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Abstract 

Post-flowering heat stress is one of the major environmental constraints for wheat 

(Triticum aestivum L.) production in the state of Kansas, where wheat is the most widely grown 

grain crop. Studies have shown that the optimal temperature for wheat grain development is 

approximately 21°C. During the grain filling stage for wheat in Kansas, it is fairly common for 

temperatures to reach more than 30°C and above. These scenarios have resulted in lower 

productivity and yield in Kansas compared to other regions of the United States. Therefore the 

objectives of this research project included: phenotyping seven Kansas varieties for post-

flowering heat tolerance in a controlled environment growth chamber study as well as in two 

field experiments, estimation of spike and flag leaf senescence in wheat exposed to post-

flowering heat stress, and identifying potential genetic donors for heat tolerance from winter 

wheat breeding lines and Near Isogenic Lines developed from Kansas State University’s Wheat 

Breeding Program. To impose heat stress in the controlled growth chambers, plants grown at 

25oC were transferred to high day temperature (35oC) chambers ten days after the first sign of 

anthesis. Under field conditions, custom built “heat tents” were placed over the wheat plots ten 

days after first flowering and remained until maturity. Plants grown under heat stress exhibited 

early senescence, indicating a shorter grain filling period compared to the controls. Early-

maturing varieties recorded greater percent reductions in grain yield under heat stress. Post-

flowering heat stress induced significant reductions in thousand kernel weight, grain number, 

harvest index, and grain yield. Spike and flag leaves effective quantum yield of PSII was reduced 

more drastically under growth chamber stress exposure compared to field grown plants. 

Significant genetic variation in the spike and flag leaf senescence initiation and the differential 

rate of senescence among the seven tested varieties suggested the potential for considering this 



  

trait in breeding programs. Compared to the commercially relevant varieties, breeding lines 

varied less under heat stress with a few lines recording a greater degree of heat resilience and 

experienced little to no drop off in heat stress conditions compared to control. The reduced 

performance under heat stress for the seven varieties highlights the genuine need to explore 

wider genetic diversity, including wild wheat, to infuse greater resilience into ongoing wheat 

breeding programs. However, the results observed in the breeding lines indicate that introducing 

larger genetic diversity may aid in developing greater heat stress resilient wheat varieties for 

current and future changing climate.    
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Chapter 1 - Literature Review 

 Introduction 

 

Wheat Production – An Overview  

Wheat (Triticum aestivum L.) is among the most widely grown food crops in the world.  

It is a staple in the diets of nearly 35% of the world population (Braun et al., 1998) and is the 

largest source of vegetable protein in low-income countries (Tack et al., 2015). Consumer 

demand for wheat is predicted to increase at a greater rate than for any other major crop (Braun 

et al., 1998) with its demand forecasted to grow by 2% annually (Bahar et al., 2011). Over the 

twenty-five year period, from 1989 to 2014, global wheat yield increased at an average annual 

rate of 1.56% (Food and Agriculture Organization of the United Nations Statistics Division 

[FAOSTAT], 2014). In 2014, wheat was the third largest grain crop produced globally at 

729,012,175 tonnes, behind only maize and rice. The United States is typically one of the four 

leading countries in wheat production. In 2014, the top wheat producing nations were: China 

(126 million tonnes), India (96 million tonnes), Russian Federation (59.5 million tonnes), and the 

United States (55 million tonnes) ([FAOSTAT], 2014).   

The United States Department of Agriculture Economic Research Service  (USDA ERS) 

reports wheat as the third largest field crop in the United States, behind corn and soybean, in 

both planted acreage and gross farm revenue (USDA ERS - Wheat, 2016). According to the 

USDA National Agricultural Statistics Service (USDA NASS), 2016 wheat production was led 

by Kansas (467 million bushels), followed by North Dakota (333 million bushels), and Montana 

(213 million bushels) (USDA NASS, 2016). Approximately 40 % of the total wheat produced in 

the United States is classified as hard red winter, which is grown primarily throughout the Great 
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Plains from Texas to Montana (USDA ERS, 2016).  Five states in the Great Plains region of the 

United States (Texas, Oklahoma, Kansas, Colorado, and Nebraska) form the largest contiguous 

transect of winter wheat in the world, accounting for 8 million hectares harvested in 2013 (Tack 

et al., 2015).   

 

 Effects of high temperature on wheat growth and yield 

Heat Stress and Winter Wheat  

Environmental or abiotic stresses such as extreme heat, drought, and freezing 

temperatures pose a significant negative impact on wheat yields globally. Across the Great 

Plains, variations in temperature throughout a given cropping season are a defining factor for 

winter wheat yields. Freezing temperatures in the fall prior to dormancy and high temperatures in 

the spring during the reproductive and grain filling stages are key contributors to yield loss in 

this region (Tack et al., 2015).  

The Intergovernmental Panel on Climate Change (IPCC) has predicted an increase in 

average global mean surface temperature varying between 0.3°C to 4.8°C by the end of the 21st 

century (IPCC, 2014).  Both climate and crop models project that climate change will have a 

significant impact on rainfed wheat production in the Great Plains (Tubiello et al., 2002). These 

models predict hard winter wheat yields could decrease by 4 to 30 % across the southern Great 

Plains (Colorado, Kansas, Oklahoma, and Texas) by 2090, primarily due to warmer temperatures 

and drought stress (Tubiello et al., 2002). Although genetic potential for increased yield has been 

achieved through breeding, wheat yield will continue to be limited under stressful environmental 

conditions. Thus, addressing abiotic stress factors like heat and drought is pertinent for wheat 

improvement (Bahar et al., 2011).  
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In an attempt to bridge the gap between scientific research results and projected real 

world yield losses due to warming temperatures, Barkley et al. (2014) compiled 26 years of 

historical weather data with wheat variety performance testing yield results from 11 Kansas 

locations. Their results found that warmer temperatures have a significant negative impact on 

yield. By using regression based models they reported a drastic 21% reduction in grain yield for 

every 1 ̊ C increase in projected mean temperature (Barkley et al., 2014). A similar study 

performed by Tack et al., (2015) found that for each additional growing degree day beyond the 

critical threshold of 34 ̊ C for the spring growth period, a 7.6% reduction in grain yield is 

possible.  

Post-flowering Heat Stress in Wheat  

The optimal temperature for wheat grain filling is 21.3°C ± 1.27°C, according to a 

comprehensive review by Farooq et al. (2011) including 12 studies related to post-flowering heat 

stress. Temperatures in Kansas and across the southern Great Plains commonly reach 25 to 30°C 

(U.S. Climate Data, 2017) and intermittently exceed 32°C during the period often associated 

with wheat grain filling - late April through June. Wheat’s heat stress can be categorized into two 

temperature scenarios: critical high temperature stress (chronic stress above the optimum 

temperature) ranging from upper 20’s to 32°C, and heat shock which occurs when temperatures 

exceed 32°C during the grain fill period (Wardlaw and Wrigley, 1994).  

Measures closer to critical high temperatures during post-flowering stages primarily 

impact yield by reducing kernel size and weight (Wardlaw and Wrigley, 1994). However, short 

term heat shock or extreme high temperatures can lead to early leaf senescence, inhibit kernel 

development, and alter starch and protein composition (Wardlaw and Wrigley, 1994). Numerous 

studies have focused on quantifying the level of yield reduction that can be attributed to heat 
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stress. In a study designed to measure the effect of heat shock, temperatures of 40°C imposed for 

a period of three days during early grain fill resulted in up to 23% reduction in kernel weight 

(Stone and Nicolas, 1994). Final grain weight at maturity decreased by 5% for each 1°C rise in 

temperature above a base temperature of 21/16°C day/night temperature (Tashiro and Wardlaw, 

1989). After reviewing data from 75 Australian wheat cultivars, Stone and Nicolas (1995) 

concluded that short periods of heat stress adversely affect grain yield and quality, but genetic 

diversity for tolerance exists.   

The primary determinants of wheat yield can be attributed to three factors; spikes per 

area, kernels per spike, and weight per kernel. Due to a highly variable regional climate, wheat 

grown in Kansas and across the Great Plains is routinely subjected to high temperatures at the 

time of grain fill. As a result, the rate of grain filling is accelerated and the grain fill duration is 

drastically shortened (Sofield et al., 1977) which hastens physiological maturity and results in 

lower kernel weight and reduced yield (Dias and Lidon, 2009). Yin et al. (2009) reported a 15-

40% shortening of grain filling duration by 15-40% for six genotypes when temperature 

increased from 20 to 25°C. Post-flowering heat stress, which is responsible for a shortened grain 

fill period, greatly affects kernel weight as all other grain yield parameters have been established 

prior to this phase (Yang et al., 2002). Sharma et al. (2008) have suggested thousand kernel 

weight under terminal heat stress could be used as an indirect indicator for selecting high 

yielding, resilient cultivars. A typical genotypic response to high temperatures during grain fill is 

an increase in the grain filling rate. However, this does not alleviate the effect that the reduced 

grain fill duration has on decreasing kernel size under post-flowering heat stress under growth 

chamber conditions (Prasad et al., 2006). A study conducted by Gibson and Paulson (1999) 
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concluded that further research is necessary to understand the significance of wheat kernel 

development under high temperature stress. 

Impact of heat stress on grain quality 

Studies have shown that post-flowering heat stress may alter cell formation and 

development of the endosperm tissue in grain (Stone and Nicolas, 1994; Wilhelm et al., 1999).  

Reduced starch deposition in harvested grain has been documented as a result of smaller 

endosperm cells in wheat plants exposed to critically high temperatures, additionally, heat shock 

conditions have been known to cause kernel deformation (Wardlaw and Wrigley, 1994).  Starch 

accumulation is significantly impacted by elevated temperatures and has been found to be more 

sensitive to heat stress than protein synthesis (Bhullar and Jenner, 1985; Sofield et al., 1977). 

Stone and Nicolas (1995) found that temperatures between 30 and 40°C caused more than 30% 

starch accumulation reduction in grains. Literature suggests that 10-15 days post-anthesis 

appears to be the most sensitive stage of grain fill in regards to yield reduction due to high 

temperature stress, as this correlates to the final stages of cell division and enlargement in the 

endosperm (Wardlaw and Wrigley, 1994). Decreased kernel size is not only detrimental to 

producers in terms of overall yield, but also in terms of reduced quality, thus resulting in a 

potential cash price dockage and lower revenue for the producer. Additionally, other studies have 

proven that above optimum temperatures at grain fill are likely to impact end-use quality by 

weakening the dough properties of the grain (Blumenthal et al., 1993, Blumenthal et al.,1995, 

Stone and Nicolas, 1994).  
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 Effects of high temperature on wheat physiology 

Physiology and Heat Stress  

There are several physiological processes that are affected by high temperature stress that 

lead to decreased wheat grain yield. The rate of the temperature change, temperature intensity, 

and duration of elevated temperature interact to determine the severity of heat-imposed stress 

(Sung et al., 2003). Reduction in photosynthetic rate is one of the primary processes impacted by 

heat stress (Al-Khatib and Paulsen, 1984; Wahid et al., 2007). The decline in photosynthesis due 

to heat stress can be attributed to thylakoid membrane damage, disrupted chloroplast function, 

and reduced chlorophyll content (Al-Khatib and Paulsen, 1984; Ristic et al., 2007). At the plant 

level, Sharkey (2005) identified carbon dioxide fixation, photophosphorylation, the electron 

transport chain, and the oxygen evolving complex (OEC) as major processes susceptible to 

temperature-induced damage of photosynthetic machinery. Additional physiological processes 

which are impacted by heat stress include: canopy temperature depression, cell membrane 

thermal stability, photosynthetic rate, and stomatal conductance (Al-Khatib and Paulsen, 1984; 

Cossani and Reynolds, 2012; Fokar et al., 1998; Reynolds, 2001).  

Wheat cultivars are known to primarily employ three differing mechanisms to handle 

heat stress, tolerance, escape, and avoidance (Levitt, 1980; Sun et al., 2017). Earlier maturity for 

cultivars is a key mechanism to escape terminal heat stress in many cultivars. In a study 

conducted across South Asia and parts of Mexico, Mondal et al. (2013) determined that earlier 

maturing wheat lines outperformed their counterparts under terminal heat stress. Escaping-end-of 

season heat shock and late-season droughts has long been recognized as an important 

characteristic among producers when selecting wheat cultivars to be grown in the Great Plains 

(Reitz and Salmon, 1959). The future outlook of climate and wheat production give reason to 
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believe that earlier maturing cultivars may be beneficial in the short term; however, the most 

promising long-term adaptation strategy remains improving cultivar tolerance to heat stress 

during grain filling (Gouache et al., 2012). 

 Although escape and avoidance mechanisms tend to be more easily identified, as they 

are associated with earlier physiological development and maturity, tolerance mechanisms 

require in-depth measurements and systematic testing to appropriately ascertain the means 

through which a plant is or is not combatting heat stress. One source of tolerance that has been 

identified in crop plants is an increased level of antioxidant enzyme activity leading to greater 

levels of tolerance to heat stress (Gupta et al.,1993; Rengang et al., 1995; Sairam et al., 2000). A 

study comparing heat tolerance in sorghum to wheat (Blum and Ebercon, 1981) found that cell 

membrane stability, or the rate of injury to cell membranes, could be used to accurately measure 

levels of heat tolerance in wheat cultivars. Understanding how wheat plants cope with above-

optimum temperatures on a cellular level is of utmost importance if superior heat-tolerant wheat 

genetics are to be developed. Of equal importance in this progression is recognizing how leaf and 

canopy characteristics are related to yield in stressful environments. Fischer et al. (1998) 

concluded that stomatal conductance, maximum photosynthetic rate, and canopy temperature 

depression are closely and positively correlated with the mean yield based on a six-year study 

conducted in Mexico in collaboration with the International Maize and Wheat Improvement 

Center (CIMMYT). 

Chlorophyll Content 

Chlorophyll is the most abundant photosynthetic pigment in the plant and is closely 

related to plant health and its degradation leads to leaf senescence. Chloroplasts are home to 

photosynthetic activity in the plant and contain membranes that contain both chlorophyll a and b 
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pigment molecules as well as accessory pigments (Emerson and Arnold, 1932). Within these 

membranes, the resources required for grain development are formed by the photosynthetic 

reaction in which carbon dioxide (CO2) is fixed and converted to sugars (Al-Khatib and Paulsen, 

1990; Evans, 1975). Photosynthesis is dependent upon chlorophyll for the absorption of sunlight. 

Thus, a reduction in leaf chlorophyll content, or an increased rate of senescence preceding 

physiological maturity, has been shown to negatively influence yields (Lopes and Reynolds, 

2012). To combat premature senescence due to heat stress, the “stay green trait” is generally 

recognized as the plant’s ability to retain chlorophyll under stressful conditions (Reynolds, 1994; 

Thomas and Howarth, 2000). Although Borrill et al. (2015) reported non-significant correlation 

between grain yield and length of flag leaf senescence in transgenic wheat lines under optimal 

growth conditions, others have shown that pursuing stay-green phenotypes has the potential to 

aid breeding programs which are seeking ways to improve yield under adverse environmental 

conditions (Jagadish et al., 2015). Testing different wheat cultivars, Zhao et al. (2007) 

determined that a reduced chlorophyll content in flag leaves due to heat stress during grain filling 

is directly linked to a reduction in the duration of active stomatal regulation. Attesting to the 

theory of chlorophyll content impacting grain fill performance and thus yield, a study performed 

on Mexican wheat landraces showed a positive and highly significant correlation between seed 

weight and chlorophyll content in plants exposed to heat stress (Hede et al., 1999).  

Photosynthesis 

Photosynthesis is one of the plant processes most sensitive to heat stress (Al-Khatib and 

Paulsen, 1984; Fischer et al., 1998). Above optimum temperatures are damaging to the structure 

and function of the different apparatuses that carry out photosynthesis at the cellular level 

(Mathur et al., 2011), which ultimately leads to decreased photochemical efficiency and yield.  A 
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review of literature found that even if heat stress damage is minimized, it is expected that 

photosynthesis would decline with temperature rise due to the established fact that, as 

temperatures rise, photorespiration increases at a greater rate than photosynthesis (Sharkey, 

2005; Schuster and Monson, 1990).  Consequently, temperatures between 35-40°C have been 

shown to reduce the photosynthesis rate at an increased level; this can also be attributed to 

reduction associated with accelerated photorespiration (Sharkey, 2005). It was previously 

thought that damage to photosystem II (PSII) was a factor in photosynthesis reduction at high 

temperatures (Enami et al., 1994; Santarius, 1976), but it has otherwise been proven that damage 

to PSII does not generally occur at temperatures less than 45°C (Čajánek et al., 1998; Gombos et 

al., 1994; Terzaghi et al., 1989; Thompson et al., 1989; Yamane et al., 1998). Photosynthetic 

activity however, is inhibited at less extreme temperatures than those needed to harm PSII 

(>40°C) (Al-Khatib and Paulsen, 1999). For these reasons, PSII is not responsible for the 

declining photosynthesis rate observed at temperatures of 35 to 40°C (Sharkey, 2005). 

Membrane damage and Reactive Oxygen Species (ROS) 

Wise et al. (2004) noticed that high temperatures primarily impact the thylakoid 

membrane and carbon metabolism in the stroma which leads to reduced photochemical 

efficiency. The thylakoid membrane serves an essential role in the photosynthetic process as it 

houses integral membrane proteins including: antenna pigment protein complex 18 (carotenoid, 

chlorophyll a, and chlorophyll b), reaction center and electron carrier proteins (cytochrome b, 

cytochrome f, and ferredoxin) (Taiz and Zeiger, 2006). In a study conducted by Al-Khatib and 

Paulsen (1990), heat stress induced electrolytic leakage in thylakoid membranes, significantly 

reducing photosynthetic rate, however, the extent of reduction in photosynthetic rate was 

variable amongst different wheat species. Dias et al. (2011) verified earlier results that under 
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high temperature stress, durum wheat cultivars have a greater photosynthetic performance 

compared to bread wheat cultivars. 

Chlorophyll Fluorescence 

  Chlorophyll (Chl) fluorescence is a measurement routinely used in plant stress 

physiology studies, providing critical insight on the primary response of photosynthesis (Mathur 

et al., 2011; Sayed, 2003). As leaves and other plant tissues are exposed to solar radiation, Chl 

molecules within the plant absorb the light energy. The energy processed by Chl molecules is 

used to fuel photosynthesis within the plant. Excess energy is either dissipated in the form of 

heat or is re-emitted as light – a process called Chl fluorescence (Maxwell and Johnson, 2000). 

Maxwell and Johnson (2000) also noted that these processes occur competitively within the 

plant, thus, measuring Chl fluorescence allows insight on the performance of photosynthesis and 

heat dissipation. Associations between heat tolerance and low fluorescence signals have been 

identified in wheat (Moffatt et al., 1990), making it a useful tool in heat screening. 

 Chl fluorescence is an efficient, non-destructive measure for determining damage to PSII 

activity caused by environmental stresses. The non-destructive nature allows for multiple 

measurements on the same plant or leaf to be taken throughout the experimental period, 

producing desirable data for further research. In a study measuring heat-induced effects on PSII 

in wheat plants, Lu and Zhang (2000) found that the impact of heat stress on PSII could be 

categorized into two temperature regimes: moderately elevated temperatures (30-37.5°C) and 

severely elevated temperatures (>37.5°C).  The results from Lu and Zhang (2000) indicated that 

a decrease in quantum yield of PSII electron transport is reversible under moderately elevated 

temperatures due to a significant increase in non-photochemical quenching, but remained 

irreversible under severely elevated temperature. Similar research conducted on wheat by Sayed 
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(1992) concluded that plants appear to exhibit signs of acclimation to warm conditions (30/25°C 

day/night), increasing the performance of PSII and whole-chain electron transport.  

Canopy temperature depression and stomatal conductance 

Canopy temperature depression (CTD) is often used as an estimate of heat stress in wheat 

and is a well-tested measure for selecting physiologically superior lines in warm environments 

(Reynolds, 2001). Traits such as leaf chlorophyll content, leaf conductance, spike number, and 

biomass are known to be well associated with crop performance, however, Reynolds et al. (1997) 

proposed that CTD was the single most effective trait associated with yield. Ayeneh et al. (2002) 

examined 13 spring wheat genotypes to determine the level of correlation between organ 

temperature depression (TD), CTD, and grain yield. Their results found that genetic variability 

for organ-TD exists, as well as a strong positive correlation between organ-TD, CTD, and grain 

yield. 

Replicated research has confirmed that there is a linear relationship between air 

temperature, canopy temperature, and stomatal conductance (Hatfield et al.,1987; Jackson et al., 

1981; Pinter et al., 1990). Moreover, numerous studies have shown a complementary relationship 

between stomatal conductance and an increased grain yield under irrigated conditions (Amani et 

al., 1996; Fischer et al., 1998; Reynolds et al., 1994). When water is a non-limiting factor, Pinter 

et al. (1990) discovered that wheat cultivars with a warmer canopy temperature consumed less 

water and had a lower stomatal conductance when compared to cultivars that exhibit a cooler 

canopy temperature. Under the well-watered conditions both the warm and cool canopies 

maintained similar yield, however when exposed to water deficit regimes the cultivars with 

warmer canopies maintained higher relative yields (Pinter et al., 1990).   
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 Screening for Heat Resilience 

The majority of scientific studies monitoring wheat exposed to heat stress conditions 

have been conducted in controlled environment settings such as growth chambers or 

greenhouses. Heat stress experiments conducted in natural field conditions are limited due to the 

difficulty of imposing heat stress in a consistent manner outdoors and also by limited access to 

field-based phenotyping facilities. One common way to ensure heat stress is imposed on field 

trials is by conducting the research in naturally warm environments, similar to Hede et al. (1999), 

where landraces in Mexico were tested for heat tolerance under natural environmental conditions 

in which air temperatures exceeded 35°C. A second popular alternative for imposing heat stress 

in the field is achieved via delayed planting to ensure later maturity, thus increasing the 

probability of late season heat stress exposure (Moffatt et al., 1990). In contrast, a relatively new 

and innovative design for imposing heat stress on field trials has been developed using structures 

designed with the intent of being placed over the growing crop. These structures, as outlined by 

Prasad et al. (2015) and  Sunoj et al. (2017), raise the temperature inside the structure by 

capturing solar radiation.  

An advantage of conducting heat stress experiments in controlled environment settings 

compared to field settings is their consistency in maintaining the desired temperature. In a study 

using controlled growth chambers to impose heat stress during flowering in sorghum, Prasad et 

al. (2015) deduced that mean daytime and nighttime temperatures in both optimum and high 

temperature treatment chambers were within ± 0.5°C of the targeted temperature. Furthermore, a 

study conducted by Pradhan et al. (2012) set out to measure variability within and between 

controlled growth chambers for a better understanding of their uniformity. The study involved 

growing a selected spring wheat cultivar in eight different growth chambers and randomly 
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moving plants within each respective chamber every seven days. Plants were removed from the 

chambers at flowering, and multiple growth trait measurements were collected. Statistical 

analysis of the results concluded no significant difference among growth traits in plants grown in 

different chambers; this data was supported by a consistent air temperature exhibited among the 

different chambers as indicated by temperature data loggers (Pradhan et al., 2012).  

Environmentally controlled growth chambers perform well in consistently regulating air 

temperature for targeted intervals – a critical aspect in heat stress experiments. However, 

limitations exist when attempting to correlate results from a controlled setting to authentic 

outcomes under field grown conditions. Oftentimes relationships do exist between plant 

performance in controlled environments and field conditions (Prasad et al., 2015), yet differences 

such as plant density and microclimate may confound results between the two approaches. While 

explaining plant-environment interactions, Jones (2013) notes field experiments can be limited 

by lack of environmental control but acknowledges these conditions are nevertheless prone to 

being closer to natural than their controlled environment chamber research counterparts. Thus, 

results from field testing are generally more likely to reflect plants’ responses under natural 

conditions.  

 

 Physiological Approaches in Breeding for Heat Resilient Lines   

Wheat producers who are considering strategies for managing late season heat stress have 

limited agronomic options. Currently, cultivar selection is considered the best management 

practice for producers who need to hedge their risk against heat stress during the grain fill period. 

Thus, making improvement through plant breeding and genetic alteration is an effective way to 

stabilize wheat yields subjected to post-flowering heat stress. Unfortunately, improving genetics 
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related to heat tolerance poses a unique challenge to breeders due to the fact that traits associated 

with heat tolerance are often quantitative (Green, 2016). To further complicate matters, Paulsen 

(1994) concluded that wheat cultivars that have been bred and selected for growing in stressful 

environments such as the Great Plains, already possess a base level of tolerance. More recently 

however, Tack et al. (2015) have shown evidence that yield potential and heat tolerance are 

negatively correlated. The same study recognized that, while modern varieties adapted to the 

Great Plains may have a greater yield potential, they are also more susceptible to heat stress 

compared to older varieties.  

 It has been well established in previous studies that wide genetic diversity for heat 

tolerance exists in wheat accessions (Midmore et al., 1984; Rawson, 1986; Wardlaw et al., 

1989). However, the genetic basis of heat adaptation in wheat has eluded breeders and is not well 

understood (Cossani and Reynolds, 2012). As a result, breeders currently focus on physiological 

traits related to heat resilience as their primary strategy for improving wheat’s genetics in an 

attempt to maintain, and ideally improve, its performance under heat stress. Among the scientific 

measurements relied upon to study heat stress in crop plants, Reynolds et al. (2001) suggested 

that canopy temperature depression, stomatal conductance, and membrane thermostability offer 

the greatest benefit to breeders who are screening genetic material for heat adaptations in their 

respective breeding programs.  

Although these measurements play a critical role in determining levels of heat tolerance 

among wheat cultivars it should be noted that they are primarily focused on leaf and canopy 

traits. However, as Blum (1997) points out, grain filling in wheat coincides with increasing 

temperatures and loss of leaf area due to senescence, leading to decreased photosynthetic 

capacity. Therefore, the translocation of carbon from stem reserves to developing grains is 
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something of importance, especially when photosynthesis becomes inhibited by heat stress 

during the grain filling stage (Blum, 1997). Together, canopy respiration and grain dry matter 

accumulation used more photosynthates than could be contributed by canopy photosynthesis 

during the later stages of grain filling, thus leading to the conclusion that stem reserves are 

essential for the completion of grain filling (Gent, 1994). The most abundant carbohydrate 

reserve in wheat stems is fructan, however other carbohydrates such as glucose, fructose, 

sucrose, and starch are also stored as reserves (Dubois et al.,1990; Wardlaw and Willenbrink, 

1994). Additionally, remobilization efficiency of carbohydrates is significantly correlated with 

grain yield, grain weight, harvest index, and grain filling duration (Tahir and Nakata, 2005). This 

illustrates the importance of remobilization of carbohydrates from stem reserves during the grain 

filling process when wheat is exposed to heat stress. Based on the extensive literature review on 

heat stress impacts on wheat, it can be summarized that breeders must take into consideration 

key physiological aspects such as CTD, efficient assimilate translocation etc. when developing 

heat stress resilient wheat varieties.  
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 Abstract  

Post-flowering heat stress shortens grain filling duration and limits resource allocation to 

grains leading to lower productivity in wheat. Wheat grown in Kansas is often exposed to 

temperatures of 30oC during grain filling, leading to lower productivity compared to the national 

average. Therefore, characterizing widely grown and newly released varieties for post-flowering 

heat stress will define the gap in resilience that needs to be addressed through breeding. In the 

present study, seven Kansas varieties were phenotyped for heat tolerance in a controlled 

environment growth chamber study and in two field experiments. To impose heat stress in the 

controlled growth chambers, plants grown at 25oC were transferred to high day temperature 

(35oC) chambers ten days after the first sign of anthesis. Under field conditions, custom built 

“heat tents” were placed over the wheat plots ten days after first flowering and remained until 

maturity. Plants grown under heat stress exhibited early senescence, indicating a shorter grain 

filling period compared to the controls. Early-maturing varieties recorded greater percent 

reductions in grain yield under heat stress. Post-flowering heat stress induced significant 

reductions in thousand kernel weight, grain number, harvest index, and grain yield. Percent 

reduction in yield ranged from 6 to 51% under severe heat stress exposure in controlled 

environments, and 2 to 27% with heat stress exposure induced by heat tents on field plots. 

Among the varieties tested, SY Monument and Larry performed well under both conditions, 

suggesting that they are relatively better suited for locations that face consistent exposure to heat 

stress during the post-flowering stages. Only SY Monument was consistently tolerant, whereas 

the others exhibited differing degrees of vulnerability. These results highlight the genuine need 

to explore wider genetic diversity, including wild wheat, to infuse greater resilience into ongoing 

wheat breeding programs.   
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 Introduction 

Among the ever-increasing negative impacts of upon crop production is global warming. 

With a predicted increase in global mean surface temperature varying between 0.3 and 4.8oC by 

the end of 21st century, crop production will be challenged by heat stress leading to significant 

economic damage (IPCC, 2014; Lyman et al., 2015; Tack et al., 2015, 2017). Using a multi-

model ensemble approach, Asseng et al. (2015) concluded that for every oC increase in global 

mean temperature, the global wheat (Triticum aestivum L.) production would decline by about 

6%.  Wheat, one of the important staple cereals and a major source of calories for humans (FAO, 

2015), is very sensitive to heat stress during the reproductive and grain filling phases 

(Wollenweber et al., 2003; Farooq et al., 2011). Optimum temperature for normal growth and 

development in wheat ranges between 12 and 24oC, and temperatures >30oC are shown to induce 

significant yield losses (Saini and Aspinall, 1982; Farooq et al., 2011). The United States ranks 

fourth in world wheat production, accounting for approximately 55 million metric tons of wheat 

produced from a harvested area of approximately 19 million hectares (USDA-NASS, 2017; 

USDA-FAS, 2016). The majority of wheat grown in the United States is winter wheat, with a 

large proportion (~57 %) produced in the Great Plains (USDA-NASS, 2017). Among states, 

Kansas is the leader both in terms of total wheat area and production.  However, grain yield per 

unit area (productivity) in Kansas (mean yield of 41 bushels per acre, from 2014 -2016) is lower 

than the national average for winter wheat (USDA-NASS, 2017), owing to its extreme weather 

conditions including high temperatures. The primary reasons for low productivity include limited 

water availability and warm conditions during the grain- fill period. Winter wheat grown in 

Kansas is often exposed to temperatures ≥30oC during May and June – the typical grain filling 

phase – which is well beyond the optimum temperature identified for grain filling. Such 
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scenarios are predicted to worsen with increased frequency and magnitude of heat stress 

exposure associated with a changing climate, which could lead to increased economic loss for 

wheat growers. Thus, determining the level of post-flowering heat tolerance in prominent 

varieties during the grain filling phase is crucial and timely.  

Heat stress at the grain filling phase induces significant grain yield and quality losses in 

wheat (Bhuller and Jenner, 1985; Blum et al., 1994; Viswanathan and Khanna-Chopra, 2001). 

Grain weight is a product of rate and duration of grain filling (Gallagher et al., 1976), wherein 

temperature is a key environmental driver that determines the rate and duration dynamics. High 

temperatures are known to reduce grain filling duration, thereby reducing the window for 

translocation of the stored or currently synthesized assimilates into grains, leading to lower grain 

weight and yield.  For every 1oC increase in temperature above the optimum growth temperature, 

the grain filling duration is shown to decline by 2.8 days (Chowdury and Warlaw, 1978; Streck, 

2005).  Additionally, heat stress during grain fill negatively affects many physiological and 

biochemical processes including photosynthesis (Blum et al., 1994), membrane integrity, and 

quantum yield of photosystem II (Bhullar and Jenner, 1985). Almost all previous studies 

quantifying the impact of heat stress during grain filling in wheat have used controlled 

environment facilities (Stone and Nicolas, 1994; Gibson and Paulson, 1999; Spiertz et al., 2006). 

In addition, the cultivars tested are generally not commercially relevant and hence not widely 

grown, leaving a critical gap in researchers’ and wheat producers’ understanding of the need for 

enhancing resilience and extent of improvements necessary in prominent varieties. Due to a lack 

of field-based phenotyping facilities, oftentimes a staggered sowing approach is used to expose 

crops to heat stress during critical developmental stages in field conditions (Viswanathan and 

Khanna-Chopra, 2001). Although this approach provides an opportunity to have the flowering or 
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post-flowering stage of the crop exposed to stress, the overall agronomic performance of the 

varieties are seriously affected due to their exposure to significantly different environments as 

compared to the target conditions under which they were bred (Bahuguna et al., 2015).  

Considering the major knowledge gaps and limitations highlighted above, seven 

prominent Kansas winter wheat varieties were chosen to be exposed to heat stress during the 

post-flowering phase using controlled environment chambers and unique field-based heat tents. 

One growth chamber and two field experiments were conducted over the span of two years to 

investigate  these specific objectives: 1) Determine the level of genetic variability for post-

flowering heat tolerance in prominent and recently released winter wheat varieties grown in 

Kansas; 2) Assess the physiological and agronomic response during post-flowering heat stress 

exposure in prominent varieties in controlled chambers and field-based heat tent environments; 

and 3) Identify the most suitable grower preferred winter wheat varieties for the warmer 

conditions observed in the Great Plains region of the United States. 

 

 Materials and Methods  

 

Field Experiment  

Research was conducted in the 2015-2016 and 2016-2017 growing seasons at Kansas 

State University (KSU), Agronomy Research Farm at Manhattan (39 11’N, 96 35’W). Soil type 

was a Kennebec silt loam. Soil samples were collected at the 0-15 cm and 15-60 cm depths prior 

to sowing in October 2015. Samples were analyzed for: organic matter (OM), pH, P, K, N 

[ammonia (NH3) and nitrate (NO3)], S, and Cl. Each sample was composed of 15 individual soil 

cores representing the experimental area. Soils contained 2.3% OM, 16.5 ppm of Melich-P, 303 
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ppm K, 7.8 ppm of NH4-N and 12.2 ppm of NO3-N and had a pH of 5.5. The experiment 

included seven commercial varieties, four of which are commonly grown across Kansas 

and three which were released in the past two years. (Table 2.1). All seven varieties were grown 

in two temperature treatments (control and heat stress) with four replications.   

Plot preparation prior to planting included multiple tillage passes of a disc, cultivator, and 

harrow in the summer/fall of 2015 and 2016 to prepare the seedbed for planting. Below average 

precipitation in September and October 2015 resulted in dry soil conditions prior to planting the 

2016 experiment. Multiple irrigation applications with garden hose and fan sprinkler occurred 

prior to planting in fall 2015 to ensure adequate emergence. In the 2016 experiment the wheat 

plots were planted using a hand pushed single row seeder (Rowseed 1R, Wintersteiger, 

Ried im Innkreis, Austria) on 26 Oct 2015. Each plot was four rows wide and four meters in 

length. An additional irrigation application of 12 mm was applied two days after planting (28 Oct 

2016) with a fan sprinkler attached to a garden hose. The 2017 experiment was planted on 27 Oct 

2016 using a tractor (5055E, John Deere, Moline, IL) equipped with Real Time Kinematic 

(RTK) guidance (Trimble FMX, Trimble Inc., Sunnyvale, CA) and a grain drill (3P605NT, Great 

Plains Mfg., Salina, KS) modified for research plots (Kincaid Equipment Mfg., Haven, KS). Di-

Ammonium Phosphate (18-46-0) was applied at a rate of 14.5 kg N ha-1 and as 39 kg P205 ha-1 as 

an in furrow starter at planting. Each plot was six rows wide and 1.22 meters in length. The 

seeding rate for both experimental years was 60 seeds per meter with a row spacing of 19 cm.  

Weed control in the wheat plots was managed using the labeled rate of a post-emergence 

herbicide along with hand weeding as necessary to minimize weed pressure throughout the 

growing season. Herbicide was applied with an all-terrain vehicle mounted boom sprayer at 

recommended carrier volume rates. Plots received 0.75 oz/ac FINESSE [2-Chloro-N-[(4-
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methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide] [4,5-Dihyd   ro-3-

methoxy-4methyl-5-oxo-N-[[2-(trifluoromethoxy)phenyl]sulfonyl]-1H-1,2,4-triazole-1-

carboxamide, sodium salt] on 10 Dec 2015 and on 9 Dec 2016 as a post-emergent treatment.   

The recommended rate of 56 kg N ha-1 was top dressed as urea (46-0-0) to the wheat 

plots in both years on 29 Feb 2016 and 3 Mar 2017, respectively, using a variable rate drop 

spreader (Gandy Company, Owatonna, MN). Fungicide was applied to the plots at three different 

growth stages in 2016: at spring greenup, flag leaf (Feekes 10), and mid grain fill (Feekes 11.1). 

The first application was applied with a tractor and three-point mounted boom sprayer; the 

second and third applications were applied with a handheld spray boom and backpack 

sprayer.  In 2017, two applications of fungicide were applied with a handheld spray boom and 

backpack sprayer at flag leaf (Feekes 10) and mid-grain fill (Feekes 11.1). All applications were 

applied at recommended carrier volume rates. In 2016 and 2017, plots received a total of 

9 fl oz/ac of TWINLINE [pyraclostrobin: (carbamic acid, [2-[[[1-(4-chlophenyl)-1H-pyrazol-3-

yl]oxy]methyl]phenyl]methoxy-,methyl ester) metconazole: 5-[((4-chlorophenyl)methyl]-2,2-

dimethyl-11(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol].   

            In order to impose post-anthesis heat stress on the field experiment, heat tents were 

manually placed on the plots ten days after approximately 50% of the wheat varieties had begun 

anthesis (Feekes 10.5.1) (28 April 2016, and 12 May 2017).  The heat tents were constructed on 

a galvanized steel framework covered with a clear polyethylene film and a moveable overhead 

flap (0.6 m) at the roof peak. The overhead flap could be opened to avoid excessive heating. 

Each heat tent was 5.4 m wide, 7.2 m long, and 3.0 m high at the apex; each had 15 cm clearance 

on its four sides to allow for air circulation within the heat tent. The air temperature inside the 

heat tents was dependent upon solar radiation and was partially regulated by a thermostat set at 
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35°C for experimental purposes. When the temperature inside the heat tents rose above the 

desired temperature (35°C), actuators powered by a solar charged battery worked to 

automatically open the overhead flaps, allowing for open air circulation and temperature 

moderation. Once the temperature inside the heat tent fell below the desired temperature (35°C), 

the thermostat automatically triggered the actuators to close the overhead flap (Prasad et al., 

2015; Sunoj et al., 2017).   

 Air temperature and relative humidity were recorded at 15 minute intervals for the 

duration of the experiment inside all four heat tents as well as an outside recording of the 

ambient (control) conditions using WatchDog 1650 Micro Station sensors (Spectrum 

Technologies, Aurora, IL). Incoming photosynthetic active radiation (PAR) was measured using 

PAR sensors (LightScout Quantam Light Sensor, Spectrum Technologies, Aurora, IL). The data 

loggers were mounted on metal posts with appropriate shields to protect from direct sunlight and 

placed 5 cm above the canopy level. The PAR sensors were attached near the top of the metal 

posts and connected to the data loggers via cable.  

Data Measurements   

2016 Field Experiment 

Physiological traits 

Physiological traits were recorded beginning ten days following anthesis (Feekes 10.5.1), 

and until physiological maturity (Feekes 11.3). The yellowing of the peduncle below the spike 

was used as the indication of physiological maturity.  All measurements were taken from flag 

leaves of the main tiller on two plants per wheat variety within each plot that were representative 

of the entire plot.   
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Chlorophyll index and chlorophyll fluorescence traits were recorded every third day 

beginning ten days after commencement of stress imposition. Chlorophyll index was measured at 

three points along the length of the leaf blade (near culm, mid-sheath, and near the tip) on the 

adaxial surface of the leaf (Green, 2016) using a handheld self-calibrating SPAD chlorophyll 

meter (Model 502 Plus, Spectrum Technologies, Konica Minolta Incorporated, Japan) between 

1000 and 1200 hours on each day measurements were recorded . Fluorescence measurements 

were recorded between time 1000 and 1200 hours with a hand held chlorophyll fluorometer 

(Model B/OS-30p, Opti-Sciences Incorporated, Hudson, New Hampshire) and settings as 

follows: light pulse intensity of 3000 mmol m-2s-1 and pulse duration of three seconds.  Fv/Fm 

ratio was measured from the same flag leaves following 30 minutes of dark adaptation; leaf clips 

equipped with an open and close shutter were placed one-third up from the leaf base on the 

adaxial surface.   

Agronomic traits 

            The wheat was hand harvested upon kernel ripeness (Feekes 11.4) for each of the 

varieties with harvest ranging from 15 to 22 June 2016. Two areas measuring 1.5 m in length 

were hand harvested from the centermost rows (two rows from the four row plots) in order to 

account for border effects. This resulted in a harvest of four, 1.5 m lengths totaling 6 m per 

wheat variety. Harvest index was measured by first weighing the whole plant sample (grain and 

biomass).  Samples were threshed using a laboratory thresher (LD 180, Wintersteiger, 

Ried im Innkreis, Austria). Chaff and any foreign material were removed from the seed using a 

large column blower (CB-2A, Agriculex, Guelph, Ontario, Canada).  Grain samples were 
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weighed and subtracted from the whole plant sample weight.  Harvest index was then calculated 

as the ratio of harvested grain to total above-ground biomass.   

2017 Field Experiment  

Physiological traits 

Physiological measurements were taken temporally (three times per week on alternate 

days) beginning four days after heat stress imposition (Feekes 10.5.4) until complete flag leaf 

senescence, which preceded physiological maturity (Feekes 11.3) in all lines. Measurements 

were taken from flag leaves of the main tiller on two plants that were representative of each 

variety within each plot. Chlorophyll index was measured using a hand held self-calibrating 

SPAD chlorophyll meter (Model 502 Plus, Spectrum Technologies, Konica Minolta 

Incorporated, Japan). All chlorophyll index measurements were recorded as an average of three 

points along the flag leaf of the main tiller (near culm, mid-sheath, and near the tip) on the 

adaxial surface of the leaf (Green, 2016).  

Spike and flag leaf temperature were collected with a FLIR Vue Pro R thermal camera 

(FLIR Systems, Wilsonville, OR). Thermal images were taken temporally on days 6, 10, 14, and 

18 after stress was imposed. The FLIR Vue Pro R was equipped with a 13 mm lens and 640x512 

resolution; it was mounted to a pole and consistently held one meter above the canopy during 

thermal data acquisition. Individual spike and flag leaf temperature were extracted using FLIR 

TOOLS software.   
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Agronomic traits 

The wheat was hand harvested upon physiological maturity (Feekes 11.3) on 15 and 16 

June 2017. The plants were dried in a forced-air dryer at 45 ̊ C for 72 hours and subsequently 

weighed for total above ground biomass. Two 1.0 m lengths of row were harvested from two 

innermost rows (six row plots) of each of the seven varieties.  Harvest index was initially 

measured by weighing the whole plant sample - grain and biomass. Samples were threshed using 

a LD 180 laboratory thresher (Wintersteiger, Ried im Innkreis, Austria). Chaff and any foreign 

material was removed from the seed using a large column blower (CB-2A, Agriculex, Guelph, 

Ontario, Canada).  Grain samples were weighed and subtracted from the whole plant sample 

weight.  Then, harvest index was calculated as the ratio of harvested grain to total above ground 

biomass. Yield was calculated as grams/m2 and converted to kg/ha-1.   

 Controlled Environment    

The study’s other portion was carried out in controlled environment chambers at the 

Department of Agronomy, Kansas State University, Manhattan, Kansas in 2016. This 

experiment involved seven prominent Kansas winter wheat varieties (Table 2.1) grown in two 

temperature treatments (control and heat stress). Seeds of each of the seven varieties were sown 

in 30.5 x 61 cm flat seed trays filled with Sunshine Metro-Mix 380 potting soil (Sun Gro 

Horticulture, Agawam, Massachusetts) and placed in a greenhouse at room temperature. After 

most seeds had germinated, the seed trays were transferred to a vernalization chamber 

maintained at 5°C for 6 weeks. Following vernalization, 40 plants of each variety were 

transplanted into individual 1.6 L pots (10x24 cm, MT49 Mini-Treepot) and filled with Sunshine 

Metro-Mix 380 potting soil. Each pot received 5 g of Scotts Osmocote classic (14-14-14 of N-P-
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K) and 0.5 g of Scotts Micromax Micronutrients (Hummert International, Topeka, Kansas) at the 

time of transplanting. Pots were kept in trays and moved to controlled environment chambers 

maintained at 25/15°C maximum day/minimum night temperature. To avoid confounding effects 

of water stress, the plants were kept in well-watered conditions by maintaining a water layer of 1 

cm in the tray placed below the pots for the entirety of the experiment. 

            The main tiller and two subsequent tillers (considered primary tillers) of each plant were 

tagged on the day anthesis began. Ten days after the start of anthesis, 20 of 40 plants from each 

variety were transferred to high day temperature (simulation of heat stress) growth chambers set 

at 35/15°C day/night temperature. The remaining 20 plants stayed in the control growth 

chambers and maintained at an optimum 25/15°C day/night temperature.  Both heat stress and 

control growth chambers were maintained at 16/8 hour photoperiod, with 900-1000 µmol m-2 s-

1 light intensity at 5 cm above the canopy, and 70% relative humidity (RH).  Maximum day and 

minimum night temperatures were maintained for seven and eight hours, respectively in all 

chambers; each day/night transition occurred in 4.5 hour periods (Supplementary fig. S1). 

Temperature and RH were recorded every 15 minutes using HOBO UX 100-011 and 

temperature/RH data loggers (Onset Computer Corp., Bourne, MA) in all growth chambers.   

 Data Measurements  

Physiological traits 

The same physiological measurements taken for the field experiments were also used in 

the growth chamber experiment. Physiological measurements of gas exchange, chlorophyll 

index, and chlorophyll fluorescence were taken periodically following anthesis (Feekes 10.5.1) 
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until physiological maturity (Feekes 11.3). The yellowing of the peduncle below the spike was 

used as the indication of physiological maturity. Measurements were taken from flag leaves of 

the main tiller on five individual plants of each variety that were tagged the day anthesis 

began. Gas exchange was taken with a LI-6400XT Portable Photosynthesis System (Licor, 

Lincoln, Nebraska) set at a block temperature of 25 and 35oC in control and heat stress 

treatments, respectively. The leaf chamber CO2 was fixed at 400 ppm at a flow rate of 500 µmol 

s-1 and a light intensity of 1000 µ mol m-2 s-1 of PAR supplied by red-blue light emitting diode. 

Chlorophyll index was measured at three points along the length of the leaf blade using a hand 

held self-calibrating SPAD chlorophyll meter (Model 502, Spectrum Technologies, Plainfield, 

Illinois). Fluorescence measurements were taken with a handheld chlorophyll fluorometer 

(Model B/OS-30p, Opti-Sciences Inc., Hudson, New Hampshire) by clamping clips (one-third up 

from the leaf base) on the adaxial surface of 30-minute dark adapted leaves. The photochemical 

efficiency of PS II (Fv/Fm) was recorded from dark adapted flag leaves at a light pulse intensity 

of 3000 µmol m-2 s-1 and pulse duration of 1 second (Sunoj et al., 2017).  Fv/Fm ratio was 

measured from the same flag leaves after thirty minutes of dark adaptation, by placing clips one-

third of the way up from the leaf base on the adaxial surface. Gas exchange measurements were 

taken 5 and 15 days after the high temperature stress was initiated. Chlorophyll index and 

chlorophyll fluorescence observations were taken every third day beginning the day high 

temperature stress commenced.     

Agronomic traits 

Upon kernel ripeness, wheat was hand harvested and harvest measurements were 

collected. Number of tillers and spikes per plant were recorded prior to harvest.  Spikes were 
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separated from the plant tissue and categorically grouped: main tiller spike, two primary tiller 

spikes, and remaining spikes. The spikes were dried in a laboratory oven for 96 hours at 

40°C. After drying, spike weight and spike length were recorded before threshing.  Spikes were 

threshed using a wheat head thresher (Precision Machine Company., Lincoln, 

Nebraska). Number of seeds per spike was counted using an electronic seed counter, and seed 

weight per spike was also recorded. Finally, the biomass was dried in a forced-air dryer at 65 ̊C 

for 72 hours prior to weighing.   

 Statistical analysis  

The experiments were organized in a split-plot randomized complete block design with 

temperature as the main plot factor and genotype as sub-plot factor; five replications in 

controlled environment chamber experiment, four replications in field 2016, and three 

replications in field 2017. Different sampling times were considered as sub-sub plot factors for 

chlorophyll index in the field experiments. Analysis of variance for all the measured parameters 

was performed using PROC GLM procedure in SAS software (Version 9.4, SAS Institute Inc., 

Cary, NC). Means were separated using least significant difference (LSD) test at p = 0.05.  

 

 Results 

In field 2016, daytime mean temperature was similar within and outside the heat tents 

from the start of the heat stress period, until approximately 30 days after stress (DAS) initiation 

(Fig. 2.1A). From 30 DAS until physiological maturity, the daytime mean temperature inside the 

heat tents was 4oC warmer than ambient outside temperatures (Fig. 2.1A). In comparison, field 
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2017 daytime mean temperature inside the heat tents was 6oC warmer than ambient outside 

temperatures beginning from ten DAS and until physiological maturity (Fig. 2.1B). In contrast, 

nighttime mean temperature inside and outside the heat tents were similar throughout the 

experimental period in both seasons (Fig. 2.1A and B). This indicated that the field based heat 

tents increased only daytime temperatures, inducing high day temperature stress, and not 

confounded by higher night temperatures; these finding are similar to what was found in a 

similar study (Sunoj et al., 2017). Ambient daytime mean temperature during the field 

experiment 2017 were 2 to 16oC warmer than ambient temperatures in the 2016 field experiment, 

indicating large inter-annual temperature variability. Experimentally applied heat stress induced 

early maturity by reducing grain filling duration when compared to the control counterparts in 

almost all varieties. The only exception was the shorter duration variety, WB-Cedar, in 2017 

(Fig. 2.2). Among the varieties, applied heat stress resulted in reduction of grain filling duration 

by five days in Larry and Zenda followed by four days in WB4458 and Joe (Fig. 2.2).  

Grain yield and related traits  

In the controlled chamber experiment, grain yield was significantly affected by 

temperature, variety, and temperature-variety interaction (Table 2.2). Grain yield across varieties 

was reduced by an average 37% under heat stress conditions as compared to the control. Among 

the varieties Larry recorded the smallest percent reduction in grain yield under heat stress 

compared to control, followed by SY Monument. In contrast, WB-Cedar and Everest both 

recorded near 50% reduction in grain yield (Fig. 2.3A).  However, in both of the field 

experiments (2016 and 2017), grain yield varied significantly between treatments (p < 0.001) and 

varieties (p < 0.05), but not with treatment-variety interaction effect (Table 2.3). The average 

grain yields under heat stress were 16% and 13% lower than the control in 2016 and 2017 field 
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experiments, respectively. Among the varieties in the 2016 field experiment, SY Monument 

recorded the smallest percent reduction (2%) in grain yield when exposed to heat stress 

compared to the control, followed by Everest (6%) and WB4458 (13%) (Fig. 2.3B). In the 2017 

field experiment, the lowest yield reduction with heat stress exposure as compared to control was 

recorded in Zenda (4%), followed by Larry (7%), and Joe (7%) (Fig. 2.3C). WB-Cedar recorded 

highest yield reduction under heat stress compared to control in both of the field experiments 

(Fig. 2.3 B and C).  Grain yield in the controlled chamber experiment correlated significantly 

with grain yield from the 2017 field experiment under both control (r=0.74, p=0.058) and heat 

stress (r=0.79, p=0.034) conditions. However, significant correlations were not obtained for 

grain yield between the controlled chamber experiment and 2016 field experiment or between 

field experiments.                                     

Harvest index (HI) varied significantly for temperature, variety, and temperature-variety 

interaction (p<0.001) in controlled chamber experiment, with heat stress inducing an average 

22% reduction in HI versus the control (Table 2.2). Heat stress induced significant reduction in 

HI in all varieties compared to control, except in SY Monument (Table 2.4). In the controlled 

chamber experiment, SY Monument recorded the smallest percent reduction (8%) in heat stress 

compared to control, followed by WB4458 (11%) (Table 2.4). In field experiments, HI was 

significantly affected by temperature (p<0.05) and variety (p<0.01), but not temperature-variety 

interaction (Table 2.3). Among the tested varieties, Joe and Larry recorded significantly lower HI 

in heat stress compared to control in the 2016 field experiment. However, in 2017, four varieties 

including WB-Cedar, Joe, Zenda, and Everest recorded significantly lower HI in heat stress 

compared to control (Table 2.4). Thousand kernel weight varied significantly between 

temperatures, genotypes, and temperature-genotype interaction in both controlled chamber and 
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field experiments. On average, heat stress induced 28% and 4-5% reductions in single kernel 

weight under controlled chamber and field experiments, respectively. Among those included, all 

genotypes recorded significantly lower thousand kernel weight under heat stress compared to the 

control in the controlled chamber experiment with the exception of SY Monument (Table 2.4). In 

both of the field experiments, Zenda and SY Monument did not record significant reduction in 

thousand kernel weight in heat stress compared to control (Table 2.4). Significant correlations 

were detected between field experiments for thousand kernel weight under both control (r = 0.87,         

p = 0.011) and heat stress (r = 0.87, p = 0.013) conditions. However, thousand kernel weight in 

the controlled chamber experiment did not correlate with thousand grain weight of either of the 

field experiments. Grain number per main and primary spikes was not significantly affected by 

temperature whereas, grain number in remaining spikes was significantly affected based upon 

variety (p < 0.001) and temperature-variety (p < 0.05) interaction in the controlled chamber 

experiment (Table 2.2). When averaged across genotypes, grain number per remaining spikes 

was reduced by 26% under heat stress compared to control. Among the varieties, WB-Cedar and 

Everest recorded highest reductions in grain number in remaining spikes in heat stress compared 

to control (Fig. 2.4). 

Chlorophyll index 

 In the controlled chamber experiment, chlorophyll index decreased over time in both 

treatments with faster and greater rates of reduction present in heat stress versus control in all 

tested varieties (Fig. 2.5A and B).  Among all varieties, WB4458 and WB-Cedar exhibited rapid 

reductions in chlorophyll index over time under heat stress compared to control, whereas, SY 

Monument maintained a similar trend under both the treatments (Fig. 2.5 A and B). Chlorophyll 

index in field experiments was significantly affected by temperature (p<0.01), variety (p<0.001), 
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and DAS (p < 0.001), while significant interaction effects (temperature × variety × DAS)           

(p < 0.001) were seen in the 2016, but not the 2017, field experiment (Table 2.3). Reductions in 

chlorophyll index were observed in both the treatments starting 30 DAS in 2016 (Fig. 2.5 C and 

D) and 15 DAS in 2017 (Fig. 2.5 E and F) field experiments. The naturally warmer temperatures 

in 2017, was evident through premature chlorophyll degradation noted in the SPAD 

measurements. This data supports the significant decline in yield, even under ambient conditions 

outside of the tents in the 2017 field experiment.   

Net CO2 assimilation rate    

In the controlled chamber experiment, net CO2 assimilation rate was significantly 

affected by temperature (p < 0.001), variety (p < 0.001), DAS (p < 0.001), and their interaction 

effects (Table 2.2). When averaged across genotypes, assimilation rate under heat stress was 

significantly reduced by 13% and 39% compared to control at 5 and 15 DAS, respectively. 

Adverse effects of heat stress on assimilation rate was greater at 15 DAS compared to 5 DAS, 

with all varieties recording increased percent reductions in heat stress compared to the control at 

15 DAS (Table 2.5). Almost all genotypes showed significant reductions in assimilation rate 

under high day temperature (HDT) stress versus control; this was the case irrespective of DAS 

and experiment, with the exception of Joe at 5 DAS (Table 2.5). 

Maximum quantum yield of PS II (Fv/Fm) 

In controlled chamber experiments, average Fv/Fm varied significantly between 

treatments (p < 0.001) and varieties (p < 0.001), but not for temperature-variety interaction 

(Table 2.2). Heat stress induced a drastic reduction in Fv/Fm beginning five days after stress 

imposition in almost all the varieties (Fig. 2.6 B), while reduction in Fv/Fm in the control 

conditions was observed approximately ten days after the reduction was first noticed in the heat 
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stress treatment (Fig. 2.6 A). Among the varieties, rate of reduction in Fv/Fm was greater in Joe 

and Everest compared to others (Fig. 2.6 AandB).  In the 2016 field experiment, Fv/Fm was 

significantly affected by temperature, variety, DAS, and their interaction effects (Table 2.3). All 

the varieties recorded greater reductions in Fv/Fm in heat stress compared to control (Fig. 2.6 C 

and D).  

Spike and flag leaf temperatures 

In the 2017 field experiment, the relationship between spike and flag leaf temperature and 

the measured yield components fluctuated over time. Both flag leaf and spike tissue temperatures 

followed the natural temperature pattern. Measurements recorded at 18 DAS exhibited maximum 

variation in flag leaf and spike temperature between control and stress conditions, compared to 

three earlier measurements at 6, 10 and 14 DAS (Fig 2.7). At 6 DAS, spike and flag leaf 

temperatures had a high negative correlation with grain yield and biomass, but no relationship 

with thousand kernel weight (Fig. 2.8). However, at 14 DAS imposition, spike and flag leaf 

temperatures recorded a positive correlation with grain yield, harvest index, total biomass, and 

thousand kernel weight when ambient air temperatures inside the heat tents were approximately 

35oC (Fig. 2.8). A positive relationship with a R2 value of 0.88 was observed between flag leaf 

and spike temperatures (Fig. 2.9). However, the disparity between spike and flag leaf 

temperatures increased as ambient air temperature increased (Table 2.6). The hottest ambient 

temperatures (> 35oC) at 18 DAS imposition induced much larger disparities between stressed 

and control tissue temperatures. At 18 DAS in the tents, average spike and leaf temperature 

across all varieties increased by 44% and 37%, respectively (Table 2.6).  
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 Discussion 

Most published studies regarding post-flowering heat stress in wheat have been 

conducted under controlled environment facilities (Stone and Nicolas 1994; Gibson and Paulson 

1999; Spiertz et al., 2006). Hence, a comparative assessment of the response of assorted varieties 

across scales, particularly under field conditions will provide firsthand information about yield 

losses that can be expected under these realistic conditions. Simultaneously, stress impact 

recorded from controlled environments will aid in identifying true levels of tolerance or the 

ranges of susceptibility for these varieties when exposed to severe stress conditions. Information 

obtained across both scales utilizing the same varieties are complementary.  

 Currently, information regarding the impact of post-flowering heat stress in wheat is only 

available for genotypes that are not widely grown (Gibson and Paulsen, 1999; Narayanan et al., 

2015). Additionally, there is not an indicative reference or baseline on the performance of current 

prominent varieties by which to ascertain the “gap in stress resilience” that may need to be filled. 

Filling this gap will ensure that grower-preferred varieties can be sustainably grown under 

current and future predicted climates. In this study, percent reduction in yield ranged from 6% to 

51% when exposed to severe heat stress in controlled environments, and 2% to 27% under heat 

stress exposure in the field using heat tents; these results indicate high resilience in some 

varieties, but also presents the need for improvement in many prominent varieties. Among the 

prominent or recently released varieties, SY Monument and Larry performed well under both 

field and controlled environments, suggesting that they are suited for locations that face 

consistent heat stress exposure during the post-flowering grain fill stage. Under severe heat stress 

in the controlled environment study, the superior performance of SY Monument can be attributed 

to higher thousand kernel weight and grain number, whereas Larry maintained only a better grain 



43 

number. Under milder heat stress exposure in the field experiment, both SY Monument and 

Larry maintained a higher thousand kernel weight and maintained a lower reduction in HI. It 

should be noted that the lines that constitute 50% of the pedigree of both SY Monument and 

Larry are sister lines derived from the same cross. This suggests these materials could possess 

similar genetics for tolerance to high temperature stress, though the mechanisms of tolerance 

may be somewhat different. The data suggests SY Monument may have great stability of starch 

synthesis while Larry may possess greater reproductive stage resilience helping retain higher 

seed number under stress. 

Agronomically, shorter duration varieties have been proposed as being a useful 

mechanism for avoiding heat stress during terminal grain filling stage (Mondal et al., 2016). 

WB-Cedar, a comparatively early maturation variety, recorded the highest yield decline in both 

growth chambers and field conditions. This demonstrates that breeding for shorter duration 

varieties to escape heat stress may not be the most suitable strategy, as heat stress episodes have 

strong inter annual variability; this was seen in the varying climatic conditions which exposed 

the crop to more extreme heat episodes during 2017 post-flowering grain fill period than 2016. 

WB-Cedar, in spite of its shorter duration, had the highest grain yield under control conditions; 

this could be an ideal genetic material to investigate for resource use efficiency to further 

enhance genetic yield potential under non-stress conditions in winter wheat.  

 An interesting phenomenon occurred during the 2017 field experiment, wherein the 

outside ambient mean temperature, especially during the early grain filling stage approached 

30oC, with a similar rise during the late grain filling phase. A large inter annual variability in 

temperatures within just two consecutive years substantiates the increasing vulnerability of 

wheat to heat stress in Kansas and across United States Great Plains. Furthermore, this validates 
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that damage caused by heat stress is already a challenge; and so much of a challenge that it must 

be addressed immediately. A comparatively lower reduction in yield in the 2017 field experiment 

compared to 2016 was primarily due to extreme heat events affecting control plots quite 

similarly to the plants inside the tents. (Fig. 2.1B and 2.3B, C).     

Lower grain numbers in the “remaining spikes” under severe heat stress in controlled 

environments can be attributed to the impact of heat stress on the sensitive gametogenesis 

(Prasad et al., 2017).  In the present study, the main spike was a primary focus for the impact of 

post-flowering heat stress, whereas heat stress coinciding with early reproductive organ 

development in the younger spikes is known to reduce pollen viability, seed set, and grain 

number (Prasad and Djanaguiraman, 2014). In addition, wheat florets have a tendency to flower 

either during early morning or late evening to escape high temperatures during the day - possibly 

an effective adaptive mechanism to strive for, especially under harsh upland conditions. This 

phenomenon of being more conspicuous under heat stress exposure has been recently 

demonstrated (Sun et al., 2017), providing additional support for the observed greater impact on 

remaining tillers compared to the main tiller in the current study. In some of the post-flowering 

heat sensitive varieties such as WB-Cedar, Joe, and Everest greater reductions in thousand kernel 

weight in heat stress versus control were recorded. These recordings suggest that post-flowering 

heat stress affects grain filling processes, thereby reducing grain weight and yield (Wheeler et 

al., 1996).   

Physiologically, the rate of decline in chlorophyll index and the maximum quantum yield 

of PSII (Fv/Fm) were more rapid under heat stress (controlled environment) exposure during 

grain filling. Varieties that performed well under heat stress, Larry (controlled environment) and 

SY Monument (field), maintained a higher chlorophyll index compared to other varieties when 
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exposed to the same degree of heat stress. Overall, Fv/Fm values followed a declining trend 

similar to chlorophyll index. Interestingly, Joe maintained the highest Fv/Fm values in the field 

experiment but showed one of the most drastic Fv/Fm declines in the controlled environment 

heat treatment. In contrast, WB4458 exhibited some of the most stable Fv/Fm values under both 

treatments in the controlled environment experiment; however, under the field experiment 

WB4458 showed the most rapid reduction under heat stress. Amongst all varieties in both the 

field and controlled chamber experiments, SY Monument, Larry, and Zenda appeared to 

maintain the most stable Fv/Fm values when exposed to heat stress compared to the control. 

Early senescence induced by heat stress was variable among genotypes. In general, the 

genotypes that had shorter grain filling periods and earlier maturity, such as WB-Cedar and 

Everest, recorded the highest percent reductions in grain yield. Across the three experiments, 

WB-Cedar recorded the largest percent reduction in grain yield in both the controlled 

environment experiment and 2016 and 2017 field study. In 2017, thermal images were taken at 

different times throughout the grain fill period during which individual spike and flag leaf 

temperatures could be extracted. It was observed that varieties that experienced lower yield 

reductions under heat stress, such as Larry and SY Monument, maintained spike temperatures 

lower than 30oC under heat stress conditions of 35°C. WB-Cedar and other lower performing 

varieties exhibited an average spike temperature in excess of 30°C under the same conditions. 

One unexplained anomaly still exists: the yield reduction in Everest, which did not have an 

excessive spike temperature over 30oC. This suggests that a spike temperature threshold for heat 

tolerance may be variety dependent. In addition, variability between varieties regarding disparity 

between flag leaf and spike temperature may be indicative to their internal mechanisms that 

contribute to heat stress resilience.  Therefore, during parent selection, these heat tolerance 
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thresholds should be explored as it may restrict the suitability of particular varieties for 

environmental conditions similar to Kansas or the United States Great Plains.  

The impact of heat stress, although mild during the first three weeks of grain filling 

(active grain filling stage) in the 2016 field experiment, still resulted in an 11% and 7% decrease 

in thousand kernel weight and harvest index, respectively. This substantiates the vulnerability of 

prominent Kansas varieties to moderate heat stress exposure. Considering a large inter annual 

climatic variability in Kansas or similar ecologies in the Great Plains, the sensitive grain filling 

stage is routinely exposed to warmer temperatures, leading to historically lower wheat 

productivity in the region. Our study provides the first report on the current resiliency in 

prominent winter wheat for Kansas and the United States Great Plains.  

In conclusion, there exists a considerable range in heat stress response with varieties 

including but not limited to Larry and SY Monument being comparatively tolerant, while others 

such as WB-Cedar and Everest demonstrate distinct signs of greater heat stress sensitivity. Larry, 

a recently released variety (fall 2017), is touted for its high yield potential and its ability to 

tolerate heat stress; it will be an added benefit under warming temperatures. The findings of this 

study are similar to recent results from rice research in which just one or two prominent varieties 

had adequate levels of tolerance and the vast majority of the prominent varieties from Asia and 

Africa remain sensitive to stress, causing significant yield losses (Shi et al., 2015).  While SY 

Monument and Larry might be better than the other varieties tested, they aren’t as resilient as 

would be desired either currently or for future conditions. Therefore, exploration of additional 

sources of tolerance and pyramiding mechanisms of tolerance are important considerations for 

future wheat improvement. 
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Table 2.1 Breeding programs and characteristics of seven winter wheat varieties 

phenotyped in the study 

 

 

 

 

Wheat varieties Breeding programs Characteristics 

Everest Kansas State 

University, 

Manhattan, KS 

Released in 2009. Hard red winter wheat, high yield 

potential, resistant to barley yellow dwarf and Fusarium 

head scab, resistance to Hessian fly and leaf rust, drought 

tolerant (http://kswheat alliance.org) 

Joe Kansas State 

University, Hays, KS 

Released in fall 2015. Hard white winter wheat, drought 

tolerant, wheat streak resistance, stripe and leaf rust 

resistance (www.agronomy.ksu.edu/research) 

Larry Kansas State 

University, 

Manhattan, KS 

Released in summer 2016. Hard red winter wheat, 

medium–early maturity, moderately resistant to stripe and 

leaf rust, good acid tolerance (http://kswheat alliance.org) 

SY Monument Syngenta, Basal, 

Switzerland 

Released in 2011.Hard red winter wheat, excellent acid 

soil tolerance and soil borne mosaic virus resistance, 

winter hardiness, medium to late maturity leaf and stripe 

rust resistance, drought tolerance 

(http://agriprowheat.com) 

WB-Cedar Monsanto, St. Louis, 

MO 

Released in 2011. Hard red winter wheat, excellent yield 

potential and straw strength, shatter tolerance, early 

maturity to avoid heat, yellow stripe rust and Hessian fly 

resistance (https://www.westbred.com) 

WB4458 Monsanto, St. Louis, 

MO 

Hard red winter wheat, excellent yield potential and 

standability, drought tolerance 

(https://www.westbred.com) 

Zenda Kansas State 

University, Hays, KS 

Released in summer 2016. Hard red winter wheat; 

resistance to stem, stripe, and leaf rust; good acid soil 

tolerance; soil born mosaic virus resistance 

(http://kswheat alliance.org) 
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Table 2.2 Probability of effects of temperature (T), variety (V), and T × V interactions on 

physiological and yield parameters in controlled environment experiment. Values are 

averages across seven Kansas winter wheat varieties for growth and yield parameters, and 

physiological traits 

 

 

 

 

Traits T V T X V Control 
Heat 

stress 

Net CO2 assimilation (µmol m-2 s-1) <0.0001 <0.0001 <0.0001 15.59a 11.64b 

Conductance (mol m-2 s-1) <0.0001 <0.0001 0.0002 0.676a 0.513b 

Transpiration (mmol m-2 s-1) <0.0001 <0.0001 0.003 6.38b 11.07a 

Maximum quantum yield of PS II 

(Fv/Fm) 0.0003 0.0025 NS 0.715a 0.642b 

Chlorophyll index (spad units) 0.0001 NS NS 46.89a 38.83b 

Spike weight (g spike-1)MS 0.0013 <0.0001 NS 2.1a 1.8b 

Spike weight (g spike-1)PS 0.0001 <0.0001 NS 3.51a 2.7b 

Spike weight (g spike-1)RS 0.012 0.004 0.029 8.3a 5.5b 

Grain number (spike-1)MS NS <0.0001 NS 47a 43b 

Grain number (spike-1)PS NS <0.0001 NS 74a 71a 

Grain number (spike-1)RS 0.087 0.0009 0.017 184a 136b 

Kernel weight (g)MS  <0.0001 <0.0001 NS 0.037a 0.028b 

Kernel weight (g)PS  <0.0001 <0.0001 0.01 0.037a 0.026b 

Kernel weight (g)RS  <0.0001 <0.0001 NS 0.036a 0.026b 

Grain weight (g spike-1)MS 0.0008 <0.0001 NS 1.58a 1.29b 

Grain weight (g spike-1)PS <0.0001 <0.0001 NS 2.69a 1.85b 

Grain weight (g spike-1)RS 0.006 0.01 0.01 6.28a 3.53b 

Tiller number (plant-1) NS <0.0001 NS 9.6a 9.8a 

Spike number (plant-1) NS <0.0001 NS 9.8a 9.6a 

Spike weight (plant-1) 0.004 0.0005 0.056 14.0a 10.1b 

Thousand Kernel weight (g) <0.0001 <0.0001 0.008 36.8a 26.6b 

Grain number (g plant-1) NS <0.0001 0.034 301.9a 254.2b 

Total biomass (g plant-1) NS 0.0014 NS 6.95a 6.59a 

Grain yield (g plant-1) 0.0016 0.0003 0.035 10.6a 6.68b 

Harvest index 0.0005 <0.0001 0.001 0.509a 0.397b 
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Table 2.3 Probability of effects of temperature (T), variety (V), days after stress (DAS), T × V, T × DAS, V × DAS, and T × V × 

DAS interactions on physiological and yield parameters in 2016 and 2017 field experiments 

 

 

Traits Variables (Pr > F) 
Main effect of 

temperature 

 T V T × V DAS 
T × 

DAS 

V × 

DAS 

T × 

V×DAS 
Control Heat stress 

Field experiment 2016           

Chlorophyll index (SPAD units) <0.01 <0.001 0.243 <0.001 <0.001 <0.001 <0.01 42.4a 40.8b 

Maximum quantum yield of PSII 

(Fv/Fm) 

<0.01 <0.001 0.097 <0.001 <0.001 <0.001 0.014 0.71a          0.69a 

Thousand kernel weight (mg) 0.058 <0.001 <0.001 - - - - 33a 31.7b 

Grain yield (g m-2) <0.001 <0.05 0.660 - - - - 534.6a 458.0b 

Harvest index <0.05 <0.01 0.460 - - - - 0.443a 0.427b 

Field experiment 2017          

Chlorophyll index (SPAD units) 0.057 <0.001 0.794 <0.001 <0.001 <0.001 0.935 37.4a 35.0b 

Thousand kernel weight (g) <0.001 <0.001 <0.05 - - - - 35.5a 33.7b 

Grain yield (g m-2) <0.05 <0.001 0.152 - - - - 526a 462b 

Harvest index <0.01 <0.001 0.061 - - - - 0.440a 0.414b 
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Table 2.4 Harvest index and thousand kernel weight of wheat varieties grown in controlled 

chambers and field experiments under control and heat stress treatments 

 

 

 
Harvest Index Thousand Kernel weight (g) 

Varieties Control Heat stress Control Heat stress 

Controlled chamber experiment 

WB-Cedar 0.52 ± 0.01 0.36 ± 0.04 29.0 ± 0.4 22.0 ± 1.0 

Joe 0.55 ± 0.01 0.43 ± 0.01 41.4 ± 0.9 30.0 ± 0.4 

WB4458 0.52 ± 0.004 0.46 ± 0.01 44.0 ± 1.0 32.0 ± 0.4 

Zenda 0.50 ± 0.01 0.37 ± 0.03 35.4 ± 1.0 23.5 ± 0.8 

SY Monument 0.50 ± 0.01 0.46 ± 0.01 36.6 ± 0.5 30.0 ± 0.8 

Larry 0.49 ± 0.01 0.42 ± 0.02 40.0 ± 1.0 28.7 ± 0.7 

Everest 0.46 ± 0.02 0.27 ± 0.02 31.0 ± 0.8 20.0 ± 1.0 

5% LSD (T) 0.03 2.6 

5% LSD (V) 0.04 4.9 

5% LSD (T×V) 0.05 6.9 

Field experiment 2016 

WB-Cedar 0.46 ± 0.01 0.44 ± 0.01 35.0 ± 0.4  33.1 ± 0.4 

Joe 0.45 ± 0.004 0.42 ± 0.01 34.5 ± 0.4 30.8 ± 0.5 

WB4458 0.42 ± 0.02 0.43 ± 0.004 34.4 ± 0.3 33.2 ± 0.6 

Zenda 0.43 ± 0.002 0.43 ± 0.003 31.8 ± 0.4 31.0 ± 0.2 

SY Monument 0.43 ± 0.01 0.42 ± 0.002 32.7 ± 0.3 31.8 ± 0.5 

Larry 0.47 ± 0.004 0.44 ± 0.007 32.0 ± 0.4 32.8 ± 0.4 

Everest 0.43 ± 0.01 0.41 ± 0.01 30.7 ± 0.8 29.2 ± 0.3 

5% LSD (T) 0.01 1.42 

5% LSD (V) 0.02 0.84 

5% LSD (T×V)   -  1.18 

Field experiment 2017 

WB-Cedar 0.48 ± 0.004  0.45 ± 0.003  39.0 ± 0.7 35.9 ± 0.5 

Joe 0.43 ± 0.003 0.39 ± 0.006 36.9 ± 0.5 34.5 ± 0.3 

WB4458 0.43 ± 0.006 0.42 ± 0.004 36.2 ± 0.4 34.4 ± 0.4 

Zenda 0.40 ± 0.006 0.37 ± 0.004 33.4 ± 0.3 32.5 ± 0.3 

SY Monument 0.44 ± 0.009 0.43 ± 0.009 34.6 ± 0.3 33.8 ± 0.6 

Larry 0.45 ± 0.005 0.44 ± 0.004 36.3 ± 0.3 34.7 ± 0.3 

Everest 0.45 ± 0.022 0.40 ± 0.007 32.6 ± 0.1 30.2 ± 0.3 

5% LSD (T) 0.01 0.23 

5% LSD (V) 0.02 0.77 

5% LSD (T×V)   - 1.09 
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Table 2.5 Net CO2 assimilation rate in flag leaf of main tiller among the seven winter wheat 

varieties under control and heat stress treatments in controlled chamber experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 DAS 15 DAS 

Varieties Control Heat stress Control Heat stress 

WB-Cedar 14.2 ± 0.4  12.3 ± 0.4 16.1 ± 0.2 10.3 ± 0.7 

Joe 14.7 ± 0.3 13.5 ± 0.4 12.9 ± 0.3 11.0 ± 0.9 

WB-4458 19.5 ± 0.5 18.1 ± 0.7 18.8 ± 0.3 11.1 ± 0.5 

Zenda 13.4 ± 0.6 10.5 ± 0.6 13.3 ± 0.2 9.1 ± 0.1 

SY-Monument 18.6 ± 0.3 15.9 ± 0.3 17.2 ± 0.2 8.2 ± 0.1 

Larry 18.4 ± 0.1 16.5 ± 0.6 17.7 ± 0.4 8.7 ± 0.3 

Everest 13.1 ± 0.9 11.2 ± 0.3 10.4 ± 0.3 6.6 ± 0.4 

5% LSD (T×V×DAS) 1.3 
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Table 2.6 Spike and flag leaf temperature (°C) of seven winter wheat varieties under control and heat stress conditions in 2017 

field experiment  

 

 

Days after imposition (d) 

 06 10 14 18 

Variety Control Heat stress Control Heat stress Control Heat stress Control Heat stress 

Spike          

WB-Cedar 24 ± 0.1 20 ± 0.2 18 ± 0.2 18 ± 0.1 31 ± 0.4 33 ± 0.7 18 ± 0.2 27 ± 0.2 

Joe 23 ± 0.1 19 ± 0.1 15 ± 0.06 16 ± 0.2 27 ± 0.2 29 ± 0.2 16 ± 0.2 28 ± 0.3 

WB4458 24 ± 0.1 21 ± 0.1 17 ± 0.2 17 ± 0.1 30 ± 0.1 31 ± 0.1 20 ± 0.1 27 ± 0.5 

Zenda 23 ± 0.06 20 ± 0.2 17 ± 0.07 18 ± 0.3 29 ± 0.03 34 ± 0.5 19 ± 0.2 25 ± 0.2 

SY Monument 25 ± 0.4 20 ± 0.5 14 ± 0.3 15 ± 0.2 27 ± 0.2 27 ± 0.1 17 ± 0.6 25 ± 0.4 

Larry 22 ± 0.1 21 ± 0.1 16 ± 0.1 15 ± 0.07 27 ± 0.2 30 ± 0.2 21 ± 0.4 28 ± 0.5 

Everest 19 ± 0.06 21 ± 0.2  16 ± 0.1 16 ± 0.07 28 ± 0.1 29 ± 1.0 19 ± 0.2 27 ± 0.2 

Flag leaf          

WB-Cedar 23 ± 0.2 18 ± 0.2 15 ± 0.3 15 ± 0.2 28 ± 0.2 26 ± 0.1 16 ± 0.2 24 ± 0.1 

Joe 22 ± 0.2 16 ± 0.1 13 ± 0.2 12 ± 0.1 27 ± 0.1 25 ± 0.03 16 ± 0.1 23 ± 0.03 

WB4458 23 ± 0.1 17 ± 0.1 14 ± 0.2 13 ± 0.2 30 ± 0.1 28 ± 0.3 17 ± 0.3 21 ± 0.1 

Zenda 23 ± 0.2 17 ± 0.1 13 ± 0.2 14 ± 0.1 25 ± 0.06 26 ± 0.1 18 ± 0.1 23 ± 0.3 

SY Monument 21 ± 0.1 18 ± 0.1 12 ± 0.03 12 ± 0.2 27 ± 0.4 26 ± 0.2 17 ± 0.2 26 ± 0.4 

Larry 21 ± 0.1 17 ± 0.1 13 ± 0.2 11 ± 0.2 27 ± 0.1 25 ± 0.1 17 ± 0.2 24 ± 0.3 

Everest 18 ± 0.1 19 ± 0.06 14 ± 0.4 14 ± 0.1 27 ± 0.1 26 ± 0.2 18 ± 0.1  24 ± 0.3 
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Figure 2.1 Mean day and night temperatures (°C) inside and outside (ambient) heat tents 

beginning from the day of heat stress imposition until physiological maturity in 2016 (A) 

and 2017 (B) field experiments 
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Figure 2.2 Days to physiological maturity (d) recorded from day of stress imposition until 

physiological maturity in 2017 field experiment 
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Figure 2.3 Grain yield in controlled environment (A), and field conditions (Field 2016, B; 

Field 2017, C) under control and heat stress treatments 
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Figure 2.4 Grain number per main (A), primary (B), and remaining (C) spikes in 

controlled chambers under control and heat stress conditions 

*indicates significant difference between the temperature treatments in a variety at 5% LSD 
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Figure 2.5 Chlorophyll index (SPAD units) in flag leaves of wheat varieties grown in controlled chambers (A. Control, B. Heat 

stress), and field experiments 2017 (C. Control, D. Heat stress) and 2017 (E. Control, F. Heat stress) at different time intervals 

from the start of heat stress imposition until physiological maturity
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Figure 2.6 Maximum quantum yield of PSII (Fv/Fm) in flag leaves of wheat varieties grown 

in controlled chambers (A. Control, B. Heat stress) and 2016 field experiment (C. Control, 

D. Heat stress), at different time intervals following heat stress imposition until  

physiological maturity
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Figure 2.7 Spike (A.) and flag leaf (B.) temperature (°C) in varieties Joe and SY Monument 

(presented in columns) and air temperature (°C) outside and inside the heat tents 

(presented as lines) under control and heat stress 
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Figure 2.8 Correlation between spike/flag leaf temperature and yield components at 

specific days after imposition of heat stress 
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Figure 2.9 Relationship between flag leaf and spike temperature of different winter wheat 

varieties under both temperature treatments in 2017 field experiment 
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Figure 2.10 Spike and flag leaf temperature extraction  

Spot 1-3 labels indicate individual spike temperature. Spot 4-6 indicate individual flag leaf 

temperature.  
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Chapter 3 - Spike and Flag Leaf Senescence Tracked Through 

Chlorophyll Fluorescence Signals in Winter Wheat Exposed to Post-

Flowering Heat Stress 
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 Abstract 

 Among the detrimental side effects of a changing climate, an increasing temperature can 

negatively impact wheat production, particularly when it coincides with the reproductive and 

grain filling stages. Seven popular winter wheat varieties adapted for Kansas growing conditions 

(Everest, WB-Cedar, Zenda, Larry, SY Monument, WB4458, and Joe) were exposed to heat 

stress at the post-flowering stage using growth chambers [35/15°C (heat stress) and 25/15°C 

(control) day/night] and unique field based heat tents (daytime temperature increased 5°C 

compared to ambient temperatures throughout grain filling). Applicability of chlorophyll 

fluorescence (Chl-F) to temporally track responses of photosynthetically active wheat flag leaves 

and spikes were tested. Light adapted effective quantum yield of photosystem II (QY-Lss) was 

recorded temporally, and then compared with destructive tissue sampling for (chemical analysis 

of photosynthetic pigments) estimation of chlorophyll content. Moreover, estimated change point 

(CP) initiating leaf and spike senescence has been tested across all non-invasive measurements. 

The decrease of main photosynthetic pigment content during the grain filling period was 

measured in field conditions. Results indicated accelerated reduction under the impact of heat 

stress, however, the rate of decrease differed among varieties. In both growth chamber and field 

conditions, QY-Lss of leaves and spikes remained stable until the variety dependent CP, after 

which its tendency was to decrease with progressive senescence over time. The extent of this 

progressive decline, as well as the time elapsed to reach CP, was more significant in the case of 

heat stress impact. Even among varieties commonly cultivated in Kansas (which are understood 

to have a base level of heat tolerance), differential responses have been observed both in growth 

chamber and field conditions. These are discussed with emphasis upon the phenotypic approach 

and a potential for high-throughput phenotyping.  
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 Introduction 

Future climatic scenarios are predicted to be accompanied by increased variability in 

extreme weather events (IPCC, 2014). The predicted increase in frequency and magnitude of 

heat stress episodes can negatively affect crop production (Hatfield and Prueger, 2015), 

including wheat yields (Porter and Gawith, 1999). Above optimum temperatures can severely 

affect a range of physiological processes across different developmental and phenological stages 

of wheat growth (Barlow et al., 2015). The critical temperature beyond which damage is induced 

is typically lower for the reproductive stage compared to the vegetative stage (Barnabas et al., 

2007). This suggests wheat has a greater sensitivity to heat stress during the flowering and grain 

filling periods. The impact of heat stress during these sensitive stages has been tested using 

controlled environment facilities (Liu et al., 2016; Narayanan et al., 2016; Prasad and 

Djanaguiraman, 2014; Shildermoghanloo et al., 2016) or field experiments (Ayeneh et al., 2002; 

Feng et al., 2014; White et al., 2011). A significant negative impact of heat stress on grain yield 

and quality in the previously referenced studies were attributed to either mobilization of stem 

reserves (water-soluble carbohydrates), decreased activity of key starch synthesizing enzymes, or 

reduced activity and duration of leaf photosynthesis and carbon metabolism. Apart from the flag 

leaf (Araus and Tapia, 1987), photosynthetically active portions of the spike are shown to 

significantly contribute to the assimilate pool during grain filling (Araus et al., 1993). Based on 

chlorophyll a (Chl-a), the photosynthetic capacity of spikes and flag leaves was found to be 

similar, while their relative contribution to grain filling varied considerably (Tambussi et al., 

2007). Despite the documented contribution of the spikes to carbon assimilation (Sanchez-

Bragado et al., 2016), the wide variation of results obtained across studies is primarily influenced 

by environmental factors (Araus et al., 2003) or genetic differences (Sanchez-Bragado et al., 
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2014). Typically, greater assimilate contribution from spikes has been recorded under abiotic 

stress exposure, e.g., drought (Araus et al., 2008; Maydup et al., 2010; Tambussi et al., 2005; 

Tambussi et al., 2007). Thus, systematically assessing the photosynthetic contribution of spikes 

is critical, particularly under abiotic stress exposure such as heat stress, when leaf photosynthesis 

can be affected more than spike photosynthesis (Blum, 1985).     

  Photosynthesis in both wheat leaves and spikes undergoes gradual decline during the 

grain filling period due to natural senescence, reflecting the dismantling of the chloroplast 

apparatus. The senescence of both the leaf and spike is highly coordinated, made evident when a 

yellow coloring of the plant tissue becomes perceptible (Lim et al., 2007). Despite the invasive 

and destructive analytical methods, subtle color changes during initiation of senescence can be 

more effectively captured through plant optical signals. One of the most commonly used optical 

methods is chlorophyll fluorescence (Chl-F), allowing non-destructive insight into plant 

photochemical processes with high precision and accuracy (Baker, 2008; Krause and Weis, 

1991; Maxwell and Johnson, 2000; Murchie and Lawson, 2013). Since Chl-F represents emitted 

light after direct excitation of chlorophyll molecules of photosystem II (PSII), its characteristics 

are driven by functionally rich or poor PSII. Analysis of Chl-F thus provides valuable 

information not only about functioning of PSII reaction centers, but also the light harvesting 

antenna complexes and/or both donor and acceptor sides of PSII. During senescence and/or 

ripening of several fruits, decline of Chl-F has been attributed to loss of chloroplast function 

connected with advanced maturation (e.g., apples) (Song et al., 1997) or decrease in chlorophyll 

content (e.g., papaya) (Bron et al., 2004).        

Extending the duration of grain filling in cereals including wheat is one of the key 

research areas that can potentially translate to significant yield enhancement (Jagadish et al., 
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2015). However, little progress has been accomplished in this direction due to the lack of 

standardized phenotyping approach, which can track rate of senescence during grain filling, both 

accurately and rapidly. Despite Chl-F as a potential tool to capture source-sink photosynthetic 

activity during grain filling, there has been only little attempt to demonstrate its application to 

capture senescence patterns across different photosynthesizing tissue of wheat. By using Chl-F 

imaging technique, seasonal senescence of wheat glumes and flag leaves has been investigated 

(Kong et al., 2015). However to date, the effectiveness of Chl-F under field conditions has only 

been demonstrated in rice panicles (Šebela et al., 2015). In Šebela et al. (2015), the researchers 

prove that effective QY-Lss of PSII efficiency can be used to track changing optical properties of 

rice panicles under both control and high night temperature stress. Moreover, this parameter was 

reliably used to estimate the elusive break-point, capturing the initiation of panicle senescence 

with clear genotypic variation in contrasting rice genotypes. Thus, the objectives of our studies 

were to detect changes of photosynthetic pigments in flag leaves and spikes in field grown plants 

under both control and heat stress exposure; determine the genetic differences in rate of 

senescence in spikes and flag leaves in prominent Kansas varieties while exposed to heat stress 

in controlled chambers and field based heat tents; and to estimate break-point initiating 

senescence and unravel association between heat stress and changes in Chl-F parameter in leaves 

and spikes.   

 

 Materials and Methods 

Field experiment  

Please refer to Chapter 2 field experiment for agronomic details.  

Controlled environment experiment  

Please refer to Chapter 2 controlled environment experiment for agronomic details.   
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Optical measurements  

Chlorophyll fluorescence and chlorophyll index estimation 

Šebela et al. (2015) utilized the Chl-F parameter, allowing high-throughput means to 

precisely estimate the dynamics captured with maturing rice panicles, to study two contrasting 

rice genotypes and their temporal response to high night temperature. Likewise, the same 

parameter has been selected and used to investigate Chl-F in both growth chamber and field 

experiments in this study. The Chl-F measurement of leaves and spikes of all seven varieties was 

performed by using a portable handheld fluorometer FluorPen (FluorPen FP 100, Photon System 

Instruments, Ltd., Brno, Czech Republic). Saturating light [intensity approximately 3,000 µmol 

(photons) m-2 s-1] and measuring light [intensity approximately 0.09 µmol (photons) m-2 s-1] were 

used to measure maximal fluorescence yield (FM`) and actual fluorescence yield (Ft) of light 

adapted samples, respectively. QY-Lss of PS II was then calculated using formula QY-Lss = 

(FM`-F)/FM` = ΔF/FM` (Genty et al., 1989). Three measurements across the flag leaf and/or spike 

per tagged plant were recorded from both growth chamber and field experiment. Total recordings 

were as such: 15 fluorescence measurements for both flag leaves and spikes per variety. 

Measurements were recorded on alternate days beginning exactly (growth chamber) and 

approximately (field experiment) ten days post-flowering until physiological maturity. The non-

invasive determination of chlorophylls (Chl a+b) in flag leaves was done by using a 

commercially available leaf clip meter, Dualex (Dualex 4 Scientific, Force-A, Orsay, France). 

Similar to Chl-F measurements, three measurements per flag leaf were determined on each 

tagged plant (totaling 15 readings per variety).  
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Pigment analyses of flag leaves and spikes 

Photosynthetic pigments of flag leaves and spikes were determined using classical 

dimethyl sulfoxide (DMSO) - acetone extraction method (Shoaf and Lium, 1976). Despite the 

standardized approaches for extracting photosynthetic pigments from leaves, there are limited 

studies quantifying photosynthetic pigment content of spikes. Therefore, a validation component 

was designed during this independent experiment to verify applicability of the aforementioned 

extraction method using plants from the field experiment. Pigment content was determined 

temporally (four day interval). One representative plant from the side rows of each variety 

(sample including flag leaf and spike) was collected from three control and heat stress replicates, 

placed on ice, and immediately transported to the laboratory. In the laboratory, sample categories 

were separated; i.e., flag leaf (approximately 20 mg of flag leaf tissue) and spike (glumes with 

lemma including approximately 2 mm of surrounding awn, rachis was not included. Following 

tissue separation, samples were placed in glass tubes containing 10 ml solution (DMSO and 90% 

acetone; 1:1 v/v), placed in a dark environment at room temperature for >24 hours for complete 

extraction of pigments. Sufficient extraction was confirmed by white coloration of samples. 

Absorption spectra of extracts were subsequently measured at pre-defined wavelengths (470 nm, 

645 nm, and 663 nm) using spectrophotometer U-5100 (Hitachi, Ltd., Tokyo, Japan). 

Chlorophyll a, chlorophyll b, total chlorophylls, and total carotenoids content were calculated 

using the following formulae, 

 

Ca = (12.7 A663) – (2.69 A645) 

Cb = (22.9 A645) – (4.68 A663) 

Ca+b = (8.02 A663) + (20.2 A645) 
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Cx+c =  
[(1000 A470)–(1.29 Ca)–(53.78 Cb)]

220
 

 

 where Ca, Cb, Ca+b and Cx+c are chlorophyll a (Chl-a), chlorophyll b (Chl-b), total chlorophylls 

(Chla+b), and total carotenoids (Cx+c); and where A470, A645, and A635 are values of optical 

absorbance at specific wavelengths (470 nm, 645 nm, and 635 nm, respectively). Pigment 

content was calculated and expressed in mg/g fresh weight. 

Statistical analysis  

For both the controlled environment and field experiments, a fitted change point (CP) of 

non-invasive estimation of chlorophyll content and QY-Lss of PSII of leaves and spikes was 

estimated according to Šebela et al., 2015. The slope and the CP for temporal Chl F and Chl 

index data were estimated using a plateau-linear model for the time-series non-linear regression 

analysis using Proc NLIN procedure in SAS 9.4 SAS software (Version 9.4, SAS Institute Inc., 

Cary, NC). Means were separated using LSD (least significant difference) test at p=0.05  

  

 Results  

Heat stress impact on photosynthetic pigments content  

Concentrations of main photosynthetic pigments (Chl-a, Chla+b,Cx+c) and/or Chl-a to b 

ratio (Chl a/b) were investigated in field grown plants. This occurred temporally every four days 

from the initiation of the heat stress treatment (time 0), until physiological maturity (Figure 3.1). 

As plants progressed towards maturity, the flag leaves, and spikes were visually monitored on a 

daily basis in order to avoid possible discrepancies or missing physiological senescence during 

the four-day sampling windows. The final measurements were taken promptly on the day of 

physiological maturity, even if this occurred earlier than the subsequent four-day interval; in 
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these cases no subsequent data was obtained from these plants. At time 0 (i.e., ten days after 

flowering), similar trends with only small phenotypic variability were visible across all seven 

inspected varieties. Across varieties, concentration of Chl-a in flag leaves ranged between 2.8 

mg/g (SY Monument) and 3.6 mg/g (WB4458). Spike concentrations of Chl-a ranged from 0.4 

mg/g (Zenda) to 0.72 mg/g (WB4458). (Fig. 3.1). 

Despite the differences in Chl-a concentrations across flag leaves and spikes, the Chl a/b 

ratio was the same at time 0 for both plant constituents (value approximately 3). In the flag 

leaves, Chl-a remained stable (˃ 3 mg/g for all seven inspected varieties) through the first 14 

days, experiencing only slight environmentally driven changes (temperature and sunlight 

dropped notably during this period). Thereafter, a steep decline of Chl-a concentration and Chl 

a/b ratio occurred. Chl-a degradation accelerated with heat stress exposure in all seven inspected 

varieties (Figure 3.1), while different variety responses resulted in shorter (e.g., Everest) or 

longer (e.g., Joe) duration of chlorophyll retention. Everest, possessing a shorter senescence rate, 

also expressed a greater value of Chl a/b ratio for a short period after heat stress exposure; this 

generally decreased as the plants approached physiological maturity. Photosynthetic pigment 

content of the spikes, although a lower value than the flag leaves at the beginning of stress 

imposition, remained unchanged for a prolonged duration in comparison to the flag leaves across 

the seven tested varieties. The accelerated rate of decline in photosynthetic pigment content as 

observed in the flag leaves was not observed in the spikes, even under heat stress conditions. For 

the spikes, a more gradual decline of pigment content was observed in both control and heat 

stress treatments however.     
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Flag leaf and spike senescence   

  In addition to extraction of photosynthetic pigments during the field experiment, 

senescence was visually monitored under both controlled environment and field conditions. 

Tissue senescence was defined as the absolute disappearance of photosynthetic pigments 

(yellowing of flag leaves, and spikes). When concerns arose about the accurate detection of 

complete senescence during the terminal stages, Chl-F measurements were used (continuous 

measurements of steady state Chl-F level in light adapted state (Ft), data not shown). Tissue 

senescence was reached when there was no Chl-F signal, or no Chl-a content. The duration to 

reach senescence differed with heat stress impact across the seven varieties, in both the 

controlled environment and field experiments, and between flag leaves and spikes (Table 3.1).  

Duration to reach senescence in leaves and spikes was longer for all inspected varieties, 

with the shortest duration being seen in Larry and WB4458. The extent to which senescence of 

leaves and spikes was accelerated by heat stress was more pronounced under growth chamber 

conditions versus field conditions (Table 3.1). The flag leaves, under both control and heat stress 

conditions, maintained longer duration of photosynthetic activity, similar to spikes. A significant 

correlation existed between flag leaves in chambers and field conditions for control (R2=0.71; 

p<0.05) and heat stress treatments (R2=0.75; p<0.05). On the other hand, field condition spikes 

retained greenness for a longer duration compared to flag leaves, but still maintained the same 

level of correlation between chambers and field conditions under control (R2=0.63; p 0.05) and 

heat stress (R2=0.71; p 0.05).   

Optical measurements  

To ascertain the impact of heat stress on the physiology of the seven prominent wheat 

varieties, changes in optical signals were monitored in controlled environment and field 



76 

experiment plants. Non-invasive quantitative (chlorophyll index) and qualitative (Chl-F) 

measurements were recorded temporally. 

Non-invasive chlorophyll index   

Changes in Chl were monitored in-vivo in flag leaves. Throughout the grain fill period, 

several changes in Chl were visible across the seven tested varieties. Values at the early stage 

(time 0) were consistently greater for the growth chamber, compared to field, grown plants 

(Figure 3.2). For both growth chamber and field grown plants however, these values remained 

constant until the variety-dependent break point, after which the values decreased progressively. 

The extent to which plants responded to heat stress differed between controlled environment and 

field grown plants. In both experiments, differences were observed between the control and heat 

stress treatments. To evaluate the trend of the curves numerically, this break point was defined as 

the change point (CP), and the duration to reach this point was calculated. The shape of the curve 

after this variety-dependent CP (Figure 3.2) has been characterized by negative values 

(decreasing trend), as exhibited in Table 3.2. The time to reach CP of chlorophyll index for flag 

leaves of control plants in growth chambers occurred between 9 days (SY Monument) and 15 

days (WB4458) (Table 3.2). The same range of CP was observed in the field experiment, 

however, among different varieties (WB-Cedar 9 days, Joe 15 days) (Table 3.2). CP was only 

slightly reduced due to heat stress across the seven varieties in both experiments, ranging 

between 7 and 13 days in the growth chamber and between 8 and 13 days in the field 

experiment. It should be noted that across both experiments the varieties did not differ 

significantly for CP between control and stress (Table 3.2). Aside from the CP, the rate of 

senescence was also calculated. Heat stress-induced accelerated senescence was more 

pronounced in the growth chambers as lower (more negative) slope values were observed. 
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Amongst individual varieties in the growth chamber, WB4458 and Zenda recorded a significant 

increase in the rate of senescence under heat stress compared to control (Table 3.2).  

Chlorophyll fluorescence measurements  

To investigate the effect of heat stress on primary photochemistry of all seven selected 

varieties, changes in selected Chl-F parameter were measured temporally, starting the day of heat 

stress imposition. Effective QY-Lss of PSII was measured on alternate days for leaves and 

spikes. At the beginning of the experiment (time 0; ten days after flowering), the value of QY-

Lss (~0.7) was identical across leaves and spikes of all varieties, for both the growth chamber 

and field experiments (Figure 3.3 and 3.4). Similar to the non-invasive measurements presented 

above (estimation of Chl index), QY-Lss tended to remain constant (~0.7) for a certain period in 

the case of flag leaves and spikes (Figure 3.3 and 3.4), but did vary across varieties in both field 

and growth chamber conditions (Table 3.3 and 3.4). Additionally, the length of the duration 

during which QY-Lss remained constant was noticeably shortened by the impact of heat stress. 

As illustrated in Tables 3.3 and 3.4, different responses are visible in control versus heat stress 

conditions; this is apparent by comparing CP measured quantitatively (non-invasive Chl 

estimation) and qualitatively (QY-Lss of flag leaves). It was noticed that flag leaves from plants 

grown in growth chambers had a longer duration to reach the CP for QY-Lss (Table 3.3) 

compared to Chl index (Table 3.2).  

Across all varieties, the duration of CP from QY-Lss curves in flag leaves are more 

severely affected by heat stress in growth chamber cultivated plants compared to field plants. In 

growth chambers, the CP duration in controls ranged between 14 days (WB-Cedar) and 21 days 

(Larry, WB4458). When the varieties were exposed to heat stress, their CP duration was reduced 

between 8 (WB-Cedar) and 17 days (Zenda). However, this same range of variability was not 
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seen in the field experiment as five of the varieties had similar CP for QY-Lss in the flag leaves 

(Table 3.4). CP estimated from QY-Lss curves in spikes of field grown plants were similar 

across all seven varieties under both control and heat stress plants, thus no impact on time to CP 

was observed under the heat stress treatment (Table 3.4). In the growth chamber experiment, 

heat stress significantly shortened time to CP for spikes in WB-Cedar and Everest but not in the 

other varieties (Table 3.3).   

The rate of the decline of photochemical activity (QY-Lss) after CP is presented 

numerically (Table 3.3 and 3.4). In growth chamber conditions, the rate of flag leaf senescence 

seen under heat stress conditions is characterized by lower (more negative) slope values. This 

decline was observed amongst all varieties being the most pronounced in Zenda and WB-4458 

(Table 3.3). In field conditions, a significant decline of QY-Lss (more negative slope) was 

observed in three of the varieties, that is WB4458, Zenda and Larry (Table 3.4). Amongst the 

spikes in the growth chamber experiment heat stress induced a significant increase in the rate of 

senescence in all of the varieties except Joe (Table 3.3). However, in the field experiment 

differences in the rate of spike senescence were not observed due to heat stress (Table 3.4).   

 

 Discussion  

The varieties tested in this study are commonly developed for Kansas’ temperate 

continental climate and warm summer environments. For this reason it was expected that these 

varieties would exhibit a certain level of heat tolerance. However, different responses were 

observed. Thus, the emphasis of this experiment highlights the potential precise, high-throughput 

evaluation of the impact of heat stress on wheat source and sink tissue. This methodology allows 

for the rapid and accurate detection of photosynthetic pigments. Non-invasive optical methods 
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presented are faster than classical extraction methods. This allows for phenotyping large sets of 

accessions at high temporal frequency. However, the application of such technology on sink 

tissue is limited and hence was the motivation behind our studies.  

Photosynthetic pigment composition during senescence  

Senescence is the process leading to physiological death with visible changes in all parts 

of the plant. In cereals, this occurs during the development of grains. These changes have been 

documented across crop species including wheat and can be attributed to several physiological 

processes (Lim et al., 2007). The emphasis of our study, however, is primarily focused on the 

loss of visible greenness attributed to decline in the major photosynthetic pigments and 

subsequent physiological consequences. Chlorophyll is the most abundant photosynthetic 

pigment and a key component required for sunlight absorption and to drive photosynthesis. 

Changes in chlorophyll composition of leaves in field grown wheat plants during senescence can 

be simply governed by the developmental age (Lu et al., 2001). However,  environmental 

stresses such as heat (Lobell et al., 2012), drought, or their combination (Lopes and Reynolds, 

2012) also have a significant impact on the rate of wheat senescence. Even though a lack of 

correlation between grain yield and the duration of flag leaf senescence under optimal conditions 

has been reported (Borrill et al., 2015), it is hypothesized that developing functionally active 

stay-green phenotypes could help to minimze yield losses encountered by abiotic stresses 

(Jagadish et al., 2015).  

Along with flag leaves, wheat spikes and their constituents are shown to contribute 

significantly to photosynthesis and assimilate supply (Reynolds et al., 2012). Moreover, their 

contribution is of increased importance under exposure to abiotic stresses (Araus et al., 2008; 

Maydup et al., 2010; Tambussi et al., 2005; Tambussi et al., 2007;). The importance of wheat 
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glumes, (Kohl et al., 2015; Lopes et al., 2006) lemma and palea (Lu and Lu, 2004), and awns 

(Robetzke et al., 2016), or their combination have been suggested as possible methods of 

conversion and translocation of assimilates to grain. In our study, the impact of heat stress has 

been investigated in flag leaves and spikes. In general, both Chl-a and Chl a/b ratio of flag leaves 

decreased with the progressive senescence but differed in rate across varieties (Figure 3.1). 

Varieties Joe and SY Monument retained photosynthetic pigments for significantly longer 

durations than Everest and WB-Cedar. The same trend was noted in the spikes (Figure 3.1), 

where the same varieties, Joe and SY Monument, retained their photosynthetic pigment longer in 

the spike than in the flag leaves. These findings are in accordance with existing studies, where 

researchers reported extended duration of chlorophyll retention before senescence in wheat 

spikes, compared to flag leaves, under abiotic stress (Araus et al., 2008; Maydup et al., 2010; 

Tambussi et al., 2005; Tambussi et al., 2007;). Chl a/b ratio was significantly greater in heat 

stressed flag leaves of Everest during the first few days and also towards the end compared to its 

control counterpart. This can be attributed to the gradual degradation of Chl-b in a variety with 

shorter duration to physiological senescence. This may be an attempt to reduce the risk of photo-

oxidative damage by reducing the number of light harvesting complexes associated with PSII 

(Xu et al., 1995).  

Chlorophyll index and primary photosynthetic activity (QY-Lss) remained stable until the 

variety-dependent break point occurred, which was different based upon exposure to heat stress 

and/or growing conditions (Figures 3.2, 3.3, 3.4). The rationale for this experiment was based on 

the work of Šebela et al. (2015), who reported the break point for senescence initiation under 

high night temperature stress on rice panicles. The same parameters can be used to indicate 

accelerated senescence of wheat leaves and spikes beyond the CP.The duration to reach CP, the 
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slope of the line after CP, differentiated the level of heat tolerance among varieties. The Chl-F 

technique allows more extensive qualitative insight into the primary photochemistry, 

determining the functionally rich or poor PSII. This method has been reviewed by a number of 

researchers however, exclusively in leaves (Baker, 2008; Krause and Weis, 1991; Maxwell and 

Johnson, 2000; Murchie and Lawson, 2013). 

Even though contribution of photosynthetically active constituents (e.g., spikes) towards 

high grain yield in wheat has been suggested and mentioned above, there is limited information 

available regarding to Chl-F. One of the key limiting factors preventing progress could be the 

morphology of wheat spikes, potentially scattering Chl-F. Most currently available fluorometers 

are designed for leaves which are morphologically flat. However, the approach and technique 

used here was standardized for a more architecturally challenging rice panicle, allowing us to 

effectively determine QY-Lss in wheat spikes. Chl-F measurements performed by Chl-F imaging 

system have been previously used to investigate photochemical responses of the glumes and flag 

leaves of winter wheat cultivars during seasonal senescence (Kong et al., 2015).  

Similar to our study, other researchers have proven that wheat spikes had greater values 

of QY-Lss during terminal stages of senescence (Araus et al., 2008; Maydup et al., 2010; 

Tambussi et al., 2005; Tambussi et al., 2007). However, in the present study, the greater value of 

QY-Lss in spikes compared to flag leaves during heat stress exposure suggests an improved 

photosynthetic efficiency of spikes even under abiotic stress (Figure 3.3, 3.4). To date, the only 

study related to methodological testing of the instrument was to investigate temporal changes of 

Chl-F signals in photosynthetically active constituents (rice panicles) with the impact of abiotic 

stress (Šebela et al. 2015). Here, researchers proved applicability of instrumentation and defined 

the best fitting Chl-F parameter (QY-Lss) to assess high night temperature induced accelerated 
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senescence. The same validated instrumentation and Chl-F parameter (QY-Lss) has been 

selected and investigated throughout the entire experiment and is presented here. In the growth 

chamber experiment plants tended to have a shorter duration before reaching the CP in flag 

leaves as seen by Chl index and QY-Lss compared to field grown plants (Table 3.2). This can be 

explained by natural environmental variation in field conditions, such as warmer ambient 

temperature and excess radiation, which increases in field conditions towards the end of the grain 

filling period. In contrast, temperature and light intensity remain stable in growth chambers, thus, 

plants retain greater photosynthetic efficiency even after the CP of Chl disappearance occurs. 

Additionally, in field conditions spikes tended to retain more QY-Lss compared to flag leaves, 

suggesting greater heat stability and delayed senescence at the later stages of grain filling (Kong 

et al., 2015).   

Our results, combined with recent evidence of wheat spike C4 photosynthetic pathways 

(Rangan et al., 2016), could result in novel strategies to improve to photosynthetic efficiency of 

wheat to provide resilience in response to climatic factors and improve yield potential.  
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Table 3.1 Effect of heat stress on the duration of senescence in flag leaves, and spikes (days) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of heat stress treatment on the duration of senescence of seven selected varieties (Joe, SY Monument, Larry, WB4458, 

Zenda, WB-Cedar, and Everest); for controlled environment (growth chambers; GCH) and field experiments. The duration (days) is 

presented for control (C1) and heat stress treatments (HS2). Percentage change is calculated according to (% difference) = 

[(HS/(C/100)]-100; where reduction (-) or increase (+) is presented 

  Flag leaves  Spikes 

  GCH Field GCH Field  GCH Field GCH Field 

  C1 HS2 C HS % difference3  C HS C HS % difference 

               

Joe  29 23 25 24 -20 -4  31 23 30 29 -25 -3 

SY Monument  27 21 25 23 -22 -8  27 21 29 25 -22 -14 

Larry  31 21 25 22 -32 -12  31 21 27 25 -32 -7 

WB4458  35 25 24 21 -28 -12  33 23 29 25 -30 -14 

Zenda  29 25 24 22 -14 -8  29 23 26 26 -20 0 

WB-Cedar  29 23 22 21 -21 -5  29 23 25 24 -21 -4 

Everest  31 25 22 21 -19 -5  29 23 25 24 -21 -4 
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Table 3.2 Slope, change point (CP) and their 95% confidence intervals for temporal 

chlorophyll concentration in flag leaf under controlled environment chamber experiment 

in 2016 and 2017 Field experiment 

 

    95% Confidence limits for slope 

Variety Treatment Slope CP Slope CP 

Controlled environment 2016      

WB-Cedar Control -3.7927 10.3974 -4.3262 -3.2593 7.8186 12.9762 

 Heat stress -4.399 7.45447 -5.1704 -3.6277 4.8142 10.0947 

Joe Control -3.6132 11.7902 -4.246 -2.9804 8.8675 14.7129 

 Heat stress -5.6642 11.9122 -6.9125 -4.4159 9.5549 14.2695 

WB4458 Control -3.5704 15.8841 -4.1957 -2.9451 13.5871 18.181 

 Heat stress -5.9548 12.2542 -7.0998 -4.8098 10.2468 14.2617 

Zenda Control -3.9971 12.6632 -4.5591 -3.4351 10.4053 14.9211 

 Heat stress -5.7564 13.2563 -6.7299 -4.783 11.6345 14.878 

SY Monument  Control -3.2733 9.09811 -3.9759 -2.5707 4.9657 13.2305 

 Heat stress -4.6069 9.54139 -5.7284 -3.4854 6.4226 12.6602 

Larry Control -3.7129 13.8891 -4.1931 -3.2327 11.9776 15.8007 

 Heat stress -5.3701 10.7628 -6.573 -4.1671 8.0886 13.4371 

Everest Control -3.3383 9.7676 -3.7408 -2.9358 7.5042 12.031 

 Heat stress -4.0409 7.71653 -4.4408 -3.6409 6.2444 9.1886 

Field 2017       

WB-Cedar Control -3.2165 9.36904 -3.7628 -2.6702 7.2947 11.4434 

 Heat stress -4.0663 9.48405 -4.9039 -3.2288 7.3131 11.655 

Joe Control -4.483 15.4927 -5.2558 -3.7102 14.2647 16.7207 

 Heat stress -4.1762 13.3867 -4.7294 -3.623 12.4207 14.3527 

WB4458 Control -3.6514 11.1234 -4.0997 -3.203 9.8295 12.4172 

 Heat stress -4.0918 9.84837 -4.6238 -3.5599 8.5115 11.1852 

Zenda Control -3.0703 10.8712 -3.571 -2.5696 9.1219 12.6205 

 Heat stress -3.7554 11.2886 -4.3251 -3.1857 9.9342 12.6431 

SY Monument  Control -3.5712 13.4085 -4.1066 -3.0357 12.1062 14.7108 

 Heat stress -3.834 11.371 -4.3738 -3.2941 10.1225 12.6194 

Larry Control -3.7994 13.0226 -4.3081 -3.2907 11.8199 14.2252 

 Heat stress -4.1308 11.0035 -4.7634 -3.4982 9.603 12.404 

Everest Control -3.2779 10.7283 -3.9598 -2.5959 8.4739 12.9828 

 Heat stress -3.0825 7.96366 -3.678 -2.487 5.5878 10.3395 

Slope or break point between the temperature treatments in a genotype are significantly different 

at 0.05 if their confidence intervals does not overlap 
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Table 3.3 Slope, change point (CP) and their 95% confidence intervals for chlorophyll fluorescence in 

flag leaf and spikes for the controlled environment growth chamber experiment in 2016     

 

                   95% Confidence limits for slope 

Tissue Variety Treatment Slope CP Slope CP 

Flag leaf WB-Cedar Control -0.041 14.154 -0.048 -0.035 11.764 16.544 

 Heat stress -0.048 7.893 -0.055 -0.040 5.901 9.886 

 Joe Control -0.045 16.573 -0.053 -0.038 14.385 18.762 

  Heat stress -0.059 11.315 -0.067 -0.050 9.905 12.725 

 WB4458 Control -0.044 20.670 -0.050 -0.037 19.232 22.108 

  Heat stress -0.060 12.686 0.066 -0.054 11.836 13.537 

 Zenda Control -0.050 18.217 0.060 -0.041 16.077 20.357 

  Heat stress -0.097 17.183 -0.118 -0.077 16.022 18.344 

 SY Monument Control -0.038 12.304 -0.046 -0.031 9.133 15.476 

  Heat stress -0.062 11.892 -0.074 -0.049 10.014 13.770 

 Larry Control -0.054 20.554 -0.063 -0.045 18.931 22.177 

  Heat stress -0.068 12.613 -0.087 -0.050 10.290 14.936 

 Everest Control -0.042 16.036 -0.047 -0.037 14.491 17.581 

  Heat stress -0.056 12.273 -0.063 -0.048 11.096 13.449 

Spike WB-Cedar Control -0.053 17.484 -0.060 -0.046 16.090 18.878 

  Heat stress -0.080 13.874 -0.096 -0.064 12.640 15.107 

 Joe Control -0.036 14.873 -0.040 -0.031 13.262 16.483 

  Heat stress -0.048 12.048 -0.068 -0.029 8.987 15.109 

 WB4458 Control -0.032 15.516 -0.038 -0.025 13.046 17.986 

  Heat stress -0.097 16.427 -0.114 -0.080 15.637 17.217 

 Zenda Control -0.052 17.757 -0.059 -0.044 16.309 19.205 

  Heat stress -0.102 15.626 -0.123 -0.081 14.552 16.700 

 SY Monument Control -0.043 14.528 -0.050 -0.036 12.439 16.617 

  Heat stress -0.066 12.341 -0.078 -0.054 10.987 13.695 

 Larry Control -0.041 16.348 -0.047 -0.035 14.695 18.002 

  Heat stress -0.098 15.513 -0.124 -0.072 14.121 16.906 

 Everest Control -0.063 20.095 -0.075 -0.052 18.514 21.677 

  Heat stress -0.114 16.357 -0.136 -0.092 15.497 17.216 

 

Slope or break point between the temperature treatments in a genotype are significantly different at 0.05 if their 

confidence intervals does not overlap 
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Table 3.4 Slope, change point (CP) and their 95% confidence intervals for chlorophyll fluorescence in 

flag leaf and spikes under field experiment 2017 

  95% Confidence limits for slope 

Tissue Variety Treatment Slope CP Slope CP 

Flag leaf WB-Cedar Control -0.046 9.931 -0.050 -0.042 8.906 10.956 

 Heat stress -0.056 10.007 -0.063 -0.049 8.812 11.203 

 Joe Control -0.093 18.610 -0.106 -0.080 17.876 19.344 

  Heat stress -0.072 14.920 -0.087 -0.057 13.635 16.204 

 WB4458 Control -0.045 10.779 -0.050 -0.040 9.599 11.959 

  Heat stress -0.058 10.854 -0.065 -0.052 9.786 11.922 

 Zenda Control -0.052 12.656 -0.058 -0.046 11.634 13.678 

  Heat stress -0.070 13.294 -0.077 -0.063 12.519 14.068 

 SY Monument  Control -0.075 17.333 -0.085 -0.064 16.507 18.159 

  Heat stress -0.064 13.047 -0.072 -0.056 12.112 13.981 

 Larry Control -0.045 11.520 -0.052 -0.039 9.988 13.051 

  Heat stress -0.060 11.261 -0.068 -0.054 10.211 12.311 

 Everest Control -0.047 10.730 -0.052 -0.042 9.600 11.861 

  Heat stress -0.051 9.440 -0.056 -0.045 8.279 10.601 

Spike WB-Cedar Control -0.037 10.958 -0.040 -0.034 9.726 12.190 

  Heat stress -0.038 9.754 -0.042 -0.035 8.242 11.265 

 Joe Control -0.049 17.018 -0.053 -0.045 16.329 17.706 

  Heat stress -0.051 16.107 -0.056 -0.046 15.113 17.102 

 WB4458 Control -0.037 12.627 -0.041 -0.034 11.555 13.700 

  Heat stress -0.039 11.346 -0.043 -0.035 10.034 12.657 

 Zenda Control -0.044 14.627 -0.049 -0.040 13.493 15.762 

  Heat stress -0.048 14.269 -0.053 -0.043 13.108 15.430 

 SY Monument  Control -0.041 14.459 -0.045 -0.038 13.517 15.401 

  Heat stress -0.043 13.039 -0.047 -0.039 11.970 14.108 

 Larry Control -0.041 13.537 -0.045 -0.038 12.511 14.563 

  Heat stress -0.040 11.572 -0.043 -0.036 10.301 12.842 

 Everest Control -0.036 11.112 -0.040 -0.033 9.680 12.543 

   Heat stress -0.041 11.106 -0.045 -0.037 9.636 12.576 

 

Slope or break point between the temperature treatments in a genotype are significantly different at 0.05 if their 

confidence intervals does not overlap 
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Figure 3.1 Chlorophyll-a concentration and Chl a/b ratio in field experiment  

Time trend of chlorophyll-a concentration [mg/g fresh weight], and chlorophyll a/b ratio of (a) flag leaves, 

spikes for seven selected wheat varieties (Joe, SY Monument, Larry, WB4458, Zenda, WB-Cedar and Everest). 

Open and closed symbols represent chlorophyll-a concentration of control and HTS treatment, while white and 

grey columns represent chlorophyll a/b ratio for control and HTS. n=3 ± SEM. 
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Figure 3.2 Time trend of chlorophyll concentration 

Changes of chlorophyll concentration in flag leaves for seven selected wheat varieties (Joe, SY Monument, 

Larry, WB4458, Zenda, WB-Cedar, and Everest) for controlled environment [panel A] and field experiment 

[panel B], control [open symbols] and HTS [closed symbols] measured non-invasively. Interpolating line 

presented for change point analysis (CP), control (blue) and heat stress (red) treatment. n= 15 (controlled 

environment, n=60 (field) experiment ±SEM. 
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Figure 3.3 Time trend of effective quantum yield of photosystem II (QY-Lss) in flag leaves  

Changes of effective quantum yield of photosystem II in flag leaves of seven selected wheat varieties (Joe, SY 

Monument, Larry, WB4458, Zenda, WB-Cedar, and Everest) for controlled environment [panel A] and field 

experiment [panel B], control [open symbols] and HTS [closed symbols]. Interpolating line presented for 

change point analysis (CP), control (blue) and heat stress (red) treatment. n= 15 (controllled environment), n=60 

(field) experiment ±SEM. 
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Figure 3.4 Time trend of effective quantum yield of photosystem II (QY-Lss) in spikes  

Changes of effective quantum yield of photosystem II in spikes of seven selected wheat varieties (Joe, SY 

Monument, Larry, WB4458, Zenda, WB-Cedar, and Everest) for controlled environment [panel A] and field 

experiment [panel B], control [open symbols] and HTS [closed symbols]. Interpolating line presented for 

change point analysis (CP), control (blue) and heat stress (red) treatment. n= 15 (controlled environment), n=60 

(field) experiment ±SEM
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Chapter 4 - Impact of Post-Flowering Heat Stress on Advanced 

Winter Wheat Breeding Lines Under Field Conditions 
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  Abstract 

Post-flowering heat stress is one of the major environmental constraints for wheat 

(Triticum aestivum L.) production in the state of Kansas, where wheat is the most widely grown 

grain crop. Studies have shown the optimal temperature for wheat grain development is 

approximately 21°C. During the grain filling stage for wheat in Kansas, it is fairly common for 

temperatures to reach more than 30°C and above. These scenarios have resulted in lower 

productivity and yield in Kansas compared to other regions of the United States. With future 

temperatures projected in increase, it is vital for breeding programs to improve wheat’s genetic 

resilience to heat stress. Therefore, the purpose of this study was to explore levels of post-

flowering heat stress resilience in ten breeding lines from Kansas State University’s Wheat 

Breeding Program, under field conditions. Of the ten breeding lines used in this experiment, four 

are advanced breeding lines derived from materials previously reported to be tolerant of high 

temperatures and six are near isogenic lines (NILs). NILs were developed as part of previous 

work from Kansas State University’s wheat breeding program to study the effect of cytoplasmic 

diversity on traits related to heat tolerance during the grain filling phase. In order to impose heat 

stress under field conditions in 2017, heat tents were placed over the wheat plants ten days after 

initial flowering began and remained until maturity. Temporal physiological measurements were 

recorded throughout the grain filling period; they were chlorophyll concentration and 

fluorescence. Number of days to physiological maturity was recorded as the days after stress 

imposition, and until maturity for both heat stress and control plots. Yield and yield components 

were recorded upon grain ripeness (Feekes 11.4). Chlorophyll (Chl.) index and effective 

quantum yield of PSII (QY-Lss) exhibited a reduction when exposed to heat stress over time 

compared to control plants, indicating early senescence. Both the breeding lines and NILs varied 
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in their performances under heat stress; some lines showed signs of heat resilience and 

experienced little to no drop off in heat stress conditions compared to control, while other lines 

showed a significant decline in yield due to heat stress. Among the breeding lines, KS070736K-1 

and KS070717M-1 showed greater resilience to stress, while the NILs Stanof X060714 and 

Jagger X060724 were more resilient than their alloplasmic counterparts, suggesting the wheat 

cytoplasm is more favorable than the alien cytoplasm in these backgrounds. Genetic diversity 

documented through phenotyping these ten advanced wheat breeding lines and NILs for heat 

stress response under field conditions can aid in improving the heat tolerance and sustainment of 

Kansas cultivars even through future climatic changes. 

 

 Introduction 

Heat stress is a major environmental constraint for wheat production and reduces both 

grain yield and quality (Bhullar and Jenner, 1985; Wardlaw et al., 2002). Wheat is particularly 

sensitive to heat stress during the reproductive and grain filling stages (Wollenweber et al., 2003) 

and prefers temperatures ranging from 12 to 24°C for optimum grain development (Farooq et al., 

2011). Temperatures exceeding 30°C during the grain fill period have been shown to induce 

significant yield loss (Saini and Aspinall, 1982; Stone and Nicolas, 1994; Tack et al., 2015). 

Nearly all of the wheat grown in temperate regions, which accounts for 40% of global 

production, is affected by terminal heat stress (Reynolds, 2001). Winter wheat in Kansas is often 

subjected to temperatures >30°C during the grain fill period which coincides with the late spring 

months of May and June. Warming scenarios are predicted to worsen with increased frequency 

and magnitude of heat stress exposure, increasing the likelihood of greater economic losses due 

to reduced yield and quality for Kansas wheat producers. Thus, it is critical to explore diverse 
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wheat genetics for post-flowering heat resilience in order to improve current and future wheat 

varieties’ performance under warming temperatures.  

 Heat stress during grain fill ultimately leads to a decline in overall yield. There are 

several specific physiological processes, which are impacted by heat stress, that lead to this 

outcome. Days to physiological maturity, flag leaf photosynthesis, leaf Chl. index, stomatal 

conductance, and canopy temperature depression were shown to be effected by heat stress, and 

thus, a lower grain yield was observed (Reynolds et al., 1994). Nearly all previous studies with 

the objective of quantifying the impact of post-flowering heat stress in wheat have been 

conducted using controlled environment facilities (Stone and Nicolas, 1994; Gibson and Paulsen, 

1999; Spiertz et al., 2006). Due to lack of field based phenotyping facilities, studies performed 

under field conditions commonly used a staggered sowing approach to ensure that the crop was 

exposed to heat stress during critical developmental stages (Viswanathan and Khanna-Chopra, 

2001). While this approach increases the probability of heat stress exposure during the post-

flowering stage of the crop, it is limited in the fact that the crop is subjected to a significant 

change in environmental conditions compared to the conditions for which it has been bred 

(Bahuguna et al., 2015).  

 Our previous heat tolerance phenotyping study (Chapter 2) with seven prominent Kansas 

cultivars has indicated that only two of seven cultivars were found to be moderately heat tolerant 

while the remaining cultivars all exhibited sensitivity to heat stress. This lack of tolerance for 

heat stress among these recently bred varieties emphasizes the need to further explore genetic 

variability for heat resilience in wild wheat accessions and land races for further incorporation 

into ongoing wheat breeding programs. Taking into consideration the current limitations of 

wheat production in heat stressed environments, ten breeding lines from Kansas State 
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University’s Wheat Breeding Program were chosen. These ten lines have shown potential for 

heat resilience in preliminary growth chamber studies and were selected for heat tolerance 

phenotyping under field based heat tents. Of the ten selected lines, four of the genotypes are 

advanced breeding lines while six remaining are near isogeneic lines NILS developed by 

transferring euplasmic nuclear genomes of different wheat lines into the alloplasmic lines in 

order to study the cytoplasmic effects of heat tolerance (Talukder et al., 2015). Two alloplasmic 

lines (PI 590259 and PI 590261) developed by Allan (1997) are the sources of cytoplasm for the 

NILs used in our experiment. This experiment also includes NILs developed by backcrossing  

euplasmic lines ‘U1275’ (also informally named ‘Stanof’)  and ‘Jagger’ as recurrent parents 

(male) backcrossed with the alloplasmic lines (Talukder et al., 2015). Testing performed by 

Talukder et al., (2015) on the NIL population in controlled environment settings attributed 

increased Chl. index and QY-Lss of wheat under post-flowering heat stress to cytoplasmic 

variation. These results support other studies which suggest that cytoplasm plays an important 

role in physiological and agronomic crop responses to heat stress exposure. For example, 

research conducted by Roach and Wulff (1987) discovered a cytoplasmic maternal genetic effect 

resulted from plastid and mitochondria genomes being directly transferred from the maternal 

parent to the offspring during ovulation. Improved heat tolerance, among numerous other 

agronomic traits, is also documented as influenced by cytoplasm (Shonnard and Gepts, 1994). 

In the current study, the ten breeding lines were phenotyped for post-flowering heat stress 

tolerance using field based heat tents to address the following objectives: 1) Determine the level 

of genetic variability for post-flowering heat resilience in promising breeding lines and NILs , 2) 

Assess the physiological and agronomic response during post-flowering heat stress exposure in 
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breeding lines and NILs under field based heat tents, and 3) Identify the breeding lines with the 

greatest heat resilience. 

 Materials and Methods  

Two field experiments were carried out during the 2015-2016 and 2016-2017 growing 

seasons at Kansas State University, Agronomy Research Farm at Manhattan (39 11’N, 96 35’W). 

Soil type was a Kennebec silt loam. Soil samples were collected at the 0-15 cm surface and 15-

60 cm subsurface prior to sowing in October 2015 in order to analyze organic matter (OM), pH, 

P, K, N [ammonia (NH3) and nitrate (NO3)], S, and Cl. Each sample was composed of 15 

individual soil cores representing the experimental area. The experiments included four advanced 

breeding lines and six cytoplasmic NILs developed by the University’s Wheat Breeding program 

(Tables 4.1 and 4.2); all lines were grown in two temperature treatments – control and heat stress 

– with four replications.  

In the 2015-2016 experiment, a limited amount of seed allowed for only a single row to 

be planted within each treatment replication. After planting, irregular plant stands, due to poor 

emergence, were also observed. Physiological and yield data were obtained. However, due to 

inconsistent plant spacing within rows and between replications, it became difficult to obtain 

sound and consistent data. Thus, we deemed the data to be unreliable and it is not included as 

part of this chapter. Grain harvested from the control treatments in the 2015-2016 experiment 

was used as seed for planting the 2016-2017 experiment.  

Plot preparation prior to planting included multiple tillage passes of a disc, cultivator, and 

harrow in the summer/fall of 2016 to prepare the seedbed. The 2016-2017 experiment was 

planted using a tractor (5055E, John Deere, Moline, IL) equipped with RTK guidance (Trimble 

FMX, Trimble Inc., Sunnyvale, CA) and a grain drill (3P605NT, Great Plains Mfg., Salina, KS) 
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modified for research plots (Kincaid Equipment Mfg., Haven, KS). Planting occurred on 27 Oct. 

2016. Di-Ammonium Phosphate (18-46-0) was applied at a rate of 14.5 kg N ha-1 and as 39 kg 

P2O5 ha-1 as starter at the time of planting. The seed rate was 60 seeds per meter; row spacing 

was 19 cm and row length was 1.22 m. Three rows of each genotype were planted in each 

replication. The grain drill was six rows wide, thus two genotypes were planted side by side in 

each of the 1.22 m blocks. Experimental design is a randomized complete block design with 

split-plot temperature treatment structure; temperature was the main plot factor, and genotype the 

subplot factor. 

Weed control in the wheat was accomplished using the labeled rate of a post-emergence 

herbicide along with hand weeding as necessary to minimize weed pressure throughout the 

growing season. Herbicide was applied with an all-terrain vehicle mounted boom sprayer at 

recommended carrier volume rates. Plots received 0.75 oz/ac FINESSE [2-Chloro-N-[(4-

methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide] [4,5-Dihyd   ro-3-

methoxy-4methyl-5-oxo-N-[[2-(trifluoromethoxy)phenyl]sulfonyl]-1H-1,2,4-triazole-1-

carboxamide, sodium salt] on 9 Dec. 2016 as a post-emergent spray. 

 The recommended rate of 56 kg N ha-1 was top dressed as urea (46-0-0) to the wheat 

plots on 3 Mar. 2017 using a variable rate drop spreader (Gandy Company, Owatonna, 

MN). Fungicide was applied to the plots with a handheld spray boom and backpack sprayer at 

flag leaf (Feekes 10) and mid grain fill (Feekes 11.2) as preemptive care for rust disease. All 

applications were applied at recommended carrier volume rates. Plots also received a total of 

9 fl oz/ac of the fungicide TWINLINE [pyraclostrobin: (carbamic acid, [2-[[[1-(4-chlophenyl)-

1H-pyrazol-3-yl]oxy]methyl]phenyl]methoxy-,methyl ester) metconazole: 5-[((4-

chlorophenyl)methyl]-2,2-dimethyl-11(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol].   
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In order to impose post-flowering heat stress in the field, custom built “heat tents” were 

manually placed on the plots ten days after approximately 50% of the wheat varieties had begun 

anthesis (Feekes 10.5.4). The heat tents were constructed from a galvanized steel framework and 

covered with a clear polyethylene film; a moveable vented overhead flap (0.6 m) was 

constructed at the roof peak (Image 4.1). 

The temperature inside the heat tents was dependent upon solar radiation and was 

partially regulated by a thermostat indefinitely set at 35°C. When the temperature inside the heat 

tents rises above the desired temperature (35°C), the vented flap, which runs parallel to the peak 

of the roof, automatically opened to allow open air circulation and temperature moderation. Once 

the temperature falls below that which was desired (35°C), the flap automatically closed (Prasad 

et al., 2015; Sunoj et al., 2017). Temperature, relative humidity, and photosynthetic active 

radiation (PAR) were recorded for the duration of the experiment inside all four heat tents as 

well as an outside recording of the ambient (control) conditions using WatchDog 1650 Micro 

Station sensors (Spectrum Technologies, Inc., Aurora, IL). The data loggers were mounted on a 

metal post with appropriate shields to protect from direct sunlight, and placed 5 cm above the 

canopy level (Image 4.1).     

Data measurements 

Physiological measurements 

Physiological measurements were taken temporally (three times per week on alternate 

days) in all lines, beginning four days after heat treatment commenced (Feekes 10.5.4), and until 

complete flag leaf senescence, which preceded physiological maturity (Feekes 11.3). Chl. index 

was measured using a handheld self-calibrating SPAD chlorophyll meter (Model 502, Spectrum 
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Technologies, Plainfield, IL). Self-calibrating SPAD chlorophyll meters measure leaf greenness 

and are correlated to Chl. index (Markwell, 1995). Chl. fluorescence measurements were 

collected using a portable handheld fluorometer, FluorPen (FluorPen FP 100, Photon System 

Instruments, Ltd., Brno, Czech Republic).  Saturating light (intensity approximately 3,000 µmol 

(photons) m-2 s-1) and measuring light (intensity approximately. 0.09 µmol (photons) m-2 s-1) 

were used to measure maximal fluorescence yield (FM`) and actual fluorescence yield (F) of light 

adapted samples, respectively. QY-Lss was calculated using formula QY = (FM`-F)/FM` = 

ΔF/FM` (Genty et al., 1989). Chl. fluorescence is a measure of active PSII receptors and is 

correlated to both photosynthetic leaf health and heat stress (Maxwell and Johnson, 2000; Ristic 

et al., 2007). Both Chl. index and Chl. fluorescence measurements were recorded as an average 

of three points along the flag leaf of the main tiller (near culm, mid-sheath, and near the tip) on 

the adaxial surface of the leaf (Green, 2016).  

Agronomic traits 

Physiological maturity (Feekes 11.3) was noted for each genotype per temperature 

treatment. Wheat was hand harvested upon physiological maturity (Feekes 11.3) on 15 and 16 

Jun. 2017. The plants were dried in a forced-air dryer at 45°C for 72 hours, then weighed for 

total above ground biomass. In each treatment, a 1.0 m length of row was harvested from the 

center row of the three row plots. The harvested samples were air dried, dry weights recorded, 

and samples threshed using a LD 180 laboratory thresher (Wintersteiger, Ried im Innkreis, 

Austria). Thousand kernel weight (TKW) was counted using an electronic seed counter (Key-

Mat Equipment Co., Inc. Batavia, IL) and weights were recorded. Harvest index was calculated 

as the ratio of dry weight of harvested grain to dry weight of total above ground biomass. Shoot 

weight was determined as total above ground biomass minus grain weight.  
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Statistical analysis 

The experimental design was a split plot randomized complete block design with 

temperature as the main plot factor and genotype as sub-plot factor, and with four replications. 

Dissimilar time of measurements was considered as sub-sub plot factor for Chl. index and Chl. 

fluorescence data. Analysis of variance for all of the measured parameters was performed using 

PROC GLM procedure in SAS software (Version 9.4, SAS Institute Inc., Cary, NC). Means 

were separated using LSD (least significant difference) test at p=0.05. 

 

 Results 

Microclimatic conditions and phenology 

  On average, the daytime mean temperature inside the heat tents was 6oC warmer than 

outside ambient temperatures, beginning from ten days after stress (DAS) and until physiological 

maturity (Fig. 2.1B). However, nighttime mean temperatures, both inside and outside the heat 

tents, were similar throughout the experimental period (Fig. 2.1A and Fig. 2.1B). This indicated 

that the field based heat tents increased only day time temperatures inducing high day 

temperature stress, similar to the previous work from our lab (Sunoj et al., 2017), with results  

not confounded by high night temperature. Relative humidity was not significantly different 

between heat tents and ambient control environments for either day or night. The average 

relative humidity during daytime was approximately 50 and 54% inside and outside the heat 

tents, respectively. At night, the average relative humidity was approximately 74 and 70% inside 

and outside the heat tents, respectively. The average PAR transmitted inside heat tents at canopy 

level was about 800 µmol m-2 s-1 while ambient conditions PAR was approximately 1000 µmol 

m-2 s-1. Heat stress induced by warmer temperatures within the heat tents prompted earlier 
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maturity in all lines by reducing the grain filling duration as compared to the control. Among all 

tested lines, KS 070717 M-1, KS 070729 K-26, PI 590259 X060714, and Jagger X060724 

exhibited the greatest reduction in grain filling duration, each exhibiting a four day reduction 

(Fig. 4.1). 

Grain yield and related traits 

Grain yield was not significantly affected by either temperature or line (Table 4.3). On 

average, grain yield was reduced by 4.3% under heat stress. Highest grain yield under ambient 

control conditions was recorded in PI 590259 X060714, followed by Jagger X060725 and 

KS070725M-3. Under heat stress, KS070725M-3 recorded the highest yield among all lines, 

followed by KS070736K-1 and NIL Stanof X060714 (Fig. 4.2). PI 590259 X060714 and Jagger 

X060725 recorded the most significant decline in yield due to heat stress at 34 and 13%, 

respectively (Fig. 4.2). Although absolute grain yield under control conditions was 

comparatively lower, KS070729K-1 followed by KS070725M-3 recorded 10 and 9% greater 

grain yield under heat stress compared to their absolute grain yield performance in the control 

environment (Fig. 4.2). Harvest index (HI) expressed statistically significant variation for 

temperature (p< 0.01) and genotype (p<0.001), but with no treatment by line interaction. On 

average, a 4.5% reduction in HI was noticed among all lines exposed to heat stress. NIL PI 

590259 X060714 had the highest decline in HI at 18% (Table 4.4). Thousand kernel weight 

(TKW) varied significantly between temperature and lines, but there was no significant 

temperature by line interaction (Table 4.3). Among all lines, five of the ten recorded significant 

reductions in TKW; and across all lines, TKW declined 2.9% under heat stress compared to 

control. PI 590259 X060714 exhibited highest reduction (8%) in TKW among all lines under 

heat stress followed by Jagger X060725, which recorded a 6.5% reduction (Table 4.4).  
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Physiological traits  

Chl. index was significantly affected by temperature (p<0.01), line (p<0.001), DAS 

(p<0.001), and their interaction effects (p<0.001) (Table 4.3). Chlorophyll index maintained 

consistent levels among all genotypes until 12 DAS in the control and 10 DAS in the heat tents 

(Fig 4.3). Rapid reductions in chlorophyll index were noticed at 14 DAS in both treatments. In 

approximation, genotypes exposed to the heat stress treatment reached complete senescence at 

19 DAS, while those exposed to the ambient temperature treatment did not reach complete 

senescence (with very low chlorophyll index) until 24 DAS.   

QY-Lss was significantly impacted by temperature (p<0.01), line (p<0.001), DAS 

(p<0.001), and their interaction effects (Table 4.3). QY-Lss remained relatively stable among 

genotypes in both treatments until 14 DAS, at which time most genotypes exposed to the heat 

stress treatment began experiencing a rapid decline. The control treatment growing under 

ambient temperatures continued to show consistent QY-Lss until 16 DAS in most lines. Lines 

KS070729K-26 and KS070736K-1 exhibited a gradual decline and a less drastic QY-Lss 

reduction compared to other lines in both control and heat stress treatments compared to other 

lines (Fig. 4.4 B and D).  

 

 Discussion 

While it is believed that current wheat varieties adapted to Kansas and the southern Great 

Plains possess a certain base level of heat tolerance, research conducted by Barkley et al. (2014) 

suggests that wheat yields in Kansas are negatively impacted by heat stress. For this reason, 

identifying alternate genetic sources of heat stress resilience is both crucial and timely. Most of 
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the published research regarding post-flowering heat stress in wheat has been carried out under 

controlled environment facilities (Stone and Nicolas, 1994; Gibson and Paulsen, 1999; Spiertz et 

al., 2006). Thus, research regarding agronomic responses of wheat genotypes grown under field 

conditions and exposed to heat stress during the grain fill period is lacking. Previous work by 

Talukder et al. (2015) on the development and research of NILs, as well as other breeding lines, 

has identified genotypes that display resilience to heat stress in controlled environment settings. 

Testing the same promising genotypes under field conditions will aid in validating the true level 

of heat resilience these lines possess when exposed to post-flowering heat stress under realistic 

field conditions.  

 In the present study, the impact of heat stress on grain yield did not induce significant 

change in many lines, but did reduce yield by 34% in one NIL: PI 590259 X060714. The large 

yield reduction observed in PI 590259 X060714 aligns with its performance measured by other 

yield parameters such as shoot weight and HI; this NIL’s poor performance is also apparent as it 

led all genotypes in percent reduction by 9% reduction in shoot weight and 18% reduction in HI 

respectively under heat stress. While these reductions are extreme, it should be noted that PI 

590259 X060714 statistically tied for the highest overall TKW among all genotypes under both 

control and heat stress treatments. This phenomenon seemed to be reoccurring in other 

genotypes. To further explain, the highest performing entries under control treatments are also 

the most detrimentally affected by heat stress, whereas middle and lower performing genotypes 

tended to record much lower percent reduction in TKW. Among NILs, Stanof X060714 and 

Jagger X060724 emerged as heat resilient lines, each recording less than a 1% change in grain 

yield between temperature treatments. Additionally, their performance in other agronomic traits 

such as TKW and HI are top-ranking when compared to all other lines studied. The source of 
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heat tolerance in Jagger X060724 may be from the “Jagger” in the pedigree; this is its source of 

cytoplasm, as Jagger is understood to be moderately heat tolerant. On the contrary, Stanof, which 

is the source of cytoplasm in Stanof X060714, has previously been known for its heat 

susceptibility. 

 Among the four breeding lines included in the ten genotypes, KS070736K-1 was least 

affected by post flowering heat stress when considering yield, TKW, and HI. This genotype’s 

improved performance could be attributed in part to its long grain fill duration. KS070736K-1 

recorded the second longest grain fill duration under both heat stress and controlled 

environments when averaged among all genotypes. Its reduction in grain fill duration under the 

heat stress treatment was three days, which is equal to the average of treatment group. Genetic 

background of KS070736K-1 is derived from ‘Proteinka’ which is a known source of heat 

tolerance among wheat genotypes (Ristic et al., 2007). 

 Early senescence caused by heat stress was variable among genotypes. Physiologically, 

the rate of decline in Chl. index was less drastic in the heat tolerant line KS070736K-1 as 

opposed to KS070717M-1, which declined rapidly and experienced large reductions in TKW and 

HI during heat stressed treatment. However, increased rate of decline in Chl. index cannot be 

used to explain the significant reduction in TKW of KS070725M-3 as it displayed a similar rate 

of decline in comparison to KS070736K-1 (Fig. 3). The rate of Chl. index decline was 

considerably less variable among the six NIL genotypes compared to the four breeding lines. 

Thus, determining a correlation between rate of senescence and agronomic performance proves 

challenging warrants further testing.   

 A rate of decline similar to Chl. index was noticed for the Chl. fluorescence measurement 

QY-Lss among lines; however, more variability exists between the wheat lines compared to Chl. 
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index. Among the breeding lines, the performance of KS070736K-1 and KS070729K-26 

indicated increased ability to retain QY-Lss during the final seven days of the grain fill period 

compared to KS070717M-1 and KS070725M-3, which exhibit a more drastic decline. Now 

focusing on the NILs, it is interesting to note that PI 590259 X060714 – the genotypic leader in 

reduction under heat stress in all agronomic measurements – had the slowest reduction and 

maintained the highest level of QY-Lss throughout the last seven days of grain fill. However, 

Jagger X060725 had the sharpest decline in QY-Lss over the final four days of grain fill and was 

also among the lowest performing lines when considering TKW, HI, and yield under heat stress.   

 In conclusion, there is a considerable range of performance among the ten experimental 

lines tested in this field experiment. When comparing to the commercial varieties tested in 

chapter two, both the breeding lines and NILs had a much lower relative reduction in grain yield, 

harvest index and thousand kernel weight when exposed to heat stress (Table 4.5). This indicates 

that the breeding lines possess desirable traits and could be used as heat tolerant donors within 

the Kansas State Wheat Breeding Program. The experimental breeding line KS070736K-1 and 

KS070717M-1 exhibited promising potential as genetic sources of heat tolerance when 

considering both the agronomic and physiological traits. Among the NILs, Stanof X060714 and 

Jagger X060724 demonstrated greater resilience under heat stress, indicating their potential to be 

considered as heat tolerant donors for breeding purposes. The findings from this study correlate 

with the previous work done by Talukder et al. (2015), which examined the NILs under 

controlled environment settings. In order to overcome the current and future realized wheat yield 

losses due to post-flowering heat stress, it is of utmost importance to integrate greater heat 

resilient genetics into ongoing wheat breeding programs. Current efforts to enhance our future 
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cultivars’ resilience to heat stress will help to ensure sustainability of wheat production not only 

in Kansas and across the Great Plains, but globally as well.   
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Table 4.1 Pedigree and other characteristics of four breeding lines phenotyped for heat 

tolerance in 2017 field experiment 

Breeding Lines 

Line Pedigree Characteristics 

 

KS070717M-1 

 

 

KV RIL73/KS020439M~2//KS010957-9 

 

KV: Karl/Ventnor RIL73 

RIL: Recombinant inbred line 

Ventnor: Australian hard white winter                                   

wheat known as heat tolerant 

 

 

KS070725M-3 

 

 

KV RIL73/Karl92//KS06O3A~58 

 

KV: Karl/Ventnor RIL73 

RIL: Recombinant inbred line 

Karl 92: known to be heat sensitive, developed by 

Kansas State University 

Ventnor: Australian hard white winter,                

heat tolerant 

 

KS070729K-26 

 

 

Jefimija/KS010525-1-1//HV9W03-1601R-2 

 

 

Jefimija: spring wheat, known to be heat tolerant 

 

 

KS070736K-1 

 

 

Proteinka/KS020446TM~1//KS06O3A~6 

 

 

Proteinka: known to be heat tolerant 
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Table 4.2 Pedigree, origin, and other characteristics of six cytoplasmic near isogenic lines (NIL) phenotyped for heat tolerance in 2017 field 

experiment 

Near Isogenic Lines 

Line Pedigree Origin 
Cytoplasm 

(female) 
Characteristics 

 

PI 590259 X060714 

 

PI590259/TAM-107//5*Stanof 

 

 

X060714 

 

 

PI 590259 

 

PI 590259: Alloplasmic line developed from Stephens background (Allan 1997)  

PI 590259 pedigree:  

Aegilops juvenalis/6*CHR//9*SK(NDMI)/3/7*SPN 

SPN: Stephens, soft white winter cultivar widely grown in the U.S. Pacific Northwest 
 

 

Stanof X060714 

 

PI590259/TAM-107//5*Stanof 

 

 

X060714 

 

 

Stanof 

 

PI 590259: Alloplasmic line developed from Stephens background (Allan 1997)  

PI 590259 pedigree:  

Aegilops juvenalis/6*CHR//9*SK(NDMI)/3/7*SPN 

SPN: Stephens, soft white winter cultivar widely grown in the U.S. Pacific Northwest 

Stanof: moderately heat susceptible (also known as U1275) 

 

 
PI 590259 X060724 

 

 PI 590259/KARL 92//5*Jagger  

 

 

X060724 

 

 

PI 590259 

 

PI 590259: Alloplasmic line developed from Stephens background (Allan 1997)  

PI 590259 pedigree:  

Aegilops juvenalis/6*CHR//9*SK(NDMI)/3/7*SPN 

SPN: Stephens, soft white winter cultivar widely grown in the U.S. Pacific Northwest 
 

 

Jagger X060724 

 

 PI 590259/KARL 92//5*Jagger  

 

 

X060724 

 

 

Jagger 

 

PI 590259: Alloplasmic line developed from Stephens background (Allan 1997)  

PI 590259 pedigree:  

Aegilops juvenalis/6*CHR//9*SK(NDMI)/3/7*SPN 

SPN: Stephens, soft white winter cultivar widely grown in the U.S. Pacific Northwest 

Jagger: moderately heat tolerant 

 

 

PI 590261 X060725 

 

PI 590261/6*Jagger 

 

 

X060725 

 

 

PI 590261 

 

PI 590261: Alloplasmic line developed from Stephens background (Allan 1997)  

PI 590261 pedigree:  

Aegilops cylindrica/CHR//10*SK(NDM2)/3/7*SPN 

SPN: Stephens, soft white winter cultivar widely grown in the U.S. Pacific Northwest 

 
 

Jagger X060725 

 

 

 

  

 

PI 590261/6*Jagger 

 

 

X060725 

 

 

Jagger 

 

PI 590261: Alloplasmic line developed from Stephens background (Allan 1997)  

PI 590261 pedigree:  

Aegilops cylindrica/CHR//10*SK(NDM2)/3/7*SPN 

SPN: Stephens, soft white winter cultivar widely grown in the U.S. Pacific Northwest 

Jagger: moderately heat tolerant 
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Table 4.3 Probability of effects of temperature (T), line (L), days after stress (DAS), T × L, T × DAS, L × DAS, and T × L × 

DAS interactions on physiological and yield parameters in 2017 field experiment  

 

 
Variables (Pr>F) 

Main effect of 

temperature 

Traits T L T × L DAS 
T × 

DAS 

L × 

DAS 

T × 

V×DAS 
Control Heat stress 

Chlorophyll index (SPAD 

units)  

<0.05 <0.001 <0.05 <0.001 <0.001 <0.001 <0.001 36.2a 34.1b 

Effective quantum yield 

(QY-Lss) 

<0.01 <0.001 0.059 <0.001 <0.001 <0.001 <0.001 0.48a .43b 

Shoot dry weight (g m-1) 0.858 <0.01 0.757 - - - - 133.0a 138.3a 

Thousand kernel weight (g) 0.05 <0.001 0.108 - - - - 34.3a 33.3a 

Grain yield (g m-2) 0.219 0.061 0.070 - - - - 474.6a 453.0a 

Harvest index <0.01 <0.001 0.211 - - - - 0.40a 0.39b 
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Table 4.4 Shoot weight, harvest index, and thousand kernel weight of wheat breeding and NILs grown in 2017 field 

experiment exposed to control and heat stress treatments  

Field Experiment 2017 

 Shoot weight (g m-1) Harvest index Thousand kernel weight  (g) 

Line Control Heat stress Control Heat Stress Control Heat Stress 

KS070717M-1 125 ± 13 119 ± 20 0.42 ± 0.03 0.39 ± 0.02  34.5 ± 1.1 33.0 ± 0.9 

KS070725M-3 135 ± 11  141 ± 8 0.43 ± 0.01  0.41 ± 0.01 39.2 ± 0.7  36.7 ± 0.2 

KS070729K-26 136 ± 2 154 ± 24 0.36 ± 0.01 0.35 ± 0.01 29.6 ± 0.8  29.3 ± 0.5 

KS070736K-1 121 ± 5 147 ± 7 0.41 ± 0.01 0.39 ± 0.01 35.2 ± 1.2 35.8 ± 0.3 

PI 590259 X060714 165 ± 17 150 ± 12 0.39 ± 0.02 0.32 ± 0.01  39.9 ± 1.0  36.7 ± 1.3 

Stanof X060714 153 ± 25 154 ± 9 0.38 ± 0.02 0.38 ± 0.01 37.1 ± 0.2 35.0 ± 0.6 

PI 590259 X060724  128 ± 10  126 ± 5 0.39 ± 0.02 0.38 ± 0.01 33.9 ± 0.6 34.0 ± 0.6 

Jagger X060724 119 ± 6 116 ± 9  0.42 ± 0.01  0.43 ± 0.01 31.6 ± 0.5 32.0 ± 0.5 

PI 590261 X060725 108 ± 2  115 ± 2  0.42 ± 0.01 0.41 ± 0.01 29.9 ± 0.7 29.7 ± 0.4 

Jagger X060725 142 ± 18 135 ± 7 0.42 ± 0.01 0.40 ± 0.01 32.5 ± 0.9 30.4 ± 0.5 

5% LSD (T) - 0.01 0.59 

5% LSD (L) 21.26 0.02 1.31 

5% LSD (T×L) - - - 
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Table 4.5 Comparison of all 17 genotypes tested in the 2017 field experiment, including 

seven Kansas varieties and ten breeding lines, for grain yield, harvest index, and thousand 

kernel weight 

 

 Grain yield (g m-2) Harvest index Thousand kernel weight (g) 

Variety  Control  Heat Stress  Control Heat Stress Control Heat Stress 

WB-Cedar 615.0 ± 58.1 488.2 ± 7.6 0.48 ± 0.004 0.45 ± 0.003 39.0 ± 0.7 35.9 ± 0.5 

Joe 517.8 ± 35.9 483.7 ± 31.0 0.43 ± 0.003 0.39 ± 0.006 36.9 ± 0.5 34.5 ± 0.3 

WB4458 514.3 ± 37.3 468.8 ± 22.8 0.43 ± 0.006 0.42 ± 0.004 36.2 ± 0.4 34.4 ± 0.4 

Zenda 417.6 ± 20.1 399.2 ± 18.8 0.40 ± 0.006 0.37 ± 0.004 33.4 ± 0.3 32.5 ± 0.3 

SY Monument 535.3 ± 19.7 486.2 ± 21.5 0.44 ± 0.009 0.43 ± 0.009 34.6 ± 0.3 33.8 ± 0.6 

Larry 546.6 ± 26.6 508.4 ± 22.6 0.45 ± 0.005 0.44 ± 0.004 36.3 ± 0.3 34.7 ± 0.3 

Everest 515.2 ± 33.4 395.3 ± 11.2 0.45 ± 0.022 0.40 ± 0.007 32.6 ± 0.1 30.2 ± 0.3 

KS070717M-1 465.4 ± 1.2 470.1 ± 4.2 0.42 ± 0.03 0.39 ± 0.02 34.5 ± 1.1 33.0 ± 0.9 

KS070725M-3 534.0 ± 6.0 508.1 ± 4.2 0.43 ± 0.01 0.41 ± 0.01 39.2 ± 0.7 36.7 ± 0.2 

KS070729K-26 403.9 ± 1.3 441.2 ± 4.4 0.36 ± 0.01 0.35 ± 0.01 29.6 ± 0.8 29.3 ± 0.5 

KS070736K-1 445.1 ± 2.0  488.1 ± 2.7 0.41 ± 0.01 0.39 ± 0.01 35.2 ± 1.2 35.8 ± 0.3 

PI 590259 X060714 566.6 ± 18.7 372.4 ± 7.3 0.39 ± 0.02 0.32 ± 0.01 39.9 ± 1.0 36.7 ± 1.3 

Stanof X060714 490.6 ± 9.2 486.6 ± 4.6 0.38 ± 0.02 0.38 ± 0.01 37.1 ± 0.2 35.0 ± 0.6 

PI 590259 X060724 428.5 ± 11.3 413.0 ± 4.1 0.39 ± 0.02 0.38 ± 0.01 33.9 ± 0.6 34.0 ± 0.6 

Jagger X060724 454.7 ± 6.3 458.7 ± 6.4 0.42 ± 0.01 0.43 ± 0.01 31.6 ± 0.5 32.0 ± 0.5 

PI 590261 X060725 403.8 ± 3.9 421.0 ± 4.5 0.42 ± 0.01 0.41 ± 0.01 29.9 ± 0.7 29.7 ± 0.4 

Jagger X060725 541.3 ± 14.7 471.3 ± 5.8 0.42 ± 0.01 0.40 ± 0.01 32.5 ± 0.9 30.4 ± 0.5 

5% LSD (T) 24.5 0.011 0.852 

5% LSD (L) 67.5 0.025 1.416 

5% LSD (T×L) 90.6 0.031 1.785 
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Figure 4.1 Days to physiological maturity (d) recorded from the day of stress imposition 

until maturity in four breeding and six cytoplasmic NILs grown in 2017 field experiment  
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Figure 4.2 Grain yield of four breeding and six near isogenic wheat lines grown in 2017 

field experiment under control and heat stress treatments 
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Figure 4.3 Chlorophyll index (SPAD units) in flag leaves of four breeding lines (A. Control 

and B. Heat stress) and six NILs (C. Control and D. Heat stress) grown in 2017 field 

experiment; at different time intervals following control and heat stress exposure  
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Figure 4.4 Effective quantum yield (QY-Lss) in flag leaves of four breeding lines (A. 

Control and B. Heat stress) and six NILs (C. Control and D. Heat stress) grown in 2017 

field experiment, at different time intervals following control and heat stress exposure 

 

 

 

 

 

 

E
ff

ec
ti

ve
 q

u
an

tu
m

 y
ie

ld
 (

Q
Y

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

KS 070717 M-1 

KS 070725 M-3 

KS 070729 K-26 

KS 070736 K-1 

A. Breeding lines - Control 

Day after stress imposition (d)

10 12 14 16 18 20 22

E
ff

ec
ti

ve
 q

u
an

tu
m

 y
ie

ld
 (

Q
Y

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

KS 070717 M-1 

KS 070725 M-3 

KS 070729 K-26 

KS 070736 K-1 

B. Breeding lines - Heat stress

PI 590259 X060714 

Stanof X060714 

PI 590259 X060724 

Jagger X060724 

PI 590261X060725 

Jagger X060725 

C. NIL - Control

Day after stress imposition (d) 

10 12 14 16 18 20 22

PI 590259 X060714 

Stanof X060714 

PI 590259 X060724 

Jagger X060724 

PI 590261 X060725 

Jagger X060725 

D. NIL - Heat stress



120 

 References  

Allan, R.E. (1997). Registration of 10 pairs of alloplasmic and euplasmic Stephens wheat 

germplasm. Crop Science, 37(3), 1033–1034.  

Bahuguna, R.N., Jha, J., Pal, M., Shah, D., Lawas, L.M., Khetarpal, S., and Jagadish, K.S.V. 

(2015). Physiological and biochemical characterization of NERICA-L-44: a novel source 

of heat tolerance at the vegetative and reproductive stages in rice. Physiologia Plantarum, 

154(4), 543–559.  

Barkley, A., Tack, J., Nalley, L.L., Bergtold, J., Bowden, R., and Fritz, A. (2014). Weather, 

disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011. 

Agronomy Journal, 106(1), 227–235.  

Bhullar, S.S., and Jenner, C.F. (1985). Differential responses to high temperatures of starch and 

nitrogen accumulation in the grain of four cultivars of wheat. Functional Plant Biology, 

12(4), 363–375.  

Farooq, M., Bramley, H., Palta, J.A., and Siddique, K.H.M. (2011). Heat stress in wheat during 

reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491–507. 

Gibson, L. R., and Paulsen, G. M. (1999). Yield Components of Wheat Grown under High 

Temperature Stress during Reproductive Growth. Crop Science, 39(6), 1841–1846.  

Green, A.J. (2016). Abiotic stress tolerance from the tertiary gene pool of common wheat. 

Retrieved from http://krex.k-state.edu/dspace/handle/2097/32746 

Markwell, J., Osterman, J.C., and Mitchell, J.L. (1995). Calibration of the Minolta SPAD-502 

leaf chlorophyll meter. Photosynthesis Research, 46(3), 467–472.  

Maxwell, K., and Johnson, G.N. (2000). Chlorophyll fluorescence—a practical guide. Journal of 

Experimental Botany, 51(345), 659–668.  

Reynolds, M.P. (2001). Application of physiology in Wheat Breeding. CIMMYT. 

Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I., and Fischer, R.A. (1994). Physiological 

and morphological traits associated with spring wheat yield under hot, irrigated 

conditions. Functional Plant Biology, 21(6), 717–730.  

Ristic, Z., Bukovnik, U., and Prasad, P.V.V. (2007). Correlation between heat stability of 

thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop 

Science, 47(5), 2067–2073.  

Roach, D.A., and Wulff, R.D. (1987). Maternal effects in plants. Annual Review of Ecology and 

Systematics, 18(1), 209–235.  

Saini, H.S., and Aspinall, D. (1982). Abnormal sporogenesis in wheat (Triticum aestivum L.) 

induced by short periods of high temperature. Annals of Botany, 49(6), 835–846.  

Shonnard, G.C., and Gepts, P. (1994). Genetics of heat tolerance during reproductive 

development in Common Bean. Crop Science, 34(5), 1168–1175.  

Spiertz, J.H.J., Hamer, R.J., Xu, H., Primo-Martin, C., Don, C., and van der Putten, P.E.L. 

(2006). Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality 

traits. European Journal of Agronomy, 25(2), 89–95.  



121 

Stone, P.J., and Nicolas, M.E. (1994). Wheat cultivars vary widely in their responses of grain 

yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology, 

21(6), 887–900.  

Tack, J., Barkley, A., and Nalley, L.L. (2015). Effect of warming temperatures on US wheat 

yields. Proceedings of the National Academy of Sciences, 112(22), 6931–6936.  

Talukder, S.K., Prasad, P.V.V., Todd, T., Babar, M.A., Poland, J., Bowden, R., and Fritz, A. 

(2015). Effect of cytoplasmic diversity on post anthesis heat tolerance in wheat. 

Euphytica, 204(2), 383–394. 

Viswanathan, C., and Khanna-Chopra, R. (2001). Effect of heat stress on grain growth, starch 

synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) Varieties 

differing in grain weight stability. Journal of Agronomy and Crop Science, 186(1), 1–7.  

Wardlaw, I.F., Blumenthal, C., Larroque, O., and Wrigley, C.W. (2002). Contrasting effects of 

chronic heat stress and heat shock on kernel weight and flour quality in wheat. 

Functional Plant Biology, 29(1), 25–34.  

Wollenweber, B., Porter, J. R., and Schellberg, J. (2003). Lack of interaction between extreme 

high-temperature events at vegetative and reproductive growth stages in wheat. Journal 

of Agronomy and Crop Science, 189(3), 142–150. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



122 

Appendix A - Field based heat tents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.1 Unique field based heat tents placed over wheat plants to impose heat stress during 

grain filling phase (A) and wheat plants inside the heat tents (B) 
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A.2 Watchdog 1650 Micro Station placed inside white radiation shield mounted to white 

metal post, PAR sensor mounted at the top of metal post. Sensors were placed both inside 

heat tents and outside to measure ambient conditions 

 

 

 

 

 

 

 

 

 

 

 

 


