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Mixture of Regression Models with Varying Mixing

Proportions: A Semiparametric Approach

Mian Huang and Weixin Yao

Abstract

In this paper, we study a class of semiparametric mixtures of regression models, in

which the regression functions are linear functions of the predictors, but the mixing

proportions are smoothing functions of a covariate. We propose a one-step backfit-

ting estimation procedure to achieve the optimal convergence rates for both regression

parameters and the nonparametric functions of mixing proportions. We derive the

asymptotic bias and variance of the one-step estimate, and further establish its asymp-

totic normality. A modified EM-type estimation procedure is investigated. We show

that the modified EM algorithms preserve the asymptotic ascent property. Numerical

simulations are conducted to examine the finite sample performance of the estimation

procedures. The proposed methodology is further illustrated via an analysis of a real

dataset.
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1. INTRODUCTION

Mixtures of regression models are well known as switching regression models in econometrics

literature, which were introduced by Goldfeld and Quandt (1973). These models are useful

to study the relationship between some interested variables coming from several unknown

latent components. The model setting can be stated as follows. Let C be a latent class

variable with P (C = c | X = x) = πc for c = 1, 2, · · · , C, where x is a p-dimentional vector.

Given C = c, suppose that the response y depends on x in a linear way y = xTβc+ ϵc, where

x = (1, xT )T , βc = (β0c, β1c, . . . , βpc)
T , and ϵc ∼ N(0, σ2

c ). Then the conditional distribution

of Y given X = x can be written as

Y |X=x ∼
C∑
c=1

πcN(xTβc, σ
2
c ). (1.1)

Mixture models including model (1.1) are comprehensively summarized in McLachlan and

Peel (2000). Frühwirth-Schnatter (2006) and Hurn et al. (2003) focus on the Bayesian

approaches for model (1.1), including the selection of number of components C. Many

applications can be found in literature, i.e., in econometrics (Wedel and DeSarbo, 1993;

Frühwirth-Schnatter, 2001), and in biology and epidemiology (Wang et al., 1996; Green and

Richardson, 2002).

In this paper, we study a class of mixtures of regression models by allowing the mixing

proportions to depend on a covariate z nonparametrically, where z can be either from x or

not. Consider the analysis of a CO2-GDP dataset published by World Resource Institute. As

shown in Figure 3(a), the CO2-GDP dataset contains two related variables of 171 countries

in year 2005. The response variable is the CO2-emission per capita in year 2005, and the

predictor is the GDP per capita in the same year, measured by the current US dollars. From

Figure 3(a), we can see that likely there are two homogenous groups, and thus we may

consider fitting a two-component mixture of regression models for the data. The purpose of

the analysis is to identify the group of countries through their development path as featured

by the relationship of GDP and CO2-emission. However, we can also observe that the data

are more likely from the lower group when the predictor is larger. Therefore, the mixing

proportions for the two components may depend on z = x, which violates the constant
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proportion assumption of the model (1.1).

The ideas that allow the proportions to depend on the covariates in a mixture model

can be found in literature, e.g., the hierarchical mixtures of experts model (Jordan and

Jacobs, 1994) in machine learning. Huang (2009) and Huang and Li (2010) proposed a

fully nonparametric mixture of regression models by assuming the mixing proportions, the

regression functions, and the variance functions are nonparametric functions of a covariate.

Young and Hunter (2010) used kernel regression to model covariates-dependent proportions

for mixture of linear regression models. In Young and Hunter (2010), mixing proportions

may depend on a multivariate covariate z, however, there lacks of theoretical results, and

such extension may not be very useful in practice for the reason of “curse of dimensionality”.

In this paper, we systematically study the mixture of regression models with varying pro-

portions. Since the mixing proportions are nonparametric, while the regression function and

variance of each component are parametric, the proposed model indeed is a semiparametric

model. Compared to the nonparametric mixture of regression models of Huang (2009) and

Huang and Li (2010), the new semiparametric model offers more flexibility by combining

both parametric and nonparametric information together. However, the new model poses

more challenge for estimation since it contains both global parameters and nonparametric

functions. To estimate the unknown smoothing function πc(z), we introduce kernel regres-

sion technique and local likelihood method (Fan and Gijbels, 1996). To achieve the optimal

convergence rate for the global parameters βcs and σ2
c s and the nonparametric functions

πc(z)s, we propose a one-step backfitting estimation procedure. A fully iterative estimation

procedure is also investigated. For the mixture of regression models with varying proportions,

this paper makes the following major contributions to the literature:

(a) We show that mixture of regression models with varying mixing proportions are iden-

tifiable under certain conditions.

(b) We propose a new one step backfitting estimation procedure for the proposed model.

In addition, we prove that the one-step estimators for the regression coefficients and

variance parameters are
√
n consistent, and follow an asymptotic normal distribution;
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the kernel estimates for the proportion functions based upon the root-n consistent

estimates of βcs and σ2
c s have the same first order asymptotic bias and variance as the

kernel estimates with true values of βcs and σ2
c s.

(c) We develop a fast modified EM algorithm for the estimation procedure, and show that

the proposed algorithm preserves the ascent property for local likelihoods and global

likelihood in an asymptotic sense.

The rest of this paper is structured as follows. We present the semiparametric mixture of

regression model and the estimation procedure in Section 2. In particular, we develop a one

step backfitting estimation procedure for the proposed model using modified EM algorithm

and kernel regression. The asymptotic properties for the resulting estimates and the ascent

properties of the proposed EM-type algorithms are investigated. Simulation studies and

a real data application are presented in Section 3. In Section 4, we give some discussion.

Technical conditions and proofs are given in Section 5.

2. ESTIMATION PROCEDURE AND ASYMPTOTIC PROPERTIES

2.1 The Semiparametric Mixture of Regressions

Suppose that {(Xi, Yi, Zi), i = 1, · · · , n} is a random sample from population (X,Y, Z).

Throughout this paper, X is p-dimensional and Y and Z are univariate. Let C be a latent

class variable, and assume that conditioning on X = x, Z = z, C has a discrete distribution

P (C = c|X = x, Z = z) = πc(z) for c = 1, 2, · · · , C − 1. Here, Z can be part of X. We

assume that πc(z)s are smooth functions of z for c = 1, 2, · · · , C, and
∑C

c=1 πc(z) = 1 for all

z. Given C = c, X = x, and Z = z, Y follows a normal distribution with mean xTβc and

variance σ2
c . In other words, conditioning on X = x and Z = z, the response variable Y

follows a finite mixture of normals

Y |X=x,Z=z ∼
C∑
c=1

πc(z)N
(
xTβc, σ

2
c

)
, (2.1)

where x = (1, xT )T . When πc(z)s are constant, model (2.1) reduces to a finite mixture of

linear regression model (Goldfeld and Quandt, 1973). So model (2.1) can be regarded as a
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natural extension of traditional finite mixture of linear regression models. In this article, we

will mainly consider one dimensional Z. But the method and the results proposed in this

article can be easily extended to multivariate Z. However, such extension is less desirable

due to the “curse of dimensionality”.

Identifiability is a major concern for most mixture models. Section 3.1 of Titterington et

al. (1985) provided detailed accounts of the identifiability of finite mixture of distributions.

In particular, mixture of univariate normals is identifiable up to relabeling. However, iden-

tifiability of mixture of regression models does not directly follow the result of univariate

normal mixture. To achieve identifiability for finite mixture of regression models, the vari-

ability of x can not be too small; see Hening (2000) and section 8.2.2 of Frühwirth-Schnatter

(2006) for detail. For model (2.1), we have the following identifiability result. Its proof is

given in Section 5.

Theorem 1 Assume that πc(z) > 0 are continuous functions, c = 1, . . . , C, and (βc, σ
2
c ),

c = 1, . . . , C, are distinct pairs. In addition, assume that the domain X of x contains an open

set in Rp, and the domain Z of z has no isolated points. Then model (2.1) is identifiable.

Denote by ℓ∗(π(·),β,σ2) the log-likelihood function of the collected data {(Xi, Yi, Zi), i =

1, · · · , n}. That is,

ℓ∗(π(·),β,σ2) =
n∑

i=1

log

{
C∑
c=1

πc(Zi)ϕ(Yi|xT
i βc, σ

2
c )

}
, (2.2)

where β = {βT
1 , · · · ,βT

C}T , σ2 = {σ2
1, · · · , σ2

C}T , and π(·) = {π1(·), · · · , πC−1(·)}T . Since

π(·) consists of nonparametric functions, (2.2) is not yet ready for maximization. In order

to estimate this semiparametric model, we propose a one-step backfitting procedure. Specif-

ically, we first estimate π(·) locally by maximizing the following local likelihood function

ℓ1(π,β,σ
2) =

n∑
i=1

log

{
C∑
c=1

πcϕ(Yi|xT
i βc, σ

2
c )

}
Kh(Zi − z), (2.3)

where Kh(t) = h−1K(t/h) and K(t) is a kernel density function. For each local model at

z, we may adapt the conventional constraints and conditions imposed on the finite mixture
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of linear regressions, so that the corresponding local likelihood functions are bounded (See

Hathaway, 1985).

Let π̃, β̃, and σ̃2 be the solution of maximizing (2.3). Then π̃c(z) = π̃c, β̃c(z) = β̃c,

and σ̃c(z) = σ̃c. Since the global parameters β and σ2 are estimated locally, they do not

have root-n consistency. To improve the efficiency, parameters β and σ2 can be estimated

globally by maximizing the following likelihood function (2.4), which replaces πc(z) with its

estimate π̃c(z) in (2.2),

ℓ2(β,σ
2) =

n∑
i=1

log

{
C∑
c=1

π̃c(Zi)ϕ{Yi|xT
i βc, σ

2
c}

}
. (2.4)

Let β̂ and σ̂2 be the solution of maximizing (2.4). Their root n consistency will be established

in the next section under certain regularity conditions. After getting the estimates β̂ and

σ̂2, we can further improve the estimate of π(z) by maximizing the following local likelihood

ℓ3(π) =
n∑

i=1

log

{
C∑
c=1

πcϕ(Yi|xT
i β̂c, σ̂

2
c )

}
Kh(Zi − z). (2.5)

Let π̂c(z) = π̂c be the solution of (2.5). We refer to π̂c(z), β̂, and σ̂
2 as the proposed one-step

backfitting estimates.

In semiparametric modeling, one-step estimation procedure provides convenience for de-

riving asymptotic properties and achieves the optimal convergence rates for both global

parameters and nonparametric regression functions. Given undersmoothing conditions we

are able to estimate the parametric part in the rate of n−1/2. In section 2.2, we will show that

the one-step backfitting estimates achieve the optimal convergence rates for the parameters,

and the nonparametric functions can be estimated as good as if the parameters were known.

2.2 Asymptotic Properties

In this section, we first study the sampling properties of the proposed one-step backfitting

estimators π̂c(z), β̂, and σ̂
2. We will show that the one-step estimators β̂ and σ̂2 are root

n consistent and follow an asymptotic normal distribution. In addition, we will provide the
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asymptotic bias and variance of the estimator π̂(·), and show that it has smaller asymptotic

covariance compared to π̃(·).

Let θ = (πT , (σ2)T ,βT )T , η = {(σ2)T ,βT}T , and thus θ = (πT ,ηT )T . Let

ρ(y|x,θ) =
C∑
c=1

πcϕ
(
y|xTβc, σ

2
c

)
, ℓ(θ, x, y) = log ρ(y|x,θ).

qθ{θ, x, y} =
∂ℓ(θ, x, y)

∂θ
, qθθ{θ, x, y} =

∂2ℓ(θ, x, y)

∂θ∂θT
.

Similarly, we can define qη, qηη, qηπ, and qππ. Furthermore, define

Iθ(z) = −E
[
qθθ{θ(z), X, Y }

∣∣∣Z = z
]
,

Iη(z) = −E
[
qηη{θ(z), X, Y }

∣∣∣Z = z
]
,

Iπ(z) = −E
[
qππ{θ(z), X, Y }

∣∣∣Z = z
]
,

Iηπ(z) = −E
[
qηπ{θ(z), X, Y }

∣∣∣Z = z
]
,

and

Λ(u|z) = E
[
qπ{θ(z), X, Y }

∣∣∣Z = u
]
,

where θ(z) = (π(z)T , (σ2)T ,βT )T . Let η̂ be the one-step estimate of η. Denote by ψ(x, y, z)

the vector which consists of the first (C − 1) elements of I−1
θ (z) ∂

∂θ
ℓ(θ(z), x, y).

Theorem 2 Suppose that nh4 → 0, nh2 log(1/h) → ∞, and Conditions (A)—(H) in Section

5 hold. Then we have the asymptotic normality

√
n(η̂ − η) D−→ N{0, B−1ΣB−1},

where B = E{Iη(Z)}, and

Σ = Var

{
∂ℓ (π(Z),η, X, Y )

∂η
− ω(X,Y, Z)

}
,

where ω(x, y, z) = Iηπ(z)ψ(x, y, z).

Define

κl =

∫
ulK(u) du and νl =

∫
ulK2(u) du.
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Theorem 3 Assume that Conditions (A)—(H) in Section 5 hold. Then as n → ∞, h → 0,

nh → ∞, we have the asymptotic normality results for π̂(z)

√
nh{π̂(z)− π(z)− Bπ(z) + op(h

2)} D−→ N
{
0, f−1(z)I−1

π (z)ν0
}
,

where Bπ(z), is a (C−1)×1 vector, with the elements taken from [1th, · · · , (C−1)th] entries

of B(z), where

B(z) = I−1
π (z)

{
f ′(z)Λ′(z|z)

f(z)
+

1

2
Λ′′(z|z)

}
κ2h

2.

Based on the above theorem, we can see that estimating η does not have first order effect

on π̂(z), which is obvious since π̂(z) is the result of nonparametric estimation with a slower

rate than η̂. Therefore, π̂(z) is more efficient than π̃(z), which needs to account for the

uncertainty of estimating η.

2.3 Computing Algorithms and Their Properties

EM-type algorithm for (2.3)

We first propose a modified EM algorithm to maximize (2.3) to obtain estimates π̃(Zi).

In the l-th cycle of the EM algorithm iteration, we have β(l)
c (·), σ2(l)

c (·), and π(l)(·). In the

E-step, we calculate expectation of component identities

r
(l+1)
ic =

π
(l)
c (Zi)ϕ{Yi|xT

i β
(l)
c (Zi), σ

2(l)
c (Zi)}∑C

c=1 π
(l)
c (Zi)ϕ{Yi|xT

i β
(l)
c (Zi), σ

2(l)
c (Zi)}

, c = 1, . . . , C. (2.6)

Let {u1, · · · , uN} be a set of grid points at which the unknown functions are evaluated, where

N is the number of grid points. In the M-step, we update for z ∈ {uj, j = 1, · · · , N},

π(l+1)
c (z) =

∑n
i=1 r

(l+1)
ic Kh(Zi − z)∑n

i=1 Kh(Zi − z)
, (2.7)

β(l+1)
c (z) = (STW (l+1)

c S)−1STW (l+1)
c y, (2.8)

σ2(l+1)
c (z) =

∑n
i=1 w

(l+1)
ic {Yi − xT

i β
(l+1)
c }2∑n

i=1 w
(l+1)
ic

, (2.9)

where c = 1, . . . , C, w
(l+1)
ic = r

(l+1)
ic Kh(Zi − z), W

(l+1)
c = diag{w(l+1)

1c , · · · , w(l+1)
nc }, y =

(Y1, · · · , Yn)
T , and S = (x1, . . . ,xn)

T . Furthermore, we update π
(l+1)
c (Zi), β

(l+1)
c (Zi), and

8



σ
2(l+1)
c (Zi), i = 1, · · · , n by linearly interpolating π

(l+1
c (uj), β

(l+1)
c (uj), and σ

2(l+1)
c (uj), j =

1, · · · , N , respectively. In practice, if n is not very large, we may directly set the observed

{X1, · · · , Xn} to be the grid points. We also set grid points to be {X1, · · · , Xn} when

deriving the asymptotic ascent properties for the proposed algorithm.

In (2.7), for simplicity of presentation and computation, we use the same bandwidth

for all πc(z)’s. One might use different bandwidths for πc(z)’s to improve the estimation

accuracy but with much more complexity of computation and bandwidth selection. Note

that in the M-step, the nonparametric functions are estimated simultaneously at a set of

grid points; thus, the classification probabilities in the E-Step can be estimated globally

to avoid the label switch problem (See, for example, Stephens, 2000; Celeux et al., 2000;

Yao and Lindsay, 2009). The classical EM algorithm estimates the nonparametric functions

separately for a set of grid points, which makes it difficult to assign the same component

labels for these estimators across all the grid points.

EM algorithm for (2.4)

Given the estimate π̃(z), we maximize (2.4) by a regular EM algorithm to get the esti-

mates β̂ and σ̂2. In the E-step, we calculate the expectation of component identities

r
(l+1)
ic =

π̃c(Zi)ϕ(Yi|xT
i β

(l)
c , σ

2(l)
c )∑C

c=1 π̃c(Zi)ϕ(Yi|xT
i β

(l)
c , σ

2(l)
c )

, c = 1, . . . , C. (2.10)

Then in the M-step, we update βcs and σ2
c s,

β(l+1)
c = (STR(l+1)

c S)−1STR(l+1)
c y, (2.11)

σ2(l+1)
c =

∑n
i=1 r

(l+1)
ic (Yi − xT

i β
(l+1)
c )2∑n

i=1 r
(l+1)
ic

, (2.12)

where c = 1, . . . , C,R
(l+1)
c = diag{r(l+1)

1c , · · · , r(l+1)
nc }. The ascent property of the above

algorithm follows the theory of ordinary EM algorithm.

EM algorithm for (2.5)

Given β̂ and σ̂, we would maximize (2.5) to obtain the estimate π̂(z). Since β̂c and

σ̂c are well labeled, we can use the regular EM algorithm without worrying about the label
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switching problem. In the E-step of l-th cycle, the expectation of component identities are

given by

r
(l+1)
ic (z) =

π
(l)
c (z)ϕ(Yi|xT

i β̂c, σ̂
2
c )∑C

c=1 π
(l)
c (z)ϕ(Yi|xT

i β̂c, σ̂
2
c )
, c = 1, . . . , C. (2.13)

In the M-step, we update π(z) by

π(l+1)
c (z) =

∑n
i=1 r

(l+1)
ic (z)Kh(Zi − z)∑n
i=1 Kh(Zi − z)

, c = 1, . . . , C. (2.14)

We may also use the idea of the modified EM algorithm for (2.3) to estimate π(·) simul-

taneously in a set of grid points, and speed up the computation.

A computational accelerating scheme

To avoid extensive computation, many researchers prefer to using one-step estimate in

semiparametric modeling, e.g., in partially linear model (Hunsberger, 1994; Severini and

Staniswalis, 1994), generalized partially linear single-index model (Carroll et al., 1997), and

generalized varying-coefficient partially linear model (Li and Liang, 2008). However, the

fully iterated estimation procedure is of great interest if extensive computation can be avoid.

Next, we discuss one approach to approximate the fully iterated estimation procedure with

less computation.

In the E-step of l-th cycle,

r
(l+1)
ic =

π
(l)
c (Zi)ϕ(Yi|xT

i β
(l)
c , σ

2(l)
c )∑C

c=1 π
(l)
c (Zi)ϕ(Yi|xT

i β
(l)
c , σ

2(l)
c )

, c = 1, . . . , C . (2.15)

In the M-step, we simultaneously update β,σ, and π(z) by

β(l+1)
c = (STR(l+1)

c S)−1STR(l+1)
c y, (2.16)

σ2(l+1)
c =

∑n
i=1 r

(l+1)
ic (Yi − xT

i β
(l)
c )2∑n

i=1 r
(l+1)
ic

, (2.17)

π(l+1)
c (z) =

∑n
i=1 r

(l+1)
ic Kh(Zi − z)∑n

i=1 Kh(Zi − z)
, z ∈ {uj, j = 1, · · · , N}, (2.18)

where c = 1, . . . , C,R
(l+1)
c = diag{r(l+1)

1c , · · · , r(l+1)
nc }. Furthermore, we update π

(l+1)
c (Zi),

i = 1, · · · , n by linearly interpolating π
(l+1)
c (uj), j = 1, · · · , N .
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In the following theorem, we provide the ascending properties for the EM algorithms

proposed in this section. Its proof is given in Section 5.

Theorem 4 (a) For EM type algorithm of (2.6)— (2.9), supposing nh → ∞ as n → ∞

and h → 0, we have

lim inf
n→∞

n−1
[
ℓ1{θ(l+1)(z)} − ℓ1{θ(l)(z)}

]
≥ 0

in probability, for any given point z, where ℓ1(·) is defined in (2.3).

(b) Each iteration of the algorithm from (2.13) to (2.14) will monotonically increase the

local likelihood (2.5), i.e., ℓ3(π
(l+1)(z)) ≥ ℓ3(π

(l)(z)), for all l, where ℓ3(·) is given in

(2.5).

(c) The iterations of (2.15)—(2.18) have the following property:

lim inf
n→∞

n−1
[
ℓ∗{π(l+1)(·),β(l+1),σ2(l+1)} − ℓ∗{π(l)(·),β(l),σ2(l)}

]
≥ 0 (2.19)

in probability, where ℓ∗(·) is defined in (2.2).

Theorem 4 (a) implies that when the sample size n is large enough, the algorithm of (2.6)–

(2.9) possesses the ascent property for ℓ1{θ(z)} at any given z. Theorem 4 (c) implies that

the iterations of (2.15)—(2.18) possess similar asymptotic ascent property for the global

log-likelihood (2.2).

3. SIMULATION AND APPLICATION

In this section, we conduct simulation studies to test the performance of the proposed

methodologies. The performance of the estimates of the mixing proportion functions πc(z)s

is measured by the square root of the average square errors (RASE),

RASE2
π = N−1

C−1∑
c=1

N∑
j=1

{π̂c(uj)− πc(uj)}2,

where {uj, j = 1, · · · , N} are the grid points at which the unknown functions πc(·) are

evaluated. In simulation, we set N = 100. The same set of grid points are used for the
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algorithm proposed in Section 2.3. For simplification, the grid points are taken evenly on

the range of the z-variable.

To apply our proposed methodologies, we need to first select a proper bandwidth for

estimating π(·). In practice, data driven methods can be used for bandwidth selection, such

as cross-validation (CV). Denote by D as the full data set. We then partition D into a

training set Rj and a test set Tj, i.e., D = Tj ∪Rj for j = 1, · · · , J . We use the training set

Rj to obtain the estimates {π̂c(·), σ̂2
c , β̂c}. Then we can estimate πc(z) for the data points

belonging to the corresponding test set. For (xl, yl, zl) ∈ Tj,

π̂c(zl) =

∑
{i:Zi∈Rj} ricKh(Zi − zl)∑

{i:Zi∈Rj} ric
.

Based on the estimated π̂c(zl) of test set Tj, we consider a likelihood version CV, which is

given by

CV =
J∑

j=1

∑
l∈Tj

log

{
C∑

q=1

π̂q(zl)ϕ(yl|xT
l β̂q, σ̂

2
q )

}
. (3.1)

In practice, we usually set the value of J to be 5 or 10, and randomly partition the data. Since

different random partitions may lead to different selected bandwidth, we suggest repeating

the procedure 30 times, and taking the average of the selected bandwidth as the optimal

bandwidth. Note that the required under-smoothing conditions for the proposed procedure

are nh4 → 0 and nh2 log(1/h) → ∞ in order to get the root n consistency for the global

parameters. The optimal bandwidth ĥ selected by CV will be of order n−1/5, which does

not satisfy the under-smoothing conditions. As suggested by Li and Liang (2008), a good

adjusted bandwidth is given by h̃ = ĥ × n−2/15 = O(n−1/3). This bandwidth satisfies the

under-smoothing requirement. In our simulation study, both cases of appropriate smoothing

and under-smoothing will be investigated.

When fitting a mixture of regression model with varying proportions, it is natural to

ask whether the mixing proportions actually depend on the covariates. This leads to the

following testing hypothesis problem:

H0 : πc(z) ≡ πc, c = 1, · · · , C − 1.
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Denote by ℓ∗(H0) and ℓ∗(H1) the log-likelihood functions computed under null and alterna-

tive hypothesis, respectively. Then we can construct a likelihood ratio test statistic

T = 2{ℓ∗(H1)− ℓ∗(H0)}.

This likelihood ratio is different from the parametric likelihood ratio, since the alternative is a

semiparametric model, and the number of parameters under H1 is undefined. One approach

is to study the asymptotic distribution of T . Alternatively, here we consider the conditional

bootstrap method (Cai et al., 2000) to construct the null distribution. Let {π̄, β̄, σ̄2} be

the MLE under null hypothesis. For given xi, we can generate Y ∗
i from the distribution∑C

c=1 π̄cN(xT
i β̄c, σ̄

2
c ). For each bootstrap sample, we calculate the test statistics T , and then

obtain its approximate distribution. If the asymptotic null distribution is independent of the

nuisance parameters πc, c = 1, · · · , C − 1, then the conditional bootstrap method is valid.

Although a solid theoretical research is out of the scope in this paper, we investigate the

Wilk’s phenomenon (Fan et al., 2001) via Monte Carlo simulation. Our simulation results

show that the Wilk’s type of results continue to hold for the proposed model (2.1). Therefore,

the conditional bootstrap method is applicable. This provides a convenience way to conduct

the likelihood ratio test for the above testing problem.

In addition, we use a bootstrap procedure to construct confidence intervals for the param-

eters and point-wise confidence intervals for the proportion functions. For given covariates,

the response variable Y ∗
i can be generated from the distribution

∑C
c=1 π̂c(zi)N(xT

i β̂c, σ̂
2
c ).

We apply the proposed estimation procedure to each of the bootstrap samples, and further

obtain the confidence intervals. The bootstrap approach to construct confidence intervals for

nonparametric regression has been studies by many authors, such as Härdle and Bowman

(1988), Härdle and Marron (1991), Eubank and Speckman (1993), Neumann and Polzehl

(1998), Xia (1998), and Claeskens and Van Keilegom (2003). It is well known that theoret-

ically the traditional bootstrap fails for kernel estimates when the bandwidth is chosen to

be of order n−1/5 (Davison and Hinkley (1997), page 226). To account for bias, Härdle and

Bowman (1988) proposed to adjust the constructed interval using an estimated bias; Härdle

and Marron (1991) proposed to estimate the simulation model curve by over-smoothing and

13



then smooth the bootstrapped data using the appropriate smoothing; Neumann and Polzehl

(1998) proposed to use only one under-smoothing bandwidth for the whole procedure. Our

simulation studies will investigate the under-smoothing, appropriate smoothing, and over-

smoothing situations.

Example 1. In the following example, we conduct a simulation for a 2-component

mixture of regression model with varying mixing proportions:

π1(x) = 0.1 + 0.8 sin(πx) and π2(x) = 1− π1(x),

m1(x) = 4− 2x and m2(x) = 3x,

σ2
1 = 0.09 and σ2

2 = 0.16,

where m1(x) and m2(x) are the regression functions for the first and second components,

respectively. Therefore, in this example, z = x, β1 = (4,−2), and β2 = (0, 3). The

sample sizes n = 200 and 400 were conducted with 500 replicates. The predictor x was

generated from one dimensional uniform distribution in [0, 1]. The Epanechnikov kernel is

used in our simulation. The selected bandwidth was obtained from the following strategy:

we first generate several simulation datasets for a given sample size, and then apply the

CV bandwidth selector to determine the optimal bandwidth for each dataset. The selected

bandwidth, denoted by ĥ, was the average of these CV bandwidths with rounding. In the

simulation, we consider three different bandwidths: ĥ × n−2/15, ĥ, 2ĥ, which correspond

to the under-smoothing, appropriate smoothing, and over-smoothing, respectively. It was

shown that the asymptotic distribution of the non-parametric functional estimates does not

have to account for the variability due to the estimation of the parametric components. We

examine this via simulation studies in finite samples. In the tables, the line marked with

“M1” gives the results given by the proposed method, while “M2” gives the results assuming

η were known.

Table 1 displays the MSE of regression parameter estimates and the average of RASEπ

over 500 simulations (the values are times 100). For comparison, we also report the results

based on the fully parametric mixture of linear regression model (denoted by “PAR” in

Table 1), which assumes the mixing proportions are constant. From Table 1, we can see that
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the proposed procedure gives better results compared to mixture of linear regression models,

e.g., RASEπ, and the MSE of β̂11 and β̂21 are significantly reduced. In addition, it can be seen

that the proposed procedure for estimating the nonparametric function π̂(·) works almost

as well as if the true value of η were known and works better if it is not under-smoothing.

Table 1: The averages of MSEs of parameters and RASEπ (the values are times 100)

bandwidth (n = 200) bandwidth (n = 400)

MSE 0.04 0.08 0.16 PAR 0.03 0.07 0.14 PAR

β10 0.568 0.554 0.550 0.726 0.274 0.267 0.266 0.374

β11 2.290 2.176 2.156 3.840 1.151 1.113 1.122 2.396

β20 0.641 0.638 0.635 0.648 0.295 0.293 0.297 0.320

β21 2.587 2.392 2.382 4.237 1.114 1.026 1.079 3.156

σ2
1 0.018 0.017 0.017 0.017 0.010 0.011 0.010 0.010

σ2
2 0.089 0.086 0.086 0.095 0.040 0.040 0.040 0.048

RASEπ

M1 14.61 10.71 9.722 25.93 12.32 8.304 7.613 25.73

M2 14.14 10.13 9.143 – 11.83 7.841 7.034 –

Table 2 summarizes the performance of the bootstrap method for the standard errors of

estimate of parameters. The standard deviation of 500 estimates, denoted by SD, can be

viewed as the true standard errors. To test the accuracy of the the proposed standard error

estimate via bootstrap method, we calculated the average and standard deviation of the 500

estimated standard errors, denoted by SE and STD. The coverage probabilities for all the

parameters are obtained based on the estimated standard errors. From the results, we find

that the proposed bootstrap procedure estimates the true standard deviation quite well, and

the coverage probabilities are close to the nominal level for most of cases. However, with

moderate n, the coverage levels are a bit low for σ1 and σ2.

The bootstrap procedure also enables us to investigate the point-wise coverage probabil-

ities for the proportion functions. For a set of grid points evenly distributed in the support

of x, Table 3 shows the results at the level of 95% for both “M1” and “M2”. For most
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Figure 1: The estimated density of unconditional null distributions of T (solid lines), and the

estimated density of conditional null distributions of T (dotted lines); the bandwidth is 0.04, 0.08,

0.16 in (a) ,(b), and (c), respectively.

points, the cases of under-smoothing and appropriate smoothing give better performance

than over-smoothing case. However, for n = 200 the coverage levels are a bit low for point

0.5, but a bit high and thus conservative for points 0.7 and 0.8. In addition, based on Table 2

and Table 3, we can see that the over-smoothing does not provide very satisfactory coverage

levels.

We next conduct a simulation to investigate whether the Wilk’s type of phenomenon

holds for the proposed model. Under the null hypothesis H0, the mixing proportion π1 is

a constant. For 3 different values of π1 ∈ {0.25, 0.5, 0.75}, we compute the unconditional

null distribution with n = 200 via 500 Monte Carlo simulations. The resulting 3 densities

were very close, as plotted in solid lines in Figure 1. This suggests that the asymptotic

distribution of T under the null hypothesis was not sensitive to the true value of π. To

validate the conditional bootstrap method, we select 3 typical samples generated from the 3

values of π1s. For each typical sample, we compute the conditional null distribution based

on its 500 bootstrap samples. The resulting 3 densities were depicted as dotted curves in

the same figures. From Figure 1, we can see that our conditional bootstrap method worked

reasonably well to approximate the true null distribution.

The power of the proposed test is also of interest. We evaluate the power function under
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Table 2: Standard errors and coverage probabilities

SD SE(STD) 95% SD SE(STD) 95%

n = 200, h = 0.04 n = 400, h = 0.03

β10 0.074 0.069(0.008) 94.00 0.050 0.049(0.004) 94.20

β11 0.154 0.142(0.019) 92.00 0.103 0.100(0.010) 93.80

β20 0.079 0.078(0.010) 94.60 0.060 0.055(0.005) 94.20

β21 0.151 0.153(0.024) 94.60 0.111 0.107(0.012) 93.80

σ1 0.022 0.021(0.002) 87.60 0.015 0.015(0.001) 93.20

σ2 0.037 0.036(0.004) 91.80 0.027 0.026(0.002) 92.20

n = 200, h = 0.08 n = 400, h = 0.07

β10 0.074 0.069(0.008) 93.00 0.050 0.049(0.004) 94.20

β11 0.151 0.140(0.019) 92.60 0.100 0.099(0.009) 93.80

β20 0.079 0.079(0.010) 95.00 0.059 0.056(0.005) 93.80

β21 0.148 0.153(0.024) 94.80 0.106 0.106(0.012) 94.60

σ1 0.023 0.021(0.002) 88.00 0.015 0.015(0.001) 93.80

σ2 0.036 0.036(0.004) 92.40 0.027 0.025(0.002) 91.60

n = 200, h = 0.16 n = 400, h = 0.14

β10 0.073 0.066(0.007) 90.60 0.049 0.047(0.004) 92.40

β11 0.149 0.131(0.016) 90.80 0.099 0.094(0.008) 91.80

β20 0.079 0.080(0.010) 95.60 0.058 0.056(0.005) 93.60

β21 0.143 0.156(0.025) 95.40 0.100 0.108(0.012) 94.00

σ1 0.022 0.021(0.002) 90.40 0.015 0.015(0.001) 94.40

σ2 0.036 0.036(0.004) 92.20 0.027 0.025(0.002) 91.40
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Table 3: The pointwise coverage probabilities

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 200, h = 0.04

M1 96.90 96.70 95.80 92.70 88.60 94.10 98.80 100.00 97.70

M2 96.80 96.40 97.20 92.40 87.20 93.00 98.40 100.00 97.60

n = 200, h = 0.08

M1 97.40 97.10 97.40 96.20 95.80 96.60 97.80 99.30 97.70

M2 97.80 96.40 97.80 96.20 94.40 95.00 98.20 98.60 97.20

n = 200, h = 0.16

M1 91.00 96.40 95.50 95.00 91.30 90.40 96.20 97.40 79.20

M2 92.40 96.20 97.60 95.00 91.80 93.40 96.00 96.80 85.20

n = 400, h = 0.03

M1 96.60 97.20 96.20 94.80 91.80 95.60 98.80 100.00 96.40

M2 96.60 97.20 96.20 94.80 91.60 95.00 98.80 100.00 97.60

n = 400, h = 0.07

M1 97.60 96.60 97.20 98.00 95.60 97.40 99.20 99.20 96.80

M2 97.60 96.60 97.20 98.00 96.20 97.20 98.80 99.40 98.40

n = 400, h = 0.14

M1 90.80 95.10 96.20 92.20 87.70 84.90 92.80 97.90 75.40

M2 91.40 94.60 96.60 94.00 91.40 90.80 95.20 97.20 85.00

a sequence of local alternatives indexed by λ:

H0 : π1(x) ≡ π1 vs H1 : π1(x) = 0.1 + 0.8λ sin(πx)/
√
nh,

and π2(x) = 1− π1(x), where λ/
√
nh ∈ [0, 1]. In Figure 2, we plot three power functions at

three different significance levels: 0.10, 0.05, and 0.01, based on 500 simulations for sample

size n = 200, 400. The results show that the powers increase rapidly as λ increases. When

λ = 0, the alternative collapses into the null hypothesis, and the powers at λ = 0 for the three

significance levels are close to the nominal level. This shows that the proposed bootstrap

method approximately provides the right levels of the test.
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Figure 2: The power functions of the test against local alternatives; (a) n = 200, h = 0.04; (b)

n = 200, h = 0.08; (c) n = 200, h = 0.16; (d) n = 400, h = 0.03; (e) n = 400, h = 0.07; (f)

n = 400, h = 0.14.

Example 2. CO2-GDP Data Application.

We illustrate the proposed methodology by an analysis of the CO2-GDP Data described

in Section 1. This dataset was published by World Resource Institute. We know that GDP

is a measure of the size of a nation’s economy, and Carbon dioxide (CO2) is an important

greenhouse gas which causes the greenhouse effect and may relate to global warming. De-

velopment with high GDP per capita and relative low CO2-emission is a desired goal and

consensus for modern governments. It is of interest to study the relationship between a

country’s CO2-emission from its industrial activities and the economy size per capita. In

the analysis, we set CO2-emission per capita (Y) to be the response variable, and the GDP

per capita (X) to be predictor. Note that both variables have positive observed values. We

divide Y by 10000 and divide X by 10, so that they have comparable numerical scale.

For this dataset, we consider a two-component mixture of regression models with varying
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Figure 3: (a) The CO2-GDP data, year 2005. y: CO2 emission per capita; x: GDP per capita; (b)

The estimated proportion function of the lower component and confidence interval.

Table 4: Estimated parameters and confidence intervals

estimate Bootstrap CI estimate Bootstrap CI estimate Bootstrap CI

h = 1.44 h = 2.85 h = 5.70

β10 0.421 (0.275, 0.584) 0.388 (0.258, 0.515) 0.353 (0.255, 0.452)

β11 0.157 (0.106, 0.212) 0.167 (0.120, 0.222) 0.177 (0.127, 0.236)

β20 -0.035 (-0.063, -0.011) -0.033 (-0.063, -0.009) -0.032 (-0.062, -0.005)

β21 1.021 (0.986, 1.050) 1.022 (1.001, 1.053) 1.024 (1.004, 1.041)

mixing proportions. An optimal bandwidth is selected at 2.85 by CV procedure, and the

under-smoothing bandwidth and over-smoothing bandwidth are selected at 1.44 and 5.70.

For the optimal bandwidth, we first test whether the mixing proportions vary by using the

proposed conditional bootstrap method. Based on 500 conditional bootstrap simulations,

the resulting test statistics T is 26.10, and the approximate p-value of the test is less than

0.001. In fact, the testing procedure rejects the constant proportion hypothesis under a wide

range of bandwidths, including both the under-smoothing and over-smoothing bandwidths.

This suggests that it is appropriate to use a mixture of regression models with varying

proportions.

The resulting estimate of β along with its 95% confidence interval (CI) are shown in
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Table 4. Take the results of bandwidth 1.44 for illustration. The lower component has an

estimated slope β̂11 = 0.157. We may conclude that for countries within this component,

increasing in GDP per capita for a thousand dollar may be on average associated with incre-

ment of 0.157 ton CO2-emission per capita, and a 95% CI of such CO2-emission increment

per capita is from 0.106 to 0.212 ton. Most developed countries are of this component, and

the representatives include US, UK, Canada, Australia, etc. The upper component has an

estimated slope β̂21 = 1.021. For countries within this component, increasing in GDP per

capita for a thousand dollar may be on average associated with increment of 1.021 metric ton

CO2-emission per capita, and a 95% CI is from 0.986 to 1.050 ton. Representatives coun-

tries of this component include Kuwait, Saudi Arabia, Qatar, etc. The functional estimate

of the mixing proportion function of the lower component together with its 95% bootstrap

pointwise confidence interval are depicted in Figure 3(b). The result shows that as GDP

per capita increases, the proportion of low CO2 emission counties increases, which indicates

that high GDP-per-capita countries tend to develop in a relative low-CO2-emission path.

4. DISCUSSION

In this article, we assume that the number of components C is known. However, in many

cases, C might be unknown and we need to estimate both C and bandwidth h. One might

first select C and then select the bandwidth h after C is given. Choosing the number of

components in mixture model is an important problem, which attracts many attentions in

statistical research. For parametric mixture models, many methods have been proposed to

deal with this selection issue. One popular and simple approach is the information criteria,

such as AIC and BIC. Leroux (1992) proved the weak consistency of the maximum penalized

likelihood estimators for the mixing distribution. For other references, see McLachlan and

Peel (2000), Chen et al. (2004), and Chen and Li (2009).

The choice of the number of components is related to degrees of freedom. However,

the degrees of freedom of the proposed model is not clear. In practice, we may use the

results of traditional parametric mixture models. Note that locally in covariate z, the mixing
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proportions of model (2.1) can be considered as constant. Therefore, one might apply the

information criteria to the partial data in a local area. We may take several typical local

areas, and determine C by comparing several selection results. Since the variance of Y tends

to increase when the separation of mixture components increases, the local areas can be

those with relatively large variation of Y . More research are needed on how to choose the

number of components for model (2.1).

5. PROOFS

Lemma 1 The finite mixture of normal distributions is identifiable. More precisely, if

C∑
c=1

πcN(µc, σ
2
c ) =

D∑
d=1

λdN(νd, τ
2
d ),

where the parameters satisfy πc > 0, c = 1, . . . , C, σ2
1 ≤ · · · ≤ σ2

C , and if σ2
i = σ2

j and i < j,

then µi < µj; similarly, λd > 0, d = 1, . . . , D, τ 21 ≤ · · · ≤ τ 2D, and if τ 2i = τ 2j and i < j, then

νi < νj. Then C = D and (πc, µc, σ
2
c ) = (λc, νc, τ

2
c ), c = 1, . . . , C. (See Titterington et al.

(1985), p. 38, Example 3.1.4)

Proof of Theorem 1. Suppose that model (2.1) admits another representation

Y |X=x,Z=z ∼
D∑

d=1

λd(z)N(xTγd, δ
2
d),

where λd(z) > 0, d = 1, . . . , D, and (γd, δ
2
d), d = 1, . . . , D, are distinct.

For any two distinct pairs of parameters (βa, σ
2
a) and (βb, σ

2
b ), if σ

2
a = σ2

b , then βa ̸= βb,

therefore, the set {x ∈ Rp : xTβa = xTβb} is either an empty set or a (p − 1)-dimensional

hyperplane in Rp, and thus has zero Lebesgue measure in Rp. This implies that there are at

most a finite number of (p − 1)-dimensional hyperplanes on which (xTβa, σ
2
a) = (xTβb, σ

2
b )

for some a, b. Hence the union of these finite number of hyperplanes has zero Lebesgue

measure in Rp. The same thing is true for the set of parameters (γd, δ
2
d), d = 1, . . . , D.

From Lemma 1, for any given (x, z) such that both sets of parameters (xTβc, σ
2
c ),

c = 1, . . . , C, and (xTγd, δ
2
d), d = 1, . . . , D, are distinct pairs, respectively, model (2.1)
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conditioning on t = (x, z) is identifiable. Therefore, C = D and there exists a permuta-

tion ωt = {ωt(1), . . . , ωt(C)} of set {1, . . . , C} depending on t, such that λωt(c)(z) = πc(z),

xTγωt(c) = xTβc, δ
2
ωt(c)

= σ2
c , c = 1, . . . , C. Consider any permutation ω = {ω(1), . . . , ω(C)}

such that

xTγω(c) = xTβc, δ
2
ω(c) = σ2

c , c = 1, . . . , C. (5.1)

for some x values. If γω(c) ̸= βc for some c, then the set {x ∈ Rp : xTγω(c) = xTβc} is

contained in a (p−1)-dimensional hyperplane in Rp and has a zero Lebesgue measure. Since

there are only a finite number (C!) of possible permutations of {1, 2, . . . , C} and the domain

X of x contains an open set in Rp, there must exist a permutation ω∗ = {ω∗(1), . . . , ω∗(C)},

such that (5.1) holds on a subset of X with nonzero Lebesgue measure. Hence, γω∗(c) =

βc, δ
2
ω∗(c) = σ2

c , c = 1, . . . , C. Because that (βc, σ
2
c ), c = 1, . . . , C are distinct and (γc, δ

2
c ),

c = 1, . . . , C are distinct, it follows that ω∗ is the unique permutation such that (5.1) holds

on a subset of X with nonzero Lebesgue measure. If z is not from x, then λω∗(c)(z) = πc(z),

c = 1, . . . , C for any z ∈ Z. If z is from x, λω∗(c)(z) = πc(z), c = 1, . . . , C, for all z ∈ Z but

points where some hyperplanes intersect. Because πc(z) are continuous and the domain of z

has no isolated points, the values of πc(z) at those points where some hyperplanes intersect

are also uniquely determined. This completes the proof.

We next outline the key steps of proofs for Theorems 2 to 4. Note that θ = (πT , (σ2)T ,βT )T

is a ((p+3)C−1)×1 vector. Whenever necessary, we rewrite θ = (θ1, · · · , θ(p+3)C−1)
T without

changing the order of π,σ2, and β.

Regularity Conditions

A. The sample {(Xi, Yi, Zi), i = 1, · · · , n} is independent and identically distributed from

the joint density f(x, y, z) with finite sixth moments. The support for z, denoted by

Z, is closed and bounded of R1.

B. The joint density f(x, y, z) has continuous first derivative and is positive in its support.

C. The third derivative |∂3ℓ(θ, x, y, z)/∂θj∂θk∂θl| ≤ Mjkl(x, y, z), where E{Mjkl(X, Y, Z)}

is bounded for all j, k, l, and all X and Y .
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D. The unknown functions πc(z), c = 1, · · · , C − 1, have continuous second derivative.

E. The kernel density functionK(·) is symmetric, continuous, and has a closed and bounded

support.

F. For c = 1, · · · , C, σ2
c > 0, and πc(z) > 0 hold for all z ∈ Z.

G. The second derivative matrix −E{∂2ℓ(θ(z), x, y)/∂θ∂θT | Z = z} is positive definite,

where θ(z) = (πT (z), (σ2)T ,βT )T .

H. E(Z2r) < ∞ for some ε < 1− r−1, n2ε−1h → ∞.

All the above conditions are mild conditions and have been used in the literature of local

likelihood estimation and mixture models. Let

ℓ(θ) = log

{
C∑
c=1

πcϕ
(
y|xTβc, σ

2
c

)}
,

where θ = (πT , (σ2)T ,βT )T and ϕ
(
y|xTβc, σ

2
c

)
is the normal density of y with mean xTβc

and variance σ2
c . Then

∂ℓ(θ)/∂βc =
πcϕ

(
y|xTβc, σ

2
c

)
(y − xTβc)x/σ

2∑C
c=1 πcϕ (y|xTβc, σ

2
c )

∂2ℓ(θ)

∂βc∂β
T
c

=

[{
C∑
c=1

πcϕ
(
y|xTβc, σ

2
c

)}{
πcϕ

2
(
y|xTβc, σ

2
c

)
(y − xTβc)

2xxT/σ4

−πcϕ
(
y|xTβc, σ

2
c

)
xxT/σ2

}
− π2

cϕ
2
(
y|xTβc, σ

2
c

)
(y − xTβc)

2xxT/σ4
]

×

{
C∑
c=1

πcϕ
(
y|xTβc, σ

2
c

)}−2

Note that ϕ
(
y|xTβc, σ

2
c

)
and ϕ

(
y|xTβc, σ

2
c

)
(y − xTβc)

k is bounded for any c and k > 0.

Then we have

sup
z

E

[∣∣∣∣∂2ℓ(θ(z), x, y)

∂θ∂θT

∣∣∣∣3 | Z = z

]
< ∞,

and

E
(
|∂ℓ(θ, X, Y, Z)/∂θj|3

)
< ∞

if X have sixth finite moments.
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The following lemma is taken from Lemma A.1 of Fan and Huang (2005) and will be

used throughout the proofs of this section.

Lemma 2. Let {(Xi, Yi), i = 1 · · · , n} be i.i.d random vectors from (X,Y ), where X is

a random vector and Y is a scalar random variable. Denote f ∗ to be the joint density of

(X,Y ), and further assume that E|Y |r < ∞ and supx

∫
|y|rf∗(x, y)dy < ∞. Let K(·) be a

bounded positive function with bounded support, satisfying a Lipschitz condition. Then

sup
x∈X

∣∣∣∣∣n−1

n∑
i=1

[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]

∣∣∣∣∣ = Op{γn log1/2(1/h)},

given n2ε−1h → ∞, for some ε < 1− r−1, where γn = (nh)−1/2.

To establish asymptotic properties of η̂, we first study the asymptotic behaviors of

{π̃, σ̃2, β̃}, the maximum local likelihood estimator of (2.3). Denote

β̃
∗
c =

√
nh{β̃c − βc},

σ̃2∗
c =

√
nh{σ̃2

c − σ2
c},

π̃∗
c =

√
nh{π̃c − πc(z)}, c = 1, . . . , C − 1

π̃∗
C =

√
nh{π̃C − πC(z)} =

√
nh[1−

C−1∑
c=1

{π̃c − πc(z)}],

Let β̃
∗
= {(β̃∗

1)
T , · · · , (β̃∗

C)
T}T , σ̃2∗ = (σ̃2∗

1 · · · , σ̃2∗
C )T , and π̃∗ = (π̃∗

1, · · · , π̃∗
C−1)

T . Define

θ̃
∗
= {(π̃∗)T , (σ̃2∗)T , (β̃

∗
)T}T .

Lemma 3. Assume that Conditions (A)—(H) hold, in addition with nh → ∞ as n → ∞,

h → 0, then for all z in the support Z, we have

sup
z∈Z

|θ̃∗ − f−1(z)I−1
θ (z)∆n| = Op{h2 + γn log

1/2(1/h)},

where ∆n is defined in (5.4), and

Iθ(z) = −E

[
∂2ℓ(θ, x, y)

∂θ∂θT
| Z = z

]
.

Proof.
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If {π̃0, σ̃
2
0, β̃0} maximizes (2.3), then θ̃

∗
maximizes

ℓ∗n(θ
∗) = h

n∑
i=1

{ℓ(θ(z) + γnθ
∗, Xi, Yi)− ℓ(θ(z), Xi, Yi)}Kh(Zi − z), (5.2)

where θ(z) = {(π(z))T , (σ2)T , (β)T}T . By the Taylor expansion and some calculation,

ℓ∗n(θ
∗) = ∆nθ

∗ +
1

2
θ∗TΓnθ

∗ + op(1), (5.3)

where

∆n =

√
h

n

n∑
i=1

qθ(θ(z), Xi, Yi)Kh(Zi − z), (5.4)

Γn =
1

n

n∑
i=1

qθθ(θ(z), Xi, Yi)Kh(Zi − z). (5.5)

By the SLLN and some calculations, it follows that Γn = −f(z)Iθ(z) + op(1). Therefore,

ℓ∗n(θ
∗) = ∆nθ

∗ − 1

2
f(z)θ∗TIθ(z)θ

∗ + op(||θ∗||2). (5.6)

Since each element in Γn is sum of i.i.d. random variables, by Lemma 2 and condition

(G), we can show that Γn converge to −f(z)Iθ(z) uniformly for all z ∈ Z. By (5.3) and

condition (G), we know ℓ∗n(θ
∗) is a concave function of θ∗ for large n. Then by condition (F),

when n is large enough, −ℓ∗n(θ
∗) is a convex function defined on a convex open set. Thus,

by the convexity lemma (Pollard, 1991),

sup
z∈Z

∣∣∣∣(∆nθ
∗ +

1

2
θ∗TΓnθ

∗)− (∆nθ
∗ − 1

2
f(z)θ∗TIθ(z)θ

∗)

∣∣∣∣ P−→ 0 (5.7)

holds uniformly for all z ∈ Z and θ∗ in any compact set Ω. We know that f−1(z)I−1
θ (z)∆n

is a unique maximizer of (5.6), and is continuous in z; θ̃
∗
is a maximizer of (5.3). Then by

Lemma A.1 of Carroll et al. (1997), we have

sup
z∈Z

|θ̃∗ − f−1(z)I−1
θ (z)∆n|

P−→ 0. (5.8)

Then by the definition of θ̃
∗
,

∂ℓ∗n(θ
∗)

∂θ∗

∣∣∣∣
θ∗

=
˜θ
∗
= hγn

n∑
i=1

qθ{θ̃
∗
(z), Xi, Yi}Kh(Zi − z) = 0. (5.9)
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By a Taylor expansion, we have

∆n + Γnθ̃
∗
+

hγ3
n

2

n∑
i=1

∑
j, l

∂2qθ(θ(z) + ξ̃i)

∂θ∗j∂θ
∗
l

θ̃∗j θ̃
∗T
l Kh(Zi − z) = 0, (5.10)

where θ∗ is rewritten as θ∗ = (θ∗1, . . . , θ
∗
(p+3)C−1)

T . ξ̃i is a vector between 0 and γnθ
∗. The

last term of (5.10) is of order Op(γn||θ̃
∗||2). Again it can be deduced from Lemma 2, for each

element of Γn,

sup
z∈Z

|Γn(i, j)− E{Γn(i, j)}| = Op{h2 + γn log
1/2(1/h)}. (5.11)

By (5.10), Γnθ̃
∗
+Op(γn||θ̃

∗||2) = −∆n, then

{Γn − E(Γn)}θ̃
∗
+Op(γn||θ̃

∗||2) = −∆n + f(z)Iθ(z)θ̃
∗
. (5.12)

By (5.8), it is obvious that supz∈Z |θ̃∗| = Op(1). Thus for the left side of (5.12), we have

sup
z∈Z

|{Γn − E(Γn)}θ̃
∗|+Op(γn) = Op{h2 + γn log

1/2(1/h)}.

It follows that the order also holds for the right side of (5.12), i.e.,

sup
z∈Z

|f(z)Iθ(z)θ̃
∗ −∆n| = Op{h2 + γn log

1/2(1/h)}.

The proof is completed by the conditions that f(z) and Iθ(z) are bounded and continuous

functions in a closed set of Z.

Proof of Theorem 2. Denote η̂∗ =
√
n(η̂−η), where η is the true value. Further, define

ℓ(π̃(Zi),η, Xi, Yi) = log

{
C∑
c=1

π̃c(Zi)ϕ(Yi|xT
i βc, σ

2
c )

}
,

ℓ(π̃(Zi), η̂ + η∗/
√
n,Xi, Yi) = log

{
C∑
c=1

π̃c(Zi)ϕ{Yi|xT
i (β̂c + β

∗
c/
√
n), σ̂2

c + σ∗2
c /

√
n

}
.

Then η̂∗ maximizes

ℓn(η
∗) =

n∑
i=1

{ℓ(π̃(Zi),η + η∗/
√
n,Xi, Yi)− ℓ(π̃(Zi),η, Xi, Yi)}. (5.13)

By a Taylor expansion and some calculation,

ℓn(η
∗) = Anη

∗ +
1

2
η∗TBnη

∗ + op(1), (5.14)
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where

An = n−1/2

n∑
i=1

∂ℓ(π̃(Zi),η, Xi, Yi)

∂η
,

Bn = n−1

n∑
i=1

∂2ℓ(π̃(Zi),η, Xi, Yi)

∂η∂ηT
.

For Bn, it can be shown that

Bn = −E{Iη(X)}+ op(1).

Then by (5.14), we have

ℓn(η
∗) = Anη

∗ − 1

2
η∗TB η∗ + op(1). (5.15)

Next, we expand An as

An =
1√
n

n∑
i=1

∂ℓ(π(Zi),η, Xi, Yi)

∂η
+

1√
n

n∑
i=1

∂2ℓ(π(Zi),η, Xi, Yi)

∂η∂πT
{π̃(Zi)− π(Zi)}+Op(d1n)

=
1√
n

n∑
i=1

∂ℓ(π(Zi),η, Xi, Yi)

∂η
+ Tn1 +Op(d1n).

where d1n = n−1/2||π̃ − π||2∞. By Lemma 2, we have

θ̃(Zi)− θ(Zi) =
1

n
f−1(Zi)I−1

θ (Zi)
n∑

j=1

∂ℓ(θ(Zi), Xj, Yj)

∂θ
Kh(Zj − Zi) +Op(dn2),

where dn2 = γnh
2 + γ2

n

√
log(1/h). Let ψ(Xj, Yj, Zj) be a (C − 1) × 1 vector, in which the

elements are taken from the first C − 1 entries of I−1
θ (zj)× {∂ℓ(θ(Zj), Xj, Yj)/∂θ}.

By condition nh2/ log(1/h) → ∞, we have Op(n
1/2dn2) = op(1). Since π(Zi) − π(Zj) =

O(Zi − Zj) and K(·) is symmetric about 0, we have

Tn1 = n−3/2

n∑
j=1

n∑
i=1

∂2ℓ(π(Zi),η, Xi, Yi)

∂η∂πT
f−1(Zi)ψ(Xj, Yj, Zj)Kh(Zi − Zj) +Op(n

1/2h2)

= Tn2 +Op(n
1/2h2).

It can be shown, by calculating the second moment, that

Tn2 − Tn3
P−→ 0, (5.16)
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where Tn3 = −n−1/2
∑n

j=1ω(Xj, Yj, Zj), with

ω(Xj, Yj, Zj) = −E

{
∂2ℓ(π(Z),η, X, Y )

∂η∂πT
| Z = Zj

}
ψ(Xj, Yj, Zj)

= Iηπ(Zj)ψ(Xj, Yj, Zj).

By condition nh4 → 0, we know

An = n−1/2

n∑
i=1

{
∂ℓ(π(Zi),η, Xi, Yi)

∂η
− ω(Xi, Yi, Zi)

}
+ op(1).

By (5.15) and quadratic approximation lemma,

η̂∗ = B−1An + op(1).

Then we calculate the mean and variance of An. It is obvious that Var(An) = Σ, and

E(An) =
√
n E

{
∂ℓ(π(Z),η, X, Y )

∂η
− ω(X,Y, Z)

}
.

We can show that the elements of E(∂ℓ(π(Z),η, X, Y )/∂η) are equal to 0, and

E {ω(X,Y, Z)} = E {Iηπ(Z)ψ(X, Y, Z)} ,

where ψ(X, Y, Z) are the [1th, · · · , (C − 1)th] elements of I−1
θ (Z) × {∂ℓ(θ(Z), X, Y )/∂θ}.

Further calculation shows that E {ω(X,Y, Z)} = 0. So we have E(An) = 0. By the Central

Limit Theorem we complete the proof of Theorem 2.

Proof of Theorem 3. Using similar arguments in the proof of Lemma 3, we have

√
nh{π̂(z)− π(z)} = f(z)−1Iπ(z)

−1∆̂n + op(1), (5.17)

where

∆̂n =

√
h

n

n∑
i=1

∂ℓ(π(z), η̂, Xi, Yi)

∂π
Kh(Zi − z).

It can be calculated that

∆̂n =

√
h

n

n∑
i=1

∂ℓ(π(z),η, Xi, Yi)

∂π
Kh(Zi − z) +Dn + op(1),
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where

Dn =

√
h

n

n∑
i=1

∂ℓ(π(z),η, Xi, Yi)

∂π∂ηT
(η̂ − η)Kh(Zi − z)

Since
√
n(η̂ − η) = Op(1), it can be shown that

Dn = −
√
hIT

ηπ(z)f(z) = op(1).

Hence
√
nh{π̂(z)− π(z)} = f(z)−1Iπ(z)

−1∆n + op(1),

where

∆n =

√
h

n

n∑
i=1

∂ℓ(π(z),η, Xi, Yi)

∂π
Kh(Zi − z).

We can show that

Var(∆n) = Iπ(z)f(z)ν0

and

E(∆n) =

√
nh

2
{Λ′′(z|z)f(z) + 2Λ′(z|z)f ′(z)}κ2h

2,

where κl =
∫
ulK(u) du, and νl =

∫
ulK2(u) du. Then the result of Theorem 3 follows a

standard argument.

Proof of Theorem 4.

(a) We assume the unobserved data (Ci, i = 1, · · · , n) are random samples from population C,

and the complete data {(Xi, Yi, Zi, Ci), i = 1, 2, · · · , n} are random samples from (X, Y, Z, C).

The conditional distribution of C given X,Y, and θ is

g{c|X, Y,θ} =
πcϕ(Y |xTβc, σ

2
c )∑C

c=1 πcϕ(Y |xTβc, σ
2
c )
. (5.18)

For given θ(l)(Zi) = {π(l)(Zi),β
(l)(Zi),σ

2(l)(Zi)}, we have g{c|Xi, Yi,θ
(l)(Zi)} = r

(l+1)
ic ,
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and
∑C

c=1 r
(l+1)
ic = 1, i = 1, · · · , n. Then

ℓ1(θ) =
n∑

i=1

log

{
C∑
c=1

πcϕ(Yi|xT
i βc, σ

2
c )

}(
C∑
c=1

r
(l+1)
ic

)
Kh(Zi − z)

=
n∑

i=1

{
C∑
c=1

log

{
C∑
c=1

πcϕ(Yi|xT
i βc, σ

2
c )

}
r
(l+1)
ic

}
Kh(Zi − z). (5.19)

By (5.18), we also have

log

{
C∑
c=1

πcϕ(Yi|xTβc, σ
2
c )

}
= log{πcϕ(Yi|xT

i βc, σ
2
c )} − log[g{c|Xi, Yi,θ}]. (5.20)

Thus, we have

ℓ1(θ) =
n∑

i=1

{
C∑
c=1

log{πcϕ(Yi|xTβc, σ
2
c )}r

(l+1)
ic

}
Kh(Zi − z)

−
n∑

i=1

{
C∑
c=1

log[g{c|Xi, Yi,θ}]r(l+1)
ic

}
Kh(Zi − z), (5.21)

Based on the M-step of (2.7) — (2.9) we have

1

n

n∑
i=1

{
C∑
c=1

log{π(l+1)
c (z)ϕ(Yi|xTβ(l+1)

c (z), σ2(l+1)
c (z)}r(l+1)

ic

}
Kh(Zi − z)

≥ 1

n

n∑
i=1

{
C∑
c=1

log{π(l)
c (z)ϕ(Yi|xTβ(l)

c (z), σ2(l)
c (z))}r(l+1)

ic

}
Kh(Zi − z).

It suffices to show that

lim sup
n→∞

1

n

n∑
i=1

[
C∑
c=1

log

{
g{c|Xi, Yi,θ

(l+1)(z)}
g{c|Xi, Yi,θ

(l)(z)}

}
r
(l+1)
ic

]
Kh(Zi − z) ≤ 0 (5.22)

in probability. Define

Lg =
1

n

n∑
i=1

[
C∑
c=1

log

{
g{c|Xi, Yi,θ

(l+1)(z)}
g{c|Xi, Yi,θ

(l)(z)}

}
r
(l+1)
ic

]
Kh(Zi − z),

and

LJ =
1

n

n∑
i=1

log

[
C∑
c=1

{
g{c|Xi, Yi,θ

(l+1)(z)}
g{c|Xi, Yi,θ

(l)(z)}

}
r
(l+1)
ic

]
Kh(Zi − z).
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By Jensen’s inequality, Lg ≤ LJ . Next we show that LJ → 0 in probability. For the

simplicity of proof, we assume g{c|X, Y,θ(l)(Z)} ≥ a > 0 for some small value a, which can

always be done in practice . To this end, we first calculate the expectation of LJ .

E(LJ) = E

(
log

[
C∑
c=1

g{c|X,Y,θ(l+1)(z)}
g{c|X,Y,θ(l)(z)}

g{c|X,Y,θ(l)(Z)}

]
Kh(Z − z)

)
.

By a standard argument, we know

∆n(X,Y ) , E

(
log

[
C∑
c=1

g{c|X, Y,θ(l+1)(z)}
g{c|X, Y,θ(l)(z)}

g{c|X, Y,θ(l)(Z)}

]
Kh(Z − z)

∣∣∣X, Y

)
→ 0.

Noting that ∆n(X, Y ) is bounded, we have

E(LJ) = E(∆n(X, Y )) → 0.

We next calculate the variance of LJ . Note that the variance of LJ is dominated by the

following term

1

n
E

(
log

[
C∑
c=1

g{c|X, Y,θ(l+1)(z)}
g{c|X, Y,θ(l)(z)}

g{c|X, Y,θ(l)(Z)}

]
Kh(Z − z)

)2

,

which can be shown to have the order Op{(nh)−1}. Then we have LJ = op(1) by Chebyshev

inequality. This completes the proof.

(b)

ℓ3(π
(l+1))− ℓ3(π

(l)) =
n∑

i=1

log

{∑C
c=1 π

(l+1)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )∑C

c=1 π
(l)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

}
Kh(Zi − z)

=
n∑

i=1

log
C∑
c=1

{
π
(l)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )∑C

c=1 π
(l)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

π
(l+1)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

π
(l)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

}
Kh(Zi − z)

=
n∑

i=1

log
C∑
c=1

{
r
(l+1)
ic

π
(l+1)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

π
(l)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

}
Kh(Zi − z)

Based on the Jensen’s inequality, we have

ℓ3(π
(l+1))− ℓ3(π

(l)) ≥
n∑

i=1

C∑
c=1

r
(l+1)
ic log

{
π
(l+1)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

π
(l)
c ϕ(Yi|xT

i β̂c, σ̂
2
c )

}
Kh(Zi − z).

Based on the M-step of (2.14), we have

ℓ3(π
(l+1))− ℓ3(π

(l)) ≥ 0.
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(c) By fixing π̂(·) = π(l)(·), ℓ∗(π(l)(·),β,σ2) is equal to ℓ1(β,σ
2). Then by the ascent

property of the ordinary EM algorithm, we have

ℓ∗{π(l)(·),β(l+1),σ2(l+1)} ≥ ℓ∗{π(l)(·),β(l),σ2(l)}.

Therefore, we only need to show

lim inf
n→∞

1

n

[
ℓ∗{π(l+1)(·),β(l+1),σ2(l+1)} − ℓ∗{π(l)(·),β(l+1),σ2(l+1)}

]
≥ 0.

Fix β̂ = β(l+1) and σ̂2 = σ2(l+1), and take z ∈ {Zj, j = 1, · · · , n}. By similar arguments of

Theorem 4(a), we can show that for any given z,

lim inf
n→∞

n−1
[
ℓ3{π(l+1)(z)} − ℓ3{π(l)(z)}

]
≥ 0

in probability. Hence,

lim inf
n→∞

1

n2

n∑
j=1

f(Zj)
−1
[
ℓ3{π(l+1)(Zj)} − ℓ3{π(l)(Zj)}

]
≥ lim inf

n→∞

1

n

n∑
j=1

lim inf
n→∞

1

n
f(Zj)

−1
[
ℓ3{π(l+1)(Zj)} − ℓ3{π(l)(Zj)}

]
≥ 0.

Since Kh(Zi − Zj) = Kh(Zj − Zi), it can be shown that

1

n2

n∑
j=1

f(Zj)
−1ℓ3{π(l)(Zj)}

=
1

n2

n∑
j=1

f(Zj)
−1

n∑
i=1

log

{
C∑
c=1

π(l)
c (Zj)ϕ(Yi|xT

i β̂c, σ̂
2
c )

}
Kh(Zi − Zj)

=
1

n

n∑
i=1

(
1

n

n∑
j=1

f(Zj)
−1 log

[
C∑
c=1

π(l)
c (Zj)ϕ{Yi|xT

i β̂c, σ̂
2
c}

]
Kh(Zj − Zi)

)

=
1

n

n∑
i=1

D
(l)
i ,

where

D
(l)
i =

1

n

n∑
j=1

f(Zj)
−1 log

[
C∑
c=1

π(l)
c (Zj)ϕ{Yi|xT

i β̂c, σ̂
2
c}

]
Kh(Zj − Zi).
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By treating (Xi, Yi, Zi) as fixed in D
(l)
i , we can further show that

E(D
(l)
i |Xi, Yi, Zi) = log

[
C∑
c=1

π(l)
c (Zi)ϕ{Yi|xT

i β̂c, σ̂
2
c}

]
(1 + op(1)),

and Var{E(D(l)
i |Xi, Yi, Zi)} is of order Op{(nh)−1}. It is easy to see that

n∑
i=1

E(D
(l)
i |Xi, Yi, Zi) = ℓ∗{π(l)(·),β(l+1),σ2(l+1)}(1 + op(1)),

n∑
i=1

E(D
(l+1)
i |Xi, Yi, Zi) = ℓ∗{π(l+1)(·),β(l+1),σ2(l+1)}(1 + op(1)).

This completes the proof of Theorem 4(c).
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