1998

KANSAS PERFORMANCE TESTS WITH SOYBEAN
VARIETIES
\qquad
REPORT OF PROGRESS 825

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

CONTENTS

INTRODUCTION

Test Objectives and Procedures 1
Data Interpretation 1
Variety or Brand Selection 2
1998 Environmental Factors 3
Summary of Entrants and Originators 4
Locations, Cultural Practices, and Rainfall 5
PERFORMANCE TEST RESULTS
STANDARD TESTS
Brown County (dryland) 7
Shawnee County (irrigated) 9
Franklin County (dryland) 11
Labette County (dryland) 13
Republic County, Belleville (dryland) 15
Republic County, Scandia (irrigated) 17
Harvey County (dryland) 19
Stafford County (irrigated) 21
Thomas County (irrigated) 23
Finney County (irrigated) 24
Cherokee County Soybean Performance on Soil Infested with Soybean Cyst Nematode (dryland) 25
Ellis County (dryland) 26
ROUNDUP-RESISTANT TESTS
Brown County (dryland) 27
Shawnee County (irrigated) 28
Franklin County (dryland) 29
Cherokee County (dryland) 30
Republic County, Scandia (irrigated) 31
Harvey County (dryland) 32
Stafford County (irrigated) 33
Thomas County (irrigated) 34
Yield as \% of Test Average from 1998 Locations 35
APPENDIX
Descriptions of Entries 41

Contribution no. 99-267-S from the Kansas Agricultural Experiment Station.

Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. In each case, give credit to the author(s), name of work, Kansas State University, and the date the work was published.

1998 KANSAS SOYBEAN PERFORMANCE TESTS

INTRODUCTION

TEST OBJECTIVES AND PROCEDURES

Soybean performance tests are conducted each year to provide information on the relative performance of new and established varieties and brands at several locations in Kansas.

Seeds for tests are from certified growers, agricultural experiment stations, and private seed companies (Table 1). Seed quality, including such factors as purity and germination, can be important in determining the performance of a variety. Soybean seed used for public and private entries in the Kansas Crop Performance Tests is prepared professionally and usually meets or exceeds Kansas Crop Improvement Certification standards. Relative performance of a given variety comparable to that obtained in these tests is best assured under similar environmental conditions and cultural practices and with the use of certified or professionally prepared seed. All companies known to be developing and marketing soybean varieties or brands are invited to submit test seed; interested companies enter on a voluntary, fee-entry basis.

This season companies also were invited to enter Roundup-resistant varieties either in the standard trials, or in separate Roundup trials. Roundup was the only herbicide used on the Roundup-resistant entries in these separate trials. A few non-Roundup resistant varieties, which received standard herbicides, were included in these separate trials as checks. Most of the Roundup-resistant varieties were entered in the Roundup tests, but several also were entered in the standard tests.

Entries were planted in four-row plots with rows 30 inches apart, except in the Ellis County test where row width was 24 inches, and replicated three or four times each. Seeding rate ranged from seven to 12 seeds per foot of row. The center two rows of each plot were harvested for yield estimates at most locations, except Ellis County were three rows were harvested and Finney County where all four rows were harvested. Harvested row lengths ranged from 14 to 29 feet, depending on location. Cultural practices used and rainfall received at each test location are given in Table 2. Results from this year's tests are presented in Tables 3 through 22. Relative yields of each entry from all locations are shown in Table 23. Results of the tests also can be found at the Kansas crop performance tests' homepage: http://www.ksu.edu/kscpt.

For the past several years, Experiment Station personnel have conducted trials to evaluate the performance of soybean varieties when grown in soil infested with soybean cyst nematode (SCN). A summary of results for the past 4 years is included in Table 13 (Cherokee County). Entries resistant and susceptible to SCN are evaluated in these trials.

DATA INTERPRETATION

Yields are recorded as bushels per acre (60 pounds per bushel) adjusted to 13% moisture content, when moisture data are available. Seed yield also is expressed as a percentage of the test average to assist in identifying entries that consistently produce better than the average yield.

Maturity is the date on which 95% of the pods have ripened (browned). Delayed leaf drop and green stems are not considered when assigning maturity. Maturity is expressed as days earlier (-) or later (+) than the average date of the reference variety. About 1 week of good drying weather after maturing is needed before soybeans are ready to harvest.

Lodging is rated at maturity by the following scores:

> 1 - Almost all plants erect 2 - All plants slightly leaning or a few plants down 3 - All plant leaning moderately $\begin{aligned} & (45 \%) \text { or } 25 \text { to } 50 \% \text { of plants } \\ & \text { down }\end{aligned}$ 4 - All plants leaning considerably or 50 to 80% plants down 5 - Almost all plants down

Height is the average length from the soil surface to the top of the main stem of mature plants.

Chlorosis tolerance is rated during the early part of the growing season on a 1 to 9 scale with: $1=$ no chlorosis and $9=$ severe chlorosis. All public and private entries in this year's performance test were evaluated for chlorosis tolerance near Manhattan, KS. Results from these evaluations are shown in Table 24. Ratings shown in this table are the averages of two readings, the first taken when three trifoliolate leaves had emerged and the second when the seventh trifoliolate leaf had emerged. Because these results represent only one environment, they should be used to complement additional information.

VARIETY OR BRAND SELECTION

Performance of soybean varieties or brands varies from year to year and from location to location, depending on such factors as weather, management practices, and variety adaptation. When selecting varieties or brands, one should carefully analyze their performance for 2 or more years across locations. Performance averaged over several years will provide a better estimate of genetic potential and stability than will 1 year's information.

Small differences in yield between any two varieties or brands usually are not important. Within maturity groups at each location, an LSD (least significant difference) was calculated. The significance level used to calculate the LSD was 10%. Unless two varieties differ in yield by more than the LSD, genetic yield potential of one entry cannot be considered superior to that of another.

At a few sites where entries were grouped and could be analyzed by maturity, an additional LSD value is listed at the bottom of the table. This LSD value can be used to compare the yields of entries in different maturity groups. For example, the yield of an entry in the group III test at Harvey County can be compared with the yield of an entry in the group IV test at the same location to determine if they are statistically different.

The coefficient of variability (CV) represents an estimate of the precision in the replicated yield trials. A CV of less than 10% indicates a good test with a high level of reliability. CVs ranging from 10 to 15% are usually acceptable for performance comparisons. CVs greater than 15% generally lack sufficient precision to provide any more than
a rough guide to cultivar performance. In those tests in which the precision was insufficient to statistically compare performance among the entries, the LSD value has been replaced with the designation, NS, indicating that seed yields were not significantly different.

1998 ENVIRONMENTAL FACTORS

Brown County: Timely rainfall during the seed-fill period produced above-average yields for this site.

Shawnee County: Good growing conditions occurred early in the season. Conditions became dry in August and September, but application of over 7 inches of irrigation water resulted in good yields and excellent precision.

Franklin County: Growing conditions during the season were generally favorable. Dry conditions prevailed during the latter portion of August and early September, but rainfall resumed in September and permitted the plants to complete pod-fill in a fairly normal manner.

Cherokee and Labette Counties: Growing conditions for the southeast locations were generally favorable through mid-August. Widespread late-summer rains benefited the maturity group III entries in the Labette standard test and all the entries in the Cherokee Roundup-resistant test. The soybean cyst nematode trial near Columbus did not receive timely rain during pod-filling.

Republic County: For the second season in a row, both the Belleville and Scandia
locations experienced a dry growing season. Irrigated yields at the Scandia site averaged over 5 bushels per acre less than in 1997, but yields at the Belleville dryland site were slightly higher than those last year. Overall, moderate yields were produced, and the precision of the experiments was good.

Harvey County: Growing conditions through July resulted in the development of plants with excellent yield potential. However, drought conditions beginning in mid-August and lasting until the end of the season curtailed pod-filling and resulted in premature plant death.

Stafford County: Plant development and yield potential were lower at this site than in previous years. The modest vegetative development along with high temperatures and low rainfall during pod-fill resulted in relatively low irrigated yields, particularly in the Roundup-resistant trial.

Thomas County: Good growing conditions existed at this site.

Finney County: Excellent climatic conditions prevailed during the season, but erratic iron deficiency chlorosis reduced yields and the precision of the test.

Ellis County: An extremely dry June delayed development and retarded plant growth. Green cloverworms damaged foliage, but top-yielding entries approached a respectable 30 bushels per acre.

ENTRANT	BRAND OR ENTRY
Illinois A.E.S. and USDA-ARS	Macon, Williams 82
Iowa A.E.S.	A94-774021, IA2021
Kansas A.E.S.	Crawford, K1340, K1364, K1366, K1370, K1377, K1378, K1379, K1380, K1381, K1386, K1391, K1393, KS3494, KS4694, KS4895, KS4997, KS5292, Sparks
Maryland A.E.S.	Manokin
Missouri A.E.S.	Anand, Delsoy 5500, Hartwig
Ohio A.R.D.C. and USDA-ARS	Flyer, Resnik, Stressland, Sherman, HC93-4118
Virgina A.E.S.	Hutcheson
Advanced Genetics Box 414 (Adv. Genetics) Beloit, KS 67420 phone: 785-738-5776	AG3630STS, AG3667RR, AG3797RR, AG3822NRR, AG3860NSTS, AG3957RR, AG4147RR, AG4188STS, AG4333NRR, AG4427RR, AG4437RR, BOUNTYSTS, DS410(DeLange), DS454(DeLange), DS466(DeLange), DS485(DeLange), FXPRFSG II GAI $\Delta x y$
AgriPro Seeds, Inc. (AgriPro) 23959 580th Ave. Ames, IA 50010 phone: 800-373-1741	AP3250, AP3702RR, AP3880, AP3902RR, AP4500, AP4540SCN, AP4880, AP543RR
Asgrow Seed Co. (Asgrow) 4140 114th Street Des Moines, IA 50322-7570 phone: 800-828-9283	$\begin{aligned} & \text { AG3002, AG3302, AG3701, AG3901, } \\ & \text { AG4301 } \end{aligned}$
Dekalb Genetics Corp. (Dekalb) 3100 Sycamore Rd. Dekalb, IL 60115 phone: 815-758-3461	CX348, CX351, CX359RR, CX368, CX377, CX399, CX400, CX419RR, CX445, CX485RR, CX496C, CX510C
Deltapine Seed (Deltapine) P.O. Box 157 Scott, MS 38772 phone: 800-321-8989	DP3478, DP3519S, DP4344RR, DP4750RR, DPS8549(EXP)
Pueblo Chemical Co. (Dyna-Gro) P.O. Box 1279, 2502 John St. Garden City, KS 67846 phone: 316-275-6127	DG-3368,DG-3368RR, DG-3388RR, DG-3395, DG-3398RR, DG3411NSTS, DG-3424RR, DG3432NRR, DG-3438N, UAPX258RR
Fontanelle Hybrids (Fontanelle) 109818 St. Nickerson, NE 68044-9706 phone: 402-721-1410	3373, 942RR, 9761RR
Garst Seed Co. (Garst) 2369 330th St. Slater, IA 50244 phone: 515-685-3574	D305RR, D376RR, D398(EX7398), D437RR/N, D454, D478
The J.C. Robinson Seed Co. (Golden Harvest) 100 J.C. Robinson Blvd. P.O. Box A Waterloo. NE 68069	H-1316, H-1357RR, H-1383, H-1454, H-1487, H-1500, X384RR, X410RR
Hamon Seed Farms (Hamon) 5557 190th St. Valley Falls, KS 66088 phone: 785-945-3584	H-447
Hoegemeyer Hybrids (Hoegemeyer) 1755 Hoegemeyer Rd. Hooper, NE 68031 phone: 402-654-3399	312, 333, 371, 380, 395RR, 401, 402STS, 435, 460NRR, 471SCN
Hornbeck Seed Co., Inc. P.O. Box 347210 Drier Rd. Dewitt, AR 72042 phone: 501-946-2087	HBK49, HBK4890
Lewis Hybrids, Inc. (Lewis) P.O. Box 38, West Maple St. Ursa, IL 62376 phone: 217-964-2131	361, 390, 3668RR, 3955RR, 4308RR

ENTRANT	BRAND OR ENTRY
Midwest Seed Genetics P.O. Box 518 (M/W Genetics) Carroll, IA 51401 phone: 712-792-6691	G3060RR, G3599RR, G3608RR, G3644STS, G3996, G4411RR, G4425RR, G4555
Merschman Seeds (Merschman) 103 Ave. D West Point, IA 52656 phone: 800-848-7333	Dallas III, Eisenhower V, Kennedy IVRR, Memphis IIIRR, Truman VI, Washington VIIRR
Midland Seeds Inc. (Midland) 1906 Kingman Rd. Ottawa, KS 66067 phone: 785-242-3598	8280RR, 8284RR, 8287, 8291RR, 8310RR, 8316STS, 8320RR, 8321, 8322RR, 8333STS, 8334, 8341RR, 8345, 8355, 8361RR, 8371, 8377RR, 8381RR, 8386STS,8388,8390NRR, 8393, 8394NRR,8396STS, 8397RR, 8410,8411RR, 8414RR, 8420STS, 8421N, 8422RR, 8431, 8433RR, 8475, 8486, 8487NB, 8530, 8540RR, 8570RR, X362, X400RR, X442RR, X450NSTS
Missouri Seed Improvement Association (MSIA) 3211 Lemone Industrial Blvd. Columbia, MO 65201-8245 phone: 573-449-0586	Magellan, Maverick, Mustang
Mycogen Seeds (Mycogen) P.O. Box 21428 St. Paul, MN 55121-1428 phone: 800-692-6436	5348, 5383, 5404, 5430, 5474
NC+ Hybrids (NC+) Box 4408 Lincoln, NE 68504 phone: 402-467-2517	```2A96RR, 2A99, 3A26, 3A66RR, 3A67, 3A87, 4A10, 4A16RR, 4A47, 5A44, 5A45RR```
Novartis Seeds Inc. (NK) 1060 Wheatland Dr. Buhler, KS 67522 phone: 316-543-2707	$\begin{aligned} & 3474,3505, \text { S30-K3, S33-P2, S35-F5, } \\ & \text { S38-L5, S39-D9, S42-K2, S42-M1, } \\ & \text { S43-B5, S46-W8, S51-T1, S57-11 } \end{aligned}$
Pioneer Hi-Bred Int'l., Inc. 1616 S. Kentucky, (Pioneer) Suite C-150 Amarillo, TX 79102 phone: 806-356-0160	$\begin{aligned} & \text { 93B34, 93B41, 93B51, 93B53, 93B71, } \\ & \text { 93B82, 94B01, 94B41, 95B33, 9294, } \\ & 9352,9395,9396,9412,9421,9492 \end{aligned}$
Renze Hybrids, Inc. (Renze) 27410 Kittyhawk Ave. Carroll, IA 51401 phone: 712-669-3301	R356RR, R3097, R3209RR, R3297, R3599
Stine Seed Co. (Stine) 2225 Laredo Trail Adel, IA 50003 phone: 515-677-2605	$\begin{aligned} & 3171-1,3264,3290,3293-4,3398-8 \text {, } \\ & 3490-4,3506,3581,3690-0,3792-4, \\ & 3870-0,3990-0,4199-2,4492-4,4562- \\ & 2,4790, \text { X3506 } \end{aligned}$
Taylor Seed Farms, Inc. (Taylor) RR2 Box 27A White Cloud, KS 66094 phone: 785-595-3236	370RR, 396, 415RR, 450RR, 454
Terra Industries Inc. (Terra) P.O. Box 6000 Sioux City, IA 51102-6000 phone: 712-233-3609	E394, E4280RR, E438, E4680RR, TS364T(E364T), TS387, TS415, TS466RR, TS474, TS504, TS556RR
Triumph Seed Co., Inc. P.O. Box 1050 Ralls, TX 79357 phone: 806-253-2584	TR3939RR, TR4339RR, TR5409RR
Neco Seed Farms (Willcross) P.O. Box 379 Garden City, MO 64747 phone: 816-862-8203	RR2309, RR2338, RR2357, RR2368, RR2397, RR2448, RR2449N, RR2467N, RR2517N, 9378STS, 9447, 9449STS, 9640, 9738, 9841
Wilson Seeds, Inc. (Wilson) P.O. Box 391 Harlan, IA 51537 phone: 712-755-3841	3380, E8362

	COUNTY: DRYLAND							
ITEM	ELLIS	BROWN	FRANKLIN	CHEROKEE \dagger	CHEROKEE \ddagger	LABETTE	REPUBLIC	HARVEY
Cooperator	$\begin{gathered} \text { C. Thompson } \\ (785) \\ 625-3425 \end{gathered}$	$\begin{gathered} \text { L. Maddux } \\ (785) \\ 474-3469 \end{gathered}$	$\begin{gathered} \text { K. Janssen } \\ (785) \\ 242-5616 \end{gathered}$	J. Long (316) 421-4826	J. Long (316) 421-4826	$\begin{gathered} \text { J. Long } \\ (316) \\ 421-4826 \end{gathered}$	$\begin{aligned} & \text { B. Gordon } \\ & (785) \\ & 335-2836 \end{aligned}$	$\begin{gathered} \text { M. Claassen } \\ (316) \\ 327-2547 \end{gathered}$
Station or field	Hays	Powhattan	Ottawa	Pittsburg	Columbus	Parsons	Belleville	Hesston
Soil: Texture	Silt loam	Silty clay loam	Silt loam	Silty clay loam				
PH	6.8	$\begin{aligned} & 6.6 \text { (ST) } \\ & 5.8 \text { (RR) } \end{aligned}$	---	6.6	---	---	6.0	$\begin{aligned} & 6.3 \text { (ST) } \\ & 6.8 \text { (RR) } \end{aligned}$
Organic Matter (\%)	1.8	-	-	-	-	-	2.1	$\begin{aligned} & 2.7 \text { (ST) } \\ & 2.1 \text { (RR) } \end{aligned}$
P test	---	$\begin{aligned} & \mathrm{L}(\mathrm{ST}) \\ & \mathrm{H} \text { (RR) } \end{aligned}$	-	-	-	-	M	H
K test	---	H	-	-	---	-	VH	VH
Planting Date	5/4	5/14	6/9	6/5	6/2	6/1	5/14	5/7
Herbicides ** (per acre)	$\begin{aligned} & 4 \mathrm{oz} \text {. Pur. } \\ & 40 \text { oz. Dual } \end{aligned}$	3 Turbro (ST); 1.5 pt Roundup (RR)	3 pt. Squad. (ST); 1 qt. Roundup (RR)	1.5 pt . Roundup	3.0 pt. Squad.	3.0 pt. Squad.	. 5 lb Sencor 1.5 pt. Dual	2.80 . Scep. 1.1 pt. Dual (ST); 1 qt. Roundup 2 appl (RR)
Fertilizers (lbs/a)	none	none	none	none	18N, 48P, 48K	$\begin{gathered} \text { 18N, 46P, } \\ 60 \mathrm{~K} \end{gathered}$	30N, 30P	$\begin{aligned} & \text { 12N, 31P } \\ & \text { (ST); } \\ & \text { 12N, 30P } \\ & \text { (RR) } \end{aligned}$

Test avg. (bu/a)

Standard	24.1 (5.7)***	$\begin{aligned} & 48.0 \\ & (6.9) \end{aligned}$	41.2 (6.7)		28.2 (12.0)		37.3 (9.2)	
MG III						47.2 (7.8)		26.0 (6.5)
MG IV						40.0 (6.2)		17.8 (10.3)
MG V						32.6 (11.3)		
Roundup resistant		51.2 (6.0)	44.1 (4.6)					
MG III				45.2 (8.2)				28.2 (9.4)
MC IV				44.6 (11.8)				24.5 (10.3)
MG V				48.5 (8.4)				
Row length (ft)	20	25	28	14	14	14	20	25
Seeding rate (seeds/tt)	7	8	8	8	8	8	10	8
Rows harvested	3	2	2	2	2	2	2	2
Rainfall (R) or Irrigation (I)	R	R	R	R	R	R	R	R
April	3.50	2.80	3.06	3.23	5.00	3.43	4.24	2.86
May	2.08	1.20	2.27	2.69	2.93	1.96	0.67	1.76
June	1.10	7.80	4.79	8.65	3.22	5.41	3.88	3.15
July	6.86	4.00	3.62	4.87	6.29	5.09	4.82	6.79
August	2.42	3.90	5.41	2.73	---	3.42	1.39	0.61
September	1.17	$\underline{2.60}$	$\underline{9.32}$	8.20	8.15	$\underline{9.02}$	1.97	$\underline{5.56}$
Total	18.03	22.30	28.47	30.37	25.59	28.33	16.97	20.73

TABLE 2. LOCATIONS, CULTURAL PRACTICES, AND RAINFALL FOR 1998 SOYBEAN PERFORMANCE TESTS. (CONTINUED)

ITEM	COUNTY: IRRIGATED				
	SHAWNEE	REPUBLIC	STAFFORD	FINNEY	THOMAS
Cooperator	$\begin{gathered} \text { L. Maddux } \\ (785) \\ 354-7236 \end{gathered}$	$\begin{aligned} & \text { B. Gordon } \\ & 335-2836 \end{aligned}$	$\begin{aligned} & \text { V. Martin } \\ & (316) \\ & 549-3345 \end{aligned}$	$\begin{gathered} \text { M. Witt } \\ (316) \\ 276-8286 \end{gathered}$	$\begin{aligned} & \text { P. Evans } \\ & (785) \\ & 462-6281 \end{aligned}$
Station or field	Topeka	Scandia	St. John	Garden City	Colby
Soil: Texture	Silt loam	Silt loam	Fine sandy loam	Silt loam	Silt loam
PH	7.2	6.5	6.5	7.8	7.4
Organic Matter (\%)	1.5	2.2	0.6	1.2	1.5
P test	M	M	---	VH	L
K test	H	VH	---	VH	-
Planting Date	5/5	$\begin{aligned} & \text { 5/12 (ST) } \\ & 5 / 13 \text { (RR) } \end{aligned}$	$\begin{aligned} & \text { 6/11 (ST) } \\ & 6 / 13 \text { (RR) } \end{aligned}$	5/18	5/19
Herbicides ** (per acre)	3 pt. Squad. (ST); 1.5 pt. Roundup (RR)	```1.5 pt. Dual + .5 lb. Sencor (ST); 1 qt. Roundup (RR)```	1 qt. Dual 4 oz. Pur. (ST); 1 qt. Roundup 2 appl. (RR)	2.5 pt. Pur. Plus	2 pt. Broadstrife + Dual (ST); 1.5 pt. Roundup (RR)
Fertilizers (lbs/a)	none	$30 \mathrm{~N}, 30 \mathrm{P}$	27N, 69P	none	30N, 15P
Test avg. (bu/a)					
Standard	60.0 (6.5)	60.3 (5.6)	39.6 (15.6)		64.4 (7.3)
MG III				37.5 (14.7)	
MG IV				44.0 (19.6)	
MG V					
Roundup resistant	60.6 (7.2)	62.5 (3.5)	25.3 (18.7)		69.3 (6.6)
MG III					
MC IV					
MG V					
Row length (ft)	15	25	$\begin{aligned} & 29 \text { (ST) } \\ & 21 \text { (RR) } \end{aligned}$	20	20
Seeding rate (seeds/ft)	7	12	7	10	9
Rows harvested	2	2	2	4	2
Rainfall (R) or Irrigation (I)	R I	R I	R I	R I	R I
April	1.6	4.20	1.94	0.93	1.66
May	1.3	0.72	2.65	2.69	3.06
June	6.0	3.90	1.71	$0.85 \quad 5.00$	1.54
July	$6.0 \quad 3.0$	$5.50 \quad 3.20$	5.72 3.4	6.61 5.00	$7.85 \quad 3.00$
August	$1.0 \quad 4.5$. $70 \quad 2.00$	0.32 5.1	$3.13 \quad 5.00$	$2.35 \quad 3.00$
September	2.3 -	$\underline{1.94} \underline{\underline{2.50}}$	$\underline{0.85} \quad \underline{1.9}$	$\underline{0.28}$	$\underline{0.56} \quad \underline{3.00}$
Total	18.2 7.5	16.96 7.70	$13.19 \quad 14.0$	$13.65 \quad 15.00$	$17.02 \quad 9.00$

\dagger Roundup trial \ddagger Soybean Cyst Nematode-infested location. ${ }^{* *}$ Squad. = Squadron, Scep. = Sceptor, Tref. = Treflan, Pur. = Pursuit ${ }^{* * *}$ Coefficient of variability. ST=Standard Test, RR=Roundup Test

		$\begin{aligned} & \text { YIELD } \\ & (\mathrm{Bu} / \mathrm{A}) \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
BRAND	ENTRY	1998	1997	1996	1995	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995	-	-1998--	

MATURITY GROUPS II-IV

MIDLAND	8371	49.5	46.6	---	---	48.1	---	---	103	107	--	---	-5	1.8	33
TERRA	E394	46.4	---	---	---	---	---	---	97	---	---	---	-5	1.5	33
HOEGEMEYER	333	48.1	---	---	---	---	---	---	100	---	---	---	-5	1.3	32
	IA2021	39.7	---	---	---	---	---	---	83	---	---	---	-4	1.5	26
STINE	3581	42.7	---	---	---	---	---	---	89	---	---	---	-2	1.5	30
DYNA-GRO	DG-3395	50.8	44.3	65.9	---	47.6	53.7	---	106	102	107	---	-2	1.2	28
WILLCROSS	9738	51.1	42.3	---	---	46.7	---	---	106	97	---	---	-2	1.5	30
RENZE	R3297	42.9	---	---	---	---	---	---	89	---	---	-	-2	1.2	31
TERRA	TS415	54.0	47.2	---	---	50.6	---	---	113	108	---	---	-2	2.2	34
TERRA	TS387	54.7	42.7	---	-	48.7	---	---	114	98	---	--	-2	1.0	29
HAMON	H-447	50.2	45.3	--	--	47.7	-	---	105	104	---	---	-2	1.5	35
HOEGEMEYER	401	44.0	44.4	70.3	15.9	44.2	52.9	43.6	92	102	114	81	-2	1.7	30
MISSOURI PREMIUM	MAGELLAN	49.1	45.5	---	---	47.3	---	-	102	104	---	---	-2	1.5	34
	K1386	35.6	---	---	---	---	---	---	74	---	---	---	-1	1.3	30
PIONEER	9396	43.7	39.1	---	---	41.4	---	---	91	90	---	---	0	1.3	32
	FLYER	48.6	41.3	61.5	18.2	44.9	50.5	42.4	101	95	100	93	9/23	1.3	33
FONTANELLE	3373	41.8	38.1	58.4	---	39.9	46.1	---	87	87	95	---	0	1.2	28
M/W GENETICS	G3644STS	43.6	---	---	---	---	---	---	91	---	---	---	0	2.0	37
MISSOURI PREMIUM	MAVERICK	48.6	42.8	---	---	45.7	---	---	101	98	---	---	0	2.0	39
TERRA	TS364T (E364T)	45.7	46.0	---	---	45.8	---	---	95	105	---	---	1	1.3	31
HOEGEMEYER	435	43.7	42.4	59.9	24.7	43.1	48.7	42.7	91	97	97	127	1	1.5	35
STINE	3990-0	49.3	---	---	---	---	---	---	103	---	--	---	1	1.5	32
KSOY	MACON	48.6	45.6	61.8	18.8	47.1	52.0	43.7	101	105	100	96	1	1.7	32
PIONEER	93B82	55.6	---	---	---	---	---	---	116	---	-	---	2	1.5	33
DYNA-GRO	DG-3368	50.1	39.9	68.1	23.2	45.0	52.7	45.3	104	91	111	119	2	1.5	31
MYCOGEN	5348	47.4	---	---	---	---	---	---	99	---	---	---	2	1.7	31
NK	S38-L5	49.7	50.3	---	-	50.0	---	--	104	115	---	-	2	1.0	31
WILLCROSS	9378STS	50.3	---	---	---	---	---	---	105	---	---	---	2	1.7	35
MYCOGEN	5383	51.2	---	---	---	---	---	---	107	---	---	---	2	1.3	31
MIDLAND	8386STS	50.1	---	60.3	---	---	---	---	104	---	98	---	2	1.8	33
NC+	3A87	53.2	-	---	---	---	---	---	111	--	---	--	2	1.2	29
	K1377	51.7	---	---	---	---	---	---	108	---	---	---	2	1.2	31
	RESNIK	43.2	40.7	57.3	13.0	42.0	47.1	38.5	90	93	93	67	2	1.0	32
	SHERMAN	46.5	43.0	65.9	26.6	44.7	51.8	45.5	97	99	107	136	2	1.7	31
STINE	3690-0	47.9	---	---	---	---	---	---	100	---	---	---	2	1.0	27
LEWIS	361	47.9	---	---	---	---	---	---	100	---	---	---	2	1.2	31
	WILLIAMS 82	45.5	41.1	51.7	23.6	43.3	46.1	40.5	95	94	84	121	2	2.0	38
NK	S43-B5	48.8	42.9	--	---	45.9	---	---	102	98	---	---	3	1.7	34
MIDLAND	X362	48.8	49.3	---	---	49.0	---	---	102	113	---	---	3	1.5	31
GARST	D398 (EX7398)	51.1	49.6	--	-	50.4	---	---	106	114	---	---	3	1.7	30
KSOY	STRESSLAND	47.3	40.7	58.4	17.5	44.0	48.8	41.0	98	93	95	90	3	1.2	37

BRAND	ENTRY	$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	$\begin{aligned} & \text { LODGING } \\ & \text { SCORE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
		1998	1997	1996	1995	$2-\mathrm{Yr}$	3-Yr	4-Yr	1998	1997	1996	1995	---	--1998--	-
NC+ MISSOURI PREMIUM	4A10	47.5	43.5	---	26.0	45.5	--	---	99	100	---	133	3	1.0	30
	MUSTANG	46.2	42.2	---	-	44.2	---	---	96	97	---	---	3	1.5	38
	K1378	48.0	---	---	---	--	---	---	100	---	---	---	3	2.2	35
	HC93-4118	51.9	---	---	---	---	---	---	108	---	---	---	3	1.3	31
	K1380	49.2	---	---	---	---	---	---	103	---	---	---	3	1.5	31
KSOY	KS3494	46.3	45.6	58.3	19.8	45.9	50.1	42.5	96	105	95	101	4	1.3	31
WILLCROSS	9640	55.1	-	-	-	-	-	---	115	---	---	---	4	1.5	33
MYCOGEN	5404	49.7	42.2	---	-	46.0	---	-	104	97	---	-	4	1.5	32
	K1381	38.0	---	---	---	---	---	---	79	---	---	---	4	1.7	28
MIDLAND	8388	49.4	---	--	-	---	--	--	103	--	-	---	4	1.5	29
DEKALB	Cx400	51.6	---	---	---	---	---	---	108	---	---	---	4	1.2	32
HOEGEMEYER	380	46.9	47.7	68.1	27.0	47.3	54.2	47.4	98	109	111	139	4	1.5	31
MIDLAND	8410	45.0	44.7	63.9	15.8	44.9	51.2	42.4	94	103	104	81	4	1.7	30
RENZE	R3599	44.6	---	---		---	---	---	93	-	---	---	4	1.5	31
LEWIS	390	47.9	50.6	62.4	21.6	49.3	53.6	45.6	100	116	101	111	4	1.3	28
TAYLOR	396	48.8	-	---	---	---	---	---	102	--	---	---	5	1.3	29
PIONEER	9421	45.6	-	---	---	-	---	-	95	-	---	---	5	1.8	34
MERSCHMAN	TRUMAN VI	48.3	---	---	-	---	---	---	101	---	---	---	5	1.3	31
TERRA	TS474	48.7	39.7	-	-	44.2	---	---	102	91	---	---	5	2.0	37
RENZE	R3097	48.1	--	-	---	---	---	--	100	---	---	-	5	1.3	26
	K1370	43.7	-	-	---	---	---	---	91	-	---	---	5	1.8	35
	A94-774021	48.4	-	-	---	---	---	---	101	--	---	---	5	1.0	26
RENZE	R3209R	48.4	---	---	--	---	--	--	101	---	---	-	5	4.5	33
M/W GENETICS	G3996	49.2	48.5	64.9	18.9	48.9	54.2	45.4	103	111	106	97	5	1.3	28
DEKALB	Cx348	49.6	46.8	---	--	48.2	---	---	103	107	---	---	5	1.2	29
	K1379	48.9	---	---	---	---	---	---	102	---	---	---	6	1.3	37
	K1340	46.7	---	---	---	---	---	---	97	--	---	---	6	2.0	35
WILLCROSS	RR2368	51.3	---	---	---	---	---	--	107	---	-	---	6	1.7	34
AGRIPRO	AP3880	50.6	42.1	---	---	46.3	---	---	105	96	---	---	7	1.5	33
MERSCHMAN	EISENHOWER V	52.2	--	---	--	--	---	-	109	---	---	-	7	1.5	29
HOEGEMEYER	371	46.8	---	---	---	---	---	---	98	---	---	---	8	1.2	26
KSOY	KS4694	52.1	39.9	50.9	22.9	46.0	47.6	41.5	109	92	83	118	13	1.2	34
TEST AVERAGES		48.0	43.6	61.5	19.5										
LSD (.10)		4.5	5.7	4.6	4.7										

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN FLYER
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

		$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
BRAND	ENTRY	1998	1997	1995	1994	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995	-	-1998--	

BRAND	ENTRY	YIELD$(\mathrm{Bu} / \mathrm{A})$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \mathrm{HT} \\ & \text { IN } \\ & \hline \end{aligned}$
		1998	1997	1996	1995	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995		--1998--	-
MATURITY GROUPS II-IV															
	IA2021	35.4	---	---	---	---	---	---	86	-	---	---	-14	2.0	32
KSOY	KS3494	38.9	40.3	47.3	43.8	39.6	42.2	42.6	94	90	92	96	-8	1.5	37
HOEGEMEYER	333	48.4	---			---	---	---	118	---	---	---	-7	1.8	35
	RESNIK	39.5	39.3	46.7	42.7	39.4	41.8	42.0	96	88	91	94	-6	1.5	36
NK	S33-P2	45.5	49.3	--	--	47.4	--	-	110	110	-	-	-6	1.5	37
	A94-774021	47.3	--	---	---	---	---	---	115	---	---	---	-6	1.2	32
HOEGEMEYER	380	47.2	--	52.0	47.8	---	---	---	115	---	101	105	-5	1.5	39
DYNA-GRO	DG-3368	45.0	45.7	56.3	45.9	45.3	49.0	48.2	109	102	110	101	-5	1.7	36
WILLCROSS	9378STS	46.5	---	---	---	---	---	---	113	---	---	--	-5	1.5	38
TERRA	TS364T (E364T)	47.6	48.0	---	---	47.8	---	---	115	107	---	---	-4	1.5	35
	SHERMAN	39.8	46.1	56.3	48.4	43.0	47.4	47.7	97	103	110	107	-4	2.0	39
MIDLAND	8388	45.8	-	---	---	---	---	---	111	---	---	--	-4	1.3	34
PIONEER	$93 \mathrm{B71}$	38.7	---	---	---	---	---	---	94	---	---	---	-4	1.3	39
NK	S38-L5	45.4	---	---	---	---	---	---	110	---	---	---	-4	1.0	35
TAYLOR	396	43.8	49.4	---	-	46.6	---	---	106	110	---	---	-3	1.2	34
STINE	3870-0	44.6	--	---	---	---	---	---	108	---	---	-	-3	1.2	33
TERRA	TS387	44.2	49.4	---	-	46.8	-	--	107	110	-	--	-3	1.2	35
GOLDEN HARVEST	H-1383	41.2	-	-	-	--	--	---	100	---	---	--	-3	1.2	33
	HC93-4118	45.5	---	---	---	---	---	---	110	--	---	---	-2	1.2	37
GARST	D398 (EX7398)	44.5	49.6	---	---	47.0	---	---	108	111	---	---	-2	1.2	35
TERRA	E394	44.2	-	-	---	---	---	---	107	-	---	---	-2	1.5	41
TERRA	TS415	44.9	48.1	54.3	--	46.5	49.1	---	109	107	106	---	-2	1.5	39
MISSOURI PREMIUM	MAVERICK	41.7	45.1	--	--	43.4	--	---	101	101	---	--	-2	2.0	47
MYCOGEN	5404	44.1	---	---	---	---	---	---	107	-	---	---	-2	1.5	40
WILLCROSS	9640	46.9	45.7	52.5	-	46.3	48.4	---	114	102	102	---	-1	1.5	38
DYNA-GRO	DG-3395	45.8	48.2	55.0	-	47.0	49.7	---	111	107	107	---	-1	1.0	36
PIONEER	93B82	48.9	-	---	-	-	---	-	119	---	---	---	-1	1.5	37
	K1381	40.2	---	---	---	---	---	---	97	---	---	---	-1	1.7	38
WILLCROSS	9738	45.0	46.5	---	-	45.7	---	--	109	104	---	---	-1	1.2	35
KSOY	MACON	43.4	46.0	58.7	--	44.7	49.4	--	105	103	114	---	-1	1.5	37
AGRIPRO	AP3880	44.1	45.2	--	---	44.6	---	---	107	101	---	---	-1	1.3	37
	K1370	37.5	--	---	---	---	---	---	91	--	--	--	0	1.5	40
PIONEER	9421	43.5	---	---	---	---	-	---	106	-	---	--	0	1.7	43
	FLYER	41.4	43.0	50.2	43.8	42.2	44.8	44.6	100	96	98	97	9/21	1.3	38
MIDLAND	8410	43.7	46.0	57.4	48.3	44.9	49.0	48.9	106	103	112	106	0	1.3	38
NC+	4A10	41.9	---	54.1	49.4	---	---	---	102	---	105	109	0	1.3	39
DEKALB	Cx399	42.4	47.1	53.8	--	44.7	47.8	---	103	105	105	---	0	1.3	43
STINE	3990-0	42.6	--	-	---	---	---	---	103	--	-	-	0	1.5	37
HOEGEMEYER	401	43.6	43.2	51.1	47.5	43.4	46.0	46.3	106	96	99	105	1	1.5	37
	K1386	43.3	---	---	---	---	---	-	105	---	---	---	1	1.3	40

BRAND	ENTRY	$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
		1998	1997	1996	1995	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995	---	--1998--	-
MISSOURI PREMIUM	MAGELLAN	45.1	43.4	--	---	44.3	--	---	110	97	---	--	1	1.8	41
GOLDEN HARVEST	H-1454	41.1	--	48.9	---	---	---	---	100	---	95	---	1	1.3	42
MIDLAND	8386 STS	40.4	-	---	---	---	---	---	98	---	---	---	1	1.7	40
HOEGEMEYER	471 SCN	41.2	43.4	---	---	42.3	---	---	100	97	---	---	1	1.3	43
KSOY	STRESSLAND	41.0	41.8	49.2	41.6	41.4	44.0	43.4	99	93	96	92	1	1.5	42
	K1377	40.3	---		---	---	---	---	98	---	---	---	1	1.5	38
HOEGEMEYER	435	39.1	43.5	60.4	---	41.3	47.7	---	95	97	117	---	1	1.5	41
WILLCROSS	9841	39.2	--	---	---	-	---	---	95	-	---	---	1	1.3	38
MIDLAND	8421N	42.2	---	---	---	---	---	---	102	--	--	---	2	1.5	39
	WILLIAMS 82	33.4	43.7	48.0	44.4	38.6	41.7	42.4	81	98	93	98	2	1.5	46
	K1380	39.9	---		---	---	---	---	97	---	---	---	2	1.2	42
GARST	D454	38.8	--	52.8	---	---	---	---	94	---	103	---	3	1.0	42
	K1340	35.8	---	-	---	---	---	---	87	---	---	---	3	1.5	45
NK	S43-B5	41.7	--	---	---	---	---	---	101	---	---	---	3	1.5	40
WILLCROSS	9449NSTS	36.3	---	---	---	---	---	---	88	-	---	---	3	1.3	41
DEKALB	CX445	40.0	45.1	53.2	46.1	42.6	46.1	46.1	97	101	104	101	4	1.5	45
ADV. GENETICS	DS410 (DeLange)	34.5	44.8	52.8	-	39.7	44.1	---	84	100	103	---	5	1.2	40
ADV. GENETICS	DS454 (DeLange)	40.7	46.6	---	---	43.7	---	---	99	104	---	---	5	1.5	44
M/W GENETICS	G4555	44.3	48.4	-	---	46.3	---	---	107	108	---	---	5	1.5	45
AGRIPRO	AP4500	40.7	46.2	---	---	43.4	---	---	99	103	---	---	5	1.5	45
MIDLAND	8431	39.9	46.6	50.9	-	43.3	45.8	---	97	104	99	---	5	1.5	44
	K1378	37.4	---	---	---	---	---	---	91	---	---	---	5	1.5	40
	K1379	36.9	-	---	---	---	---	---	90	---	---	---	6	1.3	41
LEWIS	390	39.2	49.5	53.3	--	44.4	47.3	---	95	111	104	---	6	1.5	44
NK	3474	44.3	45.2	---	--	44.7	---	---	107	101	---	---	6	1.5	46
MISSOURI PREMIUM	MUSTANG	37.7	43.3	---	---	40.5	---	---	92	97	---	---	6	1.5	47
ADV. GENETICS	DS485 (DeLange)	41.8	41.7	51.0	---	41.7	44.8	---	101	93	99	---	7	1.5	45
NC+	4A47	39.7	48.0	53.3	---	43.9	47.0	--	96	107	104	--	8	1.7	41
STINE	4562-2	40.2	---	---	---	---	---	---	98	--	--	---	8	1.5	39
KSOY	KS4694	36.6	46.7	45.4	49.8	41.6	42.9	44.6	89	104	88	110	9	1.0	41
TAYLOR	454	39.4	47.3	58.8	--	43.3	48.5	---	95	105	114	---	9	1.5	43
HORNBECK	HBK4890	38.2	---	---	---	---	---	---	93	---	---	---	10	1.5	38
STINE	4790	39.7	---	---	---	---	---	---	96	---	---	---	10	1.3	42
	CRAWFORD	27.3	36.4	41.1	39.4	31.9	34.9	36.1	66	81	80	87	10	1.5	49
KSOY	KS4895	33.1	42.3	41.3	---	37.7	38.9	---	80	94	80	---	12	1.2	41
TERRA	TS474	38.2	45.7	48.9	---	42.0	44.3	-	93	102	95	---	14	1.5	45
MERSCHMAN	DALLAS III	39.3	---	---	---	---	---	---	95	---	---	---	14	1.0	43
HORNBECK	HBK49	26.6	---	---	---	-	--	---	65	---	---	---	19	1.5	51
TEST AVERAGES		41.2	44.8	51.4	45.4										
LSD (.10)		3.7	3.9	5.6	3.3										

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN FLYER
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

BRAND	ENTRY	$\begin{aligned} & \text { YIELD } \\ & (\mathrm{Bu} / \mathrm{A}) \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
		1998	1997	1996	1995	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995		--1998--	--
NC+	4A47	35.4	57.2	45.6	---	46.3	46.1	---	89	109	106	---	3	3.0	44
	K1380	43.1	---	---	---	---	---	---	108	---	---	---	3	1.3	41
DEKALB	CX496C	38.9	---	---	---	---	---	---	97	---	---	---	3	2.0	41
NK	3474	38.4	53.5	---	---	45.9	---	---	96	102	---	---	3	2.0	45
	K1379	39.5	---	---	---	---	---	---	99	---	---	---	4	1.7	38
DELTAPINE	DP3478	34.0	---	---	---	---	---	---	85	---	---	---	4	2.3	47
STINE	4790	30.2	---	---	---	---	---	---	75	---	---	---	4	2.3	44
	K1378	35.9	--	---	---	-	--	---	90	---	---	---	4	3.0	42
KSOY	KS4694	37.8	59.0	45.6	17.2	48.4	47.5	39.9	94	112	106	92	5	2.3	39
MIDLAND	8431	33.1	57.9	44.4	-	45.5	45.1	---	83	110	103	---	5	2.3	43
GARST	D478	36.2	---	---	---	---	---	---	90	---	---	---	5	2.0	45
LEWIS	390	38.7	-	---	---	---	---	--	97	--	---	---	6	2.0	47
MIDLAND	8475	38.7	52.7	41.1	21.3	45.7	44.2	38.5	97	100	95	114	6	1.3	39
TERRA	TS474	33.6	66.3	45.0	15.7	50.0	48.3	40.1	84	126	104	84	6	2.7	43
WILLCROSS	RR2467N	34.5	---	---	---	---	---	---	86	---	---	---	7	1.7	46
PIONEER	9492	32.7	---	---	---	---	---	---	82	---	---	---	8	1.7	40
DELTAPINE	DPS8S49 (EXP)	32.8	---	---	---	---	---	---	82	---	-	-	13	2.0	46
TEST AVERAGES		40.0	52.6	43.2	18.7										
LSD (.10)		3.4	5.8	3.9	3.4										
				MATURITY		GROUP									
MIDLAND	8486	34.7	---	--	---	---	---	---	107	---	---	---	8	2.3	48
GOLDEN HARVEST	H-1500	36.0	---	40.4	22.6	---	---	---	110	---	97	104	8	1.7	30
AGRIPRO	AP4880	34.9	---	---	---	---	---	---	107	---	---	-	8	2.0	46
ADV. GENETICS	DS485 (DeLange)	39.7	---	---	---	---	---	---	122	---	---	---	8	2.0	46
MIDLAND	8487NB	35.0	---	---	---	---	---	---	107	---	---	---	8	2.0	45
	CRAWFORD	21.8	---	---	---	---	---	---	67	---	---	---	8	2.7	47
NK	3505	32.0	48.1	---	---	40.0	---	--	98	94	-	---	8	1.0	29
KSOY	KS4997	37.7	57.2	46.9	25.5	47.5	47.3	41.8	116	112	112	117	9	1.0	29
	STAFFORD	30.3	51.2	41.9	23.4	40.8	41.1	36.7	93	101	100	107	9	1.0	31
HORNBECK	HBK4890	37.1	---	---	---	---	---	---	114	---	---	---	10	1.3	41
GOLDEN HARVEST	H-1487	36.0	---	---	---	---	---	---	111	---	---	---	10	2.0	44
	K1366	35.1	--	---	-	---	-	-	108	---	--	---	11	2.0	32
KSOY	KS4895	31.0	--	43.2	-	-	-	---	95	--	103	---	11	2.0	42
PIONEER	95B33	42.3	---	---	---	---	---	---	130	---	---	---	12	1.7	35
	KS5292	34.8	48.1	42.3	20.1	41.4	41.7	36.3	107	94	101	92	13	1.7	32
	MANOKIN	31.5	48.6	39.2	22.2	40.0	39.8	35.4	97	95	94	102	14	1.7	31
NC+	5A44	38.3	48.6	39.8	22.9	43.4	42.2	37.4	118	95	95	105	14	1.3	31
	K1391	31.3	---	---	---	---	---	---	96	---	---	-	15	1.7	33
DELTAPINE	DP3519S	28.4	-	---	---	---	-	--	87	---	---	---	15	1.7	34
HORNBECK	HBK49	25.6	---	---	---	---	---	-	78	---	---	-	15	2.0	48
	K1364	27.6	---	---	-	---	---	-	85	---	---	---	16	1.7	29

(CONTINUED)

MATURITY GROUPS II-IV

	IA2021	33.5	---	---	---	---	---	---	90	---	---	---	-12	1.0	30
MIDLAND	8287	39.8	---	---	---	---	---	---	107	---	---	---	-11	1.0	29
GOLDEN HARVEST	H-1316	39.5	---	---	---	---	---	---	106	---	---	---	-5	1.0	35
MIDLAND	8321	45.6	48.5	61.4	---	47.1	51.8	---	122	139	98	---	-5	1.0	36
MIDLAND	8316 STS	34.2	--			-	---	---	92	---	--	---	-5	1.0	36
DYNA-GRO	DG-3368	35.4	33.1	62.1	47.6	34.2	43.5	44.6	95	95	99	111	-5	1.0	39
KSOY	Ks3494	33.1	51.8	58.3	42.8	42.4	47.7	46.5	89	149	93	100	-4	1.0	37
MIDLAND	8334	43.5	---	---	---	---	---	---	117	---	--	---	-4	1.0	32
MIDLAND	8333STS	45.7	---	59.5	---	---	---	---	123	---	95	---	-4	1.0	37
MIDLAND	8355	39.4	46.3	67.0	49.9	42.8	50.9	50.6	106	133	107	116	-4	1.0	36
PIONEER	93B41	38.2	---	---	---	---	---	---	102	---	---	---	-4	1.0	35
DEKALB	Cx351	42.7	47.2	---	---	45.0	---	---	114	136	---	---	-3	1.0	35
PIONEER	9352	42.7	---	---	---	---	---	---	115	---	---	---	-3	1.0	36
FONTANELLE	3373	40.3	47.9	74.5	---	44.1	54.2	---	108	138	119	---	-3	1.0	36
ADV. GENETICS	EXPRESS II	31.5	34.4	64.9	53.0	33.0	43.6	45.9	84	99	103	124	-3	1.0	34
	RESNIK	30.8	25.5	66.6	48.7	28.2	41.0	42.9	83	73	106	113	-3	1.0	37
DYNA-GRO	DG-3395	37.3	42.9	58.7	---	40.1	46.3	---	100	123	94	---	-2	1.0	36
ADV. GENETICS	AG3630STS	28.2	---	---	---	---	---	---	76	---	---	---	-2	1.0	42
MIDLAND	8386STS	41.4	32.1	---	---	36.7	---	---	111	92	---	---	-2	1.0	40
NC+	3A67	37.2	50.9	---	---	44.1	---	---	100	146	---	---	-2	1.0	37

[^0]| BRAND | ENTRY | $\begin{array}{r} \text { YIELD } \\ -(\mathrm{Bu} / \mathrm{A}) \\ \hline \end{array}$ | | | | | | | YIELD AS \% OF TEST AVERAGE | | | | MAT | $\begin{aligned} & \text { LODGING } \\ & \text { SCORE } \end{aligned}$ | $\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1998 | 1997 | 1996 | 1995 | 2-Yr | 3-Yr | 4-Yr | 1998 | 1997 | 1996 | 1995 | | --1998-- | -- |
| ADV. GENETICS | AG3667RR | 32.6 | --- | --- | --- | --- | --- | --- | 87 | - | --- | --- | -1 | 1.0 | 35 |
| | SHERMAN | 38.0 | 25.0 | 63.5 | 44.5 | 31.5 | 42.2 | 42.8 | 102 | 72 | 101 | 104 | -1 | 1.0 | 39 |
| MIDLAND | 8345 | 38.2 | --- | --- | --- | --- | --- | --- | 102 | --- | --- | --- | -1 | 1.0 | 39 |
| M/W GENETICS | G3644STS | 39.4 | --- | --- | --- | --- | --- | --- | 106 | --- | --- | --- | -1 | 1.0 | 41 |
| MIDLAND | 8388 | 43.4 | --- | --- | --- | --- | --- | --- | 116 | --- | --- | --- | -1 | 1.0 | 36 |
| ADV. GENETICS | AG3860NSTS | 31.0 | --- | --- | --- | --- | --- | --- | 83 | - | --- | - | -1 | 1.0 | 41 |
| NC+ | 3A87 | 36.0 | -- | --- | --- | --- | --- | - | 96 | --- | --- | --- | -1 | 1.0 | 35 |
| MIDLAND | 8371 | 38.5 | 39.6 | --- | -- | 39.0 | --- | --- | 103 | 114 | -- | - | -1 | 1.0 | 40 |
| ADV. GENETICS | AG3797RR | 35.5 | --- | --- | -- | --- | --- | --- | 95 | --- | --- | --- | 0 | 1.0 | 37 |
| | FLYER | 33.2 | 29.8 | 61.1 | 43.7 | 31.5 | 41.4 | 42.0 | 89 | 86 | 98 | 102 | 9/21 | 1.0 | 38 |
| NK | S38-L5 | 34.1 | 47.0 | --- | --- | 40.5 | --- | - | 91 | 135 | --- | -- | 0 | 1.0 | 36 |
| ADV. GENETICS | AG3957RR | 43.4 | - | --- | --- | --- | --- | - | 116 | - | --- | -- | 0 | 1.0 | 33 |
| MIDLAND | 8396STS | 39.7 | --- | --- | --- | --- | --- | - | 107 | -- | --- | --- | 0 | 1.0 | 38 |
| KSOY | MACON | 44.2 | 30.5 | 70.4 | 42.9 | 37.3 | 48.4 | 47.0 | 119 | 88 | 112 | 100 | 0 | 1.0 | 38 |
| ADV. GENETICS | AG3822NRR | 39.9 | --- | --- | --- | --- | --- | --- | 107 | --- | --- | --- | 0 | 1.0 | 41 |
| ADV. GENETICS | BOUNTYSTS | 31.7 | - | 64.2 | 41.5 | --- | --- | --- | 85 | --- | 102 | 97 | 1 | 1.0 | 42 |
| | WILLIAMS 82 | 30.5 | 18.1 | 51.7 | 41.6 | 24.3 | 33.4 | 35.5 | 82 | 52 | 82 | 97 | 1 | 1.0 | 40 |
| NK | S39-D9 | 43.4 | --- | --- | --- | --- | --- | --- | 116 | --- | --- | --- | 1 | 1.0 | 36 |
| | K1386 | 42.1 | --- | --- | -- | -- | -- | --- | 113 | --- | --- | --- | 2 | 1.0 | 42 |
| KSOY | STRESSLAND | 31.2 | 47.8 | 57.6 | 34.1 | 39.5 | 45.6 | 42.7 | 84 | 137 | 92 | 79 | 2 | 1.0 | 39 |
| | K1378 | 33.1 | --- | --- | --- | --- | --- | --- | 89 | --- | --- | --- | 2 | 1.0 | 41 |
| | A94-774021 | 40.8 | - | --- | --- | --- | --- | - | 109 | - | --- | --- | 2 | 1.0 | 29 |
| | HC93-4118 | 30.2 | - | --- | --- | --- | --- | --- | 81 | --- | --- | - | 3 | 1.0 | 38 |
| | K1370 | 35.9 | --- | --- | --- | --- | --- | --- | 96 | --- | --- | --- | 3 | 1.0 | 41 |
| | K1340 | 35.0 | --- | --- | --- | --- | --- | --- | 94 | --- | --- | --- | 3 | 1.0 | 42 |
| | K1377 | 32.1 | - | --- | --- | --- | --- | --- | 86 | -- | --- | --- | 3 | 1.0 | 39 |
| | K1380 | 29.8 | - | - | --- | --- | --- | - | 80 | --- | --- | --- | 3 | 1.0 | 40 |
| | K1381 | 47.0 | --- | --- | --- | --- | --- | - | 126 | --- | --- | --- | 3 | 1.0 | 39 |
| NK | S43-B5 | 32.7 | --- | --- | --- | --- | --- | - | 88 | --- | --- | --- | 3 | 1.0 | 38 |
| NK | S42-M1 | 35.2 | --- | --- | --- | --- | --- | --- | 94 | --- | --- | --- | 3 | 1.0 | 43 |
| | K1379 | 38.6 | --- | --- | --- | --- | --- | --- | 104 | -- | --- | --- | 3 | 1.0 | 39 |
| MYCOGEN | 5404 | 40.6 | 42.7 | --- | --- | 41.6 | --- | --- | 109 | 123 | --- | -- | 4 | 1.0 | 40 |
| KSOY | KS4694 | 40.1 | 25.7 | 60.4 | 40.8 | 32.9 | 42.1 | 41.8 | 108 | 74 | 96 | 95 | 4 | 1.0 | 41 |
| TEST AVERAGES | | 37.3 | 34.8 | 62.7 | 42.9 | | | | | | | | | | |
| LSD (.10) | | 4.6 | 6.4 | 8.2 | 6.5 | | | | | | | | | | |

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN FLYER
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

MATURITY GROUPS II-IV

	IA2021	55.9	-	---	---	---	---	---	93	--	---	--	-11	1.0	32
MIDLAND	8287	56.5	---	---	---	---	---	---	94	---	---	---	-9	1.0	37
KSOY	KS3494	63.2	78.3	62.8	60.8	70.8	68.1	66.3	105	117	101	110	-5	1.0	40
STINE	3290	56.4	---		---	---	---	---	94	---	---	---	-5	1.0	38
HOEGEMEYER	312	57.2	78.8	59.9	---	68.0	65.3	---	95	117	96	--	-5	1.0	36
MIDLAND	8316STS	56.9	---	---	---	---	---	---	94	---	---	---	-5	1.0	39
MIDLAND	8321	65.4	75.8	65.3	---	70.6	68.8	---	109	113	105	---	-5	1.0	38
RENZE	R3297	56.8	---	--	---	---	---	---	94	---	---	---	-4	1.0	40
MIDLAND	8355	66.2	77.0	62.0	57.7	71.6	68.4	65.7	110	115	99	105	-3	1.0	34
MIDLAND	8334	61.9	---	---	---	---	---	---	103	---	---	---	-3	1.0	37
RENZE	R3599	60.9	---	---	---	---	---	---	101	---	---	---	-3	1.0	40
MIDLAND	8345	60.5	---	---	---	---	---	---	100	---	---	-	-3	1.0	42
PIONEER	93B53	54.6	---	---	---	---	---	---	91	---	---	-	-2	1.0	39
ADV. GENETICS	AG3630STS	64.0	---	---	---	---	---	---	106	---	---	---	-2	1.0	40
	SHERMAN	55.0	74.3	58.6	61.2	64.7	62.7	62.3	91	111	94	111	-2	1.0	39
STINE	3398-8	63.0	---	---	---	---	---	---	105	---	---	---	-2	1.0	36
STINE	3690-0	58.8	---	---	---	---	---	---	98	---	---	---	-1	1.0	37
DEKALB	CX377	66.5	79.5	63.2	59.1	73.0	69.7	67.1	110	118	101	107	-1	1.0	40
MIDLAND	8386 STS	57.9	63.6	62.2	---	60.8	61.2	---	96	95	100	---	-1	1.0	40
NK	S38-L5	63.8	---		---		---	---	106	---	---	---	-1	1.0	40
MIDLAND	8371	57.5	66.9	61.4	---	62.2	61.9	---	95	100	98	---	0	1.0	39
MIDLAND	8388	61.5	-	---	---	---	---	---	102	---	---	---	0	1.0	39
	RESNIK	58.0	60.3	56.8	53.3	59.1	58.4	57.1	96	90	91	97	0	1.0	39
	FLYER	53.7	66.7	63.6	52.9	60.2	61.3	59.2	89	99	102	96	9/23	1.0	40
PIONEER	93B82	62.7					---	---	104	---	---	---	0	1.0	41
HOEGEMEYER	380	61.6	74.0	63.2	51.7	67.8	66.3	62.6	102	110	101	94	0	1.0	39
AGRIPRO	AP3880	63.2	---	---	---	---	---	---	105	---	---	---	0	1.0	39
ADV. GENETICS	AG3860NSTS	65.4	---	---	---	---	---	---	108	---	---	---	0	1.0	42
MIDLAND	8396STS	65.5	---	---	---	---	---	---	109	-	---	---	0	1.0	38
KSOY	MACON	69.1	64.4	61.7	62.7	66.8	65.1	64.5	115	96	99	114	1	1.0	41
NC+	3A87	62.2	---	---	---	---	---	---	103	---	---	---	1	1.0	39
KSOY	STRESSLAND	59.0	63.1	61.1	47.8	61.1	61.1	57.7	98	94	98	87	1	1.0	42
TAYLOR	396	65.2	---	---	---	---	---	---	108	-	-	--	1	1.0	40
	WILLIAMS 82	53.4	54.4	56.3	50.8	53.9	54.7	53.7	89	81	90	92	1	1.0	43
STINE	3990-0	64.0	---	---	---	---	---	---	106	---	---	---	1	1.0	41
GARST	D398 (EX7398)	67.6	74.7	---	---	71.2	---	---	112	111	---	---	1	1.0	40

BRAND	ENTRY	$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \mathrm{HT} \\ & \text { IN } \end{aligned}$
		1998	1997	1996	1995	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995		--1998--	--
HC93-4118	64.3 ---	---	---	---	---	107	---	---	---	2	1.0	38			
	K1380	62.6	---	---	---	---	---	---	104	---	---	---	2	1.0	41
	K1386	64.4	---	---	---	---	---	---	107	---	---	---	2	1.0	42
	K1370	53.3	---	---	---	---	---	---	88	---	---	---	3	1.0	42
	K1377	53.5	-	---	---	---	---	---	89	---	---	---	3	1.0	42
NC+	4A10	60.6	72.7	---	58.1	66.7	---	---	101	108	---	105	3	1.0	39
NK	S43-B5	53.9	63.6	--	-	58.8	--	--	89	95	---	--	3	1.0	40
	A94-774021	65.3	---	---	---	---	---	--	108	---	---	-	3	1.0	32
MYCOGEN	5404	63.9	---	---	---	---	---	-	106	-	---	-	3	1.0	41
	K1340	58.5	---	---	---	---	---	---	97	---	---	---	3	1.0	41
DEKALB	CX400	62.0	-	-	-	---	---	-	103	---	---	---	3	1.0	41
	K1378	55.0	-	--	---	---	---	---	91	-	---	---	3	1.0	43
	K1379	60.4	---	---	---	---	---	---	100	---	---	---	3	1.0	41
	K1381	60.5	---	---	---	---	---	---	100	---	---	---	3	1.0	38
HOEGEMEYER	402STS	55.0	--	-	---	---	---	---	91	---	---	--	3	1.0	39
MYCOGEN	5430	55.9	--	---	---	---	---	--	93	--	-	-	3	1.0	40
KSOY	KS4694	53.4	54.6	63.7	48.1	54.0	57.2	55.0	89	81	102	87	4	1.0	43
TEST AVERAGES		60.3	67.1	62.4	55.2										
LSD (.10)		4.6	5.1	3.6	5.5										

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN FLYER
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

		$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
BRAND	ENTRY	1998	1997	1996	1995	2-Yr	$3-\mathrm{Yr}$	4-Yr	1998	1997	1996	1995	---	--1998--	---
	MATURITY GROUPS II-III														
	IA2021	34.0	---	---	---	---	---	-	131	---	---	---	-11	1.0	23
WILSON	3380	30.7	45.4	---	---	38.0	---	---	118	106	---	---	-8	1.1	32
	A94-774021	34.4	---	---	---	---	---	---	132	---	---	---	-7	1.0	27
KSOY	KS3494	25.3	39.7	52.4	24.0	32.5	39.1	35.3	97	93	97	98	-6	1.3	37
	SHERMAN	24.0	41.7	48.3	25.3	32.9	38.0	34.8	92	97	90	103	-6	1.0	36
WILSON	E8362	29.3	---	---	---	---	---	-	113	---	---	---	-5	1.1	35
STINE	3870-0	27.5	---	---	--	---	---	---	106	---	---	---	-5	1.1	33
PIONEER	93B53	30.1	---	---	---	---	---	---	116	---	---	---	-5	1.0	32
PIONEER	9352	27.2	-	-	-	-	-	-	105	--	--	--	-4	1.1	32
	RESNIK	26.0	38.6	55.4	25.9	32.3	40.0	36.5	100	90	103	106	-4	1.1	33
WILLCROSS	9378STS	25.8	---	---	-	---	---	---	99	---	---	---	-3	1.0	36
DYNA-GRO	DG-3395	24.6	48.1	62.7	---	36.4	45.1	---	95	112	116	-	-3	1.0	33
PIONEER	93B82	29.1	---	-	-	--	--	--	112	--	--	--	-2	1.1	34
DYNA-GRO	DG-3368	27.1	---	50.3	25.7	---	--	---	104	---	93	105	-2	1.5	36
KSOY	MACON	27.7	48.9	57.5	23.3	38.3	44.7	39.4	107	114	107	95	-2	1.0	32
M/W GENETICS	G3996	24.1	52.3	62.6	23.0	38.2	46.3	40.5	93	122	116	94	-2	1.1	35
DEKALB	Cx399	22.6	47.0	---	---	34.8	---	---	87	110	---	---	-2	1.4	39
MIDLAND	8371	22.2	48.3	64.3	---	35.3	44.9	---	85	113	119	--	-1	1.3	36
HOEGEMEYER	380	26.0	-	--	---	---	---	---	100	--	-	---	-1	1.1	35
MIDLAND	8396STS	25.2	---	---	---	---	---	---	97	---	---	---	-1	0.8	29
MIDLAND	8386STS	19.6	41.7	53.1	--	30.6	38.1	---	75	97	99	--	-1	1.4	42
WILLCROSS	9738	21.6	---	---	---	---	--	---	83	---	---	---	0	1.0	35
	WILLIAMS 82	14.0	28.8	53.2	20.9	21.4	32.0	29.2	54	67	99	86	1	1.3	43
TEST AVERAGES		26.0	42.9	53.9	24.5										
LSD (.10)		2.0	6.8	8.3	2.3										
(CONTINUED)															

BRAND	ENTRY	$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	$\begin{aligned} & \text { LODGING } \\ & \text { SCORE } \end{aligned}$	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
		1998	1997	1996	1995	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995	---	--1998--	
MATURITY GROUP IV															
WILLCROSS	HC93-4118	29.6	-	---	---	---	---	---	166	---	---	---	-3	1.1	34
	9640	26.0	-	---	---	---	---	---	146	---	---	---	-3	1.0	38
	K1381	18.5	---	---	---	---	---	--	104	---	---	---	-2	1.1	36
	K1386	25.1	---	---	---	---	---	---	141	---	---	---	-1	1.7	40
MYCOGEN	5404	22.2	45.0	---	-	33.6	-	-	125	107	---	---	-1	1.1	40
	K1370	20.8	---	-	---	--	---	---	117	--	---	---	-1	1.4	42
	K1340	13.9	--	---	---	---	---	---	78	---	---	---	0	1.6	42
	FLYER	20.6	48.4	49.2	24.3	34.5	39.4	35.6	116	114	88	98	9/5	1.1	36
M/W GENETICS	G4555	15.0	---	---	---	---	---	---	84	---	---	---	0	1.7	43
WILLCROSS	9449 NSTS	19.0	---	---	---	---	---	---	107	---	---	---	1	1.1	40
KSOY	STRESSLAND	21.3	39.8	56.5	24.7	30.5	39.2	35.6	120	94	102	100	1	1.1	42
AGRIPRO	AP4500	16.0	44.9	--	--	30.4	--	-	90	106	-	-	1	1.5	41
NC+	4A10	24.3	48.8	---	-	36.5	-	---	137	115	-	-	1	1.0	36
ADV. GENETICS	DS454 (DeLange)	16.2	47.7	---	-	31.9	-	---	91	113	---	---	2	1.6	42
	K1379	21.0	---	---	---	---	---	---	118	---	---	---	2	1.0	36
WILLCROSS	9841	18.5	-	--	--	-	--	--	104	--	---	---	2	1.0	38
	K1377	22.8	---	--	-	---	-	---	128	-	---	---	3	1.1	38
	K1380	23.0	---	---	-	---	---	---	130	---	---	---	3	1.1	38
MIDLAND	8431	14.7	43.3	67.0	-	29.0	41.6	--	83	102	120	---	3	1.3	39
GOLDEN HARVEST	H-1454	21.0	---	---	---	---	---	-	118	---	---	---	4	1.0	42
WILLCROSS	RR2448	12.4	--	-	---	---	-	-	70	--	-	--	4	1.1	48
	K1378	17.3	-	-	-	---	---	---	97	---	---	---	5	1.5	41
DELTAPINE	DP3478	13.5	-	-	-	---	---	---	76	---	---	---	5	1.0	43
LEWIS	390	13.6	---	---	---	---	---	---	76	---	---	---	5	1.0	43
WILLCROSS	RR2449N	14.2	---	---	---	---	---	---	80	--	---	---	5	1.2	43
KSOY	KS4694	16.1	34.4	58.5	24.7	25.2	36.3	33.4	90	81	105	100	8	1.2	40
DELTAPINE	DPS8S49 (EXP)	7.0	-	--	-	---	---	---	40	---	---	---	25	1.0	45
DELTAPINE	DP3519S	5.6	--	--	---	---	---	---	32	---	---	---	27	1.0	37
WILLCROSS	RR2517N	6.9	---	---	---	---	---	-	39	---	---	---	29	1.0	40
TEST AVERAGES		17.8	42.3	55.7	24.8										
LSD (.10)		2.2	6.4	8.0	2.6										
LSD (. 1 BETWEEN	ATURITY GROUPS)	2.2	6.9	8.3	1.9										
MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN FLYER															

BRAND		$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
	ENTRY	1998	1997	1996	1995	2-Yr	3-Yr	4-Yr	1998	1997	1996	1995		--1998--	--
KSOY	KS4694	34.8	43.3	57.2	47.6	39.0	45.1	45.7	88	97	102	95	1	1.3	35
	K1379	36.6	---	---	---	---	---	-	92	---	---	-	1	1.0	36
WILLCROSS	9449NSTS	42.6	---	---	---	---	---	---	108	---	---	---	1	1.3	37
DEKALB	CX445	41.9	50.7	65.0	49.1	46.3	52.6	51.7	106	113	116	98	1	1.3	37
MIDLAND	8386STS	41.3	51.8	61.1	---	46.5	51.4	--	104	116	109	--	1	1.3	35
GARST	D398 (EX7398)	43.4	47.2	-	--	45.3	-	-	110	106	---	---	1	1.0	30
ADV. GENETICS	DS410 (DeLange)	41.9	40.0	62.1	48.9	41.0	48.0	48.2	106	90	111	97	1	1.0	36
	K1377	42.4	---	---	---	---	---	---	107	---	---	---	1	1.0	34
LEWIS	390	38.5	-	---	---	---	---	-	97	-	---	---	1	1.3	40
WILLCROSS	RR2448	37.3	--	-	---	---	---	---	94	---	--	--	2	1.3	39
	K1378	40.0	-	-	-	-	-	-	101	--	---	---	2	1.3	38
DELTAPINE	DP3478	39.2	--	---	-	---	---	-	99	---	---	---	3	1.3	37
MIDLAND	8431	39.4	---	57.1	---	---	---	---	99	--	102	---	3	1.0	31
TERRA	TS474	38.9	---	---	---	---	---	_--	98	-	---	---	7	1.5	39
DELTAPINE	DP3519S	27.2	---	---	---	---	--	---	69	---	--	---	14	2.0	40
WILLCROSS	RR2517N	23.1	---	---	---	-	--	---	58	---	---	---	18	1.5	39
TEST AVERAGES		39.6	44.7	56.0	50.2										
LSD (.10)		7.2	6.4	5.5	5.6										

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN FLYER
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

BRAND	ENTRY	$\begin{aligned} & \text { YIELD } \\ & \text { (Bu/A) } \end{aligned}$							YIELD AS \% OF TEST AVERAGE				MAT	LODGING SCORE	нт
		1998	1997	1996	1995	$2-\mathrm{Yr}$	$3-Y r$	4-Yr	1998	1997	1996	1995		1998-	

	MATURITY GROUPS II-III														
	IA2021	31.6	---	---	---	---	---	---	84	---	---	---	6	1.7	29
	SHERMAN	32.6	54.3	53.4	26.9	43.4	46.7	41.8	87	105	104	81	10	1.3	31
STINE	X3506	40.3	---	---	---	---	---	---	107	---	---	---	11	2.0	35
PIONEER	93B51	38.1	---	---	---	---	---	---	102	---	---	---	11	2.0	34
	A94-774021	39.1	---	---	---	---	---	---	104	---	---	---	13	1.7	28
	RESNIK	32.6	47.2	52.7	29.0	39.9	44.2	40.4	87	91	103	87	13	2.3	33
KSOY	MACON	35.6	60.7	50.9	27.9	48.1	49.1	43.8	95	118	100	84	14	1.3	31
STINE	3171-1	37.7	---	---	---	---	---	---	100	---	---	---	15	1.0	32
KSOY	KS3494	40.3	57.7	57.2	31.5	49.0	51.7	46.7	107	112	112	95	15	1.7	35
STINE	3870-0	36.4	---	---	---	---	---	---	97	---	---	---	16	1.7	24
PIONEER	93B71	42.8	---	---	---	---	---	---	114	---	---	-	16	2.0	36
GARST	D398(EX7398)	33.6	---	---	---	---	---	---	90	---	---	---	16	1.0	27
	WILLIAMS 82	41.4	38.8	55.7	32.6	40.1	45.3	42.1	110	75	109	98	20	1.3	35
MIDLAND	8393	43.3	39.5	56.8	39.9	41.4	46.5	44.9	115	77	111	120	20	1.7	41
TEST AVERAGES		37.5	51.7	51.1	33.3										
LSD (.10)		NS	11.6	7.5	6.0										
				MATURITY GROUP IV											
DEKALB	K1386	41.8	---					-	95	---	---	---	17	1.0	37
	CX445	49.9	52.4	52.8	41.8	51.2	51.7	49.2	114	99	103	114	17	1.0	43
	K1370	41.4	---	---	---	---	---	---	94	---	---	---	17	1.0	41
	K1380	42.4	---	---	---	---	---	---	96	---	---	---	17	1.7	41
	K1340	43.9	---	---	---	---	---	---	100	---	---	---	18	2.0	42
DEKALB	CX400	37.2	---	---	---	---	---	---	85	---	---	---	18	1.0	28
	SPARKS	41.9	-	46.1	37.1	---	---	---	95	---	89	101	18	1.0	42
PIONEER	94B01	49.8	-	---	---	---	---	---	113	---	---	---	18	1.0	33
	HC93-4118	45.5	---	---	---	---	---	---	104	---	---	---	18	1.0	33
	K1377	48.7	---	---	---	---	---	---	111	---	---	---	19	1.0	40
	K1381	47.8	---	---	---	---	---	---	109	---	---	---	20	1.0	36
AGRIPRO	AP4500	51.0	57.7	-	-	54.3	-	--	116	109	---	---	21	1.3	42
PIONEER	94B41	38.8	---	---	---	---	---	---	88	---	---	---	22	1.3	36
KSOY	STRESSLAND	43.4	60.4	54.7	49.8	51.9	52.8	52.1	99	114	106	136	23	1.3	33
MIDLAND	8431	51.1	---	---	---	---	---	---	116	---	---	---	23	1.0	41
	K1379	47.5	-	---	---	---	---	---	108	---	---	---	24	1.0	40
NK	S46-W8	42.0	--	--	-	---	---	---	96	-	---	--	24	1.0	39
	K1378	46.2	---	---	---	---	---	--	105	--	---	---	25	1.0	44
KSOY	KS4694	37.8	44.7	47.8	36.9	41.3	43.4	41.8	86	84	93	101	26	1.3	45
AGRIPRO	AP4880	39.4	---	---	---	---	---	---	90	---	---	---	28	1.0	28
NK	S51-T1	35.4	---	---	--	---	---	---	81	---	---	---	46	1.0	50
TEST AVERAGES		44.0	53.0	51.5	36.6										

LSD (.1 BETWEEN MATURITY GROUPS) $11.6 \quad 13.0 \quad 9.65 .7$
MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN FLYER
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

			YIELD AS			
BRAND		Yield	\% of test	MAT	LODGING	HTIN
	ENTRY	(BU/A)	AVERAGE		SCORE	

MATURITY GROUPS II-IV						
ADV. GENETICS	AG3630StS	23.3	97	-	1.0	37
ADV. GENETICS	AG3667RR	21.5	89	-	1.0	31
ADV. GENETICS	AG3797RR	22.2	92	-	1.0	31
DEKALB	Cx377	21.5	89	-	1.0	30
K-SOY	KS3494	27.6	114	-	1.0	34
K-SOY	KS4694	26.6	110	-	1.0	39
K-SOY	MACON	20.2	84	-	1.0	28
K-SOY	STRESSLAND	22.8	94	-	1.0	36
MIDLAND	8321	26.7	111	-	1.0	32
MIDLAND	8371	19.5	81	-	1.0	33
MIDLAND	8386STS	22.9	95	-	1.0	33
MIDLAND	8393	16.4	68	-	1.0	36
MIDLAND	8431	18.1	75	-	1.0	33
MIDLAND	8388	31.0	129	-	1.0	34
MIDLAND	8396STS	22.2	92	-	1.0	33
NC+	2A99	30.6	127	-	1.0	25
NC+	3A26	30.1	125	-	1.0	32
PIONEER	9294	31.7	132	-	1.0	30
PIONEER	93B51	26.0	108	-	1.0	30
PIONEER	93b71	29.6	123	-	1.0	38
	A94-774021	28.1	117	-	1.0	27
	FLYER	27.7	115	-	1.0	33
	HC93-4118	23.5	98	-	1.0	30
	IA2021	25.6	106	-	1.0	24
	K1340	22.9	95	-	1.0	36
	K1370	21.0	87	-	1.0	37
	K1377	23.5	98	-	1.0	36
	K1378	20.8	86	-	1.0	35
	K1379	18.9	78	-	1.0	34
	K1380	25.3	105	-	1.0	35
	K1381	25.9	107	-	1.0	31
	K1386	25.2	105	-	1.0	36
	RESNIK	24.6	102	-	1.0	29
	SHERMAN	26.6	111	-	1.0	35
	WILLIAMS 82	14.6	60	-	1.0	36
TEST AVERAGE		24.1				
LSD (.10)		1.6				

TABLE 15. BROWN COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (DRYLAND), 1998.

		YIELD AS				
		YIELD	$\%$ OF TEST	MAT	LODGING	HT
BRAND	ENTRY	(BU/A)	AVERAGE	SCORE	IN	

MATURITY GROUPS III-IV

ADV. GENETICS	AG3797RR	52.7	103	-5	2.0	38
AGRIPRO	AP 3702RR	52.6	103	-8	1.3	34
ASGROW	AG3302	51.4	100	-10	1.5	34
ASGROW	AG3701	57.0	111	1	1.2	37
ASGROW	AG3901	48.0	94	0	1.7	35
DEKALB	CX359RR	50.8	99	-8	2.2	35
DYNA-GRO	DG-3368RR	53.0	104	-5	1.3	34
DYNA-GRO	DG-3388RR	52.0	102	-4	1.7	37
FONTANELLE	942RR	47.5	93	-10	1.5	34
FONTANELLE	9761 RR	47.2	92	-8	2.0	34
GARST	D376RR	49.7	97	-1	1.5	34
GARST	D437RR/N	51.8	101	5	2.0	38
GOLDEN HARVEST	H-1357RR	49.6	97	-4	1.5	32
GOLDEN HARVEST	X 384RR	49.1	96	-1	1.7	40
LEWIS	3668RR	52.7	103	-4	2.2	36
LEWIS	3955RR	51.1	100	1	1.5	37
LEWIS	4308RR	52.3	102	0	1.5	38
MERSCHMAN	KENNEDY IVRR	50.8	99	-1	1.7	34
MERSCHMAN	WASHINGTON VIIRR	50.6	99	2	1.7	36
MIDLAND	8361RR	49.3	96	-6	1.2	33
MIDLAND	8377 RR	48.1	94	-2	1.3	30
MIDLAND	8397RR	49.2	96	2	1.7	37
MIDLAND	8382RR	52.9	103	-1	1.8	36
MIDLAND	8411RR	52.0	102	3	1.7	37
M/W GENETICS	G3608RR	53.5	104	-6	1.7	33
NC+	3A66RR	51.3	100	-1	1.5	35
NC+	4A16RR	46.7	91	2	1.7	37
NK	S30-K3	48.7	95	-14	1.5	35
NK	S35-F5	50.1	98	-8	1.0	34
NK	S42-M1	46.6	91	3	1.7	41
RENZE	R3209R	52.6	103	-8	1.7	36
RENZE	R356RR	47.5	93	-3	1.7	32
STINE	3264	50.7	99	-5	1.7	35
STINE	3293-4	55.9	109	-10	1.7	32
STINE	3490-4	52.5	102	-8	1.5	35
TAYLOR	370RR	53.4	104	-2	1.7	36
TAYLOR	415RR	53.7	105	4	1.3	39
TRIUMPH	TR3939RR	50.5	99	-4	2.0	41
TRIUMPH	TR4339RR	51.8	101	5	2.0	40
WILLCROSS	RR2309	47.8	93	-13	1.7	34
WILLCROSS	RR2338	54.0	105	-8	1.8	35
WILLCROSS	RR2357	56.7	111	-3	1.8	35
WILLCROSS	RR2368	53.4	104	-3	1.7	37
WILLCROSS	RR2397	48.2	94	0	1.2	35
K-SOY	KS3494 (NOT RR)	52.3	102	-9	1.7	35
K-SOY	KS4694 (NOT RR)	54.8	107	11	2.0	39
K-SOY	MACON (NOT RR)	53.7	105	-6	1.7	34
K-SOY	STRESSLAND (NOT RR)	51.4	100	9/25	2.0	38
TEST AVERAGE		51.2				
LSD (.10)		4.1				
MATURITY IS MEA LODGING SCORE	ED AS DAYS EARLIER OR	TER T	= PSSL			

TABLE 16. SHAWNEE COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (IRR.), 1998.

		YIELD AS			
		YIELD	$\%$ OF TEST	MAT	LODGING
BRAND	ENTRY	(BU/A)	AVERAGE	SCORE	IN

MATURITY GROUPS III-IV

ADV. GENETICS	AG3667RR			64.4	106	-3	1.5	35
ADV. GENETICS	AG3797RR			61.7	102	-6	1.5	40
ADV. GENETICS	AG3822NRR			61.0	101	-6	2.2	39
ADV. GENETICS	AG4333NRR			60.7	100	2	1.2	43
ADV. GENETICS	AG4427RR			55.0	91	1	1.7	42
ADV. GENETICS	AG4437RR			57.8	95	3	1.5	46
AGRIPRO	AP3902RR			58.1	96	-2	1.5	40
DEKALB	CX419RR			66.1	109	-2	2.2	42
DYNA-GRO	DG-3368RR			63.4	105	-3	1.5	38
DYNA-GRO	DG-3388RR			69.1	114	-4	1.3	41
DYNA-GRO	DG-3398RR			58.7	97	-1	1.3	41
DYNA-GRO	DG-3424RR			58.5	97	-1	1.2	39
GARST	D376RR			60.6	100	-2	1.8	36
GOLDEN HARVEST	H-1357RR			64.1	106	-2	1.5	36
GOLDEN HARVEST	X410RR			60.2	99	-1	1.7	38
MIDLAND	8341RR			60.6	100	-10	2.3	39
MIDLAND	8361RR			63.5	105	-3	1.3	37
MIDLAND	8377RR			58.7	97	-3	1.5	34
MIDLAND	8382RR			58.9	97	-4	1.5	40
MIDLAND	8390NRR			65.4	108	-3	1.5	39
MIDLAND	8394NRR			65.8	109	-5	2.5	41
MIDLAND	8411RR			64.6	107	0	1.3	38
MIDLAND	8414RR			61.6	102	-1	1.7	43
MIDLAND	8432NRR			52.3	86	2	1.5	42
M/W GENETICS	G3608RR			62.3	103	-3	1.5	37
NC+	4A16RR			62.8	104	-1	1.2	39
NK	S42-K2			63.5	105	-1	1.8	39
STINE	3264			64.7	107	-4	1.5	37
STINE	3490-4			59.7	98	-11	1.3	34
WILLCROSS	RR2368			61.2	101	-3	1.5	40
WILLCROSS	RR2397			60.8	100	-1	1.3	39
K-SOY	KS3494 (NOT	RR)		58.2	96	-12	1.8	38
K-SOY	KS4694 (N0T	RR)		44.7	74	4	2.0	40
K-SOY	MACON (NOT	RR)		56.4	93	-7	1.2	34
K-SOY	STRESSLAND	(NOT	RR)	57.4	95	9/24	1.5	42
TEST AVERAGE				60.6				

LSD (.10) 6.0

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN STRESSLAND LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

TABLE 17. FRANKLIN COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (DRYLAND), 1998.

		YIELD AS				
		YIELD	\% OF TEST	MAT	LODGING	HT
BRAND	ENTRY	(BU/A)	AVERAGE	SCORE	IN	

MATURITY GROUPS III-IV

ADV. GENETICS	AG4147RR		39.5	90	0	1.3	45
ADV. GENETICS	AG4333NRR		43.5	99	5	1.7	45
ADV. GENETICS	AG4427RR		40.0	91	1	1.7	45
ADV. GENETICS	AG4437RR		39.6	90	2	1.3	48
AGRIPRO	AP3902RR		44.1	100	-1	1.0	41
DEKALB	CX419RR		45.0	102	1	1.3	46
DELTAPINE	DP4344RR		36.5	83	10	1.5	49
DELTAPINE	DP4750RR		43.6	99	11	1.8	49
DYNA-GRO	DG-3368RR		45.7	104	-5	1.7	37
DYNA-GRO	DG-3388RR		50.0	113	-4	1.5	40
DYNA-GRO	DG-3398RR		45.6	103	2	1.0	40
DYNA-GRO	DG-3424RR		45.6	103	1	1.3	44
DYNA-GRO	DG-3432NRR		41.2	93	6	1.5	44
GARST	D437RR/N		45.5	103	5	1.5	47
GOLDEN HARVEST	H-1357RR		40.4	92	-4	1.5	37
GOLDEN HARVEST	X384RR		44.8	102	-2	1.5	45
GOLDEN HARVEST	X410RR		45.3	103	1	2.0	41
MERSCHMAN	MEMPHIS IIIRR		40.5	92	6	1.2	47
MIDLAND	8377RR		45.3	103	-3	1.0	37
MIDLAND	8397RR		42.5	96	2	1.3	43
MIDLAND	8433RR		43.5	99	1	1.5	41
MIDLAND	8394NRR		43.7	99	-4	2.0	43
MIDLAND	8411RR		46.1	105	0	1.7	43
MIDLAND	8422RR		46.9	106	1	1.2	40
MIDLAND	X442RR		45.3	103	4	1.2	43
M/W GENETICS	G4411RR		46.6	106	1	1.5	40
M/W GENETICS	G4425RR		41.2	93	3	1.5	45
NC+	4A16RR		44.6	101	-1	1.7	41
NK	S46-W8		44.1	100	3	1.7	44
STINE	3792-4		46.0	104	-5	1.5	38
STINE	4492-4		44.2	100	6	1.8	46
TAYLOR	415RR		46.5	105	1	1.5	43
TAYLOR	450RR		45.6	103	2	1.5	41
TERRA	E4280RR		45.0	102	0	1.3	41
TERRA	E4680RR		43.3	98	4	1.8	44
TERRA	TS466RR		39.9	90	6	1.3	47
TRIUMPH	TR3939RR		46.9	106	-1	1.5	43
TRIUMPH	TR4339RR		44.3	101	6	1.7	43
WILLCROSS	RR2368		48.1	109	-4	1.5	41
WILLCROSS	RR2397		43.6	99	0	1.3	42
WILLCROSS	RR2448		38.9	88	2	1.5	47
WILLCROSS	RR2449N		44.3	100	4	1.3	43
WILLCROSS	RR2467N		40.6	92	5	1.3	47
K-SOY	KS3494 (NOT RR)		46.0	104	-8	1.5	37
K-SOY	KS4694 (NOT RR)		42.8	97	7	1.5	42
K-SOY	MACON (NOT RR)		49.9	113	-3	2.2	38
K-SOY	STRESSLAND (NOT	RR)	49.0	111	9/22	2.2	44

LSD (.10) 2.8

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN STRESSLAND
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

TABLE 18. CHEROKEE COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (DRYLAND), 1998.

		YIELD AS				
		YIELD	$\%$ OF TEST	MAT	LODGING	HT
BRAND	ENTRY	(BU/A)	AVERAGE	SCORE	IN	

MATURITY GROUP III

DYNA-GRO	DG-3398RR	43.7	97	3	2.0	41
GOLDEN HARVEST	X384RR	49.3	109	0	1.7	45
MIDLAND	X394NRR	43.3	96	0	3.7	44
TRIUMPH	TR3939RR	49.8	110	0	2.0	42
K-SOY	KS3494 (NOT RR)	43.0	95	-2	1.7	39
K-SOY	MACON (NOT RR)	41.9	93	-1	2.3	39

TEST AVERAGE	45.2
LSD (.10)	5.5

MATURITY GROUP IV

ADV. GENETICS				34.7	78	3	2.0	44
DEKALB	AG4427 RR CX485RR			42.0	94	5	2.7	46
DELTAPINE	DP 4344 RR			42.5	95	8	2.3	48
DELTAPINE	DP4750RR			42.8	96	8	4.0	52
DYNA-GRO	UAPX258RR			43.6	98	3	2.0	42
GARST	D437RR/N			47.9	107	4	2.0	44
GOLDEN HARVEST	X410RR			45.6	102	1	1.3	38
MIDLAND	8433RR			42.0	94	4	2.0	44
MIDLAND	8411RR			44.6	100	0	1.7	40
MIDLAND	X442RR			49.2	110	5	1.7	44
NK	S46-W8			49.6	111	7	2.3	47
STINE	4492-4			44.6	100	6	2.7	47
TAYLOR	450RR			45.6	102	2	2.0	42
TERRA	TS466RR			48.6	109	6	2.0	50
TRIUMPH	TR4339RR			45.8	103	5	3.3	47
WILLCROSS	RR2448			35.7	80	4	2.3	47
WILLCROSS	RR2449N			48.9	110	6	2.0	46
WILLCROSS	RR2467N			45.7	102	6	2.0	48
K-SOY	KS4694 (NOT RR)			43.6	98	4	3.3	43
K-SOY	STRESSLAND	(NOT	RR)	49.1	110	9/15	1.7	45
TEST AVERAGE				44.6				

TEST AVERAGE 44.6

MATURITY GROUPS IVS and V

ADV. GENETICS	AG5277RR	43.5	90	18	2.0	39
MIDLAND	8540RR	51.1	105	23	2.0	39
MIDLAND	8570RR	46.1	95	18	1.3	35
NC+	5A45RR	51.0	105	18	2.0	37
NK	S51-T1	45.7	94	15	3.0	55
TERRA	TS556RR	46.6	96	20	2.0	38
TRIUMPH	TR5409RR	49.7	103	18	2.0	37
WILLCROSS	RR2517N	54.0	111	19	2.0	35
K-SOY	DELSOY 5500 (NOT RR)	46.7	96	16	1.3	30
K-SOY	KS4997 (NOT RR)	50.3	104	6	1.0	28
TEST AVERAGE		48.5				
LSD (.10)		NS				
MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN STRESSLAND						
LODGING SCORE	ASED ON 1-5 SCALE WIT	= EXCE	= POO			

TABLE 19. REPUBLIC COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (IRR.), 1998.

		YIELD AS				
		YIELD	\% OF TEST	MAT	LODGING	HT
BRAND	ENTRY	(BU/A)	AVERAGE	SCORE	IN	

ADV. GENETICS	AG3797RR	63.5	102	-3	1.0	41
ADV. GENETICS	AG3822NRR	60.9	97	-2	1.0	43
ADV. GENETICS	AG3957RR	63.6	102	0	1.0	39
AGRIPRO	AP3702RR	55.7	89	-3	1.0	41
AGRIPRO	AP3902 RR	60.6	97	-1	1.0	40
ASGROW	AG3002	60.7	97	-6	1.0	41
ASGROW	AG3302	66.1	106	-5	1.0	40
ASGROW	AG3701	57.9	93	-3	1.0	41
ASGROW	AG3901	63.3	101	1	1.0	42
DEKALB	CX359RR	63.7	102	-3	1.0	40
FONTANELLE	942RR	64.9	104	3	1.0	40
FONTANELLE	9761RR	57.9	93	-2	1.0	42
GARST	D376RR	62.2	100	-2	1.0	40
GOLDEN HARVEST	H-1357RR	64.4	103	-4	1.0	41
MIDLAND	8280RR	67.3	108	-9	1.0	39
MIDLAND	8291RR	58.3	93	-8	1.0	40
MIDLAND	8310RR	58.1	93	-6	1.0	42
MIDLAND	8320RR	61.7	99	-5	1.0	41
MIDLAND	8322RR	73.3	117	-5	1.0	40
MIDLAND	8341RR	67.1	107	-4	1.0	41
MIDLAND	8361RR	66.1	106	-3	1.0	41
MIDLAND	8377RR	62.3	100	-3	1.0	39
MIDLAND	8382RR	67.9	109	-1	1.0	41
MIDLAND	8390NRR	61.9	99	0	1.0	43
MIDLAND	8394NRR	60.3	96	-1	1.0	44
M/W GENETICS	G 3608RR	65.2	104	-3	1.0	40
NC+	4A16RR	62.8	100	3	1.0	41
NK	S35-F5	56.0	90	-4	1.0	42
NK	S42-M1	60.1	96	3	1.0	43
RENZE	R3209R	54.9	88	-5	1.0	40
RENZE	R356RR	67.9	109	-4	1.0	41
STINE	3264	60.5	97	-5	1.0	40
STINE	3293-4	63.5	102	-6	1.0	37
STINE	3490-4	65.9	105	-4	1.0	41
K-SOY	KS3494 (NOT RR)	62.0	99	-4	1.0	40
K-SOY	KS4694 (NOT RR)	57.0	91	5	1.0	41
K-SOY	MACON (NOT RR)	67.2	108	-1	1.0	40
K-SOY	STRESSLAND (NOT RR)	60.5	97	9/22	1.0	44
TEST AVERAGE		62.5				
LSD (.10)		2.9				
MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN STRESSLAND LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR						

TABLE 20. HARVEY COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (DRYLAND), 1998.

BRAND	ENTRY		YIELD AS					
			$\begin{aligned} & \text { YIELD } \\ & \text { (BU/A) } \end{aligned}$	\%	OF TEST AVERAGE	MAT	$\begin{array}{r} \text { LODGING } \\ \text { SCORE } \end{array}$	$\begin{aligned} & \text { HT } \\ & \text { IN } \end{aligned}$
MATURITY GROUP III								
ADV. GENETICS	AG3797RR		28.3		100	0	1.8	40
ADV. GENETICS	AG3957RR		28.3		100	2	1.6	34
ASGROW	AG3701		31.3		111	0	1.2	36
ASGROW	AG3901		31.2		110	-1	1.4	35
DYNA-GRO	DG-3368RR		25.4		90	-3	1.4	36
DYNA-GRO	DG-3388RR		28.0		99	-2	1.1	38
DYNA-GRO	DG-3398RR		25.5		90	6	1.2	41
GOLDEN HARVEST	X 384RR		26.6		94	-1	1.1	39
HOEGEMEYER	395RR		31.0		110	4	1.4	40
MIDLAND	8341RR		31.0		110	-5	1.3	37
MIDLAND	8377 RR		24.7		87	2	1.3	33
MIDLAND	8381 RR		28.9		103	-6	1.0	36
MIDLAND	8397RR		25.1		89	0	1.1	39
MIDLAND	8382RR		31.7		113	-2	1.4	41
M/W GENETICS	G3599RR		29.0		103	-5	1.3	34
M/W GENETICS	G3608RR		27.2		96	-5	1.3	36
NC+	3A66RR		25.5		90	-6	1.4	35
NK	S39-D9		29.8		106	2	1.1	37
STINE	3490-4		32.9		117	-3	1.0	34
WILLCROSS	RR2397		24.8		88	1	1.0	37
K-SOY	KS3494 (NOT	RR)	28.7		102	-4	1.2	37
K-SOY	MACON (NOT	RR)	24.6		87	-4	1.0	30
TEST AVERAGE			28.2					
LSD (.10)			3.1					
MATURITY GROUP IV								
ADV. GENETICS	AG4333NRR		24.7		101	8	1.4	41
ADV. GENETICS	AG4 427RR		25.4		104	7	1.1	47
ADV. GENETICS	AG4437RR		20.8		85	9	1.2	45
AGRIPRO	AP 3902RR		26.9		110	4	1.2	38
ASGROW	AG4301		23.6		96	4	1.0	37
DEKALB	CX419RR		24.9		102	2	1.3	41
DELTAPINE	DP 4344 RR		22.3		91	12	1.1	48
DELTAPINE	DP4750RR		24.1		98	10	1.0	44
DYNA-GRO	DG-3424RR		26.5		108	10	1.1	42
DYNA-GRO	DG-3432NRR		24.1		98	7	1.4	41
GARST	D437RR/N		26.7		109	8	1.8	42
GOLDEN HARVEST	X410RR		27.6		113	3	1.0	36
HOEGEMEYER	460 RRR		18.0		73	9	1.0	45
MIDLAND	X400RR		26.2		107	4	1.1	41
MIDLAND	8411RR		27.8		113	1	1.0	37
MIDLAND	8414RR		28.5		116	-1	1.0	41
MIDLAND	8422RR		28.2		115	2	1.1	35
M/W GENETICS	G4425RR		24.1		98	8	1.1	45
NC+	4A1 6RR		25.4		104	1	1.4	39
NK	S42-K2		21.6		88	1	1.0	37
NK	S42-M1		23.4		96	2	1.1	40
NK	S46-W8		26.3		107	5	1.1	39
WILLCROSS	RR2448		22.6		92	5	1.1	44
WILLCROSS	RR2449N		23.2		95	7	1.2	40
WILLCROSS	RR2467N		20.4		83	13	1.1	45
WILLCROSS	RR2517N		17.3		71	28	1.1	37
K-SOY	KS4694 (NOT	RR)	25.3		103	16	1.4	41
K-SOY	STRESSLAND	(NOT RR)	29.0		118	9/7	1.0	40
TEST AVERAGE			24.5					
LSD (.10)			3.0					
LSD (.10) BETWEEN	MATURITY GRO	OUPS	3.5					

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN STRESSLAND
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

TABLE 21. STAFFORD COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (IRR.), 1998.

		YIELD AS				
		YIELD	$\%$ OF TEST	MAT	LODGING	HT
BRAND	ENTRY	(BU/A)	AVERAGE	SCORE	IN	

MATURITY GROUPS III-IV

ADV. GENETICS	AG3667RR		21.5	85	-7	1.0	21
ADV. GENETICS	AG3797RR		24.7	98	-3	1.0	28
ADV. GENETICS	AG3822NRR		28.7	114	-5	1.0	27
ADV. GENETICS	AG3957RR		27.2	107	-6	1.0	23
ADV. GENETICS	AG4147RR		21.8	86	-3	1.0	24
ADV. GENETICS	AG4333NRR		25.9	102	0	1.0	28
ADV. GENETICS	AG4437RR		29.9	118	6	1.0	25
AGRIPRO	AP3902RR		26.2	104	-5	1.0	25
ASGROW	AG3302		20.0	79	-8	1.0	22
ASGROW	AG3701		30.3	120	-6	1.0	26
ASGROW	AG3901		25.2	100	-8	1.3	27
DEKALB	CX419RR		22.3	88	-7	1.0	27
DELTAPINE	DP 4344RR		33.8	134	1	1.0	28
DELTAPINE	DP4750RR		46.9	185	8	1.0	39
GARST	D376RR		23.1	91	-8	1.0	21
HOEGEMEYER	395RR		24.1	95	-1	1.3	28
HOEGEMEYER	460NRR		33.5	132	1	1.0	28
MIDLAND	8341RR		17.3	68	-7	1.0	23
MIDLAND	8381RR		18.7	74	-8	1.0	24
MIDLAND	8433RR		22.4	89	7	1.0	23
MIDLAND	8382RR		23.6	93	-6	1.0	25
MIDLAND	X400RR		22.7	90	1	1.3	23
MIDLAND	8411RR		32.7	129	-1	1.0	27
MIDLAND	8414RR		27.9	110	-5	1.0	29
MIDLAND	8422RR		21.1	83	0	1.0	23
M/W GENETICS	G3599RR		20.2	80	-8	1.0	22
M/W GENETICS	G3608RR		19.6	78	-7	1.0	22
NC+	3A66RR		18.1	71	-8	1.0	24
NC+	4A16RR		24.4	96	-3	1.3	26
NK	S39-D9		20.9	82	-7	1.0	20
NK	S42-M1		28.8	114	-4	1.0	32
NK	S46-W8		23.4	92	8	1.0	29
STINE	3792-4		26.2	103	-8	1.0	23
TERRA	E4280RR		30.7	121	-4	1.0	26
TERRA	E4680RR		21.1	83	6	1.0	23
TERRA	TS466RR		38.2	151	4	1.0	29
TERRA	TS556RR		20.7	82	10	1.0	25
WILLCROSS	RR2368		25.8	102	3	1.0	28
WILLCROSS	RR2397		18.5	73	-2	1.0	21
WILLCROSS	RR2448		30.7	121	4	1.0	26
WILLCROSS	RR2449N		27.7	110	6	1.0	27
WILLCROSS	RR2467N		32.6	129	3	1.0	29
WILLCROSS	RR2517N		24.1	95	11	1.0	23
K-SOY	KS4694 (NOT	RR)	28.6	113	10/4	1.0	28
TEST AVERAGE			25.3				
LSD (.01)			5.5				

MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN KS4694
LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR

TABLE 22. THOMAS COUNTY ROUNDUP-RESISTANT SOYBEAN PERFORMANCE (IRR.), 1998.

		YIELD AS				
		YIELD	$\%$ OF TEST	MAT	LODGING	HT
BRAND	ENTRY	(BU/A)	AVERAGE	SCORE	IN	

MATURITY GROUPS III-IV

AGRIPRO	AP 3702RR	67.6	98	-4	1.3	41
AGRIPRO	AP3902 RR	65.3	94	-2	2.0	41
ASGROW	AG3002	76.3	110	-1	2.0	37
ASGROW	AG3302	76.8	111	-7	1.0	40
ASGROW	AG3701	69.8	101	-3	1.5	42
DEKALB	CX359RR	67.9	98	-4	1.5	37
GARST	D305RR	70.9	102	-3	1.5	39
MIDLAND	8284RR	72.2	104	-8	1.0	33
MIDLAND	8341RR	74.0	107	-4	1.8	39
MIDLAND	8377RR	63.9	92	-2	1.8	36
MIDLAND	8397RR	68.2	98	-1	2.0	43
MIDLAND	8382RR	71.7	103	-3	1.3	42
M/W GENETICS	G3060RR	65.7	95	-8	1.0	36
NC+	2A96RR	71.9	104	-5	1.3	39
NK	S30-K3	70.2	101	-4	1.3	40
STINE	3293-4	68.7	99	-9	1.0	35
K-SOY	KS3494 (NOT RR)	66.4	96	-4	2.0	40
K-SOY	KS4694 (NOT RR)	61.8	89	7	3.0	44
K-SOY	MACON (NOT RR)	67.0	97	-4	1.3	38
K-SOY	STRESSLAND (NOT RR)	70.7	102	9/30	2.0	44
TEST AVERAGE		69.3				
LSD (.10)		5.5				
MATURITY IS MEASURED AS DAYS EARLIER OR LATER THAN STRESSLAND LODGING SCORE IS BASED ON 1-5 SCALE WITH 1=EXCELLENT, 5=POOR						

TABLE 23. YIELD AS \% OF TEST AVERAGE FROM 1998 LOCATIONS. (CONTINUED)

BRAND	STANDARD TRIALS													ROUNDUP-RESISTANT TRIALS									SCN
	NAME	BRO	SHA	FRA	LAB	RPD	RPI	HAR	ELL	STA	THO	FIN	AVGST	BRR	SHR	FRR	COR	RCR	HRR	STR	THR	AVGRR	
	A94-774021	101	100	115	112	109	108	132	117	120	105	104	111	---	---	---	---	---	---	---	---	---	-
	ANAND	---	---	---	119	---	---	---	--	---	---	---	119	---	--	---	---	---	---	---	---	---	92
	CRAWFORD	---	---	66	67	---	---	---	---	---	---	---	67	---	---	---	---	---	---	---	---	---	---
	FLYER	101	103	100	102	89	89	116	115	101	104	---	102	---	---	---	---	---	---	---	---	---	90
	HARTWIG	---	---	---	68	---	---	---	---	---	---	---	68	---	---	---	---	---	---	---	---	---	100
	HC93-4118	108	103	111	122	81	107	166	98	107	104	103	110	---	---	---	---	---	---	---	---	---	--
	HUTCHESON	---	---	---	101	---	---	---	---	---	---	---	101	---	---	---	---	---	---	---	---	---	92
	IA2021	83	67	86	99	90	93	131	106	88	91	84	93	---	---	---	---	---	---	---	---	---	---
	K1340	97	105	87	98	94	97	78	95	87	104	100	95	---	---	---	---	---	---	---	---	---	---
	K1364	---	,	---	85	---	---	---	---	---	---	,	85	---	---	---	---	---	---	---	---	---	101
	K1366	---	---	---	108	---	---	---	---	---	---	---	108	---	---	---	---	---	---	---	---	---	87
	K1370	91	99	91	109	96	88	117	87	94	91	94	96	---	---	---	---	---	---	---	---	---	---
	K1377	108	89	98	106	86	89	128	98	107	106	111	102	---	---	---	---	---	---	---	---	---	---
	K1378	100	93	91	90	89	91	97	86	101	105	105	95	---	---	---	---	---	---	---	---	---	100
	K1379	102	93	90	99	104	100	118	78	92	105	108	99	---	---	---	---	---	---	---	---	---	100
	K1380	103	107	97	108	80	104	129	105	101	107	96	103	---	---	---	---	---	---	---	---	---	100
	K1381	79	121	97	96	126	100	104	107	105	93	109	103	---	---	---	---	---	---	---	---	---	100
	K1386	74	96	105	108	113	107	141	105	81	84	95	101	---	---	---	---	---	---	---	---	---	100
	K1391	---	---	---	96	---	---	---	---	---	---	---	96	---	---	---	---	---	---	---	---	---	100
	K1393	---	---	---	85	---	---	---	---	---	---	---	85	---	---	---	---	---	---	---	---	---	100
	KS5292	---	---	---	107	---	---	---	---	---	---	---	107	---	---	---	---	---	---	---	---	---	92
	MANOKIN	---	---	---	97	---	---	--	---	---	---	---	97	---	---	---	---	---	---	---	---	---	95
	RESNIK	90	93	96	99	83	96	100	102	94	90	87	94	---	---	---	---	---	---	---	---	---	---
	SHERMAN	97	90	97	97	102	91	92	111	86	100	87	95	---	---	---	---	---	---	---	---	---	---
	SPARKS	---	---	---	---	---	---	---	---	---	---	95	95	---	---	---	---	---	---	---	---	---	---
	STAFFORD	---	---	---	93	---	---	---	---	---	---	---	93	---	---	---	---	---	---	---	---	---	85
	WILLIAMS 82	95	84	81	88	82	89	54	60	86	85	110	83	---	---	---	---	---	---	---	---	---	---
K-SOY	DELSOY 5500	---	---	---	107	---	---	---	---	---	---	---	107	---	--	---	96	---	---	---	---	96	106
K-SOY	KS3494	96	91	94	102	89	105	97	114	104	103	107	100	102	96	104	95	99	102	---	96	99	--
K-SOY	KS4694	109	77	89	94	108	89	90	110	88	110	86	95	107	74	97	98	91	103	113	89	97	---
K-SOY	KS4895	---	---	80	95	---	---	---	---	---	---	---	88	---	---	---	---	---	---	---	---	---	---
K-SOY	KS4997	---	---	---	116	---	---	---	---	---	---	---	116	---	---	---	104	---	---	---	---	104	---
K-SOY	MACON	101	105	105	99	119	115	107	84	105	99	95	103	105	93	113	93	108	87	---	97	99	--
K-SOY	STRESSLAND	98	92	99	116	84	98	120	94	96	101	99	100	100	95	111	110	97	118	---	102	105	86
ADVANCED GENETICS	AG3630STS	---	98	---	---	76	106	---	97	129	---	---	101	---	---	---	---	---	---	---	---	---	---
ADVANCED GENETICS	AG3667RR	---	---	---	---	87	---	---	89	---	---	---	88	---	106	---	---	---	---	85	---	96	---
ADVANCED GENETICS	AG3797RR	---	---	---	---	95	---	---	92	---	---	---	94	103	102	---	---	102	100	98	---	101	---
ADVANCED GENETICS	AG3822NRR	---	--	---	---	107	---	---	---	---	---	---	107	---	101	---	---	97	---	114	---	104	---
ADVANCED GENETICS	AG3860NSTS	---	103	---	---	83	108	---	---	84	---	---	95	---	---	---	---	---	---	---	---	---	
ADVANCED GENETICS	AG3957RR	---	---	---	---	116	---	---	---	---	---	---	116	---	---	---	---	102	100	107	---	103	---
ADVANCED GENETICS	AG4147RR	---	---	---	---	---	---	---	---	--	---	---	---	---	---	90	---	---	---	86	---	88	---
ADVANCED GENETICS	AG4188STS	--	103	---	---	---	---	---	---	109	--	---	106	---	---	---	---	--	---	---	---	---	--
ADVANCED GENETICS	AG4333NRR	---	---	---	---	---	---	---	-	---	---	---	---	-	100	99	---	---	101	102	---	101	---
ADVANCED GENETICS	AG4427RR	---	---	---	---	---	---	---	---	---	---	---	---	---	91	91	78	---	104	---	---	91	---
ADVANCED GENETICS	AG4437RR	---	---	---	---	---	---	---	---	---	---	---	---	---	95	90	---	---	85	118	---	97	---
ADVANCED GENETICS	AG5277RR	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	90	---	---	---	---	90	---
ADVANCED GENETICS	BOUNTYSTS	---	---	---	---	85	---	---	---	---	---	---	85	---	---	---	---	---	---	---	---	---	---
ADVANCED GENETICS	DS410(DeLange)	---	114	84	---	---	---	---	---	106	---	---	95	---	---	---	---	---	---	---	---	---	---
ADVANCED GENETICS	DS454(DeLange)	---	114	99	98	---	---	91	---	98	---	---	100	---	---	---	---	---	---	---	---	---	---
ADVANCED GENETICS	DS466(DeLange)	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	107
ADVANCED GENETICS	DS485(DeLange)	---	---	101	122	---	---	---	---	---	---	---	112	---	---	---	---	---	---	---	---	---	---
ADVANCED GENETICS	EXPRESS II	---	---	---	---	84	---	---	---	---	---	---	84	---	---	---	---	---	---	---	---	---	---
ADVANCED GENETICS	GALAXY	---	---	---	---	---	---	---	---	107	---	---	107	---	---	---	---	---	---	---	---	---	---
AGRIPRO	AP3250	---	---	---	---	---	---	---	---	---	100	---	100	---	---	---	---	---	---	---	---	--	---

TABLE 23. YIELD AS \% OF TEST AVERAGE FROM 1998 LOCATIONS. (CONTINUED)

		STANDARD TRIALS												ROUNDUP-RESISTANT TRIALS									SCN
BRAND	NAME	BRO	SHA	FRA	LAB	RPD	RPI	HAR	ELL	STA	THO	FIN	AVGST	BRR	SHR	FRR	COR	RCR	HRR	STR	THR	AVGRR	
AGRIPRO	AP3702RR	---	---	---	---	---	---	---	---	---	---	---	---	103	---	---	---	89	---	---	98	97	---
AGRIPRO	AP3880	105	92	107	---	---	105	---	---	---	---	---	102	---	---	---	---	---	---	---	---	---	---
AGRIPRO	AP3902RR	---	---	---	---	---	---	---	---	---	---	---	---	---	96	100	---	97	110	104	94	100	---
AGRIPRO	AP4500	---	---	99	97	---	---	90	---	86	---	116	98	---	---	---	---	---	---	---	---	---	---
AGRIPRO	AP4540SCN	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	106
AGRIPRO	AP4880	---	---	---	107	---	---	---	---	---	---	90	99	---	---	---	---	---	---	---	---	---	---
AGRIPRO	AP543RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	119
ASGROW	AG3002	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	97	---	---	110	104	---
ASGROW	AG3302	---	---	---	---	---	---	---	---	---	---	---	---	100	---	---	---	106	---	79	111	99	---
ASGROW	AG3701	---	---	---	---	---	---	---	---	---	---	---	---	111	---	---	---	93	111	120	101	107	---
ASGROW	AG3901	---	---	---	---	---	---	---	---	---	---	---	---	94	---	---	---	101	110	100	---	101	---
ASGROW	AG4301	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	96	---	---	96	---
DEKALB	CX348	103	---	---	---	---	---	---	---	---	---	---	103	---	---	---	---	---	---	---	---	---	84
DEKALB	CX351	---	---	---	---	114	---	---	---	---	---	---	114	---	---	---	---	---	---	---	---	---	---
DEKALB	CX359RR	---	---	---	---	---	---	---	---	---	---	---	---	99	---	---	---	102	---	---	98	100	110
DEKALB	CX368	---	98	---	---	---	---	---	---	---	---	---	98	---	---	---	---	---	---	---	---	---	---
DEKALB	CX377	---	---	---	---	---	110	---	89	---	--	---	100	--	--	---	---	--	---	---	---	---	---
DEKALB	CX399	---	---	103	---	---	---	87	---	---	---	---	95	---	---	---	---	---	---	---	---	---	---
DEKALB	CX400	108	111	---	---	---	103	---	---	100	---	85	101	---	---	---	---	---	---	---	---	---	---
DEKALB	CX419RR	---	---	---	---	---	---	---	---	---	---	---	---	---	109	102	---	---	102	88	---	100	82
DEKALB	CX445	---	---	97	---	---	---	---	---	106	---	113	105	---	---	---	---	---	---	---	---	---	---
DEKALB	CX485RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	94	---	---	---	---	94	---
DEKALB	CX496C	---	---	---	97	---	---	---	---	---	---	---	97	---	---	---	---	---	---	---	---	---	103
DEKALB	CX510C	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	108
DELTAPINE	DP3478	---	---	---	85	---	---	76	---	99	---	---	87	---	---	---	---	---	---	---	---	---	---
DELTAPINE	DP3519S	---	---	---	87	---	---	32	---	69	---	---	63	---	---	---	---	---	---	---	---	---	105
DELTAPINE	DP4344RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	83	95	---	91	134	---	101	---
DELTAPINE	DP4750RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	99	96	---	98	185	---	120	---
DELTAPINE	DPS8S49(EXP)	---	---	---	82	---	---	39	---	---	---	---	61	---	---	---	---	---	---	---	---	---	102
DYNA-GRO	DG-3368	104	104	109	---	95	---	104	---	---	---	---	103	---	---	---	---	---	---	---	---	---	---
DYNA-GRO	DG-3368RR	---	---	---	---	---	---	---	---	---	---	---	---	104	105	104	---	---	90	---	---	101	---
DYNA-GRO	DG-3388RR	---	---	---	---	---	---	---	---	---	---	---	---	102	114	113	---	---	99	---	---	107	---
DYNA-GRO	DG-3395	106	107	111	111	100	---	95	---	---	---	---	105	---	---	---	---	---	---	---	---	---	---
DYNA-GRO	DG-3398RR	---	---	---	---	---	---	---	---	---	---	---	---	---	97	103	97	---	90	---	---	97	92
DYNA-GRO	DG-3411NSTS	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	111
DYNA-GRO	DG-3424RR	---	---	---	---	---	---	---	---	---	---	---	---	---	97	103	---	---	108	---	---	103	106
DYNA-GRO	DG-3432NRR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	93	---	---	98	---	---	96	---
DYNA-GRO	DG-3438N	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	114
DYNA-GRO	UAPX258RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	98	---	---	---	---	98	---
FONTANELLE	3373	87	---	---	---	108	---	---	---	---	---	---	98	---	---	---	---	---	---	---	---	---	---
FONTANELLE	942RR	---	---	---	---	---	---	---	---	---	---	---	---	93	---	---	---	104	---	---	---	99	---
FONTANELLE	9761RR	---	---	---	---	---	---	---	---	---	---	---	---	92	---	---	---	93	---	---	---	93	---
GARST	D305RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	102	102	---
GARST	D376RR	---	---	---	---	---	---	---	---	---	---	---	---	97	100	---	---	100	---	91	---	97	103
GARST	D398(EX7398)	106	110	108	---	---	112	---	---	110	---	90	106	---	---	---	---	---	---	---	---	---	---
GARST	D437RR/N	---	---	---	---	---	---	---	---	---	---	---	---	101	---	103	107	---	109	---	---	105	---
GARST	D454	---	---	94	116	---	---	---	---	---	---	---	105	---	---	---	---	---	---	---	---	---	---
GARST	D478	---	---	---	90	---	---	---	---	---	---	---	90	---	---	---	---	---	---	---	---	---	---
GOLDEN HARVEST	H-1316	---	---	---	---	106	---	---	---	---	---	---	106	---	---	---	---	---	---	---	---	---	---
GOLDEN HARVEST	H-1357RR	---	---	---	---	---	---	---	---	---	---	---	---	97	106	92	---	103	---	---	---	100	---
GOLDEN HARVEST	H-1383	---	---	100	---	---	---	---	---	---	---	---	100	---	---	---	---	---	---	---	---	---	---
GOLDEN HARVEST	H-1454	---	---	100	98	---	---	118	---	---	---	---	105	---	---	---	---	---	---	---	---	---	104
GOLDEN HARVEST	H-1487	---	---	---	111	---	---	---	---	---	---	---	111	---	---	---	---	---	---	---	---	---	101
GOLDEN HARVEST	H-1500	---	---	---	110	---	---	---	---	---	---	---	110	---	---	---	---	---	---	---	---	---	93

TABLE 23. YIELD AS \% OF TEST AVERAGE FROM 1998 LOCATIONS. (CONTINUED)

	STANDARD TRIALS													ROUNDUP-RESISTANT TRIALS									
BRAND	NAME	BRO	SHA	FRA	LAB	RPD	RPI	HAR	ELL	STA	THO	FIN	AVGST	BRR	SHR	FRR	COR	RCR	HRR	STR	THR	AVGRR	SCN
GOLDEN HARVEST	X384RR	---	---	---	---	---	---	---	---	---	---	---	---	96	---	102	109	---	94	---	---	100	---
GOLDEN HARVEST	X410RR	---	---	---	---	---	---	---	---	---	---	---	---	---	99	103	102	---	113	---	---	104	---
HAMON	H-447	105	96	---	---	---	---	---	---	---	---	---	101	---	---	---	---	---	---	---	---	---	---
HOEGEMEYER	312	---	---	---	---	---	95	---	---	---	---	---	95	---	---	---	---	---	---	---	---	---	---
HOEGEMEYER	333	100	101	118	---	---	---	---	---	---	---	---	106	---	---	---	---	---	---	---	---	---	---
HOEGEMEYER	371	98	114	---	---	---	---	---	---	---	---	---	106	---	---	---	---	---	---	---	---	---	---
HOEGEMEYER	380	98	122	115	---	---	102	100	---	109	---	---	108	---	---	---	---	---	---	---	---	---	---
HOEGEMEYER	395RR	---	---	---	---	---	95	---	---	---	---	---	95	---	---	---	---	---	110	---	---	---	---
HOEGEMEYER	401	92	106	106	---	---	---	---	---	---	---	---	101	---	---	---	---	---	---	---	---	---	---
HOEGEMEYER	402STS	---	---	---	---	---	91	---	---	---	---	---	91	---	---	---	---	---	---	---	---	---	80
HOEGEMEYER	435	91	82	95	---	---	---	---	---	---	---	---	89	---	---	---	---	---	---	---	---	---	---
HOEGEMEYER	460NRR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	73	132	---	103	108
HORNBECK	471SCN	---	---	100	---	---	---	---	---	---	---	---	100	---	---	---	---	---	---	---	---	---	87
HORNBECK	HBK4890	---	---	93	114	---	---	---	---	---	---	---	104	---	---	---	---	---	---	---	---	---	---
HORNBECK	HBK49	---	---	65	78	---	---	---	---	---	---	---	72	---	---	---	---	---	---	---	---	---	106
LEWIS	361	100	---	---	---	---	---	---	---	---	---	---	100	---	---	---	---	---	---	---	---	---	---
LEWIS	3668RR	---	---	---	---	---	---	---	---	---	---	---	---	103	---	---	---	---	---	---	---	103	---
LEWIS	390	100	---	---	---	---	---	---	---	---	---	---	100	---	---	---	---	---	---	---	---	---	---
LEWIS	3955RR	---	---	---	---	---	---	---	---	---	---	---	---	100	---	---	---	---	---	---	---	100	---
LEWIS	4308RR	---	---	---	---	---	---	---	---	---	---	---	---	102	---	---	---	---	---	---	---	102	---
M/W GENETICS	G3060RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	95	95	---
M/W GENETICS	G3599RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	103	80	---	92	---
M/W GENETICS	G3608RR	---	---	---	---	---	---	---	---	---	---	---	---	104	103	---	---	104	96	78	---	97	---
M/W GENETICS	G3644STS	91	---	---	---	106	---	---	---	---	---	---	99	---	---	---	---	---	---	---	---	---	---
M/W GENETICS	G3996	103	---	---	---	---	---	93	---	---	---	---	98	---	---	---	---	---	---	---	---	---	---
M/W GENETICS	G4411RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	106	---	---	---	---	---	106	---
M/W GENETICS	G4425RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	93	---	---	98	---	---	96	---
MERSCHMAN	G4555	---	---	107	---	---	---	84	---	---	---	---	96	---	---	---	---	---	---	---	---	---	---
MERSCHMAN	DALLAS III	---	---	95	---	---	---	--	---	---	---	---	95	---	---	---	---	---	---	---	---	---	---
MERSCHMAN	EISENHOWER V	109	---	---	---	---	---	---	---	---	---	---	109	---	---	---	---	---	---	---	---	---	---
MERSCHMAN	KENNEDY IVRR	---	---	---	---	---	---	---	---	---	---	---	---	99	---	---	---	---	---	---	---	99	---
MERSCHMAN	MEMPHIS IIIRR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	92	---	---	---	---	---	92	113
MERSCHMAN	TRUMAN VI	101	---	---	---	---	---	---	---	---	---	---	101	---	---	---	---	---	---	---	---	--	109
MIDLAND	WASHINGTON VIIRR	---	---	---	---	---	---	---	---	---	---	---	---	99	---	---	---	---	---	---	---	99	---
MIDLAND	8280RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	108	---	---	---	108	---
MIDLAND	8284RR	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	104	104	---
MIDLAND	8287	---	---	---	---	107	94	---	---	---	---	---	101	---	---	---	---	---	---	---	---	---	---
MIDLAND	8291RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	93	---	---	---	93	---
MIDLAND	8310RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	93	---	---	---	93	---
MIDLAND	8316STS	---	---	---	---	92	94	---	---	---	---	---	93	---	---	---	---	---	---	---	---	---	---
MIDLAND	8320RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	99	---	---	---	99	---
MIDLAND	8321	---	---	---	---	122	108	---	111	---	101	---	111	---	---	---	---	---	---	---	---	---	91
MIDLAND	8322RR	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	117	---	---	---	117	---
MIDLAND	8333STS	---	---	---	---	123	---	---	---	---	---	---	123	---	---	---	---	---	---	---	---	---	106
MIDLAND	8334	---	---	---	---	117	103	---	---	---	---	---	110	---	---	---	---	---	---	---	---	---	---
MIDLAND	8341RR	---	---	---	---	---	---	---	---	---	---	---	---	---	100	---	---	107	110	68	107	98	68
MIDLAND	8345	---	101	---	---	102	100	---	---	---	---	---	101	---	---	---	---	---	---	---	---	---	---
MIDLAND	8355	---	---	---	---	106	110	---	---	---	---	---	108	---	---	---	---	---	---	---	---	---	---
MIDLAND	8361RR	---	---	---	---	---	---	---	--	---	---	---	--	96	105	---	---	106	---	---	---	102	---
MIDLAND	8371	103	106	---	---	103	95	85	81	93	98	---	96	---	---	---	---	---	---	---	---	---	---
MIDLAND	8377RR	---	---	---	---	---	---	---	--	---	---	---	---	94	97	103	---	100	87	---	92	96	---
MIDLAND	8381RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	103	74	---	89	---
MIDLAND	8382RR	---	---	---	---	---	---	---	---	---	---	---	---	103	97	---	---	109	113	93	103	103	---
MIDLAND	8386STS	104	95	98	---	111	96	75	95	104	86	---	96	---	---	---	---	---	---	---	---	---	---
								(CON	TINU	D)													

TABLE 23. YIELD AS \% OF TEST AVERAGE FROM 1998 LOCATIONS. (CONTINUED)

	STANDARD TRIALS													ROUNDUP-RESISTANT TRIALS									SCN
BRAND	NAME	BRO	SHA	FRA	LAB	RPD	RPI	HAR	ELL	STA	THO	FIN	AVGST	BRR	SHR	FRR	COR	RCR	HRR	STR	THR	AVGRR	
MIDLAND	8388	103	114	111	---	116	102	---	129	--	---	---	113	---	---	---	---	---	---	---	---	---	---
MIDLAND	8390RR	---	---	---	---	---	---	---	---	---	---	---	---	---	108	---	---	99	---	---	---	104	105
MIDLAND	8393	---	---	---	---	---	---	---	68	---	99	116	94	---	---	---	---	---	---	---	---	---	---
MIDLAND	8394RR	---	---	---	---	---	---	---	---	---	---	---	---	---	109	99	96	96	---	---	---	100	109
MIDLAND	8396STS	---	94	---	---	107	109	97	92	93	110	---	100	---	---	---	---	---	---	---	---	---	---
MIDLAND	8397RR	---	---	---	---	---	---	---	---	---	---	---	---	96	---	96	---	---	89	---	98	95	104
MIDLAND	8410	94	92	106	110	---	---	---	---	---	---	---	101	---	---	---	---	---	---	---	-	--	---
MIDLAND	8411RR	---	---	---	---	---	---	---	---	---	---	---	--	102	107	105	100	---	113	129	---	109	---
MIDLAND	8414RR	---	---	---	---	---	---	---	---	---	---	---	---	---	102	---	---	---	116	110	---	109	--
MIDLAND	8420STS	---	---	---	112	---	---	---	---	---	---	---	112	---	---	---	---	---	--	---	---	---	98
MIDLAND	8421 N	---	---	102	103	---	---	---	---	---	---	---	103	---	---	---	---	---	---	---	---	---	117
MIDLAND	8422RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	106	---	---	115	83	---	101	106
MIDLAND	8431	---	---	97	83	---	---	82	75	99	---	116	92	---	---	---	---	---	---	---	---	---	111
MIDLAND	8432NRR	---	---	---	---	---	---	---	---	---	---	---	---	---	86	---	---	---	---	---	---	86	98
MIDLAND	8433RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	99	94	---	---	89	---	94	---
MIDLAND	8475	---	---	---	97	---	---	---	---	---	---	---	97	---	---	---	---	---	---	---	---	---	110
MIDLAND	8486	---	---	---	106	---	---	---	---	---	---	---	106	---	---	---	---	---	---	---	---	---	---
MIDLAND	8487NB	---	---	---	107	---	---	---	---	---	---	---	107	---	---	---	---	---	---	---	---	---	---
MIDLAND	8530	---	---	---	94	---	---	---	---	---	---	---	94	---	---	---	---	---	---	---	---	---	78
MIDLAND	8540RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	105	---	---	---	---	105	訨
MIDLAND	8570RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	95	---	---	---	---	95	---
MIDLAND	X362	102	89	---	---	---	---	---	---	---	---	---	96	---	---	---	---	---	---	---	---	---	---
MIDLAND	X400RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	107	90	---	99	--
MIDLAND	X442RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	103	110	---	--	--	---	107	119
MISSOURI PREMIUM	X450NSTS	---	---	---	114	---	---	---	---	---	---	---	114	---	---	---	---	---	---	---	---	---	111
MISSOURI PREMIUM	MAGELLAN	102	83	110	110	---	---	---	---	---	---	---	101	---	---	---	---	---	---	---	---	---	90
MISSOURI PREMIUM	MAVERICK	101	100	101	---	---	---	---	---	---	---	---	101	---	---	---	---	---	---	---	---	---	107
MISSOURI PREMIUM	MUSTANG	96	79	92	99	---	---	---	---	---	---	---	92	---	---	---	---	---	---	---	---	---	93
MYCOGEN	5348	99	---	---	---	---	---	---	---	---	---	---	99	---	---	---	---	---	---	---	---	---	105
MYCOGEN	5383	107	---	---	---	---	---	---	---	---	---	---	107	---	---	---	--	---	---	-	---	---	--
MYCOGEN	5404	104	108	107	121	109	106	124	---	---	---	---	111	---	---	---	---	---	---	---	---	---	---
MYCOGEN	5430	---	105	---	---	---	93	---	---	---	---	---	99	---	---	---	---	---	---	---	---	---	---
MYCOGEN	5474	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	85
NC+	2A96RR	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	104	104	100
NC+	2A99	---	---	---	---	---	---	---	127	---	103	---	115	---	---	---	---	---	---	---	---	---	--
NC+	3 A26	---	---	---	---	---	---	---	125	---	102	---	114	---	---	---	---	---	---	---	---	---	---
NC+	3A66RR	---	---	---	---	---	---	---	---	---	---	---	---	100	---	---	---	---	90	71	---	87	-
NC+	3 367	---	---	---	---	100	---	---	---	---	---	---	100	---	---	---	---	---	---	---	---	---	---
NC+	3 A87	111	---	---	---	96	103	---	---	---	---	---	103	---	---	---	---	---	---	---	---	---	---
NC+	4A10	99	102	102	---	---	101	136	---	99	---	---	107	---	---	---	---	---	---	---	---	---	---
NC+	4A16RR	---	---	---	---	---	---	---	---	---	---	---	---	91	104	101	---	100	104	96	---	99	---
NC+	4A47	---	---	96	89	---	---	---	---	---	---	---	93	---	---	---	---	---		---	---	---	---
NC+	5A44	---	---	---	117	---	---	---	---	---	---	---	117	---	---	---	---	---	---	---	---	---	114
NK	5A45RR	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	105	---	---	---	---	105	---
NK	3474	---	---	107	96	---	---	---	---	---	---	---	102	---	---	---	---	--	---	---	---	---	---
NK	3505	---	---	---	98	---	---	---	---	---	---	---	98	---	---	---	---	---	---	---	---	---	96
NK	S30-K3	---	---	---	---	---	---	---	---	---	---	---	---	95	---	---	---	---	---	---	101	98	---
NK	S33-P2	---	99	110	---	--	---	---	--	---	116	---	108	---	--	---	---	---	---	--	-	---	103
NK	S35-F5	---	---	---	---	---	---	---	---	---	---	---	---	98	---	---	---	90	---	---	---	94	109
NK	S38-L5	104	103	110	---	91	106	---	---	---	---	---	103	---	---	---	---	---	---	---	---	---	---
NK	S39-D9	---	---	---	---	116	---	---	---	---	---	---	116	---	---	---	---	---	106	82	---	94	---
NK	S42-K2	---	---	---	---	---	---	---	---	---	---	---	---	---	105	---	---	---	88	---	---	97	---
NK	S42-M1	---	---	---	---	94	---	---	---	---	---	---	94	91	---	---	---	96	96	114	---	99	---
NK	S43-B5	102	104	101	111	88	89	---	---	---	---	---	99	---	---	---	---	---	---	---	---	---	---
								(CON	TINU	D)													

TABLE 23. YIELD AS \% OF TEST AVERAGE FROM 1998 LOCATIONS. (CONTINUED)

	STANDARD TRIALS													ROUNDUP-RESISTANT TRIALS									SCN
BRAND	NAME	BRO	SHA	FRA	LAB	RPD	RPI	HAR	ELL	STA	THO	FIN	AVGST	BRR	SHR	FRR	COR	RCR	HRR	STR	THR	AVGRR	
NK	S46-W8	---	---	---	---	---	---	---	---	---	---	96	96	---	---	100	111	---	107	92	---	103	91
NK	S51-T1	---	---	---	---	---	---	---	---	---	---	80	80	---	---	---	94	---	---	---	---	94	93
PIONEER	S57-11	---	---	---	88	---	---	---	---	---	---	---	88	---	---	---	---	---	---	---	---	---	100
PIONEER	9294	---	---	---	---	---	---	---	132	---	---	---	132	---	---	---	---	---	---	---	---	---	---
PIONEER	9352	---	---	---	---	115	---	105	---	108	---	---	109	---	---	---	---	---	---	---	---	---	---
PIONEER	9395	---	---	---	---	---	---	---	---	100	---	---	100	---	---	---	---	---	---	---	---	---	97
PIONEER	9396	91	---	---	---	---	---	---	---	---	---	---	91	---	--	---	---	---	---	---	---	---	107
PIONEER	93B34	---	---	---	---	---	---	---	---	---	97	---	97	---	---	---	---	---	---	---	---	---	---
PIONEER	93B41	---	---	---	---	102	---	---	---	---	---	---	102	---	---	---	---	---	---	---	---	---	---
PIONEER	93B51	---	---	---	---	---	---	---	108	---	100	102	103	---	---	---	---	---	---	---	---	---	106
PIONEER	$93 \mathrm{B53}$	---	---	---	---	---	91	116	---	---	---	---	104	---	---	---	---	---	---	---	---	---	106
PIONEER	93 B 71	---	--	94	---	---	---		123	---	104	114	109	---	---	---	---	---	---	---	---	---	---
PIONEER	$93 \mathrm{B82}$	116	111	119	---	---	104	112	---	118	---	---	113	---	---	---	---	---	---	---	---	---	---
PIONEER	9421	95	108	106	---	---	---	---	---	---	---	---	103	---	---	---	---	---	---	---	---	---	---
PIONEER	9492	---	---	---	82	---	---	---	---	---	---	---	82	---	--	---	---	---	---	---	---	---	113
PIONEER	$94 \mathrm{B01}$	---	---	---	---	---	---	---	---	---	---	113	113	---	---	---	---	---	---	---	---	---	---
PIONEER	94B41	---	81	---	93	---	---	---	---	---	---	88	87	---	---	---	---	---	---	---	---	---	89
PIONEER	95 B 33	---	---	---	130	---	---	---	---	---	---	---	130	--	---	---	---	---	---	---	---	---	106
RENZE	R3097	100	---	---	---	---	---	---	---	---	---	---	100	---	---	---	---	---	---	---	---	---	---
RENZE	R3209R	101	---	---	---	---	---	---	---	---	---	---	101	103	---	---	---	88	---	---	---	96	---
RENZE	R3297	89	---	---	---	---	94	---	---	---	---	---	92	---	---	---	---	--	---	---	---	---	---
RENZE	R356RR	---	---	---	---	---	---	---	---	---	---	---	---	93	---	---	---	109	---	---	---	101	---
RENZE	R3599	93	---	---	---	---	101	---	---	---	---	---	97	---	---	---	---	---	---	---	---	---	---
STINE	3171-1	---	---	---	---	---	---	---	---	---	---	101	101	---	---	---	---	---	--	---	---	---	---
Stine	3264	---	---	---	---	---	---	---	---	---	---	---	---	99	107	---	---	97	---	---	---	101	---
STINE	3290	---	---	---	---	---	94	---	---	---	---	---	94	---	---	---	--	---	---	---	---	---	---
STINE	3293-4	---	---	---	---	---	---	---	---	---	---	---	---	109	---	---	---	102	---	---	99	103	--
Stine	3398-8	---	---	---	---	---	104	---	---	---	---	---	104	---	---	---	---	---	---	---	---	---	---
STINE	3490-4	---	---	---	---	---	---	---	---	---	---	---	---	102	98	---	---	105	117	---	---	106	---
STINE	3581	89	85	---	---	---	---	---	---	---	---	---	87	---	---	---	---	---	---	---	---	---	---
STINE	3690-0	100	93	---	---	---	98	---	---	---	---	---	97	---	---	---	---	---	---	---	---	---	---
STINE	3792-4	---	---	---	---	---	---	---	---	---	---	--	---	---	---	104	---	---	---	103	---	104	---
STINE	3870-0	---	106	108	103	---	---	106	---	---	---	97	104	---	---	---	---	---	---	---	---	---	---
Stine	3990-0	103	100	103	,	---	106	,	---	114	---	---	105	---	---	---	---	---	---	---	---	---	--
STINE	4199-2	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	102
Stine	4492-4	---	---	---	---	---	---	---	---	---	---	---	---	---	---	100	100	---	---	---	---	100	---
STINE	4562-2	---	---	98	---	---	---	---	---	---	---	---	98	---	---	---	---	---	---	---	---	---	---
STINE	4790	---	---	96	75	---	---	---	---	---	---	---	86	---	---	---	---	---	---	---	---	---	---
TAYLOR	X3506	---	---	---	---	---	---	---	---	---	---	107	107	---	---	---	---	---	---	---	---	---	---
TAYLOR	370RR	---	---	---	---	---	---	---	---	---	---	---	---	104	---	---	---	---	---	---	---	104	---
TAYLOR	396	102	112	106	---	---	108	---	---	---	---	---	107	---	---	---	---	---	---	---	---	---	---
TAYLOR	415RR	---	---	---	---	---	---	---	---	---	--	---	---	105	---	105	---	---	---	--	---	105	---
TAYLOR	450RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	103	102	---	---	---	---	103	---
TERRA	454	---	---	96	---	---	---	---	---	---	---	---	96	---	---	---	---	---	---	---	---	---	---
TERRA	E394	97	99	107	91	---	---	---	---	101	---	---	99	---	---	---	---	---	---	---	---	--	---
TERRA	E4280RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	102	---	---	---	121	---	112	---
TERRA	E438	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	113
TERRA	E4680RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	98	---	---	---	83	---	91	---
TERRA	TS364T(E364T)	95	109	115	103	---	---	---	---	107	---	---	106	---	---	---	---	---	---	---	---	---	---
TERRA	TS387	114	120	107	97	---	---	---	---	119	---	---	111	---	---	---	---	---	---	---	---	---	---
TERRA	TS415	112	107	109	127	---	---	---	---	121	---	---	115	---	---	---	---	---	---	---	---	---	---
TERRA	TS466RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	90	109	---	---	151	---	117	---
TERRA	TS474	101	109	93	84	---	---	---	---	98	---	---	97	---	---	---	---	---	---	---	---	---	---
TERRA	TS4792	---	---	---	---	---	---	---	--		---	--	---	---	---	---	---	---	---	---	---	---	102
								(CON	TINU														

TABLE 23. YIELD AS \% OF TEST AVERAGE FROM 1998 LOCATIONS. (CONTINUED

STANDARD TRIALS														ROUNDUP-RESISTANT TRIALS									SCN
BRAND	NAME	BRO	SHA	FRA	LAB	RPD	RPI	HAR	ELL	STA	THO	FIN	AVGST	BRR	SHR	FRR	COR	RCR	HRR	STR	THR	AVGRR	
TERRA	TS504	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	88
TRIUMPH	TS556RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	96	---	---	82	---	89	---
TRIUMPH	TR3939RR	---	---	---	---	---	---	---	---	---	---	---	---	99	---	106	110	---	---	---	---	105	---
TRIUMPH	TR4339RR	---	---	---	---	---	---	---	---	---	---	---	---	101	---	101	103	---	---	---	---	102	---
TRIUMPH	TR5409RR	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	103	---	---	---	---	103	---
WILLCROSS	9378STS	105	98	113	---	---	---	99	---	97	---	---	102	---	---	---	---	---	---	---	---	---	---
WILLCROSS	9447	---	---	95	97	---	---	76	---	97	---	---	91	---	---	---	---	---	---	---	---	---	---
WILLCROSS	9449NSTS	---	---	88	96	---	---	107	---	108	---	---	100	---	---	---	---	---	---	---	---	---	73
WILLCROSS	9640	115	114	114	---	---	---	146	---	94	---	---	117	---	---	---	---	---	---	---	---	---	---
WILLCROSS	9738	106	108	109	---	---	---	83	---	98	---	---	101	---	---	---	---	---	---	---	---	---	---
WILLCROSS	9841	---	95	95	106	---	---	104	---	107	---	---	101	---	---	---	---	---	---	---	---	---	---
WILLCROSS	RR2309	---	---	---	---	---	---	---	---	---	---	---	---	93	---	---	---	---	---	---	---	93	---
WILLCROSS	RR2338	---	---	---	---	---	---	---	---	---	---	---	---	105	---	---	---	---	---	---	---	105	---
WILLCROSS	RR2357	---	---	---	---	---	---	---	---	---	---	---	---	111	---	---	---	---	---	---	---	111	---
WILLCROSS	RR2368	107	---	---	---	---	---	---	---	---	---	---	107	104	101	109	---	---	---	102	---	104	---
WILLCROSS	RR2397	---	---	---	---	---	---	---	---	---	---	---	---	94	100	99	---	---	88	73	---	91	---
WILLCROSS	RR2448	---	---	---	---	---	---	70	---	94	---	---	82	---	---	88	80	---	92	121	---	95	---
WILLCROSS	RR2449N	---	---	---	---	---	---	80	---	---	---	---	80	---	---	100	110	---	95	110	---	104	98
WILLCROSS	RR2467N	---	---	---	86	---	---	---	---	---	---	---	86	---	---	92	102	---	83	129	---	102	111
WILLCROSS	RR2517N	---	---	---	86	---	---	39	---	58	---	---	61	---	---	---	111	---	71	95	---	92	120
WILSON	3380	---	---	---	---	---	---	118	---	130	---	---	124	---	---	---	---	---	---	---	---	---	---
WILSON	E8362	---	---	---	---	---	---	113	---	93	---	---	103	---	---	---	---	---	---	---	---	---	---

BRO = BROWN COUNTY, SHA = SHAWNEE COUNTY, FRA = FRANKLIN COUNTY, LAB = LABETTE COUNTY, RPD = REPUBLIC COUNTY, BELLEVILLE TEST, RPI = REPUBLIC COUNTY,
SCANDIA TEST, HAR = HARVEY COUNTY, ELL = ELLIS COUNTY, STA = STAFFORD COUNTY, THO = THOMAS COUNTY, FIN = FINNEY COUNTY, AVGST = AVERAGE OF ALL STANDARD
TRIALS, EXCEPT THE SOYBEAN CYST NEMATODE TRIAL (SCN), BRR = BROWN COUNTY ROUNDUP-RESISTANT, SHR = SHAWNEE COUNTY ROUNDUP-RESISTANT, FRR = FRANKLIN COUNTY ROUNDUP-RESISTANT, COR = CHEROKEE COUNTY ROUNDUP-RESISTANT, RCR = REPUBLIC COUNTY ROUNDUP-RESISTANT, HRR = HARVEY COUNTY ROUNDUP-RESISTANT, STR = STAFFORD COUNTY ROUNDUP-RESISTANT, THR = THOMAS COUNTY ROUNDUP-RESISTANT, AVGRR = AVERAGE OF ALL ROUNDUP-RESISTANT TRIALS, SCN = CHEROKEE COUNTY SCN TRIAL

TABLE 24. DESCRIPTION OF ENTRIES IN 1998 SOYBEAN PERFORMANCE TEST. * (CONTINUED)

BRAND						SCN						PHYTO		RR	STS	IRON
	NAME	MG	VT	FC	HI	PU	PD	R1	R3	R14	SOURCE	RR	TOL			
	A94-774021	III	PL											N	N	6.0
	ANAND	V	PL	P	BL	T			R		PI437654	S		N	N	7.6
	CRAWFORD	IV	PL	P	BL	T	BR	S	S	S		S		N	N	7.0
	FLYER	IV	PL	P	BL	T	T	S	S	S		RPS1k		N	N	6.8
	HARTWIG	V	PL	W	BL	T		R	R	R	PI437654	S		N	N	6.9
	HC93-4118	IV	PL											N	N	7.0
	HUTCHESON	V	PL	W	BF	G	T	S	S	S		S		N	N	5.5
	IA2022	11	PL	P	BL	G	BR	S	S	S		S		N	N	6.7
	K1340		PL											N	N	6.6
	K1364		PL											N	N	5.1
	K1366		PL											N	N	6.5
	K1370		PL											N	N	6.6
	K1377		PL											N	N	6.4
	K1378		PL											N	N	7.0
	K1379		PL											N	N	6.4
	K1380		PL											N	N	6.1
	K1381		PL											N	N	6.6
	K1386		PL											N	N	7.3
	K1391		PL											N	N	6.7
	K1393		PL											N	N	7.1
	KS5292	V	PL	W	BF	G	T	R	R	S	PEKING	S		N	N	6.9
	MANOKIN	V	PL	W	BL	T	T	R	R	S	PEKING	S		N	N	5.7
	RESNIK	III	PL	P	BL	T	T	S	S	S		RPS1k		N	N	7.0
	SHERMAN	III	PL	W	BF	G	BR	S	S	S		S		N	N	7.0
	SPARKS	IV	PL	W	BL	T	T	S	S	S		RPS1		N	N	5.5
	STAFFORD	V	PL	P	IB	G	T	S	S	S		S		N	N	7.0
	WILLIAMS 82	III	PL	W	BL	BR	T	S	S	S		RPS1k		N	N	6.8
KSOY	DELSOY 5500	V	PL	W		T	T		R	MR	Peking/P188788	S		N	N	6.7
KSOY	KS3494	III	PL	P	BL	T	BR	S	S	S		S		N	N	7.5
KSOY	KS4694	IV	PL	W	BF	G	BR	S	S	S		S		N	N	6.9
KSOY	KS4895	IVS	PL	P	BL	G	T	S	S	S		S		N	N	6.4
KSOY	KS4997	IVS	PL	W	BL	T	T	S	S	S		S		N	N	6.6
KSOY	MACON	III	PL	W	BL	T	BR	S	S	S		S		N	N	6.7
KSOY	STRESSLAND	IV	PL	P	BL	T	T	S	S	S		S		N	N	7.0
ADVANCED GENETICS	AG3630STS	IV	PL	W	BL	T	T					RG1c	1.4	N	Y	6.8
ADVANCED GENETICS	AG3667RR	III	PL	P	BR	T	BR					RPS1a		Y	N	7.1
ADVANCED GENETICS	AG3797RR	III	PL	P	BL	T	BR					RPS1k	1.8	Y	N	7.2
ADVANCED GENETICS	AG3822NRR	IV	PL	W	BL	T	BR	S	MR	MR			1.7	N	N	6.3
ADVANCED GENETICS	AG3860NSTS	IV	PL	W	BL	T	T	S	MR	MR			1.7	N	Y	6.7
ADVANCED GENETICS	AG3957RR	III	PL	W	BL	T	T						1.5	Y	N	6.5
ADVANCED GENETICS	AG4147RR	IV	PL	P	BL	T	T					RPS1k	2.1	Y	N	6.7
ADVANCED GENETICS	AG4188STS	IV	PL	P	BL	T	T					XG1c	2.2	N	Y	7.0
ADVANCED GENETICS	AG4333NRR	IV	PL	P/W	BL	T	T		R	R		RPS1k	1.5	Y		7.3
ADVANCED GENETICS	AG4427RR	IV	PL	W	BF	G	T						4.0	Y		6.9
ADVANCED GENETICS	AG4437RR	IV	PL	W	BF	G	T					RPS2		Y	N	6.1
ADVANCED GENETICS	AG5277RR	V	PL	P		T								Y		7.0
ADVANCED GENETICS	BOUNTYSTS	IV	PL											N	Y	6.8
ADVANCED GENETICS	DS410(DeLange)	IV	PL	P	BL	BR	BR					RPS1c	3.0	N		6.7
ADVANCED GENETICS	DS454(DeLange)	IV	PL	P	BL	T	BR					RPS1c	3.0	N		5.6
ADVANCED GENETICS	DS466(DeLange)	IV	PL	W	BL	T	T		R	R			4.0	N		6.6
ADVANCED GENETICS	DS485(DeLange)	IV	PL	P	BL	G	T						4.0	N		7.8
ADVANCED GENETICS	EXPRESS II	IV	PL											N	N	7.3
ADVANCED GENETICS	GALAXY	IV	PL											N	N	6.4

TABLE 24. DESCRIPTION OF ENTRIES IN 1998 SOYBEAN PERFORMANCE TEST. * (CONTINUED)

TABLE 24. DESCRIPTION OF ENTRIES IN 1998 SOYBEAN PERFORMANCE TEST. * (CONTINUED)

						SCN						PHYTO		RR	STS	IRON
BRAND	NAME	MG	VT	FC	HI	PU	PD	R1	R3	R14	SOURCE	RR	TOL			
GOLDEN HARVEST	H-1487	V	PL	P	BL	T	T	S	R	R	P188788		1.7	N	N	6.9
GOLDEN HARVEST	H-1500	V	PL	W	BL	T	T	S	R	S	P188788		1.5	N	N	7.3
GOLDEN HARVEST	X 384 RR	IV	PL	P	BL	T	BR	S	R	R	P188788		2.0	Y	N	7.0
GOLDEN HARVEST	X410RR	IV	PL	P	BR	T	BR	S	S	S			2.5	Y	N	6.7
HAMON	H-447	IV	PL	P	BL	T	BR	S	S	S		RPS1k	1.8	N	N	7.1
HOEGEMEYER	312	IV	PL	P	BL	T	BR	S	S	S				N		7.3
HOEGEMEYER	333	III	PL	P	IB	G	BR	S	S	S		RPS1a, 6	7.0	N		7.2
HOEGEMEYER	371	III	PL	P	BL	G	BR	S	S	S				N		7.3
HOEGEMEYER	380	III	PL	P	BR	T	BR	S	S	S				N	N	7.0
HOEGEMEYER	395RR		PL	P	BL	T	T	S	S	S		RPS1c	7.0	Y		7.1
HOEGEMEYER	401	IV	PL	P	BR	T	T	S	S	S				N	N	6.9
HOEGEMEYER	402STS	IV	PL	P	BL	T	T	S	S	S				N	Y	6.9
HOEGEMEYER	435	IV	PL	W	BL	T	BR	S	S	S				N	N	7.3
HOEGEMEYER	460NRR		PL	w	BL	T	T	S	R	MR		RPS7	7.0	Y	N	8.0
HOEGEMEYER	471SCN	IV	PL	W	BF	G	BR	S	MR	MR				N	N	6.4
HORNBECK	HBK4890	V	PL	P	IB	G	T	S	S	S			2.0	N	N	6.1
HORNBECK	HBK49	V	PL	W	BF	G	T	MS	S	S		R	2.0	N	N	5.6
LEWIS	361	IV	PL										1.7			7.5
LEWIS	3668RR	IV	PL													6.9
LEWIS	390	IV	PL										1.6			6.6
LEWIS	3955RR	IV	PL													6.8
LEWIS	4308RR	IV	PL													7.0
M/W GENETICS	G3060RR	III	PL	P/W	BL	T	T	S	S	S		RPS1k	1.5	Y		7.3
M/W GENETICS	G3599RR	III	PL	W	BL	T	T	S	S	S			2.8	Y		6.2
M/W GENETICS	G3608RR	III	PL	P	BR	T	BR	S	S	S		RPS1a	1.7	Y		6.9
M/W GENETICS	G3644STS	III	PL	W	BL	T	T	S	S	S		RPS1c	1.4	N	Y	5.3
M/W GENETICS	G3996	III	PL	W	BL	T	BR	S	S	S			1.8	N		7.0
M/W GENETICS	G4411RR	IV	PL	W	BL	T	T	S	S	S			1.8	Y		6.6
M/W GENETICS	G4425RR	IV	PL	W	BF	G	T	S	S	S			2.0	Y		6.7
M/W GENETICS	G4555	IV	PL	P	BL	T	T	S	S	S		RPS1c	1.9	N		5.9
MERSCHMAN	DALLAS III		PL	P	BR	T	BR	S	S	S			5.0	N		7.2
MERSCHMAN	EISENHOWER V		PL	W	BL	T	BR	S	S	S		RPS1a	5.0	N		6.6
MERSCHMAN	KENNEDY IVRR		PL	P	BR	T	BR	S	S	S		RPS1a	5.0	Y	N	7.3
MERSCHMAN	MEMPHIS IIIRR		PL	W	BL	T	T	S	R	MR	P188788		7.0	Y	N	7.1
MERSCHMAN	TRUMAN VI		PL	P	BR	T	BR	S	S	S			5.0	N	N	6.8
MERSCHMAN	WASHINGTON VIIRR		PL	P	BL	T	T	S	S	S		RPS1c	6.0	Y	N	7.6
MIDLAND	8280RR	III	PL	P	BL	T	T	S	S	S		RPS1k	2.1	Y		5.7
MIDLAND	8284RR	III	PL	P	BF	G	BR	S	S	S			2.0	Y		6.3
MIDLAND	8287	III	PL	P	BL	T	BR	S	S	S			2.0	N		7.7
MIDLAND	8291RR	III	PL	P	BL	T	BR	S	S	S		RPS1k	2.0	Y		5.2
MIDLAND	8310RR	III	PL	P	BL	T	T	S	S	S		RPS1k	2.1	Y	N	6.5
MIDLAND	8316STS	III	PL	P	BL	T	T	S	S	S			2.0	N	Y	6.6
MIDLAND	8320RR	III	PL	P	IB	G	BR	S	R	R			2.0	Y	N	6.7
MIDLAND	8321	III	PL	P	BL	BR	BR	S	S	S		RPS1k	1.9	N	N	6.5
MIDLAND	8322RR	III	PL	P	BL	T	T	S	S	S			2	Y	N	6.6
MIDLAND	8333STS	III	PL	P	BL	T	T	S	S	S			2.7	N	Y	7.1
MIDLAND	8334	III	PL	P	BR	T	BR	S	S	S			3.0	N		6.6
MIDLAND	8341 RR	III	PL	W	BL	T	T	S	S	S			1.9	Y		6.5
MIDLAND	8345	III	PL	P	IB	G	G	S	S	S				N		6.9
MIDLAND	8355	III	PL	P	IB	G	T	S	S	S			2.8	N		6.5
MIDLAND	8361RR	IV	PL	P	BR	T	BR	S	S	S		RPS1a	5.0	Y		7.7
MIDLAND	8371	IV	PL	P	BL	T	BR	S	S	S				N		7.2
MIDLAND	8377RR	IV	PL	W	BL	T	T	S	S	S			1.5	Y		6.8

TABLE 24. DESCRIPTION OF ENTRIES IN 1998 SOYBEAN PERFORMANCE TEST. * (CONTINUED)

						SCN						PHYTO		RR	STS	IRON
BRAND	NAME	MG	VT	FC	HI	PU	PD	R1	R3	R14	SOURCE	RR	TOL			
NK	S38-L5	III	PL	W	BR	T	BR	S	S	S		S	4.0	N	N	5.6
NK	S39-D9	III	PL	P	BL	T	T	S	S	S		RPS1c	4.0	Y	N	7.0
NK	S42-K2	IV	PL	P	BR	T	T	S	S	S		S	4.0	Y	N	7.6
NK	S42-M1	IV	PL	W	BL	T	T	S	R	MR		S		Y		7.4
NK	S43-B5	IV	PL	W	BR	T	T	S	S	S		RPS1c	3.0	N	N	6.7
NK	S46-W8	IV	PL	P	BL	T	T	S	R	MR		RPS1c	4.0	Y	N	7.4
NK	S51-T1	V	PL	W	BF	G	T	S	R	S		S		Y	N	7.2
NK	S57-11	V	PL	P	BL	T	BR	S	R	MR		RPS1c	2.0	N	N	6.0
PIONEER	9294	III	PL	P	BL	T	BR	S	S	S			4	Y	N	7.5
PIONEER	9352	III	PL	W	BR	T	BR	S	S	S			4.0	N	N	5.5
PIONEER	9395	III	PL	w	BL	T	T	S	S	S			4.0	N	N	5.9
PIONEER	9396	III	PL	W	BL	T	T	S	S	S			5.0	Y	N	7.3
PIONEER	93 B 34	III	PL	P	BL	T	BR	S	S	S		RPS1k	2.0	Y	N	7.0
PIONEER	93B41	III	PL	W	BL	T	T	S	S	S		RPS1k	2.0	N	N	7.5
PIONEER	$93 \mathrm{B51}$	III	PL	W	BL	T	T	S	S	S			4.0	Y	N	6.4
PIONEER	93B53	III	PL	P	BL	T	BR	S	S	S		RPS1k	4.0	Y	N	6.2
PIONEER	$93 \mathrm{B71}$	III	PL	W	BR	T	BR	S	S	S				Y	N	6.7
PIONEER	$93 \mathrm{B82}$	III	PL	P	BL	T	BR	S	S	S		RPS1k	3.0	N	N	6.3
PIONEER	9412	IV	PL	P	BL	T	T	S	S	S			4.0	N	N	6.8
PIONEER	9421	IV	PL	W	BL	T	T	S	S	S			2.0	N	Y	4.2
PIONEER	9492	IV	PL	W	BL	T	T	S	R	R			5.0	Y	N	7.4
PIONEER	$94 \mathrm{B01}$	IV	PL	W	BL	T	T	S	S	S			4.0	Y	N	7.2
PIONEER	94B41	IV	PL	W	BF	G	T	S	R	R		RPS1c	2.0	Y	N	6.9
PIONEER	95 B 33	V	PL	P	IB	G	T	R	R	S			4.0	N	N	5.8
RENZE	R3097	III	PL	P	BL	T	BR	S	S	S			4.0	N	N	7.0
RENZE	R3209RR	III	PL	W	BR	T	T	S	S	S			4.0	Y	N	7.6
RENZE	R3297	III	PL	P	IB	G	BR	S	S	S		RPS1a	4.0	N	N	7.5
RENZE	R356RR	IV	PL	P	BR	T	BR	S	S	S		RPS1a	5.0	Y	N	7.7
RENZE	R3599	IV	PL	P	BL	T	BR	S	S	S		RPS1a	5.0	N	N	7.0
STINE	3171-1	III	PL	P	BF	G	BR	S	S	S		S		N	N	7.3
STINE	3264	III	PL					S	S	S		S		Y	N	7.5
STINE	3290	III	PL	P	BL	T	BR	S	S	S				N	N	7.2
STINE	3293-4	III	PL	M	BL	T	T	S	S	S		RPS1k		Y		7.4
STINE	3398-8	III	PL	P	BR	T	BR	S	S	S		H,RPS1a		N	N	6.4
STINE	3490-4	III	PL	W	BR	T	T	S	S	S		S		Y	N	7.3
STINE	3581	III	PL	P	BL	T	BR	S	S	S		RPS1a		N	N	4.9
STINE	3690-0	III	PL	P	BR	T	BR	S	S	S		S		N	N	6.8
STINE	3792-4	III	PL					S	R	MR				Y		6.5
STINE	3870-0	III	PL	W	BL	T	BR	S	S	S		RPS1a		N	N	7.0
STINE	3990-0	III	PL	P	BL	T	BR	S	S	S		RPS1a		N	N	7.1
Stine	4199-2	IV	PL	W	BL	T	T	S	R	R		S		N	N	6.5
STINE	4492-4	IV	PL					S	R	MR				Y	N	6.1
Stine	4562-2	IV	PL	P	G	T	T	S	S	S		RPS3		N	N	7.6
Stine	4790	IV	PL	P	BR	T	BR	S	S	S		S		N	N	7.0
STINE	X3506	III	PL	P	BR	T	BR	S	S	S		S		N	N	7.1
TAYLOR	370RR	III	PL					S	S	S		RPS1a	1.8	Y	N	7.1
TAYLOR	396	III	PL			T		S	S	S		RPS1a	2.0	N	N	7.0
TAYLOR	415RR	IV	PL					S	S	S			2.0	Y	N	6.1
TAYLOR	450RR	IV	PL					S	S	S			2.0	Y	N	6.9
TAYLOR	454	IV	PL			T		S	S	S			2.0	N	N	7.2
TERRA	E394	III	PL	W	BR	T	T	S	S	S		RPS3	4.0	N	N	7.1
TERRA	E4280RR	IV	PL	W	BL	T	BR	S	S	S			3.0	Y	N	6.8
TERRA	E438	IV	PL	W	BL	T	T	S	R	R			4.0	N	N	7.0

TABLE 24. DESCRIPTION OF ENTRIES IN 1998 SOYBEAN PERFORMANCE TEST. * (CONTINUED)

BRAND	NAME	MG	VT	FC	HI	PU	PD	SCN				PHYTO		RR	STS	IRON
								R1	R3	R14	SOURCE	RR	TOL			
TERRA	E4680RR	IV	PL	W	BL	T	BR	S	S	S			4.0	Y	N	5.6
TERRA	TS364T(E364T)	III	PL	W	BR	TW	BR	S	S	S		RPS1a	4.0	N	N	7.0
TERRA	TS387	III	PL	P	BL	TW	BR	S	S	S		RPS1a	4.0	N	N	6.8
TERRA	TS415	IV	PL	M	M	TW	BR	S	S	S		RPS1a	4.0	N	N	7.9
TERRA	TS466RR	IV	PL	W	BL	T	T	S	R	MR			3.0	Y	N	7.1
TERRA	TS474	IV	PL	P	BL	TW	BR	S	S	S			3.0	N	N	7.1
TERRA	TS4792	IV	PL	P	BL	BR	T	S	R	R			3	N	N	6.0
TERRA	TS504	V	PL	W	BL	T	T	S	R	S			2.0	N	N	6.2
TERRA	TS556RR	V	PL	P	IB	G	T	S	S	R			3	Y	N	6.7
TRIUMPH	TR3939RR	III	PL	P	BL	T	BR	S	R	S			3	Y	N	7.1
TRIUMPH	TR4339RR	IV	PL	M	BL	T	T	S	R	S		RPS1k	1.8	Y	N	5.9
TRIUMPH	TR5409RR	V	PL	P	BF	G	T	S	MR	R			3	Y	N	7.4
WILLCROSS	9378STS	IV	PL	W	BR	T	BR	S	S	S				N	Y	7.0
WILLCROSS	9447	V	PL	P	BL	T	BR	S	S	S				N	N	7.4
WILLCROSS	9449NSTS	IV	PL	P	BL	T	BR	S	S	S				N	Y	6.6
WILLCROSS	9640	IV	PL	M	M	T	BR	S	S	S		RPS1a	4.0	N	N	6.6
WILLCROSS	9738	IV	PL	P	BL	T	BR	S	S	S		RPS1a	4.0	N	N	6.9
WILLCROSS	9841	IV	PL	W	BR	T	BR	S	S	S				N	N	6.8
WILLCROSS	RR2309	III	PL	P	BL	T	BR	S	S	S		RPS1k	2.0	Y	N	6.1
WILLCROSS	RR2338	III	PL	P	BL	T	T	S	S	S		RPS1k		Y	N	6.5
WILLCROSS	RR2357	IV	PL	P	BR	T	BR	S	S	S		RPS1a	5.0	Y	N	7.3
WILLCROSS	RR2368	IV	PL	P	BL	T	T	S	S	S		RPS1k		Y	N	6.7
WILLCROSS	RR2397	IV	PL	P	BL	T	T	S	S	S		RPS1c		Y	N	7.4
WILLCROSS	RR2448	IV	PL	W	BF	G	T	S	S	S				Y	N	6.1
WILLCROSS	RR2449N	IV	PL	P	BL	T	T	S	R	MR		RPS1a		Y	N	6.5
WILLCROSS	RR2467N	V	PL	W	BL	G	T	S	R	MR			4.0	Y	N	7.0
WILLCROSS	RR2517N	V	PL	P	BL	G	T	S	MR	R			2.0	Y		6.8
WILSON	3380	III	PL	W	BF	G	T	S	S	S			2.5	N	N	6.3
WILSON	E8362	III	PL	P	BL	T	BR	S	S	S		RPS1a	2.0	N	N	7.2
													$\begin{gathered} \text { LSD (.1) } \\ \text { CV(\%) } \end{gathered}$			0.7
																8.8

 $I B=I M P E R F E C T$ BLACK; BR = BROWN; $B F=B U F F ; G=G R E Y ; Y=Y E L L O W, M=M I X E D ; P U=P U B E S C E N C E C O L O R ; T=T A W N Y ; B R=B R O W N ; G=G R E Y ; P D=P O D C O L O R ;$ R = BROWN; T = TAN; SCN = SOYBEAN CYST NEMATODE; R1, R3, AND R14 = RACE 1, 3, AND 14, RESPECTIVELY; S = SUSCEPTIBLE, R = RESISTANT MR = MODERATELY RESISTANT; PHYTO = PHYTOPHTHORA ROOT ROT; RR = RACE RESISTANT; RPS 1 a- Otc INDICATE MAJOR
EENES FOR RESISTANCE, H= HETEROGENEOUS; TOL = FIELD TOLERANCE SCORE WITH $1=$ EXCELLENT TO 9 = POOR
RR = ROUNDUP-RESISTANT, Y= ROUNDUP-RESISTANT VARIETY, N= NOT A ROUNDUP-RESISTANT VARIETY; STS= SULFONYLUREA TOLERANCE, Y= TOLERANT TO SULFONYI HERBICIDES, $N=$ NOT TOLERANT TO SULFONYLUREA HERBICIDES, IRON= IRON CHLOROSIS SCORE, $1=$ NO CHLOROSIS TO $9=$ SEVERE CHLOROSIS
ALL INFORMATION EXCEPT CHLOROSIS SCORES SUPPLIED BY ENTRANT.

CONTRIBUTORS

MAIN STATION, MANHATTAN

W.T. Schapaugh, Jr., Professor (Senior Author)
K.L. Roozeboom, Assistant Agronomist

RESEARCH CENTERS

P. Evans, Colby
C. Thompson, Hays
J. Long, Columbus, Pittsburg
M. Witt, Garden City
EXPERIMENT FIELDS

M. Claassen, Hesston
B. Gordon, Belleville, Scandia
K. Janssen, Ottawa
L. Maddux, Topeka, Powhattan
V. Martin, St. John

NOTE: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

[^0]: (CONTINUED)

