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Abstract 

Dermacentor variabilis (Say) (Acari: Ixodidae), commonly known as the American dog 

tick is a medically important tick species in N. America, which has been implicated as a 

competent vector for several diseases, including tularemia, bovine anaplasmosis and canine tick 

paralysis. This tick is also the primary suspect for the transmission of Rickettsia rickettsii, the 

causative agent of Rocky Mountain spotted fever (RMSF). The spatial distribution and 

geographic extent of D. variabilis territory in N. America is suspected to have changed in the 

recent times due to natural and anthropogenic, non-stationary forces. A clear understanding of 

the spatial distribution and environmental factors contributing to the distribution has public 

health significance, allowing us to make informed management decisions and for setting robust 

future research goals aimed at understanding vector-biology and disease management. 

Additionally, ongoing climate-change is expected to alter species spatial distribution and 

abundance within distribution range. In this research, I studied the current and likely future 

spatial distribution of D. variabilis ticks in N. America based on two representative 

concentration pathways, RCP 4.5 and RCP 8.5, representing lower and higher emission 

scenarios, respectively, under several global circulation models (GCM). The spatial distribution 

models were constructed using MaxEnt program and BioClim data was used as environmental 

data for modeling. Best models were selected based on Partial ROC curves, AIC, and omission 

rates. Median prediction of these models indicate a wider spread of D. variabilis from its 

currently known extent, and much further spread as a result of climate change. Different 

environmental variables that significantly influenced current and future D. variabilis distribution 

included annual mean temperature, mean diurnal range, maximum temperature of the warmest 

month, annual precipitation, precipitation seasonality, and precipitation of the wettest quarter. 
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Chapter 1 - LITERATURE REVIEW AND REASEARCH 

OBJECTIVE 

Ticks are ectoparasitic arthropods and obligate blood feeders that are known to transmit 

pathogens to humans, wildlife, and livestock throughout the world (Hopla & Durden 1994). 

There are over 900 documented species of ticks in the world, and 90 are found in North America 

(Barker & Murrell, 2004; Jongejan & Uilenberg, 2004). Ticks must have a blood meal after at 

every post-emergence stage of their life (larva, nymph and adult) for their survival and 

reproduction. More often, ticks feed on multiple hosts during the course of their life, and during 

that process ticks act as transmitting vectors for various pathogens that ultimately cause disease 

in humans and animals (Brites-Neto et al., 2015; Jongejan & Uilenberg, 2004). Ticks have 

evolved for several millions of years, and as per fossil records, ticks originated in the 

Crustaceous period, around 65-146 million years ago (Fuente, 2003). The earliest reports 

documenting ticks and tick-borne fevers occurred in the ancient Egyptian papyrus scrolls (1550 

BC)  (Hoogstraal, 2011). The discovery of the first fossil tick with a spirochete-like cells 

(Borrelia sp.) in hemocoel and in the lumen of alimentary tract was observed in a larval tick 

(Amblyomma sp.) embedded in Dominican amber (Poinar, 2015). (Smith & Kilborne, 1893) for 

the first time confirmed that ticks were the vector for pathogens, and they also determined that 

the tick species, Rhipicephalus annulatus (Boophilus) transmits Babesia bigemina. 

 The tick species, Dermacentor variabilis (Say), commonly known as the American dog 

tick or wood tick is one of the many medically important ticks in N. America that has been 

documented to transmit several pathogens to humans and animals (Brites-Neto et al., 2015). 

Some of the pathogens and the diseases transmitted by D. variabilis ticks are listed in (Table 1). 
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Dermacentor variabilis is known to carry various bacterial diseases that are responsible 

for several diseases in humans, including Rocky Mountain spotted fever (RMSF), tularemia, 

human granulocytic anaplasmosis. Rocky Mountain spotted fever is found east of the Rocky 

Mountains, and cases in these areas occur year around and are characterized by high incidence 

and case fatality rates, especially in children (CDC, 2017a). RMSF is caused by Rickettsia 

rickettsia, which infects the endothelial cells that line the blood vessels which leads to clotting in 

the brain and other organs (CDC, 2017a). This leads to loss of function of the organs and 

sometimes the organs need to be amputated. RMSF is a serious tick-borne disease and can be 

deadly if not treated early. The common sign of the disease is rash which are usually red 

splotches on the skin. Early treatment with antibiotic doxycycline can prevent death (CDC, 

2017a).  

Tularemia, anaplasmosis in cattle and canine tick paralysis are three other diseases 

transmitted by D. variabilis in N. America. Tularemia is often a lethal disease to humans and 

feline hosts caused by Francisella tularensis (CDC, 2017b). Rodents, hares, rabbits are 

maintenance hosts for this pathogen and along with D. variabilis the pathogen maintains its 

transmission cycle in the environment. Tularemia is particularly of a concern to the military, 

since soldiers disproportionately get exposed to ticks in the field and are often treated for this 

disease (CDC,2017b). The losses to cattle industry due to bovine anaplasmosis, caused by 

Anaplasma marginale is expected to be in several millions of dollars in the US and Canada alone 

(Kocan et al., 2010). This disease is transmitted by D. variabilis in N. America, and other 

Dermacentor ticks in other parts of the world. Once cattle are infected, they remain persistent 
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carriers of the disease, leading to perpetuation of the disease among herds via other ticks and 

fomites (Kocan et al., 2010).  

Canine Tick paralysis is an uncommon, noninfectious, neurologic syndrome that occurs 

due to the feeding of D. variabilis ticks on dogs (Chan and Kaufman, 2008). The release of 

undefined salivary neurotoxin during the bite of the tick leads to paralytic symptoms and loss of 

reflex action in a canine host. Treatment options for this disease is limited and if the disease not 

resolving in earlier stages will lead to death (Chan and Kaufman, 2008). 

Despite the name, D. variabilis ticks have been found to be attached to a wide variety of 

hosts other than dogs, and they are encountered in areas other than woodlands as well, 

particularly grassy fields and scrublands (Sonenshine, 2018). They feed on a variety of 

mammalian hosts of different sizes ranging from mice to deer. The adult female and males of D. 

variabilis are brown to reddish brown in appearance and have silver-grey marking on their back 

(scutum), and they are active from March through August, and are mostly found questing for a 

host on grass and other vegetation (Chan and Kaufman, 2008). The adult females are about 5 mm 

long and are slightly longer than the males, which are about 3-4 mm long. After blood feeding, 

the females can enlarge up to 15 mm long and 10 mm wide. The immature stage nymphs are 

about 1 mm long, pale yellow to brown in color and gray to black after blood-feeding. The larvae 

are about 0.6 mm long, pale yellow in color black after blood feeding. The larvae only have 3 

pairs of legs unlike the nymphs and adults and are active late in the tick season (July, August) 

(Chan and Kaufman, 2008).    

Humans are not the preferred hosts for D. variabilis but the adult ticks commonly attack 

humans, and the nymphs and larvae can also be occasionally found on humans (Chan and 

Kaufman, 2008). The D. variabilis ticks are 3-host ticks, meaning that the three life stages (larva, 



4 

nymph and adults) feed on separate hosts. Male ticks blood-feed for a brief time and mate with a 

female on the same host while she is blood-feeding. The female ticks detach from the host after 

feeding in about a week and fall to the ground and start egg laying. A female tick can lay up to 

4000 – 6500 eggs on leaf litter before dying. Under field conditions, the eggs usually hatch in 

36-57 days. The larva that hatch from eggs feed on small mammals (e.g., squirrel, mice) for 3-4 

days and detach, falling to the ground where they molt into nymphs. The nymphs attach to 

medium size mammal (raccoons, skunks), where they feed for 4-5 days and detach. Not all ticks 

manage to find a host and unfed ticks in each stage can survive up to 2 years by overwintering 

during the winter months (Chan and Kaufman, 2008).  

Dermacentor variabilis ticks are widely distributed throughout the central and eastern 

US, and in southern Canada, east of Saskatchewan. The current distribution of this species also 

includes areas in California west of the Cascade and Sierra Nevada Mountain ranges 

(CDC,2018c). The abundance of these ticks within its distribution range varies from region to 

region, with the eastern US more abundantly followed by southern and central US. The 

distribution map for D. variabilis commonly used by entomologists and public health 

professionals is produced by the CDC (CDC, 2018c), which was constructed based on several 

acarological surveys conducted by independent researchers over the years. However, the 

methodologies used behind construction of these maps, the current relevance of the acarological 

surveys based on which these maps were produced, and the time-period for which they are 

relevant are not readily available. The CDC warns its users that these maps are only to be used 

for reference purposes. 

The geographic distribution of all living species change as a function of time, and such 

changes are largely regulated by a species’ innate mechanisms and environmental and 
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anthropogenic influences. Ticks and other arthropods have expanded or shifted their spatial 

distribution patterns constantly, and to know their current distribution has scientific merit. In the 

case of medically important tick species such as D. variabilis, knowledge of its current 

distribution and the difference in its abundance levels across a geographic area will help in 

making informed public health messaging, appropriate resource allocation for managing 

disease(s) transmitted by this species, and for making informed future research plans.  

 There are several approaches developed for modeling the spatial distribution of species 

and for estimating their ecological niches (Soberón, 2007; Soberón & Nakamura, 2009). Some of 

the modeling approaches include climate envelopes, logistic regression, multivariate regression 

splines, and boosted regression trees. Much of these methods involve the utility of occurrence 

information in the form of geographic latitude and longitude coordinates. And most if not all the 

afore mentioned methods require absence data (where a species was searched for and not found) 

for modeling. Absence data are difficult to obtain and may also be unreliable (Elith et al., 2006; 

Phillips et al., 2006). Other approaches such as the genetic algorithm for rule-set production 

(GARP) and maximum entropy (MaxEnt) do not require species absence data and have been 

used to model ecological niches and estimate potential distributions of a wide variety of species. 

The inclusion of absence data, however, yields better information about prevalence than 

presence-only methods (Elith & Leathwick, 2009) such information is incorporated in GARP 

and MaxEnt methods as background or pseudo-absence data (Phillips & Dudík, 2008) 

(Stockwell, 1999). The quality of predictions based on different modeling approaches and their 

interpretation have been discussed previously (Phillips et al., 2004; Peterson et al., 2007) Some 

studies have shown MaxEnt to produce consistently robust species distribution estimates among 
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presence-only methods (Elith & Leathwick, 2009; Feria-Arroyo et al., 2014; Tsoar Asaf et al., 

2007). 

The spatial distribution of most arthropods, including D. variabilis ticks, are limited for 

the most part by climatic conditions and physical environment, such as landscape cover and 

landscape structure. Other influential factors that limit species' distributions include ecological 

forces such as predator availability and density, competition, and host abundance, which are 

difficult to incorporate in correlative models (Soberón & Nakamura, 2009; Thuiller et al., 2006). 

In this study, I modeled the spatial distribution of D. variabilis in N. America using the 

maximum entropy approach under the present-day climate (current) and future distribution based 

on climate change conditions. 
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Chapter 2 - MATERIALS AND METHODS 

Occurrence data: 

The Walter Reed Bio-systematics Unit (WRBU) is a unique national resource for 

systematics research on medically important arthropods and maintenance of the U.S. mosquito 

collection (WRBU, 2018). This collection also includes tick specimen records for N. America 

and other parts of the world. I requested occurrence data for D. variabilis in N. America from 

WRBU and the data was later provided in an Excel format. Quality analysis was conducted on 

this data in sequential steps. First, I checked for the presence of wrong species, misspelt species 

name, records that lacked specific location information, and records that did not include an error 

indicating accuracy of occurrence data. Any rows of information with inadequacies, viz., 

misspelt species names, wrong species, and with no location information and error measurement 

were removed. 

 Following the data quality analysis, the tabular data (Excel) was georeferenced in ArcGIS 

using the Georeferencing Tool, thereby converting it to a geographic dataset or an “ESRI 

shapefile”. Verbal descriptions of locations were originally converted by WRBU personnel to X 

and Y geographic coordinates using standard georeferencing procedures such as Biogeomancer 

and MANIS protocol (Mammal Networked Information System) (WRBU, 2018). The X and Y 

coordinates provided by WRBU were used to map point locations on N. America. It is not 

uncommon for museum records such as those available from WRBU to have spatial bias, i.e., 

some geographic areas could be more represented than others. In order to avoid spatial bias in 

the occurrence data, first, I removed more than one occurrence at the same location, then I 

followed a procedure called as rarefication, to remove spatial autocorrelation in the dataset. For 
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this, I used the SDM extension for the Spatial Analyst Toolbox in ArcGIS. In the rarefication 

step, and occurrence points that fall within 10 km from each other in a random order. 

Estimation of accessible area (M): 

For a given species of interest, the parts of the world that have been accessible to it via 

dispersal over relevant periods of time is an important factor that determines the region in which 

one can detect a species (Barve et al., 2011; Soberón & Peterson, 2005). This accessible area is 

denoted by M, and it provides an ideal area for model development, testing and comparison. The 

importance of estimating M carefully has been discussed (Barve et al., 2011). Most importantly, 

if M is not represented entirely in a spatial distribution model, the importance of coarse 

resolution factors such as climate may be underestimated, resulting in models that are largely 

influenced by the effect of spatial extent alone. The effects of M on model training, model 

validation and model comparison are discussed thoroughly in (Barve et al., 2011). 

While the importance of choosing M is widely recognized, any robust methods for 

estimating appropriate M  has not been developed thoroughly yet. Early research on this topic 

has called for more research in this area (Barve et al., 2011).  For this study, I selected an M 

using a subjective evaluation of all the geographic areas that D. variabilis ticks would have had 

access to historically over time. A buffer area of 7.5 degrees surrounding rarefied occurrence 

points was created in ArcGIS for this purpose. 

Environmental data: 

I used environmental dataset that are publicly available through the WorldClim project 

(Fick & Hijmans, 2017) for modeling the current spatial distribution of D. variabilis ticks in N. 

America. The WorldClim data is freely available online (www.worldclim.org) for download, and 

http://www.worldclim.org/
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it is a commonly used data resource for spatial distribution modeling. WorldClim is a set of 

global climatic layers in grid format available in a spatial resolution from 30 seconds (~ 1km2) to 

10 minutes (~340 km2).  Different bioclimatic variables are derived from historic (1970 – 2000) 

monthly temperature and rainfall values in order to generate biologically meaningful variables. 

There are 19 bioclimatic variables available, which represent annual trends, seasonality, extreme 

environmental factors, and precipitation of the wet and dry quarters (3 months) of a year.  

Individual BioClim data layer represented summary conditions for different bioclimatic 

variables, and these are presented in (Table 2). 

 

Similar studies investigating tick distributions and their ecological niche space have used 

BioClim data, and they have found this data to be highly responsive (Peterson & Raghavan, 

2017a, 2017b; Raghavan et al., 2016). Once the data was downloaded, all of the BioClim raster 

layers were clipped to the extent of “M” using the “Extract by Mask” tool in ArcGIS. 

Subsequently, the clipped data layers, which were in GRID format were converted into ASCII 

format in ArcGIS using the “GRID to ASCII Conversion Tool”, which is the required format for 

MaxEnt modeling software. 

 

Future climate: 

Data representing future climate conditions in year 2050 were downloaded from the 

Climate Change, Agriculture and Food Security (CCAFS) - Climate data portal. This portal 

provides global and regional future high-resolution climate datasets that are used for assessing 

climate change impacts on various disciplines, including biodiversity and ecosystem services 

(CCAFS, 2018). The CCAFS portal has rich resources on the science behind climate change, 

different representative concentration pathways (RCPs), and climate models. The portal also 
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provide links to extensive information and documentation on methods used for spatial data 

downscaling, bias correction, and spatial disaggregation. 

 For this project, I considered two representative concentration pathways, RCP 4.5 and 

RCP 8.5, that corresponds to the lower and higher greenhouse gas emission scenarios, 

respectively. Under both scenarios, I considered four General Circulation Models (GCMs) 

produced by different agencies viz., CSIRO, MIROC, NCAR and CCCMA. Data for these 

models were downloaded in ASCII Grid format for the North American region at 30 second 

resolution.  

Spatial Distribution Modeling 

 To determine the spatial distribution of D. variabilis ticks under current and future 

climate change scenarios, I utilized the freely available and widely used MaxEnt software 

version 3.3.3 (Phillips et al., 2006). This program allows users to input occurrence data in the 

form of comma separated variable file for occurrence data, and takes environmental data in the 

form of ASCII datasets. A detailed description of Maxent modeling software and the theory of 

ecological niche modeling is discussed in the literature e.g. (Phillips et al., 2006). Briefly, after 

inputting the occurrence and environmental datasets, the program allows users to select various 

modeling feature options. viz. Linear, Quadratic, Product, Threshold, and Hinge, each 

representing different machine learning algorithms for model construction (Phillips et al., 2006). 

The feature classes represent mathematical transformation of the different covariates used in the 

model to allow complex relationships (Elith & Phillips, 2010). Further, the model allows users to 

specify options for model extrapolating and clamping, and set different regularization 

multipliers, which also affects model performance.  The regularization multiplier is a numerical 

value that adds constraints to the models, in other words, is a penalty imposed to the model. 
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Smaller regularization multiplier values are less restrictive, potentially resulting in over 

prediction, and vice versa. It is recommended to evaluate the best potential combination of 

environmental variables, feature classes and regularization multiplier, to select the most 

appropriate model (Phillips et al., 2006). 

Environmental variable selection 

 There are 19 bioclimatic variables available from the WorldClim project. Of these, 

Bioclim layers 8, 9, 18 and 19 were not considered for determining the spatial distribution of D. 

variabilis due to high autocorrelation that exist among these layers (Escobar et al., 2014). The 

relevance of the remaining bioclimatic layers to explaining the spatial distribution of D. 

variabilis was evaluated using the jackknife procedure in MaxEnt program. The jackknife 

procedure allows us to determine the importance of a given environmental data to the overall 

performance of the model by estimating the variable’s individual contribution and contribution in 

the presence other variables. For this, the program was run in sequential steps with the same 

occurrence data, beginning with all of the bioclimatic layers, and the jackknife option selected in 

the MaxEnt program. The variable contribution to the model was evaluated using the jackknife 

plot, and the model’s AUC and AIC values, and those variables contributing least to the model 

were removed in subsequent steps.  

Model selection 

 Several spatial distribution models were constructed with different combinations of three 

factors, viz., feature classes, regularization multipliers and sets of environmental (BioClim) data 

layers. The first environmental data set consisted only those BioClim variables selected in the 

last jackknife step, i.e., the model that had the least number of variables and yet indicated good 

model performance. Environmental set-2 included all variables retained in the last step, plus 
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those BioClim variables in the previous step. Likewise, a total of three sets of environmental 

variables were selected. Additionally, for the modeling, occurrence data was split randomly into 

50% ‘calibration’ and 50% ‘evaluation’ data points using a random number generator in Excel, 

resulting in 90 data points for calibration and 89 points evaluation each. The models were 

constructed using the calibration data and the evaluation data was used for estimating model 

performance using omission rate estimates.  

 There were four feature combinations used for constructing the models. They were; 

Linear, (Linear + Quadratic), (Linear + Quadratic + Product), and (Linear + Quadratic + Product 

+ Threshold + Hinge). The four environmental layer sets are shown in (Table 3).  

And, there were 10 regularization multipliers evaluated in the models. They were, 0.1., 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10, 15, and 20. In total, 285 models with 

unique combinations were run. 

Models with all combinations of feature classes, regularization multipliers and 

environmental sets were constructed in MaxEnt, and there were a total of 120 models. Each 

model was run using the bootstrap function to create 10 replicate analyses. In order to avoid 

model over fitting (Burnham & Anderson, 2002) the models were thresholded using a fixed 

allowable omission error rate of 10%. This trimming allows 10% of records (both occurrence 

and environmental data) with the lowest suitability and potential errors to be omitted without 

affecting the results  (Alkishe et al., 2017). 

After all the models were constructed, three criteria were used to select best fitting 

models. The model statistics were first extracted into an Excel spreadsheet, where the Sort by 

Value function was used in sequential steps to select best fitting models. First, the models were 

ranked based on lowest to highest partial ROC values and only those significant models (P ≤ 
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0.05) were kept, second, models with lowest omission rates was picked among the selected, 

significant models, and third, the top five models that had the lowest AIC value (among the 

significant and lowest omission rate models) were picked. 

Following the selection of the top 5 performing models, the median of median predictions 

from the individual models was computed in ArcGIS using the “Cell Statistics” tool. In order to 

visualize uncertainty in the present condition model prediction, the range (difference between 

maximum and minimum model outputs) was calculated using the “Cell statistics” tool.  
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Chapter 3 - RESULTS 

The occurrence records received from WRBU included a total of 6224 rows, each 

representing a single location from where one or more D. variabilis ticks of any of the three post-

emergent life stages was collected. Among these records, the species name was spelt in two 

different ways; variabilis (correct) and variablis (incorrect). We considered this error to indicate 

spelling mistakes by data-entry personnel at WRBU and that it did not indicate error in the 

occurrence of D. variabilis in those geographic locations. Following the removal of data records 

without location information, and those that indicated an error radius ≥ 10 km, there were 2,956 

occurrence locations available for analysis. And, following the subsequent rarefication of 

occurrence locations, 179 X, Y coordinates were deemed fit for ecological niche modeling. This 

data quality analysis helped reduce problems associated with artificial clustering of occurrence 

locations related to biases in sampling and reporting. The occurrence locations were equally and 

randomly divided for calibration and evaluation of the maximum entropy model. These 

occurrence locations and the accessible area for D. variabilis, M, are depicted in Fig. 1. 

The jackknife procedure helped determine the degree to which different variables 

contributed to the spatial distribution of D. variabilis ticks in N. America. After fitting a global 

model (with all BioClim variables included) (Fig.2), the jackknife plot and model statistics 

revealed that variables 6, 11, 7 and 13 were the least contributors. These variables were removed 

and the model refit (Fig. 3), and the resulting model revealed BioClim variables 4, 10 and 3 

contributed the least. A model without these BioClim variables and those removed in the 

previous steps (Fig. 4) further revealed that BioClim variables 14 and 17 were lowest 

contributors. A final model was then fit without variables 14 and 17 (Fig. 5). Based on these 

steps, three different environmental sets were compiled, presented in (Table 4). 
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Table (5) gives estimates of relative contributions of the different BioClim variables to 

individual model at the three Jackknife steps (1, 2 and 3). To determine the first estimate, in each 

iteration of the training algorithm, the increase in regularized gain is added to the contribution of 

the corresponding variable or subtracted from it if the change to the absolute value of lambda is 

negative. For the second estimate, for each environmental variable in turn, the values of that 

variable on training presence and background data are randomly permuted. The model is 

reevaluated on the permuted data, and the resulting drop in training AUC is shown in (Table 5), 

normalized to percentages (Phillips et al., 2006). 

The top five models ranked based on partial ROC, omission rate and AIC value all 

included only the Linear feature class and the same set of environmental variables, Set 3, 

indicating a strong correlative association between the variables in this set and the occurrence 

data. The models only varied in the regularization multiplier, with the top three models having 

2.0, 3.0 and 4.0, and last two models with 0.1 and 0.2. All five models were significant based on 

the partial ROC estimate (< 0.00), and all models had good omission rates (OR = 0.11). The AIC 

values for the models differed only by very small amounts. The different model parameters and 

the values of model selection criteria are present in (Table 6). 

The spatial distribution of D. variabilis based on the point-wise median of the top five 

models, each in turn representing the point-wise medians of 10 individual replicate models is 

presented in Fig. 6. The uncertainty in model prediction, derived based on the range (maximum 

point-wise estimates – minimum point-wise estimates) based on present-day climate conditions 

is overlaid on the median of top five models, and present in Fig. 7. These images indicate that the 

current distribution of D. variabilis extends much towards the central plains and west of the 

Rocky Mountain region, and through most of southeastern Canada in the North. This distribution 
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is similar to the currently estimated spatial distribution provided by the CDC. However, the 

present model indicates that the distribution of this species is much broader in the southeastern 

part of the US relative to the Midwest and western US. The model uncertainty does not appear to 

affect the model for the most part of the contiguous US, but relatively higher uncertainty can be 

found in west coast and northern areas of Canada, the Florida peninsula, Southern Texas, eastern 

coast of Mexico, much of the Caribbean and northern parts of S. America (Fig. 7). 

The median point-wise prediction of each of the top 5 models is present in Fig. (8 – 12). 

The percentage contribution (Fig. 13) by different variables to the top five models indicate the 

variables annual mean temperature (BioClim 1) and precipitation seasonality (BioClim 15) 

together accounted for more than 74% (median) of the models, the variable, annual precipitation 

(BioClim 12) contributed 16.3% (median) and the remaining variables, mean diurnal range 

(mean of monthly (max temp - min temp)) (BioClim 2), maximum temperature of warmest 

month (BioClim 5), and precipitation of the wettest quarter (BioClim16) contributed about 3.9, 

3.4 and 0.1% (median). 

The future distribution of D. variabilis based on the point-wise medians derived from 

maxent models using different global circulation models (GCM) under representative 

concentration pathway (RCP) 4.5 are presented in Figs. (14 – 17). The agreement in spatial 

distribution of D. variabilis predicted by different GCMs are presented in Fig 18. Likewise, Figs. 

(19 – 22) depict the individual future distribution prediction by different GCMs under RCP 8.5 

scenario and Fig. 23 shows the agreement between different RCP 8.5 models. The spatial 

distribution based on different GCMs for both RCP scenarios indicated further expansion in the 

spatial distribution of D. variabilis and potential changes to the abundance in different areas. 

Potential expansions based on different GCMs under RCP 4.5 scenario varied, and the spatial 
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distribution of D. variabilis generally expanded outwards from present-day distribution, but all 

models predicted no loss in distribution of D. variabilis compared to the present-day distribution. 

Results were similar with the same GCMs under RCP 8.5 scenario, but the spatial distribution 

expanded much further into the Central Plains and Northern Canada. 
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Chapter 4 - DISCUSSION 

Dermacentor variabilis is a medically significant tick that causes several diseases to 

humans and animals. The spatiotemporal pattern of county-level incidences for some of the 

diseases transmitted by this tick species viz., tularemia (Raghavan et al., 2013), bovine 

anaplasmosis (Hanzlicek et al., 2016), and Rocky Mountain spotted fever (RMSF) (Raghavan et 

al., 2016a) have been shown to have steadily increased over the past decade. However, the 

current spatial distribution of D. variabilis is only limitedly understood, and only preliminary 

information is currently available on this topic. This study used publicly available occurrence 

data and a well-studied spatial distribution modeling program to robustly evaluate the current 

and future distribution of this species under present-day climate (current) and two different 

future climate change scenarios. While the overarching result of this modeling effort, a depiction 

of present distribution of D. variabilis is similar to the broad guidance-map provided by the CDC 

(https://www.cdc.gov/ticks/geographic_distribution.html), this study provides more in-depth 

predictions in terms of relative probability of finding D. variabilis across N. America. 

The current spatial distribution model (Fig. 6), indicate low or low/medium (0.25 – 0.49) 

probability of finding D. variabilis in much broader areas in the western US, compared to the 

current map available from CDC. This finding is significant since recently in 2003 and in the 

years that followed, numerous cases of RMSF were diagnosed among residents of Indian 

reservations in Arizona, and in general areas in eastern Arizona, and subsequently it was 

documented that these cases were primarily due to transmission of R. rickettsii to these patients 

by a different tick species known as the Brown Dog Tick, Rhipicephalus sanguineus (Drexler et 

al., 2014). It appears, based on the present study, that D. variabilis could also be present in these 

areas at low abundance levels, therefore may be harder to detect, but it could also be involved in 
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the etiology of RMSF in this region. Further field studies aimed at the collection of D. variabilis 

in eastern Arizona, in other areas endemic to RMSF, and further molecular analysis to detect R. 

rickettsii among these ticks are therefore warranted. 

The uncertainty (Fig. 7) associated with current spatial distribution of D. variabilis does 

not indicate major problems for most of the contiguous US except for small swathes in southern 

Texas and Florida peninsula. The uncertainties are relatively larger in other geographic areas, 

which may indicate uncertainties in the prediction of presence or prediction of absence. The 

occurrence data used in this project did not include data points representative of the 

environmental conditions in these diverse climatic region, and their inclusion in future studies 

will help improve robust modeling specific for these regions. 

Three of the environmental variables associated with the spatial distribution of D. 

variabilis are temperature related viz., annual mean temperature, mean diurnal range (mean of 

monthly [max temp - min temp], and maximum temperature of the warmest month. And three 

variables were related to precipitation, viz., precipitation seasonality, annual precipitation, and 

precipitation in the wettest quarter. However, the major contributors to the models were annual 

mean temperature and precipitation seasonality. Even though ticks have an ability to regulate 

body temperatures by their movement, it is conceivable that temperature extremes can limit their 

survival. Also, the seasonality and abundance of ticks and precipitation in spring and late fall are 

likely related to each other, with adequate rainfall ensuring an abundance of intermediate hosts, 

and increased host-finding ability of ticks. These bioclimatic variables also indirectly point to the 

types of vegetation and further the wildlife composition that are likely to be shaped by their 

unique combination.  
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Ongoing warming of global temperatures will likely influence the ecology and 

distribution of medically important ticks such as D. variabilis. Studies have shown that changes 

in climatic patterns, primarily the regional increases in temperatures and shifts in precipitation 

patterns, are altering the structure and function of ecosystems globally (Parmesan & Yohe, 

2003). These changes are suspected to facilitate the emergence of new parasites and new disease 

agents transmitted by ticks (Epstein, 2001; Harvell et al., 2002), and also alter host–parasite 

relationships (Kutz et al., 2005). Recently, two new tick-borne viral pathogens, Heartland Virus 

and Bourbon Virus were identified in the Kansas, Missouri region, and it is plausible that the 

emergence of these viruses were mediated by cascading effects of climate change. However, 

definite evidence of such a role played by climate change is hard to quantify. Climatic conditions 

considered typical for the Central Plains region and other regions in the world have been noted to 

have changed in noticeable ways (Hayhoe et al., 2015; Schoof, 2012), and many such conditions 

are known to affect tick phenology and their spatial distribution. The diurnal temperature range, 

a climate-change index, an important contributor to the spatial distribution of D. variabilis in the 

present study has been decreasing steadily since the 1950s, particularly in the midwestern United 

States but also other regions of N. America (Karl et al., 1993; Karl et al., 1991). Increased 

atmospheric humidity during spring and summer months over the Northern Plains was noted for 

roughly the same time period (Schwartz, 1995). Other ixodid ticks (Ixodes scapularis and I. 

ricinus) in the northern latitudes have shown shifts in distribution patterns and abundance levels, 

which have been linked to climate change  (Daniel et al., 2003; Descamps, 2013; Leighton et al., 

2012). 
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Both the RCPs representing low (4.5) and high (8.5) emission scenarios under all of the 

different GCMs considered in this project indicated range expansion of D. variabilis in N. 

America. However, there were differences between the distributions under the two emission 

scenarios. The phenology and spatial distribution of ticks are highly regulated by abiotic 

conditions, therefore the range expansion of this species to newer territory under warmer 

conditions predicted by both these scenarios is expected. The disease burden due to RMSF in the 

Indian Reservations during 2003 alone was estimated to have cost 13.2 million (CDC,2016). The 

economic loss due to bovine anaplasmosis, transmitted by D. variabilis in the US alone is much 

larger, and it is in the range of several hundreds of million dollars every year. The predictive 

maps under these future scenarios likely indicate an exacerbation of this problem and provide us 

a guidance as to what extent this species may be present in the year 2050, if all other conditions 

stay the same. 

The expansion or shifts in the spatial distribution of D. variabilis predicted by the models 

in this project must be considered in light of several factors (Alkishe et al., 2017). Importantly, 

ticks spend most of its life on the host and in microclimatic habitats, whose environments are 

difficult to accurately estimate. Particularly, the cascading effects of climate change at the 

resolution of microclimatic conditions are at present difficult to ascertain, and therefore models 

at higher resolution may or may not be effective. Second, even though climate directly regulates 

arthropod life cycle, other physical factors such as landscape fragmentation (Raghavan et al., 

2016a) could play a role in the distribution and abundance of D. variabilis. Third, the spatial 

distribution models are only indicative that new areas predicted to be suitable, and the actual 

expansion will depend on dispersal mechanisms.   
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Figure 1 : Occurrence locations, and accessible area, M, considered for spatial distribution 

modeling of Dermacentor variabilis (Say) in N. America. Red dots indicate locations used for 

model calibration, and blue dots represent locations used for model evaluation. 
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Figure 2 : Jackknife plot representing regularized training gain for Dermacentor variabilis 

spatial distribution with all BioClim variables included in a global model. 
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Figure 3 : Jackknife plot representing regularized training gain for Dermacentor variabilis 

spatial distribution with all BioClim variables but without variables 6, 7, 11 and 13. 
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Figure 4 : Jackknife plot representing regularized training gain for Dermacentor variabilis 

spatial distribution with all BioClim variables but without variables 3, 4, 6, 7, 10, 11 and 13. 
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Figure 5 : Jackknife plot representing regularized training gain for Dermacentor variabilis 

spatial distribution with all BioClim variables but without variables 3, 4, 6, 7, 10, 11, 13, 14 and 

17. 
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Figure 6 : Current distribution of Dermacentor variabilis based on present-day climatic 

conditions. This picture represents the median of point-wise medians of the top five models. 

Each of the top five models were derived based on the median of the 10 replicate models applied 

to the environmental layers. The cell- wise probability of finding D. variabilis is depicted in 

different colors. 
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Figure 7 : Uncertainty of current distribution of Dermacentor variabilis distribution in N. 

America. This picture represents the point-wise range (maximum – minimum) of median 

distribution model based on the top five models. Areas in red indicate current distribution based 

on present – day model, and different grey colors are uncertainties. 
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Figure 8 : Current distribution of Dermacentor variabilis based on present-day climatic 

conditions with Linear feature, environmental set 3, and regularization multiplier value set to 2.0. 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 9 : Current distribution of Dermacentor variabilis based on present-day climatic 

conditions with Linear feature, environmental set 3, and regularization multiplier value set to 3.0. 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 10 : Current distribution of Dermacentor variabilis based on present-day climatic 

conditions with Linear feature, environmental set 3, and regularization multiplier value set to 4.0. 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 11 : Current distribution of Dermacentor variabilis based on present-day climatic 

conditions with Linear feature, environmental set 3, and regularization multiplier value set to 0.1. 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 12 : Current distribution of Dermacentor variabilis based on present-day climatic 

conditions with Linear feature, environmental set 3, and regularization multiplier value set to 0.2. 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 13 : The variable percentage contribution to the top five individual maximum entropy 

models for the spatial distribution of Dermacentor variabilis 
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Figure 14 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 4.5 emission scenario and the Canadian Centre for Climate Modeling and Analysis 

(CGCM3) General Circulation Model (GCM). This picture represents the median of the 10 

replicate models applied to the environmental layers. The cell-wise probability of finding D. 

variabilis is depicted in different colors.  
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Figure 15 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 4.5 emission scenario and the CSIRO-Mk2 General Circulation Model (GCM). 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 16 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 4.5 emission scenario and the MIROC_ESM General Circulation Model (GCM). 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 

 

 

 



38 

Figure 17 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 4.5 emission scenario and the NCAR_CCSM3_0 General Circulation Model 

(GCM). This picture represents the median of the 10 replicate models applied to the 

environmental layers. The cell-wise probability of finding D. variabilis is depicted in different 

colors. 

 

 



39 

Figure 18 : Agreement in future spatial distribution prediction between different GCM models 

under 4.5 representative concentration pathway scenario.  

(0 = species is not present in current time, and not predicted to be present in any of the future 

scenario models (no change); 1, 2, 3, and 4 = species not present in current time, and it is 

predicted to be present in at least one, two, three or of the four future scenario models, 

respectively (expansion); 5 = species is present in current time, and it is not predicted to be 

present in any of the future scenario models (entire loss of territory); 6, 7, 8 = species is present 

in current time, and not present in one, two, and three of the future scenario models (gradual loss 

of territory); 9 = species is present currently, and it is predicted to be present in all future 

scenario models. 

 

 



40 

 

 

  



41 

Figure 19 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 4.5 emission scenario and the Canadian Centre for Climate Modeling and Analysis 

(CGCM3) General Circulation Model (GCM). This picture represents the median of the 10 

replicate models applied to the environmental layers. The cell-wise probability of finding D. 

variabilis is depicted in different colors. 

 

 



42 

Figure 20 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 4.5 emission scenario and the CSIRO-Mk2 General Circulation Model (GCM). 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 21 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 4.5 emission scenario and the MIROC_ESM General Circulation Model (GCM). 

This picture represents the median of the 10 replicate models applied to the environmental 

layers. The cell-wise probability of finding D. variabilis is depicted in different colors. 
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Figure 22 : Potential distribution of Dermacentor variabilis under representative concentration 

pathway RCP 8.5 emission scenario and the NCAR_CCSM3_0 General Circulation Model 

(GCM). This picture represents the median of the 10 replicate models applied to the 

environmental layers. The cell-wise probability of finding D. variabilis is depicted in different 

colors. 
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Figure 23 : Agreement in future spatial distribution prediction between different GCM models 

under 8.5 representative concentration pathway scenario. 

(0 = species is not present in current time, and not predicted to be present in any of the future 

scenario models (no change); 1, 2, 3, and 4 = species not present in current time, and it is 

predicted to be present in at least one, two, three or of the four future scenario models, 

respectively (expansion); 5 = species is present in current time, and it is not predicted to be 

present in any of the future scenario models (entire loss of territory); 6, 7, 8 = species is present 

in current time, and not present in one, two, and three of the future scenario models (gradual loss 

of territory); 9 = species is present currently, and it is predicted to be present in all future 

scenario models.  
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Table 1: List of confirmed and suspected pathogens transmitted by Dermacentor variabilis and 

the diseases caused. 

Pathogen Disease Reference 

Anaplasma marginale Anaplasmosis (Kocan et., 2010) 

Francisella tularensis Tularemia (CDC, 2017) 

Rickettsia rickettsii Rocky Mountain Spotted 

Fever 

(CDC, 2017) 

 

No pathogen (Salivary 

neurotoxins) 

Canine tick Paralysis (Chan and Kaufman 2008) 
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Table 2 : List of bioclimatic variables.  

 

Layer name Variable represented 

BIO1 Annual Mean Temperature 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min 

temp)) 

BIO3 Isothermality (BIO2/BIO7) (* 100) 

BIO4 Temperature Seasonality (standard deviation *100) 

BIO5 Max Temperature of Warmest Month 

BIO6 Min Temperature of Coldest Month 

BIO7 Temperature Annual Range (BIO5-BIO6) 

BIO8 Mean Temperature of Wettest Quarter 

BIO9 Mean Temperature of Driest Quarter 

BIO10 Mean Temperature of Warmest Quarter 

BIO11 Mean Temperature of Coldest Quarter 

BIO12 Annual Precipitation 

BIO13 Precipitation of Wettest Month 

BIO14 Precipitation of Driest Month 

BIO15 Precipitation Seasonality (Coefficient of Variation) 

BIO16 Precipitation of Wettest Quarter 

BIO17 Precipitation of Driest Quarter 

BIO18 Precipitation of Warmest Quarter 

BIO19 Precipitation of Coldest Quarter 
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Table 3 : Environmental variable combinations evaluated by jackknife procedure for use in 

development of Dermacentor variabilis distribution model.  

Environmental set BioClim layers 

Environmental variable set 1 BIO1, BIO2, BIO10, BIO15 

Environmental variable set 2 SET 1 + BIO5, BIO16 

Environmental variable set 3 SET 2 + BIO14, BIO17 

Environmental variable set 4 SET 3 + BIO6, BIO11, BIO13  
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Table 4 : Compilation of three different environmental sets. 

 

Environmental set AUC BioClim variables 

Global model 0.902 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17 

Set 1 0.901 1, 2, 3, 4, 5, 10, 12, 14, 15, 16, 17  

Set 2 0.897 1, 2, 5, 12, 14, 15, 16, 17 

Set 3 0.896 1, 2, 5, 12, 15, 16 
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Table 5 : Estimates of relative contributions of the different Bioclim variables to individual 

models at the three jackknife steps. 

BioClim 

variable 

Percentage contribution Permutation contribution 

 Jackknife 

1 

Jackknife 

2 

Jackknife 

3 

Jackknife 

1 

Jackknife 

2 

Jackknife 

3 

1 41 42.5 43.4 5.8 37.2 40.6 

2 7.7 8.8 10 22.3 17.7 16.2 

3 2.2 - - 9.7 - - 

4 2.4 - - 1.5 - - 

5 6.5 6.0 5.4 29.9 9.6 7.8 

10 0.1 - - 1.8 - - 

12 23.9 24.1 23.8 2.7 5.3 4.8 

14 2.8 1 - 11.2 9.3 - 

15 1 4.2 8.7 1.9 2.1 6 

16 10.2 9.8 8.7 12.3 18.3 24.6 

17 2.3 3.6 - 0.8 0.5 - 
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Table 6 : Different model parameters and the values of model selection criteria.  

 

Model Feature 

class 

Regularization 

multiplier 

Environmental 

variable 

Partial 

ROC 

Omission 

Rate 

AIC 

value 

1 Linear 2.0 Set 3 0.00 0.11 1828.57 

2 Linear 3.0 Set 3 0.00 0.11 1828.65 

3 Linear 4.0 Set 3 0.00 0.11 1828.79 

4 Linear 0.1 Set 3 0.00 0.11 1831.30 

5 Linear 0.2 Set 3 0.00 0.11 1831.33 
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