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CHAPTER 1

INTRODUCTION

1.1 Introduction

A Petri net is an abstract formal model of information flow. Petri nets were designed

and are used mainly for modeling. In particular, Petri nets are suitable for modeling

systems with independent components, especially those that may exhibit asynchronous and

concurrent activities. Petri nets represent a long and sustained effort to develop concepts,

theories, and tools to aid in the design and analysis of concurrent systems. Various kinds

of 'real' systems can be described, analyzed, and synthesized by Petri nets. Petri nets are

used in areas such as software engineering, office automation, specification and

verification of protocols, databases, legal systems, and industrial as well as social systems.

Using Petri nets to model systems gives the user several advantages:

1) the representation scheme provides a graphical interface that is easy to understand,

2) systems can be designed systematically because Petri nets can be synthesized in either a

top-down or bottom-up approach,

3) the development of an appropriate theory allows analysis of the modeled system giving

important properties regarding its behavior.

However the practical use of Petri nets relies heavily on the existence of adequate computer

tools. Therefore, to facilitate the description and modeling of systems, computer tools

should be available to aid the user in the construction and simulation of Petri nets. A

rapidly growing need for computer assistance persists in the drawing, simulation, and

analysis of the various types of Petri nets.

The purpose of our work is to design and implement a Petri net tool package for

modeling, simulation, and analysis of concurrent systems. In Sections 1.3 and 1.4 we

discuss in detail the Petri net tool package and its implementation using the object-oriented

1
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style of programming. In the first section of chapter 2, we look briefly into the history and

development of Petri nets. Basic Petri net concepts that are used in this thesis will be

formally defined in Section 2.2. We developed a Petri net tool package called PETRISYS

which consists of a net editor, a simulator, an analyzer, and a syntax-checker. We describe

PETRISYS in chapter 3 and conclude that chapter with an example. In Chapter 4 we

present the implementation issues of our system. Conclusions, possible extensions to this

system, and the value of our work can be found in Chapter 5. A bibliography follows this

chapter. Finally, an appendix containing a sample of the implementation can be found at

the end of this thesis.

1.2 Computer tools for the creation, modification,

and analysis of Petri nets

Computer systems are commonly viewed in the computing environment as an

information processing system or as a communication system. For our work we view the

computer system as a set of tools. By taking the tool perspective when designing a

computer system for Petri nets, programs can be considered as sets of tools that are under

the control of a user. Computer tools may effectively assist users during the various

phases of modeling. A sophisticated tool should be able to assist users in coping with the

many details of a large description in a simple way. Tools may be designed to model

different net types or only one net type. Petri net tools offer the user a number of different

advantages:

1) the possibility to create better and faster results; a computer-based drawing system

allows the user to produce drawings that are high in quality and precision in a shorter

period of time,
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2) the opportunity to make interactive presentations of the results; this is particularly useful

if the system to be modeled is large and is almost impossible to present on a fixed medium

such as sheets of paper,

3) the freedom to apply certain kinds of analysis systems without having a detailed

knowledge of the underlying theory; the computer system normally takes care of the

technical aspects of the underlying Petri net theory and performs the necessary calculations,

while the user has only to decide what is to be done,

4) the ability to hierarchically structure the process by which he obtains the results; in this

case, an entire net may be replaced by a single place or transition for modeling at a more

abstract level or places and transitions may be replaced by subnets to provide more detailed

modeling,

5) the capability to produce end-products of high quality; this is aided by the use of letter-

quality printers and laser printers.

Certain characteristics form a basic set of requirements for a good tool. We list the

most general ones here:

1) A good tool provides a "helpful" interface for the casual user and an "effective"

interface for the frequent or more skillful user,

2) A novice user should be able to start doing simple tasks after a few hours of training,

whereas the more experience user should be able to continue improving the way in which

he masters the system. This improvement may involve a gain in speed as well as an

increase in the quality of the drawing,

3) Good tools maintain a "suitable" balance between the structure that is imposed by the

system and the expressive freedom that is offered to the user,
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4) Good tools constitute a carefully designed balance between general applicable functions

and special purpose functions.

Depending on the application, tools should have a balanced combination of editing

and analysis functions to fit the specific need. Graphical workstations provide the

opportunity for users to work with both the textual and graphical representations of Petri

nets. Graphical workstations also facilitate the process of creating interfaces that are highly

interactive; thus, easing the process of learning, using, and understanding different

application programs. To effectively apply Petri nets, the following kinds of tools are now

available:

1) Graphical Editors

A graphical editor allows users to draw and modify Petri nets by directly working

with their graphical representation. A menu of commands or options is usually available

for the user to make selections from. The use of a mouse as an input device has become

common practice in interactive graphical environments. Users can see the immediate

results of their work displayed on the screen. Graphical net editors provide very accurate

and high-precision drawings that is close in form to the final printed product. These

editors will often have a high degree of expressive power, i.e. the user usually has a

number of ways to draw a net. The graphical editor should also be able to assist users in

handling drawings of large Petri nets in a well-structured and hierarchical way. Two good

graphical net editors are [Beau83] and [Mont83].

2) Textual Editors

Textual editors allow users to construct and modify Petri nets by working with their

textual representation. This type of editor should have many of the facilities that is



-5-

provided by normal word processing systems. In addition, textual editors should be able

to recognize the structure of Petri nets and check that the constructed nets are consistent

with net type(s) that are supported by the system. This kind of editor is usually not as

appealing as graphical editors because users are forced to remember code commands.

These commands are sometimes quite long and complicated because they may involve a

combination of keys.

3) Analysis programs

These application programs assist users in applying different analysis techniques;

thereby, collecting useful information about certain properties of Petri nets. Some of these

programs may be fully automated, while others will require an elaborated interaction with

the user. Analysis programs should offer a suitable set of analysis functions to fit the

user's needs. Certain of these programs will even allow the user to make formal proofs of

the modeled system [Ager73]. However, the most common type of analysis programs

allow users to examine Petri nets and make informal experiments with their behavior.

1.3 A discussion of our work

Much of the early research on Petri nets concentrated on the area of analysis, but not

on the modeling of systems. Even researchers that dealt with modeling rarely had a

computer simulation system with a graphics display. Not until recently did researchers

started looking at the simulation aspect of modeling systems by Petri nets. As a result,

over the last decade, there has been a rapid increase in interest over the development of

Petri net tools. [Feld86] gives a good "quantitative" description of graphical Petri net

tools. The purpose of our work is to design and implement a Petri net tool package to
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create, simulate, and analyze Petri nets. This designer has no knowledge that the Petri net

tool is developed in an Object-Oriented manner. We chose the Interlisp-D environment that

runs on the Xerox 1
1 100 series Workstation [Xerox83] along with the object-oriented

programming language LOOPS [Bobrow83] for our implementation of a Petri net tool

package. We discuss the LOOPS programming environment in more detail in the

following section. The Petri net tool package that has been developed consists of a

graphical net editor, a net simulator, and an analyzer. A user models the system of interest

as a Petri net by using the editor and observes the properties and behavior of that system by

running the net simulator. The graphical editor assists users in constructing and modifying

Petri nets. Users work directly with the graphical representation of a Petri net and can see

the intermediate results of their work on the screen. The simulator interprets the resulting

Petri net and simulates it directly. Program simulation is considered an important part of

net tools because users can observe the behavior of systems that are modeled. The net

analyzer provides useful statistical information about properties of the system being

modeled. This information is collected from a reachability tree that is implemented in the

tool package. The properties of Safeness, Boundedness, and Conservation are looked at

by the analyzer. We will talk about the reachability tree in the next chapter.

1.4 LOOPS and Object-Oriented programming

The object-oriented style of programming is ideal for problems in program simulation

where collections of things that interact with one another have to be represented. This style

of programming has also been advocated for applications in graphics, simulation and

modeling, systems prototyping, and AI environments. LOOPS is a knowledge

TXerox is a trademark of Xerox Corporation.
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programming system that adds object-access and rule-oriented paradigms to the procedure-

oriented paradigm of Interlisp. The integration of LOOPS into the Interlisp environment

provides access to the standard procedure-oriented programming of Lisp, along with the

extensive environmental support of the Interlisp-D system. Certain major ideas surface

when talking about object-oriented programming: objects, classes, message sending, and

inheritance. Objects are considered the most primitive elements of object-oriented

programming. Objects combine the attributes of procedure and data, and are capable of

performing computations and saving local state. In many object-oriented languages,

objects are divided into the major categories of classes and instances. A class in object-

oriented programming corresponds to a type in procedural programming languages. For

example, the class 'Place' may be a description of the structure and behavior for instances

such as placel and place2. A class determines the structure and behavior of object

instances. Therefore, object instances that are similar in structure should logically belong

to the same class. LOOPS supports both class variables and instance variables. Every

instance in LOOPS belongs to exactly one class. The methods and structure of an

instance is determined by its class. Class variables are used to hold information that is

shared by all instances of the class. Instance variables store information that is specific to a

particular instance. The means of communication between objects (classes and instances)

is via sending message. Message sending is a form of indirect procedure call. A message

to an object contains the selector and other parameters that are needed to accomplish a task.

The selector in a message specifies the kind of operation to be performed. This style of

communication allows each class to implement its own way of responding to a message.

Objects respond to messages through methods that are used to perform operations. Class

inheritance allows the creation of objects that are similar to each other but not identical. The
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inheritance network in LOOPS is aiTanged in a lattice. When a class is placed in the lattice,

that class inherits all the variables and methods from its superclasses. The LOOPS

programming environment allows users to reorganize the inheritance network by providing

an interactive graphics browser. Examples of changes that can be made to the network

through the browser are adding and deleting classes, renaming classes, and rerouting

inheritance paths.
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CHAPTER 2

PETRI NETS

2.1 A brief history of Petri nets

Petri nets originated with the doctoral dissertation of Carl Adam Petri [Petri62]. Petri

formulated the basis for a theory of communication between the asynchronous components

of a computer system. His dissertation was mainly a theoretic development of the basic

concepts from which Petri nets developed. A new model of information flow for systems

resulted from this thesis.

A.W. Holt and other researchers at the Information System Theory Project of

Applied Data Research, Inc. (ADR) developed much of the theory, notations, and

representation of Petri nets. Their work was later published in a final report for that project

[Holt68]. This project showed how Petri nets could be applied to the modeling and

analysis of systems with concurrent components. The theory of "systemics', as it was

called, was developed by this group, and this theory dealt with the representation and

analysis of systems and their behavior.

Professor Jack B. Dennis directed the Computation Structures Group to a

considerable amount of research and publication on Petri nets. This group has been a

productive source of research and literature in the field. Two important conferences on

Petri net were held by the Computation Structures Group: the Project MAC Conference on

Concurrent Systems and Parallel Computation [Dennis70] and the Conference on Petri nets

and Related Methods in 1975 at M.I.T. Both of these conferences have helped to

disseminate results and approaches in Petri net theory. Project MAC has since changed its

name to the Laboratory for Computer Science.
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An advanced course on Petri nets was organized in 1979 in Hamburg, West

Germany. The intent of this course was aimed at systematizing the existing volume of

knowledge on Petri nets, and making it more accessible to a wider audience of computer

scientists who are interested in the subject. This course initiated a lot of new research into

the applications and theory of Petri nets. Another advanced course was later held in 1986

in Bad Honnef, West Germany, where the most important current developments in Petri

nets were presented. This two courses have helped to clarify the basic philosophy

underlying the Petri net approach. Since the Hamburg course, an annual European

Workshop on Application and Theory of Petri Nets has been organized. A Petri Net

Newsletter is now published three times a year by the Special Interest Group on Petri Nets

and Related System Models of the Gesellschaft fur Informatik. The Advances in Petri Nets

within the Lecture Notes in Computer Science series is also published annually by

Springer-Verlag publishing company.

Theoretical journals on Petri nets can be found in Theoretical Computer Science,

Journal of Computer and System Sciences, Information and Control, and Journal of the

ACM. Papers that are published in these journals are often made available as technical

reports first. Another important source of Petri net research is the Institut fur

Informationssystemforschung of the Gesellschaft fur Mathematik und Datenverarbeitung in

Bonn, West Germany.

2.2 Definitions

A Petri net is composed of four parts; a set of places P, a set of transitions T, an input

function I, and an output function O. The input function I is a mapping from a transition ti

to a set of places I(tj), known as the input places of the transition. The output function O
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maps a transition to a set of places O(tj), known as the output places of the transition. A

place pj is an input place of a transition tj if pj £ I(tj); pj is an output place of transition tj if

Pi e O(tj). The input and output functions relate transitions and places. Hence, the

structure of a Petri net is defined by its places, transitions, input function, and output

function. An example of a Petri net structure is given in figure 2.1.

Definition 2.1

A Petri net structure, C, is a four-tuple, C = (P,T,I,0). P = {pi, P2 ,-, Pn) is a

finite set of places, n > 0. T = {tj, t2, ... , tn } is a finite set of transitions, m > 0. The set

of places and the set of transitions are disjoint, P n T = 0. I: T -> P is the input function, a

mapping from transitions to sets2 of places. O : T -> P is the output function, a mapping

from transitions to sets of places. The set of input places of a transition t is given by I(t) =

{p I (p,t) e A } , where A is the set of arcs in C. The set of output places of a transition t is

given by O(t) = {p I (t,p) e A}.

C = (P, T, I, O)

P={pl,p2,p3,p4,p5}

T={tl,t2,t3,t4}

I(tl) = {pi} 0(tl) = {p2}

Kt2)={p2) 0(t2) = {pl,p3}

I(t3)={p3,p4} 0(t3) = {p5}

Kt4)={p5) 0(t4) = {p4}

Figure 2.1 A Petri net structure

2In general, the input and output functions map transitions to bags of places.
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A Petri net structure consists of two basic components: places and transitions.

Corresponding to these components, a Petri net graph has circles that represent places and

bars that represent transitions. Directed arcs, indicated by lines with arrows, represent the

input and output functions and connect the places and the transitions. Some arcs are

directed from places to transitions, while others are directed from transitions to places. If

an arc is directed from node i to node j, either from a place to a transition or from a

transition to a place, we say that node i is an input to node j and node j is an output of node

i. A Petri net is a directed graph3 because all the arcs in the graph are directed. In addition,

all the nodes in the graph can be partitioned into two sets such that each arc is directed from

an element of one set to an element of the other set. Therefore, Petri net structures can be

represented as bipartite directed graphs in the form of Petri net graphs. The representation

of a Petri net as a graph in pictorial form is common practice in Petri net research. The

Petri net graph can be used to model the static properties of a system just as a flowchart

would represent the static properties of a computer program. As opposed to the static

properties that are represented by the graph, a Petri net also has dynamic properties that

result from its execution. We show a Petri net graph in figure 2.2 that corresponds to the

Petri net structure of figure 2.1.

Definition 2.2

A Petri net graph, G, is a bipartite directed graph, G = (V,A), where V = { v \ ,V2, ...

, vs } is a set of vertices, and A = {a i,a2, ... , ar } is a set of directed arcs, af = (v^v^),

3in general, Petri nets are multigraphs because more than one arc is allowed between any

place and transition. For the purpose of this implementation, we allow only one arc

between places and transitions.
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with vj, v^ e V. The set V can be partitioned into two disjoint sets, P and T, such that V =

P U T, P n T = 0. For each directed arc, if aj = (vj.vfc), then either v; e P and v^eTor vj

e T and v^ e P.

Figure 2.2 A Petri net graph equivalent to

the Petri net structure of figure 2.1

A Petri net which has tokens is called a marked Petri net. Tokens can only be

assigned to the places of a Petri net. The distribution of tokens in a marked Petri net

defines the state of the Petri net and is called its marking. A marking |i is an assignment of

tokens to the places of a Petri net. On a Petri net graph, tokens are represented by small

solid dots • inside the circles that represent places of the net. Tokens are used to define the

execution of a Petri net. The number of tokens in any place of the net may change as a

result of executing the Petri net. Tokens may move from one place to another place during

the execution of a Petri net. A Petri net C = (P,T,I,0) with a marking u becomes the

marked Petri net, M = (P,T,I,0,n). Figure 2.3 is a graph representation of the marked

Petri net for the structure of figure 2.1.
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Definition 2.3

A marking u, of a Petri net C = (P,T,I,0) is a function from the set of places P to the

nonnegative integers N, u,: P -> N.

Figure 2.3 A marked Petri net with the same
structure as figure 2.2

The behavior of a Petri net is given by sequences of enabled transitions that are fired.

A transition becomes enabled if each of its input places possesses a token. A transition

fires by removing tokens from its input places and creating new tokens in its output places.

A token is removed from each input place that has an arc pointing to the transition and is

placed into each output place that has an arc leading to it from that transition. Different

transitions may become enabled in different markings. The execution of a Petri net is

controlled by the number as well as the distribution of tokens in the Petri net. Tokens in

the input places which enable a transition are called the enabling tokens. Furthermore,

tokens are indivisible. This means that a token cannot be removed from a place by two

different transitions at the same time. Transition t2 is enabled in figure 2.3. If t2 fires, a

token is deposited into each of the output places, pi and p3. Figure 2.4(a) is the marked
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Petri net that results from firing transition t2. In this new marking, transitions tl and t3

become enabled. On firing transition t3, a different marking occurs. The result is shown

in figure 2.4(b).

Definition 2.4

A transition tj e T in a marked Petri net C = (P,T,I,0) with marking \i is enabled if

for all pj e I, jj.(pj) > 0. ji(pj) gives for each place pj in a Petri net the number of tokens in

that place.

p2 p5

Figure 2.4(a). Marked Petri net with t3 enabled
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p2 p5

Figure 2.4(b). Marked Petri net after firing t3..

A state of a Petri net is defined by its marking. The firing of a transition represents a

change in the state of a Petri net as indicated by a change in the marking of the net. The

state space of a Petri net with n places is the set of all markings, that is, Nn
. This change

of state is defined by the change function d; this is also called the next-state function.

Definition 2.5

The next-state function, d: N11 x T -> N11
, for a Petri net C = (P,T,I,0) with marking

[i and transition tk e T is defined if and only if ji(pj) > 1 for all pj e I(tk).

If 9(u,, tk) is defined, then B(\jl, tk) = |T;

where, ^'(Pi) = M^(Pi)
- 1 for all Pi e I(tk) - 0(tk),

^'(Pi) = H(Pi) + 1 for all pi e 0(tk) - I(tk),

otherwise n'(pj) = (i(pj).
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Two sequences can result from the execution of a Petri net; the sequence of markings ([i®,

|j.l, \P-, ...) and the sequence of transitions which were fired (tjo, tjj, tj2, ...).

The set of all markings which are reachable from a Petri net C with a marking (j. is

called the reachability set R(C,|i). A marking \i' is in R(C,|i) if there is a sequence of

transition firings which will change marking |i into marking p.'.

Definition 2.6

The reachability set R(C, [i) for a Petri net C = (P, T, I, O) with marking [i is the

smallest set of markings defined by

:

1) |ieR(C,n),

2) If \V e R(C, n) and \i" = 9(n',tj) for some tj e T, then \i" e R(C, \i).

A place in a Petri net is safe if the number of tokens in that place never exceeds one.

A Petti net is safe if all the places in that net are safe. Safeness is a very important property

when a Petri net is used to model a real hardware device. The number of tokens in a safe

place is either or 1. This property is related to the original definition of Petri nets which

was given in terms of events and conditions. In that definition, a condition was

represented by a place. If a token exists in a place, the condition is said to hold. Since a

condition should either hold or not hold, the presence or absence of a token is sufficient to

denote either condition. Therefore, no more than one token is needed in any place of the

net.
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Definition 2.7

A place pi e P of a Petri net C = (P,T,I,0) with initial marking fi is safe if for all |T e

R(C,u), H'(Pi) ^ 1.

If there is a bound of only one token in every place of the net, the net is said to be

safe. A place is bounded if it is k-safe for some k; a place is k-safe or k-bounded if the

number of tokens in that place never exceeds an integer k. A Petri net is bounded if all the

places in that net are bounded. A bounded Petri net can be implemented in hardware as a

counter.

Definition 2.8

A place pi e P of a Petri net C = (P,T,I,0) with an initial marking \i is k-safe is for all

^'eR(Qi),n'(Pi)<k.

The property of conservation is important if Petri nets are used to model resource

allocation systems. In these systems, tokens may be used to represent the resources and it

is important to show that tokens are neither created nor destroyed. One simple way to

preserve the conservative property is to require that the total number of tokens in the net

remain constant. A Petri net is said to be conservative if the number of tokens in the net

stays the same at all times. This may further be interpreted as the number of inputs of each

fireable transition being equal to the number of outputs of that transition.
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Definition 2.9

A Petri net C = (P,T,I,0) with an initial marking (I is strictly conservative if for all \i'

e R(C,n),

£ M-'(Pi) = SM-(Pi)

Pi e P Pi e P

2.3 The Analysis problem

Several major techniques for analyzing Petri nets have been suggested in the

literature. Two of these techniques provide solution mechanisms for many of the analysis

problems in Petri nets. One technique makes use of a reachability tree, while the other

involves the use of matrix equations. Since the reachability tree approach was taken for the

implementation of our thesis, we will only mention this approach here. The technique of

using a reachability tree involves finding a finite representation for the reachability set of a

Petri net. Since the reachability set of a marked Petri net is often infinite, the reachability

tree may also be infinite. Even a Petri net with a finite reachability set can have an infinite

tree. The reachability tree has nodes that represent markings of the Petri net and arcs that

represent possible changes in state that result from the firing of transitions [Karp69]. The

reachability tree represents all the possible sequences of transition firings. In order to limit

the size of an infinite tree to a finite representation, many markings of the tree have to be

mapped into the same node.

Several conditions help to reduce an infinite tree to a finite representation. The first

condition occurs when nodes have markings in which no transitions are enabled. These

markings are saidto be dead, and no new markings are generated in the tree by this type of

nodes. These dead markings are also called terminal nodes. Another class that is helpful
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in limiting the size of the tree involves markings which have previously appeared in the

tree. These repeated markings are known as duplicate nodes. Successors of a duplicate

node do not have to be considered because all these successors may be generated from the

first occurrence of the marking in the tree. One final means is used to reduce the

reachability tree to a finite representation. When the number of tokens in a place of the net

becomes too large, a set of states can be collapsed into a single node by ignoring the

number of tokens in that place. This situation occurs because a new marking is generated

that is greater than or equal in every component to some other marking along the path of the

tree from the root to that new marking. The set of states between these two markings can

be repeated indefinitely, thereby allowing a component of the newly generated marking to

increase without bound. Nodes whose tokens at a particular place can become arbitrarily

large are called interior nodes. Since the number of tokens at this type of nodes may

increase without bound, a special symbol is used to denote this case. The symbol is

represented by a w, and it stands for a value which has no limit. To show an example of

generating the reachability tree for a Petri net, we will consider the marked Petri net of

figure 2.5. This Petri net has the initial marking (0, 1,0, 1, 0). This initial marking

becomes the root of the tree. In this marking only transition t2 is enabled. Firing t2 yields

the marking (1, 0, 1, 1, 0).
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p2 p5

Figure 2.5. Initial marking of Petri net.

Two transitions, tl and t3, are enabled in this new marking. Firing the enabled transitions

gives two new markings, (0, 1, 1, 1,0) and (1, 0, 0, 0, 1). A new node is defined in the

reachability tree for each marking which results from firing an enabled transition (see figure

2.6). Since all the components in the marking that results from firing tl is either greater

than or equal to the root marking, (0,1,1,1,0) > (0,1,0,1,0), we can replace the third

component of this new marking by a w. The new marking (0, 1, w, 1, 0) becomes an

interior node in the tree. The presence of a w in marking (0, 1, w, 1, 0) reflects the fact

that the sequence t2-tl can be fired an arbitrary number of times. We can also view the

presence of a w as producing an infinite number of markings. The resulting reachability

tree after performing these first two steps is shown in figure 2.7.
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(0,1,0,1,0)

t2

(1,0,1,1,0:

(0,1,1,1,0) (1,0,0,0,1)

Figure 2.6. Reachability tree before replacing the

third component of (0,1,1,1,0) by w.

(0,1,0,1,0)

a

(1,0,1,1,0)

Y\
(0,l,w,l,0) (1,0,0,0,1)

Figure 2.7 The first two steps in building

the reachabiUty tree.for the

Petri net of figure 2.5

From the marking (0, 1, w, 1, 0) we can fire t2 to give the marking (1, 0, 2, 1, 0). Since

(1, 0, 2, 1, 0) > (1, 0, 1, 1, 0) we can again replace the third component by w. This

marking, (1, 0, w, 1, 0) is also an interior node. Repeating this process new markings are

added to the tree until all nodes become duplicate, terminal, or interior nodes. The

complete reachability tree that is generated for the Petri net of figure 2.5 is shown in figure

2.8. Duplicated nodes are shown as underlined and bold face text. Interior nodes are in

bold face only.
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(0,1,0,1,0)

t2

I

(l,0,w,l,0) (0,1,^,0,1) (0,1,0,0,1) (1,0,0,1,0)

/ \ / \ 1"

(0,l,w,l,0) (l,0,w,0,l) fl.O.w.O.n (0,1,0,1,0) (o.i.o.i.o)

tl

7 \
(0,l,w,0,l) (l,0,w,l,0)

/ \
(l,0,w,0,l) fO.l.w.1.0)

Figure 2.8 The reachability tree for

the Petri net of figure 2.5.
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CHAPTER 3

A PETRI NET TOOL PACKAGE

3.1 An Overview of PETRISYS

The formal definition of Petri nets provides a basis for theoretical work on the

subject. However, graphical representations of Petri nets are often more useful in

illustrating the concepts of Petri net theory. Therefore, a computer system for editing,

simulating, and analyzing Petri nets has been implemented in the Computing and

Information Science department at Kansas State University. This system is named

PETRISYS. PETRISYS provides an interactive environment whereby a user first designs

the system to be modeled using a Petri net graphical editor, and then he is able to check for

properties of the modeled system by making use of the PETRISYS simulator and analyzer.

A display of a Petri net marking can be represented in PETRISYS and the behavior of that

net simulated graphically. PETRISYS models a restricted version of Place/Transition

Systems (called P/T-systems, for short). The main difference between systems that are

modeled by PETRISYS and the P/T systems is places in nets modeled by PETRISYS are

allowed to hold more than one token, but arcs can have only weight one. Nets in

PETRISYS are edited graphically in a window through the use of a menu. A mouse is

used as the input device, thereby freeing the user from having to enter text as input. A

simulation program will combine the editor-created net with an interpretation and simulate

the net directly. The simulation of Petri nets may be done either interactively or

automatically. The user is able to watch the dynamic progress of the simulation and

interact with the net at any point during its execution. Interactive simulation is primarily

used during the design of a complicated system or for demonstration purposes. Automatic
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simulation can be used when the simulation to be performed is lengthy. The user is thus

freed to do some other useful work. Another important use of automatic simulation is in

rapid prototyping.

3.2 Operating PETRISYS

PETRISYS is available on the Xerox workstations of the Computing and Information

Science Department at Kansas State University. We assume that the reader is familiar with

these systems. At the beginning of a session two windows appear on the screen: the

'Prompt' window and the TTY' window. The session begins by setting the current time

in the TTY window. This window should appear on the left side of the screen and has the

cursor in it. The format for setting the time is "SETTIME "MM-DD-YY

HOUR:MINUTES". See figure 3.1 for an example. We recommend the user to reshape

the TTY and Prompt windows to a smaller size. To save more space on the screen one

also may remove the clock and history icons by closing them. The PETRISYS program

resides in "{DSK}<LISPFILES>TAN>". All the files in this directory appears in the

filebrowser window at this time (see figure 3.2). The file 'MENUBITS' is selected by

pointing the mouse to it and clicking on the left button. Next, the file 'PROJECT is

selected by clicking the middle mouse button. The middle button selects a file in addition

to the other files which may have already been selected. Both files should have arrows to

their side at this time. 'MENUBITS' contains the bitmaps for icons that are used by the

application program. PROJECT' is the filename that the application program resides in.

Select load from the filebrowser menu at this point. Loading takes approximately five to

ten minutes. When the loading is done, you are ready to start PETRISYS. Shrink the

filebrowser window and position it under the TTY window next to the LOOPS icon. The
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user starts a session with the function 'PETRI' in the TTY window. The word PETRI has

to be enclosed between parenthesis without quotes (see figure 3.3). This initializes all

class variables and instance variables in the application program to their default values. A

hierarchy of classes is also automatically created in LOOPS. The graphical interface of

PETRISYS appears after a few seconds. This main interface consists of an editing

window, a main menu of operation selections, and a prompt window for displaying

messages to the user. You can now start to draw a net in the editing window. Section 3.3
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describes the editing process. A PETRISYS session is ended by clicking on the broom

option followed by the closing of the editing window. To close the editing window, the

mouse is moved into the window and the right button is held down. When a popup menu

appears, the 'close' option is chosen. The prompt should now return to the TTY window.

3.3 The PETRISYS Graphical Net Editor

A two-dimensional net model is created and edited with the PETRISYS graphical

editor. Net components (places, transitions, arcs, and tokens) can be added (drawn),

deleted (erased), and inspected. This graphical net editor provides the normal requirement

for a good user interface; it offers a menu for command selection. The main interface to

users consists of an editing window with an attached menu and a message window (see

figure 3.4). All the options for editing, simulating, and analyzing Petri nets are represented

in the main menu. Certain options such as place, transition, arc, token, and clear screen

are represented as icons, while the other options are given as names of the operations. The

main menu of PETRISYS is shown in figure 3.5.

The process of drawing net components involve selecting the appropriate option from

the menu. A message is given in the message window to prompt the user for a position

that the net component will be drawn at (see figure 3.6).

The 'arc' option can be used to draw arcs between places and transitions. When the

user selects this option, he is prompt twice; once for the location that the arc will start from

and another time for the location that the arc will end at. The arc is then drawn from the

starting location to the ending location (see figure 3.7). A check is made to ensure that no

arc already exists between the two objects.
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A token can be drawn by first choosing the 'token' icon from the menu, shown as a

solid dot, and indicating the place to deposit this token with the mouse. Tokens will only

go into places. Furthermore, tokens are automatically arranged in each place if the count is

less than or equal to four. If the number of tokens in a place gets more than four, the

number of tokens in that place is shown as a digit to represent this number (see figure 3.8).

The 'SetSize' option allows the user to choose the size of net components that he

wants to draw on the screen. A popup menu with three choices appears after this option is

selected. The allowable options are 'small', 'medium', and 'large'. The SetSize option is

limited in that it can only be selected at the beginning of each editing session. This means

that users have to decide the size of net components before starting to draw a new Petri net.

The 'Delete' option allows users to remove places and/or transitions from the

graphical display. Whenever a place or a transition is removed from the net, any

connecting arc(s) and labels will be deleted as well (see figure 3.9). This feature prevents

the user from disrupting the syntactic rules of Petri net theory. Any editing operation in

PETRISYS preserves the syntactic correctness of the Petri net. At this time arcs cannot be

deleted independent of a place or a transition.

PETRISYS automatically labels places and transitions as they are drawn in the editing

window. Places are named beginning with the letter 'p' followed by a number, whereas

transition names begin with a 't' followed by a number (see figure 3.10). The object label

is placed beside the object after the user has selected a position with the mouse.

Any place is allowed to have a bound on the number of tokens that can reside in that

place. Users can set this bound by choosing the 'BoundAPlace' option from the main

menu. The place to put a bound will be prompt for. The default bound for all places is 10.
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A grid is available in PETRISYS for the user to arrange objects during editing. The

user is able to carefully align objects in the editing window when the grid is turned on.

This grid can be turn on by selecting the appropriate option in the menu. A click on the

'Grid On' option will turn on the grid. To disable the grid simply select the 'Grid Off

option from the menu.

The 'FlushTokens' option erases all the tokens that are present in the current net.

User may find this option useful when it is necessary to simulate a net with many different

markings. The top diagram of figure 3.11 shows the Petri net before a 'FlushToken'

command is issued. The resulting Petri net is shown in the bottom diagram of the same

figure.

The Tree' option informs PETRISYS to generate a reachability tree internally for the

current Petri net model in the editing window. A window opens and markings of the

reachability tree are displayed. Click on the 'Sequence' option to see the sequence of

transitions that fired in the process of generating this tree. We show the results of these

operations by an example in the last section of this chapter.

The 'Clear Screen' option, represented by the broom icon, destructively erases the

current Petri net from the screen. A new Petri net can now be drawn. A side effect of

using this option is that all instance variables as well as class variables are reinitialized to

nil.

3.4 The PETRISYS Simulator

Users can simulate nets that are modeled by PETRISYS in real-time. Nets in

PETRISYS are executed in either 'step' mode (interactive) or 'continuous' mode

(automatic). One enabled transition fires each time the 'step' option is selected from the
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menu. In step mode, users have the opportunity to observe the firing of transitions one

step at a time. Users can observe net simulation at machine execution speed in continuous

firing mode. In this mode, the next transition to fire is chosen at random from among all

transitions that are enabled at that time. Net execution continues until either no more

transitions are enabled or the user halts execution. Transition firing is depicted by actually

moving tokens from the input places to the output places of the enabled transition. Enabled

transitions are highlighted just before they fire to give users a better feel of which transition

actually fired. You can pause the simulation at any time by clicking on the LEFT mouse

button. After net execution halts, users can continue execution from that point, at either

step or continuous mode, or stop execution altogether. The PETRISYS simulator program

is an interpretator program. Thus, Petri net components can be changed and simulated

right away. The sequence of transitions that is produced when a Petri net executes is saved

by PETRISYS. This sequence can be seen by clicking on the 'Sequence' option. The

two options that appear in a popup menu are 'ShowSequence' and 'EraseSequence'.

'ShowSequence' opens a window to display the sequence of transitions that just fired (see

figure 3.12). 'EraseSequence' removes the firing sequence from memory and closes the

window at the same time.

3.5 The PETRISYS Syntax Checker

PETRISYS has a syntax-checker that makes sure syntactic structures are maintained

in the Petri net. The syntax-checker is not explicitly visible but rather lurks in the

background whenever PETRISYS is in used. The syntax-checker is mostly responsible

for checking 'correct' net structure when the editor is in use. Anytime the layout of a Petri

net in PETRISYS is modified, the syntax checker makes sure that the diagram reflects the
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underlying structure. An example of such a check happens when a user tries to connect an

arc between two transitions without any intervening place. The user will be informed of the

syntactic mistake, but no arc will be drawn between the transitions. Another check occurs

when a node, either places or transitions, is deleted from the diagram. Arcs that connect

the node to other nodes are deleted and no arcs are left dangling. This kind of structural

control is quite popular in computing science, and is similar to the use of syntax-directed

editors for programming languages. It frees a user from the tedious job of trying to

maintain the correct syntax for the system at all times. However, semantic checks are the

responsibility of the user. One example is that arcs may be drawn through a place if that

place is on the path between two nodes that the arc connects (see figure 3.13).
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3.6 The PETRISYS Analyzer

Modeling a system by a Petri net in itself is not sufficient or useful enough for all

purposes. A user cannot learn much by just watching the simulation. To gain important

insights into the system's behavior, it is necessary to analyze the modeled system. Petri

net models of systems are checked for the properties of Safeness, Boundedness, and

Conservation by the PETRISYS analyzer. For example, if a user is modeling a resource

allocation system, he might be interested whether the resources being modeled are

preserved in the Petri net. The property of conservation is required in this case. If the

system which is modeled is found to be conservative, resources in this system are known

to be preserved. The PETRISYS Analyzer uses the reachability tree technique of analyzing

systems. The 'AnalyzeTree' option in the main menu displays the properties of Safeness,

Boundedness, and Conservation for the reachability tree that has been produced. The

reachability tree approach of analysis has its limitations. For example, the general

problems of reachability and liveness cannot be solved using the reachability tree approach.

We did not try to be exhaustive in the properties that are analyzed, but instead tried to show

certain properties that can be analyzed.

3.7 An example of modeling with Petri nets

We illustrate the modeling of systems using Petri nets by considering the

producer/consumer problem. The producer/consumer problem depicts an environment

whereby a producer produces items and deposits them into a buffer for a consumer to

consume. This is a problem in which the producer and consumer has to coordinate with

each other. The consumer process cannot consume an item if no such item exists in the

buffer. Therefore the consumer has to know if an item exists in the buffer. The
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availability of an item to be consumed is indicated by the presence of a token in the buffer.

As long as a token is present in the buffer, the consumer can remove one token from it at a

time. On the other hand, the buffer may be limited in capacity. So the producer can only

produce as many items as the buffer can hold. A Petri net that models the

producer/consumer problem is shown in figure 3.14. Place p3 represents the buffer in our

example. Transition t2 can now fire because it is enabled. Firing transition t2 is equivalent

to the producer depositing an item into the buffer. The placing of an item into the buffer is

depicted by removing a token from the place p2, and depositing a token into each of the

places, pi and p3 (see figure 3.15). Transitions that are enabled at any time during

execution may represent events that can occur in a system. Whenever a net is executed

different states may be reached. Several markings are produced when this happens. The

set of enabling tokens at the various stages of execution during simulation can be

considered as "conditions". These conditions may be used to describe the state of the

system being modeled.
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Producer process Consumer process

Figure 3.14 The Producer/Consumer problem
modeled as a Petri net.

Figure 3.15 The result of depositing an

item into the buffer.

Firing transition t3 at this point corresponds to the consumer consuming an item from the

buffer. The occurrence of this event is represented by the removal of tokens from places p3

and p4, and the addition of a token into place p5 (see figure 3.16).
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Figure 3.16 The result of consuming an
item from the buffer.

The sequence of transitions that fired is shown in figure 3. 17. The set of markings that the

PETRISYS produces in the construction of the reachability tree for the producer/consumer

problem with initial marking (0, 1,0, 1, 0) is shown in figure 3.18. Clicking on the

'AnalyzeTree' option gives the properties of the current Petri net (see figure 3.19).
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Markings in the Reachability Tree

ROOT is (0 1 1 0)

Fire t2 gives (10 110)
Fire t1 gives (0 1 w 1 0)

Fire t2 gives (1 w 1 0)

Fire t1 gives (0 1 w 1 0)

"Duplicate marking found!"
Fire t3 gives (1 w 1)

Fire t1 gives (0 1 w 1)

Fire t2 gives (1 w 1)

"Duplicate marking found!"
Fire t4 gives (0 1 w 1 0)

"Duplicate marking found!"
Fire t4 gives (1 w 1 0)

"Duplicate marking found!"
Fire t3 gives (0 1 w 1)

"Duplicate marking found!"
Fire t3 gives (10 1)

Fire t1 gives (01001)
Fire t2 gives (1 w 1)

"Duplicate marking found!"
Fire t4 gives (01010)
"Duplicate marking found!"
Fire t4 gives (10 10)
Fire t1 gives (01010)
"Duplicate marking found!"
"End of markings for the Tree"

Figure 3.18
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CHAPTER 4

THE PETRISYS IMPLEMENTATION

4.1 Description of the inheritance network

PETRISYS maintains an internal representation of the Petri net for the system that is

modeled. Petri net components are represented by instances of classes of LOOPS objects.

A hierarchy of classes is automatically created in LOOPS consisting of PetriNet, Arc,

Place, Transition, HTransition, and VTransition. A browser which shows the inheritance

network for the classes in PETRISYS is given in figure 4.1. The inheritance network of

LOOPS is arranged in a lattice5 . Figures 4.2 to 4.8 show the definitions of all the classes

in the inheritance network. The root class of this network is called 'PetriNet'. PetriNet is

also the superclass of all the other classes. All the descriptions in a class, variables and

methods, are inherited by a subclass unless any of these descriptions are overridden in the

subclass. This means that any variable that is defined higher in a class of the inheritance

network will also appear as instances of this class. Under the PetriNet class, objects that

represent the basic components of a Petri net are represented as classes; in this case, the

classes 'Arc', 'Place', 'Token', and Transition'. Moreover, the classes 'HTransition', and

'VTransition' exist under 'Transition. Looking at the class definition for Place, shown as

#$Place, PetriNet is known to be its super class. All the instance variables of a class are

found under the heading IVs. Instance variables such as Bound, Center, Radius, and

Region may be defined along with their default values. Under the heading CVs, values

for the class variables are introduced. An example of class variables in Place is

5We refer to a "lattice" as a directed graph without cycles, and the lattice is allowed to have

more than one parent.
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'EraseCircle'. Any instance of this class can use the class variable 'EraseCircle' to perform

the desired operation; in this case, the opertation is to erase a circle on the screen that

represents a place. Under the headings Methods are found the procedures representing the

methods, which are functions in Interlisp. For example, 'AddToken' is the name of a

function that implements the incrementation of token count for instances of Place. Other

methods are AddlnArc', "AddToInputFn", and 'CheckForBound'. Methods that are

shown in bold face are declared by this class, while the other methods are inherited from its

super class. Examples of methods that are inherited from PetriNet by this class are

AreYouClicked' and 'BoundAPlace'.

4.2 Implementation of the reachability tree

A Petri net may have several different reachability trees depending on how the tree is

implemented. Most implementations follow a breadth-first search approach to generate the

tree. The implementation of the reachability tree in PETRISYS follows a depth-first

search. A new marking is generated for each node from the root of the tree and continue

on that path unless a terminating condition is satisfied. A terminating condition is either a

limit imposed by the system on the length of the current path that is being searched or no

firing condition exists from the current marking. Backtracking is performed by going to

the next highest level where a new marking can be generated from the last enabled

transition that has not been processed. Processing continues on this path until the

terminating conditions are again statisfied for markings that are generated. This search

process continues as long as firing conditions exist into the limits imposed by the system

on the depth of the reachability tree.
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CHAPTER 5

CONCLUSION

5.1 Directions for further work

PETRISYS is by no means a complete system. Work on the different

subcomponents of this system can be substantially extended. A very useful feature that

allows users to save Petri nets to different files should be implemented so that these nets

can be retrieved for later use. Due to the complexity of some systems being modeled, it

may not be feasible or even possible to draw all the nodes in a net at a single level.

Therefore, a useful editing system should allow the user to substitute a node by a subnet

that defines its refinement or to substitute a subnet by a single node to allow for more

abstract modeling. This feature would allow the user to work at various hierarchical levels.

The graphical editor should allow a user to move or reposition net objects while keeping

the basic structure of the Petri net intact. Another important extension is to allow for

bending arrows in the Petri net. This feature is not available in the current implementation

of PETRISYS. At the present time, PETRISYS can only check for the syntactic

correctness of a net. Semantic correctness of the net is the responsibility of the user. A

good extension would be to supplement the syntax checker with a semantic checker. Since

PETRISYS allows for more than one token in each place, it makes sense to have more than

one arc between places and transitions. Another extension that should prove useful in the

simulation phase of PETRISYS allows the user to select a particular transition from among

a list of enabled transitions to fire.
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5.2 The importance of this work

One of the major problems during the past years has been the lack of a sufficiently

sophisticated graphical Petri net editor. Moreover, the currently existing analysis tools are

not consistent in the sense that they run on different machinery and use different input and

output formats. Many future designers of Petri net analysis tools will likely build their

own package on top of one of the existing high-quality graphical editors. This trend would

make Petri net packages more compatible with each other. The motivation for this is that

a high quality editor takes approximately 10 man-years to develop. As a result, three

research institutions, GMD Bonn, Zaragosa University, and Aarhus University, have made

plans to build their future Petri net packages upon the Macintosh6 version of Design.

Design [Design86] is a good graphical editor that currently runs on the Apple Computer's

Macintoshes. The designer feels that this trend of standardization will likely continue in the

near future. PETRISYS could serve as a starting point for a productive graphical editor

that utilizes the power of workstations.

5.3 Concluding Remarks

PETRISYS is more than a representation system because analysis procedures are also

provided. PETRISYS offers the user a graphical environment to edit, simulate, and

analyze Petri nets. Integrity and consistency checks are performed by the system so that

users can concentrate on the more important tasks of modeling and analysis. This system

was implemented in an object-oriented approach on a Xerox 1186 A.I. workstation. By

implementing PETRISYS on a graphical workstation, the user is offered both the precision

and accuracy of net drawings as well as the speed and power of interactive presentations.

6Macintosh is a trademark of Apple Computer, Inc.
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Furthermore, the user is freed from details of the underlying theory governing the system

that is being modeled. With the recent interest in Petri net tools, PETRISYS offers another

dimension into the modeling of Petri nets.
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ABSTRACT

Real systems exhibit an enormous amount of complexity unless examined at an abstract

level. As a result, macroscopic abstractions are needed in order to master this complexity

and to better understand a system. Petri nets have developed over the last decade into a

suitable model for modeling concurrent systems. Petri nets have a firm theoretical basis on

which nets on a higher level are based on the solid foundation provided by lower level nets.

A major obstacle to the use of diagrams in modeling systems is often the time and effort

required to draw and edit such diagrams. Moreover, it is not possible to see the actual

simulation of a system without the aid of a computerized tool. Therefore, the graphical

simulation of Petri nets is often more suitable in illustrating the concepts of modeling

systems. Hence, computer tools should be available to help users with the modeling and

simulation of Petri nets. We developed a Petri net tool package to facilitate the drawing,

simulation, and analysis of Petri nets. Our tool package named PETRISYS, consists of a

graphical editor, a net simulator, and an analyzer. The graphical editor enables users to edit

Petri net models of systems and make changes to them easily. The net simulator runs the

system being modeled in 'real-time'. Users can watch the execution of a Petri net as it runs

on the screen. The movement of tokens are actually shown on the screen. The net analyzer

provides certain properties of the modeled system by making use of a reachability tree

which is created internally. The properties that are analyzed from this tree are Safeness,

Boundedness, and Conservation. PETRISYS is implemented in an Object-Oriented

manner using the programming language LOOPS to ease the process of development.

LOOPS runs on top of the Interlisp-D environment and is available on the Xerox 1186

Artificial Intelligence workstation. PETRISYS constitutes the basic features of a possibly

powerful and sophisticated Petri net tool package. Many extensions can be added to

PETRISYS and these extensions should be made to utilize the full capabilities of a well-

designed system.


