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Abstract 8 

      Gap junctions are intercellular channels connecting adjacent cells, allowing cells to transport 9 

small molecules. Loss of gap junctional intercellular communication (GJIC) is one of the 10 

important hallmarks of cancer. Restoration of GJIC is related to the reduction of tumorigenesis 11 

and increase of drug sensitivity. Previous reports showed that PQ1, a quinoline derivative, 12 

increases GJIC in T47D breast cancer cells, and subsequently attenuates xenograft breast tumor 13 

growth. Combinational treatment of PQ1 and tamoxifen can lower the effective dose of 14 

tamoxifen in cancer cells. In this study, effects of PQ1 were examined in normal C57BL/6J mice, 15 

evaluating the distribution, toxicity and adverse effects. Distribution of PQ1 was quantified by 16 

HPLC and mass spectrometry. Expressions of survivin, caspase-8, cleaved caspase-3, aryl 17 

hydrocarbon receptor (AhR), and gap junction protein, connexin 43 (Cx43), were measured 18 

using Western blot analysis. Our results showed that PQ1 absorbed and distributed to all tested 19 

organs in 1 hour and the level of PQ1 diminished after 24 hours. PQ1 increased the expression of 20 

survivin, whereas decreased the expression of caspase-8 and active caspase-3 in vital organs. 21 

Furthermore, expression of AhR increased in the presence of PQ1, suggesting that PQ1 may be 22 

involved in AhR-mediated response. Expression of Cx43 decreased after PQ1 treatment, which 23 

is contrary to the effect of PQ1 on cancer cells. Hemotoxylin and eosin staining of the tissues 24 

showed no histological change between treated and untreated organs (after 1 h or 24 h?). Our 25 

studies indicate that PQ1 administration by oral gavage can be achieved with low toxicity to 26 

normal vital organs.  27 

Keywords: Adverse effect, anti-breast cancer agent, distribution, gap junction, PQ1, toxicity.28 
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Introduction 29 

Gap junctional intercellular communication (GJIC) plays an important role in controlling 30 

cell growth, regulating cell differentiation, and maintaining homeostasis in normal cells and 31 

tissues [1, 2]. Gap junction is a hydrophilic channel which is formed by transmembrane proteins, 32 

connexins [3]. Six connexins oligomerize into a hexameric structure known as connexon. 33 

Connexon at the plasma membrane may stand alone as a hemichannel or may dock with another 34 

connexon of an adjacent cell to form a gap junction [4]. The gap junction channel allows cells to 35 

exchange small molecules of less than 1.2 kDa in size including small metabolites, electrical 36 

signals, and secondary messengers [5]. This maintenance of communication keeps cells at 37 

homeostasis. Collective information shows that mutations in connexin genes or deficiency in 38 

GJIC are related to various human diseases, such as deafness, peripheral neuropathy, skin 39 

disorders, cataracts, and even cancers [6, 7].  40 

Diminished connexin expression and deficiency in GJIC are considered to be two 41 

characteristics of tumorigenesis [8, 9]. Although it is still controversial about the facilitative 42 

function of connexins in invasion, intravasation, extravasation and metastasis, it has been widely 43 

accepted that connexins are tumor suppressors due to both the GJIC-dependent and GJIC-44 

independent mechanisms [10-14]. Restoration or/and activation of GJIC in cancer cells are 45 

suggested to have the ability to reduce cancer cell proliferation and tumor growth [15, 16]. In 46 

addition to this directly suppressive function, upregulation of GJIC in cancer cells is also 47 

important to increase efficacy of anticancer drugs in cancer combinational treatment. Re-48 

establishment of GJIC is helpful for drug or pro-drug delivery throughout a tumor, and kill more 49 

cells by the way of so-called ‘bystander effect’, a mechanism by which cytotoxic molecules are 50 

transported from a treated cell to a neighboring cell [13]. This mechanism has demonstrated to be 51 



4 
 

 

an effective way to potentiate drug effect. The application of bystander effect in gene therapy 52 

showed that after enhancing connexin 43 (Cx43) and GJIC by 8-bromo-cyclic-AMP treatment, 53 

gene therapy effect was strengthened by herpes simplex virus thymidine kinase/gancyclovir 54 

(HSV-TK/GCV) system [17]. Besides gene therapy, bystander effect is also responsible for 55 

improving radiation therapy and chemotherapy [18, 19]. Therefore, developing novel agent or 56 

method to enhance or restore GJIC in cancer cells is a new research strategy in cancer treatment.  57 

PQ1 (Fig. 1), a quinoline derivative, was reported as a gap junction enhancer in T47D 58 

breast cancer cells. PQ1 increases GJIC in T47D cells, whereas it has no effect on GJIC in 59 

normal human mammary epithelial cells (HMECs) [20]. One µM of PQ1 decreased cell viability 60 

to 50% in T47D cells and attenuated 70% of xenograft tumor in nude mice [20]. Combinational 61 

treatment of PQ1 and tamoxifen showed that PQ1 potentiated the effect of tamoxifen in T47D 62 

cells [21]. All these studies implied therapeutic potential of PQ1 in breast cancer treatment. 63 

However, data of PQ1 on normal tissues are needed prior to preclinical trial of PQ1.  64 

In this study, effect of PQ1 was evaluated in healthy C57BL/6J mice. Drug distribution to 65 

vital organs was determined and effect of PQ1 on apoptosis was analyzed by the expression of 66 

caspases. We also studied the response of aryl hydrocarbon receptor (AhR), a ligand-activated 67 

transcription factor that regulates transcription and activity of several important drug-68 

metabolizing enzymes. Further analysis using histological observation of PQ1-treated tissues 69 

showed no alteration in structure change. Our results showed that the distribution of PQ1 via oral 70 

administration in mice can be assessed and low toxicity in vital organs was found.    71 
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Material and Methods 72 

PQ1. A quinoline derivative, PQ1, was obtained as described by Shi et al. [22]. 73 

Animals. Female C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, 74 

Maine). All mice were housed together in a temperature controlled environment (72°F) with a 75 

12-hour light-dark cycle and unlimited access to standard mouse chow and water. Five-week-old 76 

mice, with an average weight of 24 grams, were used. Twenty-five mg/kg PQ1 was administered 77 

by oral gavage to each animal. Animal care and use protocols were approved by the Institutional 78 

Animal Care and Use Committee (IACUC) at Kansas State University, following NIH 79 

guidelines. 80 

Extraction of PQ1 from organs.  Organs were cut into small pieces and diluted with 4 ml of 81 

deionized water and 10 ml of a solution of 9:1 ratio of ethyl acetate and 1-propanol. Tissue 82 

mixture was sonicated for 40 minutes, and the organic layer was separated from a separatory 83 

funnel. The aqueous layer was extracted twice with 10 ml of a 9:1 mixture of ethyl acetate and 1-84 

propanol. The organic layers were combined, washed with 5 ml of brine, dried over anhydrous 85 

MgSO4, and concentrated to dryness on a rotary evaporator. The residue was diluted with 1 ml of 86 

1-propanol, filtered through a 0.2 µm filter disc (PTFE 0.2 µm, Fisherbrand), and analyzed using 87 

high-performance liquid chromatography (HPLC) and mass spectrometry as described below. 88 

Quantification of PQ1 in tissue extracts using HPLC. HPLC analysis was carried out on a 89 

Varian Prostar 210 with a UV-Vis detector and a reverse phase column (250 x 21.20 mm, 10 90 

micron, Phenomenex Inc.).  A flow rate of 4 ml/min and detection wavelength of 254 nm were 91 

used. A gradient elution of solvent A, containing deionized water and 0.01% of trifluoroacetic 92 

acid, and solvent B, containing acetonitrile and 0.01% of trifluoroacetic acid, was applied for the 93 
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analysis. 1,2,4,5-Benzenetetracarboxylic acid (BTA) was used as an internal standard to quantify 94 

the amount of PQ1 in the tissue extracts. Solutions of 100 μl of various mixtures of authentic 95 

PQ1 and BTA were injected into a HPLC instrument, the peak areas corresponding to PQ1 and 96 

BTA were integrated from the HPLC chromatogram, and the ratios of the peaks were obtained.  97 

Results of the ratios of HPLC peak areas and ratios from PQ1 and BTA concentrations were 98 

plotted, and a linear correlation line was obtained from the graph. Hence using this correlation 99 

diagram, the ratio of HPLC peak areas of PQ1 and BTA from tissue extract and the added known 100 

amount of BTA to the tissue extract, the amount of PQ1 in the tissue extract was determined. 101 

Moreover, the peak that has the same retention time as that of PQ1 from the injection of the 102 

tissue extract was collected, and its mass was determined using a mass spectrometer. The mass 103 

spectrum acquired from collected peak of PQ1 from the tissue extract was identical to that of the 104 

authentic PQ1 mass spectrum. Hence, the molecular identity of PQ1 in the tissue extract was 105 

verified by mass spectrometry. 106 

Mass spectroscopy. An Applied Biosystem API 2000 LS/MS/MS mass spectrometer was used 107 

in the analysis. The eluent corresponding to PQ1 peak from the HPLC was collected and injected 108 

into the mass spectrometer. A mass of 406 corresponding to M+1 of PQ1 was found in the mass 109 

spectra, and the fragmentation pattern of this M+1 mass is identical to that of authentic PQ1. 110 

Western blot analysis. Organs from treated or untreated mice were collected and homogenized 111 

with cell lysis buffer (Cell Signaling Technology, Inc, Danver, MA) using Vibra-Cell sonicator 112 

(Sonics & Materials Inc, Danbury, CT). The mixture was centrifuged at 13,000 rpm for 30 113 

minutes at 4°C, and the supernatant was collected. Total protein concentration was determined 114 

by the Bio-Rad protein assay. Forty µg of protein extract were separated by 4 - 20% sodium 115 

dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) for 35 minutes at 200 Volts and 116 
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protein separation was transferred to nitrocellulose membrane. The membrane was 117 

immunoblotted against protein of interest. The goat anti-survivin antibody and mouse anti-118 

caspase-8 antibody were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The rabbit 119 

anti-cleaved caspase-3 and rabbit anti-connexin 43 antibodies were obtained from Cell Signaling 120 

Technology (Danvers, MA). The rabbit anti-AhR and rabbit anti-actin antibodies were purchased 121 

from Sigma-Aldrich (St. Louis, MO). Immunoreactions using chemiluminescence were 122 

visualized by FluoChem E Imaging Instrument (Cell Biosciences, Inc, Santa Clara, CA). 123 

Intensities of the bands were digitized using Un-Scan-It software.  124 

Hematoxylin and eosin (H&E) staining.  H&E staining was performed on paraffin-embedded 125 

tissues by following standard protocol. Five µm sections were dewaxed and rehydrated in xylene 126 

and decreasing ethanol concentrations to water. Sections were stained with hematoxylin and 127 

eosin and mounted for microscopic imaging. 128 

Statistical analysis. Pixel intensities of protein bands were normalized to pixel intensities of 129 

loading control protein, actin or GAPDH. All protein expression data presented were expressed 130 

as mean ± S.D. of at least three independent experiments from different animals. Significant 131 

differences were analyzed by comparing the data between treated animals and control (untreated) 132 

animals.  Significance was considered at p < 0.05 using student’s t-test.  133 
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Results 134 

Distribution of PQ1  135 

After one-hour treatment, majority of PQ1, 10% and 5% of total amount administered, 136 

was detected in liver and brain, respectively. PQ1 was low, in the heart with 1%, lung with 1.5%, 137 

kidney with 1%, and uterus with 2.5% (Fig. 2A). Interestingly, PQ1 distribution changed after 12 138 

hours of administration. The percentage of PQ1 in liver decreased from 10% to 5%, and 139 

percentage of PQ1 in brain dropped from 5% to 2%. On the contrary, PQ1 in kidney increased 140 

from 1% to 3%, indicating a shift of PQ1 from liver to kidney had occurred. Amounts of PQ1 in 141 

heart, lung and uterus remained consistent at 12 hours of administration (Fig. 2B). After 24-hour 142 

treatment, no PQ1 was found in brain and heart. Percentage of PQ1 decreased to 3% in liver and 143 

1% in kidney. The average percentage of PQ1 in uterus stayed at 3%.  PQ1 in lung had a slight 144 

increase from 1.5% to 2.6% at 24-hour time point (Fig. 2C).  145 

Effect of PQ1 on apoptosis in normal tissues 146 

Apoptosis is a programmed cell death, an important event in homeostasis of healthy 147 

organs [23, 24]. Drugs, affecting apoptosis in healthy organs, are concerned due to the relevant 148 

side effects that they may cause [25]. Cell proliferation or cell death depends on the balance of 149 

pro- and anti-apoptotic factors. Thus, expressions of anti-apoptotic factor, survivin, and pro-150 

apoptotic proteins, caspases, were evaluated. Since cleaved caspase-3 is the checkpoint protein 151 

of both intrinsic and extrinsic apoptotic pathways and caspase-8 is the key reporter of extrinsic 152 

apoptotic pathway [26], these two caspases were examined in the presence of PQ1.  153 

The results showed that level of survivin increased in PQ1-treated organs, whereas both 154 

cleaved caspase-3 and caspase-8 decreased in these organs (Fig. 3A, 3B, 3C). The level of 155 

survivin increased by 14% in liver, 28% in heart, and 44% in lung at 1 hour after PQ1 156 
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administration, compared to controls. These effects are consistent with the detected level of PQ1. 157 

Interestingly, the level of survivin in these organs was reduced to the same level as the controls 158 

at 24-hour time point. In brain and kidney, there were no detectable changes in survivin 159 

expression at any time point. Uterus was the only exception in which survivin decreased more 160 

than 25% after PQ1 treatment (Fig. 3A). As for caspase 8 expression, brain, heart, lung, liver, 161 

and uterus of the treated animals have a slight decrease expression ranging from 12% to 37% 162 

compared to untreated animals; however, there was no significant change in the kidney (Fig. 163 

3B). Cleaved caspase-3 was only detected in the uterus, liver, and lung of untreated animals; 164 

thus, the change in cleaved caspase-3 upon PQ1 treatment was measured in these three organs.  165 

A significant decrease ranging from 37% to 45% of cleaved caspase-3 at 12-hour dosing was 166 

observed compared to control (Fig. 3C). Results of caspases and survivin suggest that PQ1 167 

inhibits pro-apoptotic factors and promotes anti-apoptotic proteins, which accordingly protects 168 

normal cells from apoptosis at the early time point from PQ1 exposure.  169 

Effect of PQ1 on AhR levels in normal tissues 170 

Aryl hydrocarbon receptor (AhR) is a transcriptional factor involved in the metabolic 171 

pathway of aromatic hydrocarbon compounds [27]. The main adaptive response of AhR is the 172 

binding of AhR and hydrocarbon compounds, inducing metabolizing enzymes that are involved 173 

in its metabolic pathway [27]. Aromatic hydrocarbon compounds have demonstrated to trigger 174 

AhR-mediated pathway for its metabolism; thus, the effect of PQ1, an aromatic hydrocarbon 175 

compound (Fig. 1), on AhR expression was examined.    176 

The results showed that the level of AhR in brain, heart, and liver increased significantly 177 

at 12-hour point of PQ1 treatment, 161%, 167%, and 124% compared to controls, respectively; 178 

however, there was a delay in detecting AhR in the kidney.  A 114% AhR was detected in the 179 
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kidney at 24-hour point (Fig. 4A). From the drug/tissue distribution data, the amounts of PQ1 180 

peaked at 1 hour in brain, heart and liver, but peaked at 12-hour point in kidney (Fig. 2A, 2B). 181 

These suggest that there is a time-delay response in AhR in these organs. Interestingly, the level 182 

of AhR fluctuated from 117% at 1-hour of dosing to 63% at 12-hour of dosing.  Furthermore, 183 

only 57%, 62%, and 55% of AhR were detected in the treated uterus at 1-, 12-, and 24-hour time 184 

points, respectively, compared to controls.  An early onset of AhR downregulation after PQ1 185 

administration implies that PQ1 might be involved in a different mode of action in the uterus 186 

(Fig. 4A). At 1 hour of PQ1 administration, level of AhR proportionally changed along with the 187 

amount of PQ1 in liver, indicating a direct dependent function of AhR to PQ1 in liver (Fig. 4B). 188 

The data demonstrated that PQ1 can trigger the response of AhR in brain, heart, liver, and 189 

kidney, signifying its involvement in the AhR-mediated metabolism pathway.  190 

Effect of PQ1 on connexin in normal tissues 191 

Since PQ1 has been shown to enhance GJIC [20] and increase Cx43 expressions (data not 192 

shown) in breast cancer cells, Cx43 in treated- and untreated-PQ1 organs was measured in.  193 

Cx43 was detected in heart, brain, and lung in the absence of PQ1 treatment; however, the level 194 

of Cx43 diminished in all PQ1-treated organs. A statistically significant decrease of 31% 195 

compared to control was found at 24-hour point in the heart. A constant level of Cx43 in the lung 196 

was observed at all-time points. Interestingly, level of Cx43 in brain gradually declined over time 197 

(Fig. 5). Results are contrary to the function of PQ1 in cancer cells where the lack of GJIC and 198 

low expression of Cx43 in T47D breast cancer cells were restored in the presence of 200 nM 199 

PQ1.   200 

Histological analysis of normal tissues  201 
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            Liver is an important organ in drug metabolism. Hematoxylin and eosin (H&E) staining 202 

of PQ1-treated organs was performed. All twenty-four mice were assessed grossly or 203 

microscopically for histological changes. Histological results showed that PQ1-treated liver 204 

remained unchanged compared to control, which indicate no observable toxicity of PQ1 to liver 205 

at the treated dosage and time (Fig. 6A). Other tissues including heart, adrenal gland, kidney, and 206 

reproductive tract were also examined and no histological change was observed (Fig. 6B). 207 

Twenty-one of the histologically PQ1-treated mice had no evidence of hemorrhage or 208 

inflammatory cells. These mice had no histologic evidence of lesion compared to control mice 209 

without PQ1 treatment at any time point. 210 

Discussions 211 

Since cancer is a complicated disease with multiple deregulation pathways, cancer 212 

treatments have to focus on combinational treatments [28]. The deficiency of GJIC in cancer 213 

cells adds to the complexity of cancer therapy in which the lack of drug transfer to the 214 

surrounding area creates challenges to cancer therapy [14]. Some anticancer drugs are reported to 215 

inhibit GJIC and reduce connexin expression, adding to the complexity of cancer therapy [29, 216 

30]. Hence, restoration of GJIC in cancer cells is a focal point in combinational treatment by 217 

potentiating the effect of anticancer drugs. In addition to combinational treatment, 218 

overexpression of connexin and activation of GJIC also play a suppressive role to tumors [13]. 219 

Therefore, the development of molecules and agents modulating the connexin expression and 220 

GJIC function is a therapeutic strategy in cancer treatment.  221 

Quinolines are known for their anticancer effects by targeting tumor hypoxia and 222 

modulating multidrug resistance [31, 32]. Previous reports showed that a quinoline derivative, 223 

PQ1, enhances GJIC, inhibits cell and tumor growth, and increases potential of the 224 



12 
 

 

combinational treatment with tamoxifen in T47D breast cancer cells [20, 21]. Therefore, the 225 

current study provides data of drug/tissue distribution and possible pathway of PQ1 metabolism 226 

in normal mice.  227 

A desirable and safe route of administration, oral gavage, is used in this study. Uptake of 228 

any drug is depending on the rate of blood flow; thus, the level of PQ1 was evaluated in five vital 229 

organs (brain, heart, lung, kidney, and liver) that have high rate of blood flow. PQ1 was 230 

measured in each vital organ after oral administration. Antineoplastic drug such as tamoxifen has 231 

been shown to affect tumorigenesis in the uterus; therefore, the effect of PQ1 in this organ was 232 

also examined [33]. The effective dosage of PQ1 falls in nM range in cells and xenograft tumors 233 

[20]. To investigate the toxicity in normal organs and make this study compatible with the 234 

relevant level for therapeutic dose, a higher concentration of PQ1 was administered at 25 mg/kg 235 

body weight, which is equivalent to 47.7 µM. With this dosage, the concentrations of PQ1, 236 

distributed in tested organs after oral administration, were more than 20-fold higher than the 237 

therapeutic dosage. PQ1 was detected in all tested organs after 1-hour treatment and diminished 238 

at 24 hours of dosing, suggesting that PQ1 can be eliminated or excreted after 24 hours (Fig. 2). 239 

The highest concentrations of PQ1 were found in the liver and kidney at different times (Fig. 2A 240 

and 2B). A high percentage of PQ1 was detected in the brain at 1 hour and may be due to the 241 

processing of tissue in which PQ1 in the blood vessels could not be excluded during the whole 242 

tissue extract (Fig. 2A). Our results show that PQ1 can be absorbed, distributed to vital organs, 243 

and metabolized in C57B/6J mice.   244 

Triggering apoptosis pathway in normal cells and tissues is one reason that causes serious 245 

side effects of therapeutic drugs. Diarrhea, a common side effect of chemotherapy, is partly 246 

caused by induced apoptosis in normal cells of the small intestinal epithelium [25]. It has also 247 



13 
 

 

been reported that both chemotherapeutic drugs and irradiation can induce apoptosis in normal 248 

thymocytes [34, 35]. In this report, the effect of PQ1 on apoptosis in normal tissues was 249 

examined. The presence of PQ1 via oral gavage caused a decrease in cleaved caspase-3 and an 250 

increase in survivin of normal tissues, indicating the inactivation of apoptosis (Fig. 3A, 3C). 251 

Further study of extrinsic apoptotic pathway, a checkpoint protein of caspase-8, was performed. 252 

Decrease of caspase-8 after treatment of PQ1 further elucidated that PQ1 cannot activate the 253 

extrinsic pathway of apoptosis in normal tissues (Fig. 3B). The effect on apoptosis in normal 254 

organs indicates a minor, apoptosis-related side effect caused by PQ1. Interestingly, PQ1 255 

increases cleaved caspase-3 [20] and caspase-8 in T47D cells and xenograft tumors [data not 256 

shown]. The opposing aspect of PQ1 on apoptosis in cancer cells and tumors compared to 257 

normal tissues implied that PQ1 may have a different mechanism in cancer cells. The difference 258 

between cancer and normal cells is also shown by the function of PQ1 on connexin expression. 259 

PQ1 enhances GJIC [20] and increases connexin expression in both T47D breast cancer cells and 260 

xenograft tumors; however, it decreases the expression of Cx43 in a normal heart, brain, and 261 

lung (Fig. 5). PQ1 mechanism of tumor specificity is not clear. Further studies are needed to 262 

clarify the causes of this specificity. 263 

AhR, a ligand-dependent transcription factor involved in the transcription of many 264 

important drug-metabolizing enzymes [36], is widely expressed in rodent and human tissues 265 

[37]. Increase of AhR protein level in PQ1-treated mice was observed in tested vital organs, 266 

indicating the possible involvement of PQ1 in the activation of ligand-dependent transcription of 267 

AhR pathway (Fig. 4A). The proportional relation between AhR expression and detected level of 268 

PQ1 in liver at 1 hour showed a direct and rapid response of AhR to PQ1. However, AhR was 269 

decreased by PQ1 treatment in the lung compared to control. Previous report demonstrated that 270 
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increase of AhR was found in the early stage of lung adenocarcinoma [38], suggesting that low 271 

level of AhR in PQ1-treated lung is due to tissue specificity. Furthermore, increase of AhR in 272 

PQ1-treated organs implies that PQ1 is involved in AhR-mediated response. Further analysis of 273 

gene regulation and enzyme activities in AhR-mediated pathways is needed to elucidate the 274 

metabolism of PQ1.  275 

Gap junction has been studied for more than forty years. Until recently, the involvement 276 

of gap junction in cancer has been reported and widely discussed. Although several molecules 277 

have been developed to modulate different levels of gap junctional proteins and GJIC [13], none 278 

of these molecules has reached clinical trials for the treatment of cancer. Our present findings 279 

support the notion that PQ1 is a promising anti-breast cancer candidate and may serve as a lead 280 

compound for drug development.   281 
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Figure Legends 

Figure 1. Chemical structure of PQ1.  

C21H22F3N3O2. Molecular weight is 405.3744. Exact Mass is 405.1431.  

Figure 2. PQ1 distribution in mice.  

Mice, treated with 25 mg/kg of PQ1, were sacrificed at 1 (A), 12 (B), and 24 (C) hours. 

Percentages of PQ1, normalized to total amounts of PQ1 in brain, heart, lung, liver, kidney, and 

uterus, were presented. Data of each experiment were obtained from four mice. Data points 

represent the percentage of PQ1 in an organ of each mouse, and the dash lines show the average 

of PQ1 in four mice.  

Figure 3. Effect of PQ1 on apoptosis in normal tissues.  

Vital organs from PQ1-treated and untreated animals were subjected to Western blot analysis , 

examining the effect of 1-hour, 12-hour, and 24-hour treatments of PQ1 on the levels of survivin 

(A), caspase-8 (B), and cleaved caspase-3 (C). Immunblotting images and graphical data are 

presented. “C” indicates the control animals without treatment and “T” indicates PQ1-treated 

animals. In the bar graph, pixel intensities of protein bands were normalized to pixel intensities 

of loading control protein, actin, and the results of treated animals are normalized to the results 

of control animals. Graphical presentation of three experiments are presented with ±SD and 

statistical significance, *P<0.05.  

Figure 4. Effect of PQ1 on AhR levels in normal tissues.  

(A) Western blot analysis was performed, examining the effect of 1-hour, 12-hour, and 24-hour 

treatments of PQ1 on the levels of AhR. Mice without PQ1 treatment were used as control. 

Immonoblotting images and graphical data are presented. “C” indicates the control animals 
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without treatment and “T” indicates PQ1-treated animals. In the bar graph, pixel intensities of 

protein bands were normalized to pixel intensities of loading control protein, actin. Graphical 

presentation of three experiments are presented with ±SD and statistical significance, *P<0.05. 

(B) The levels of AhR proportionally change along with the amounts of PQ1 in liver after 1-hour 

treatment. Immnoblotting images are also shown above the graph. In the graph, a line indicates 

percentage of PQ1 normalized to the amount of PQ1 in the liver of a corresponding animal. AhR 

level normalized to control group are shown by bar. All the data have been normalized with the 

body weight of each mouse as well. 

Figure 5. Effect of PQ1 on connexin 43 expression in normal tissues.  

Western blot analysis was performed, examining the effect of 1-hour, 12-hour, and 24-hour 

treatments of PQ1 on the levels of connexin 43 in heart, brain, and lung. Mice without PQ1 

treatment are used as control. Both immunoblotting images  and graphical data are presented. 

Pixel intensities of protein bands were normalized to pixel intensities of loading control protein, 

GAPDH, in the bar graph. Graphical presentation of three experiments are presented with ±SD 

and statistical significance, *P<0.05.   

Figure 6. A H&E staining of whole organs.  

(A) Effect of PQ1 on liver at 1 (B), 12 (C), and 24 hours (D).  Livers from untreated animals 

were used as control (A). Toxicity of PQ1-treated liver was examined by H & E staining using 

40X magnification. Histological results showed that PQ1-treated liver had no change compared 

to control. (B) Histology of PQ1-treated animals for heart (A), adrenal gland (B), and 

reproductive tract (D) were observed under 4X magnification, and kidney was observed under 

10X magnification. The results show no histological alteration in the treated animals compared 

to control. 
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