self-

protective actions which are triggered by risk perception and fear of diseases. Hence, the goal of 

this research is to study the impacts of human behaviors to the epidemic from these two 

perspectives: spontaneous behavioral changes and public intervention strategies.   

For the sake of studying spontaneous changes of human behaviors, this research first time 

applied evolutionary spatial game into the study of human reactions to the spread of infectious 

disease. This method integrated contact structures and epidemics information into the individuals’ 

decision processes, by adding two different types of information into the payoff functions: the 

local information and global information. The new method would not only advance the field of 

game theory, but also the field of epidemiology. In addition, this method was also applied to a 

classic compartmental dynamic system which is a widely used model for studying the disease 

transmission. With extensive numerical studies, the results first proved the consistency of two 

models for the sake of validating the effectiveness of the spatial evolutionary game. Then the 

impacts of changes of human behaviors to the dynamics of disease transmission and how 

information impacts human behaviors were discussed temporally and spatially.  



  

In addition to the spontaneous behavioral changes, the corresponding intervention 

strategies by policy-makers played the key role in process of mitigating the spread of infectious 

disease. For the purpose of minimizing the total lost, including the social costs and number of 

infected individuals, the intervention strategies should be optimized.  Sensitivity analysis, stability 

analysis, bifurcation analysis, and optimal control methods are possible tools to understand the 

effects of different combination of intervention strategies or even find an appropriate policy to 

mitigate the disease transmission. One zoonotic disease, named Zoonotic Visceral Leishmaniasis 

(ZVL), was studied by adopting different methods and assumptions. Particularly, a special case, 

backward bifurcation, was discussed for the transmission of ZVL.  

 Last but not least, the methodology and modeling framework used in this dissertation can 

be expanded to other disease situations and intervention applications, and have a broad impact to 

the research area related to mathematical modeling, epidemiology, decision-making processes, and 

industrial engineering. The further studies can combine the changes of human behaviors and 

intervention strategies by policy-makers so as to seek an optimal information dissemination to 

minimize the social costs and the number of infected individuals. If successful, this research should 

aid policy-makers by improving communication between them and the public, by directing 

educational efforts, and by predicting public response to infectious diseases and new risk 

management strategies (regulations, vaccination, quarantine, etc.). 
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Chapter 1 - Research Summary 

 1.1 Introduction and background 

The infectious disease is a continuous threat to the human communities. In 1918, the 

influenza pandemic, called Spanish influenza, infected around “500 million people across the 

world and killed 50 to 100 millions of them” (1). Between November 2002 and July 2003, an 

infectious disease called severe acute respiratory syndrome, abbreviated as SARS, outbreak in 

China. It resulted in 775 deaths worldwide from the WHO report. In 2009, the second influenza 

pandemic involving H1N1 after 1918 appeared and more than 14,000 people dead because of this 

disease based on WHO report. Besides these new diseases showing up in the world, human beings 

are still suffering from some other infectious diseases, such as measles, HIV, malaria, etc. 

Human behaviors, as one of the most important factors which impact the dynamics of 

disease transmission, play a key role on mitigating and controlling the epidemic. However, the 

study and understanding of human reactions to the spread of infectious diseases are still in the very 

beginning phase and how human behaviors change during the spread of infectious disease has not 

been systematically investigated(2). Moreover, the study of human behaviors includes not only 

various enforced measures by public authorities such as school closure, quarantine, vaccination, 

etc, but also the spontaneous self-protective actions which are triggered by risk perception and fear 

of diseases. 

When an infectious disease spreads out into human communities, individuals may alter 

their behaviors to protect themselves from becoming infected. Such changes include improvement 

of personal hygiene, taking antiviral medicine, voluntary social distancing, voluntary vaccination, 

and other protective measures.  As an example, the outbreak of the SARS epidemic in 2003 caused 

many people to change their behaviors by taking several preventative measures (3,4).  
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On the other hand, the appropriate response from the public health authorities is essential 

to mitigate the spread of infectious diseases. However, the corresponding control strategies are not 

always known or the optimal policies are very difficult to quantify from the known facts or 

experiments for some diseases, especially those resulting in high mortality or huge loss on 

economics. One example is the Visceral Leishmaniasis (VL), which is a protozoan disease caused 

by parasites of the genus Leishmania and transmitted through the bite of infected sandflies. The 

current annual estimate of VL mortality is more than 50000 (5), an assumed underestimation 

because not all cases are reported and VL is often undiagnosed or unrecognized. However, 

quantitative conditions that are required to control or eradicate VL transmission have not been 

provided and there are no mathematical methods proposed to quantitatively calculate optimal 

control strategies for VL transmission. 

Hence, understanding the impacts of human behaviors to the dynamics of disease 

transmission and seeking the appropriated control strategies are two significant tasks to help 

policy-makers mitigate or control the spread of infectious diseases, which direct the needs of new 

models and methodologies in future public disease research. 

 1.2 Research objectives 

Several studies have been conducted in order to understand how these spontaneous 

behavioral changes help mitigate the spread of infection.  Funk reviewed the recent work on the 

influence of human behavior on the spread of infectious diseases, including using game theory to 

study the human response to epidemics (2).  Reluga constructed a differential game to study the 

benefit of social distancing behaviors (6).  Another differential model showing that changes to 

human behaviors significantly impact the spread of epidemics was proposed by Poletti, Ajelli, and 

Merler (7). To model the spontaneous changes of human behaviors, the susceptible individuals 
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were assumed to adopt two mutually exclusive behaviors, “normal” and “altered”, based on the 

perceived risk of infection. Regula, Bauch, and Galvani, in an epidemiological game examining 

voluntary vaccination, claimed disease eradication is hard to achieve by voluntary vaccination in 

a homogeneous population (8). All three models considered only the cases in a well-mixed 

population and failed to address the importance of contact structure over a heterogeneous 

population. On the other hand, studies focusing on a heterogeneous and spatially structured 

population can be shown to be more realistic and flexible successful when a social contact network 

is incorporated into the model (9-11). Hence, models that combines both a spatially contact 

structure and spontaneous behavior changes are could be a more suitable way to improve the 

existing models, and hence this is one the main objectives of this research. In addition, adoption 

of intervention strategies to different infectious diseases were studied under different scenarios. 

For different scenarios, the corresponding optimal strategies were taken into consideration. For 

demonstrating the effectiveness of this approach, one case study is chosen in this research to 

discuss the appropriate intervention strategies in epidemic.   

The motivation of this research was inspired by the evidences and discussion above. This 

research is aimed to develop new models and analytical methodologies to study the impacts of 

human behaviors in epidemic, which includes two main research tasks as follows: 

1. Understanding spontaneous changes of human behaviors: Adopt game theory 

to study the decision making process for changes of human behaviors. Develop 

temporal and spatial analytical models to simulate the changes of human behaviors 

by integrating the game theory into spatial contact structure. During this task, 

specific tasks are as follows: 
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 Study the risk perception of individuals to the information about infectious 

disease 

 Develop a novel spatial evolutionary game for decision making of 

individuals based on their risk perception 

 Identify key factors which impacts human decisions. 

 Evaluate the effects of human behavioral changes to the dynamics of disease 

transmission temporally and spatially.  

2. Seeking appropriate intervention strategies: Build mathematical models for VL 

transmissions. Conduct a variety of analyses to seek the feasible or optimal control 

strategies and provide recommendations on control strategy combinations for the 

different scenarios. During this tasks, specific methods are used as follows: 

 Develop mathematical models for VL disease 

 Identify key factors for transmission of VL through sensitivity analysis. 

 Study models’ behaviors at equilibrium points through stability and 

bifurcation analysis 

 Discuss the appropriate intervention strategies and seek optimal control 

strategies if possible.  

 1.3 Proposed methodologies 

To understand the spontaneous changes of human behaviors, a key concept is emphasized–

the balance of benefits and costs from such changes. With the assumption of rationality and self-

interest, people make decisions according to the information they acquire about a disease. Hence, 

information dissemination and individuals’ perception about the prevalence of infectious disease 

play crucial roles in the tradeoff between benefits and costs. In this research, a new methodology, 
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which combines the information transmission, contact networks, and changes of human behaviors 

with the dynamics of an epidemic is demonstrated. The methodology uses a spatial evolutionary 

game to model human behavior change and its impacts on the transmission process of infectious 

disease.  One advantage of adopting a spatial evolutionary game is the “spatial decision” The 

spatial game take the location information into consideration when individuals balance their costs 

and benefits, i.e. individuals in different locations may choose different strategies based on their 

local and global situations.  The other advantage of adopting a spatial evolutionary game is the 

convenience for studying the impacts of local information and global information related to 

behavior change.  The assumption on the impact of local information transmission is different from 

the impact of global information transmission and each individual will make behavior change 

decisions based on these two different pieces of information. Sensitivity analysis and numerical 

simulation are then carried out to study what are the key parameters that can significantly impact 

of human behaviors. This methodology is also applied to classic dynamic systems, which is widely 

used in the study of epidemiology. This application to dynamic system not only validate the 

correctness of the methodology, but also further discusses the impact of information dissemination 

to human decisions. A detailed description of the mathematical models is presented in Chapter 3 

and Chapter 4. 

For the sake of understanding the intervention strategies, a collaborative research with 

researchers in the Department of Entomology at Kansas State University is conducted for 

transmission of VL. This study is focusing on the Visceral Leishmaniasis (VL) transmission. The 

VL is a vector-borne disease caused by protozoan flagellates of the genus Leishmania, is 

transmitted by sand flies. Except malaria, VL is the second-largest parasitic killer, responsible for 

an estimated 500,000 infections and 51,000 deaths annually worldwide. Mathematical models 
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proposed for VL have included the impact of dogs versus wild canids in disease dissemination and 

models developed to assist in control approaches. However, quantitative conditions that are 

required to control or eradicate VL transmission are not provided and there are no mathematical 

methods proposed to quantitatively calculate optimal control strategies for VL transmission. The 

research objective of this work was to model VL disease transmission system (specifically 

Zoonotic VL), perform bifurcation analysis to discuss control conditions, and calculate optimal 

control strategies. Three time-dependent control strategies involving dog populations, sand fly 

population, and humans are mainly discussed. Another strategy sometimes used in attempts to 

control zoonotic VL transmission, dog culling, is also evaluated. A detailed description of the 

mathematical models and analyses is presented in Chapter 5. 

 1.4 Research map 

This research plans to provide scientific and effective mathematical models for studying 

the impacts of human behaviors to the spread of infectious disease. Both of spontaneous changes 

of human behaviors and those changes by enforced measurements due to the intervention strategies 

are taken into consideration and this research should aid policy-makers by improving 

communication between them and the public, by directing educational efforts, and by predicting 

public response to infectious diseases and new risk management strategies. 

Figure 1.1 shows a research map that describes the research objective, research 

methodologies, and potential research contributions. 
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Figure 1.1 Research map 

Research 

Objective

Develop mathematical models 

to study impacts of human 

behaviors in epidemic

Develop modeling framework for 

spontaneous changes of human 

behaviors

Develop mathematical models to 

seek appropriate intervention 

strategies for VL.

Literature review for game theory 
in epidemic

Construct a spatial evolutionary 

game for human behaviors

Apply the new game to the disease 

transmission and information 

dissemination. 

Literature review 
for VL

Construct a 

mathematical model 

to simulate VL 

transmission

Seek optimal 
control strategies

Research 
Methodology

Contribution 1 Contribution 2

 

 1.5 Outlines 

The rest of dissertation is organized into five chapters: 1) Literature Review: for the study 

of spontaneous changes of human behaviors, the application of game theory to the epidemiology 

are reviewed and the basic spatial evolutionary game is introduced. For the study of intervention 

strategies, the optimal control theory in dynamic system and its application to infectious disease 

are discussed. 2) Modeling Infection Spread and Behavioral Change Using Spatial Games: for the 

first time, the new spatial evolutionary game to spontaneous changes of human behaviors is 
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developed and main numerical results are discussed. 3) Temporal and Spatial Analysis for Human 

Behaviors in Epidemic: The spatial evolutionary game built in Chapter 2 is applied to a dynamic 

system for validating the effectiveness of implementing the new game. More impacts of 

information dissemination are discussed temporally and spatially. 4) Zoonotic Visceral 

Leishmaniasis Transmission: Modeling, Backward Bifurcation, and Optimal Control: 

mathematical model is developed for better understanding the transmission of VL and seeking the 

optimal control strategies. 5) Conclusions, Contributions, and Future Works: the main conclusions 

and contributions are summarized and the potential future works are discussed. 
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Chapter 2 - Literature Review 

 2.1 Game theory for human behaviors in epidemic  

 2.1.1 Introduction 

Infectious diseases continue to pose a threat to human society. In order to control the spread 

of infectious diseases and mitigate their impact, various strategies may be implemented such as 

pharmaceutical interventions (i.e. vaccine and antivirals) and non-pharmaceutical interventions 

(i.e. quarantine, isolation, social distancing, and school closure) (12). In addition, effective control 

of an epidemic outbreak requires rapid logistics operation. Allocation and transportation of 

medical supplies and human resources are of critical importance since rapid responses may contain 

the spread of infectious disease under control (13). Recently, self-initiated human behaviors (i.e. 

voluntary vaccination, voluntary quarantine, or public avoidance), as important factors that affect 

the spread of infectious disease, have attracted increasing attentions (2). Understanding the impact 

of human behaviors on the spread of disease can not only be a key to improving control efforts, 

but also can guide policy-maker to determine necessary intervention strategies. Regardless of 

whether human behavior is spontaneous or regulated; individuals’ decisions do not merely depend 

on themselves, but also on others’ choices. Thus, game theory, as a study of conflict and 

cooperation between intelligent rational decision-makers, plays an important role in the control of 

the spread of infectious diseases.  

Game theory is a commonly used approach for modeling competing behaviors of 

interacting decision-makers. It has been applied to a variety of fields, including economics, 

politics, resource allocation and networking, biology, artificial intelligence, philosophy, and so on. 

In recent decades, game theory has also been used in epidemiology, especially involving epidemic 



10 

problems related to human behaviors.  A variety of topics are covered, such as vaccination, social 

distancing, preparedness for disasters (including epidemics), and so on.  

Here, we aim to systematically review the applications of game theory to epidemic control. 

The literature classification is based on intervention/prevention strategies. There are a total of four 

categories taken into consideration: vaccination, antivirals/antibiotics, social distancing, and 

logistic operations.  More specifically, vaccination and antivirals/antibiotics correspond to reduce 

the intensity of the infection, social distancing corresponds to the reduction of contact rates 

(sometimes social distancing also includes the reduction of intensity of the infection in general 

models which do not specify certain type of strategies), and logistic operations correspond to 

resource allocations and preparedness for pandemics. We do not combine vaccination and 

antivirals/antibiotics into one category since effects of vaccination and usage of drugs are quite 

different and there are substantial papers focusing on vaccination instead of usage of 

antivirals/antibiotics. Considering the vast amount of literature, only human disease is considered 

in this paper. All other diseases are excluded.  

This section is organized as follows: basic concept of game theory and Nash Equilibrium 

are introduced in Section 2.1.2. Section 2.1.3 illustrates the classification of game theory in 

epidemiology with applications, and Section 2.1.4 is a summary with further discussion. 

 2.1.2 Game theory and Nash equilibrium 

Individuals have to make decisions regarding a variety of prevention strategies during 

epidemics such as vaccination, usage of antiviral/antibiotic drugs, avoidance of public places, etc. 

Not all of these decisions are made depending on individuals themselves, but also determined by 

others’ choices. Game theory, as a commonly used tool to study conflicts among decision-makers, 

is an appropriate approach to study human behaviors during the epidemic.  
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In a classic game, there are three elementary components: players, strategies, and payoffs. 

Each player has the complete information about the game and rationally (but non-cooperatively) 

chooses the strategy which could maximize his/her own payoff.  As such, players make the best 

decisions for themselves after a game; however, the outcome is not necessarily optimal for the 

entire system. One of the most famous games is the one called “prisoner’s dilemma”, which 

describes a scenario in which two prisoners could either betray the other by testifying the other’s 

crime or remain silent. The payoff matrix is shown below: 

Table 2.1 Payoff Matrix for Prisoner’s Dilemma  

 Cooperate Betray 

Cooperate R, R S, T 

Betray T, S P, P 

In Table 2.1, the relationship among R, S, T, and P is T > R > P > S. In this case, both 

prisoners always choose to betray the other. By using this strategy they both maximize their own 

payoff regardless of what choice the other makes. Hence, in the end the payoff for both of them is 

P. However, it is apparent that prisoners can gain some payoff if both of them choose to cooperate 

with the other one since R is greater than P. From this point of view, one could argue that the self-

interest behavior sometimes is not the best choice for individuals. 

In game theory, if no players can gain any payoff by changing only their own strategies, 

we called it “Nash Equilibrium”. The outcome “betray – betray” in the prisoner’s dilemma is the 

Nash Equilibrium since the prisoner will lose payoff if he only changes his own strategy. The Nash 

Equilibrium concept is commonly used to analyze a game and study the interaction among 

decision-makers. However, the Nash Equilibrium in the classic game cannot explain the 

cooperation phenomena which could optimize the entire system’s payoff due to the self-interest 

behaviors of players.   
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In reality, sometimes individuals will cooperate with others, leading to an optimization for 

all players. To explain this phenomenon, one extension of the classic game is that individuals have 

a chance to change their strategies based on a rule, called “revision protocol”, if they play the game 

repeatedly. For instance, individuals could imitate others’ strategies based on the previous game’s 

outcome. As such, individuals do not have to play the game rationally, but instead, they are able 

to test how well their strategies are. This style of game is referenced as “evolutionary game” which 

is originally studied in biology. Many variations of the revision protocol could be applied to the 

evolutionary game and, in turn, the outcome of game could be shifted to the global optimal solution 

with different degrees. Particularly, if the contact network is taken into consideration for revision 

protocol, the game is called spatial game.  

In epidemiology, game theory can be adopted to explain a variety of self-interest behaviors 

during the epidemic, for instance, free riders in vaccination problem. When a large number of 

people in a population are immune to a certain type of infectious disease, the spread of this disease 

will be stopped or slowed down and people who do not have immunity to this disease are protected 

indirectly by others. This phenomenon is called “herd immunity” and people who are not immune 

to the disease are called “free riders”. In this case, game theory becomes an appropriate method to 

analyze human behaviors for voluntary vaccination problems. More details of vaccination 

problems and other applications of game theory in epidemiology are discussed in the next section. 

 2.1.3 Classification of game theory in epidemiology 

The application of game theory in epidemiology is categorized as four parts: vaccination, 

antivirals/antibiotics, social distancing, and logistic operations. The distribution of article 

references within the mentioned four categories is shown in Table 2.2.  
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Table 2.2 Distribution of paper in literature 

Category Number of papers 

Vaccination 23 

Antivirals/antibiotics 4 

Social distancing 8 

Logistics operations 2 

In Table 2.2, it is obvious that game theory is most commonly linked to a vaccination topic. 

Very few papers discuss usage of drugs and logistics operations using game theory. For 

antivirals/antibiotics, one reason is that it is very difficult to evaluate the effect of usage of drugs; 

on the other hand, some models integrate usage of antivirals/antibiotics into social distancing 

which do not focus on the study of usage of drugs itself. For logistics operations, very few topics 

are related to competing behaviors among individuals so that game theory is not a proper approach 

in most cases. However, there are still a few applications when considering the competition among 

organizations or countries.    

 2.1.3.1 Vaccination 

Vaccination is referenced as “the most effective approach to preventing transmission of 

vaccine-preventable diseases, such as seasonal influenza and influenza-alike epidemics, as well as 

reducing morbidity and mortality” (14). However, to date, smallpox is the only human disease that 

has been entirely eliminated because of the use of vaccination (15). “Herd immunity” and vaccine 

scares is part of reasons for the resiliency of vaccine-preventable diseases and extensive efforts 

have been contributed to studying interplay between disease transmission, vaccine coverage, and 

human behaviors by integrating game theory into a traditional epidemiological models (2,8,14,16-

35). The main topics of this review could be classified into three parts: self-interest vs group-

interest in a homogeneous population, self-interest vs group-interest in a heterogeneous 

population, and others. 

Self-interest vs group-interest in a homogeneous population 
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A basic vaccination game was developed by Bauch et al (17) to study the smallpox 

vaccination which integrated game theory into the epidemic modelling. Based on the model, the 

author concluded that the global optimality could be achieved only by voluntary vaccination. The 

simple version of a vaccination game in (17) is shown below: 

Considering a population with N individuals, all of them are players in the game. There are 

two strategies available to them: vaccination and non-vaccination. The risk associated to the 

vaccination is denoted by r and the risk of infection is denoted by πθ whose value is related to θ 

which represents the fraction of the population that is vaccinated. The player who chooses 

vaccination get payoff –r while the player who chooses non-vaccination gets payoff -πθ. Hence, 

the expected payoff for individuals who choose strategy P is  

𝐸(𝑃, 𝜃) = −𝑟𝑃 − 𝜋𝜃(1 − 𝑃) (2.1) 

In epidemiology, the basic reproduction number R0, which is defined as the secondary 

attack rate when an infectious individual invades into an entire susceptible population, is a critical 

indicator. When R0 is smaller than 1, the spread of infectious disease could be controlled; while 

the infectious disease will spread out if R0 is larger than 1.  

By coupling game theory into epidemical model, the vaccination coverage levels in Nash 

Equilibrium 𝑃∗ and optimal solution 𝑃𝑐𝑟𝑖𝑡 could be solved respectively and the results are shown 

below: 

𝑃∗ = 1 −
1

𝑅0(1−𝑟)
 (2.2) 

𝑃𝑐𝑟𝑖𝑡 = 1 −
1

𝑅0
 (2.3) 

where 0 < r < 1. As such, the vaccination coverage level in Nash Equilibrium is unlikely 

to reach the level in optimal solution. A similar conclusion was also drawn in model (21), which 

considered self-interested people in a voluntary vaccination problem using a vaccination game.  
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Many variations are studied based on the above vaccination game, including include 

imitation/learning behaviors in well-mixed population (8,22) and in complex networks (19,20,34), 

incentives offered (18), and altruism (23). 

Vardavas et al (18) used computational modelling to determine whether the vaccination 

coverage level, which is necessary for preventing influenza epidemics, can be reached when 

offering incentives to individuals. In their work, they proposed that “the severe epidemics will not 

be prevented if vaccination is voluntary and no incentives are offered”. In contrast, Reluga (8) 

claimed that “optimal individual behavior can vary between universal vaccination and no 

vaccination, depending on the relative costs and benefits to individuals”. Self-interested behaviors 

can lead to oscillations in vaccination coverage levels over time. 

People’s behavior and decisions are often influenced by many external factors, such as the 

opinions of friends and families, rumors, fear, information from news, radio, report, and so on. 

Instead of choosing static strategies, dynamic behaviors are studied when the imitation or learning 

behaviors are taken into consideration. Considering learning behaviors, Bauch (22) developed a 

game dynamic model and assumed “people adopt strategies according to an imitation dynamic, 

and subsequently base vaccination decisions on disease prevalence and perceived risks of vaccines 

and disease”. Instead of obtaining a stable state, oscillations in vaccination coverage levels are 

more possible when people dynamically change their strategies based on the disease prevalence 

and others’ behaviors. More recently, the dynamics of vaccination behaviors are studied in more 

complex network. Particularly in (20), two different game rules lead to very different outcomes. 

The results from memory-based model, which means individuals choose strategies based on past 

experience, and from risk-evaluation model, which means individuals choose strategies based on 

the prevalence, are opposite when we consider different costs of vaccination.   
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In game theory, a basic assumption is that individuals interplay with others according to 

self-interest and always want to maximize their own payoffs. However, it may not be always true 

in reality. Shim et al (23) conducted a survey to test how altruism affected individuals’ decisions 

in vaccination problem. They claimed that “that altruism plays an important role in vaccination 

decisions”. A game-based epidemiological model was developed for influenza vaccination and it 

turned out that the Nash Equilibrium moved towards the optimal solution when the altruism was 

taken into consideration. 

Self-interest vs group-interest in heterogeneous population 

The population is considered to be heterogeneous, when its individuals are divided into a 

finite number of distinct population groups, where each group may have distinct perceptions about 

vaccine and risks’ evaluation. According to the specific disease, the group could be classified by 

age and gender. For example, transmission of influenza indicate that elderly individuals face the 

highest mortality risk, but children contribute most to disease transmission. In this case, elderly 

individuals face the higher disease risks than adults and should be protected through vaccination 

of adults.  

In (24,31), Cojcaru et al analyzed the dynamics of the vaccinating behavior in a population 

consisting of two distinct social groups, a “vaccine-inclined majority group” and a “vaccine-averse 

minority group”. It turned out that the vaccine coverage level in this heterogeneous population is 

higher than the corresponding homogeneous population. In addition, it is possible that there is a 

high vaccination rate for majority group and a low vaccination rate for minority group under 

certain conditions. 

As the previous discussion, the elderly has the highest risk of influenza mortality. The 

Centers for Disease Control follow the principles of voluntary vaccination and vaccinate the 
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elderly with higher priority. However, preferentially vaccinating children may be more efficient 

to reduce the influenza transmission. Galvani et al (25) parameterized a game-theoretic model of 

influenza vaccination according to “a questionnaire data on actual perceptions of influenza and its 

vaccine”. Their results proposed that it is possible to align Nash Equilibrium with global optimal 

solution.  Another age-structured model is constructed by Shim et al (26). Their results claimed 

that priorities of vaccination for different age groups are different compared Nash Equilibrium and 

optimal solution. To imitate the real world transmission of influenza, a game theory experiment 

was conducted by Chapman et al (27). The results of this experiment are consistent with the general 

conclusion which self-interested players lead to Nash Equilibrium and global-interested players 

lead to optimal solution. 

Instead of grouping population by age, a disease which could be transmitted from a mother 

to a fetus results in gender-specific vaccination.  

For example, rubella is a highly contagious childhood disease and rubella can result in 

severe congenital defects if transmitted from a mother to a fetus. Shim et al (28) developed a game 

theoretic epidemiological model for rubella transmission and vaccination.  Their results showed 

that high vaccination coverage levels for both of males and females are required for optimal 

solutions, while Nash Equilibrium indicated that demands for vaccines among males and females 

are 0% and 100%, respectively. 

When a heterogeneous population is taken into consideration, the general conclusion -- 

self-interest optimal coverage is lower than group-interest optimal coverage -- may not be always 

true. The typical relationship was reversed. In (29), where an age-depend game-theory epidemic 

model was applied to the USA and Israel for chickenpox. 

Others 
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Although most of research focuses on Nash vaccination and global optimal vaccination, 

game theory is also applied to other topics in vaccination. Barrett (30) developed a model which 

combined epidemiology, economics, and game theory to study the global disease eradication, 

showing that “even epidemiology favors eradication, but a global disease eradication program may 

fail for institutional reasons”. Wu et al (32) took the imperfect vaccine into account. The results in 

their study showed that the number of effectively vaccinated individuals increased when the 

effectiveness of vaccination increased and therefore contain the epidemic spread. The results 

suggested that the impact of the epidemic can be better mitigated if vaccination effectiveness was 

increased. Another topic was discussed in (33) which focused on the incentives’ effect in influenza 

vaccination policy. Results suggested that “the optimal incentives should be greater when less 

contagious seasonal strains of influenza are involved and greater for the nonelderly population 

rather than the elderly”. Moreover, a phenomenon known as the “wait and see” vaccinating 

behavior during 2009 H1N1 pandemic was studied in (35). Many individuals prefer to “wait and 

see” until further information was available instead of choosing vaccination in the beginning. The 

delay-vaccinators either are protected by early vaccinators due to herd immunity or get vaccination 

after the safety of vaccine tested by early vaccinators. This adaptive behavior lead to “the timing 

of the epidemic peak to be strongly conserved”. 

Summary 

Vaccination problem is most commonly studied by using game theory in epidemiology. In 

vaccination game, all individuals in the population are players. Strategies are vaccination or non-

vaccination. Payoff functions and revision protocols could be different but the basic concept for 

payoff function is utility function (cost function) and for revision protocols are memory-based or 

risk evaluation. Most of research focus on the comparison of Nash Equilibrium and global optimal 
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solution. In general, the vaccination coverage level is lower in Nash Equilibrium than that in 

optimal solution. However, the conclusion may vary under different extensions and assumptions. 

Adaptive behaviors such as imitation, risk evaluation, wait and see, etc, may shift the Nash 

Equilibrium towards the optimal solution. When it comes to different groups of individuals, the 

typical conclusion could be reversed. In sum, voluntary vaccination program is very difficult to 

eradicate the infectious disease but better solutions could be obtained if individuals are motivated 

or instructed correctly. 

 2.1.3.2 Antivirals/Antibiotics 

Only four papers are selected in the topic of antivirals/ antibiotics. The concept of 

application of game theory are also quite different among different authors. In the usage of drugs 

games, all individuals in the population are players and their strategies include drug-acceptance 

and drug-refusal. Payoff functions are defined in different ways in different papers, including cost 

function (36), life expectancy (37), and lengths of infected period in terms of drug-resistance 

(38,39). 

In (36), Shim et al studied antiviral intervention during an influenza pandemic through 

evaluating optimal coverage level for antiviral drug use, from both of individual and the population 

sides, which is similar to the method of studying vaccination game. Their results showed that the 

self-interest driven demand for antiviral drugs during a pandemic would be much lowered than the 

optimal solution. The cost of drugs plays a key role when individuals make decisions. And 

therefore, it is almost impossible to control infectious disease through only usage of drugs if no 

incentives are offered. A similar conclusion was drawn by van Boven et al. (37) when considering 

the costs of treatment.    
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Another two papers focused on the use of antibiotic drugs. Overuse of antibiotic drugs may 

lead to an increase of the number of drug-resistance strains which make a “tragedy of commons” 

while antibiotics could protect individuals from infectious diseases.  The conflict of self-interest 

use and global-interest use could be analyzed by game theory. In (38), Porco el at developed a 

simple transmission model which study the development and spread of drug resistant organisms. 

According to their results, “antibiotic use may indeed lead to a tragedy of the commons, in which 

individual incentives lead to antibiotic use rates that are too high to yield the best community 

outcome”. A similar result was obtained in (39) when Gao el at proposed a simple two-disease 

epidemic model, where there is only one drug-sensitives strain for first disease, while there are 

both drug-sensitive and drug-resistant strains for second disease. 

 2.1.3.3 Social distancing 

Social distancing is the prevention strategy by reducing daily contact rates to other 

individuals. It includes school closure, isolation, public avoidance, and so on.  Sometimes social 

distancing also includes the behavior which reduces the intensity of infection.  In literature, some 

models are developed in a general way, which fail to specify the certain type of human behaviors. 

All of these human behaviors are considered as social distancing. In social distancing game, all 

individuals in the population are players, and their strategies include normal behaviors (which is 

not changed at all during the epidemic) and altered behaviors (individuals protect themselves 

through changing their behaviors, including reduction of intensity of contacts and reduction of 

contact rate to others.) Change of human behaviors could be extended into different levels but we 

refer to “altered behaviors” to represent individuals who change their behaviors to protect 

themselves. The payoff function is an utility function or cost function since individuals have to 
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pay extra costs if they would like to protect themselves but they have less risks than normal 

individuals.  

People are sometimes reluctant to pay the costs for social distancing, which will impact the 

effectiveness as a control measure. A differential game was used by Reluga (6) to study the impacts 

of social distancing by calculating the equilibrium behaviors based on different cost-functions. 

Their results showed that individuals can have benefits through social distancing but only social 

distancing cannot stop the spread of infectious disease. In (40,41), Chen adopted different players’ 

responses to study the equilibrium of the public avoidance game. The results showed that, “in some 

cases, the Nash equilibrium could also be the social optimum but for other cases, Nash equilibrium 

is typically not socially optimal in the public avoidance game. “ 

In (7), two mutually exclusive behaviors “normal” and “altered” are incorporated into SIR 

models to study the spontaneous changes of human behaviors. The altered individuals have a 

reduced infection rate, which could be achieved by social distancing, vaccination, or antivirals. 

Game theory is applied to the process by which individuals choose to be normal or altered. A 

similar concept is adopted in (42) which also takes the spatial structure into consideration.  

An interesting topic about contact tracing, defined as “the identification of individuals who 

have come into contact with an infectious case and may be infected”, is studied by Sippl-Swezey 

(43). A small group of individuals are investigated and a mathematical model with game theory 

was proposed to study conflicts of interests considering the perceived costs of disclosure. The 

results showed that the optimal decision is to choose not disclose to others if the costs are taken 

into consideration. However, if all individuals disclose all contacts, it turns out the alignment of 

individual and group optimality.  

 2.1.3.4 Logistic operations 
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Very few models are studied for the application of game theory in the topic of logistics 

operation in epidemiology. A systematic review about epidemics control and logistics operations 

is written by Dasaklis (13). However, only two papers are related to game theory, one for the 

allocation of influenza vaccines (44) and the other one for stockpile of medical supplies for 

hospitals before a disaster (45). In logistics operation game, the players are not individuals, but 

hospitals, health organizations, countries, etc. Strategies and payoff functions varied in different 

scenarios. Both of studies focus on comparing decentralized model and centralized model, which 

corresponds to the self-interest solution and optimal solution. 

 2.1.4 Summary and discussion 

From the selected literature, game theory has been applied to most topics that are related 

to mitigation strategies in epidemiology. Most of efforts are focused on the vaccination program, 

which is the most effective approach for vaccine-preventable infectious diseases. In order to solve 

the game in epidemiology, researchers mainly compare the Nash Equilibrium and optimal solution.  

Different assumptions lead to different conclusions and sometimes Nash Equilibrium could be 

shifted to the optimal solution. In addition, the impacts of game to the spread of infectious disease 

are also studied. Through changing the value of parameters in payoff functions or revision 

protocols, the solution could be shifted to the optimal solution.  

Despite the fact that game theory has been successfully applied to epidemiology, the 

application of game theory still remains a promising research area. We believe that there is a great 

opportunity for future research efforts. More precisely, future research directions may include: 

• Incomplete information for individuals: most of research in game theory assumes 

that people have complete information and estimates the risk based on the correct information. 

However, lacking information may lead people to make wrong decisions. 
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• Media broadcast: information dissemination mainly depends on mass media. Thus, 

media plays an essential role in the game. Involving media into the game portion could impact 

human behaviors, so that may indirectly impact the spread of infectious disease.  

• Involve policy-makers: most of game theory in epidemiology studies the change of 

human behaviors and how to align Nash equilibrium to global-optimum. However, policy-makers, 

who is a very crucial player in the game, could be involved in the epidemic game.  

• Incentives of individuals: there are a few articles mentioning the incentives of 

individuals. To motivate individuals to be global-interested, different motivation programs could 

be played by policy-makers. 

• Development of harmonized approaches: Most models only consider one strategy 

or one topic. More harmonized models could be developed, such as combining pharmaceutical 

interventions with non-pharmaceutical ones, or human behaviors with logistic operation plans. 

• Spatial Game: most of game theories do not consider the contact network which 

has a significant impact on both of spread of infectious disease and individuals’ decisions.  

• Analysis of models: after we compare the Nash Equilibrium and optimal solution, 

the corresponding policy should be studied so that Nash Equilibrium could be shifted to optimal 

solution. The effectiveness of these policies should be studied as well. 

 2.2 Spatial evolutionary game 

The spatial evolutionary game is a combination of classic game theory and cellular 

automaton, representing strategies, players, payoff function, structure of population, and an 

updating rule.  It is first introduced to study the local cooperation phenomena in prisoner dilemma 

by Nowak and May (46). This methodology can analyze various structures of populations using a 

regular lattice (47), scale-free networks (48), and real social networks (49).  Evolutionary games 
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on graphs are reviewed by Szabo and Fath (49). This concept requires an updating policy based 

on the payoff function with different updating schemes such as synchronous or asynchronous 

updates. Several common updating schemes are reviewed by Newth (50) and update rules are 

summarized by Roca, Cuesta, and Sanchez (51). 

A simple example of spatial evolutionary game in lattice is shown below for the purpose 

of introduction. Assume two types of players play a game, and two strategies are available to each 

player. The payoff matrix is shown in Table 2.3. Players could choose either strategy A or strategy 

B and payoff value could be a, b, c, or d correspondingly according to players’ strategies. Figure 

2.1 describes the location of each player. The contact pattern in this game is von Neumann 

neighborhood (four nearest neighborhood). The player would play the game with all neighbors 

and the summation of payoff value in the game against each neighbor is the final payoff value for 

each player. The result is shown in Figure 2.1. 

Figure 2.1 Spatial evolutionary game example 

 

After each turn, players could reconsider their own strategies based on their own payoff 

values and other players’ payoff values. In addition, players update their strategies synchronously 

or asynchronously. 

Table 2.3 Payoff Matrix  

 A B 

A a b 

B c d 
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 2.3 Optimal control for intervention strategies 

 2.3.1 Introduction 

For a given system, an optimal control problem is to find a control strategy which reaches 

a certain optimality criterion. Specifically, a set of differential equations are given to describe the 

trajectory of the control variables which minimize the objective function. The optimal control can 

be calculated by Pontryagin's maximum principle or solving the Hamilton–Jacobi–Bellman 

equation. In this section, the basic definition of optimal control problem and Pontryagin's 

maximum principle are introduced based on the book by Evans L.C.(52). 

Given an ordinary differential equation(ODE) with the form below: 

{
𝑥̇(𝑡) = 𝑓(𝑥(𝑡))  (𝑡 > 0)

𝑥(0) = 𝑥0                           
 (2.4) 

Assume the initial point 𝑥0 ∈ 𝑅𝑛 and the function 𝑓: 𝑅𝑛 → 𝑅𝑛, our goal is to study the 

dynamical evolution of the state of the system, which is the curve x: [0,∞) → 𝑅𝑛.  

If f also depends on control parameter 𝑢(∙)  where 𝑢(𝑡) ∈ 𝑅𝑚 , the equation in 2.4 is 

rewritten as:  

{
𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))  (𝑡 > 0)

𝑥(0) = 𝑥0                                     
 (2.5) 

Suppose the initial time be 0 and the final time be 𝑡𝑓, the objective function (or payoff 

function) can be described as:  

𝑆(𝑢(∙)) = 𝜑 (𝑥(𝑡𝑓)) + ∫ 𝐹(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡
𝑡𝑓
0

, (2.6) 

where 𝜑:𝑅𝑛 → 𝑅 and 𝐹: 𝑅𝑛 × 𝑈 → 𝑅 are given. 

The aim of optimal control is to find a control 𝑢∗(∙), which maximizes (or minimizes) 

objective function 𝑆(𝑢(∙)), i.e. 

https://en.wikipedia.org/wiki/Pontryagin%27s_minimum_principle
https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Bellman_equation
https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Bellman_equation
https://en.wikipedia.org/wiki/Pontryagin%27s_minimum_principle
https://en.wikipedia.org/wiki/Pontryagin%27s_minimum_principle
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𝑆(𝑢∗(∙)) ≥ 𝑆(𝑢(∙)) (2.7) 

To derive the solution of 𝑢∗(∙), the optimal control can be solved using Pontryagin's 

maximum principle. Suppose Hamiltonian function is 

𝐻(𝑥, 𝜆, 𝑢) = 𝑓(𝑥, 𝑢) ∗ 𝜆 +  𝐹(𝑥, 𝑢) (2.8) 

where 𝑥, 𝜆 ∈ 𝑅𝑛, 𝑢 ∈ 𝑈, 𝑢∗(∙) is the optimal control, 𝜆 and 𝑥∗(∙) is the corresponding trajectory. 

Also, for 0 ≤ 𝑡 ≤ 𝑡𝑓 a function 𝜆∗: [0, 𝑡𝑓] → 𝑅𝑛 satisfies  

𝑥̇∗(𝑡) = ∇𝜆𝐻(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑢∗(𝑡)), (2.9) 

𝜆̇∗(𝑡) = −∇𝑥𝐻(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑢∗(𝑡)), (2.10) 

and 

𝐻(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑢∗(𝑡)) = max (𝐻(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑢(𝑡))). (2.11) 

 In addition, the terminal condition is 

𝜆̇∗(𝑡𝑓) = ∇𝜑 (𝑥(𝑡𝑓)), (2.12) 

 2.3.2 Application of optimal control for dynamic models 

The optimal control methods have been used widely to study infectious diseases and the 

corresponding optimal intervention strategies when the dynamic models are considered.  However, 

the methods introduced in section 2.3.1 may not work for non-dynamic systems (such as statistical 

model), which requires other numerical methods to solve the optimal control problems. Those 

methods are out of the scope and are not included in this section.   

Lashari (53) developed a simple mathematical model to seek the cost effective control 

strategies for the general vector borne disease.  The SIR model was adopted to represent the 

compartments of hosts and the SI model was used to describe the vector population. An iterative 

method, called the semi-implicit finite difference method, was present to find the numerical 

https://en.wikipedia.org/wiki/Pontryagin%27s_minimum_principle
https://en.wikipedia.org/wiki/Pontryagin%27s_minimum_principle
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solution of the control problem. A similar model representing the optimal control of a vector borne 

disease with horizontal transmission was also discussed by Lashari in 2012 (54).  

Jung (55) studied the optimal control of treatments for a two-strain tuberculosis using a 

system of six ordinary differential equations. The objective functional not only minimized the 

number of latent and infectious drug-resistant tuberculosis but also minimized the cost of control 

treatments. In 2009, treatment and prevention from Malaria was discussed by Blayneh (56). The 

objective of optimal control was minimizing the implementing costs. Numerical results showed 

that prevention and treatment strategies lowered the number of exposed individuals and infected 

individuals. Blayneh (57) also developed a more complicated dynamic system with 9 differential 

equations to study the transmission of West Nile Virus in 2010. Using an iterative method, the 

optimality system coupled with two control strategies were solved numerically by Runge-Kutta 

method of order four. The results showed that mosquito-reduction strategies were more effective 

than personal protection. In 2009, Zaman (58) discussed the optimal treatment of an SIR model 

with time delay. Particularly, the optimal control strategies were solved for the transmission of 

Ebola virus. 

In addition, the optimal control problems are also adopted in cellular level disease 

modeling, such as HIV. An ODE system was used to study the interplay between human immune 

system and HIV(59). In this study, chemotherapy was introduced in an early treatment setting and 

the corresponding optimal chemotherapy strategy was solved based on a combination of 

maximizing benefit from T cell counts and minimizing total costs of chemotherapy. Later on, 

Culshaw (60) studied the same optimal treatment problem by maximizing the benefit from levels 

of healthy CD4+ cells and immune response cells instead of only T cell counts as well as 

minimizing the cost of chemotherapy. The ODEs were also used to study the interaction between 
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HIV and T-cells by Joshi (61) in 2002, and an interactive method was adopted to solve the optimal 

control strategies with two drug treatments.  
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Chapter 3 - Modeling Infection Spread and Behavioral Change 

Using Spatial Games 

Chapter 3 is based on the paper “Modeling Infection Spread and Behavioral Change Using Spatial 

Games” to be published in the journal Health Systems, 2015, 4(1): 41-53. 

 Abstract 

This chapter presents a methodology that combines information transmission, contact 

networks, and changes of human behaviors in modeling the dynamics of infectious diseases.  The 

methodology presented is based on a spatial evolutionary game with additional information 

representing human behavior.  This approach is used to model the transmission process of 

infectious disease, which emphasizes the human response and information transmission in a social 

context.  It combines the advantages of evolutionary game theory with modeling the spontaneous 

changes of human behaviors based on the balance of benefits and costs.  The model assumes 

rational participants who use information acquired to make individual decisions.  This novel 

modeling approach shows the global spread of infection considering the individualized behavior. 

 3.1 Introduction 

When an infectious disease spreads out into human communities, individuals may alter 

their behaviors to protect themselves from becoming infected. Such changes include improvement 

of personal hygiene, taking antiviral medicine, voluntary social distancing, voluntary vaccination, 

and other protective measures.  As an example, the outbreak of the SARS epidemic in 2003 caused 

many people to change their behaviors by taking several preventative measures (3,4).  
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Several studies have been conducted in order to understand how these spontaneous 

behavioral changes help mitigate the spread of infection.  Funk reviewed the recent work on the 

influence of human behavior on the spread of infectious diseases, including using game theory to 

study the human response to epidemics (2).  Reluga constructed a differential game to study the 

benefit of social distancing behaviors (6).  Another differential model showing that changes to 

human behaviors significantly impact the spread of epidemics was proposed by Poletti, Ajelli, and 

Merler (7). To model the spontaneous changes of human behaviors, the susceptible individuals 

were assumed to adopt two mutually exclusive behaviors, “normal” and “altered”, based on the 

perceived risk of infection. Regula, Bauch, and Galvani, in an epidemiological game examining 

voluntary vaccination, claimed disease eradication is hard to achieve by voluntary vaccination in 

a homogeneous population (8). All three models only considered the case in a well-mixed 

population and failed to indicate the importance of contact structure. However, a heterogeneous 

and spatially structured population can be more successful when a social contact network is 

incorporated into the model (9-11). Hence, the combination of the impact of a spatially contact 

structure and the impact of spontaneous behavior changes is believed to be an appropriate way to 

improve the existing models.  

Based on these works about spontaneous changes of human behaviors, a key concept is 

emphasized–the balance of benefits and costs from such changes. With the assumption of 

rationality and self-interest, people make decisions according to the information they acquire about 

a disease. Hence, information transmission and individuals’ perception about the prevalence of 

infectious disease play crucial roles in the tradeoff between benefits and costs. To evaluate 

individuals’ assessments of prevalence of infectious diseases based on the information acquired, 

Chen (63) introduced a social sampling method.  It allows participants to make assessments based 
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on partial information, instead of full information assumed by other models. However, this method 

assumes there is no centralized dissemination of information regarding the prevalence of the 

disease.  Funk et al. studied the effect of local information transmission in a social network on 

epidemic outbreaks (64). The model was based on the author’s hypothesis that changes of human 

behavior affected by the information transmission network can restrict the spread of infectious 

diseases.  Kiss developed a model considering sexually transmitted infections based on the 

information transmission (65). It illustrated how an active host population and the transmission of 

information triggered by the disease can eradicate or minimize infection levels.  

Over the course of the epidemic, the spread patterns of the disease could be very different 

between the rural and metropolitan areas due to the population density and contact structure 

variations between different areas.  In addition, human behaviors changes within a largely 

heterogeneous population group during the course of the epidemic could sway the disease’s 

reproduction ratio (R0) over time, instead of the commonly assumed constant R0 for the underlying 

disease suggested in majority the existing literatures.  The changes of the human behaviors or self-

mitigation activities many times are by and large driven by the current information individual 

obtain either by the media, propaganda, or other individuals within their community.  The model 

presented in this article attempt to include these significant factors in our model using a straight 

forward spatial game structure.  We assume the un-infected population can make free will behavior 

changes, such as social distancing, self-quarantining, vaccination, taking preventive medicine, 

self-protection devices, etc. to reduce his or her chances to get infected.  However, these behavior 

changes come with associated "costs," including expenses, loss of income opportunities, costs of 

inconveniences, etc.  Each individual could also possess different perceptions for the information 
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related to the ongoing epidemic and decided to either do nothing or take on different actions to 

reduce his or her chances to acquire the disease.   

In this paper, we demonstrate a methodology that combines the information transmission, 

contact networks, and changes of human behaviors with the dynamics of an epidemic.  The 

methodology uses a spatial evolutionary game to model human behavior change and its impacts 

on the transmission process of infectious disease.  One advantage of adopting a spatial evolutionary 

game is the “spatial decision” The spatial game take the location information into consideration 

when individuals balance their costs and benefits, i.e. individuals in different locations may choose 

different strategies based on their local and global situations.  The other advantage of adopting a 

spatial evolutionary game is the convenience for studying the impacts of local information and 

global information.  We assumed the impact of local information transmission is different from 

the impact of global information transmission. Hence, it is convenient to collect local information 

as well as global information from which individuals base their decisions in a spatially structured 

population. 

The spatial evolutionary game is a combination of classic game theory and cellular 

automaton, representing strategies, players, payoff function, structure of population, and an 

updating rule.  This methodology can analyze various structures of populations using a regular 

lattice (46), scale-free networks (47), and real social networks (48).  This concept requires an 

updating policy based on the payoff function with different updating schemes such as synchronous 

or asynchronous updates.  Several common updating schemes are reviewed by Newth (50) and 

update rules are summarized by Roca, Cuesta, Sanchez (51).  

This paper first presents in Section 3.2 a conceptual model which relates the spatial game 

using information transmission to the spread of epidemics.  Then a mathematical model is 
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constructed in Section 3.3, and a small example and sensitivity analysis is shown in Section 3.4.  

In Section 3.5, we demonstrate the calculations of the reproductive ratio (R0). A brief summary is 

presented in Section 3.6. 

 3.2 Conceptual Model 

The basic idea of changing human behavior based on information dissemination is 

described in Figure 3.1. When the first infected individual is discovered in a community, the 

infectious disease starts spreading in the local neighborhood.  At the same time, information about 

the disease such as transmission patterns, infection rate, prevalence populations and locations, 

mortality, and other relative information is spread through word-of-mouth or informal networks, 

reports on newspaper, radio, and TV or online. People make decisions after acquiring this 

information. Some might take protective measures to prevent being infected.  Therefore, these 

human behavior changes impact the spread of underlying infectious diseases. 

To model the process of changes of human behaviors, a spatial game is applied to the 

epidemic. Combining a spatial game and the epidemic is done by integrating the transmission 

process into the spatial game.  The basic transmission process can be illustrated by employing the 

classic compartmental SIR model which represents susceptible, infected, and recovered 

individuals, as shown in Figure 3.2. 

Figure 3.1 Conceptual model 
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Figure 3.2 SIR model 

 

A popular approach to present the  SIR system dynamics model  is using a system of 

ordinary differential equations (66): 

𝑑𝑆

𝑑𝑡
= −

1

𝑁
𝛽𝑆𝐼  

𝑑𝐼

𝑑𝑡
=

1

𝑁
𝛽𝑆𝐼 − 𝛾𝐼   

𝑑𝑅

𝑑𝑡
= 𝛾𝐼   

Given human behavior when individuals acquire information about infectious diseases 

corresponding to the ongoing epidemic, a susceptible individual can adopt one of two different 

strategies: normal or switch.  Normal strategy means the individual decided to maintain the status 

quo and do nothing to prevent the possible infections and such individuals here are called normal 

individuals.  The name “normal” is based on the “status quo bias” individual facing when making 

decision making.  The switch strategy means an individual will make an effort to protect him or 

herself and such individual is called a switcher. The same concept is also defined as normal and 

altered populations (7). This process is shown in Figure 3.3, and then a mathematical model is 

constructed according to this concept. 

Figure 3.3 SIR model with spatial game 
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 3.3 Mathematical Model 

 3.3.1 Notations 

To explain the whole process clearly, a list of notations is shown in this section. The 

population is assumed to be distributed in an m by n lattice and each location is indicated by (𝑖, 𝑗), 

where 𝑖 = 1,2,⋯ ,𝑚 and 𝑗 = 1,2,⋯ , 𝑛, are shown in Table 3.1. 

Table 3.1 Parameters in the model 

Parameters Interpretation 

m number of rows in the lattice for population distribution 

n number of columns in the lattice for population distribution 

(𝒊, 𝒋) location at the ith row and jth column in the lattice 

The total four compartments in this model are normal individuals, switchers, infected 

individuals, and recovered individuals, all listed in Table 3.2. 

Table 3.2 Notation for compartments 

Parameters Interpretation 

NORMAL(𝒊, 𝒋) number of normal individuals in location (𝑖, 𝑗) 

S(𝒊, 𝒋) number of switchers in location (𝑖, 𝑗) 

I(𝒊, 𝒋) number of infected individuals in location (𝑖, 𝑗) 

R(𝒊, 𝒋) number of recovered individuals in location (𝑖, 𝑗) 

𝑵𝑶𝑹𝑴𝑨𝑳𝒕 (𝒊, 𝒋) number of normal individuals in location (𝑖, 𝑗) at time t in Eq. (3.11) 

𝑺𝒕 (𝒊, 𝒋) number of switchers in location (𝑖, 𝑗) at time t in Eq. (3.12)  

𝑰𝒕(𝒊, 𝒋) number of infected individuals in location (𝑖, 𝑗) at time t in Eq. (3.13) 

𝑹𝒕(𝒊, 𝒋) number of recovered individuals in location (𝑖, 𝑗) at time t in Eq. (3.14) 

Some additional notations for the distribution of population are used to denote the total 

number of individuals and population distribution in local and global perspectives, as shown in 

Table 3.3. 
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Table 3.3 Additional notations for population distribution 

Parameters Interpretation 

N (𝒊, 𝒋) total number of individuals in location (𝑖, 𝑗) 

 𝑺𝒍(𝒊, 𝒋)  portion of N (𝑖, 𝑗) who are switchers in the neighborhood of location (𝑖, 𝑗) in Eq. (3.17) 

 𝑰𝒍(𝒊, 𝒋) portion of N (𝑖, 𝑗) who are infected individuals in the neighborhood of location (𝑖, 𝑗) in Eq. (3.15) 

𝑺𝒈 portion of individuals who are switchers in the population in Eq. (3.18) 

𝑰𝒈 portion of individuals who are infected individuals in the population in Eq. (3.16) 

For the spatial game, several notations are defined and further discussed in the next section. 

A brief description for these notations is shown in Table 3.4. 

Table 3.4 Additional notations for population distribution 

Parameters Interpretation 

𝑭𝒏(𝒊, 𝒋) payoff value for normal individuals in location (𝑖, 𝑗) in Eq. (3.1) 

𝑭𝒔(𝒊, 𝒋) payoff value for switchers in location (𝑖, 𝑗) in Eq. (3.2) 

𝑮() function for the estimated risk for normal individuals in local perspective in Eq. (3.3) 

𝑯() function for the estimated risk for normal individuals in global perspective in Eq. (3.4) 

𝒈() function for switchers externality in local perspective in Eq. (3.5) 

𝒉() function for switchers externality in global perspective in Eq. (3.6) 

𝒌𝒄 average cost of switching strategy in Eq. (3.2) 

𝛌 associated risk reduction due to the switch strategy in Eq. (3.2) 

𝒎𝟏 multiplier of local prevalence status in Eq. (3.3) 

𝒎𝟐 multiplier of global prevalence status in Eq. (3.4) 

𝒄𝟏 multiplier of local externality from switchers in Eq. (3.5) 

𝒄𝟐 multiplier of global externality from switchers in Eq. (3.6) 

𝑷𝒊𝒋(𝒏 → 𝐬) 
probability of an individual switching from strategy normal to strategy switch in location (𝑖, 𝑗) in 

Eq. (3.7) 

𝜽 intensity of selection, i.e. rationality of the decision maker in Eq. (3.7) 
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For the disease transmission process, infection rate, recovery rate, number of effective 

contacts, and the associated parameter are shown in Table 3.5. 

Table 3.5 Notations for transmission of infectious diseases 

Parameters Interpretation 

𝑷𝒕𝒓𝒂𝒏𝒔_𝒏(𝒊, 𝒋) transmission rate for normal individuals in location (𝑖, 𝑗) in Eq. (3.8) 

𝑷𝒕𝒓𝒂𝒏𝒔_𝒔(𝒊, 𝒋) transmission rate for switchers in location (𝑖, 𝑗) in Eq. (3.9) 

𝑪𝑰(𝒊, 𝒋) 

total number of effective contacts with infected individuals for normal individuals in location 

(𝑖, 𝑗) in Eq. (3.10) 

𝑪𝒊𝒋(𝒔, 𝒕) 
number of effective contacts with infected individuals in neighborhood location (𝑠, 𝑡)  for normal 

individuals in location (𝑖, 𝑗) in Eq. (3.10) 

𝑵𝒊𝒋(𝒔, 𝒕) 
total number of effective contacts in neighborhood location (𝑠, 𝑡) for normal individuals in 

location (𝑖, 𝑗) in Eq. (3.19) 

𝜷 infection rate per contact between normal individuals and infected individuals in Eqs. (3.8) and 

(3.9) 

𝜸𝟏 contact reduction rate for switchers in Eq. (3.19) 

𝜸𝟐 infection reduction rate for switchers in Eq. (3.9) 

𝒏𝟏 average number of contacts to individuals in a neighborhood grid(s) except its own grid for a 

normal individual in Eq. (3.19) 

𝒏𝟐 average number of contacts to individuals in the same grid for a normal individual in Eq. (3.19) 

𝝁 Average recovery rate in Eqs. (3.25) and (3.26) 

 3.3.2 Detail Processes of the Model 

The mathematical model describing the transmission of an epidemic consists of four steps 

as shown in Figure 3.4. In these four steps, there is a loop among the last three steps. The first step 

goes through the initialization process. Then a loop goes through the collection process, game 

process, transmission process, and then back to collection process. All details of each process will 

be discussed in the following subsection. 
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Figure 3.4 Process of spatial game in epidemics 

Initialization Collection Game Transmission

1. Prevalence 
Eqs. (15)-(16)
2. # of switchers
Eqs. (17-18)

1. Payoff Function
Eqs (1)-(6)
2. Decision Rule
Eq. (7)
3. Game Update

1. Contact Pattern Eq. (19)
2. Transmission Rate
Eqs. (8)-(10)
3. Recovery
4. Transmission Update
Eqs. (11)-(14)  

 3.3.2.1 Initialization 

At the beginning, the various population distributions are initialized, including normal 

individuals, switchers, infected individuals, and recovered individuals. No recovered and switchers 

populations are generated in the first iteration, and it is assumed only one individual is infected 

initially. 

 3.3.2.2 Collection 

Human responses to an infectious disease depend on many factors such as prevalence of 

the disease, mortality rate, means of transmission, and others. In this simple model, two major 

factors –the prevalence and the amount of switchers –are considered.  The prevalence factor 

represents the potential risk of being exposed to the infectious disease, and the number of switchers 

determines the benefit of switching. Throughout this chapter, we assume that individuals have the 

complete information, i.e. individuals clearly know how many people are infected and the number 

of switchers.  Moreover, two types of information are represented in our model: local and global 

information, each with different impacts on the spatial game.  Thus, four types of information are 

considered in the model: local prevalence, global prevalence, local number of switchers, and global 

number of switchers. 

 3.3.2.3 Game 
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As illustrated in Figure 3.4, the Game step is divided into three main procedures as the 

main part of the spatial game, including payoff function, decision rule, and game update.  The 

details are discussed in the following four subsections. 

Payoff Function 

It is assumed that individuals will adopt the switching strategy if the risk of the infectious 

disease is high enough. Judgment of threat or risk for each individual is mainly based on two 

aspects: the percentage of population infected in their local neighborhoods (local prevalence 

status) and the percentage of infection in the global environment (global prevalence status).  The 

information of local and global prevalence status can be practically obtained through television, 

newspaper, radio, etc.  

With the current information, individuals could decide to change their strategies 

spontaneously based on the benefit and cost, which includes their judgment about potential risk 

and the cost associated with the protective behaviors, which are modeled as the payoff function.  

In addition, switchers could create externality, which means that normal individuals could also 

benefit from switchers’ efforts, since the aggregate effects of switching beyond reducing one’s 

own potential risk of infection is also reducing the overall transmission or the spread of the disease 

(6).  

From this point of view, payoff functions for normal individuals or switchers are defined 

as follows: 

𝐹𝑛(𝑖, 𝑗) = −𝐺(𝐼𝑙(𝑖, 𝑗))𝑔(𝑆𝑙(𝑖, 𝑗)) − 𝐻(𝐼𝑔)ℎ(𝑆𝑔) (3.1) 

𝐹𝑠(𝑖, 𝑗) = −𝑘𝑐 + 𝜆𝐹𝑛(𝑖, 𝑗) (3.2) 

where 

𝐺(𝐼𝑙(𝑖, 𝑗)) = 𝑚1𝐼𝑙(𝑖, 𝑗) (3.3) 
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𝐻(𝐼𝑔) = 𝑚2𝐼𝑔 (3.4) 

𝑔(𝑆𝑙(𝑖, 𝑗)) =
1

1+𝑐1𝑆𝑙(𝑖,𝑗)
 (3.5) 

ℎ(𝑆𝑔) =
1

1+𝑐2𝑆𝑔
 (3.6) 

Given a contact network, Il(i, j) represents the portion of N  (𝑖, 𝑗)  who are infected 

individuals in the neighborhood of location (i ,j), Ig represents the portion of individuals who are 

infected in the entire population, Sl(i, j) represents the portion of N (𝑖, 𝑗) who are switchers in the 

neighborhood of location (i ,j), and Sg represents the portion of individuals who are switchers  in 

the whole population. 

Equations (3.1) and (3.2) define payoff functions for normal individuals, Fn(i, j), and 

switchers, Fs(i, j), in location (i, j), respectively. Normal individuals pay nothing for protective 

behavior since they do not spend any additional efforts for protection. Switchers, however, pay a 

cost for preventive efforts. In Eq. (3.2), the parameter, kc, is denoting the cost of such switching 

strategy. Parameter λ is the associated risk reduction due to the switch strategy.  

Functions G() and H() in Eq. (3.1), which are defined in Eqs. (3.3) and (3.4), denote the 

estimated risk for normal individuals, which is calculated by local and global prevalence status as 

discussed above.  It is hard to require normal individuals to make accurate estimates of the risk; 

however, the prevalence status (e.g., knowledge on the percentage of population that got infected 

based on public information) could be an important reference for them.  In this paper, the estimate 

for the risk and conversion from the risk to the payoff value, based on the real prevalence status, 

is modeled by a simple linear relationship.  Specifically, m1 denotes a multiplier of local prevalence 

status (local information) and m2 denotes a multiplier of global prevalence status (global 

information). These two parameters are defined to help translate the prevalence status to the payoff 

value. 
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Functions g() and h() in Eq. (3.1), which are defined in Eqs. (3.5) and (3.6), denote the 

externality of switchers for local and global environments. As discussed above, switchers create 

local and global externality (potential benefits) for the entire population, not just for themselves.  

Therefore, the more switchers in the location, the safer the place is.  In Eqs (3.5) and (3.6), c1 

denotes the multiplier of “switch strategy” for local externality and c2 denotes the multiplier of 

"switch strategy" for global externality.  

Decision rule 

In every iteration of the game, each susceptible individual makes a decision between being 

a normal individual or being a switcher through balancing the benefits and costs. Individuals will 

change their strategies with a probability according to the payoff. The probability function of 

switching in location (𝑖, 𝑗) is shown as 

𝑃𝑖𝑗(𝑛 → 𝑠) =
1

1+𝑒−𝜃(𝐹𝑠(𝑖,𝑗)−𝐹𝑛(𝑖,𝑗)) (3.7) 

This update rule is also referred to as the Fermi rule, which is used widely in the literature 

(67,68), based on the Fermi distribution function. In Eq. (7), 𝑃𝑖𝑗(𝑛 → 𝑠) denotes the probability of 

an individual switching from strategy normal to strategy switch in location (𝑖, 𝑗) when comparing 

the differences in payoffs between 𝐹𝑠(𝑖, 𝑗) and 𝐹𝑛(𝑖, 𝑗). The parameter θ represents the intensity of 

selection on the differences between both payoff functions, 𝐹𝑠(𝑖, 𝑗) and 𝐹𝑛(𝑖, 𝑗), which models the 

rationality of the decision maker.  If payoffs of the different strategies are the same, i.e., 𝐹𝑠(𝑖, 𝑗) −

𝐹𝑛(𝑖, 𝑗) → 0, individuals would choose either strategy with equal chance. If, the parameter θ itself 

equals zero, individuals will also choose either strategy with the probability of 50%, and in this 

case, the individual is making random choices with equal chance.  When parameter θ approaches 

infinity, players will definitely choose the strategy with the higher payoff.  
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Similarly, we could also define the probability function of switching from switchers to 

normal individuals in location (𝑖, 𝑗) as 𝑃𝑖𝑗(𝑠 → 𝑛). Hence, the transmission matrix in spatial game 

between switchers and normal individuals is shown below: 

𝑁𝑜𝑟𝑚𝑎𝑙              𝑆   

𝑁𝑜𝑟𝑚𝑎𝑙
𝑆

[
1 − 𝑃𝑖𝑗(𝑛 → 𝑠) 𝑃𝑖𝑗(𝑛 → 𝑠)

𝑃𝑖𝑗(𝑠 → 𝑛) 1 − 𝑃𝑖𝑗(𝑠 → 𝑛)
]
 

In general, the switching processes for normal individuals and switchers are independent. 

However, in our model we assume 

𝑃𝑖𝑗(𝑠 → 𝑛) =
1

1 + 𝑒−𝜃(𝐹𝑛(𝑖,𝑗)−𝐹𝑠(𝑖,𝑗))
 

so that we have 𝑃𝑖𝑗(𝑛 → 𝑠) + 𝑃𝑖𝑗(𝑠 → 𝑛) = 1. The transmission matrix can be written as 

𝑁𝑜𝑟𝑚𝑎𝑙              𝑆   

𝑁𝑜𝑟𝑚𝑎𝑙
𝑆

[
1 − 𝑃𝑖𝑗(𝑛 → 𝑠) 𝑃𝑖𝑗(𝑛 → 𝑠)

1 − 𝑃𝑖𝑗(𝑛 → 𝑠) 𝑃𝑖𝑗(𝑛 → 𝑠)
]
 

Game update 

After evaluating the payoffs, each susceptible individual at each spatial location update 

their strategies according to probability defined in Eq. (3.7). Each update period is referred to as 

one turn, whose length can be predefined by the users. In our test model presented in Section 4, 

the update period is assumed to be one day. 

The number of normal individuals and switchers in the susceptible population is 

recalculated at each spatial location as individuals update their strategies.  Hence, initial values of 

the matrices, and the normal and switchers’ distributions, are updated after each iteration. 

 3.3.2.4 Transmission 

In this article, transmission of the disease follows conventional transmission processes 

defined in the standard SIR model (Figure 3.2). The details are given below. 
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Contact Pattern 

The contact pattern is an important factor which affects the dynamics of an epidemic.  Most 

researchers rely on a presumed contact pattern with little or no empirical basis.  In Mossong et al. 

(69), the authors provide the first large-scale quantitative approach to contact patterns relevant to 

how infectious diseases are transmitted.  Theoretically, any type of contact pattern can be applied 

to the model (70).  In this paper, a very simple contact pattern based on the Poisson counting 

process is assumed as described in Section 3.4.  This contact pattern is used to analyze the 

characteristic of the model and the sensitivity of each parameter in the model.  In the future, a more 

complicated and realistic contact pattern will be considered to extend this model. 

Transmission rate 

The transmission process is based on the simple SIR model.  In this paper, different 

transmission rates and contact rates are defined for normal individuals and switchers, respectively. 

For switchers, there is a reduction in transmission rate due to the change of behaviors, such as 

social distancing.  The probability function for transmission of the underlying disease in one 

specific location, say (i,j), is defined as follows: 

𝑃𝑡𝑟𝑎𝑛𝑠_𝑛(𝑖, 𝑗) = 1 − (1 − 𝛽)𝐶𝐼(𝑖,𝑗) (3.8) 

𝑃𝑡𝑟𝑎𝑛𝑠_𝑠(𝑖, 𝑗) = 1 − (1 − 𝛾2𝛽)𝐶𝐼(𝑖,𝑗) (3.9) 

𝐶𝐼(𝑖, 𝑗) = ∑ 𝐶𝑖𝑗(𝑠, 𝑡)(𝑠,𝑡)∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑  (3.10) 

where γ2 is the infection rate reduction for switchers, 𝐶𝐼(𝑖, 𝑗) denotes the total number of 

contacts with infected individuals in its own location and in its neighborhood for an individual in 

location (𝑖, 𝑗) , and 𝐶𝑖𝑗(𝑠, 𝑡)  denotes the number of contacts with infected individuals in its 

neighborhood location (𝑠, 𝑡) for an individual in location (𝑖, 𝑗), and β denotes the transition rate 

between infected and susceptible individuals. 
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Recovery 

Infected individuals usually stay infected over a period of time depending on the 

underlining disease, and recover from the disease on a certain day with a specific probability. The 

recovery probability distribution can be defined according to the specific disease. 

Transmission update  

Define 𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗) to be the number of normal individuals in location (𝑖, 𝑗) at time t, 

𝑆𝑡(𝑖, 𝑗) to be the number of switchers in location (𝑖, 𝑗)at time t, 𝐼𝑡(𝑖, 𝑗) to be the number of infected 

individuals in location (𝑖, 𝑗) at time t, and 𝑅𝑡(𝑖, 𝑗) to be the number of recovered individuals in 

location(𝑖, 𝑗) at time t. After the transmission process, each location updates its properties as 

follows: 

𝑁𝑂𝑅𝑀𝐴𝐿𝑡+1(𝑖, 𝑗) = (𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗) + 𝑆𝑡(𝑖, 𝑗)) ∗ (1 − 𝑃(𝑛 → 𝑠)) − ∆(𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗))(3.11) 

𝑆𝑡+1(𝑖, 𝑗) = (𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗) + 𝑆𝑡(𝑖, 𝑗)) ∗ 𝑃(𝑛 → 𝑠) − ∆(𝑆𝑡(𝑖, 𝑗))   (3.12) 

𝐼𝑡+1(𝑖, 𝑗) = 𝐼𝑡(𝑖, 𝑗) + ∆(𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗)) + ∆(𝑆𝑡(𝑖, 𝑗)) − Ω(𝐼𝑡(𝑖, 𝑗)) (3.13) 

𝑅𝑡+1(𝑖, 𝑗) = 𝑅𝑡(𝑖, 𝑗) +  Ω(𝐼𝑡(𝑖, 𝑗)) (3.14) 

where ∆(𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗)) and ∆(𝑆𝑡(𝑖, 𝑗)) denote the number of individuals infected at 

time t, from normal individuals and switchers, respectively. Ω(𝐼𝑡(𝑖, 𝑗)) denotes the number of 

infected individuals recovered at time t.  𝐼𝑡(𝑖, 𝑗), in (3.13) represents, at time t, the infected 

population in location (𝑖, 𝑗) and 𝑅𝑡(𝑖, 𝑗), in (3.14) represents, at time t, the recovered population 

in location (𝑖, 𝑗). 

 3.4 Test bed 

In this section, a small example is constructed to analyze the characteristics of this model.  

Consider a small region with m by n locations in a regular lattice where m=5 and n=5, and 100 
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individuals who live in each location.  Initialize the population as follows: 𝑁(𝑖, 𝑗) denotes the 

number of individuals in location (𝑖, 𝑗), 𝐼(𝑖, 𝑗) denotes the number of infected individuals in the 

location (𝑖, 𝑗) ,  𝑆(𝑖, 𝑗)  denotes the number of switchers in the location(𝑖, 𝑗) , 𝑁𝑂𝑅𝑀𝐴𝐿(𝑖, 𝑗) 

denotes the number of normal individuals in location (𝑖, 𝑗), and 𝑅(𝑖, 𝑗) denotes the number of 

recovered individuals in the location (𝑖, 𝑗). On the first day, one infected person exists in the focal 

site and all other individuals are normal individuals. 

The contact pattern is based on the Moore neighborhood (46), which means individuals 

will contact others only in the adjacent eight locations and in their own location.  Hence the number 

of 𝐼𝑙(𝑖, 𝑗), 𝐼𝑔, 𝑆𝑙(𝑖, 𝑗), and 𝑆𝑔 in Eq. (3.1) can be calculated in Eqs. (3.15-3.18).   

𝐼𝑙(𝑖, 𝑗) =
∑ ∑ 𝐼(𝑘,𝑙)

min (𝑗+1,𝑛)
𝑙=max (𝑗−1,1)

min (𝑖+1,𝑚)
𝑘=max (𝑖−1,1)

∑ ∑ 𝑁(𝑘,𝑙)
min (𝑗+1,𝑛)
𝑙=max (𝑗−1,1)

min (𝑖+1,𝑚)
𝑘=max (𝑖−1,1)

 (3.15) 

𝐼𝑔 =
∑ ∑ 𝐼(𝑘,𝑙)𝑛

𝑙=1
𝑚
𝑘=1

∑ ∑ 𝑁(𝑘,𝑙)𝑛
𝑙=1

𝑚
𝑘=1

 (3.16) 

𝑆𝑙(𝑖, 𝑗) =
∑ ∑ 𝑆(𝑘,𝑙)

min (𝑗+1,𝑛)
𝑙=max (𝑗−1,1)

min (𝑖+1,𝑚)
𝑘=max (𝑖−1,1)

∑ ∑ 𝑁(𝑘,𝑙)
min (𝑗+1,𝑛)
𝑙=max (𝑗−1,1)

min (𝑖+1,𝑚)
𝑘=max (𝑖−1,1)

 (3.17) 

𝑆𝑔 =
∑ ∑ 𝑆(𝑘,𝑙)𝑛

𝑙=1
𝑚
𝑘=1

∑ ∑ 𝑁(𝑘,𝑙)𝑛
𝑙=1

𝑚
𝑘=1

 (3.18) 

In this model, assume the number of interactions for each individual follows the Poisson 

distribution and most contacts happen for individuals in the same site. Three parameters are 

defined to determine the interaction patterns, which are γ1, n1, and n2. Parameter γ1 denotes the 

decreasing rate of interactions, which means the switchers will contact fewer individuals than 

normal individuals do; n1 and n2 denote the average number of contacts to individuals in a 

neighborhood grid(s) and to those in the same grid for a normal individual, respectively. 

𝑁𝑖𝑗(𝑠, 𝑡)denotes the number of contacts in location (𝑠, 𝑡) for an individual in location (𝑖, 𝑗). Hence, 

the probabilities that an individual has k contacts with his/her neighborhood locality/community 
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and home locality/community are modeled using Poisson distributions, and their definitions are 

given in Eq. (3.19), respectively: 

𝑃(𝑁𝑖𝑗(𝑠, 𝑡) = 𝑘) =

{

𝑒−𝛾1𝑛1(𝛾1𝑛1)𝑘

𝑘!
, 𝑘 = 0,1,2⋯  𝑠 = 𝑖 − 1, 𝑖, 𝑖 + 1  𝑡 = 𝑗 − 1, 𝑗, 𝑗 + 1  (𝑠, 𝑡) ≠ (𝑖, 𝑗) 

𝑒−𝛾1𝑛2(𝛾1𝑛2)𝑘

𝑘!
, 𝑘 = 0,1,2⋯  (𝑠, 𝑡) = (𝑖, 𝑗)                                                                    

 (3.19) 

where 0≤ γ1 ≤ 1 for switchers and γ1 = 1 for normal individuals.  Equation (19) denotes the 

two cases in which contacts happen in the neighborhood locality and in the home locality. Hence, 

the number of individuals in the neighborhood who create contacts has a Poisson distribution with 

the average n1 for normal individuals and the average γ1n1 for switchers.  Similarly, the number of 

individuals in the same cell subpopulation has a Poisson distribution with average n2 for the normal 

individuals and average γ1n2 for switchers.  

The parameters for scenario 1 with switchers are initialized as follows: kc=3. λ=0.5, 

m1=100, m2=10, c1=1, c2=1, θ=1, γ1=0.5, and γ2=0.5. The transmission rate per effective contact 

with an infected person is defined as, β=0.2. The recovery probability distribution is fixed and 

defined as [0.3, 0.4, 0.2, 0.1]. Infected individuals will recover from the disease at the end of the 

first infected day with the probability 0.3, at the end of the second infected day with probability 

0.4, at the end of the third infected day with probability 0.2, and at the end of the fourth infected 

day with probability 0.1. The contact pattern is defined as n1=0.5, and n2=8 (on average an 

individual contacts half of the individual in its neighborhoods and eight individuals in his or her 

own location per day). The model is simulated for a period of 60 days and it runs 100 times. In 

addition, there are two more scenarios: scenario 2 with switchers and scenario without switchers.  

In scenario 2 with switchers, values of four parameters are changed: m1=500, m2=100, γ1 =0.25 

and γ2=0.25. The simulation result is shown in Figure 3.5.  
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Figure 3.5 Total number of infected individuals on each day 

 

In the scenario without switchers, the spread only lasts less than 20 days but leads to 2469 

individuals being infected.  In the scenario 1 with switchers, a total of 2115 individuals are 

infected, which is less than the previous case.  The epidemic lasts around 30 days and close to 84% 

of individuals is infected in this episode. Around the 9th day, the epidemic is at its peak and there 

are nearly 360 individuals on infected status that day, compared to the nearly 1057 infected 

individuals at the peak with no switching.  Obviously, disease transmission is delayed effectively 

due to the switching strategy. Considering higher awareness to information and stronger preventive 

measures through increasing values of m1 and m2 and decreasing values of γ1 and γ2, the epidemic 

is contained effectively in scenario 2. The number of infected individuals keeps less than 50 on 

each day and decreases gradually.  
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Figure 3.6 Change of number of individuals on each compartment over time 

 

The number of normal individuals, switchers, infected individuals and recovered 

individuals on each day in scenario 1 are also shown in Figure 3.6. As the number of infected  

Figure 3.7 Change of portion of normal individuals and switchers 
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Figure 3.8 Switching probability from normal individuals to switchers in location (3,3) 

 

population increases, normal individuals obtain the information about the infectious disease and 

some of them will become switchers, so the number of switchers also increases. After most of 

infected individuals recover, switchers will become back to normal individuals. Hence, there are 

nearly not any switchers eventually. The portion of susceptible individuals on each day who are 

normal individuals and switchers respectively is shown in Figure 3.7 and the switching 

probabilities i.e., 𝑃𝑖𝑗(𝑠 → 𝑛) at location (3,3) over time is shown in Figure 3.8. 

The evolutionary process of transmission of the infectious disease in the scenario 1 with 

switchers is shown in Figure 3.9. 

 

 

 

 

 

 

 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Days

S
w

it
c
h
in

g
 p

ro
b
a
b
ili

ty
 f

ro
m

 n
o
rm

a
l 
in

d
iv

id
u
a
ls

 t
o
 s

w
it
c
h
e
rs



50 

 

Figure 3.9 The evolutionary process of transmission of the infectious disease for 60 days 

 
                   1st Day                     3rd Day                    5th Day                    7th Day 

 
                   9th Day                    11th Day                   13th Day                  15th Day 

    
                    17th Day                  19th Day                  21th Day                   23rd Day 

  
                    25th Day                  27th Day                   29th Day                  31st Day 

   
                    33th Day                  35th Day                   37th Day                 39th Day 

 
                    40th Day                   41th Day                  42th Day                 60th Day 

(There are no infected individuals in the blue locations; there are less than five infected 

individuals in the green locations; there are less than 10 infected individuals in the yellow 

locations; there are less than 15 infected individuals in the orange locations; and there are more 

than 15 infected individuals in the red locations.) 
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 3.5 Parameters Analysis 

 3.5.1 Sensitivity analysis 

There are a total of nine system parameters in this model, kc, λ, m1, m2, c1, c2, θ, γ1, and γ2, 

respectively. The definitions of these parameters are summarized in Tables 4 and 5. To verify the 

influence of these parameters on the dynamic process of the epidemic, the sensitivity analysis will 

be made for each parameter. However, the goal of the game part is to provide a criterion concerning 

when individuals prefer to keep themselves from epidemics. Hence, the absolute value of payoff 

is meaningless and only relative value which is payoff for normal individuals over payoff for 

switchers is important. From this point of view, the relative value of the parameter is emphasized 

in the sensitivity analysis. For example, if 𝑚1 is 100 and 𝑚2 is 10, this indicates the effect of 𝑚1 

is 10 times that of 𝑚2. Other values can also be set for 𝑚1 and 𝑚2, but values of other parameters 

are required to change correspondingly.  

Figure 3.10 Change of kc 
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The parameter kc evaluates the cost of choosing a strategy switch (e.g., undertaking the 

social distancing) for a susceptible individual. Considering kc, ranging from 0.0 to 20.0, the 

changes of total infected individuals are shown in Figure 3.10. 

When the value of kc (i.e., the costs undertaking the switch strategy) increases, fewer 

susceptible individuals will choose the switch strategy so that more individuals are exposed to the 

risk of infection. In the real world, the value of kc represents the associated cost if a person chooses 

to avoid contacting others, for example, the loss of business or other opportunity incomes, 

purchasing costs for self-protection or isolation equipment, or voluntary vaccination and so on. 

Hence, when the value of kc is big enough, very few susceptible individuals will choose the 

switching strategy so that almost all individuals are infected and the result is very similar to the 

scenario without switchers.  

 3.5.1.2 Impacts of the associated risk reduction due to the switch strategy (𝝀) 

The parameter λ in Eq. (3.2), ranging from 0 to 1 denotes individuals’ estimated benefits 

from the switch strategy (in terms of prevention of the disease). If λ = 0, individuals will evaluate 

that switchers absolutely avoid infection from infected individuals. However, if λ = 1, the switch 

strategy does not help individuals prevent getting the disease at all. The simulated result over the 

possible range is shown in Figure 3.11. 

The trend of this Figure 3.11 is straightforward and self-explanatory. An increasing number 

of individuals are being infected as the estimate effectiveness of switch strategy becomes worse, 

which leads to very small portion of individuals choosing the switch strategy. A larger population 

of normal individuals means more individuals are exposed to the risk, so more individuals are 

infected. 
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Figure 3.11 Total infected population based on different values of 𝝀 

 

 3.5.1.3 Changes of multipliers of local and global prevalence status m1 and m2 

In the spatial game section, m1 and m2 are extremely significant parameters in the proposed 

model, which determine the subjective estimation of risks from susceptible individuals via either 

local or global information or knowledge. The main information sources of estimate of disease can 

be either from local status or global situations. In this paper, local status is defined as more 

important than the global situation since local information is much closer to individuals than is 

global. Although the estimate is the same for normal individuals and switchers, the function of 

parameter kc will be weakened when m1 and m2 are big numbers.  The influence of m1 and m2 are 

set to be similar in our test model since the size of the simulated region is small. Figure 3.12 depicts 

the simulated results when m1 and m2 ranges from 0 to 1000. 

The total number of infected individuals decreases as m1 (local risk perceptions) or m2 

(global risk perceptions) increase. When m1 is small, individuals will have an underestimate about 

the risk of infection and most of individuals will be normal individuals. When m1 becomes 
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significantly large, the influence of kc can be ignored and almost all susceptible individuals chose 

the switch strategy.  The effects for m2 is similar to m1. 

Figure 3.12 Change m1 and m2 

 

 

 3.5.1.4 Changes of estimated externality parameters c1 and c2 
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exposed to the infectious disease, which will eventually lead to a more-infected population.  The 

effects of c2 are relatively less significant than that of the c1, which mean the externality of the 

normal population is much more dominant comparing to the externality of the switchers. 

Figure 3.13 Total infected population based on different values of c1 and c2 

 

Figure 3.14 Change in selection intensity parameter θ 
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individuals will choose either strategy randomly since the choice of strategy ignores the difference 

in their corresponding payoffs. A large value of θ means strong intensity of selection and the 

decision of individuals’ strategies are vastly contingent upon the difference in payoffs. Figure 14 

shows the influences of different values of θ.  

 3.5.1.6 Changes of parameters related to the decreasing rate of interactions for swithcers  

Figure 3.15 Total infected population based on different values of γ1 and γ2 

 

In Eqs. (3.19) and (3.9), γ1 and γ2 are two essential parameters which determine the real 

effectiveness of the switch strategy. If either of them is equal to zero, the switcher will definitely 

avoid infection from the infected person. In the real world, γ2 will be zero when the individual is 

vaccinated effectively and could be treated as a recovered individual. If the switcher does not 

contact any other individuals, γ1 will be zero and obviously the switcher is not infected. Result of 

changing γ1 and γ2 are shown in Figure 3.15. 
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the spatial game rule. 
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 3.5.2 Calculating R0 

The basic ratio R0 is defined as “the average number of secondary cases arising from an 

average primary case in an entirely susceptible population” (71).  In the deterministic SIR model, 

𝑅0 could be calculated as the ratio of transmission rate over the recovery rate. In the stochastic SIR 

model on a contacting network, the basic reproductive ratio can be estimated as 𝑅̂0 by (64,72,73): 

𝑅̂0 = 𝑇𝐷𝑘 (3.20) 

𝐷𝑘 = 𝑘̅ − 1 + 𝑉𝑎𝑟(𝑘)/𝑘̅ (3.21) 

where T is the probability of infection per contact, Dk represents the effective number of 

contacts for each individual in the network, and 𝑘̅ denotes the average contacts for each individual.  

The basic reproductive number 𝑅̂0 defines a threshold similar to 𝑅0. 

Here, normal individuals and switchers have different values of T and Dk.  At any time t 

on location(𝑖, 𝑗), give us  

𝑅̂0
𝑡(𝑖, 𝑗) = 𝑝𝑛

𝑡 (𝑖, 𝑗) ∗ 𝑇𝑛
𝑡(𝑖, 𝑗) ∗ 𝐷𝐾𝑛 + 𝑝𝑠

𝑡(𝑖, 𝑗) ∗ 𝑇𝑠
𝑡(𝑖, 𝑗) ∗ 𝐷𝐾𝑠 (3.22) 

𝑝𝑛
𝑡 (𝑖, 𝑗) = 𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗)/(𝑁𝑂𝑅𝑀𝐴𝐿𝑡(𝑖, 𝑗) + 𝑆𝑡(𝑖, 𝑗)) (3.23) 

𝑝𝑠
𝑡(𝑖, 𝑗) = 1 − 𝑝𝑛

𝑡 (𝑖, 𝑗) (3.24) 

𝑇𝑛
𝑡(𝑖, 𝑗) = 𝛽/(𝛽 + 𝜇) (3.25) 

𝑇𝑠
𝑡(𝑖, 𝑗) = 𝛾2𝛽/(𝛾2𝛽 + 𝜇) (3.26) 

𝐷𝐾𝑛 = 𝑘̅ − 1 + 𝑉𝑎𝑟(𝑘)/𝑘̅ (3.27) 

𝐷𝐾𝑠 = 𝛾1𝑘̅ − 1 + 𝑉𝑎𝑟(𝛾1𝑘)/𝛾1𝑘̅ (3.28) 

where 𝑝𝑛
𝑡 (𝑖, 𝑗)

 
represents the proportions of the susceptible population who did not practice 

social distancing on location (𝑖, 𝑗).  A simple linear relationship between 𝑅̂0
𝑡(𝑖, 𝑗) and 𝑝𝑛

𝑡 (𝑖, 𝑗): as 

the portion of normal individuals increases, a larger outbreak of the infectious disease will happen 

with a larger possibility. We use 𝑅𝑛
𝑡 (𝑖, 𝑗) to represent the basic reproductive ratio when there are 
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no switchers on location (𝑖, 𝑗).  Similarly, 𝑅𝑠
𝑡(𝑖, 𝑗) denotes the basic reproductive rate when all 

susceptible individuals are switchers on location (𝑖, 𝑗).To prevent the disease from spreading 

globally, the condition 𝑅̂0(𝑖, 𝑗) < 1 should be satisfied, which implies  

𝑝𝑛
𝑡 (𝑖, 𝑗) < (1 − 𝑅𝑠

𝑡(𝑖, 𝑗))/(𝑅𝑛
𝑡 (𝑖, 𝑗) − 𝑅𝑠

𝑡(𝑖, 𝑗)) (3.29) 

𝑅𝑛
𝑡 (𝑖, 𝑗) = 𝑇𝑛

𝑡(𝑖, 𝑗) ∗ 𝐷𝐾𝑛 (3.30) 

𝑅𝑠
𝑡(𝑖, 𝑗) = 𝑇𝑠

𝑡(𝑖, 𝑗) ∗ 𝐷𝐾𝑠 (3.31) 

𝑅𝑛
𝑡 (𝑖, 𝑗) and 𝑅𝑠

𝑡(𝑖, 𝑗) are defined in a similar way to 𝑅̂0
𝑡(𝑖, 𝑗), but for the population in which 

all susceptible individuals are normal individuals and switchers, respectively. 

From the spatial game update Eq. (3.7), we have 

𝑝𝑛
𝑡 (𝑖, 𝑗) =

1

1+𝑒𝑥𝑝 (−𝜃((1−𝜆)𝐹𝑛
𝑡(𝑖,𝑗)+𝑘𝑐))

 (3.32) 

If 𝑅𝑛
𝑡 (𝑖, 𝑗) < 1,  𝑅̂0

𝑡(𝑖, 𝑗)will be less than 1 even without any switchers.  If 𝑅𝑠
𝑡(𝑖, 𝑗) > 1, the 

infectious disease will spread out globally with only self-protective strategies when we do not 

consider any other forces such as some public policies and measures taken to control the epidemic.  

In this case, switchers could only slow down the transmission of infectious disease and reduce the 

number of infected individuals, but could not eliminate the epidemics. If 𝑅𝑛
𝑡 (𝑖, 𝑗) >

1 and 𝑅𝑠
𝑡(𝑖, 𝑗) < 1, 𝑝𝑛

𝑡 (𝑖, 𝑗) from Eq. (32) can be plugged into the Eq. (29), solve the inequality for 

𝐹𝑛
𝑡(𝑖, 𝑗), we have 

𝐹𝑛
𝑡(𝑖, 𝑗) <

−𝜃𝑘𝑐−𝑙𝑛 ((𝑅𝑛
𝑡 (𝑖,𝑗)−1)/(1−𝑅𝑠

𝑡(𝑖,𝑗)))

𝜃(1−𝜆)
= 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (3.33) 

𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is the threshold from which the infectious disease will be controlled due to the 

switchers’ impacts. When 𝐹𝑛
𝑡(𝑖, 𝑗) < 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , the infectious disease cannot spread out; otherwise 

switchers who changed their behaviors because of information dissemination cannot eradicate the 

epidemics.   
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If we assume the local information is much more effective than global information, we 

have 

𝑆𝑙(𝑖, 𝑗) >
1

𝑐1
(

−𝑚1𝐼𝑙(𝑖,𝑗)
𝑚2𝐼𝑔

1+𝑐2𝑆𝑔
+𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

− 1) ≈
1

𝑐1
(
−𝑚1𝐼𝑙(𝑖,𝑗)

𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
− 1) (3.34) 

If this simple inequality is satisfied, 𝑅̂0(𝑖, 𝑗)  will be less than 1 which means that 

individuals’ self-protective behaviors could eliminate the transmission of infectious disease. 

 3.5.3 Discussion 

One key point behind this model is to study the incentives that motivate individuals to 

become switchers and how switchers effectively avoid getting infected by potential epidemics.  

Based on a sensitivity analysis of the model, most of the parameters have significant impacts on 

the disease-spreading processes; however, some are difficult to manage and control. For example, 

the parameters kc, and θ can vary significantly from one individual to another with different 

occupations, different education level, different ethnical cultures, etc. Hence, parameters which 

are relatively easy to control will be the focus of the study.  Parameters γ1 and γ2 in Eqs. (3.19) and 

(3.9) are good examples. More powerful antibiotic medicines, immunization, broadcast or 

education of prevention methods by the federal and local governments could effectively reduce 

the values of γ1 and 2, since switchers who adopted these strategies could have better resistances 

to the disease. This is one way to make switchers better protected. On the other side, government 

should lead susceptible individuals to recognize epidemic situations correctly and give them 

sufficient incentives to become switchers.  Two other important factors are the speculative 

prevalence of the infectious disease (individual's perception of the prevalence of disease) by each 

individual, as the parameters m1 and m2 denoted in Eqs. (3.3) and (3.4). It is hard to collect 

complete and real-time disease-spreading information on all normal individuals.  Two main 
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information sources are local information and more global information such as mass media (TV, 

radio, internet, social media and newspapers).  Underestimating impact or spread of the disease 

could lead to a worsening situation.  In such cases, increasing the dissemination of information 

will develop awareness of the infection risk to susceptible individuals and may convince them to 

protect themselves. 

Although it is always better to prevent infectious disease from spreading, there is the 

possibility of vast unnecessary spending to promote protective measurements. A criterion 

generally used to evaluate the risk of an infectious disease is R0, which our model found that it can 

be different in different locations and is changed over time, representing the changes of human 

behaviors.  Effective dissemination of information related to the infectious disease can control the 

proportion of switchers based on the assumption in our model. Hence, different information 

transmission strategies can be used by the government based on the value of R0 at that time.  If R0 

is smaller than one, no further information about the disease is necessary to be released to the 

public. 

 3.6 Summary 

In this paper, a general spatial game model was presented to model the dynamics of 

transmission of an infectious disease, considering spontaneous changes of human behavior based 

on information acquired related to the disease.  The model includes the consideration of 

information synthesis, individual decision making based on the tradeoffs between the benefits and 

costs of changing his or her behavior, information evaluation based on both local and global 

information with a heterogeneous population distribution. Without the loss of generality, a 

classical SIR model is assumed to be the underlying infectious disease behavior. A simple example 

was used to illustrate the characteristics of the model and to analyze how each of the modeling 
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parameters impacts the results. Most of the modeling parameters have significant impacts toward 

the underlying epidemic and we found some of them are very difficult to control. We believed that 

an overestimate of impacts of the infectious disease always helps to control the epidemic but 

sometimes at a prohibitively high and unnecessary cost. Hence, an effective strategy of information 

dissemination can be used to balance the benefits and costs, and the value of R0 is an important 

criterion to determine the best information dissemination strategy for the government. 

Interestingly, the results from our computational experiments have shown that the disease's 

reproduction rate R0 changes throughout the course of the epidemic and it various from location to 

location due to the different population structure at different spatiality. 

In addition, there are still some limitations in our model.  First, a very simple contact pattern 

is given. In our model, individuals only contact their neighbors in the Moore neighborhood. 

However, long-distance travel and other type of contacts are not considered. Second, complete 

information assumption is not realistic. In reality, information about the infectious disease is not 

accurate and different individuals have different judgments. So a more complex rule to calculate 

individuals’ estimates is required. Third, only SIR model is considered in the paper, additional 

efforts are still needed to incorporate the more complicated models such as SIRS model, SEIR 

model, and lethal rate of diseases into the spatial game. 
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Chapter 4 - Information Dissemination and Human Behaviors in 

Epidemics  

Chapter 4 is based on the manuscript “Information Dissemination and Human Behaviors in 

Epidemics” submitted to plos one. 

 Abstract 

Individuals experiencing an epidemic may change their behaviors to prevent themselves 

from infection by balancing the benefits and costs based on the information about the infectious 

disease. This study incorporated two types of information, local information, which impacts local 

human contacts, and global information, which impacts people’s travel behaviors, into a spatial 

evolutionary game to determine individuals’ decisions. This paper constructs a new behavior-

switching-based susceptible-infected-recovered (SIR) model using a spatial evolutionary game to 

study the impact of human behaviors and information dissemination to the spread of infectious 

disease. This model was evaluated and analyzed using numerical simulations for the population in 

State of Kansas. Particularly, individuals’ perception to the risk based on the local information 

were deeply discussed, which could help us better understand the human behaviors and improve 

communication between policy makers and the public. 

 4.1 Introduction 

The influence of human behaviors on infectious disease transmission has been a focused 

area of study for recent decade. Individuals often change their behaviors to prevent infection, 

including improving personal hygiene, taking antiviral medicine, implementing voluntary social 
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distancing, receiving voluntary vaccination, and other protective measures (4). These voluntary 

behaviors are referred to as spontaneous changes of human behaviors.  

Funk (2) reviewed recent work on the influence of human behavior on the spread of 

infectious diseases. The rationality of self-protective behaviors based on information about 

infectious diseases has caused increased application of game theory to epidemiology (74-81). 

However, the literature only applies game theory to the mixed homogeneous population without 

considering the contact pattern. Hence, a study for the combined impacts of a spatially contact 

structure and spontaneous behavior changes using game theory would significantly improve 

existing models. 

In addition, information transmission about the spread of infectious disease and 

individuals’ perception to risk must be considered in order to study human behaviors. Chen (63) 

introduces a social sampling method to evaluate individuals’ assessments of infectious disease 

prevalence based on acquired information. The model in (65) considers sexually transmitted 

infections, accounting for information transmission and individuals’ responses to the infectious 

disease and showing that information transmission can reduce the prevalence of the infection. 

A study described in (82) recently investigated a methodology that combines information 

dissemination, contact networks, and human behavior changes in order to model the dynamics of 

infectious diseases. A spatial evolutionary game was adopted to study the impact of human 

behavior changes on the dynamics of disease transmission. Human responses were determined by 

the spatial evolutionary game, based on the balance of benefits and costs evaluated from the 

information related to infectious disease, such as prevalence, severity, etc. Two types of 

susceptible individuals were considered: normal individuals and switchers. Switchers are typically 

more conservative than normal individuals and tend to protect themselves and reduce risks. All 
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susceptible individuals collected information about the infectious diseases (particularly indicating 

the number of infected individuals and the number of switcher) locally and globally and then made 

decisions based on that information. The impact of information to individuals’ decisions (choose 

to be normals or switchers) referred to as the payoff in the spatial evolutionary game. Individuals 

could change their minds or stay on their current status (normal or switcher) based on their own 

and their neighbors’ payoff values. Hence, the contact structures among individuals also played a 

key role in the spatial evolutionary game since these contact structures heavily impact the payoff 

values which explicitly determined individuals’ decisions.  

The spatial evolutionary game model in (82) successfully describes impacts of changes of 

human behaviors and information dissemination to the spread of infectious diseases, however, it 

is an unstructured system which is not easy to use analytical methods to analyze the system.  In 

this paper, we applied it into a classical dynamic system which is commonly adopted to study 

epidemics and prove consistency between two models. To clarify the differences of these two 

models, the spatial evolutionary game model is named as (SEGM) and the modified dynamic 

model developed in this paper is named as (MDM). In addition, a new concept related to the impact 

of local information dissemination is introduced and discussed in this paper.  

Section 4.1 of this paper includes a brief introduction, and Section 4.2 presents construction 

of a mathematical model to study the dynamic transmission of infectious disease using a spatial 

evolutionary game. Equilibrium analysis is shown in Section 4.3, and Section 4.4 demonstrates a 

numerical simulation and a comparison of simulation results using SEGM and MDM. The long-

distance scenario is also introduced. A brief summary and discussion is presented in Section 4.5. 
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 4.2 Mathematical Model 

The basic assumptions in this paper, which are identical to the assumptions in (82), are 

briefly reviewed in this section, and the new modified dynamic model (MDM) is presented as one 

of the major objectives of this article. This model considers three main aspects of the an epidemic, 

including disease transmission, information dissemination, and change of human behaviors. Each 

of them is discussed in subsections 4.2.1, 4.2.2, and 4.2.3, respectively. Section 4.2.4 introduces 

the spatial evolutionary game, and MDM model is constructed in Section 4.2.5 and extended in 

Section 4.2.6. 

 4.2.1 Process description 

Ordinary differential equations (ODEs) are commonly used to model disease transmission. 

One of the most classic models is 

𝑑𝑆

𝑑𝑡
= −

1

𝑁
𝛽𝑆𝐼  (4.1) 

𝑑𝐼

𝑑𝑡
= −

1

𝑁
𝛽𝑆𝐼 − 𝛾𝐼  (4.2) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼  (4.3) 

where S represents the number of susceptible individuals, I represents the number of 

infected individuals, R represents the number of recovered individuals, and N represents the 

number of individuals in the population. The model above is the classic susceptible-infected-

recovered (SIR) model without demography (71).  

 4.2.2 Information Transmission  

Increasing development of transportation and communication technologies has increased 

the spreading rate of infectious disease and the transmission of disease information. Individuals 

can acquire the information about the disease and current epidemics through a myriad of mediums, 
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including news broadcasts on television or radio, internet, face-to-face communication, or 

education about prevention from infectious disease. The acquired amount and accuracy of 

information consequently impact how individuals react to disease transmission and influence their 

decisions during an epidemic outbreak. Chen (63) studied how the quality of information affects 

the transmission of infectious disease. 

In this paper, we assume individuals are well informed, meaning that individuals always 

acquire complete and correct information (no rumor spread among individuals) in all locations. In 

addition, information about the infectious disease is characterized as local information and global 

information. Local information, defined as information about the disease in neighborhoods within 

a certain distance from an individual’s location, locally impacts individuals’ contacts. Global 

information, defined as information about disease transmission in all locations, impacts 

individuals’ decisions and travel behaviors. Both local and global information are considered 

within individuals’ decision-making processes.  

 4.2.3 Change of Human Behaviors  

Based on infectious disease information, some individuals may take protective measures 

to prevent infection and others may not, thereby revealing two distinct types of susceptible 

population: normal individuals and switchers. Normal individuals believe very little chance exists 

for their infection, so they do not attempt to change their behaviors to keep themselves from getting 

infected. Switchers, however, estimate the risk and assume a high probability of infection so they 

change their behaviors (such as taking antibiotic medicine, wearing face mask, avoiding crowded 

places, etc.) to attempt to avoid infection. Although switchers can be categorized according to the 

extent of their changes in behaviors, we assumed all switchers to be identical for this study, and 
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we did not consider multiple levels of switchers to retain model simplicity. We modified the classic 

SIR model to our MDM model, as shown in Figure 4.1. 

In order to reduce exposure to disease, switchers commonly use the strategy of social 

distancing, which includes reducing the number of contacts, such as avoiding crowded places, 

limiting friend contacts, or avoiding school or work. Social distancing also includes reducing the 

intensity of contacts, such as receiving vaccination if applicable, taking antiviral medicine, or 

wearing face masks. However, because any of these actions require increased cost (monetary cost, 

loss of incomes, or leading to inconvenience to their lives, etc.) for switchers, individuals must 

balance their costs and benefits during the decision-making process. Moreover, individuals may 

routinely change their minds based on daily updates of new epidemic information. Considering 

change of contacts pattern and evolutionary decision process， the spatial evolutionary game was 

applied to the model Figure 4.1. 

Figure 4.1 SIR model 

 

 4.2.4 Spatial Evolutionary Game  

The spatial evolutionary game combines both classic game theory and cellular automaton, 

in representing strategies, players, payoff function, structure of population, and an updating rule. 

Nowak and May (83) first introduced the spatial evolutionary game in order to study the local 

cooperation phenomena for a classic problem, called “prisoner dilemma”. This methodology 

analyzes various structures of populations using a regular lattice (47), scale-free networks (48), 



68 

and real social networks (49).  Szabo and Fath  (49) reviewed evolutionary games on graphs. In 

addition, the spatial evolutionary game requires an updating policy based on the payoff function 

with updating schemes such as synchronous or asynchronous updates. Newth (50) reviewed 

several common updating schemes, and Roca, Cuesta, and Sanchez (51) summarized update rules. 

An example of classical spatial evolutionary game in lattice is introduced in (84), and a 

simplified example is shown as follows. Assume two types of players play a game, and two 

strategies are available to each player. The payoff matrix is shown in Figure 4.2. Players choose 

strategy A or strategy B, and payoff value could be a, b, c, or d corresponding to players’ strategies. 

Figure 4.3 describes the location of each player. The contact pattern in this game is von Neumann 

neighborhood (four nearest neighborhood). A player would play the game with all neighbors, and 

the summation of payoff value in the game against each neighbor is the final payoff value for each 

player. The result is shown in Figure 4.3. 

Figure 4.2 Payoff Matrix 

 A B 

A a b 

B c d 

 

After each turn, players could reconsider their strategies based on their payoff values as 

well as other players’ payoff values. In addition, players update their strategies synchronously or 

asynchronously. 
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Figure 4.3 Spatial Evolutionary Game Example  

 

 4.2.5 MDM model 

This section extends the classic SIR ODEs model of Eqs. (4.1) – (4.3) to a local commute 

model with the spatial evolutionary game based on a local contact network, which is called 

modified dynamic model, in short, MDM. Individuals may work in another location besides their 

home or visit neighboring businesses or families daily. Frequent commuting behaviors are 

included in the local commute model. Considering population heterogeneities, the classic model 

could be modified to involve spatial structure. For example, as illustrated in Figure 4, the network 

could be adopted to present different locations, and an index x could be used to indicate the specific 

location in the map. Each location contains a population with four possible types of individuals: 

normal, switchers, infected, and recovered individuals. Individuals could interact with others in 

the same location or in connected neighborhood locations, and the contact rate depends on the 

distance between two locations. For example, individuals in location 2 could interact with 

individuals in locations 1, 2, 3, 4, or 7 with probabilities depending on distances between two 

locations.  
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Figure 4.4 Network with Metapopulation  

 

The modified SIR model built on the network (such as the one in Figure 4) for the disease 

transmission process is 

𝑑𝑆𝑛

𝑑𝑡
(𝑥) = −𝛽𝑛𝑆𝑛(𝑥)𝜆𝑛(𝑥) − (1 − 𝜌(𝒙))𝑆𝑛(𝑥) + 𝜌(𝒙)𝑆𝑎(𝑥)  (4.4) 

𝑑𝑆𝑎

𝑑𝑡
(𝑥) = −𝛽𝑎𝑆𝑎(𝑥)𝜆𝑎(𝑥) + (1 − 𝜌(𝒙))𝑆𝑛(𝑥) − 𝜌(𝒙)𝑆𝑎(𝑥)  (4.5) 

𝑑𝐼

𝑑𝑡
(𝑥) = 𝛽𝑛𝑆𝑛(𝑥)𝜆𝑛(𝑥) + 𝛽𝑎𝑆𝑎(𝑥)𝜆𝑎(𝑥) − 𝛾𝐼(𝑥)  (4.6) 

𝑑𝑅

𝑑𝑡
(𝑥) = 𝛾𝐼(𝑥)  (4.7) 

where 

𝜆𝑛(𝑥) = ∑ 𝐼(𝑦)𝐾𝑛(𝑥 − 𝑦)/𝑁(𝑦)𝑦∈𝑙𝑜𝑐𝑎𝑙   (4.8) 

𝜆𝑎(𝑥) = ∑ 𝐼(𝑦)𝐾𝑎(𝑥 − 𝑦)/𝑁(𝑦)𝑦∈𝑙𝑜𝑐𝑎𝑙   (4.9) 

and 

𝑆𝑛(𝒙)     Number of normal individuals at location x, 

𝑆𝑎(𝒙)     Number of switchers at location x, 

𝜌(𝒙) Percentage of normal individuals to total susceptible individuals at location x 

𝐾𝑛(𝒙 − 𝒚)   Contact probability function for normal between location 𝒙 and location 𝒚, 

𝐾𝑎(𝒙 − 𝒚)    Contact probability function for switchers between location 𝒙 and location 𝒚, 

𝐼(𝒙)       Number of infected individuals at location x, 

𝑅(𝒙)     Number of recovered individuals at location x, 
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𝑁(𝒚)    Total number of individuals at location y, 

𝛽𝑛   Infection rate of individuals adopting normal behavior, 

𝛽𝑎   Infection rate of individuals adopting switcher behavior, 

𝛾     Recovery rate 

Eqs. (4.4) and (4.5) use two infection rates, βn and βa, for normal individuals and switchers, 

respectively, where assuming βa < βn. The contact rates, 𝜆𝑛(𝑥)  and 𝜆𝑎(𝑥) are for normal 

individuals and switchers in location x , respectively, and they are calculated in Eqs. (4.8) and 

(4.9), where Kn() and Ka() are kernel functions that represent the possibilities that one individual 

may contact others in a certain location (i.e. same location or neighboring location). Individuals 

could interact with others in the same location or other locations with different possibilities. 

depending on the distance between two locations and the number of infected individuals in the 

location where susceptible individuals visit. 

Considering individuals’ decision-making processes, the payoff functions, 𝐹𝑛(𝑥)  and 

𝐹𝑎(𝑥)in Eqs. (4.10) – (4.11), for the normal individuals and switchers, respectively, are defined 

similarly to  (82): 

𝐹𝑛(𝒙) = −

𝑚1 ∑ 𝐼(𝒚𝒍)𝑦𝑙∈𝑙𝑜𝑐𝑎𝑙

∑ 𝑁(𝒚𝒍)𝑦𝑙∈𝑙𝑜𝑐𝑎𝑙

1+
𝑐1 ∑ 𝑆𝑎(𝒚𝒍)𝑦𝑙∈𝑙𝑜𝑐𝑎𝑙

∑ (𝑆𝑎(𝒚𝒍)+𝑆𝑛(𝒚𝒍))𝑦𝑙∈𝑙𝑜𝑐𝑎𝑙

−

𝑚2 ∑ 𝐼(𝒚𝒈)𝑦𝑔∈𝑔𝑙𝑜𝑏𝑎𝑙

∑ 𝑁(𝒚𝒈)𝑦𝑔∈𝑔𝑙𝑜𝑏𝑎𝑙

1+
𝑐2 ∑ 𝑆𝑎(𝒚𝒈)𝑦𝑔∈𝑙𝑜𝑐𝑎𝑙

∑ (𝑆𝑎(𝒚𝒈)+𝑆𝑛(𝒚𝒈))𝑦𝑔∈𝑙𝑜𝑐𝑎𝑙

  (4.10) 

𝐹𝑎(𝒙) = −𝑘𝑐 + 𝛼𝐹𝑛(𝒙)  (4.11) 

And the percentage for an individual to switch his/her behaviors are defined as and logistic 

function based on the difference between the normal individuals and switchers, 

𝜌(𝒙) =
1

1+𝑒−𝜃(𝐹𝑛(𝒙)−𝐹𝑎(𝒙)) (4.12) 

where 

𝑘𝑐   Fixed cost for social distancing behavior, 
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𝑚1  Parameter related to estimated risk  based on local prevalence, 

𝑚2  Parameter related to estimated risk based on global prevalence, 

𝑐1  Parameter related to estimated risk  based on local switchers, 

𝑐2  Parameter related to estimated risk based on global switchers, 

0 ≤ 𝛼 ≤ 1    Parameter related to discount of estimated risk by switcher, 

𝜃 Parameter related to switch rate of normal individuals based on the difference of payoff 

Local and global information of prevalence (proportion of the number of infected 

individuals to the total population) and the number of switchers were considered as they relate to 

susceptible individuals’ decisions. In Eqs. (4.10) and (4.11), we assumed that risks could be a 

negative value; therefore, payoff values for both normal individuals and switchers are always non-

positive. However, switchers incurred an additional cost, kc, for the preventive measure, on the 

other hand the switcher’s risk for infection is consequently less than that for normal individuals, 

as denoted by discount parameter 0 ≤ α ≤1 in Eq. (4.11). The difference of payoff values between 

normal individuals and switchers determines the percentage of normal individuals in Eq. (4.12). 

 4.2.6 MDM with Long-Distance Travel Model  

Beside local commuting behaviors, individuals may also travel to large cities or tourist 

resorts for shopping, vacations, business, or social engagements, causing those locations to become 

network centers that connect to various distant locations. Individuals may only visit the center 

monthly, quarterly, or yearly instead of daily. As illustrated in Fig. 4.4, if location 5 represents a 

center node, then the corresponding modified network is shown in Figure 4.5. The dashed lines 

represent contacts resulting from long-distance travels. Considering such long distance travels, the 

system of Eqs. (4.4) – (4.12) remains the same, but kernel functions Kn() and Ka() 

correspondingly change based on the probability of contacts for long-distance travels.  
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Figure 4.5 Network for Long-Distance Travels 

 

If infection cases occur in the center node, switchers may cancel their travels for their own 

safety, depending on the number of cases in their destinations. The probability of travel 

cancellations for switchers based on the number of cases is defined as 

𝑝𝑐 = ln (
𝑒𝐼(𝒙)+𝑑

𝐼(𝒙)+𝑑
), (4.13) 

where e is the natural logarithm, I(x) is the number of infectious individuals at location x 

(destination), and d is a constant that determines the increasing rate of cancellation. Switchers who 

cancel travels are assumed to stay in their location and contacts with others their current location 

since they will not contact with individuals in their planned destination for travel. The value of 𝑝𝑐 

impacts kernel function Ka() since the contact probability distribution changes due to travel 

cancellations. For example, if switchers in location 3 have probability distributions of 10%, 10%, 

75%, and 5% to contacts in locations 1, 2, 3, and 5, respectively, and half the switchers cancel their 

travel plans, then the modified probability distribution is 10%, 10%, 77.5%, and 2.5%, 

respectively.   

 4.3 Equilibrium Analysis 

Using The system of Eqs. (4.4)–(4.13) admits the disease-free equilibrium (DFE) (Sn; Sa; 

I; R) = (𝑆𝑛
∗; 𝑆𝑎

∗; 0; 0) for each location x with the fixed ratio of normal individuals and switchers, 

thereby satisfying 
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𝑆𝑛
∗ (𝑥)

𝑆𝑛
∗ (𝑥)+𝑆𝑎

∗(𝑥)
= 1/(1 + 𝑒−𝜃𝑘𝑐) (4.14) 

𝑆𝑛
∗(𝑥) + 𝑆𝑎

∗(𝑥) = 𝑁(𝑥) (4.15) 

The solution of 𝑆𝑛
∗(𝑥) and 𝑆𝑎

∗(𝑥) yields 

𝑆𝑛
∗(𝑥) = N(x)𝑒𝜃𝑘𝑐/(1 + 𝑒𝜃𝑘𝑐) (4.16) 

𝑆𝑎
∗(𝑥) = 𝑁(𝑥)/(1 + 𝑒𝜃𝑘𝑐) (4.17) 

In the epidemiology, R0 is one significant indicator to evaluate the force of infection of the 

infectious disease, and it is defined as “the average number of secondary cases arising from an 

average primary case in an entirely susceptible population” (71). When R0 is less than 1, the DFE 

is stable, meaning that the spread of infectious disease could be controlled. When R0 is larger than 

1, however, the DFE is unstable. One homogeneous population without any contact structure 

contained 

𝑅0 =
𝛽𝑛𝑆𝑛

∗+𝛽𝑎𝑆𝑎
∗

𝛾𝑁
 (4.18) 

Considering spatial structure and one infected individuals in location x, Eq. (4.18) can be 

rewritten as 

𝑅0 =
𝛽𝑛 ∑ 𝑆𝑛

∗ (𝑦)𝐾𝑛(𝑥−𝑦)𝑦∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 +𝛽𝑎 ∑ 𝑆𝑎
∗(𝑦)𝐾𝑎(𝑥−𝑦)𝑦∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝛾𝑁(𝑥)
 (4.19) 

where R0 is related to the initial location, contact probabilities, and the population in each location, 

meaning that R0 is not fixed in this model. Usually the largest one calculated for all counties is 

adopted as the real 𝑅0. The calculation of R0 in Eq. (4.19) is consistent with R0 in Eq. (4.18) when 

the spatial contact structure is removed. For simplicity, Eq. (4.19) can be rewritten as 

𝑅0 =
𝑅𝑛𝑒𝜃𝑘𝑐

1+𝑒𝜃𝑘𝑐
+

𝑅𝑎

1+𝑒𝜃𝑘𝑐
 (4.20) 

where Rn is the value of R0 for the population in which all susceptible individuals are normal 

individuals, and Ra is the value of R0 for the population in which all susceptible individuals are 
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switchers. If Ra is greater than 1, the infectious disease will outbreak even when all susceptible 

individuals are switchers. If Rn is less than 1, the infectious disease can be controlled even when 

all susceptible individuals are normal individuals. Therefore, the spread of infectious disease may 

be stopped by a change in human behavior only when Ra < 1 < Rn.  

Birth rate and death rate were not included in this model, so no endemic equilibrium existed 

in the system of Eqs. (4.4)–(4.13). The system would stabilize until all infected individuals were 

recovered. 

 4.4 Numerical study 

 4.4.1 Model comparison 

This section included numerical simulations for SEGM model in  (82) and MDM model 

using a county map of the state of Kansas with county-level population in order to compare the 

SEGM model to the MDM model. The map was shown in Figure 4.6 (*Source: this map is from 

http://geology.com/county-map/kansas.shtml). Population distribution was collected from the U.S. 

Census Bureau (Census 2010 Redistricting Data (Public Law 94-171) Summary File). 

Figure 4.6 County Map of Kansas  
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SEGM model and MDM model were compared using the following three settings: 

deterministic commuting contacts, stochastic commuting contacts, and long-distance travel. 

Although the contact pattern significantly affected dynamics of an epidemic, most researchers 

relied on a presumed contact pattern with little or no empirical basis. Theoretically, any type of 

contact pattern could be applied to the model. Only local contacts were allowed in the first two 

contact patterns, meaning that individuals could only contact others in the same county or in a 

neighboring county. In the third contact pattern we assumed that individuals would travel to some 

cities which are not their neighborhood for business or recreation. Testing the three contact patterns 

proved that results from the MDM model are consistent with results in SEGM model.  

For all the simulation runs, the first infected individual was located in the northwest corner 

county of Cheyenne. Results in six counties were tested for comparison, including Cheyenne 

(source), Thomas (neighbor of Cheyenne – subgraph a), Ness (two counties away from Cheyenne 

– subgraphs b and c), Riley (far away from source in the north – subgraph d) , Sedgwick (county 

with second largest population in Kansas – subgraph e), and Johnson (county with the largest 

population in Kansas – subgraph f) in Figures 7, 8, 9, 12, 17 ,and 18. Parameters were initialized 

as follows: α = 0.5, 𝑘𝑐 = 1, 𝜃 = 1, 𝛾 = 0.294,𝑚1 = 100,𝑚2 = 10, 𝑛1 = 100, 𝑛2 = 10.  The 

following subsections present spatial-temporal comparisons to prove the consistency of simulation 

results for two models. 

 4.4.1.1 Deterministic Commuting Contacts 

In this section, we assume that individuals contact a fixed number of people each day, 

denoted as 𝑛2. The number of contacts for normal individuals and switchers differs, and parameter 

𝛾2 denotes the discount rate of contacts for switchers. Similarly, protective behaviors could reduce 

the infection rate for switchers; parameter 𝛾1 denotes the corresponding discount rate. 𝛽 represents 
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the infection rate per contact between infected individuals and susceptible individuals. All 

parameters used in models should be consistent in order to compare two models. The parameter 

relationships between two models are 

𝛽𝑛 = −𝑛2𝑙𝑛(1 − 𝛽)  (4.21) 

𝛽𝑎 = −𝛾2𝑛2𝑙𝑛(1 − 𝛾1𝛽)   (4.22) 

where 𝑛2, 𝛽, 𝛾1, and 𝛾2 were parameters also used in  (82). All other parameters are identical for 

two models. 

According to comparison results in Figure 4.7, the number of infected individuals in each 

county was consistent in two models, spatially and temporally. Wherever the county locates does 

not impact the consistency of results from two models and the plots show that two curves are 

almost overlap for all tested six counties. In addition, the further from the source of the infectious 

disease, the later the infection occurred.  

 4.4.1.2 Stochastic Commuting Contacts  

All assumptions in this subsection are identical to assumptions in Section 4.4.1.1 with the 

exception of the number of contacts on each day. Instead of using a fixed number of contacts, let 

the number of contacts Nc on each day follow the Poisson distribution according to the contact 

assumption in  (82): 

 𝑃(𝑁𝑐 = 𝑘) =
𝑒−𝛾1𝑛2(𝛾1𝑛2)𝑘

𝑘!
  (4.23) 

Parameters 𝛽𝑛 and 𝛽𝑎 in MDM model were consequently changed to be 

𝛽𝑛 = −𝑁𝑐ln (1 − 𝛽)  (4.24) 

𝛽𝑎 = −𝛾2𝑁𝑐ln (1 − 𝛾1𝛽)  (4.25) 
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Figure 4.7 Model Comparison under Deterministic Contacts  

  
 (Red line is the plot of SEGM model; black line is the plot of MDM model.) 

Ten replications were run for each model, and results are presented in Figure 4.8. The red 

curve represents results for SEGM model; the black curve represents results for MDM model. 

Results from both models were similar, as evidenced by overlapping of most of the curves.  

 

 (a)  (b) 

 (c)  (d) 

 (e)  (f) 
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Figure 4.8 Model Comparison under Stochastic Contacts  

 
 (Red line is the plot of SEGM model; black line is the plot of MDM model.) 

 4.4.1.3 Long-Distance Travel  

Sedgwick and Johnson Counties, the two counties with most population in Kansas, were 

selected as network centers in our long-distance contact model. People in all other counties were 

assumed to travel to these counties for shopping or business.   

 (a)  (b) 

 (c)  (d) 

 (e)  (f) 
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Stochastic contacts remained in this simulation, and 10 replications were run for each 

model. Results from the two models were similar. In addition, the spread of infectious disease was 

faster than the spread shown in the local contacts pattern, as shown in Figures 4.9e and 4.9f 

(compared to Figures 4.8e, 4.8f, 4.7e, and 4.7f). Infectious disease typically is more readily 

transmitted to large cities when long-distance travel is involved in the model. 

Due to the high volume of transportation and large populations within Sedgwick and 

Johnson Counties, infectious diseases are rapidly transmitted to areas surrounding those network 

centers. Peak time for the number of infected individuals in Johnson County is approximately 100 

days earlier compared to that in the model without long distance travel. Fig. 4.10 shows the number 

of infected individuals in each county on the third simulation day. Cheyenne County showed one 

infected case as the source location of infectious disease, but Johnson County indicated three cases. 

Because the spread of infectious disease is extremely fast in Johnson County due to large 

population, avoidance of long-distance travel to network center may be a crucial strategy for 

decreasing the spread of infectious disease. 
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Figure 4.9 Model Comparison under Long-Distance Travel  

 

 (Red line is the plot of SEGM model; black line is the plot of MDM model.) 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.10 Numbers of Infected Individuals in Each County in Kansas  

 

 4.4.2 Impacts of Changes of Human Behaviors 

This section included discussion of the impacts to disease transmission dynamics due to 

changes of human behaviors temporally and spatially on state and county scales, respectively. 

Long-distance travel was involved, and commute contacts are assumed to be deterministic.  

Figure 4.11 Numbers of Infected Individuals in Kansas  
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Figure 4.12 Numbers of Infected Individuals in Various Counties in Kansas 

 

Comparisons of the number of total infected individuals in the entire state of Kansas and 

in various counties in Kansas are shown in Figures 4.11 and 4.12, respectively.  

In Figures 4.11 and 4.12, the black line (“no game”) indicates no changes of human 

behaviors in epidemics; the red line (“with game”) indicates that changes of human behaviors were 

considered. On a statewide scale, human behaviors significantly impacted the dynamics of disease 

(a) (b) 

(c) (d) 

(e) (f) 
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transmission, lowering the total number of infected individuals and delaying the peak time of 

epidemics. On a county scale, identical impact patterns were obtained for all counties in Kansas, 

implying that the distance between the studied county and the source county for patient 0 did not 

affect the impacts of human behaviors to the spread of infectious diseases, so does the distance 

between small counties and network centers due to our homogeneous assumption of risk estimates 

for each county. Individuals’ perspectives of the infectious disease based on prevalence were 

scaled by parameters m1 and m2 in Eq. (4.10), indicating local information and global information, 

respectively. Global information impacts were assumed to be identical for all individuals, but local 

information impacts potentially varied in different. The following section discussed the impact of 

local information (parameter m1) in details.  

 4.4.3 Impacts of Risk Estimates Based on Local Information  

As mentioned in Section 4.2, individuals’ perspectives of an infectious disease based on 

local information may differ by location. As a multiplier of local prevalence in Eq. (4.10), 

parameter m1 essentially bridges the local information and risk estimates by individuals. 

Individuals’ behaviors are determined by the game update rule, which is calculated by the 

differences of payoff values for normal and switchers, while the payoff value is primarily impacted 

by the product of m1 and local prevalence, as explained in  (82). Therefore, local information is 

translated to payoff by m1 to motivate individuals to choose either normal or alternatives, thereby 

implicitly affecting the dynamics of the epidemic. In addition, the value of m1 could be changed 

due to intervention strategies. Public health education, policies of vaccination, and quarantine 

measures could also alter an individual’s risk estimate of the infectious disease, leading to changes 

in m1. Consequently, impacts of m1 must be studied further in order to understand human behaviors 

in epidemics. Analyses for m1 are discussed in the following subsections.  
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 4.4.3.1 Sensitivity Analysis for m1 

A sensitivity analysis is conducted in this section in order to understand the impact of m1 

on the dynamics of disease transmission. The range of m1 was set from 0 to 5000, and the step size 

was set at 500.  

Figure 4.13 Numbers of Infected Individuals with an Altered Value of m1 

 

Figure 4.14 Numbers of Switchers with an Altered Value of m1 

 

 

As shown in Figure 4.13, the peak of number of infected individuals in Kansas decreased 

as the value of m1 increased from 0 to 5000. The higher the value of m1 was, the more risk 

individuals estimated, proving that individuals were more self-protective if m1 become larger, 

consequently decreasing the numbers of infected individuals, as shown in Figure 4.13. Similarly, 
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as shown in Figure 4.14, an increasing value of m1 led to an increasing number of switchers 

throughout the state of Kansas. An identical pattern of changes also occurred in all counties. 

 4.4.3.2 Stochastic Commuting Contacts  

In this section, the assumption of m1 in Eq. (4.10) is changed to be heterogeneous in order 

to indicate that the value of m1 could vary by location. Because network centers were the most 

severe areas of epidemics in Kansas, they were assigned a higher value of m1 than other areas, 

allowing individuals in network centers to have more motivations to choose protective behaviors. 

Results demonstrated how this strategy impacted the dynamics of disease transmission and verified 

whether or not infectious disease could be mitigated when epidemics were controlled only in 

network centers.  

Figure 4.15 Comparison of Numbers of Infected Individuals in Kansas with Altered 

m1 for network centers 

 

Figs. 15 and 16 illustrate changes in the number of infected individuals and the number of 

switchers in Kansas under MDM model and denotes the model with various values of m1 in 

network centers, respectively. The “old” curve represents the MDM model, and the “new” curve 

denotes the model with various values of m1 in network centers. Significantly high numbers of 

switchers were evident throughout the state of Kansas due to the high value of m1 in metropolitan 

areas, resulting in fewer infected individuals and a delayed peak time. However, as shown in Figs. 
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17 and 18, the network center (in subgraphs (e) and (f)) had significantly fewer infected individuals 

because of the increased number of switchers, but other counties in Kansas were not significantly 

impacted. The “new” curves and the “old” curves did not differ significantly in the counties of 

Cheyenne, Thomas, Ness, and Riley; therefore, increasing changing human behaviors in network 

centers could reduce the overall numbers of infected individuals, however, cannot impact the 

dynamics of disease transmission in other areas.  

Figure 4.16 Comparison of Numbers of Switchers in Kansas with Altered m1 for 

network centers 

 

 

The epidemic could be mitigated further with a high value of m1 for all areas, as shown in 

Figure 19 (“all high” curve). The number of infected individuals can be significantly decreased 

when individuals choose protective behaviors in all counties in Kansas. However, with 

consideration of social costs, control of spread of infectious disease changes to an optimization 

problem that requires effective control of disease transmission and minimization of total costs. 

This topic exceeds the scope in this paper, but it will be studied in our future study.  
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Figure 4.17 Comparison of Numbers of Infected Individuals in Various Counties with 

Altered m1 for Network Centers 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.18 Comparison of Numbers of Switchers in Various Counties with Altered 

m1 for Network Centers  

 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.19 Numbers of Infected Individuals with High Values of m1  

 

 4.4.3.3 Impacts of memory for individuals’ risk estimates  

Impacts of local information to individuals may not only vary by locations as described in 

Section 4.4.3.2, but also vary by individuals and time in a heterogeneous population. In particular, 

basic perceptions and cognitions researchers have shown that “biased media coverage, misleading 

personal experiences, and the anxieties generated by life’s gambles cause risks to be misjudged 

(sometimes overestimated and sometimes underestimated), and judgments of fact to be held with 

unwarranted confidence” (85). The perception of risk to the infectious disease does not stay to the 

same extent all the time. Individuals are affected by both of their memories on prior information 

as well as the new information. For instance, after a slow exponential increase of changes of human 

behaviors in the beginning of 2009 H1N1 pandemic in Italy, there is a sudden and sharp increase 

of growth rate occurred in the next month due to the new cases reported (7). On the other hand, a 

quick drop in the attention to protect themselves from an infectious disease frequently occurs when 

the epidemic is over the peak or people are getting used to the disease prevalence reports by the 

media (86). Hence, it is our belief that individuals’ decisions are impacted by their prior knowledge 

and the number of newly infected individuals. The memory mechanism was also assumed for 

protective behaviors in several other existing literatures (7,87,88). In this section, we attempt to 

model the memory mechanism via a stochastic differential equation of a Itô drift-diffusion process 
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with a drifting factor and a random walk (89). Itô drift-diffusion process is commonly used in 

mathematical finance to model stock price and the first time to be recognized to illustrate the 

changes of individuals’ perception to risks in epidemic.  The drifting factor could represent the 

average change rate of individuals’ perception to the risk based on the prior knowledge and new 

information, and the random walk could represent the diversity of individuals. Hence, the 

dynamics of m1 is defined as a Itô drift-diffusion process with a drift factor 𝜇𝑡(𝑥)  and the 

uncertainty factor 𝜎(𝑥)  as follows: 

𝑑𝑚1(𝒙)

𝑚1(𝒙)
= 𝜇𝑡(𝑥)𝑑𝑡 + 𝜎(𝑥)𝑑𝑍𝑡  (4.26) 

where Z = {Zt : t∈[0,∞)} is standard Brownian motion with mean of 0 and standard deviation of 

1. 

Individuals were kept updated for the new information and gradually forgot the prior 

knowledge. Hence, the information cumulating and memory fading effects were necessary to be 

applied to the study of average perception of risks to the infectious disease 𝜇𝑡(𝑥)  at time t and 

location x. The variation term 𝜎(𝑥) represents a heterogeneous risk estimate in different locales as 

well as various individuals’ risk perception to the underlying epidemic in a diverse population. 

The information cumulating process was modelled by a hill equation, which could provide a 

reasonable boundary for the change rate of individuals’ perception between 0 and 1. Hill equation 

is extensively used in biochemistry and pharmacology and we believe that the behavior of hill 

equation can properly describe the changes of individuals’ perception to the risk. The memory 

fading process was modelled as a negative exponential function with argument infection 

prevalence. As prevalence increases, the fading effects were assumed to be weaker since large 

prevalence could increase individuals’ risk estimates. According to the cumulating information 

assumption and memory fading assumption, calculation of 𝜇𝑡(𝑥) was shown as follows: 
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𝜇𝑡(𝑥) = 𝐻(𝐿𝑡(𝑥), 𝑛) − 𝜀  (4.27) 

Where 

𝐿𝑡(𝑥) = −∑ (
𝑑𝑆𝑛

𝑑𝑡
(𝑦𝑙) +

𝑑𝑆𝑎

𝑑𝑡
(𝑦𝑙))𝑦𝑙∈𝑙𝑜𝑐𝑎𝑙  (4.28) 

𝐻(𝐿𝑡(𝑥), 𝑛) =
(𝐿𝑡(𝑥))𝑛

(𝐾)𝑛+(𝐿𝑡(𝑥))𝑛
 (4.29) 

Where 𝐿𝑡(𝑥) represents the newly infected population in location x at time t, 𝜀is a constant 

which acts as a negative exponential in Eq. (4.26) and K is the equilibrium constant and n is the 

hill coefficient in hill equation.  

Figure 4.20 Hill Equation 

 

When the hill coefficient n is greater than 1, the H(*) is monotone increasing with 𝐿𝑡(𝑥) 

and the lower bound and upper bound are 0 and 1, respectively. What’s more, it increases very 

slowly in the beginning which means the first few new cases of infection have small impact on 

individuals’ decision, while the impacts are amplified as more and more individual are infected. 

After a quick increasing period, the increase of impacts of information slows down since most of 
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individuals already recognize the severity of the disease transmission. An example of plots of 

general hill equations with different n is shown in Figure 4.20. In this example, the equilibrium 

constant is set to be 2 and Z represents the variable 𝐿𝑡(𝑥) in Eq (4.29).  

Figure 4.21 Altered m1 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 



94 

Figure 4.22 Changes in the Numbers of Infected Individuals 

 

One numerical simulation was conducted to study the impacts of m1 on the dynamics of 

disease transmission based on the memory mechanism. We assumed that 𝜎2(𝑥) = 0.2, and we ran 

five replications. The changes of m1 and the numbers of infected individuals by county are shown 

in Figure 4.21 and Figure 4.22, respectively. Overall, the value of m1 slightly decreased in the 

beginning and then exponentially increased due to the increasing number of infected individuals. 

(a) (b) 

(c) (d) 

(e) (f) 



95 

Moreover, there is a time delay between the increase of m1 and the increase of infected individuals 

since some individuals would choose “wait and see” (35) and not all individuals changed their 

behaviors immediately. Susceptible individuals gradually recognized the severity of infection so 

that perception to the risk increased as more and more individuals were infected. In addition, the 

average number of infected individuals in Figure 4.22 was slightly lower than those in Figure 

4.17(red line), since the increased value of m1 could only impact individuals’ decision (i.e. more 

susceptible individuals choose switchers), not explicitly mitigating the spread of infectious disease. 

 4.5 Discussion 

Spontaneous changes of human behaviors during an epidemic has recently attracted 

increasing research attention for the recent decade. Assessment of whether benefits of protective 

actions outweigh the corresponding costs after estimating the payoff according to information and 

infectious disease risk perception significantly impacts the determination of appropriate behaviors 

for individuals. Game theory, a commonly used tool to study conflicts and cooperation between 

decision makers, provides a mathematical framework to discuss individuals’ decision-making 

processes. A spatial evolutionary game specifically combines spatial association between 

individuals’ contacts and disease information and temporal impacts of information to the dynamics 

of human decisions, thereby increasing understanding of the impacts of heterogeneous population 

and human behaviors on disease transmission dynamics.  

This paper applied the spatial evolutionary game used in  (82) to a classic dynamic system 

for the spread of infectious disease. The classic compartmental SIR model has been widely used 

for epidemic study, including changes in human behaviors due to the spread of infectious diseases. 

The numerical simulation first proved the consistency of two models, thereby validating the 

effectiveness of the spatial evolutionary game. Then the impacts of changes of human behaviors 
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on the dynamics of disease transmission and how information impacts human behaviors were 

discussed using the numerical simulation. Results showed that protective behaviors decrease the 

numbers of infected individuals and delay the peak time of infection. Increased numbers of 

switchers and preemptive actions can more effectively mitigate disease transmission; however, 

changes in human behavior requires a high social cost (such as avoidance of crowded places 

leading to absent in school, workplace, or other public places). An appropriate response to the 

epidemic and wise selection of corresponding intervention strategies is our ultimate goal to prevent 

infectious diseases. Therefore, individuals’ perceptions of risks based on available information 

were discussed under various assumptions. Heterogeneous responses to an epidemic showed 

maximum reasonableness since individuals have unique cognitions based on personalized 

memories and understandings of new information. Itô drift-diffusion process was formulated 

according to this assumption, and the drift factor was defined as a memory mechanism which 

included two parts: cumulating information and memory fading. Hill equation and negative 

exponential function were used to describe the cumulating information process and memory fading 

process, respectively.  

In this paper, MDM model was only studied through numerical simulation. In order to fully 

understand the behavior of dynamic system, stability analysis and bifurcation analysis should be 

conducted later. In addition, further studies should combine changes in human behaviors and 

intervention strategies to identify optimal information dissemination in order to minimize social 

costs and the numbers of infected individuals. Stability analysis and optimization in epidemic were 

studied for different infectious diseases, such as Visceral Leishmaniasis (90,91). In addition, 

optimal control strategies for prevention of infectious disease transmission should be studied 

considering changes of human behaviors coupled with intervention strategies. In order to increase 



97 

understanding of the variation of individuals’ responses to infectious disease, a small scale of 

population, including individualized behaviors, should be taken into consideration for modeling 

human behaviors. Correspondingly, intervention strategies should be temporally and spatially 

characterized. As such, an agent-based model, which was used to simulate other diseases, such as 

Sepsis (92,93), could be used as a tool to study the complex system with interactions among 

changes of human behaviors, disease transmission, and intervention strategies (public policy). If 

successful, this research should improve communication between policy makers and the public by 

directing educational efforts and predicting public response to infectious diseases and new risk 

management strategies (regulations, vaccination, quarantine, etc.).  
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Chapter 5 - Zoonotic Visceral Leishmaniasis Transmission: 

Modeling, Backward Bifurcation, and Optimal Control 

Chapter 5 is based on the paper “Zoonotic Visceral Leishmaniasis Transmission: Modeling, 

Backward Bifurcation, and Optimal Control” published in Journal of Mathematical Biology (2016), 

doi:10.1007/s00285-016-0999-z. 

 Abstract 

Visceral Leishmaniasis (VL), a vector-borne disease caused by protozoan flagellates of the 

genus Leishmania, is transmitted by sand flies. After malaria, VL is the second-largest parasitic 

killer, responsible for an estimated 500,000 infections and 51,000 deaths annually worldwide. 

Mathematical models proposed for VL have included the impact of dogs versus wild canids in 

disease dissemination and models developed to assist in control approaches. However, quantitative 

conditions that are required to control or eradicate VL transmission are not provided and there are 

no mathematical methods proposed to quantitatively calculate optimal control strategies for VL 

transmission. The research objective of this work was to model VL disease transmission system 

(specifically Zoonotic VL), perform bifurcation analysis to discuss control conditions, and 

calculate optimal control strategies. Three time-dependent control strategies involving dog 

populations, sand fly population, and humans are mainly discussed. Another strategy sometimes 

used in attempts to control zoonotic VL transmission, dog culling, is also evaluated in this paper. 

Keywords 

Visceral Leishmaniasis, Zoonotic Disease Transmission, Backward Bifurcation, Optimal 

Control 
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 5.1 Introduction 

Visceral Leishmaniasis (VL) is a protozoan disease caused by parasites of the genus 

Leishmania and transmitted through the bite of infected sand flies. After malaria, VL is the second-

largest parasitic killer in the world, occurring in 65 countries with a majority (90%) of cases in 

poor rural and suburban areas of Bangladesh, India, Nepal, Sudan, Ethiopia, and Brazil. The 

current annual estimate of VL mortality is more than 50,000 (5), an assumed underestimation 

because not all cases are reported and VL is often undiagnosed or unrecognized. VL has been 

become one of the most prevalent public health concerns because of its high morbid mortality. It 

is generally characterized by an acute stage with generalized symptoms, including fever, cachexia, 

hepatomegaly, splenomegaly, and pancytopenia. 

VL can be classified into Zoonotic Visceral Leishmaniasis (ZVL) and Anthroponotic 

Visceral Leishmaniasis (AVL). ZVL is caused by Leishmania infantum transmitted by the bite of 

an infected sand fly from sylvatic animal reservoir (such as wild canids and rodents, or domestic, 

such as the domestic dog) to humans. ZVL is widely distributed from the Mediterranean Basin, 

parts of the Middle East and North Africa, and the Americas. Since the early 2000s, an outbreak 

of ZVL also has been identified in American Foxhounds in the United States (94). In contrast, 

AVL can be transmitted directly from humans to humans by the bite of an infected sand fly (95). 

AVL is found primarily in India (Bihar State) and other parts of the Indian Subcontinent (96), and 

in Sudan and South Sudan and caused by Leishmania donovani (97). Once a person is infected, 

the parasite migrates to internal organs such as the liver, spleen (hence "visceral"), and bone 

marrow. Lack of treatment almost always results in death of the host. 

Several mathematical models have been constructed to describe VL transmission. Stauch 

(96) modeled the spread of VL in the Indian Subcontinent by modified SEIR model in terms of 
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AVL characteristics and extended it to a ZVL model with animal reservoirs. Vector-related 

intervention was recommended in combination with treatment-related intervention in order to 

control VL transmission. Ribas (98) used a mathematical model adapted from one proposed by 

Burattini (99) to assess interaction between humans, sand flies, and dogs. The risk of requiring the 

infection R was calculated and optimal control strategy was estimated based on the formula of 

calculating R. It provided a combination of two ways to control ZVL transmission instead of 

culling seropositive dogs: insecticide-impregnate collar and vector control. However, they fail to 

provide a quantitative condition to control or eradicate VL transmission and did not propose 

mathematical methods to quantitatively calculate optimal control strategies. 

In this paper, a mathematical model was developed to describe the ZVL transmission 

process in Brazil using a modified SEIR model, particularly focused on the reservoir (dogs) 

because of the crucial role played by these animals in disease transmission. Castillo-Chavez (100) 

suggested that the zoonotic disease model may exhibit backward bifurcation, in which local 

asymptotically stable disease free equilibrium (DFE) coexists with a locally-asymptotically stable 

endemic equilibrium when R0 < 1. Using the reasonable range for each parameter in our 

mathematical model, a backward bifurcation analysis was performed, resulting in the conclusion 

that backward bifurcation may exhibit in ZVL transmission. In this case, the condition R0 < 1 may 

lead to an endemic equilibrium instead of DFE. Therefore, R0 < 1, the classical requirement for 

the control of infectious disease spread, although necessary, is no longer sufficient for ZVL 

elimination. Another significant parameter, Rc, was calculated, thereby demonstrating that it 

coexists in two equilibrium, disease-free equilibrium and endemic equilibrium, when Rc < R0 < 1. 

In addition, optimal control was discussed to give support in decision for controlling disease 

transmission. A general mathematical method was used to analyze optimal control strategies and 
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numerical analysis was described to illustrate implementation of this method. Based on numerical 

results, optimal control strategies are discussed. 

The structure of this paper is as follows: Section 5.2 details a new mathematical model for 

ZVL transmission; Section 5.3 demonstrates the phenomenon of backward bifurcation existing in 

the model; Section 5.4 calculates optimal control strategies based on Pontryagins maximum 

principle and discusses impacts to disease control with various control costs and effectiveness of 

control strategies; Section 5.5 concludes the paper and suggests future work.  

 5.2 Mathematical Model 

In this section, a basic model for ZVL transmission dynamics among dogs-sand flies-

humans system is constructed. Parameters used in the model are listed in Table 5.1.  

ZVL is transmitted by female sand flies, with Lutzomyia longipalpis being the primary 

vector in the Americas. In this paper, we use the word "sand flies", primarily indicating L. 

longipalpis and other species of sand flies which are not ZVL vectors are not considered. Dogs 

serve as the primary reservoir host for the transmission of parasites to humans (dead-end hosts for 

ZVL (101)), and dogs are the principal risk factor for human infections with ZVL in endemic areas 

(102,103). A system diagram of ZVL transmission among dogs, sand flies, and humans is shown 

in Figure 6.1 in which populations for the three systems are assumed to be homogenous. In 

addition, the recovered dog may be changed back to infectious dogs if they are removed from 

treatment (dotted line from Rd to Id in Figure 5.1). However, this process is not shown in our model 

and we assumed that all recovered dogs are always under treatment. For humans, recovered 

humans are not necessarily immune and may be re-infected, but there is now evidence that some 

level of immunity can be achieved. In this paper, we assume recovered individuals either obtain 

the immunity or prevent themselves from getting infected. In addition, the VL cannot be 
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transmitted from human to human, sand flies or dogs, so this assumption will not affect the spread 

of the VL. Moreover, absent from the parameters is the potential replacement of culled dogs with 

young 

Table 5.1 Parameters in the model 

Parameters Interpretation 

𝝀𝒅 Recruitment rate of susceptible dogs 

𝝀𝒇 Recruitment rate of susceptible sand flies 

𝝀𝒉 Recruitment rate of susceptible humans 

𝟏/𝝁𝒅 Average lifespan of dogs 

𝟏/𝝁𝒇 Average lifespan of sand flies 

𝟏/𝝁𝒉 Average lifespan of humans 

𝒃𝒇𝒅 Average biting rate per infected sand fly to dogs 

𝒃𝒇𝒉 Average biting rate per infected sand fly to humans 

𝜷𝒇𝒅 Transmission probability from an infected sand fly to a susceptible dog 

𝜷𝒅𝒇 Transmission probability from an infected dog to a susceptible sand fly 

𝜷𝒇𝒉 Transmission probability from an infected sand fly to a susceptible human 

𝒅𝒅 VL-induced death rate of dogs (including culled dogs) 

𝒅𝒇 VL-induced death rate for sand flies 

𝒅𝑰 VL-induced death rate of humans 

𝒅𝑯 Death rate of hospitalized humans 

𝒎𝒇 Migration rate of sand flies 

𝟏/𝝉𝒅 Incubation period in dogs 

𝟏/𝝉𝒇 Incubation period in sand flies 

𝟏/𝝉𝒉 Incubation period in humans 

𝜹𝒉 Hospitalization rate of humans 

𝒓𝒅 Recovery rate of infected dogs 
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𝒓𝑰 Natural recovery rate of infected humans 

𝒓𝑯 Recovery rate of hospitalized humans 

animals, which is frequently adopted in many endemic areas, but are very hard to ascertain for the 

purpose of generality of the model. 

Figure 5.1 System diagram of ZVL transmission model 

 

In the above system, dogs were classified into four compartments: susceptible dogs (Sd), 

exposed/infected (but not infectious) dogs (Ed), infectious dogs (Id), and recovered dogs (Rd). 

Susceptible dogs could be transferred to exposed dogs, exposed/infected dogs could be transferred 

to infectious dogs, and infectious dogs could recover and become recovered dogs. Similarly, sand 

flies were distributed among susceptible sand flies (Sf), exposed/infected sand flies (Ef), and 

infectious sand flies (If). A modified SEIR model for human system is defined as susceptible 

humans (Sh), exposed (during incubation period) humans (Eh), infected humans (Ih), hospitalized 

humans (Hh), and recovered humans (Rh). The mathematical model for three sub-systems is shown 

below.  

 5.2.1 Dog population 

𝑑𝑆𝑑

𝑑𝑡
= 𝜆𝑑 −

𝑏𝑓𝑑𝛽𝑓𝑑𝐼𝑓𝑆𝑑

𝑁𝑑
− 𝜇𝑑𝑆𝑑 (5.1) 
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𝑑𝐸𝑑

𝑑𝑡
=

𝑏𝑓𝑑𝛽𝑓𝑑𝐼𝑓𝑆𝑑

𝑁𝑑
− 𝜏𝑑𝐸𝑑 − 𝜇𝑑𝐸𝑑 (5.2) 

𝑑𝐼𝑑

𝑑𝑡
= 𝜏𝑑𝐸𝑑 − 𝑟𝑑𝐼𝑑 − 𝑑𝑑𝐼𝑑 − 𝜇𝑑𝐼𝑑 (5.3) 

𝑑𝑅𝑑

𝑑𝑡
= 𝑟𝑑𝐼𝑑 − 𝜇𝑑𝑅𝑑 (5.4) 

where Sd denotes the number of susceptible dogs, Ed denotes the number of exposed/infected dogs, 

Id denotes the number of infectious dogs, Rd denotes the number of recovered dogs, and Nd denotes 

the total number of dogs. 

The above model is a classic SEIR model. In equation (5.1), a constant birth rate 𝜆𝑑 was 

used for susceptible dogs, the amount of 𝑏𝑓𝑑𝛽𝑓𝑑𝐼𝑓𝑆𝑑/𝑁𝑑  susceptible dogs were moved from 

compartment Sd (susceptible population) to Ed (exposed/infected population) due to ZVL 

transmission where 𝑆𝑑/𝑁𝑑 denotes the contact rate between susceptible dogs and sand flies, and 

𝜇𝑑𝑆𝑑 susceptible dogs were removed because of natural death. Similarly, in equation (5.2) 𝜏𝑑𝐸𝑑 

exposed/infected dogs (from compartment Ed) became infectious dogs (into compartment Id) and 

𝜇𝑑𝐸𝑑  exposed dogs were removed due to natural death. In equation (5.3), a portion of 𝑟𝑑𝐼𝑑 

infectious dogs recovered and converted to Rd, but 𝑑𝑑𝐼𝑑  more infectious dogs died due to the 

disease or culling strategy, in addition to 𝜇𝑑𝐼𝑑 natural deaths. Recovered dogs remained under 

treatment and were assumed to not be reinfected and 𝜇𝑑𝑅𝑑 ones were removed because of natural 

death. In addition, Ed could be seropositive but not culled or dead due to the disease (This was 

assumed as these animals are, at least in theory, infected but not yet tested). 

 5.2.2 Sand fly population 

𝑑𝑆𝑓

𝑑𝑡
= 𝜆𝑓 −

𝑏𝑓𝑑𝛽𝑑𝑓𝐼𝑑𝑆𝑓

𝑁𝑑
− 𝑚𝑓𝑆𝑓 − 𝜇𝑓𝑆𝑓 (5.5) 

𝑑𝐸𝑓

𝑑𝑡
=

𝑏𝑓𝑑𝛽𝑑𝑓𝐼𝑑𝑆𝑓

𝑁𝑑
− 𝜏𝑓𝐸𝑓 − 𝑚𝑓𝐸𝑓 − 𝜇𝑓𝐸𝑓 (5.6) 
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𝑑𝐼𝑓

𝑑𝑡
= 𝜏𝑓𝐸𝑓 − 𝑑𝑓𝐼𝑓 − 𝑚𝑓𝐼𝑓 − 𝜇𝑓𝐼𝑓 (5.7) 

where Sf denotes the number of susceptible sand flies, Ef denotes the number of exposed/infected 

sand flies, If denotes the number of infectious sand flies. 

The above model is a SEI model similar to the system in Section 5.2.1 but without the 

recovered stage. With a constant birth rate 𝜆𝑓  for susceptible sand flies, 𝑏𝑓𝑑𝛽𝑑𝑓𝐼𝑑𝑆𝑓/𝑁𝑑 

susceptible sand flies moved from compartment Sf (susceptible) to Ef (exposed/infected) due to 

ZVL transmission via contacts between infectious dogs and susceptible sand flies, and 𝜇𝑓𝑆𝑓 

susceptible sand flies were eliminated because of natural death. The portion of 𝜏𝑓𝐸𝑓 exposed sand 

flies became infectious sand flies, and 𝜇𝑓𝐸𝑓 exposed sand flies are expired due to natural death. In 

equation (5.7), the portion of 𝑑𝑓𝐼𝑓 more infectious sand flies expired due to the disease, in addition 

to 𝜇𝑓𝐼𝑓 natural deaths. Infectious sand flies cannot recover from the disease. Moreover, 𝑚𝑓(𝑆𝑓 +

𝐸𝑓 + 𝐼𝑓) sand flies were assumed to emigrate from the system. 

 5.2.3 Sand fly population 

𝑑𝑆ℎ

𝑑𝑡
= 𝜆ℎ −

𝑏𝑓ℎ𝛽𝑓ℎ𝐼𝑓𝑆ℎ

𝑁ℎ
− 𝜇ℎ𝑆ℎ (5.8) 

𝑑𝐸ℎ

𝑑𝑡
=

𝑏𝑓ℎ𝛽𝑓ℎ𝐼𝑓𝑆ℎ

𝑁ℎ
− 𝜏ℎ𝐸ℎ − 𝜇ℎ𝐸ℎ (5.9) 

𝑑𝐼ℎ

𝑑𝑡
= 𝜏ℎ𝐸ℎ − 𝛿ℎ𝐼ℎ − 𝑑𝐼𝐼ℎ − 𝑟𝐼𝐼ℎ − 𝜇ℎ𝐼ℎ (5.10) 

𝑑𝐻ℎ

𝑑𝑡
= 𝛿ℎ𝐼ℎ − 𝑑𝐻𝐻ℎ − 𝑟𝐻𝐻ℎ − 𝜇ℎ𝐻ℎ (5.11) 

𝑑𝑅ℎ

𝑑𝑡
= 𝑟𝐻𝐻ℎ + 𝑟𝐼𝐼ℎ − 𝜇ℎ𝑅ℎ (5.12) 

where Sh denotes the number of susceptible individuals, Eh denotes the number of exposed 

individuals, Ih denotes the number of infected individuals, Hh denotes the number of hospitalized 



106 

individuals, and Rh denotes the number of recovered individuals, and Nh denotes the total number 

of humans. 

The above model is a modified SEIR model with compartment Hh, which represents the 

number of individuals who are taken to the hospital by family and/or health authorities with regards 

to infected and symptomatic people. A constant birth rate 𝜆ℎ exists for susceptible individuals. In 

Eq. (5.8), the amount of 𝑏𝑓ℎ𝛽𝑓ℎ𝐼𝑓𝑆ℎ/𝑁ℎ  susceptible individuals moved from compartment Sh to 

Eh due to ZVL transmission, and 𝜇ℎ𝑆ℎ susceptible individuals were removed because of natural 

death. For exposed individuals in Eq. (5.9), 𝜏ℎ𝐸ℎ became infected individuals, and 𝜇ℎ𝐸ℎ exposed 

individuals were removed due to natural death. In Eq. (5.10), 𝛿ℎ𝐼ℎ infected individuals are taken 

to the hospital and move to compartment Hh and dIIh of them died due to the disease before they 

went to the hospital. We assume few infected individuals, rIIh, recovered and moved to recovered 

individuals. For hospitalized individuals in Eq. (5.11), rHHh recovered and converted to recovered 

individuals and dHHh expires because of disease. In Eq. (5.12), recovered individuals could not be 

reinfected so that only 𝜇ℎ𝑅ℎ are removed due to natural death. 

 5.2.4 Well-poseness of the solutions 

Considering the physical meaning of ZVL transmissions, only nonnegative initial 

conditions are used and negative solutions are not allowed. All parameters in the system are 

nonnegative as well. In this section, we prove that all solutions in Eqs (5.1) - (5.12) are nonnegative 

if initial conditions are nonnegative and they are bounded. 

Proof: According to Theorem 2.1 in (104) which is 

"Assume that whenever 𝜙 𝜖 𝐷  satisfies 𝜙 ≥ 0, 𝜙𝑖(0) = 0  for some i and 𝑡 𝜖 𝑅 , then 

𝑓𝑖(𝑡, 𝜙) ≥ 0. If 𝜙 𝜖 𝐷 satisfies 𝜙 ≥ 0 and 𝑡0 𝜖 𝑅, then 𝑓𝑖(𝑡, 𝜙) ≥ 0." 
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It is easy to test that all of our equations satisfy the conditions in the above theorem so that 

we know 𝑆𝑑(𝑡) ≥ 0, 𝐸𝑑(𝑡) ≥ 0, 𝐼𝑑(𝑡) ≥ 0, 𝑅𝑑(𝑡) ≥ 0, 𝑆𝑓(𝑡) ≥ 0, 𝐸𝑓(𝑡) ≥ 0, 𝐼𝑓(𝑡) ≥ 0, 𝑆ℎ(𝑡) ≥

0 ,  𝐸ℎ(𝑡) ≥ 0 ,  𝐼ℎ(𝑡) ≥ 0 ,  𝐻ℎ(𝑡) ≥ 0 , and 𝑅ℎ(𝑡) ≥ 0 , if 𝑆𝑑(0) ≥ 0 , 𝐸𝑑(0) ≥ 0 ,  𝐼𝑑(0) ≥

0, 𝑅𝑑(0) ≥ 0, 𝑆𝑓(0) ≥ 0, 𝐸𝑓(0) ≥ 0, 𝐼𝑓(0) ≥ 0, 𝑆ℎ(0) ≥ 0, 𝐸ℎ(0) ≥ 0, 𝐼ℎ(0) ≥ 0, 𝐻ℎ(0) ≥ 0, 

and 𝑅ℎ(0) ≥ 0. 

Based on Eqs (5.1) - (5.12), we have 

𝑑𝑁𝑑

𝑑𝑡
= 𝜆𝑑 − 𝑑𝑑𝐼𝑑 − 𝜇𝑑𝑁𝑑 (5.13) 

𝑑𝑁𝑓

𝑑𝑡
= 𝜆𝑓 − 𝑚𝑓𝑁𝑓 − 𝑑𝑓𝐼𝑓 − 𝜇𝑓𝑁𝑓 (5.14) 

𝑑𝑁ℎ

𝑑𝑡
= 𝜆ℎ−𝑑𝐼𝐼ℎ − 𝑑𝐻𝐻ℎ − 𝜇ℎ𝑁ℎ (5.15) 

where 𝑁𝑑 = 𝑆𝑑 + 𝐸𝑑 + 𝐼𝑑 + 𝑅𝑑 , 𝑁𝑓 = 𝑆𝑓 + 𝐸𝑓 + 𝐼𝑓 , 𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝐻ℎ + 𝑅ℎ . When  𝑡 →

∞, we have 𝑁𝑑 < 𝜆𝑑/𝜇𝑑 , 𝑁𝑓 < 𝜆𝑓/(𝑚𝑓 + 𝜇𝑓),  𝑁ℎ < 𝜆ℎ/𝜇ℎ  since 𝑑𝑑 , 𝐼𝑑 , 𝑑𝑓 , 𝐼𝑓 , 𝑑𝐼 , 𝐼ℎ, 𝑑𝐻, 𝐻ℎ ≥

0. Hence, Nd, Nf, and Nh are bounded. Then Sd, Ed, Id, Rd, Sf, Ef, If, Sh, Eh, Ih, Hh, and Rh are bounded 

since they are all nonnegative. 

 5.2.5 Calculation of R0 

The basic ratio R0 is defined as “the average number of secondary cases arising from an 

average primary case in an entirely susceptible population” (71). This ratio can be solved based on 

disease free equilibrium (DFE). 

The entire system (Eqs. (5.1)-(5.12)) has a DFE given by 

𝐸0 = (𝑆𝑑
∗ , 𝐸𝑑

∗ , 𝐼𝑑
∗ , 𝑅𝑑

∗ , 𝑆𝑓
∗, 𝐸𝑓

∗, 𝐼𝑓
∗, 𝑆ℎ

∗ , 𝐸ℎ
∗ , 𝐼ℎ

∗ , 𝐻ℎ
∗ , 𝑅ℎ

∗)=( 
𝜆𝑑

𝜇𝑑
, 0, 0, 0,

𝜆𝑓

𝜇𝑓+𝑚𝑓
, 0, 0,

𝜆ℎ

𝜇ℎ
, 0, 0, 0, 0 ). (5.16) 
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Linear stability of E0 can be established using the next generation operator method (105). 

Matrices F (for the rate of appearance of new infections) and V (for the rate of transfer of 

individuals) are given, respectively, by: 

F= 

[
 
 
 
 
 
 
 
 
 
 
 0 0 0 0

𝑏𝑓𝑑𝛽𝑓𝑑𝑆𝑑
∗

𝑁𝑑
∗ 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
𝑏𝑓𝑑𝛽𝑑𝑓𝑆𝑓

∗

𝑁𝑑
∗ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0
𝑏𝑓ℎ𝛽𝑓ℎ𝑆ℎ

∗

𝑁ℎ
∗ 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

  (5.17) 

V=

[
 
 
 
 
 
 
 
 
 

𝑘1 0 0 0 0 0 0 0 0
−𝜏𝑑 𝑘2 0 0 0 0 0 0 0
0 −𝑟𝑑 𝜇𝑑 0 0 0 0 0 0
0 0 0 𝑘4 0 0 0 0 0
0 0 0 −𝜏𝑓 𝑘5 0 0 0 0

0 0 0 0 0 𝑘6 0 0 0
0 0 0 0 0 −𝜏ℎ 𝑘7 0 0
0 0 0 0 0 0 −𝛿ℎ 𝑘8 0
0 0 0 0 0 0 −𝑟𝐼 −𝑟𝐻 𝜇ℎ]

 
 
 
 
 
 
 
 
 

 (5.18) 

Where 𝑘1 = 𝜏𝑑 + 𝜇𝑑 , 𝑘2 = 𝑟𝑑 + 𝑑𝑑 + 𝑢𝑑 , 𝑘4 = 𝜏𝑓 + 𝑚𝑓 + 𝜇𝑓, 𝑘5 = 𝑑𝑓 + 𝑚𝑓 + 𝜇𝑓,  𝑘6 =

𝜏ℎ + 𝜇ℎ, 𝑘7 = 𝛿ℎ + 𝑑𝐼 + 𝑟𝐼 + 𝜇ℎ , 𝑘8 = 𝑑𝐻 + 𝑟𝐻 + 𝜇ℎ, 𝑁𝑑
∗ = 𝑆𝑑

∗   and  𝑁ℎ
∗ = 𝑆ℎ

∗ . 

Therefore, the basic reproduction number, denoted by R0, is given by 

𝑅0 = 𝜌(𝐹𝑉−1) =  
𝑏𝑓𝑑√𝑘1𝑘2𝑘4𝑘5𝛽𝑓𝑑𝛽𝑑𝑓𝜏𝑑𝜏𝑓𝑆𝑑

∗𝑆𝑓
∗

𝑘1𝑘2𝑘4𝑘5𝑁𝑑
∗ . (5.19) 

where 𝜌 is the spectral radius (dominant eigenvalue in magnitude or maximum of the absolute 

values of eigenvalues of the matrix). The threshold quantity R0, the basic reproduction number of 

the disease, represents the average number of secondary cases that one infected case can generate 

if introduced into a completely susceptible population. Hence, using Theorem 2 of (105), we 



109 

established the following result: disease free equilibrium, E0, of the system (Eqs. (5.1) - (5.12)), is 

locally asymptotically stable (LAS) if R0 < 1 and unstable if R0 > 1. 

In general, when R0 is less than 1, a small influx of infected sand flies into the community 

does not lead to large outbreaks, and the disease is eliminated in the end (since DFE is LAS). 

However, as we demonstrate in Section 5.3, the disease may persist even when R0 < 1. 

 5.3 Backward Bifurcation 

 5.3.1 Backward bifurcation 

In (100), the conjecture was made that the zoonotic disease model may exhibit backward 

bifurcation. In order to find endemic equilibria of the system (equilibrium in which at least one of 

the infected components is non-zero), the following steps was taken. 

𝐸1 = (𝑆𝑑
∗∗, 𝐸𝑑

∗∗, 𝐼𝑑
∗∗, 𝑅𝑑

∗∗, 𝑆𝑓
∗∗, 𝐸𝑓

∗∗, 𝐼𝑓
∗∗, 𝑆ℎ

∗∗, 𝐸ℎ
∗∗, 𝐼ℎ

∗∗, 𝐻ℎ
∗∗, 𝑅ℎ

∗∗)  represents any arbitrary 

endemic equilibrium of the model. Let 𝜃𝑑
∗∗ =

𝑏𝑓𝑑𝛽𝑓𝑑𝐼𝑓
∗∗

𝑁𝑑
∗∗ ,    𝜃𝑓

∗∗ = 
𝑏𝑓𝑑𝛽𝑑𝑓𝐼𝑑

∗∗

𝑁𝑑
∗∗ ,   𝜃ℎ

∗∗ =
𝑏𝑓ℎ𝛽𝑓ℎ𝐼𝑓

∗∗

𝑁ℎ
∗∗ , where 

𝑁𝑑
∗∗ = 𝑆𝑑

∗∗ + 𝐸𝑑
∗∗ + 𝐼𝑑

∗∗ + 𝑅𝑑
∗∗,  𝑁ℎ

∗∗ = 𝑆ℎ
∗∗ + 𝐸ℎ

∗∗ + 𝐼ℎ
∗∗ + 𝐻ℎ

∗∗ + 𝑅ℎ
∗∗. 

Solving the equations at steady state gives 

𝑆𝑑
∗∗ =

𝜆𝑑

𝜃𝑑
∗∗+𝜇𝑑

 (5.20) 

𝐸𝑑
∗∗ =

𝜃𝑑
∗∗𝜆𝑑

𝑘1(𝜃𝑑
∗∗+𝜇𝑑)

 (5.21) 

𝐼𝑑
∗∗ =

𝜃𝑑
∗∗𝜏𝑑𝜆𝑑

𝑘1𝑘2(𝜃𝑑
∗∗+𝜇𝑑)

 (5.22) 

𝑅𝑑
∗∗ =

𝜃𝑑
∗∗𝜏𝑑𝜆𝑑𝑟𝑑

𝑘1𝑘2𝜇𝑑(𝜃𝑑
∗∗+𝜇𝑑)

 (5.23) 

 𝑆𝑓
∗∗ =

𝜆𝑓

𝜃𝑓
∗∗+𝑘3

 (5.24) 



110 

𝐸𝑓
∗∗ =

𝜃𝑓
∗∗𝜆𝑓

𝑘4(𝜃𝑓
∗∗+𝑘3) 

 (5.25) 

𝐼𝑓
∗∗ =

𝜃𝑓
∗∗𝜆𝑓𝜏𝑓

𝑘4𝑘5(𝜃𝑓
∗∗+𝑘3) 

 (5.26) 

𝑆ℎ
∗∗ =

𝜆ℎ

𝜃ℎ
∗∗+𝜇ℎ

 (5.27) 

𝐸ℎ
∗∗ =

𝜃ℎ
∗∗𝜆ℎ

𝑘6(𝜃ℎ
∗∗+𝜇ℎ) 

 (5.28) 

𝐼ℎ
∗∗ =

𝜃ℎ
∗∗𝜆ℎ𝜏ℎ

𝑘6𝑘7(𝜃ℎ
∗∗+𝜇ℎ) 

 (5.29) 

𝐻ℎ
∗∗ =

𝜃ℎ
∗∗𝜆ℎ𝜏ℎ𝛿ℎ

𝑘6𝑘7 𝑘8(𝜃ℎ
∗∗+𝜇ℎ) 

 (5.30) 

𝑅ℎ
∗∗ =

𝜃ℎ
∗∗𝜆ℎ𝜏ℎ(𝛿ℎ𝑟𝐻+𝑟𝐼𝑘8)

𝑘6𝑘7 𝑘8𝜇ℎ(𝜃ℎ
∗∗+𝜇ℎ) 

 (5.31) 

Substituting Eqs. (5.20) - (5.31) in 𝜃𝑑
∗∗  and 𝜃𝑓

∗∗  and simplifying after algebraic 

manipulations respectively gives 

𝜃𝑑
∗∗ =

𝑏𝑓𝑑𝛽𝑓𝑑𝜏𝑓𝜆𝑓𝑘1𝑘2𝜇𝑑𝜃𝑓
∗∗(𝜃𝑑

∗∗+𝜇𝑑)

(𝜃𝑓
∗∗+𝑘3)𝑘4𝑘5[𝑘2𝜇𝑑𝜆𝑑(𝑘1+𝜃𝑑

∗∗)+𝜏𝑑𝜆𝑑𝜃𝑑
∗∗(𝜇𝑑+𝑟𝑑)]

 (5.32) 

𝜃𝑓
∗∗ =

𝑏𝑓𝑑𝛽𝑑𝑓𝜏𝑑𝜇𝑑𝜃𝑑
∗∗

𝑘2𝜇𝑑(𝑘1+𝜃𝑑
∗∗)+𝜏𝑑𝜃𝑑

∗∗(𝜇𝑑+𝑟𝑑)
 (5.33) 

Substitution of (5.33) in (5.32) shows that non-zero equilibria of the model satisfies the 

following quadratic (in terms of 𝜃𝑑
∗∗) 

𝑎0(𝜃𝑑
∗∗)2 + 𝑏0(𝜃𝑑

∗∗) + 𝑐0 = 0 (5.34) 

where 𝑎0 = 𝑘4𝑘5𝜆𝑑[𝑘2𝑏𝑓𝑑𝛽𝑑𝑓𝜏𝑑𝜇𝑑
2 + 𝑘2

2𝑘3𝜇𝑑
2 + 𝑏𝑓𝑑𝛽𝑑𝑓𝜏𝑑

2𝜇𝑑(𝜇𝑑 + 𝑟𝑑) + 2𝑘2𝑘3𝜇𝑑𝜏𝑑(𝜇𝑑 +

𝑟𝑑) + 𝑘3𝜏𝑑
2(𝜇𝑑 + 𝑟𝑑)2] , 𝑏0 = 𝑘1𝑘2𝑘4𝑘5𝜇𝑑𝜆𝑑[𝑏𝑓𝑑𝛽𝑑𝑓𝜏𝑑𝜇𝑑 + 2𝑘2𝑘3𝜇𝑑 + 2𝑘3𝜏𝑑(𝜇𝑑 + 𝑟𝑑) −

𝑘1𝑘2𝑘3𝑅0
2], 𝑐0 = 𝑘1

2𝑘2
2𝑘3𝑘4𝑘5𝜇𝑑

2𝜆𝑑(1 − 𝑅0
2). 

 The quadratic equation can be analyzed for the possibility of multiple endemic 

equilibriums (57). We achieved positive equilibrium of the system by solving for 𝜃𝑑
∗∗ from the 
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quadratic equation (5.34) and substituting the results (positive value of 𝜃𝑑
∗∗) into expressions in 

Eqs. (5.20) - (5.31). From above formula, the coefficient a0 of (5.34) is always positive and c0 is 

positive (negative) if R0 is less than (greater than) one, respectively. Therefore, the following result 

is established: 

Theorem 1: The system has: 

i. a unique endemic equilibrium exist if 𝑐0 < 0; 

ii. a unique endemic equilibrium exist if 𝑏0 < 0, and 𝑐0 = 0 or 𝑏0
2 − 4𝑎0𝑐0 = 0; 

iii. two endemic equilibriums exist if 𝑐0 > 0, 𝑏0 < 0, and 𝑏0
2 − 4𝑎0𝑐0 > 0; 

iv. no endemic equilibrium exist otherwise. 

This method, also used in a Dengue model (105), is a general way to evaluate the system. 

Theorem 1 (Case i) clearly demonstrates that the model has a unique endemic equilibrium when 

R0 > 1. Case (iii) indicates the possibility of backward bifurcation in which local asymptotically 

stable DFE co-exists with a locally-asymptotically stable endemic equilibrium when R0 < 1. In this 

case, we possibly reach an endemic equilibrium instead of DFE even when R0 < 1, depending on 

how many infections occur in the population at the beginning. A critical value of R0, denoted by 

Rc, is given by setting 𝑏0
2 − 4𝑎0𝑐0 = 0. Considering the physical meaning of each parameter, we 

could numerically test that only one solution of Rc is possible among four roots of the equation. 

To simplify the notation, let 𝑏1 = 𝑘1𝑘2𝑘4𝑘5𝜇𝑑𝜆𝑑 , 𝑏2 = 𝑏𝑓𝑑𝛽𝑑𝑓𝜏𝑑𝜇𝑑 + 2𝑘2𝑘3𝜇𝑑 + 2𝑘3𝜏𝑑(𝜇𝑑 +

𝑟𝑑), 𝑏3 = 𝑘1𝑘2𝑘3, 𝑐1 = 𝑘1
2𝑘2

2𝑘3𝑘4𝑘5𝜇𝑑
2𝜆𝑑, we have: 

𝑅𝑐 = √−𝐵0+ √𝐵0
2−4𝐴0𝐶0

2

2𝐴0

2

 (5.35) 

where 𝐴0 = 𝑏1
2𝑏3

2, 𝐵0 = 4𝑎0𝑐1 − 2𝑏1
2𝑏2𝑏3, 𝐶0 = 𝑏1

2𝑏2
2 − 4𝑎0𝑐1. 
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Rc is critical because no endemics equilibrium exists when R0 < Rc. To successfully control 

the spread of ZVL, the reproduction number should be brought below Rc. Condition R0 < 1 is not 

sufficient for a complete control of the spread of ZVL described; therefore, backward bifurcation 

would occur for values of R0 such that Rc < R0 < 1. 

Before analyzing the conditions of backward bifurcation, we presented numerical solutions 

for a given range of each parameter using Mathematica. For example, we simulated the model with 

a set of parameters that satisfies the condition of Case (iii) which also satisfies the reasonable range 

for each parameter. 

The values applied are λ𝑑 = 25, λ𝑓 = 65, λℎ = 25, 𝜇𝑑 = 0.0014, 𝜇𝑓 = 0.022, 𝜇ℎ = 8.3e - 5, 

𝑏𝑓𝑑  = 0.1, 𝑏𝑓ℎ  = 0.1, 𝛽𝑓𝑑  = 0.5,  𝛽𝑑𝑓  = 0.7, 𝛽𝑓ℎ  = 0.5, 𝑑𝑑  = 0.017, 𝑑𝑓  = 0, 𝑑𝐼  = 0.0067, 𝑑𝐻  = 

0.0003, m𝑓 = 0.0001, 𝜏𝑑 = 0.1, 𝜏𝑓 = 0.167, 𝜏ℎ = 0.0167, 𝛿ℎ = 0.8, 𝑟𝑑 = 0.005, 𝑟𝐼 = 0.12, and 𝑟𝐻 = 

0.95 (57,96). With this set of parameters, 𝑅𝑐 = 0.968 < 1 and 𝑅0 = 0.985 < 1 (so that, 𝑅𝑐 < 𝑅0 < 

1). The infectious dog population versus 𝑅0 with the associated bifurcation diagram is depicted in 

Figure 6.2. In Region A, disease free equilibrium is locally asymptotically stable which indicates 

that the disease cannot spread out and the status would change back to disease free equilibrium if 

we have a few infected individuals in the beginning , while in Region B, one disease-persistent 

equilibrium is stable (little perturbation could not change the equilibrium status) and the other is 

unstable (little perturbation could change the status of the system and change to another 

equilibrium status, i.e. disease free equilibrium), thereby showing the coexistence of two stable 

equilibria when 𝑅𝑐  < 𝑅0  < 1 and confirming that the system exhibits backward bifurcation. 

Disease-persistent equilibrium is stable in Region C. Results shown in Figure 5.2 are summarized 

in Table 5.2. 
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To analyze the relationship between Rc and all possible parameters involved, we decide to 

focus on the parameters that are likely amenable to control and possibly represent the reality in the  

field (dogs, sand flies, and humans). In optimal control section, reduction of infection rate to dogs 

and humans, and use of insecticide against sand flies are considered. Hence, 𝛽𝑓𝑑, 𝛽𝑓ℎ, and 𝜇𝑓 are 

studied in order to figure out their impacts on R0 and Rc. 

Figure 5.2 Bifurcation diagram of the system 

 

Table 5.2 Summary of backward bifurcation shown in Figure 5.2 

Region R0 Type of steady states Stability of steady state 

A < 0.968 DFE Stable 

B 0.968 ~ 1 A DFE and two 

endemic equilibria 

The DFE and one endemic equilibrium are stable 

while the other endemic equilibrium is unstable 

C > 1 A DFE and one 

endemic equilibrium 

The DFE is unstable while the endemic equilibrium 

is stable 
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The value of Rc is not dependent on the parameter 𝛽𝑓𝑑 while the value of R0 increases as 

𝛽𝑓𝑑 increases. And therefore, we could find a range (shown in Fig. 5.3(a)) which satisfies the 

condition Rc < R0 < 1 if we could change the infection rate to dogs. 

It is surprising that neither of R0 and Rc are dependent on the parameter 𝛽𝑓ℎ, implying that 

the infection rate to humans does not affect the value of R0 and Rc. Hence, humans do not contribute 

to the spread of disease since dogs and sand flies are not infected by humans. Although controlling 

the infection rate to humans will not impact the stability of disease free equilibrium, it is still very 

important when we discuss the optimal control strategies since reduction of the number of infected 

humans is one of our objectives. The optimal control strategies will be discussed in the next 

section. 

For the last parameter 𝜇𝑓, it can affect the values of both of R0 and Rc. The relationship 

between R0 and 𝜇𝑓 and between Rc and 𝜇𝑓 is shown in figure 5.3(b). There is only a narrow range 

which satisfies the condition Rc < R0 < 1. However, the value of R0 is very sensitive to the value 

of 𝜇𝑓 , which shows that use of insecticide against sand flies is a good strategy if the insecticide is 

effective towards increasing the mortality rate of sand flies.  

Figure 5.3 Impacts of parameters on backward bifurcation  

 

  (a)      (b) 
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A more general simulation is modeled using Mathematica which allow us to adjust the 

values of several model parameters and observe the simulation results in a dynamic fashion. Figure 

5.4 shows a screenshot of this dynamical model which illustrates backward bifurcation for ZVL. 

𝐼𝑑
∗∗ represents the number of infectious dogs at the endemic equilibrium point. The green curve 

represents a stable endemic equilibrium and the red dot curve represents an unstable endemic 

equilibrium. The intersection between two curves is a critical threshold Rc for backward bifurcation 

(which is represented using a red line in Figure 5.4). When R0 < Rc, we only have one disease free 

equilibrium. When Rc < R0 < 1, we have three equilibria: one stable disease free equilibrium, one 

unstable endemic equilibrium, and one stable endemic equilibrium. It turns out that if we have an 

endemic equilibrium in which the number of infectious dogs is in the range of the green line, we 

cannot control the spread of ZVL even if R0 < 1. In the Figure 5.2, R0 is calculated in terms of 

given parameters and it is in the range between Rc and 1. In this case, it is possible that we cannot 

control the spread of ZVL if we already have a certain number of infectious dogs. 
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Figure 5.4 General simulation with various parameter values  

 

Analysis and simulation result established the following result: the model constructed in 

Section 5.2 underwent backward bifurcation when Case (iii) of Theorem 1 holds and Rc < R0 < 1. 

5.3.2 Stability of the endemic equilibrium 

To discuss the stability of the endemic equilibrium, we need to determine the eigenvalues 

of the Jacobian matrix evaluated at the endemic equilibrium (106,107). Considering the 

complexity of the system, the calculation of eigenvalues is meaningful. However, we are interested 

in the stability of endemic equilibrium around R0 = 1. And therefore, the centre manifold theory is 

considered. 

Let 𝜙 = 𝛽𝑓𝑑 as the bifurcation parameter, when 𝑅0 = 1, we have 𝜙 =
𝑘1𝑘2𝑘4𝑘5𝜆𝑑(𝜇𝑓+𝑚𝑓)

𝜇𝑑𝜆𝑓𝑏𝑓𝑑
2 𝛽𝑑𝑓𝜏𝑑𝜏𝑓

. 
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The Jacobian matrix of the dogs-sand flies-humans system at DFE when 𝜙 = 𝛽𝑓𝑑, is given 

below: 











































































hHI

h

h

fhfh

hfhfh

f

d

fdffd

d

fdffd

dd

d

fd

fdd

rr

k

k

kb

b

k

k
N

Sb

k
N

Sb

r

k

bk

b

J

























000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

8

7

6

5

4*

*

3*

*

2

1

(5.36) 

We use Mathematica to calculate the eigenvalue of the Jacobian 𝐽(𝜙) and note that there 

is a simple zero eigenvalue. Hence, the centre manifold theory can be used to analyze the dynamics 

of the dogs-sand flies-humans system. 

Let ω = (𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5, 𝜔6, 𝜔7, 𝜔8, 𝜔9, 𝜔10, 𝜔11, 𝜔12)
𝑇  be the right eigenvector 

associated with zero eigenvalue, we have 

𝜔1 = −
𝜆𝑑𝑘1𝑘2𝑘3𝑘4𝜔6

𝛽𝑑𝑓𝑏𝑓𝑑𝜆𝑓𝜇𝑑
2𝜏𝑑

 (5.37) 

𝜔2 = −
𝜆𝑑𝑘2𝑘3𝑘4𝜔6

𝛽𝑑𝑓𝑏𝑓𝑑𝜆𝑓𝜇𝑑𝜏𝑑
 (5.38) 

𝜔3 = −
𝜆𝑑𝑘3𝑘4𝜔6

𝛽𝑑𝑓𝑏𝑓𝑑𝜆𝑓𝜇𝑑
 (5.39) 

𝜔4 =
𝜆𝑑𝑟𝑑𝑘3𝑘4𝜔6

𝛽𝑑𝑓𝑏𝑓𝑑𝜆𝑓𝜇𝑑
2 (5.40) 

𝜔5 = −
𝑘4𝜔6

𝑘3
 (5.41) 

𝜔6 = 𝜔6 (5.42) 
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𝜔7 = −
𝜏𝑓𝜔6

𝑘5
 (5.43) 

𝜔8 = −
𝛽𝑓ℎ𝑏𝑓ℎ𝜏𝑓𝜔6

𝑘5𝜇ℎ
 (5.44) 

𝜔9 =
𝛽𝑓ℎ𝑏𝑓ℎ𝜏𝑓𝜔6

𝑘5𝑘6
 (5.45) 

𝜔10 =
𝛽𝑓ℎ𝑏𝑓ℎ𝜏𝑓𝜏ℎ𝜔6

𝑘5𝑘6𝑘7
 (5.46) 

𝜔11 =
𝛽𝑓ℎ𝑏𝑓ℎ𝛿ℎ𝜏𝑓𝜏ℎ𝜔6

𝑘5𝑘6𝑘7𝑘8
 (5.47) 

𝜔12 =
𝛽𝑓ℎ𝑏𝑓ℎ(𝛿ℎ𝑟𝐻+𝑑𝐻𝑟𝐼+𝜇ℎ𝑟𝐼+𝑟𝐻𝑟𝐼)𝜏𝑓𝜏ℎ𝜔6

𝜇ℎ𝑘5𝑘6𝑘7𝑘8
 (5.48) 

Similarly, the corresponding left eigenvector v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12)
T 

, where v1 = 0, v2 = v2, v3 = 
𝑘1𝑣2

𝜏𝑑
, v4 = v5 = 0, v6 = 

𝜆𝑑𝑘1𝑘2𝑘3𝑣2

𝛽𝑑𝑓𝑏𝑓𝑑𝜆𝑓𝜇𝑑𝜏𝑑
, v7 = 

𝜆𝑑𝑘1𝑘2𝑘3𝑘4𝑣2

𝛽𝑑𝑓𝑏𝑓𝑑𝜆𝑓𝜇𝑑𝜏𝑑𝜏𝑓
, v8 = v9 = v10 = 

v11 = v12 = 0. 

To simplify the notation, let Sd = x1, Ed = x2, Id = x3, Rd = x4, Sf = x5, Ef = x6, If = x7, Sh = x8, 

Eh = x9, Ih = x10, Hh = x11, and Rh = x12. In addition, assume 
𝑑𝑆𝑑

𝑑𝑡
= 𝑓1, 

𝑑𝐸𝑑

𝑑𝑡
= 𝑓2, 

𝑑𝐼𝑑

𝑑𝑡
= 𝑓3, 

𝑑𝑅𝑑

𝑑𝑡
= 𝑓4, 

𝑑𝑆𝑓

𝑑𝑡
= 𝑓5, 

𝑑𝐸𝑓

𝑑𝑡
= 𝑓6, 

𝑑𝐼𝑓

𝑑𝑡
= 𝑓7, 

𝑑𝑆ℎ

𝑑𝑡
= 𝑓8, 

𝑑𝐸ℎ

𝑑𝑡
= 𝑓9, 

𝑑𝐼ℎ

𝑑𝑡
= 𝑓10, 

𝑑𝐻ℎ

𝑑𝑡
= 𝑓11, 

𝑑𝑅ℎ

𝑑𝑡
= 𝑓12. 

Let 

𝑎 =
1

2
∑ 𝑣𝑖𝜔𝑗𝜔𝑘

𝑛
𝑖,𝑗,𝑘=1

𝜕2𝑓𝑖

𝜕𝑥𝑗𝜕𝛽𝑓𝑑
(𝐸0, 0) (5.49) 

𝑏 = ∑ 𝑣𝑖𝜔𝑗
𝑛
𝑖,𝑗=1

𝜕2𝑓𝑖

𝜕𝑥𝑗𝜕𝛽𝑓𝑑
(𝐸0, 0) (5.50) 

If b ≠ 0, the value of a (either positive or negative) determines the nature of the endemic 

equilibria near the R0 = 1. In our system, we know v1 = v4 = v5 = v8 = v9 = v10 = v11 = v12 = 0, so we 

only need to consider v2, v3, v6, and v7. In addition, the second derivative of f3, and f7 are equal to 

0, so 
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𝑎 =
1

2
(𝑣2 ∑ 𝜔𝑗𝜔𝑘

𝑛
𝑗,𝑘=1

𝜕2𝑓2

𝜕𝑥𝑗𝜕𝑥𝑘
(𝐸0, 0) + 𝑣6 ∑ 𝜔𝑗𝜔𝑘

𝑛
𝑗,𝑘=1

𝜕2𝑓6

𝜕𝑥𝑗𝜕𝑥𝑘
(𝐸0, 0)) (5.51) 

𝑏 = 𝑣2 ∑ 𝜔𝑗
𝑛
𝑗=1

𝜕2𝑓2

𝜕𝑥𝑗𝜕𝛽𝑓𝑑
(𝐸0, 0) (5.52) 

Solve a and b, we have 𝑎 = −𝑚11𝜙 + 𝑚22, b = 𝑣2𝜔7𝑏𝑓𝑑 ≠ 0, where 

𝑚11 = 𝑣2𝜔7(𝜔2 + 𝜔3 + 𝜔4)𝑏𝑓𝑑𝜇𝑑/𝜆𝑑 (5.53) 

𝑚22 =
𝑣6𝜔3𝑏𝑓𝑑𝛽𝑑𝑓𝜇𝑑

𝜆𝑑
(𝜔5 −

𝜆𝑓𝜇𝑑𝜔1𝜔2𝜔3𝜔4

𝜆𝑑(𝜇𝑓+𝑚𝑓)
) (5.54) 

Based on the theorem in (108), if ∅ >
𝑚22

𝑚11
,  then a < 0 and the system undergoes a forward 

bifurcation and there are locally asymptotically stable endemic equilibria near DFE for R0 > 1; 

while if ∅ <
𝑚22

𝑚11
, the system has a backward bifurcation and there are unstable endemic 

equilibrium near DFE for R0 < 1. 

The epidemiological significance of backward bifurcation is that the classical requirement 

of R0 < 1, although necessary, is no longer sufficient for disease elimination. In such a scenario, 

disease elimination depends on initial sizes of sub-populations (state variables) of the model. In 

other words, backward bifurcation in the ZVL transmission model suggests feasibility of 

controlling ZVL when R0 < 1 could be dependent on initial sizes of the sub-population of the 

model. Therefore, methods for disease control must be improved. 

 5.4 Optimal Control 

In this section, we extend the model in Section 5.2 to include density-dependent mortality 

rates in sand fly populations and recruitment rate in each susceptible population. 

Define the density-dependent mortality rate for sand flies 𝜇𝑓 = 𝜇1 + 𝜇2𝑁𝑓, where 𝜇1 is the 

density-independent death rate in the sand fly population, 𝜇2 is proportionality constant and Nf is 

the total number of sand flies. Similarly, we replaced previous recruitment rates to density-
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dependent recruitment rate by 𝜆𝑑 → 𝜆𝑑 + 𝜌𝑁𝑑, 𝜆𝑓 → 𝜆𝑓𝑁𝑓, and 𝜆ℎ → 𝜆ℎ + 𝛾ℎ𝑁ℎ, where 𝜌 and 𝛾ℎ 

are proportionality constants showing the impact of density on recruitment rates. 

In the dog population, the associated force of infection was reduced by a factor of (1- u1(t)), 

where u1(t) measures the level of successful prevention measures (vaccine protection). From the 

literature review, canine leishmaniasis (known as CanV or CanVL) was considered one of a few 

parasitic diseases likely to be controllable by vaccination (109,110). The strategy of culling dogs 

carries ethic and humanitarian issues, and it is not included as part of the three time-dependent 

control strategies in our studies but the model can easily address this issue by varying parameter 

dd in the model (i.e., Eq.(5.3) in Section 5.2.1). 

In the sand fly population, control strategy u2(t) represented the level of insecticide used 

for sand fly control administered at sand fly breeding sites. Consequently, the reproduction rate of 

the sand fly population was reduced by a factor of (1 - u2(t)). The assumption was made that the 

mortality rate of sand fly increases at a rate proportional to u2(t), where r0 > 0 is a rate constant. 

In the human population, the associated force of infection was reduced by a factor of (1-

u3(t)), where u3(t) measures the level of successful prevention (personal protection) efforts. 

Therefore, u3(t) indicates the use of alternative preventive measures to minimize or eliminate sand 

fly-human contacts. 

Accounting for the above assumptions and extensions, the extended ZVL model with 

control strategy terms was constructed: 

𝑑𝑆𝑑

𝑑𝑡
= 𝜆𝑑 + 𝜌𝑁𝑑 −

𝑏𝑓𝑑𝛽𝑓𝑑𝐼𝑓𝑆𝑑(1−𝑢1(𝑡))

𝑁𝑑
− 𝜇𝑑𝑆𝑑 (5.55) 

𝑑𝐸𝑑

𝑑𝑡
=

𝑏𝑓𝑑𝛽𝑓𝑑𝐼𝑓𝑆𝑑(1−𝑢1(𝑡))

𝑁𝑑
− 𝜏𝑑𝐸𝑑 − 𝜇𝑑𝐸𝑑 (5.56) 

𝑑𝐼𝑑

𝑑𝑡
= 𝜏𝑑𝐸𝑑 − 𝑟𝑑𝐼𝑑 − 𝑑𝑑𝐼𝑑 − 𝜇𝑑𝐼𝑑 (5.57) 
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𝑑𝑅𝑑

𝑑𝑡
= 𝑟𝑑𝐼𝑑 − 𝜇𝑑𝑅𝑑 (5.58) 

𝑑𝑆𝑓

𝑑𝑡
= 𝜆𝑓𝑁𝑓(1 − 𝑢2(𝑡)) −

𝑏𝑓𝑑𝛽𝑑𝑓𝐼𝑑𝑆𝑓

𝑁𝑑
− 𝑚𝑓𝑆𝑓 − (𝜇1 + 𝜇2𝑁𝑓)𝑆𝑓 − 𝑟0𝑢2(𝑡)𝑆𝑓 (5.59) 

𝑑𝐸𝑓

𝑑𝑡
=

𝑏𝑓𝑑𝛽𝑑𝑓𝐼𝑑𝑆𝑓

𝑁𝑑
− 𝜏𝑓𝐸𝑓 − 𝑚𝑓𝐸𝑓 − (𝜇1 + 𝜇2𝑁𝑓)𝐸𝑓 − 𝑟0𝑢2(𝑡)𝐸𝑓 (5.60) 

𝑑𝐼𝑓

𝑑𝑡
= 𝜏𝑓𝐸𝑓 − 𝑑𝑓𝐼𝑓 − 𝑚𝑓𝐼𝑓 − (𝜇1 + 𝜇2𝑁𝑓)𝐼𝑓 − 𝑟0𝑢2(𝑡)𝐼𝑓 (5.61) 

𝑑𝑆ℎ

𝑑𝑡
= 𝜆ℎ + 𝛾ℎ𝑁ℎ −

𝑏𝑓ℎ𝛽𝑓ℎ𝐼𝑓𝑆ℎ(1−𝑢3(𝑡))

𝑁ℎ
− 𝑢ℎ𝑆ℎ (5.62) 

𝑑𝐸ℎ

𝑑𝑡
=

𝑏𝑓ℎ𝛽𝑓ℎ𝐼𝑓𝑆ℎ(1−𝑢3(𝑡))

𝑁ℎ
− 𝜏ℎ𝐸ℎ − 𝑢ℎ𝐸ℎ (5.63) 

𝑑𝐼ℎ

𝑑𝑡
= 𝜏ℎ𝐸ℎ − 𝛿ℎ𝐼ℎ−𝑑𝐼𝐼ℎ − 𝑟𝐼𝐼ℎ − 𝑢ℎ𝐼ℎ (5.64) 

𝑑𝐻ℎ

𝑑𝑡
= 𝛿ℎ𝐼ℎ−𝑑𝐻𝐻ℎ − 𝑟𝐻𝐻ℎ − 𝑢ℎ𝐻ℎ (5.65) 

𝑑𝑅ℎ

𝑑𝑡
= 𝑟𝐻𝐻ℎ + 𝑟𝐼𝐼ℎ − 𝑢ℎ𝑅ℎ (5.66) 

Moreover, the rate of change of the total populations of dogs, sand flies, and humans is 

respectively given by 

𝑑𝑁𝑑

𝑑𝑡
= 𝜆𝑑 + 𝜌𝑁𝑑 − 𝑑𝑑𝐼𝑑 − 𝜇𝑑𝑁𝑑 (5.67) 

𝑑𝑁𝑓

𝑑𝑡
= 𝑁𝑓[𝜆𝑓(1 − 𝑢2(𝑡)) − 𝑚𝑓 − (𝜇1 + 𝜇2𝑁𝑓) − 𝑟0𝑢2(𝑡)] − 𝑑𝑓𝐼𝑓 (5.68) 

𝑑𝑁ℎ

𝑑𝑡
= 𝜆ℎ + 𝛾ℎ𝑁ℎ − 𝑑𝐼𝐼ℎ − 𝑑𝐻𝐻ℎ − 𝜇ℎ𝑁ℎ (5.69) 

According to the extended model above, an optimal control problem with the objective 

function is formulated by 

𝐽(𝑢1, 𝑢2, 𝑢3) = ∫ (𝐴1𝐸ℎ(𝑡) + 𝐴2𝐼ℎ(𝑡) + 𝐴3𝑁𝑓(𝑡) + 𝐵1𝑢1
2(𝑡) + 𝐵2𝑢2

2(𝑡) + 𝐵3𝑢3
2(𝑡))

𝑇

0
𝑑𝑡 (5.70) 

The objective is to minimize exposed and infected human populations, the total number of 

sand flies, and the cost of implementing the strategy. In Eq. (5.70), A1, A2, and A3 represent weight 

constants of the exposed, infected human and the total number of sand flies. In addition, B1, B2, 
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and B3 are weight constants for dogs' prevention from disease, sand flies control, and human 

protection, respectively and 𝐵1𝑢1
2(𝑡), 𝐵2𝑢2

2(𝑡), and 𝐵3𝑢3
2(𝑡) describe the costs associated with 

dogs’ prevention, sand flies control, and human protection, respectively. These costs result from 

various sources. For example, cost associated with the first strategy primarily originates from the 

use of vaccination, cost associated with the second strategy primarily originates from the 

insecticide application, and cost associated with the third strategy originates from public health 

education to human populations, and testing equipment investments. We assumed that the costs 

are proportional to the square of the corresponding control function. Our goal was to determine 

optimal control functions (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗) such that 

𝐽(𝑢1
∗, 𝑢2

∗ , 𝑢3
∗) = min (𝐽(𝑢1, 𝑢2, 𝑢3)|(𝑢1, 𝑢2, 𝑢3) ∈ Γ) (5.71) 

Subject to the extended system, where Γ = {(𝑢1,𝑢2,𝑢3)|𝑢𝑖(𝑡) is Lebesgue measurable on 

𝑜𝑛 [0, 𝑇], 0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑖 = 1,2,3} is the control set. The existence of an optimal control for the 

extended system would be proved and the optimality system would be derived. 

 5.4.1 Existence of an optimal control 

Theorem 2: Consider the objective function J given by Eq. (5.70) with (𝑢1, 𝑢2, 𝑢3) ∈ Γ 

subject to the constraint state system (Eqs. (5.55) - (5.66)). There exists (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗) ∈ Γ such that 

𝐽(𝑢1
∗, 𝑢2

∗ , 𝑢3
∗) = min (𝐽(𝑢1, 𝑢2, 𝑢3)|(𝑢1, 𝑢2, 𝑢3) ∈ Γ). 

Proof: The integrand of the objective function given by Eq. (5.70) is convex on the closed, 

convex control set 𝛤. Conditions for the existence of optimal control are satisfied because the 

model is linear in the control variables and bounded by a linear system in the state variables (111). 



123 

 5.4.2 Optimality system 

Pontryagin’s maximum principle (112) can be used for necessary conditions for an optimal 

control problem; the principle converts the problem into a problem of maximizing Hamilton H, 

with respect to 𝑢1,𝑢2,𝑢3: 

𝐻 = 𝐴1𝐸ℎ(𝑡) + 𝐴2𝐼ℎ(𝑡) + 𝐴3𝑁𝑓(𝑡) + 𝐵1𝑢1
2 + 𝐵2𝑢2

2 + 𝐵3𝑢3
2 + ∑ 𝜆𝑖𝑓𝑖

12
𝑖=1  (5.72) 

where 𝑓𝑖 is the right-hand side of the differential equation of i-th state variable. Application 

of Pontryagin’s Maximum Principle and the optimal control theory achieved the following 

theorem: 

Theorem 3 Given an optimal control 𝑢∗ = (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗) and corresponding state solutions 

𝑆𝑑 ,  𝐸𝑑 ,  𝐼𝑑 , 𝑅𝑑, 𝑆𝑓 , 𝐸𝑓 , 𝐼𝑓 , 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝐻ℎ, and 𝑅ℎ  of the corresponding state system, there 

adjoint functions, 𝜆𝑖, exist for i=1,2,…,12, satisfying 

' 2 2 2

1 5 6 1 1 1

2

2 1 1

/ / ( (1 ) / (1 ) / )

( (1 ) / (1 ) / )

df fd d f d df fd d f d d fd fd f d d fd fd f d

fd fd f d d fd fd f d

b I S N b I S N b I S u N b I u N

b I S u N b I u N

         

  

         

   

 (5.73) 

' 2 2 2

2 5 6 1 1

2

2 1 3

/ / ( (1 ) / )

( (1 ) / )

df fd d f d df fd d f d fd fd f d d

d d fd fd f d d d

b I S N b I S N b I S u N

b I S u N

       

     

     

     
 (5.74) 

' 2

3 3 4 5

2 2

6 1 1

2

2 1

( d ) ( / / )

( / / ) ( (1 ) / )

(1 ) /

d d d d df fd d f d df fd f d

df fd d f d df fd f d fd fd f d d

fd fd f d d

r r b I S N b S N

b I S N b S N b I S u N

b I S u N

      

     

 

       

     

 

 (5.75) 

' 2 2 2

4 4 5 6 1 1

2

2 1

/ / ( (1 ) / )

(1 ) /

d df fd d f d df fd d f d fd fd f d d

fd fd f d d

b I S N b I S N b I S u N

b I S u N

         

 

     

 
 (5.76) 

'

5 3 7 2 6 2

5 1 2 2 2 0 2

( / )

( / (1 ) u )

f f df fd d d

f df fd d d f f f

A I E b I N

m b I N S N u r

     

     

     

       
 (5.77) 

'

6 3 7 2 5 2 2 6 1 2 2 0 2( ) ( (1 )) ( u )f f f f f f f fA I S u m E N r                          (5.78) 

'

7 3 6 2 1 1 2 1 5 2 2

7 1 2 2 0 2 8 3 9 3

(1 ) / (1 ) / ( S (1 ))

( d u ) (1 ) / (1 ) /

f fd fd d d fd fd d d f f

f f f f fh fh h h fh fh h h

A E b S u N b S u N u

m I N r b S u N b S u N

         

       

         

          
 (5.79) 
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' 2

8 8 3 3

2

9 3 3

( (1 ) / (1 ) / )

( (1 ) / (1 ) / )

h h fh fh f h h fh fh f h

fh fh f h h fh fh f h

b I S u N b I u N

b I S u N b I u N

     

  

      

    
 (5.80) 

' 2 2

9 1 10 9 3 8 3( (1 ) / ) ( (1 ) / )h h h fh fh f h h h fh fh f h hA b I S u N b I S u N                     (5.81) 

' 2

10 2 11 10 12 8 3

2

9 3

( ) ( (1 ) / )

(1 ) /

h h I h I I h fh fh f h h

fh fh f h h

A d r r b I S u N

b I S u N

         

 

           

 
 (5.82) 

' 2 2

11 11 12 8 3 9 3( ) ( (1 ) / ) (1 ) /H h H H h fh fh f h h fh fh f h hd r r b I S u N b I S u N                    (5.83) 

' 2 2

12 12 8 3 9 3( (1 ) / ) (1 ) /h h fh fh f h h fh fh f h hb I S u N b I S u N              (5.84) 

The terminal conditions are 

(T) 0i   for i=1,2,…,12 (5.85) 

Moreover, optimal control
*

1u ,
*

2u ,
*

3u  are given by 

2 1*

1

1

( )
max 0,min 1,

2

fd fd f d

d

b I S
u

B N

     
   

   
 (5.86) 

5 0 5 6 7*

2

2

( )
max 0,min 1,

2

f f f f fN r S E I
u

B

         
   

   
 (5.87) 

9 8*

3

3

( )
max 0,min 1,

2

fh fh f h

h

b I S
u

B N

     
   

   
 (5.88) 

Proof:   

Adjoint equations and transversality conditions can be obtained using Pontryagin’s 

Maximum Principle such that 

'

1

d

H

S



 


, 1(T) 0  ; 

'

2

d

H

E



 


, 2(T) 0  ; …, 

'

12

h

H

R



 


, 12(T) 0  . 

The optimal control 
*

1u ,
*

2u ,
*

3u  can be solved from the optimality conditions, 
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u





. 

 5.4.3 Numerical results 

We numerically calculated optimal control strategies based on the iterative method used in 

(57). Given initial state conditions without controls, we solved the state di 

erential Eqs. (5.55) - (5.66) forward in time using the fourth order Runge-Kutta method. According 

to results of state values and the given final value in Eq. (5.85), we solved adjoint values in Eqs. 

(5.73) - (5.84) backward in time, using the fourth order Runge-Kutta method. Both updates of state 

values and adjoint values were utilized to calculate optimal control strategies in Eqs. (5.86) - 

(5.88). This process was repeated until a steady state was achieved. This algorithm is given below. 

Step 1: 

Initialize state variables: 

(0), (0), (0), (0), (0), (0), (0), (0), (0), (0), (0), (0)d d d d f f f h h h h hS E I R S E I S E I H R  

Initialize optimal control strategies: 

1 2 3, ,u u u  

Step 2: 

 Given small value 1 2 3, ,    and final time value T: 

 While change of state values > 1 , or change of adjoint values > 2 , or change of 

controls > 3 : 

I. Solve state values forward in time from 0 to T based on Eqs (5.55) - (5.66), 

using the fourth order of Runge-Kutta. 
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II. Solve adjoint values backward in time from T to 0 based on Eqs (5.73) – 

(5.84), using the fourth order of Runge-Kutta. 

III. Solve control strategies 1 2 3, ,u u u  using Eqs (5.86) – (5.88). 

Step 3: 

 Find optimal control strategies: 

 
* * *

1 1 2 2 3 3, ,u u u u u u    

The fourth order of Runge-Kutta method adopted here is given below. 

( , )
dy

f y t
dt

  

1 1 2 3 4

1
( 2 2 )

6
i iy y k k k k h       

where 

1 ( , )i ik f y t  

2 1

1 1
( , )

2 2
i ik f y k h t h    

3 2

1 1
( , )

2 2
i ik f y k h t h    

4 3( , )i ik f y k h t h    

h is step size, given by 1i ih t t  . 

Table 5.3 Parameter values in numerical analysis 

Parameter Values 

𝜆𝑑 0.02 

𝜆𝑓 0.05 

𝜆ℎ 0.05 
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1/𝜇𝑑 700 

1/𝜇ℎ 12000 

𝑏𝑓𝑑 0.1 

𝑏𝑓ℎ 0.1 

𝛽𝑓𝑑 0.5 

𝛽𝑑𝑓 0.7 

𝛽𝑓ℎ 0.5 

𝑑𝑑 0.01 

𝑑𝑓 0 

 𝑑𝐼 0.0067 

𝑑𝐻 3e-4 

𝑚𝑓 1e-4 

1/𝜏𝑑 10 

1/𝜏𝑓 6 

1/𝜏ℎ 60 

𝛿ℎ 0.8 

 𝑟𝑑 0.01 

𝑟𝐼 0.12 

𝑟𝐻 0.95 

𝜌 1e-3 

𝜇1 0.02 

𝜇2 5e-6 

𝑟0 0.2 

𝛾ℎ 2.85e-3 
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Parameter used in this section is defined in Table 5.3. The initialization of dogs, sand flies, 

and human population is given by Sd(0)=100, Sf(0)=10000, Sh(0)=100, If(0)=10, and Id(0)=5.  We 

proposed that control effectiveness could not be 100% effective for each control; then we reduced 

the upper bound of each control to observe the impact of control. The upper bounds of each control 

strategy u1, u2, and u3, were considered as 60%, 50%, and 60%, respectively.  

Figure 5.5 describes scenarios for state variables Eh, Ih, and If for the case which A1=1, 

A2=1, A3=1e-5, B1=1, B2=1, and B3=1, meaning the reduction of exposed human, infected human, 

and number of sand flies are equally important and the cost of three control strategies are similar. 

Optimal control strategies are shown in Figure 5.6. 

From the result in Figure 5.5, the number of exposed humans, infected humans, and 

infected sand flies were effectively controlled by the corresponding control strategies. However, 

the cost of each control did not have to be equal. When B1=10, B2=1, and B3=3, meaning the dogs 

prevention measurement costs more, the control strategies are changed correspondingly. Figure 

5.7 illustrates control strategies u1, u2, and u3 in this scenario.  

As the increase of the cost of u1, the optimal strategies are changed. The strategy for dog 

disease preventions was adopted much less than the previous scenario, shown in Figure 5.7(a). It 

is reasonable because increased costs lead to decreased use in order to minimize our objective 

function. Use of u2 and u3 also decreases after around 100 days. From Fig. 5.8(a) and 5.8(b), the 

number of exposed humans and infected humans both increase slightly due to the lower use of 

three strategies, while the number of sand flies keeps the same which is shown in Fig. 5.8(c). 

Hence,  
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Figure 5.5 Simulation with controls A1=1, A2=1, A3=1e-5, B1=1, B2=1, and B3=1 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.6 Control strategies with A1=1, A2=1, A3=1e-5, B1=1, B2=1, and B3=1 

 

(a) 

 

(b) 

 

 (c) 
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Figure 5.7 Control strategies with A1=1, A2=1, A3=1e-5, B1=100, B2=1, and B3=1 

 

(a) 

 

(b) 

 

(c) 

the change of the cost of implementing first strategy impacts controlling the number of exposed 

humans and infected humans but the number of sand flies. 
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Similarly, the impacts of u2 and u3 are evaluated through changing the cost of each strategy, 

which is shown in Figures 5.9 to 5.12. Compared to the first strategy, the second strategy has the 

similar impact to the system, as shown in Figure 5.9 and Figure 5.10. The use of u2 decreases when  

Figure 5.8 Simulation with A1=1, A2=1, A3=1e-5, B2=1, and B3=1 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.9 Control strategies with A1=1, A2=1, A3=1e-5, B1=1, B2=100, and B3=1 

 

(a) 

 

(b) 

 

(c) 

its cost changes from 1 to 100. Meanwhile, the use of u1 and u3 also decrease. As a response, the 

number of exposed humans and infected humans increase and the number of sand flies remains 

the same. 
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Figure 5.10 Simulation with A1=1, A2=1, A3=1e-5, B1=1, and B3=1 

 

(a) 

 

(b) 

 

(c) 

In Fig. 5.11 and Fig. 5.12, it shows the impact of changing the cost of the third strategy. 

As the cost increase from 1 to 100, the use of u3 is reduced, while the use of u1 and u2 keep the 
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same. As a result, it leads to more exposed humans and infected humans and the number of sand 

flies remain the same. 

Figure 5.11 Control strategies with A1=1, A2=1, A3=1e-5, B1=1, B2=1, and B3=100 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.12 Simulation with A1=1, A2=1, A3=1e-5, B1=1, and B2=1 

 

(a) 

 

(b) 

 

(c) 

In sum, the overall use of the corresponding strategy decreases leading to the increased 

number of exposed and possibly infected humans, as the estimated cost for disease prevention in 

dogs, sand flies, and humans increase. Further, our simulation (presented in Figures 5.8, 5.10, and 
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5.12) indicate that the number of sand flies does not change significantly as the cost of the control 

strategies increase, whereas the number of exposed and infected humans increase. This indicates 

that the number of sand flies has a greater impact for minimizing our objective function. To control  

Figure 5.13 Simulation with upper bound of control u3 = 0.1 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.14 Control strategies with upper bound of control u3 = 0.1 

 

(a) 

 

(b) 

 

(c) 

the number of sand flies, the use of u2 (i.e., insecticide used to control sand flies) has to remain at 

high level. This is supported by our simulations of (unchanged) insecticide use for the first 150 

days even if the cost of insecticides increases from 1 to 100 (Figures 5.7, 5.9, 5.11). Taken together, 
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our results indicate that controlling the number of sand flies is the most effective and recommended 

methodology to control ZVL transmission. 

In addition, change of effectiveness of control strategies impacts the dynamics of the entire 

system from Eq. (5.55) to Eq. (5.66). Let upper bound of u3 = 0.1, meaning that the effectiveness 

of human prevention from disease is extremely low. The number of exposed human, infected 

human, and infected sand flies are depicted in Figure 5.13. Compared to Figure 5.5, an increasing 

number of exposed and infected human populations is evident in Figure 5.13 due to the lessened 

control strategy effectiveness of prevention measurement for humans. In Figure 5.14, the use of 

each control strategy is shown and there is no big difference for the use of the first strategy and 

the second strategy. 

Figure 5.15 Sensitivity analysis of culling dog strategy 

 

Based on the above analyses, it is shown that control of ZVL transmission using the three 

strategies (u1, u2, u3) is doable. In addition to the above strategies, culling dogs is often adopted as 

a control strategy for ZVL. Although culling dogs has been used, its efficacy has frequently been 

questioned. Our analysis of the parameter dd, (in Eq. (5.57)) especially when the other three 

approaches are not available, clearly show culling to be ineffective (Figure 5.15), regardless of the 

culling rate. 
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 5.5 Conclusion 

Here, a three-system mathematical model for ZVL transmission with dogs, sand flies, and 

humans, was developed using a modified SEIR model. Backward bifurcation analysis suggested 

that R0 < 1 is not a sufficient condition to control the spread of disease in this model, and both 

disease-free equilibrium and endemic equilibrium can coexist under certain conditions. Therefore, 

the condition R0 < Rc is required in order to control or eradicate the disease. A specific 

mathematical method to calculate optimal control strategies was given in this paper. Pontryagins 

maximum principle, previously used to identify optimal control strategies against West Nile (57) 

or other vector-borne diseases (53), was also used here to determine possible optimal control 

strategies for ZVL. The results obtained for optimal control were highly dependent on the cost of 

each strategy and the effectiveness of each control strategy. Interestingly, our results (optimal 

system analysis) suggest that as the estimated cost for disease prevention increases, the overall use 

of the corresponding strategy or strategies decreases leading to the increased number of exposed 

and possibly infected humans. Further, our simulation (presented in Figures 5.8, 5.10, and 5.12) 

indicate that the number of sand flies does not change significantly as the cost of the control 

strategies increase, whereas the number of exposed and infected humans increase. This indicates 

that the number of sand flies has a greater impact for minimizing our objective function. To control 

the number of sand flies, the use of u2 (i.e., insecticide used to control sand flies) has to remain at 

high level. This is supported by our simulations of (unchanged) insecticide use for the first 150 

days even if the cost of insecticides increases from 1 to 100 (Figures 5.7, 5.9, 5.11). Taken together, 

our results indicate that controlling the number of sand flies is the most effective and recommended 

methodology to control ZVL transmission. Culling dogs is not an effective strategy to control the 

disease transmission. Although the simulation result shows ZVL may be controlled effectively 
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adopting the corresponding control strategies, the parameter A1, A2, A3, B1, B2, B3 used in the 

objective function are quite subjective. Therefore, further studies will focus on validation of the 

model in terms of real data and on actual control costs and effectiveness in various scenarios, 

especially for different endemic areas of ZVL.  
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Chapter 6 - Conclusions, Contributions, and Future Works 

 6.1 Conclusions 

Human behaviors, as one of the most important factors which impact the dynamics of 

disease transmission, play a key role on mitigating and controlling the epidemic. In this 

dissertation, two types of human behaviors, spontaneous changes of human behaviors and enforce 

measure by public authority (intervention strategy), are studied in order to quantify their impacts 

to the infectious disease transmission and seek the optimal control strategies. The developed 

methodologies can be applied to human diseases (such as H1N1, SARS) as well as animal diseases 

(such as Visceral Leishmaniasis).  Analytical and numerical simulation results are derived to help 

us better understand the disease transmission dynamics and recommend the corresponding control 

strategies. 

Main conclusions drawn from this dissertation are: 

1. Spontaneous changes of human behaviors could be quantified using a spatial 

evolutionary game with information dissemination. Specifically, individuals 

acquire information relating the infectious disease (such as prevalence) from mass 

media or their social contacts, and then decide if they need to take actions to protect 

themselves. Hence, the spatial evolutionary game well represented the process from 

information to risk reception by individuals, then to decision making, finally to 

behaviors’ changes.  

2. It has a higher possibility for individuals in endemic areas to take preventive 

measures, i.e. there are more switchers in the area where more individuals are 

infected. Hence, local information has more impact on human behaviors and 

disease transmission. 
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3. Local information is translated to payoff by m1 to motivate individuals to choose 

either normal or alternatives, thereby implicitly affecting the dynamics of the 

epidemic. Sensitivity analysis showed that m1 was sensitive to the system and an 

increasing value of m1 led to an increasing number of switchers. Considering 

heterogeneity of m1 in different counties, similar impact patterns were derived for 

each county. Even for long distance model, changes of m1 in network centers cannot 

impact the disease transmission in other counties. 

4. To demonstrate the heterogeneity of individuals in the same location (which is 

assumed to be homogeneous population in each county), a Itô drift-diffusion 

process with a drifting factor and a random walk was considered to study the risk 

reception. Memory mechanism represents the dynamic of the estimated average 

risk reception for individuals and the variance represents the deviation of risk 

reception from average value due to the differences of individuals in the same 

location. 

5. Numerical simulations for SEGM model in  (82) and MDM model using a county 

map of the state of Kansas with county-level population were conducted to compare 

the SEGM model to the MDM model. Our results showed that the results from two 

models are consistent which validated SEGM model.  

6. Spontaneous changes of human behaviors can help mitigate the spread of infectious 

diseases, i.e. more switchers lead to less infected individuals. However, more 

switchers also lead to more social costs (cost to convince individuals to choose 

switcher, cost for switchers to protect themselves, etc.). The optimal control 

strategies are needed to be addressed. 
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7. Backward bifurcation phenomenon was proved for the transmission of ZVL, i.e. 

the disease free equilibrium and endemic equilibrium coexists when R0 is smaller 

than 1.  Hence, the condition R0<1 cannot guarantee that we could eliminate ZVL. 

The similar scenario may occur for other zoonotic disease and the ODE system 

considering contact structure.  

8. The optimal control theory was applied to study the intervention strategies for the 

mitigation of transmission of ZVL. Our results indicate that controlling the number 

of sand flies is the most effective and recommended methodology to control ZVL 

transmission. Culling dogs is not an effective strategy to control the disease 

transmission. 

 6.2 Contributions 

Major contributions of this dissertation to the area of computational modeling, decision 

making on human behaviors, and epidemiology are listed as follows: 

1. For the first time, this research developed a new spatial evolutionary game to study 

the changes of human behaviors in epidemics. This methodology successfully 

demonstrates how individuals change their behaviors from acquiring information, 

to risk perception, then to decision making, and finally to behaviors’ changes. It is 

also the first time, for my best knowledge, to apply the spatial evolutionary game 

to epidemiological areas.  

2. This research developed new mathematical models to study spontaneous changes 

of human behaviors temporally and spatially. Particularly, impact of local 

information and global information to human behaviors are distinguished and a 
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detailed discussion about impact of local information is emphasized in this research 

since the local information is assumed to be more crucial than global information. 

3. For the first time, the Ito drift-diffusion process is used to study the accumulated 

risk perception which the average risk assessment is estimated by the memory 

mechanism and the heterogeneity of individuals is represented by random walk 

process. 

4. This research demonstrates the backward bifurcation existing in the transmission 

of ZVL when certain conditions are satisfied. Stability analysis and bifurcation 

analysis are performed to help understand the dynamics of the spread of ZVL.  

5. This study, for the first time, applied optimal control method to seek the most cost-

effective control strategies to mitigate the ZVL transmission. The optimal control 

strategies were derived and efforts on controlling the number of sandflies are 

recommended. 

 6.3 Future Works 

Major future works to the area of decision making on human behaviors, and mitigation of 

infectious diseases are listed as follows: 

1. In order to fully understand the behavior of dynamic system, analytical study, such 

as stability analysis and bifurcation analysis, should be conducted later.  

2. Further studies should combine changes in human behaviors and intervention 

strategies to identify optimal information dissemination in order to minimize social 

costs and the numbers of infected individuals. 

3. In order to increase understanding of the variation of individuals’ responses to 

infectious disease, a small scale of population, including individualized behaviors, 
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should be taken into consideration for modeling human behaviors. 

Correspondingly, intervention strategies should be temporally and spatially 

characterized. As such, an agent-based model could be used as a tool to study the 

complex system with interactions among changes of human behaviors, disease 

transmission, and intervention strategies (public policy).  

4. For ZVL transmission, further studies will focus on validation of the model in terms 

of real data and on actual control costs and effectiveness in various scenarios, 

especially for different endemic areas.  
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