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SYMMETRY PROBLEM

A. G. RAMM

(Communicated by Matthew J. Gursky)

Abstract. A novel approach to an old symmetry problem is developed. A
new proof is given for the following symmetry problem, studied earlier: if
Δu = 1 in D ⊂ R

3, u = 0 on S, the boundary of D, and uN = const on S,

then S is a sphere. It is assumed that S is a Lipschitz surface homeomorphic
to a sphere. This result has been proved in different ways by various authors.
Our proof is based on a simple new idea.

1. Introduction

Symmetry problems are of interest both theoretically and in applications. A
well-known, and still unsolved, symmetry problem is the Pompeiu problem (see [9],
[10], and the references therein). In modern formulation this problem consists of
proving the following conjecture:

If D ⊂ R
n, n ≥ 2, is a domain homeomorphic to a ball, and the boundary S of

D is smooth (S ∈ C1,λ, λ > 0, is sufficient), and if the problem

(1) (∇2 + k2)u = 0 in D, u
∣∣
S
= c �= 0, uN

∣∣
S
= 0, k2 = const > 0,

where c is a constant, has a solution, then S is a sphere.
A similar problem (Schiffer’s conjecture) is also unsolved (see also [4]):
If the problem

(2) (∇2 + k2)u = 0 in D, u
∣∣
S
= 0, uN

∣∣
S
= c �= 0, k2 = const > 0

has a solution, then S is a sphere.

Standing assumptions. In this paper we assume that D ⊂ R
3 is a bounded do-

main homeomorphic to a ball, with a sufficiently smooth boundary S (S is Lipschitz
suffices).

We use the following notation: D′ = R
3 \D, BR = {x : |x| ≤ R}, BR ⊃ D, H is

the set of all harmonic functions in BR, R > 0 is an arbitrary large number, such
that the ball BR contains D, |D| and |S| are the volume of D and the surface area
of S, respectively.

In [12] it is proved that if

(3)

∫
D

dy

4π|x− y| =
c

|x| , ∀x ∈ B′
R, c = const > 0,

then D is a ball. The proof in [12] is based on an idea similar to the one we are
using in this paper.
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516 A. G. RAMM

In [13] a symmetry problem of interest in elasticity theory is studied by A.D.
Alexandrov’s method of a moving plane ([1]), used also in [14]. The result in [14],
which is formulated below in Theorem 1, was proved in [15] by a method, different
from the one given in [14], and discussed also in [2]. The argument in [2] remained
unclear to the author.

In [5] another symmetry problem of potential theory was studied.
Our goal is to give a new proof of Theorem 1. The result of Theorem 1 was

obtained in [14] for Rn, n ≥ 2.

Theorem 1. If D ⊃ R
3 is a bounded domain, homeomorphic to a ball, S is its

Lipschitz boundary, and the problem

(4) Δu = 1 in D, u
∣∣
S
= 0, uN

∣∣ = c :=
|D|
|S| > 0

has a solution, then S is a sphere.

This result is equivalent to the following result:
If

(5)

∫
D

h(x)dx = c

∫
S

h(s)ds, ∀h ∈ H, c :=
|D|
|S| ,

then S is a sphere.
The equivalence of (4) and (5) can be proved as follows.
Suppose (4) holds. Multiply (4) by an arbitrary h ∈ H, integrate by parts and

get

(6)

∫
D

h(x)dx = c

∫
S

h(s)ds.

If h = 1 in (6), then one gets c = |D|
|S| , so (6) is identical to (5).

Suppose (5) holds. Then (6) holds. Let v solve the problem Δv = 1 in D,
v
∣∣
S
= 0. This v exists and is unique. Using (6), the equation Δh = 0 in D, and

the Green’s formula, one gets

(7) c

∫
S

h(s)ds =

∫
D

h(x)dx =

∫
D

h(x)Δvdx =

∫
S

h(s)vNds.

Thus,

(8)

∫
S

h(s)[vN − c]ds = 0, ∀h ∈ H.

We will need the following lemma:

Lemma A. The set of restrictions on S of all harmonic functions in D is dense
in L2(S).

Proof of Lemma A. We give a proof for the convenience of the reader. The proof
is borrowed from [12]. Suppose that g ∈ L2(S), and

∫
S
g(s)h(s)ds = 0 ∀h ∈ H.

Since (4π|x− y|)−1 is in H if y ∈ D′, one gets

w(y) :=

∫
S

g(s)(4π|s− y|)−1ds = 0 ∀y ∈ D′.
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SYMMETRY PROBLEM 517

Thus, a single layer potential w, with L2 density g, vanishes in D′, and, by continu-
ity, on S. Since w is a harmonic function in D vanishing on S, it follows that w = 0
in D. By the jump formula for the normal derivative of the single-layer potential
across a Lipschitz boundary, one gets g = 0. �

Thus, (8) implies vN
∣∣
S
= c. Therefore, (4) holds.

A result, related to equation (5), was studied in [7] for a two-dimensional prob-
lem. The arguments in [7] were not quite clear to the author.

Our main result is a new proof of Theorem 1. The proof is simple, and the
method of the proof is new. This method can be used in other problems (see [5],
[10], [12], [11]).

2. Proofs

Proof of Theorem 1. We denote by D′ the complement of D in R
3, by S2 the unit

sphere, by [a, b] the cross product of two vectors, by g = g(φ) the rotation about
an axis, directed along a vector α ∈ S2, by the angle φ, and note that if h(x) is
a harmonic function in any ball BR, containing D, then h(gx) is also a harmonic
function in BR.

Take h = h(g(φ)x) in (5), differentiate with respect to φ and then set φ = 0.
This yields: ∫

D

∇h(x) · [α, x]dx = c

∫
S

∇h(s) · [α, s]ds.

Using the divergence theorem, one rewrites this as

α ·
∫
S

[s,N ]h(s)ds = α ·
∫
S

[s, c∇h(s)]ds.

Since α ∈ S2 is arbitrary, one gets

(9)

∫
S

[s,N ]h(s)ds =

∫
S

[s, c∇h(s)]ds, ∀h ∈ H,

where N = Ns is a unit normal to S at the point s ∈ S, pointing into D′.
Let y ∈ B′

R be an arbitrary point, and h(x) = 1
|x−y| ∈ H, where x ∈ BR. Then

equation (9) implies that

(10) v(y) :=

∫
S

[s,N ]ds

|s− y| = c[∇
∫
S

ds

|s− y| , y], ∀y ∈ B′
R,

because

(11) c

∫
S

[s,∇s
1

|s− y| ]ds = c

∫
S

[
s

|s− y|3 , y]ds = c[∇y

∫
S

ds

|s− y| , y].

Relation (11) actually holds for all y ∈ D′, because of the analyticity of its left and
right sides in D′. Let

w(y) :=

∫
S

|s− y|−1ds.

Denote y0 := y/|y|. It is known (see, e.g., [3]) that

(12) |y − s|−1 =
∞∑

n=0

n∑
m=−n

4π

2n+ 1
Ynm(y0)Ynm(s0)|s|n|y|−(n+1), |y| > |s|,

Licensed to Kansas State University. Prepared on Mon Jan  7 11:20:54 EST 2013 for download from IP 129.130.37.67.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



518 A. G. RAMM

where the overline stands for the complex conjugate, y0 is the unit vector charac-
terized by the angles θ, φ in spherical coordinates, Ynm are normalized spherical
harmonics:

Ynm(y0) = Ynm(θ, φ) = γnmPn,|m|(cos θ)e
imφ, −n ≤ m ≤ n,

γnm = [ (2n+1)(n−m)!
4π(n+m)! ]1/2 are normalizing constants:

(Ynm(y0), Ypq(y
0))L2(S2) = δnpδmq,

and

Pn,|m|(cos θ) = (sin θ)|m|(
d

d cos θ
)|m|Pn(cos θ)

are the associated Legendre functions, where Pn(cos θ) are the Legendre polynomi-
als.

If z = cos θ, then

Pn,m(z) = (z2 − 1)m/2(
d

dz
)mPn(z), m = 1, 2, ...,

Pn(z) = (2nn!)−1(
d

dz
)n(z2 − 1)n, P0(z) = 1

(see [3]). The definitions of Pn,m(z) in various books can differ by a factor (−1)m.
Using formula (12), one obtains

(13)

w(y) =

∞∑
n=0

4π

2n+ 1

n∑
m=−n

Ynm(y0)|y|−(n+1)cnm, cnm :=

∫
S

|s|nYnm(s0)ds.

Substitute this in (10), equate the terms in front of |y|−(n+1), and define vectors

(14) anm :=

∫
S

[s,N ]|s|nYnm(s0)ds

to obtain

(15)

n∑
m=−n

Ynm(y0)anm =

n∑
m=−n

ccnm[eθ∂θYnm(y0) + eφ(sin θ)
−1∂φYnm(y0), er],

where eθ,eφ, and er are orthogonal unit vectors of the spherical coordinate system,
[eφ, er] is the cross product, [eφ, er] = eθ, [eθ, er] = −eφ, y = ry0, r = |y|, y0 =

(sin θ cosφ, sin θ sinφ, cos θ), ∂θ = ∂
∂θ .

Therefore, formula (15) can be rewritten as

(16)

n∑
m=−n

Ynm(y0)anm =

n∑
m=−n

ccnm

(
− eφ∂θYnm(y0) + eθ(sin θ)

−1∂φYnm(y0)
)
.

From (16) we want to derive that

(17) anm = 0, n ≥ 0, −n ≤ m ≤ n.

If (17) is established, then it follows from (14) and from the completeness in L2(S)
of the system {|s|nYnm(s0)}n≥0,−n≤m≤n that [s,N ] = 0 on S, and this implies that
S is a sphere, as follows from Lemma 1 formulated and proved below. Consequently,
Theorem 1 is proved as soon as relations (17) are established. The completeness of
the system {|s|nYnm(s0)}n≥0,−n≤m≤n in L2(S) follows from Lemma B:

The functions |x|nYnm(x0), n ≥ 0, −n ≤ m ≤ n, are harmonic in any ball,
centered at the origin.
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SYMMETRY PROBLEM 519

Lemma B. The set of restrictions of the above functions to any Lipschitz surface
homeomorphic to a sphere is complete in L2(S).

Proof of Lemma B. The proof is given for completeness. It is similar to the proof
of Lemma A. Suppose that g ∈ L2(S) and∫

S

g(s)|s|nYnm(s0)ds = 0, ∀n ≥ 0, |m| ≤ n.

This and (12) imply that∫
S

g(s)(4π|s− y|)−1ds = 0 ∀y ∈ D′,

and the argument, given in the proof of Lemma A, yields the desired conclusion
g = 0. �

Vector anm is written in the Cartesian basis {ej}1≤j≤3 as

anm =

3∑
j=1

anm,jej .

The relation between the components F1, F2, F3 of a vector F in Cartesian coordi-
nates and its components Fr, Fθ, Fφ in spherical coordinates can be found, e.g., in
[6], Section 6.5:

F1 = Fr sin θ cosφ+ Fθ cos θ cosφ− Fφ sinφ,

F2 = Fr sin θ sinφ+ Fθ cos θ sinφ+ Fφ cosφ,

F3 = Fr cos θ − Fθ sin θ.

Using these relations one derives from (16) the following formulas:

n∑
m=−n

anm,1Ynm(y0) =

n∑
m=−n

ccnm

(
∂θYnm(y0) sinφ+ ∂φYnm(y0) cot θ cosφ

)
,(18)

n∑
m=−n

anm,2Ynm(y0) =

n∑
m=−n

ccnm
(
−∂θYnm(y0) cosφ+ ∂φYnm(y0) cot θ sinφ

)
,

(19)

n∑
m=−n

anm,3Ynm(y0) = −
n∑

m=−n

ccnm∂φYnm(y0).(20)

From formulas (18)-(20) one derives (17).
If n = 0, then a00 = 0, as the following calculation shows:

a00 =
1

(4π)1/2

∫
S

[s,N ]ds = − 1

(4π)1/2

∫
D

[∇, x]dx = 0.

If n > 0, then multiply equation (20) by e−imφ, integrate with respect to φ over
[0, 2π], write Pn,m for Pn,m(cos θ), and obtain

(21) anm,3Pn,m = −ccn,mimPn,m, cn,m := cnm.

One concludes that an0,3 = 0 and anm,3 = −imccn,m.
If one derives from (18)-(19) that cn,m = 0, then equation (17) follows, and

Theorem 1 is proved.
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520 A. G. RAMM

From (18) and (19) one derives analogs of (21):

2ianm,1γnmPn,m = ccn,m−1γn,m−1 (∂θPn,m−1 − (m− 1) cot θPn,m−1)

− ccn,m+1γn,m+1 (∂θPn,m+1 + (m+ 1) cot θPn,m+1) ,(22)

2anm,2γnmPn,m = ccn,m−1γn,m−1 (−∂θPn,m−1 + (m− 1) cot θPn,m−1)

− ccn,m+1γn,m+1 (∂θPn,m+1 + (m+ 1) cot θPn,m+1) .(23)

Let us take θ → 0 in the above equations. It is known (see [3], Section 3.9.2, formula
(4)) that

(24) Pn,m(z) ∼ b(n,m)(z − 1)m/2, z → 1, b(n,m) :=
(n+m)!

2m/2m!(n−m)!
.

Equation (22) can be considered as a linear combination

(25)
3∑

j=1

Ajfj(z) = 0,

where the Aj are constants:

A1 = 2ianm,1γnm, A2 = −ccn,m−1γn,m−1, A3 = ccn,m+1γn,m+1,

and

f1(z) = Pn,m(z),

f2(z) = −(1− z2)1/2P ′
n,m−1(z)− (m− 1)

z

(1− z2)1/2
Pn,m−1(z),

f3(z) = −(1− z2)1/2P ′
n,m+1(z)− (m+ 1)

z

(1− z2)1/2
Pn,m+1(z), z = cos θ.

If the system of functions {fj(z)}3j=1 is linearly independent on the interval [−1, 1],
then all Aj = 0 in (25), that is, A1 = 0, A2 = 0, and A3 = 0. This implies that

anm,1 = cn,m = 0, −n ≤ m ≤ n.

The quantities anm,2 and anm,3 are proportional to cn,m. Since cn,m = 0, it follows
that

anm,2 = anm,3 = 0, −n ≤ m ≤ n,

and Theorem 1 is proved.
Thus, to complete the proof of Theorem 1 it is sufficient to verify the linear

independence of the system of functions {fj(z)}3j=1 on the interval z ∈ [−1, 1].
From formula (24) it follows that these functions have the following main terms

of their asymptotics as z → 1:

f1(z) ∼ B1(z − 1)m/2, f2(z) ∼ B2
(z − 1)(m+1)/2

(1− z2)1/2
, f3(z) ∼ B3

(z − 1)(m+3)/2

(1− z2)1/2
,

where the constants Bj �= 0, 1 ≤ j ≤ 3, depend on n,m. The linear independence
of the system {fj(z)}3j=1 holds because the system

{(z − 1)m/2,
(z − 1)(m+1)/2

(1− z2)1/2
,

(z − 1)(m+3)/2

(1− z2)1/2
}

is linearly independent. The linear independence of this system holds if the system

{1, (1 + z)−0.5, (z − 1)(1 + z)−0.5}
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SYMMETRY PROBLEM 521

is linearly independent on the interval [−1, 1]. The linear independence of this
system on the interval [−1, 1] is obvious.

Theorem 1 is proved. �
Lemma 1. If S is a C2−smooth closed surface and [s,Ns] = 0 on S, then S is a
sphere.

Proof of Lemma 1. Let s = r(u, v) be a parametric equation of S. Then the vectors
ru and rv are linearly independent andNs is directed along the vector [ru, rv]. Thus,
the assumption [s,Ns] = 0 on S implies that

[r, [ru, rv]] = ru(r, rv)− rv(r, ru) = 0.

Since the vectors ru and rv are linearly independent, it follows that (r, rv) =
(r, ru) = 0. Thus, (r, r) = R2, where R2 is a constant. This means that S is
a sphere. Lemma 1 is proved. �

References

[1] A. D. Alexandrov, A characteristic property of a sphere, Ann. di Matem., 58 (1962), 303-315.
MR0143162 (26:722)

[2] T. Amdeberhan, Two symmetry problems in potential theory, Electronic Journ. of Diff. Eqs.,
43 (2001), 1-5. MR1836811 (2002e:35171)

[3] H. Bateman, A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher transcendental
functions, Vol. 1, McGraw-Hill, New York, 1953. MR0058756 (15:419i)

[4] T. Chatelain and A. Henrot, Some results about Schiffer’s conjectures, Inverse Problems, 15
(1999), 647-658. MR1696934 (2000e:35019)

[5] N. S. Hoang and A. G. Ramm, Symmetry problems. II, Annal. Polon. Math., 96, N1 (2009),

61-64. MR2506593 (2010f:35046)
[6] G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill,

New York, 1968. MR0220560 (36:3618)
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