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Abstract 

Three studies were designed to evaluate Viburnum spp. and their physiological adaptation 

to drought, heat, and other environmental stresses found in the Great Plains, specifically Kansas. 

Nursery crop growers, landscape contractors, and consumers desire low-maintenance landscapes 

with plants suited to their environment. The Great Plains can be a challenging environment for 

ornamental landscape plants. Viburnum plants were potted into 2-gal (6.3 L) containers during 

the summer of 2012 with field trials installed Fall 2012. Field-study sites were selected to 

capture variability in precipitation and temperature across Kansas. Field trials in Eastern Kansas 

had greater survival. Shaded sites resulted in larger plants and greater survival. Plants designated 

for greenhouse drought and heat trials were overwintered in an unheated hoop-house the winter 

of 2012. Drought and heat trial cultivars were selected based on performance in field-trials as 

well as one Southern ecotype spp. for comparison. Drought and heat trials were conducted within 

a controlled greenhouse environment (Manhattan, KS) during June 2013 and April 2014, 

respectively. Plants acclimated in a greenhouse maintained at 25C/18C (77F/64F; day/night) for 

28 days and were watered as needed until treatments were initiated. Viburnum dentatum, V. 

nudum, and V. tinus were exposed to both heat and drought separately. Results indicate that V. 

nudum responded to drought stress by reducing biomass, though photosynthetic capacity was not 

significantly affected. Viburnum dentatum was able to maintain similar shoot growth with 

moderate drought (MD) and severe drought (SD), while root growth significantly declined. 

Whole plant responses to increased day/night temperatures during acclimation prior to 

temperature curve measurements resulted in growth of all species slowing compared to control 

plants. All acclimated plants exhibited increased temperature optimum for Pnet with a less severe 

rate of increase and decline when compared to control. Viburnum dentatum and V. nudum were 



  

species which performed well in all studies and could be recommended for use in the Great 

Plains. 
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Abstract 

Three studies were designed to evaluate Viburnum spp. and their physiological adaptation 

to drought, heat, and other environmental stresses found in the Great Plains, specifically Kansas. 

Nursery crop growers, landscape contractors, and consumers desire low-maintenance landscapes 

with plants suited to their environment. The Great Plains can be a challenging environment for 

ornamental landscape plants. Viburnum plants were potted into 2-gal (6.3 L) containers during 

the summer of 2012 with field trials installed Fall 2012. Field-study sites were selected to 

capture variability in precipitation and temperature across Kansas. Field trials in Eastern Kansas 

had greater survival. Shaded sites resulted in larger plants and greater survival. Plants designated 

for greenhouse drought and heat trials were overwintered in an unheated hoop-house the winter 

of 2012. Drought and heat trials were conducted within a controlled greenhouse environment 

(Manhattan, KS) during June 2013 and April 2014, respectively. Plants acclimated in a 

greenhouse maintained at 25C/18C (77F/64F; day/night) for 28 days and were watered as needed 

until treatments were initiated. Viburnum dentatum, V. nudum, and V. tinus were subjected to 

heat and drought. Results indicate that V. nudum responded to drought stress by reducing 

biomass, though photosynthetic capacity was not significantly affected. Viburnum dentatum was 

able to maintain similar shoot growth with moderate drought (MD) and severe drought (SD), 

while root growth significantly declined. Whole plant responses to increased day/night 

temperatures during acclimation prior to temperature curve measurements resulted in growth of 

all species slowing compared to control plants. All heat exposed plants exhibited increased 

temperature optimum for Pnet with a less severe rate of increase and decline when compared to 

control. Viburnum dentatum and V. nudum were species which performed well in all studies and 

could be recommended for use in the Great Plains. 
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Chapter 1 - Literature Review 

Homeownership rates in the United States (U.S.) have begun to climb after a 12-year 

decline ending in 2016 (U.S. Census Bureau, 2018).  In the third quarter of 2018, 

homeownership rates were 64.3%, with a national average vacancy rate dipping down to 1.6% 

(U.S. Census Bureau, 2018). The Midwest United States (states) had the highest home ownership 

rates, 69.0% (U.S. Census Bureau, 2018). Median asking prices of homes continue to climb out 

of the recent housing slump that bottomed out in 2013, currently the median asking price is 

$206,400 United States dollars (USD) (Figure 1.1; U.S. Census Bureau, 2018). Well-planned and 

maintained landscaping is a contributing factor effecting home values positively by adding curb 

appeal. Curb appeal is defined as the combined quality of the home exterior quality and the 

landscape appearance including the maintenance (Elam & Stigrall, 2012). Landscaping has the 

largest return of any home improvement project (Hall and Hodges, 2011). Landscape appearance 

and maintenance can increase home values between 5% and 20% (Behe, et al., 2005; Elam & 

Stigrall, 2012). A well-planned landscape can also decrease utility bills through reducing the 

need for heating and cooling by providing shading and wind reduction (Akbari et al., 2001; 

Heisler, 1986; Maco et al., 2002; McPherson, 1993). Other benefits of landscape include dust 

abatement, noise reduction, and a visual barrier, creating a sense of privacy within busy urban 

areas (Brandle, et al., 2000). Landscapes can be a sanctuary for wildlife and insects.  

Landscapes can create atmospheres that are calming, thus reducing stress. Research has 

shown that both resting heart rate and total mood disturbance (stress) were significantly reduced 

in cardiovascular rehabilitation patients, when participating in Horticulture Therapy activities 

such as gardening or just being within the landscape (Ulrich et al., 1991; Rodiek, 2002; 
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Wichrowski et al., 2005). Warr et al. (2004) showed that home and garden activities created an 

affective sense of well-being and life satisfaction among older generations of Americans.  

The Great Plains region of the U.S. has unpredictable weather and, in recent years has 

experienced severe drought. Many counties in Kansas have been declared disaster areas within 

the last decade (Brewer and Love-Brotak, 2012). Greater than 75% of land in the state of Kansas 

experienced extreme to exceptional drought in 2012-2013 (Fig 1.2; United States Department of 

Agriculture (USDA), 2013; Brewer and Love-Brotak, 2012). These extremes came in the forms 

of both high and low temperatures and periods of drought followed by periods of prolonged 

precipitation. The cycle of extreme drought and then torrential downpours can cause flooding 

and land degradation when drought has decreased soil absorption rates and land cover. Kansas, 

specifically, has had temperature extremes ranging from -40C (-40F) in 1905 to 49.4C (121F) in 

1936 [Kansas State University (KSU), 2018]. In 2018, temperatures have ranged from a high of 

40.55C (105F) to a low of -29.44C (-21F) within the state. Precipitation in Kansas follows a 

North to South gradient line with a slight tilt to Southwest to Northeast gradient as you move 

East across the state. Southeast portions of Kansas receive on average 114.3 cm (45in) to 45.72 

cm (18 in) in the Southwest (Figure 1.3). In 2018, a portion of the state was declared a disaster 

area due to flooding that occurred after 27.94 cm (11 in) of rainfall fell over Labor Day weekend. 

(Kansas Climate Summary September 2018).  Even with the rainfall, a good portion of the land 

in East Central to the Eastern part of Kansas is still experiencing exceptional drought (Figure 1.4; 

USDA Drought Monitor, 2018). 

United States Department of Agriculture plant hardiness zones have recently been 

updated (2012), the first time since 1990, indicating warmer temperature trends in Northern 

regions (Heller, 2012). With the change in cold hardiness zones and a seemingly warmer and 



 

3 

 

drier climate for the region, a concerted effort to find ornamental plants that will withstand the 

rigors of the Great Plains is necessary. These plants should transplant easily, be drought tolerant, 

and withstand high and low temperatures that commonly occur throughout the region.  

Viburnum L. are one of the most highly produced genus of landscape plants according to 

a recent Census of Horticulture Specialties (USDA, 2014). Nine hundred forty-one producers 

sold 2.1 million Viburnum in 2014, grossing $21.9 million in revenue (USDA, 2014). The 

species is known for its adaptability to sometimes-harsh environments. It has been on many lists 

as a plant tolerant of environmental stresses including urban settings due to its adaptability, much 

of which is anecdotal (Flint, 1985).  The sum of flowering (Figure 1.5), attractive foliage, and 

sometimes radiant fruit, makes Viburnum stand above many other shrub genera. There are 

approximately 160 species of Viburnum that have been characterized by their genetic makeup, 

with several hundred cultivars to choose from within the species (Dirr, 2009). The species is 

found worldwide. Kenyon (2001) noted over 250 species with 20 from North America, 60 from 

Central and South America, four from Europe, 30 from North Africa, and the remainder from 

Asia. Viburnum is a diverse genus that exhibits very distinct growth habits that lend to their 

classification. Within the genus, 10 sections represent all the species (Hara, 1983). The sections 

are based upon growth and flowering characteristics. All Viburnum exhibit two common themes; 

opposite leaf arrangement and terminal umbel-like or panicle-like corymb inflorescences which 

form a fruit that is a flattened single seed drupe (Edwards et al., 2014). Characteristics of the 

species are variable. Habit can be a single stem tree to shrub, evergreen, semi-evergreen, 

deciduous, and large [18.3 m (60 ft.)] to small [0.91 m (3 ft.)].  Leaves can be small, large, 

serrated, smooth, lobed, shiny, and hairy, and any combination of the aforementioned attributes. 

Flowers can be flat-topped cymes to drooping panicles in shades of pink, pure white, and creamy 
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white. Odor can either be intoxicating, unpleasant, or no discernable smell at all. Fruits range in 

color from green, yellow, orange, red, pink, purple, blue, and black. A mixture of the colors can 

be found on one infructescence, as in V. nudum L. Fruit set is highly dependent on cross-

pollination between closely related Viburnum species; otherwise, flowers are self-sterile and will 

not set fruit (Dirr, 2007).   

Along with the ability to adapt to varying climates, plants must be aesthetically pleasing 

or useful within an ornamental landscape setting. Sometimes plants that are well adapted to 

severe drought or heat conditions are not aesthetically pleasing to homeowners and landscapers. 

Currently, homeowners are looking for plants that are low-input, low maintenance, and have 

aesthetically pleasing traits across all seasons. Low-input plants are plants that require little or no 

supplemental water or fertilizer after establishment. Low-maintenance plants require little 

pruning, fertilization, or pesticides. These plants tend to grow slower with a compact habit thus 

reducing the need for maintenance to keep them at the desired shape and size. Aesthetically 

pleasing plants are, for all intents and purposes, plants that “look good.” Flowering time, color, 

and abundance are important characteristics to be accepted for use within a landscape. With 

abundant flowering comes, with most plants, abundant fruit set. Fruits make for sometimes-

interesting color displays that can range across many colors of the visible spectrum and 

sometimes are in combinations within one infructescence. The fruit are also attractants to 

wildlife and can draw them into the home landscape. Fruit can also be edible and be used by the 

homeowner. Some fruits will only stay on the plant a few weeks while others may last through 

the winter, adding a color contrast to the winter landscape and extending the season of interest.  

Viburnum leaves may persist throughout a growing season or remain indefinitely as with 

evergreens. Leaf color can be any shade of green, variegated, red, purple, or yellow during the 
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growing season and in deciduous species, may change to varying hues of red, yellow, and 

orange. Size and texture can be important as well as it dictates the texture the plant plays within a 

landscape, whether it is a fine/soft texture or a coarse/hard texture. Leaf thickness and life span 

can be a factor when selecting plants as well. Thin leaves may not be suited for high wind 

exposure as they tend to become perforated and desiccated when exposed to significant winds. 

Thick leaves can have a coarse appearance, and cut edges, when pruning, can be an eyesore.   

Unfortunately, homeowners and landscape contractors often must rely on anecdotal 

advice for plants that survive and thrive in their area due to lack of research on establishment for 

their desired plants. Otherwise, they rely upon research and ratings from resources that may not 

be an exact fit for their region or microclimate. Consumers then must rely on trial and error to 

select plants for their landscape which can be costly and time consuming. Universities, industry, 

and botanical gardens often have research available on plant varieties for landscapes and have 

found the best method for making recommendations is by using field trials over a several year 

period (2 to 5 yrs) in native soils (Lindstrom et al., 2001; Jones and Cregg, 2006). Plant trials in 

the U.S. began in the late 1800’s as a means to compare American seed-produced plants with 

other competitive lines from Europe (Nau, 2007). The premise of a plant trial is based upon the 

idea of comparison. Trials are used to generate research-based comparisons between species or 

cultivars to observe growth habit, flowering, fruiting, vigor, pest problems or lack thereof, color, 

environmental stress tolerance, exposure, and survivability. Trial sites are set up to identify 

superior selections or cultivars when compared to “industry standard” plants. Trials can also be 

used to evaluate anecdotal plant selections for regional retailers to ensure research-based 

evidence for use of the selected plants. If multiple sites are available, as well as resources to 

effectively manage multiple sites, then a state- or region-wide trial would provide information 
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that could be used to make region-wide recommendations for selected plants. Consumers then 

will have confidence in recommended plants if they are within those geographic regions.  

When conducting region-wide trials, many challenges may arise. Weather will vary 

across a region, where one area may be extremely dry, other areas may have too much rainfall. 

Variability in weather is why multiple sites and years are necessary to make recommendations 

for a region. Widrlechner (1998) identified interactions between moisture index, mean January 

temperature and mean July temperature that predicted survivability of ornamental landscape 

plants from Japan across sites in the North Central U.S. Greater than 70% of the variability 

between sites was due to these three variables with the greatest effect contributed to the moisture 

index. Greatest percent survival for ornamental landscape plants in the trial was seen in sites with 

the wettest and warmest climates. Trials also require adequate space, available water, funding, 

and collaborators that will care for plants using best management practices set forth by the 

researcher. Even with all the above requirements being met, plants may still fail for unknown 

reasons. Multiple sites and replication within those sites, allows for anomalies to be accounted 

for so that recommendations can be made for the region. Researchers, with all the complications 

of conducting field trials, have investigated ways to trial plants in controlled settings to 

overcome the challenges of field studies (Adkins, et al., 2002, Dirr and Lindstrom Jr., 1990, 

Garcia-Navarro, et al., 2004, Sakai, et al., 1986) 

Water Stress 

Water is the essential resource required for all life and as of recent has become more 

scarce across parts of the world. Climatologists and researchers agree on the fact that our world 

is warming at a faster rate than predicted and that mankind plays a role (Barnett et al., 2005). 

Predictions also state that precipitation will become less available especially across the middle 
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latitudes (Watson et al., 1996). When precipitation does occur, it will be more intense, resulting 

in more flooding and erosion on already dry soil. Increases in temperature coupled with less 

moisture will have a significant impact on production agriculture and horticulture alike. 

Therefore, it is imperative that research is conducted to find landscape plants that can withstand 

long periods of drought along with increasing temperatures.  

Field studies to identify water stress can be difficult to conduct due to the need to exclude 

uncontrolled precipitation from entering the study site. Rainout shelters or other means of 

moisture exclusion can and often do fail in keeping water from all plants within a drought study. 

Effective drought studies can be conducted within a controlled environment, allowing the 

researcher to withhold water from plants at varying media moisture contents. In doing so, 

drought can be decoupled from heat and other stresses that may be encountered during a field 

trial that could otherwise confound results.   

Water stress is thought to be one of the main factors contributing to transplant failure or 

poor overall plant growth (Gilman et al., 1998; Mathers et al., 2007). All transplanted trees and 

shrubs depend on water that can be retained within the root ball until the root system begins to 

expand and explore the surrounding soils. Most media are porous, by design, to allow for 

adequate drainage in a container-grown plant, making the ability of a plant to withstand drought 

conditions critical when supplemental water is not available. Research has shown that container-

grown plants can lose up to 85% of the available moisture to the surrounding soil within one day 

after transplanting into native soils, with most soilless media only having enough water to sustain 

a plant for two days after transplant (Nelms and Spomer, 1983; Day and Cary, 1974). Most trees 

7.6 cm (3 in) caliper or less can take up to 3 years to establish (Gilman, 1990). Establishment is 

defined by Gilman (1990), as the point in time where roots begin exiting the root ball into the 
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native soil. In recent years, municipalities have turned to water restrictions more frequently 

during periods of extended drought, thereby limiting the ability of landowners and industry alike, 

to irrigate landscape plants. During many periods of extreme drought, land in Kansas has also 

experienced some of the hottest temperatures on record for the area. Extreme heat can impair a 

plant’s ability to photosynthesize effectively, damage is often compounded when heat is 

accompanied by periods of drought, therefore limiting the plants ability to grow. Drought can be 

defined in many ways and is a topic of much discussion. The two major categories of drought 

either approach drought conceptually or operationally (Wilhite and Glantz, 1985). Conceptually 

is identifying the boundaries of drought, i.e. a period of time with no moisture. Operational 

definitions will attempt to predict the onset, length and severity of the drought (Wilhite and 

Glantz, 1985). Drought often is coupled with period of high heat and sometimes strong drying 

winds. For the duration of this study drought will be defined as a period of low to no 

precipitation for a period of time. 

Temperature Stress 

Temperature stress can elicit a host of responses within a plant. Many plants cannot 

survive temperatures greater than 45C (113F) for longer than a few minutes as this can cause 

considerable damage to the photosynthetic light harvesting apparatus (Taiz and Zeiger, 2006). 

Extreme elevated temperature may cause plants to lose membrane stability allowing cell contents 

to aggregate with heavy metals and other compounds that have leaked from vacuoles (Berry and 

Bjorkman, 1980; Bjorkman et al. 1980). Heat stress will cause proteins to unfold or become 

misfolded which may aggregate together forming Heat shock granules and can cause 

considerable damage and even cell death when the cells ability to remove these aggregates is 

hampered (Planas-Marquès et al., 2016; Nakajima and Suzuki, 2013). Elevated temperatures 
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[>35C (95F)] can cause Ribulose bisphosphate carboxylase/oxygenase (rubisco) activity to 

decrease which reduces the amount of carbon fixed by photosynthesis (Crafts-Brandner and 

Law, 2000). A decrease in photosynthesis as well as an increase in respiration from the elevated 

temperatures effectively starves the plant and can cause the plant to cannibalize itself to create 

energy. This results in senescing leaves and a reduction in overall plant growth. Heat stress has 

also been shown to induce several heat shock protein’s (HSP’s). Although the role of HSP’s is 

not clearly understood, most agree that they play a role in membrane stabilization and cell 

protection. Protection occurs by maintaining the fluidity of cells by stopping the denaturing of 

proteins and assisting in the refolding of proteins that have been damaged by elevated 

temperatures. Research has shown that HSP’s are induced at the induction of high temperatures 

within 3 to 5 minutes and can last several hours after elevated temperatures subside (Sachs and 

Ho, 1986). An improved thermotolerance has also been shown to occur when a plant is subjected 

to a heat shock (>40C) for a brief period and then returned to a more optimum temperature 

(Queitsch et al., 2000). Queitsch (2000) showed that plants subjected to a heat shock treatment 

were able to maintain a higher rate of photosynthesis at higher temperatures over control plants. 

A plant’s ability to acclimate and maintain photosynthesis under high temperatures by 

maintaining membrane stability and protecting the light harvesting mechanism is crucial to its 

ability to survive.   

Cold temperatures are also of concern for temperate plants such as some Viburnum spp. 

All plants experience cold stress differently, but most plants experience some kind of 

temperature stress between 32F -59F (0C-15C; Yadav, 2010). Exposure to these temperatures 

can elicit a response within 48h – 72h (Yadav, 2010). Phenotypic type responses can be leaf 

curling, yellowing, necrosis, or reduced overall growth. If exposed for long periods of 
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suboptimal temperatures or during severe cold snaps membranes may be damaged causing 

electrolyte leakage and disruption of metabolism within cells (Guy, 1990; Yadav, 2010). In 

response to these temperatures’ plants will produce osmolytes to help lower the freezing point of 

the call and to protect cell membranes from crystallizing (Nayyar et al., 2005; Farook et al., 

2009). 

Stress Detection 

Several techniques have been identified as effective in detecting stress within a plant. The 

light harvesting mechanism can be easily damaged by stress. Mohammed et al. (1995) showed 

that chlorophyll fluorescence can be easily measured in the field to do a quick assessment of the 

functioning of photosystem II with the use of the modulated chlorophyll fluorometer such as the 

Mini-PAM (WALZ, Effeltrich, Germany). These units’ function by emitting a very weak pulse-

modulated light from a light emitting diode (LED) that excites fluorescence within the leaf and 

then exclusively detects the fluorescence from the excited state. Maximal photochemical yield 

ratio of photosystem II (Fv/FM) can be measured on dark-adapted leaves (20 min) resulting in a 

reading that can be used to estimate how stressed a plant is due to the efficiency of non-

photochemical quenching (heat dissipation of energy; Maxwell and Johnson, 2000). Typical 

values for plants that are unstressed and all light harvesting centers are open are within a few 

hundredths of 0.83 (Björkman, 1987; Johnson et al., 2004). If this system is damaged, light 

energy (photons) are not captured and used to efficiently to harvest electrons from water 

molecules. This in return will hinder the photosynthetic process, reducing sugar production used 

for energy in the plant. Photosystem II is responsible for the splitting of water to evolve oxygen 

and hydrogen as well as electrons to be used in the production of chemical adenosine 

triphosphate (ATP) for use in photosynthesis. If the system is damaged light is fluoresced out or 
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is dissipated as sensible heat, creating an imbalance in light energy absorbed for use in 

photosynthesis. Without the necessary components of photosynthesis, the plant will reduce 

overall growth and may eventually die.  

Purpose and Objectives 

It is of interest to provide research-based recommendations for plants that are 

aesthetically pleasing, provide energy savings by reducing heating and cooling of structures, and 

are sustainably produced using proven horticultural practices that reduce inputs. These plants 

should also be easily maintained, requiring minimal inputs of water and fertilizer, as well as 

being able to withstand the rigors of our ever-changing climates. A relatively quick greenhouse 

assay of an interesting plant species by subjecting it to the challenges of the trial region will 

shorten the time and expense required to trial several hundred plants over several years to only 

find a handful of acceptable species for use in Kanas landscapes. The question we are 

investigating is, how well do controlled-environment studies for extreme temperature and water 

stress, correlate with a plant’s ability to survive in a field trial? Viburnum was chosen because it 

is a widely available, popular shrub species, with enough variability in species characteristics to 

examine environmental stress adaptability in an effort to develop an assay for future plant 

evaluations. 

 



 

12 

 

 Tables and Figures 
 

Figure 1.1 Median asking price for homes that were vacant and for sale for the periods of 

1995-2018 in the continental United States (U.S. Census Bureau, 2018). 
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Figure 1.2 United States drought severity conditions during the period ending October 30, 

2012. 
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Figure 1.3 Average annual precipitation gradients (in) for the state of Kansas (United 

States) during the period of 1981-2010. 
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Figure 1.4 Kansas drought severity conditions during the period ending September 11, 

2018 following several days of daily precipitation. 
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Figure 1.5 Viburnum dilatatum 'Michael Dodge' exhibiting large, showy flowers 

the first Spring season (2013) following Fall transplant at the Parsons City 

Arboretum in Parsons, KS.  
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Chapter 2 - Drought affects physiology and growth of select 

Viburnum spp. 

 

Abstract 
The Great Plains can be a challenging environment for ornamental landscape plants. The 

area can be prone to periods of short-term recurring drought. Viburnum plants were potted into 2-

gal (6.3 L) containers during the summer of 2012. Drought studies were conducted within a 

controlled greenhouse environment (Manhattan, KS) during June 2013 and April 2014, 

respectively. Plants acclimated in a greenhouse maintained at 25C/18C (77F/64F; day/night) for 

28 days and were watered as needed until treatments were initiated. Viburnum awabuki 

‘Chindo’, Viburnum dentatum ‘Chicago Lustre’, Viburnum nudum ‘Winterthur’, Viburnum tinus 

‘Robustum’, Viburnum trilobum ‘Compactum’, and Viburnum x rhytidophylloides ‘Alleghany’ 

had irrigation withheld to initiate drought conditions of either moderate drought (MD) or severe 

drought (SD). Moderate drought was determined to be when leaves began to flag, and SD was 

set as -1.5 megapascal as determined by a Scholander pressure bomb. Results indicate that V. 

nudum responded to drought stress by reducing biomass, though photosynthetic capacity was not 

significantly affected. Viburnum dentatum was able to maintain similar shoot growth with 

moderate drought (MD) and severe drought (SD), while root growth significantly declined. Root 

growth was reduced and several of the plants died due to overwatering on V. tinus and V. x 

rhytidophylloides. Viburnum awabuki reduced growth and photosynthetic rate between 

treatments. Viburnum dentatum and V. nudum are species that can withstand drought making 

them a good choice for areas that experience short-term recurring drought. 
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Introduction 
 

The Great Plains region of the United States (U.S.) has unpredictable weather and in 

recent years has experienced severe drought. Many counties in Kansas have been declared 

disaster areas within the last decade (Brewer and Love-Brotak, 2012). Greater than 75% of the 

land in the state of Kansas experienced extreme to exceptional drought in 2012-2013 [Fig 2.1; 

United States Department of Agriculture (USDA); Brewer and Love-Brotak, 2012]. The cycle of 

extreme drought followed by torrential downpours can cause flooding and land degradation 

when drought has decreased soil absorption rates and land cover. Precipitation in Kansas follows 

a North to South gradient line with a slight tilt to Southwest to Northeast gradient as you move 

East across the state. Southeast portions of that state receive on average 114.3 cm (45 in) to 45.7 

cm (18 in) in the Southwest (Figure 2.2). In 2018, a portion of the state was declared a disaster 

area due to flooding that occurred after 27.9 cm (11 in) of rainfall fell over Labor Day weekend. 

(Kansas Climate Summary, September 2018).  Even with the rainfall, a good portion of the land 

in East Central to the Eastern part of Kansas is still experiencing exceptional drought (Figure 2.3; 

USDA Drought Monitor, 2018). Drought can be defined in many ways and is a topic of much 

discussion. The two major categories of drought either approach drought conceptually or 

operationally (Wilhite and Glantz, 1985). Conceptually is identifying the boundaries of drought, 

i.e. a period of time with no moisture. Operational definitions will attempt to predict the onset, 

length and severity of the drought (Wilhite and Glantz, 1985). Drought often is coupled with 

period of high heat and sometimes strong drying winds. For the duration of this study drought 

will be defined as a period of low to no precipitation for a period of time. 

No other resource determines plant growth as much as water (Castro et al, 2005; 

Kozlowski, 1968). Water stress is one of the main factors contributing to transplant failure 
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(Gilman et al., 1998; Mathers et al., 2007).  Frequently, municipalities are turning to water 

restrictions during periods of extended drought, thereby limiting the ability of consumers to 

irrigate landscape plants. Therefore, there is a demand for drought-tolerant landscape plants in 

the Great Plains that establish easily and tolerate a range of environmental stresses. With many 

of the attributes of Viburnum L. being anecdotal, nursery production professionals and 

consumers desire research-based evidence to expand their plant palette. Ideally, these plants 

should transplant easily and be able to withstand rigors of the region. 

Establishment has been defined by Gilman (1990), as the point in time when roots begin 

exiting the root ball into surrounding soil. All transplanted trees and shrubs depend on water that 

can be retained within the root ball until the root system begins to expand and explore native 

soils. Most media are porous, by design, to allow for adequate drainage in a container-grown 

plant, making the ability of a plant to withstand drought conditions critical when supplemental 

water is not available. Research has shown that container-grown plants can lose up to 85% of the 

available moisture, to the surrounding soil, within 1 day after transplanting into native soils, with 

most planting media only having enough water to sustain a plant for 2 days after transplant 

(Nelms and Spomer, 1983; Day and Cary, 1974). Plants that transplant well in the Great Plains 

then should have the ability to withstand periods of short-term recurring drought as well as 

longer extended drought periods.  

Methods by which plants resist drought vary. Plants may either be drought tolerant, 

drought resistant, or escape drought by setting seed for propagation (Kooyers, 2015). Drought 

avoidance is the ability of a plant to complete its entire life cycle prior to moisture becoming 

limiting (Newton and Goodin, 1989). The plant will allocate all energy into reproduction to 

prolong its species. All resources will be allocated to set flowers, go to seed, and then senesce if 
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moisture becomes limiting. Drought-tolerant plants change stomatal conductance to compensate 

for water deficit, as well as place considerable energy into root expansion (Newton and Goodin, 

1989). Species that tolerate low water potential accumulate solutes to protect membranes and 

leaf plasticity while keeping stomata closed to maintain water content. Conversely, a high-water 

potential drought tolerant plant will reduce stomatal conductance, leaf shape/size, hairs, and the 

amount of radiation absorbed by in an effort to maintain flow of water at a high-water potential 

(Newton and Goodin, 1989).  

Population growth in the U.S. causes high demand on water supplies with many 

municipalities issuing water restrictions during periods of drought. With these restrictions 

occurring, many consumers and landscape contractors desire landscape plants that can survive 

and thrive in their region. Data on drought-tolerant plants for the Great Plains is limited and a 

proven method for rapidly determining drought tolerance is needed. The purpose of this study is 

to develop a tool to help with development of landscape plant recommendations for the Great 

Plains. Viburnum L. was chosen for its wide breadth of interesting aesthetic qualities and that it 

is widely available in many plant nurseries with enough variability in species characteristics to 

examine environmental stress adaptability in an effort to develop an assay for future plant 

evaluations. This study examines the drought tolerance of six Viburnum L. species for landscape 

use in the Great Plains. 

Materials and Methods 
 

On 3 May 2012, 64 plants each of Viburnum awabuki ‘Chindo’, Viburnum dentatum ‘Chicago 

Lustre’, Viburnum nudum ‘Winterthur’, Viburnum tinus ‘Robustum’, Viburnum trilobum 

‘Compactum’, and Viburnum x rhytidophylloides ‘Alleghany’ (Table 2.1) rooted liners (192 mL; 



 

28 

 

(4x8 propagation liner inserts, Landmark Plastics, Akron, OH) had containers removed and 

potted to 6.0 L (1.6 gal) containers (Classic 600, Nursery Supply Inc., Chambersburg, PA). 

(Spring Meadow Nursery, Grand Haven, MI) filled with an amended pine bark: Eastern 

redcedar:sand (2:2:1, v/v.). Eastern redcedar (Juniperus virginiana L.) is a native conifer species 

with a native range in the Eastern half of the U.S. It has become a pest to native grasslands in the 

Great Plains due to its aggressiveness and the ease with which it proliferates from seed (Briggs et 

al., 2002). Studies to verify its suitability as a substrate media showed that non-native pine bark 

can be supplemented using this locally available resource (Starr et al., 2012). The substrate was 

amended with 1.2 kg·m-3 (2.0 lbs⋅yd-3) micronutrient package (Micromax, Scotts, Marysville, 

OH) and 9.5 kg·m-3 (16 lbs⋅yd-3) controlled release fertilizer (Osmocote 18N-2.6P-9.9K, 

Scotts, Marysville, OH). Eastern redcedar was ground to a particle size of 9.5 mm (3/8 in.) 

utilizing a hammermill (Model 30HMBL, C.S. Bell Co., Tiffin, OH). Plants were grown under 

partial shade (50%) for the remainder of the growing season at the Kansas State University John 

C. Pair Horticultural Research Center (Haysville, KS). Plants were overwintered in an unheated 

hoop house covered in white polyurethane plastic and vented with fans when inside temperatures 

reached 10C (50F) and watered as needed. On 15 June 2012 V. awabuki and V. tinus were 

propagated from apical softwood cuttings (Classic Viburnums, Upland, NE). Fully rooted liners 

were transplanted into 6.0 L (1.6 gal) containers (Classic 600, Nursery Supply Inc., 

Chambersburg, PA) containing the previously mentioned substrate on 15 August 2012. 

Viburnum awabuki and V. tinus are southern ecotype viburnums (≥ USDA hardiness zone 7) and 

consequently were grown out within the greenhouses at the Throckmorton Plant Sciences Center, 

Kansas State University (Manhattan, KS). Plants were grown under natural photoperiod and 

irradiance with greenhouse temperatures maintained at 25C/18C (77F/64F; day/night) and 
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watered as needed. Plants were monitored weekly for pests and if found, were controlled with 

appropriate chemicals, horticultural oils, or cultural controls. Tetranychus urticae (spider mites) 

were found during the trial and water was used to knock them off leaves. On 13 June 2013 plants 

grown in the cold-frame at John C. Pair Horticulture Center (Haysville, KS) were moved into a 

glass greenhouse at Throckmorton Plant Sciences Center, Kansas State University (Manhattan, 

KS), and allowed to acclimate for 4 w. Plants were grown under natural photoperiod and 

irradiance and watered as needed to avoid moisture stress. Greenhouse temperatures were set to 

25C/18C (77F/64F; day/night). Prior to treatment initiation, five plants of each species were 

selected at random for fluorescence measurements and destructive analysis. Growth data was 

collected which included: height, width, shoot dry weight, and root dry weight. Growth Index 

(GI) was calculated as (plant height + maximum plant width + perpendicular plant width) ÷3. 

Photosynthetic capacity (Pnet) of each plant was measured using a Li-Cor (Li-Cor, Lincoln, NE) 

infrared gas analyzer and a climate-controlled cuvette. Cuvette environmental parameters were 

set to achieve 400 µL·L-1 CO2, 2000 µmol·m-2·s-1 photosynthetically active radiation (PAR), and 

leaf temperature near ambient outside air temperature (25C/77F). All plants were irrigated 1 day 

prior to photosynthetic measurements to minimize stomata limitations. A terminal leaf 

containing current season’s growth was placed in the cuvette and data recorded when carbon 

assimilation stabilized. Following data collection, plants were destructively harvested, where 

roots were separated from shoots at the soil line and washed free of substrate. Roots and shoots 

were then placed in a forced air-drying oven (model SC-400, The Grieve Co., Round Lake, IL) at 

65C (149F) and dried to a constant weight. 

Similar to methods of Pool et al. (2012), initial substrate water holding capacity was 

determined by sub-irrigating individual containers in a large reservoir until water was observed 
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glistening on the surface of the container substrate. Water was then allowed to drain slowly from 

the bottom of the reservoir and containers simultaneously. Containers were allowed to drain 2 hr 

and then weighed to obtain weight at container capacity (CC). Treatments were initiated on 22 

July 2013 by withholding irrigation. Treatments were moderate drought (MD) or severe drought 

(SD) and were determined by measuring pre-dawn water potentials on a fully expanded excised 

leaf with a Scholander pressure chamber (Model 600, PMS Instrument Co., Albany, OR). 

Moderate drought was determined to be when plants exhibited signs of wilt. Severe drought CC 

treatment was determined, when plants reached -1.5 megapascal [(MPa) -15 bar] with the 

Scholander pressure chamber. This pressure is considered the permanent wilting point and is 

considered by many as a measure that is how to overcome. Container weights were then 

correlated to pre-dawn water potentials to determine percentage water loss and treatment set 

point (Table 2.1). Once treatment set points were determined plants were weighed daily at 0600. 

When plants reached one of three predetermined treatments: well-watered control (WW; 90% 

CC), MD, (Table 2.1) or SD (Table 2.1), they were irrigated back to CC using the sub-irrigation 

method. Well-watered treatments were watered on alternating days. This repeated drought cycle 

was continued until termination (22 October 2013). 

Growth and photosynthetic measurements began on 22 October 2013. Growth data was 

collected which included: height (H), width (W), shoot dry weight (SDW), and root dry weight 

(RDW). Growth Index (GI) was calculated as (plant height + maximum plant width + 

perpendicular plant width) ÷3. Growth index and Pnet were determined as previously described. 

Following data collection, plants were destructively harvested, where roots were separated from 

shoots at the soil line and washed free of substrate. Roots and shoots were then dried as 

previously described. 
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The experimental design was a randomized complete block design with five single plant 

replicates. Data were subjected to ANOVA and means separation using Fisher’s Protected LSD 

at α = 0.05 (SAS Institute Inc., Cary, NC). No statistical comparisons were made between 

species. 

 Results and Discussion 
At the time of treatment initiation, roots occupied distinctively different volumes within 

the container (Table 2.2). The volume occupied by roots within the containers correlated with 

how rapidly the media was depleted of available water. Viburnum nudum [69.9 g (2.5 oz)], V. 

dentatum [38.3 g (1.4 oz)], and V. awabuki [23.4 g (0.8 oz)] had the largest root systems, 

respectively, reaching initial treatment set points more rapidly. Conversely, V. x 

rhytidophylloides [13.3 g (0.5 oz)], V. trilobum [10.0 g (0.4 oz)], and V. tinus [4.2 g (0.1 oz)] 

were the smallest and took the longest to reach treatment set points, respectively. Throughout the 

duration of the experiment WW plants (90%) were watered on alternating days, much to the 

detriment of V. x rhytidophylloides as the percent survival of 0% indicated that the plant does not 

tolerate wet soils and the root systems rotted. Species reached MD and SD at differing 

frequencies and had differing percent container capacities (Table 2.1) based on when the plant 

showed signs of wilt. Frequency of reaching set point prior to trial termination were as follows: 

V. dentatum (19 times MD, 8 times SD), V. nudum (20 times MD, 11 times SD), V. x 

rhytidophylloides (3 times MD, 2 times SD), V. awabuki (15 times MD, 7 times SD), V. tinus 

‘Robustum’ (5 times MD, 2 times SD), and V. trilobum (8 times MD, 5 times SD).  

Viburnum trilobum was able to maintain SDW and RDW from control to MD yet 

significantly reduced growth when experiencing SD (Table 2.3). The species shed leaves when 

experiencing both MD and SD, but visible green turgid buds were observed, leading us to 
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believe that once moisture returned the species would recover. Plants that experienced MD also 

had a lower SDWS/RDW (S/R) ratio indicating that plants were compensating for drought by 

extending root growth to mine for available moisture, yet SD was no different than control. With 

the still-viable buds and evidence of root extension, the plant may be able to recover from 

drought once moisture returns. 

Viburnum dentatum (Table 2.4) and V. awabuki (Table 2.8) were able to maintain similar 

shoot growth with MD and SD, while root weight significantly declined resulting in a 62%, 85%, 

38%, and 63% reduction, respectively (Table 2.4, 2.8). Visual observation of V. dentatum during 

the study revealed that the species shed leaves when drought stressed and once a rewetting 

occurred, would produce a new flush of leaves. This maintained shoot growth but resulted in a 

reduction causing a significant difference between treatments for V. dentatum with respect to 

S/R. With the resulting reduction in S/R the plant may be a drought escaper (drought tolerant), as 

photosynthesis was not affected on a per area basis by treatment. While S/R increased for V. 

awabuki from control to SD, there was no difference between control and MD. Photosynthesis 

was lower for plants in MD and SD than control plants for both treatments with no difference 

between MD and SD. This reduction in carbon assimilation coupled with reduction in both roots 

and shoots indicates an attempt to avoid drought by shutting metabolic processes down to hold 

onto any available water in the media and maintain functionality of photosynthetic systems. With 

no reduction in S/R, V. awabuki may be able to tolerate MD and still recover once water 

becomes available again. The significant reduction in root growth and carbon assimilation when 

experiencing SD may make recovery difficult for V. awabuki. 

Results indicate that V. nudum was the most responsive to treatment across all 6 species. 

It responded to drought stress by significantly reducing biomass (roots and shoots), though 
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photosynthetic capacity was not significantly affected (Table 2.5). Shoot dry weight was reduced 

by 47% (MD) and 77% (SD), while RDW was reduced 65% (MD) and 87% (SD). Growth index 

was also reduced due to drought treatment between control, MD, and SD, while S/R increased 

from the control to MD with no difference from SD, indicating more energy was put into above 

ground tissue. Reductions in shoot growth were to be expected as shoot growth is dependent on 

ample water being available to maintain cell turgidity and sustained growth. The increase in S/R 

was unexpected and indicates that root growth had slowed at a faster rate than shoot growth as 

the plant transitioned into severe drought. This may have been an attempt to tolerate drought and 

sustain life by prioritizing above ground growth to capture light for photosynthesis and energy 

production that it could then store if it were to go dormant. Hinckley et al. (1983) noted that V. 

lantana L. maintained stomatal conductance during periods of drought and was shallow rooted, 

leading them to believe that the species tolerated drought while other species avoided drought by 

reducing stomatal conductance. The species is native to the Eastern U.S. where it must out-

compete larger trees as it is an understory shrub. The ability to maintain photosynthesis on a per 

area basis and maintain above ground growth at a slower rate than the control may be an effort to 

capture as much energy as possible to store or to go into a reproductive phase and set seed. This 

ability to flower and set seed rapidly has been studied and classified as drought escape (Ludlow, 

1989). With the plant either tolerating or escaping drought, its ability to maintain this pattern and 

recover in following seasons may be difficult. 

Viburnum x rhytidophylloides experienced significant losses across all treatments and 

control. Percent survival was 0%, 60%, 40% for control, MD, SD, respectively (Table 2.6).  This 

evidence suggests that the species does not tolerate either being well-watered or in a severe 

drought. Viburnum x rhytidophylloides took the longest to reach the SD set point (40 days). 



 

34 

 

These losses may be a result of the acclimation period causing damage to the root systems prior 

to treatment initiation. This would have resulted in poor water uptake by all treatments and led to 

the length of time it took the plant to reach treatment set points.  

Viburnum tinus exhibited no differences between control and drought treatment for RDW 

while the species had a significant difference between control and MD/SD for SDW (Table 2.7). 

Plants subjected to SD shed their leaves during the study and none of the replicates survived. 

Plants subjected to MD also significantly reduced their photosynthetic capacity compared to 

control plants on a per area basis. This resulted in less carbohydrates for energy to grow resulting 

in a lower S/R ratio. With no survival when subjecting the plant past wilt, down to 40% CC, V. 

tinus may not be a good choice for the Great Plains considering the frequency with which the 

region experiences sometimes severe extended drought conditions.  

Conclusions 

The data herein suggest that V. dentatum, V. nudum, and V. trilobum are species that have 

potential to be recommended as drought-tolerant species able to withstand the rigors of the Great 

Plains, specifically Kansas. With the three shrubs being deciduous, their ability to shed leaves, 

go dormant and then recover once moisture returns is to their advantage. Viburnum dentatum and 

V. nudum also were able to maintain photosynthesis across all treatments leading us to believe 

that the plants can tolerate periods of short-term drought without detrimental effects on plant 

physiology so that once moisture returns the plants can begin vigorously growing. Viburnum 

tinus, V. awabuki, and V. x rhytidophylloides exhibited significant challenges when managing 

drought and overwatering. Viburnum awabuki exhibited the most promise to be used in the Great 

Plains but it is a Southern ecotype selection that will have difficulty acclimating to the cold 
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winter temperatures of the region. Further studies on the ability of V. awabuki to survive the cold 

temperatures of the region would be of interest. To recommend V. x rhytidophylloides further 

studies are needed paying close attention to the well-watered treatment to ensure that the root 

system is not subjected to flooding conditions causing root damage prior to drought treatment. 

Pests were also a problem for the deciduous species that caused V. dentatum and V. trilobum to 

shed leaves throughout the study. Water was used to knock them off the leaves, but a severe 

infestation caused considerable leaf drop, making photosynthetic measurements impossible on V. 

trilobum. From this study, a field trial of V. dentatum, V. nudum, and V. trilobum can be 

recommended to evaluate the survival of the species over several years to account for the 

variability in the Great Plains climate and the many environmental stresses that can be 

encountered.   
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 Tables and Figures 

 
 
  

 
Figure 2.1 United States drought severity conditions for the period ending October 30, 

2012. 
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Figure 2.2 Average annual precipitation gradients (in) for the state of Kansas (United 

States) during the period of 1981-2010. 
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Figure 2.3 Kansas drought severity conditions September 11, 2018 following several days of 

daily precipitation. 

 

 
 
 
  

Courtesy http://droughtmonitor.unl.edu/ 
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Table 2.1 Selected Viburnum species and corresponding treatment percent container 

capacity (CC) determined by pre-dawn water potentials using a Scholander pressure bomb 

chamber in the Kansas State University Throckmorton Plant Sciences Center greenhouse 

complex (Manhattan, KS). 
Common name Latin name Moderate 

DroughtZ 

% CC 
 

Severe 
DroughtY 

% CC 
 Arrowwood Viburnum V. dentatum ‘Chicago Lustre’ 

 

75% 68% 

 Smooth Witherod V. nudum ‘Winterthur’ 

 

75% 68% 

 Lantanaphyllum Viburnum V. x rhytidophylloides 

 

72% 66% 

 Laurustinus V. tinus ‘Robustum’ 

 

68% 60% 

 American Cranberrybush 

 

V. trilobum ‘Compactum’ 65% 60% 

 Awabuki Viburnum V. awabuki ‘Chindo’ 70% 63% 

 Z Moderate drought was determined when signs of wilt was observed 
Y Severe drought was determined when plants reached -15 bar using a Scholander pressure chamber 
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Table 2.2 Initial height (Ht), shoot dry weight (SDW), root dry weight (RDW), and growth index (GI) of Viburnum trilobum 
'Compactum', Viburnum dentatum 'Chicago Lustre', Viburnum nudum 'Winterthur', Viburnum rhytidophylloides 'Alleghany', Viburnum 
tinus 'Robustum’, and Viburnum awabuki ‘Chindo’ at treatment initiation. 
 V. trilobum 

‘Compactum

’ 

 V. dentatum 

‘Chicago 

Lustre’ 

 V. nudum 

‘Winterthur’ 

 V. x 

rhytidophylloides 

‘Alleghany’ 

 V. tinus 

‘Robustum’ 

 V. awabuki 

‘Chindo’ 

Ht (cm) 31.6  98.8  83.6  45.4  43.6  43.8 

SDW (g) 11.04  101.64  122  31.94  17.08  88.46 

RDW (g) 10.04  38.32  69.86  13.28  4.2  23.44 

GIZ 24.53  102  96.53  39.46  31.93  66.86 

 

Z(plant height+maximum plant width+perpendicular plant width)÷ 3 in cm 

n=5 
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Table 2.3 Growth parameters of Viburnum trilobum ‘Compactum’ following the treatment 

of plants to moderate and severe drought in the Kansas State University Throckmorton 

Plant Sciences center greenhouse complex (Manhattan, KS). 

 
Well Watered Moderate Drought Severe Drought 

Root weight (g) 18.2**aY 19.8a 11.2b 

Shoot weight (g) 17.6**a 15.2a 11.8b 

Growth IndexZ 29.7*a 23.7a 18.5b 

Pnet  (mmol CO2•m-2•s-1) 2.4NS . . 

S/R ratio 2.1**b 1.8b 2.7a 

NS, **, * Not significant, significant at P≤0.01, or significant at P≤0.05 
Z(Plant Height + Plant Width + Perpendicular Plant Width) ÷3 in cm 
YMeans followed by a different letter within a species and within a row are significantly different based on Fisher’s Protected LSD 

(α = 0.05), n=5 
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Table 2.4 Growth parameters of Viburnum dentatum ‘Chicago Lustre’ following the 

treatment of plants to moderate and severe drought in the Kansas State University 

Throckmorton Plant Sciences Center greenhouse complex (Manhattan, KS). 

 
 Well Watered  Moderate Drought  Severe Drought 

Root weight (g)  159.2**aY  60.0b  23.8c 

Shoot weight (g)  138.8**a  85.4b  74.4b 

Growth IndexZ  129.7**a  86.7b  82.9b 

Pnet  (mmol CO2•m-2•s-1)  2.1NS  3.8  2.8 

S/R ratio  0.9**b  1.5b  3.7a 

NS, **, * Not significant, significant at P≤0.01, or significant at P≤0.05 
Z(Plant Height + Plant Width + Perpendicular Plant Width) ÷3 in cm 
YMeans followed by a different letter within a species and within a row are significantly different based on Fisher’s Protected LSD (α = 0.05), n=5 
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Table 2.5 Growth parameters of Viburnum nudum ‘Winterthur’ following the treatment of 

plants to moderate and severe drought in the Kansas State University Throckmorton Plant 

Sciences Center greenhouse complex (Manhattan, KS). 

 
Well Watered Moderate Drought Severe Drought 

Root weight (g) 286.0**aY 100.0b 37.4c 

Shoot weight (g) 235.0**a 125.6b 52.6c 

Growth IndexZ 114.8**a 90.5b 72.6c 

Pnet  (mmolCO2•m-2•s-1) 9.0NS 9.3 6.7 

S/R ratio 0.9*b 1.3a 1.5a 

NS, **, * Not significant, significant at P≤0.01, or significant at P≤0.05 
Z(Plant Height + Plant Width + Perpendicular Plant Width) ÷3 in cm 
YMeans followed by a different letter within a species and within a row are significantly different based on Fisher’s Protected LSD 

(α = 0.05), n=5  
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Table 2.6 Growth parameters of Viburnum x rhytidophylloides ‘Alleghany’ following the 

treatment of plants to moderate and severe drought in the Kansas State University 

Throckmorton Plant Sciences center greenhouse complex (Manhattan, KS). 

 
Well Watered Moderate Drought Severe Drought 

Root weight (g) 8.8NSY 8.0 8.8 

Shoot weight (g) 21.8NS 18.2 24.8 

Growth IndexZ 40.7NS 34.7 40.1 

Pnet  (mmolCO2•m-2•s-1) .NS 1.8 1.1 

S/R ratio 2.8NS 2.8 2.9 

NS, **, * Not significant, significant at P≤0.01, or significant at P≤0.05 
Z(Plant Height + Plant Width + Perpendicular Plant Width) ÷3 in cm 
YMeans followed by a different letter within a species and within a row are significantly different based on Fisher’s Protected LSD 

(α = 0.05), n=5 
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Table 2.7 Growth parameters of Viburnum tinus ‘Robustum’ (southern ecotype sp.) 

following the treatment of plants to moderate and severe drought in the Kansas State 

University Throckmorton Plant Sciences center greenhouse complex (Manhattan, KS). 

 

Well 

Watered Moderate Drought Severe Drought 

Root weight (g) 30.4NS 15.2 11.8 

Shoot weight (g) 106.6*aY 62.2b 54.0b 

Growth IndexZ 65.1*a 56.7b 56.3b 

Pnet (mmol CO2•m-2•s-1) 7.0*a 2.8b . 

S/R ratio 4.1NS 4.5 4.7 

NS, **, * Not significant, significant at P≤0.01, or significant at P≤0.05 
Z(Plant Height + Plant Width + Perpendicular Plant Width) ÷3 in cm 
YMeans followed by a different letter within a species and within a row are significantly different based on Fisher’s Protected 

LSD (α = 0.05), n=5 
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Table 2.8 Growth parameters of Viburnum awabuki ‘Chindo’ following the treatment of 

plants to moderate and severe drought in the Kansas State University Throckmorton Plant 

Sciences center greenhouse complex (Manhattan, KS). 

 
Well Watered Moderate Drought Severe Drought 

Root weight (g) 107.2**aY 67.0b 39.4c 

Shoot weight (g) 224.8**a 118.2b 106.6b 

Growth IndexZ 92.1**a 77.9b 75.3b 

Pnet  (mmolCO2•m-2•s-1) 8.4**a 3.5b 3.8b 

S/R ratio 2.1**b 1.8b 2.7a 

NS, **, * Not significant, significant at P≤0.01, or significant at P≤0.05 
Z(Plant Height + Plant Width + Perpendicular Plant Width) ÷3 in cm 
YMeans followed by a different letter within a species and within a row are significantly different based on Fisher’s Protected LSD 

(α = 0.05), n=5 
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Chapter 3 - Heat affects physiology and leaf greenness of 

selected Viburnum spp.  

 Abstract 
The Great Plains can be a challenging environment for ornamental landscape plants. The 

area can be prone to periods of high temperatures. Viburnum plants were potted into 2-gal (6.3 L) 

containers during the summer of 2012. Drought studies were conducted within a controlled 

greenhouse environment (Manhattan, KS) during June 2013 and April 2014, respectively. Plants 

acclimated in a greenhouse maintained at 25C/18C (77F/64F; day/night) for 28 days and were 

watered as needed until treatments were initiated. Heat trials were conducted within a controlled 

greenhouse environment (Manhattan, KS) April 2014. Viburnum dentatum, V. nudum, and V. 

tinus were then exposed to high temperatures in a greenhouse maintained at 38C /25C (100/77F) 

day/night for 28 days and were watered as needed prior to photosynthetic measurements. Plants 

then had photosynthetic rates measured at increasing temperatures from 20C to 45C in 5C 

increments. Whole plant responses to increased day/night temperatures during acclimation prior 

to temperature curve measurements resulted in growth of all species slowing compared to control 

plants. SPAD decreased in plants exposed to high temperatures. All acclimated plants exhibited 

increased temperature optimum for Pnet with a less severe rate of increase and decline when 

compared to control. These species can withstand high temperatures and effectively maintain 

growth and photosynthesis to sustain life making them a candidate for filed trials in Kansas. 
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 Introduction 
Homeownership rates have begun to climb after a 12-year decline ending in 2016 (United 

States (U.S.) Census Bureau, 2018).  In the third quarter of 2018, homeownership rates were 

64.3%, with a national average vacancy rate dipping down to 1.6% (U.S. Census Bureau, 2018). 

The Midwest U.S. had the highest home ownership rates across the US, 69.0% (U.S. Census 

Bureau, 2018). Median asking prices of homes continue to climb out of the recent housing slump 

that bottomed out in 2013, currently the median asking price is $206,400 United States dollars 

(Figure 3.1; U.S. Census Bureau, 2018). Well-planned and maintained landscaping is a 

contributing factor effecting home values positively by adding to curb appeal and has the largest 

return of any home improvement project (Hall and Hodges, 2011). Curb appeal is defined as the 

combined quality of the home exterior quality and the landscape appearance including the 

maintenance (Elam and Stigrall, 2012). Landscape appearance and maintenance can increase 

home values between 5% and 20% (Behe, et al., 2005; Elam & Stigrall, 2012). A well-planned 

landscape can also decrease utility bills through reducing the need for heating and cooling by 

providing shading and wind reduction (Akbari et al., 2001; Heisler, 1986; Maco et al., 2002; 

McPherson, 1993). Other benefits of landscape include dust abatement, noise reduction, and a 

visual barrier, creating a sense of privacy within busy urban areas (Brandle, et al., 2000). 

Landscapes are also a sanctuary for wildlife and insects.  

The world climate has seen an increase in carbon dioxide (CO2) and a shift toward a 

warmer climate (Shen et al., 2011; Pan et al., 2015). Review of climate data has shown the rate 

for mean high temperature range from 0.19C to 0.25C increase per decade over a 50 year and 30-

year period, respectively (Papalexiou et al., 2018). Kansas, specifically, has had temperature 

extremes ranging from -40C (-40F) in 1905 to 49.4C (121F) in 1936 (Kansas State University, 

2018). In 2018, temperatures have ranged from a high of 40.5C (105F) to a low of -29.4C (-21F) 
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within the state. With the mean temperature continuing to increase and periods of extreme heat 

becoming more frequent while lasting several days to weeks, it is important to find landscape 

plants that can withstand the rigors of today’s environment and while being aesthetically 

pleasing.   

Temperature stress can elicit a host of responses within a plant. Many plants cannot 

survive temperatures greater than 45C (113F) for longer than a few minutes as this can cause 

considerable damage to the photosynthetic light harvesting apparatus (Taiz and Zeiger, 2006). 

Extreme elevated temperature may cause plants to lose membrane stability allowing cell contents 

to aggregate with heavy metals and other compounds that have leaked from vacuoles (Berry and 

Bjorkman, 1980; Bjorkman et al. 1980). Heat stress will cause proteins to unfold or become 

misfolded which may aggregate together forming Heat shock granules and can cause 

considerable damage and even cell death when the cells ability to remove these aggregates is 

hampered (Planas-Marquès et al., 2016; Nakajima and Suzuki, 2013). Elevated temperatures 

[>35C (95F)] can cause Ribulose bisphosphate carboxylase/oxygenase (rubisco) activity to 

decrease which reduces the amount of carbon fixed by photosynthesis (Crafts-Brandner and 

Law, 2000). A decrease in photosynthesis as well as an increase in respiration from the elevated 

temperatures effectively starves the plant and can cause the plant to cannibalize itself to create 

energy. This results in senescing leaves and a reduction in overall plant growth. Heat stress has 

also been shown to induce several heat shock protein’s (HSP’s). Although the role of HSP’s is 

not clearly understood, most agree that they play a role in membrane stabilization and cell 

protection. Protection occurs by maintaining the fluidity of cells by stopping the denaturing of 

proteins and assisting in the refolding of proteins that have been damaged by elevated 

temperatures. Research has shown that HSP’s are induced at the induction of high temperatures 
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within 3 to 5 minutes and can last several hours after elevated temperatures subside (Sachs and 

Ho, 1986). An improved thermotolerance has also been shown to occur when a plant is subjected 

to a heat shock (>40C) for a brief period and then returned to a more optimum temperature 

(Queitsch et al., 2000). Queitsch (2000) showed that plants subjected to a heat shock treatment 

were able to maintain a higher rate of photosynthesis at higher temperatures over control plants. 

A plant’s ability to acclimate and maintain photosynthesis under high temperatures by 

maintaining membrane stability and protecting the light harvesting mechanism is crucial to its 

ability to survive.   

A quick greenhouse-based assay using temperature curves can assist with selecting plants 

that will withstand the rigors of our climate and become candidates for longer field trials prior to 

putting into wholesale plant production. Viburnum was chosen because of its wide breadth of 

aesthetic characteristics and it is widely produced. The purpose of this physiological adaptability 

trial is to find Viburnum species that can tolerate increasing heat and acclimate by increasing the 

optimum temperature for photosynthesis while maintaining growth and to test the assay for use 

as a tool to quickly identify plants that can tolerate environmental stresses and be advanced to 

field trials. 

 Materials and Methods 
On 3 May 2012, 20 plants each of 6 Viburnum spp. (Table 3.1) rooted liners (192 mL; 

(4x8 propagation liner inserts, Landmark Plastics, Akron, OH) had containers removed and 

potted to 6.0 L (1.6 gal) containers (Classic 600, Nursery Supply Inc., Chambersburg, PA). 

(Spring Meadow Nursery, Grand Haven, MI) filled with an amended pine bark: Eastern 

redcedar:sand (2:2:1, v/v/v). Eastern redcedar (Juniperus virginiana L.) is a native conifer 

species with a native range in the Eastern half of the U.S. It has become a pest to native 
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grasslands in the Great Plains due to its aggressiveness and the ease with which it proliferates 

from seed (Briggs et al., 2002). Studies to verify its suitability as a substrate media showed that 

non-native pine bark can be supplemented using this resource (Starr et al., 2012). Rooted liners 

were produced in 192 mL (4x8 propagation liner inserts, Landmark Plastics, Akron, OH) 

containers that were removed and planted to 6.0 L (1.6 gal) containers (Classic 600, Nursery 

Supply Inc., Chambersburg, PA). Media consisted of pine bark: Eastern redcedar : sand (2:2:1, 

v/v/v) amended with 1.2 kg·m-3 (2.0 lbs⋅yd-3) micronutrient package (Micromax, Scotts, 

Marysville, OH) and 9.5 kg·m-3 (16 lbs⋅yd-3) controlled release fertilizer (Osmocote 18N-2.6P-

9.9K, Scotts, Marysville, OH). Eastern redcedar was ground to a particle size of 9.5 mm (3/8 in.) 

using a hammermill (Model 30HMBL, C.S. Bell Co., Tiffin, OH). Plants were grown under 

partial shade (50%) for the remainder of the growing season at the Kansas State University John 

C. Pair Horticultural Research Center (Haysville, KS). Plants were overwintered in an unheated 

hoop house covered in white polyurethane plastic and vented with fans when inside temperatures 

reached 10C (50F). On 15 June 2012 V. awabuki ‘Chindo’ and V. tinus ‘Robustum’ were 

propagated from apical softwood cuttings (Classic Viburnums, Upland, NE). Fully rooted liners 

were transplanted into 6.0 L (1.6 gal) containers (Classic 600, Nursery Supply Inc., 

Chambersburg, PA) containing the previously mentioned media on 15 August 2012. V. awabuki 

and V. tinus are southern ecotype Viburnum species (≥ USDA hardiness zone 7) and 

consequently were grown out within the greenhouses at the Throckmorton Plant Sciences Center, 

Kansas State University (Manhattan, KS). Plants were grown under natural photoperiod and 

irradiance with greenhouse temperatures maintained at 25C/18C (77F/64F; day/night) and 

watered as needed. Plants were monitored weekly for pests and if found, were controlled with 

appropriate chemicals, horticultural oils, or cultural controls. Tetranychus urticae (spider mites) 
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were found during the stress trial and water was used to knock them off the leaves when 

possible. On 13 June 2013 plants grown in the cold-frame were moved into a glass greenhouse at 

Throckmorton Plant Sciences Center, Kansas State University (Manhattan, KS), and allowed to 

acclimate for 4 w. Plants were grown under natural photoperiod and irradiance and watered as 

needed to avoid moisture stress. Greenhouse temperatures were set to 25C/18C (77F/64F; 

day/night). Prior to treatment initiation, five plants of each species were selected at random for 

fluorescence measurements and destructive harvest.  

Growth data was collected which included: height (H), width(W), shoot dry weight 

(SDW), and root dry weight (RDW). Growth Index (GI) was calculated as (plant height + 

maximum plant width + perpendicular plant width) ÷3. SPAD chlorophyll meter (model SPAD 

502, Spectrum Technologies, Aurora, IL) was used to take measurements on five fully expanded 

leaves to get an indicator of leaf greenness. Photosynthetic capacity (Pnet) of each plant was 

measured using a Li-Cor (Li-Cor, Lincoln, NE)) infrared gas analyzer and a climate-controlled 

cuvette. Cuvette environmental parameters were set to achieve 400 µL·L-1 CO2, 2000 µmol·m-

2·s-1 photosynthetically active radiation (PAR), and leaf temperature near ambient outside air 

temperature (25C/77F). Following data collection, plants were destructively harvested, where 

roots were separated from the shoots at the soil line and washed free of substrate. Roots and 

shoots were then placed in a forced air-drying oven (model SC-400, The Grieve Co., Round 

Lake, IL) at 65C (149F), dried to a constant weight, and subsequently weighed.  

On 22 July 2013, temperatures within the greenhouse were raised to a minimum 38C 

/25C (100/77F) day/night to expose plants to high temperatures. Plants were allowed to 

acclimate for 28 days. During this period plants were irrigated as needed to eliminate drought 
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stress. Measurements commenced following the high heat exposure period to capture the plants’ 

photosynthetic response to temperature extremes.  

After the high heat exposure period growth and physiological data identical to the initial 

measurements were taken. Similar to the method of Ranney and Ruter (1997), potential 

photosynthetic capacity (Pnet) was determined by measuring photosynthesis during increasing 

leaf temperature under saturating CO2 (2000 μLL-1) and saturating photosynthetically active 

radiation (PAR; 2000 μmolm-2s-1) with a CIRAS-1 (PP Systems, Haverhill, MA) infrared gas 

analyzer and a climate-controlled cuvette. A recently matured terminal leaf was placed in the 

controlled atmosphere cuvette at 20C (68F) and allowed 20 min for carbon assimilation to 

stabilize before the first reading was taken. The temperature was then raised in 5 degree 

increments from 20C (68F) to 45C (113F) with a reading taken at each incremental raise after a 

20 min acclimation period. Following data collection, plants were destructively harvested and 

dried as previously described. The 2013 plant trial had damage from Tetranychus urticae (spider 

mites) potentially impacting the data, therefore the trial was repeated May 2014 using species 

that were performing well in the field trial. The species selected for the repeated trial were V. 

dentatum, V. nudum, and V. tinus. The experimental design and protocol were followed as 

described with only data from the 2014 trial presented.  

The experimental design was a randomized complete block design with five single plant 

replicates. Temperature response was set up as a split plot with the whole plot being greenhouse 

temperature and the split being leaf temperature. Data were subjected to ANOVA and means 

separated using Tukeys Studentized T test P≤ 0.05 (SAS v. 9.2, SAS Institute Inc., Cary, NC). 

No statistical comparisons were made between species. 
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 Results and Discussion 
Initial trial plants (2013) were detrimentally affected during heat exposure by an 

infestation of Tetranychus urticae (spider mites) resulting in several of the deciduous species 

dropping leaves or severe yellowing. Data was inconclusive and could not be attributed to the 

treatment (data not shown). A second, identical trial was conducted on two species that were 

thriving in the field trial and a southern ecotype (V. tinus) during the period of 2014 April/May, 

which data is presented herein.   

Whole plant responses to increased day/night temperatures during heat exposure prior to 

photosynthesis measurements resulted in growth of all species slowing compared to control 

greenhouse temperatures. Viburnum nudum exhibited the most response to heat by reducing both 

RDW (1.82 g) and SDW (5.44 g) as well as overall size as measured by GI (30.2) for exposed 

plants (Table 3.2). Even with reduced growth the shoot/root ratio (S/R) was not affected, 

indicating the plant was able to maintain a similar but slower growth rate as control plants. 

SPAD, a measure of leaf greenness, was reduced which may have led to a decreased Pnet as 

exhibited in the temperature curve slopes. Control plants had a 60% difference over heat exposed 

plants in rate of assimilation even though temperature optimum (Topt) per the quadratic equation 

was 32.5C (90.5F) and 41.8C (107.2F), respectively (Fig. 3.2). The apparent adaptation to heat 

and the ability to maintain carbon assimilation after being exposed to high heat is indicative of 

this species and its native range, which is along the Eastern coast of the United States, West to 

Kentucky from Georgia to Eastern Texas, with a USDA hardiness zone rating of 5-9 it has been 

known to survive -29C (-20F) in Illinois (Dirr, 2008). Its native habitat has an acidic soil, boggy, 

humid area but has strong ability to adapt to drought (Pool et al., 2019).  

Viburnum dentatum exhibited similar responses as V. nudum with reduced biomass 

accumulation in both RDW (1.96 g) and SDW (6.88 g) for heat exposed plants, yet GI (36.47) 
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was no different than control plants resulting in plants that were similar in size but less dense 

(Table 3.2). Shoot/Root ratio decreased from control to heat exposed, indicating an increase in 

root production. SPAD (model SPAD 502, Spectrum Technologies, Aurora, IL) was not 

affected. Viburnum dentatum heat curves showed a greater increase of Pnet rate for control plants 

where exposed plants increased at a lesser rate. Temperature optimum for control and heat 

exposed plants were 40.5C (104.9F) and 49.2C (120.6F), respectively (Fig. 3.3).  

Viburnum tinus biomass accumulation was not affected by heat exposure. Growth, 

however, was significantly reduced during heat exposure resulting in smaller overall plants 

(Table 3.2). This adaptive characteristic has been demonstrated in a previous study where V. 

tinus reduced overall size and downregulated photosynthetic capacity (Fini et al., 2010). The 

species is native to the Mediterranean region of Southern Europe where many shrub species 

exhibit the same capabilities to endure periods of high heat, irradiance, and drought (Tattini et 

al., 2006; Fini etal., 2010). Heat curves exhibit this pattern of downregulation where control 

plants had a higher rate of Pnet and then declined as temperatures became suboptimal (Fig. 3.4). 

Whereas, heat exposed plants, had a lower Pnet rate of increase, and overall downregulation, with 

no severe decline (Fig. 3.4). Temperature optimum for control plants was 63.3C (145F) due to its 

linear regression line whereas, control was 38.5C (101.3F). The optimum for control plants is not 

a realistic number as most plants cannot survive and thrive above 45C (113F; Yamori et al., 

2014).  

Conclusions 

With an increase in temperature, plants will begin to increase respiration rates and 

downregulate the state of Rubisco (Salvucci and Crafts-Brandner, 2004; Atkin and Tjoelker, 

2003). The temperature at which respiration is optimized is just below 45C (113F). Plants will 
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acclimate respiration, such that plants acclimated at high temperature will have a lower 

respiration rate at a common high temperature where photosynthesis is optimized (Atkin et al., 

2005, Yamori et al., 2005). Many plants are able to increase production of heat shock proteins 

(HSP), as well as heat-stable rubisco activase, to protect the integrity of membranes thus 

protecting the integrity of the photosynthetic apparatus (Yamori et al., 2014).  

Viburnum dentatum and V. nudum were able to increase Topt above control plants 

indicating that these species were able to acclimate to increased temperature. Plants were 

smaller, as they reduced growth during the heat exposure period, even though water was not 

limiting. With the increase in Topt and reduced yet sustained growth V. nudum and V. dentatum 

may be species that can withstand rigors of the Great Plains. Viburnum tinus did not decrease 

size, but placed resources into root production as evidenced in the reduction in S/R. The species 

also was able to maintain a steady increase in Pnet for the heat exposed plants whereas the control 

plants increased to optimum and then declined rapidly. Viburnum tinus with its slowed growth 

and steady increase of Pnet with no decline at higher temperatures after heat exposure may help it 

to survive in the Great Plains. A potentially limiting complication with V. tinus is that cold 

hardiness is rated to zone 9 and may not be adapted to the region and further studies should be 

done to determine its ability to survive in USDA cold hardiness zone 5. With this study, the 

recommendation for the use of V. dentatum and V. nudum is warranted and the technique is a 

viable option as a quick assay to determine a plants suitability to warmer regions of the Great 

Plains. 
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 Tables and Figures 
 

Table 3.1 Selected Viburnum spp. in a heat acclimation and increasing temperature 

photosynthesis adaptation study at Throckmorton Plant Sciences Center (Manhattan, KS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Common name Scientific name 
Awabuki Viburnum V. awabuki ‘Chindo’ 
Smooth Witherod V. nudum ‘Winterthur’Z 

 Arrowwood Viburnum V. dentatum ‘Chicago Lustre’Z 

 Laurustinus V. tinus ‘Robustum’Z 

 American Cranberrybush Viburnum V. trilobum ‘Compactum’ 

Lantanaphyllum Viburnum V. x rhytidophylloides ‘Alleghany’ 
Z Plants used in the repeated trial May 2014 
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Table 3.2 Root dry weight (Rdw), shoot dry weight (Sdw), SPAD, growth index (GI), and shoot-to-root ratio (S/R ratio) of 

Viburnum nudum 'Winterthur', Viburnum dentatum 'Chicago Lustre', and Viburnum tinus 'Robustum' following exposure to 

heat (38C) in a controlled atmosphere greenhouse at Throckmorton Plant Sciences Center (Manhattan, KS). 

 

 Viburnum nudum ‘Winterthur’ Viburnum dentatum ‘Chicago Lustre’ Viburnum tinus ‘Robustum’ 

 Control Acclimated  Control Acclimated  Control Acclimated 

Rdw (g) 

 

4.66**a 1.82b  4.18**a 1.96b  17.86NS 11.76 

Sdw (g) 

 

10.94**a 5.44b  11.7**a 6.88b  54.92NS 37.84 

SPADz 

 

45.34**a 37.34b  37.28NS 35.5  55.14NS 54.52 

GIy 

 

41.00**a 30.2b  45.07NS 36.47  53.93**a 42.27b 

S/R ratiox 

 

0.42NS 0.32  0.37*a 0.25b  0.31NS 0.29b 

NS, **, * Not significant, significant at P ≤ 0.01, or significant at P ≤ 0.05 

Means followed by a different letter within a species and within a row are significantly different based on Tukey’s Studentized Range test (α = 0.05), n=5 

z Measure of leaf greenness 1 -100 

y (Plant Height + Plant Width + Perpendicular Plant Width) ÷3 in cm 

x Shoot dry weight ÷ Root dry weight 
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Figure 3.1 Median asking price for homes that were vacant and for sale for the periods of 1995-2018 in the continental United 

States 
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Figure 3.2 Potential photosynthetic capacity (Pnet, µmol CO2⋅m-2⋅s-1) of Viburnum nudum 'Winterthur’ exposed at 38/30C 
(solid line) and 25/18C (dashed line) (Day/Night), y = -0.0248x2 + 2.0759x - 22.397, r² = 0.99 and y = -0.0541x2 + 3.9001x - 
44.052, r² = 0.92 in a controlled atmosphere  greenhouse at Kansas State University Greenhouse Complex (Manhattan, KS) 
during increasing temperature at 1500 µL⋅L-1 CO2 and 2000 µmol⋅m-2⋅s-1 PAR, n=5.   
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Figure 3.3 Potential photosynthetic capacity (Pnet, µmol CO2⋅m-2⋅s-1) under increasing leaf temperature of Viburnum dentatum 
'Chicago Lustre’ exposed at 38/30C (solid line) and 25/18C (dashed line) (Day/Night), y = -0.0208x2 + 1.9699x - 22.511, r² = 0.99 
and y = -0.0421x2 + 3.2372x - 37.747, r² = 0.90, respectively, during increasing temperature at 1500 µL⋅L-1 CO2 and 2000 
µmol⋅m-2⋅s-1 PAR, n=5.   
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Figure 3.4 Potential photosynthetic capacity (Pnet, µmol CO2⋅m-2⋅s-1) of Viburnum tinus 'Robustum' exposed at 38/30C (solid 
line) and 25/18C (dashed line) (Day/Night), y = -0.0039x2 + 0.3826x + 5.9809, r² = 0.60 and y = -0.0538x2 + 3.8496x - 43.468, r² = 
0.89, in a controlled atmosphere  greenhouse at Kansas State University greenhouse complex (Manhattan, KS) during 
increasing temperature at 1500 µL⋅L-1 CO2 and 2000 µmol⋅m-2⋅s-1 PAR, n=5.   
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Chapter 4 - Survival and growth of select Viburnum spp. across 

three cold hardiness zones in Kansas 

 

 Abstract 

United States Department of Agriculture (USDA) cold hardiness zones have shifted 

within the last decade resulting in areas of Kansas having potentially more options for landscape 

plants due to being warmer on average, than in the past. Field trials have been used to evaluate a 

plants ability to survive in new climates but can be difficult and expensive to conduct. This trial 

was conducted to evaluate the ability of 19 distinct Viburnum spp. to be evaluated across three 

USDA hardiness zones in Kansas. Seven sites were chosen across the state to capture not only 

the variability in temperature but also precipitation. Viburnum dentatum, V. nudum, V. opulus, 

and V. x rhytidophylloides are plants that can survive the rigors of Kansas or other areas with 

similar climates. Viburnum opulus was able to maintain 100% survival across all sites with 

significant differences in final growth indices. Viburnum carlesii, V. sargentii, V. trilobum, and 

V. carlcephalum, are all candidates to be used on sites that have adequate moisture or ability to 

irrigate and some amount of shade and protection. Viburnum x burkwoodii only had one plant 

survive in Salina, KS and would not be recommended based on this trial.  
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 Introduction 

United States Department of Agriculture (USDA) plant hardiness zones have recently 

been updated (2012) for the first time since 1990, indicating warmer temperature trends in 

Northern regions (Heller, 2012). With the change in hardiness zones and a seemingly warmer 

and drier climate for the region, a concerted effort to identify ornamental landscape plants that 

will withstand the rigors of the Great Plains region of the U.S. is necessary. These plants should 

transplant easily, be drought tolerant, and withstand high and low temperature extremes that 

commonly occur throughout the region as well as high soil pH, alkaline water, high sustained 

winds, and pest pressure.  

Along with the ability to adapt to varying climates, plants must be aesthetically pleasing 

or useful within an ornamental landscape setting. Sometimes plants that are well adapted to 

severe drought or heat conditions are not aesthetically pleasing to homeowners and landscapers. 

Homeowners are looking for plants that are low-input, low maintenance, and have aesthetically 

pleasing traits across all seasons. Low-input plants are plants that require little or no 

supplemental water or fertilizer after establishment. Low-maintenance plants require little 

pruning, fertilization, or pesticides. These plants tend to grow slower with a compact habit thus 

reducing the need for maintenance to keep them at the desired shape and size. Aesthetically-

pleasing plants are, for all intents and purposes, plants that “look good.” Flowering time, color, 

and abundance are important characteristics to be accepted for use within a landscape. With 

abundant flowering comes, with most plants, abundant fruit set. Fruits make for sometimes-

interesting color displays that can range across many colors of the visible spectrum and 

sometimes are in combinations within one infructescence. The fruit are also attractants to 

wildlife and can draw them into the home landscape. Fruit can also be edible and be used by the 

homeowner. Season of interest can vary with fruit, as some fruits will only stay on the plant a 
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few weeks while others may last through the winter, adding a color contrast to the winter 

landscape. 

Homeowners and landscape contractors often must rely on anecdotal advice for plants 

that survive and thrive in their area due to lack of research on establishment for their desired 

plants. Otherwise, they rely upon research and ratings from resources that may not be an exact fit 

for their region or microclimate. Consumers then must rely on trial and error to select plants for 

their landscape which can be costly and time consuming. Universities, industry, and botanical 

gardens often have research available on plant varieties for landscapes and have found the best 

method for making recommendations is by using field trials over a several year period (2 to 5 

yrs) in native soils (Lindstrom et al., 2001; Jones and Cregg, 2006). Plant trials in the U.S. began 

in the late 1800’s as a means to compare American seed-produced plants with other competitive 

lines from Europe (Nau, 2007). The premise of a plant trial is based upon the idea of comparison. 

Trials are used to generate research-based comparisons between species or cultivars to observe 

growth habit, flowering, fruiting, vigor, pest problems or lack thereof, color, environmental 

stress tolerance, exposure, and survivability. Trial sites are set up to identify superior selections 

or cultivars when compared to “industry standard” plants. Trials can also be used to evaluate 

anecdotal plant selections for regional retailers to ensure research-based evidence for use of 

selected plants. If multiple sites are available, as well as resources to effectively manage multiple 

sites, then a state- or region-wide trial would provide information that could be used to make 

region-wide recommendations for selected plants. Consumers then will have confidence in 

recommended plants if they are within those geographic regions. 

When conducting region-wide trials, many challenges may arise. Weather will vary 

across a region, where one area may be extremely dry, other areas may have too much rainfall. 

Variability in weather is why multiple sites and years are necessary to make recommendations 
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for a region. Widrlechner (1998) identified interactions between moisture index, mean January 

temperature and mean July temperature that predicted survivability of ornamental landscape 

plants from Japan across sites in the North Central U.S. Greater than 70% of the variability 

between sites was due to these three variables with the greatest effect contributed to the moisture 

index. Greatest percent survival for ornamental landscape plants in Widrlechner’s trial was seen 

in sites with the wettest and warmest climates. Trials also require adequate space, available 

water, funding, and collaborators that will care for plants using best management practices set 

forth by the researcher. Even with all the above requirements being met, plants may still fail for 

unknown reasons. Multiple sites and replication within those sites, allows for anomalies to be 

accounted for so that recommendations can be made for the region. Researchers, with all the 

complications of conducting field trials, have investigated ways to trial plants in controlled 

settings to overcome the challenges of field studies (Adkins, et al., 2002, Dirr and Lindstrom Jr., 

1990, Garcia-Navarro, et al., 2004, Sakai, et al., 1986). 

Kansas has had temperature extremes ranging from -40C (-40F) in 1905 to 49.4C (121F) 

in 1936 (Kansas State University (KSU), 2018). In 2018, temperatures ranged from a high of 

40.5C (105F) to a low of -29.4C (-21F) within the state. Summer can also be accompanied by 

several weeks reaching 38C (100F) or hotter. Precipitation in the state follows a North to South 

gradient line with a slight tilt to Southwest to Northeast gradient as you move East across the 

state. Southeast portions of that state receive on average 114.3 cm (45in) to 45.72 cm (18 in) in 

the Southwest (Figure 1.3).  

Viburnum L. are one of the most widely grown genus of landscape plants according to a 

recent Census of Horticulture Specialties (USDA, 2014). Nine hundred forty-one producers sold 

2.1 million Viburnum in 2014, grossing $21.9 million in revenue (USDA, 2014) The species is 

known for its adaptability to sometimes-harsh environments. It has been on many recommended 
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plant lists as a plant tolerant of environmental stresses including urban settings due to its 

adaptability, much of which is anecdotal (Flint, 1985). The sum of flowering, attractive foliage, 

and sometimes radiant fruit makes Viburnum a high quality choice to trial. 

With the wide variability in precipitation and temperatures across Kansas, a multisite 

state-wide trial was implemented to evaluate plants that can be recommended across the state. 

The popularity of Viburnum and number of available varieties that are both aesthetically pleasing 

and adaptable to environmental stress make it a great choice for landscapes and a great choice for 

this state-wide study. The purpose of this study is to evaluate select Viburnum spp. across the 

state of Kansas to determine suitability for recommendation to consumers, landscape contractors, 

and wholesale plant growers as well as to compare field study results to physiological adaptation 

studies on drought and heat within a greenhouse. 

 Materials and Methods 
On 3 May 2012, 64 plants each of 19 Viburnum spp. (Table 4.1) rooted liners (Spring 

Meadow Nursery, Grand Haven, MI; Classic Viburnums, Upland, NE) were produced by the 

supplier in 192 mL (4x8 propagation liner inserts, Landmark Plastics, Akron, OH) containers 

that were removed and planted to 6.0 L (1.6 gal) containers (Classic 600, Nursery Supply Inc., 

Chambersburg, PA; Table 4.1). Eastern redcedar (Juniperus virginiana L.) is a conifer species 

with a native range in the Eastern half of the United States. It has become a pest to native 

grasslands in the Great Plains due to its aggressiveness and the ease that it proliferates from seed 

(Briggs et al., 2002). It is suitable as an alternative media to reduce the need for non-native pine 

bark while using local resource (Starr et al., 2012). The media was amended with 1.2 kg·m-3 (2.0 

lbs⋅yd-3) micronutrient package (Micromax, Scotts, Marysville, OH) and 9.5 kg·m-3 (16 lbs⋅yd-

3) controlled release fertilizer (Osmocote 18N-2.6P-9.9K, Scotts, Marysville, OH). Eastern 
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redcedar was ground to a particle size of 9.5 mm (3/8 in.) using a hammermill (Model 30HMBL, 

C.S. Bell Co.,Tiffin, OH). Plants were grown under partial shade (50%) for the remainder of the 

growing season at the Kansas State University (KSU) John C. Pair Horticultural Research Center 

(Haysville, KS). Plants were overwintered in an unheated hoop house covered in white 

polyurethane plastic and vented with fans when inside temperatures reached 10C (50F).  

Field trial sites were chosen based on availability of space, volunteers, and geographic 

locations across Kansas. The sites were as follows, KSU Northwest Research Center (Colby, 

KS), Saline County demonstration garden (Salina, KS), KSU Tuttle Creek Forestry Research 

Center (Manhattan, KS), Olathe Horticulture Research and Extension Station (Olathe, KS), 

Parsons Arboretum (Parsons, KS), KSU John C. Pair Horticulture Research Center (Haysville, 

KS), and Prairie Wind Aquatics (Garden City, KS) (Table 4.2). Planting time that is 

recommended by King and Nance (2012) as most successful, is Fall. On 14 September 2012 

fully rooted 6.0 L (1.6 gal) containers of each species were selected for uniformity and planted at 

the KSU John C. Pair Horticulture Research Center (37.520102, -97.314379) in Haysville, KS 

(United States Department of Agriculture (USDA) hardiness zone 6b). On 27 September 2012, 

fully rooted 6.0 L (1.6 gal) containers of each species were selected for uniformity and 

transported to the Parsons Arboretum (37.329319, -95.267172) in Parsons, KS (USDA hardiness 

zone 6b). Plots had previously been treated with Glyphosate Plus (Quali-Pro, Pasadena, TX), a 

non-selective herbicide, and cultivated to remove weeds and Cynodon dactylon (Bermuda grass). 

Plants were planted in plots and watered to settle the native soil. All plots were top-dressed with 

controlled-release fertilizer (Osmocote 18N-2.6P-9.9K, Scotts, Marysville, OH) applied at a 

rate of 5.4 kg⋅100 m-2 (11 lbs ⋅ 1000 ft-2). Pre-emergent herbicide (Snapshot® 2.5 TG, Dow 

AgroSciences, Indianapolis, IN) was applied post-plant at a rate of 2.08 kg⋅100 m-2 (4.6 lbs⋅1000 

ft-2). Local mulch from forestry operations was installed to retain moisture and to suppress 
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weeds. On 4 October 2012 fully rooted 6.0 L (1.6 gal) containers of each species were selected 

for uniformity and transported to the Colby, KS and Garden City, sites, respectively. Plants were 

planted at the KSU Northwest Research Extension Center (39.393811, -101.063004) in Colby, 

KS (USDA hardiness zone 5b) on 5 October 2012 and at Prairie Wind Aquatics (37.991178, -

100.887544) in Garden City, KS (USDA hardiness zone 6a) on 6 October 2012. Sites were 

cultivated and cleared of weeds prior to planting. On 12 October 2012 fully rooted 6.0 L (1.6 gal) 

containers of each species were selected for uniformity and transported to the Saline County 

demonstration garden (38.832013, -97.600023) in Salina, KS (USDA hardiness zone 6a). On 19 

October 2012, fully rooted 6.0 L (1.6 gal) containers of each species were selected for uniformity 

and transported to the KSU Tuttle Creek Forestry Research Center (39.249071, -96.573143) in 

Manhattan, KS (USDA hardiness zone 6a). On 26 October 2012, fully rooted 6.0 L (1.6 gal) 

containers of each species were selected for uniformity and transported to the Kansas State 

Research and Extension Center- Olathe (38.883864, -94.992697) in Olathe, KS (USDA 

hardiness zone 6a). Growth data was collected at all sites to include height and width. A 

chlorophyll meter, SPAD 502 Plus (Spectrum Technologies Aurora, IL), was used to measure 

leaf chlorophyll content on three recently expanded leaves throughout the plant canopy. All sites, 

excluding Parsons, had a weather station (Spectrum Technologies Inc., WatchDog 1450, Aurora, 

IL) installed with a radiation shield to measure temperature, relative humidity, and soil moisture 

within the plots. Parsons had a weather station data logger (Spectrum Technologies Inc., Watch 

Dog Model 2700, Aurora, IL) installed to collect weather (temperature, relative humidity) and 

soil moisture data. 

The experimental design was a randomized complete block design with three single plant 

replicates at each site. Growth and SPAD data were subjected to ANOVA and means separation 
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using Waller–Duncan K-ratio t test at α = 0.05. No statistical comparisons were made between 

species. 

Results and Discussion 

Viburnum nudum, V. opulus, and V. x rhytidophylloides outperformed (greater than 80% 

survival) all other species, with V. dentatum nearly in range (78%; Table 4.3). Viburnum opulus 

was able to maintain 100% survival across all sites with significant differences in final growth 

indices between all sites where Salina, Manhattan, and Haysville were similar in final growth 

indices and also had the greatest growth (Table 4.9). Viburnum opulus plants at Olathe and 

Parsons were similar to all except Salina and Colby with Salina having the greatest growth 

(206% increase) and Colby having the least growth (0% increase; Table 4.9). The species is 

known to be a vigorous grower, especially in wet sites (Dirr, 2007). Viburnum nudum and V. x 

rhytidophylloides both maintained 83% survival (Table 4.3). Viburnum nudum exhibited 

significant differences in final growth indices and leaf chlorophyll content with Olathe having 

the largest plants and lowest leaf chlorophyll content (Table 4.8). Salina, Manhattan, and Parsons 

were similar to both Olathe and Haysville for growth while leaf chlorophyll content was similar 

to each other but not Haysville or Olathe (Table 4.8). Haysville resulted in the smallest plants 

and the greatest leaf chlorophyll content (Table 4.8). Viburnum x rhytidophylloides had the 

greatest growth in Salina and Parsons and the least in Manhattan and Olathe, while there were no 

differences in leaf chlorophyll content (Table 4.22). This lack of growth for V. x 

rhytidophylloides is not typical for the species which is known for its rapid and robust growth 

rate (Dirr, 2007). Viburnum nudum is a native to the Eastern and Southern part of the United 

States (U.S.) and is most often found in wetland type areas (Dirr, 2007). In this study it 

performed best at Olathe and had an increase in growth index of 150% and was similar to 
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Parsons, where the site received the most rainfall in 2013, even though it only had a 49% 

increase in growth index (51 in; Table 4.2). Viburnum dentatum had no significant differences 

across all sites for growth indices or leaf chlorophyll content (Table 4.5). Growth indices 

increased on average 180% with the greatest in Salina (300%) and the least in Parsons (70%; 

Table 4.5). The species is known to demonstrate colonizing growth habit and is a rapid grower 

that can withstand most any site from North to South across the U.S. (Dirr, 2007). In this trial, V. 

dentatum only had losses in Haysville and Colby. These failures could be due to weed pressure 

at Haysville and lack of moisture and supplemental irrigation in Colby as well as extreme 

temperatures with Colby reaching -16.4F(-26.8C) and exceeding 110F(43.6C) at both sites 

(Table 4.2). 

Viburnum carlesii, V. sargentii, V. trilobum, and V. x carlcephalum all had survival rates 

exceeding 60% which should garner interest and another study on these species (Table 4.3). 

Viburnum carlesii, V. trilobum, and V. x carlcephalum, performed best in Salina where 

Extension Master Gardener volunteers helped maintain the site which was in partial shade the 

majority of the day but also performed equally well in Parsons (Tables 4.4; 4.16; 4.19). Leaf 

chlorophyll content of the aforementioned species had no significant differences except for V. 

trilobum. Salina also had at or above normal precipitation during the study making the need for 

supplemental irrigation less crucial compared to other sites (Table 4.2). The site also never 

experienced temperatures below 0F (-17.7C) but experience several days above 100F (37.7C) 

with temperature maximum reaching 108F (42.2C, Table 4.2). Viburnum sargentii had consistent 

growth increases across Manhattan, Parsons, and Haysville, but were not significantly different, 

all which are in the Eastern half of Kansas and received more precipitation (Table 4.14). 

Viburnum x juddii and V. x pragense survival were at 55% with no plants surviving in Haysville 

and only two surviving for V. x juddii in Colby (Table 4.3). Viburnum x pragense exhibited the 



 

78 

 
 

most growth in Salina (340% increase) and Parsons (124% increase), both areas with part shade 

during the day, while V. x juddii performed best in Manhattan (208% increase) but was not 

significantly different than Salina (103% increase; Tables 4.20, 4.21). Leaf chlorophyll content 

was not significantly different between all sites.  

Viburnum sieboldii followed closely behind the previously mentioned species with an 

overall survival rate of 50% with 100% survival in Salina, Parsons, and Haysville (Table 4.3). 

Growth index was not significantly different across sites and resulted in growth increases of 

120%, 190% and 226% for Parsons, Haysville, and Salina where it survived but leaf chlorophyll 

content was greatest in Haysville and Parsons (Table 4.15).These species with 50% - 80% should 

not be disregarded completely due to the ability to survive and thrive at sites where they have 

part shade, adequate moisture, or a combination of both. These site characteristics can aid less 

hardy plants in their ability to adapt to sometimes harsh sites (Hastwell and Facelli, 2003; 

Lindstrom et al. 2001).   

Viburnum dilatatum, V. farreri, V. plicatum, V. plicatum tomentosum, V. rhytidophyllum, 

V. rufidulum, V. x bodnantense, and V. x burkwoodii all had survival rates less than 45% (Table 

4.3). These species should be used with caution in climates similar to Kansas. Even though they 

did not survive across all sites at least one plant from every species was able to survive in 

Parsons except V. x burkwoodii, where only one plant survived in Salina (Table 4.3). The 

survival of these plants can partially be attributed to the available moisture in 2013 (51 in) with a 

volumetric water content percent average (VWC%) of 37%, as water is one of the most limiting 

factors when it comes to landscape plant establishment (Gilman et al. 1998, Table 4.2). 

 Site characteristics and cooperator consistency in maintenance of the site was crucial to 

plant survival in this study as can be seen in the overall survival by site (Table 4.3). Garden City 

was removed from the study due to several limitations. The site was open and exposed to land 
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where herbicide had been applied during study establishment, and drift damage was observed. 

The site also did not receive adequate supplemental irrigation during times of no precipitation. 

Planting time was also an issue in Colby and Garden City, with a large temperature swing at time 

of planting possibly shocking trial plants going into Winter, which could have led to winterkill 

and plants not establishing well the following Spring (Hormay, 1943). Colby survival rates were 

low, with only 15% of the plants surviving two seasons. Irrigation was not adequate at the site as 

evidenced by moisture readings taken during the study showing volumetric water content percent 

average VWC% of 12% (Table 4.2). This lack of irrigation in a site with only 21 inches of 

precipitation during a growing season could have put plants in a deficit they could not overcome 

(Table 4.2). Haysville also had complications with site maintenance. The site had previously 

been covered in Cynodon dactylon (Bermuda grass) and was sprayed with glyphosate prior to 

establishment and then tilled into the plots with large clumps raked out. Cynodon dactylon is a 

very aggressive spreader and regenerates from rhizomes. It often takes several applications of 

spraying with a non-selective herbicide to completely eradicate. This led to the plots being 

overrun with grass and competing with trial shrubs for nutrients and water. The site also had a 

minimum temperature of -5.0F (-20.5C) and a maximum temperature of 110.6F (43.6C) which 

can be very stressful on plants (Table 4.2). Overall survival in Haysville was 31% (Table 4.3). 

Olathe and Manhattan had overall survival at 50%, these sites had complications with 

mechanical damage and wildlife browsing as well as irrigation lapses due to equipment breaks 

and maintenance. These irrigation lapses led to sporadic periods of wet and dry and average 

VWC% of 26.6% and 45.9% for Olathe and Parsons, respectively (Table 4.2). This led to weed 

encroachment on the sites and stress due to inoperable irrigation. Many sites had data removed 

due to only one plant surviving which did not allow for analysis on growth and leaf chlorophyll 

content. 



 

80 

 
 

Salina and Parsons were the most successful sites which can be attributed to several 

factors. At these sites volunteers were consistent and diligent in their care of the plots. Plots were 

kept clean of weeds, watered consistently, and observed several times throughout the growing 

season. Salina and Parsons had the best overall survival with rates of 76% and 87%, respectively 

(Table 4.2). In general, Salina also had some of the largest gains in growth indices and 

maintained the only V. x burkwoodii that survived the statewide trial (Table 4.3). Salina was a 

site that was either part shade or full shade for most of the day and trees on the South side of the 

plot that protected the site from drying summer winds. Research has shown that plants may grow 

better when protected from intense sunlight (Wilson et al., 2014). There also was a creek within 

30 ft resulting likely resulting in higher humidity helping with water loss during times of 

drought. Parsons also had periods of shade throughout the day and a creek nearby that could 

contribute to soil moisture stability. The Parsons site only had 6 plants senesce with most of 

them exhibiting increases in growth except V. dilatatum. Viburnum dilatatum either did not 

survive or decreased in size over the study, most likely from dieback, winterkill, and mechanical 

damage. 

Conclusions 

Evidence in this study can lead us to recommend that V. dentatum, V. nudum, V. opulus, 

and V. x rhytidophylloides are plants that can survive the rigors of Kansas or other areas with 

similar climates. They exhibited large gains in size in all sites except Colby. Viburnum carlesii, 

V. sargentii, V. trilobum, and V. carlcephalum, are all candidates to be used on sites that have 

adequate moisture or ability to irrigate and some amount of shade and protection. Viburnum 

sieboldii, V. x juddii, and V. x pragense fall into that category of use with caution and on a site 

that is protected, shaded, and irrigated. Viburnum dilatatum, V. farreri, V. plicatum, V. plicatum 

tomentosum, V. rhytidophyllum, V. rufidulum, V. x bodnantense, and V. x burkwoodii are species 
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that should be used with extreme caution if the goal is survival and growth as these species did 

not perform well in the current study. Poor growth of V. rufidulum was not expected as it is a 

native to the region.  

Weather during this study was also a challenge. The study was installed during a period 

where Kansas was experiencing extreme drought with a portion of the state being declared 

disaster areas due to the drought. This drought may have contributed to the failure to establish of 

many of the plants. Precipitation in 2013 was at or above average for all sites except Colby and 

Olathe and for 2014 precipitation was below average for all sites (Table 4.2). The lack of 

precipitation would require supplemental irrigation to aid in establishment and further growth 

and survival. The sites that had the greatest survival had the most precipitation with Parsons 

receiving 86 in and Salina 65 in (Table 4.2).  

It is critical to have volunteers who are vested in the project and want to see it succeed so 

that proper care is performed, sites are kept free of weeds, watered consistently when needed, 

and monitored for damage or other issues. With proper care a greater number of plants may have 

survived and resulted in more recommendations for Viburnum as landscape plants. Trials have 

limitations such as travel expenses, time, dedicated volunteers to manage the sites, available 

space, and overall cost of materials, making them a challenge to conduct. Robust dataloggers are 

also recommended. These sites without having constant supervision experienced lapses in data 

due to batteries dying and sensor cables being cut or chewed through by animals. This study was 

able to provide supporting evidence for the use of several species which also correlated well with 

the quick assay studies in the greenhouse, where V. dentatum and V. nudum both performed well 

and survived at most sites. Replication of these techniques should be conducted to verify with 

field survival data that the quick assay techniques are a viable way to identify plants to use in 

field studies prior to expending resources required to conduct such studies. 



 

82 

 
 

 Tables and Figures 
Table 4.1 Selected Viburnum spp. planted in Fall 2012 for a two season (2013-2014) field 

establishment study at Kansas State University (KSU) Northwest Research Center (Colby, KS), 

Saline County demonstration garden (Salina, KS), KSU Tuttle Creek Forestry Research Center 

(Manhattan, KS), KSU Olathe Horticulture Research and Extension Station (Olathe, KS) Prairie 

Wind Aquatics (Garden City, KS), KSU John C. Pair Horticulture Research Center (Haysville, 

KS), and the Parsons Arboretum (Parsons, KS) representing three United States Department of 

Agriculture (USDA) cold hardiness zones in Kansas.Z 

Scientific name Common name Leaf Morphology 

V. carlesii ‘Diana’w 

 

Koreanspice Viburnum Deciduous, dull green pubescent 

V. dentatum ‘Chicago 
 

 

Arrowwood Viburnum Deciduous, glossy green  
V. dilatatum ‘Michael 

 

 

Linden Viburnum Deciduous, lustrous green  
V. farrerix Fragrant Viburnum Deciduous, glossy green pubescent 

V. nudum ‘Winterthur’w 

 

Smooth Witherod Deciduous, glossy green 
V. opulus ‘Roseum’w 

 

European Cranberrybush 

 

Deciduous, glossy green pubescent veins, 
lobed leaf 

V. plicatum ‘Popcorn’w 

 

Japanese Snowball 

 

Deciduous, glossy green pubescent veins 

V. plicatum var. 

  

 

Doublefile Viburnum Deciduous, glossy green pubescent veins 
V. rhytidophyllum ‘Cree’w 

 

Leatherleaf Viburnum Semi-evergreen, deep green, pubescent, 
wrinkly and thick 

V. rufidulumx 

 

Rusty Blackhaw 

 

Deciduous, lustrous green 
V. sargentii ‘Onondaga’w 

 

Sargent Viburnum Deciduous, dull green, sparsely pubescent 
on underside, lobed leaf 

V. sieboldii ‘Wavecrest’x 

 

Siebold Viburnum Deciduous, glossy green, pubescent 
veins, thick 

V. trilobum ‘Compactum’w American Cranberrybush 

 

Deciduous, dark green, lobed leaf 

V. x bodnantense ‘Dawn’xy Fragrant Viburnum Deciduous, dark green 

V. x burkwoodii ‘Conoy’w 

 

Burkwood Viburnum Evergreen, deep green, pubescent, thick 

V. x carlcephalum 
 

 

Fragrant Viburnum Deciduous, glossy green, pubescent 
below 

V. x juddiiw 

 

Judd Viburnum Deciduous, dull green pubescent 
V. x pragense ’Decker’w 

 

Prague Viburnum Semi-evergreen, deep green, pubescent,  

V. x rhytidophylloidesw 

‘Alleghany’ 

Lantanaphyllum 

Viburnum 

Evergreen, deep green, pubescent, thick  

Z Garden City was removed as a site due to complications 
Y Was not planted in Manhattan, KS site 
x Provided by Classic Viburnum 
W Provided by Spring Meadows Nursery 
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Table 4.2 Site descriptions, challenges and overall survival of Viburnum spp. trials at 

Kansas State University (KSU) Northwest Research Center (Colby, KS), Saline County 

demonstration garden (Salina, KS), KSU Tuttle Creek Forestry Research Center (Manhattan, KS), 

KSU Olathe Horticulture Research and Extension Station (Olathe, KS)  Prairie Wind Aquatics 

(Garden City, KS), KSU John C. Pair Horticulture Research Center (Haysville, KS), and the 

Parsons Arboretum (Parsons, KS)  
Location 
Hardiness 

Zone Site Description  Challenges 
Overall 

 Survival 

Colby 
Cold 

Hardiness 
Zone 5b  

• Northwestern region of Kansas agricultural research station  
• Windbreaks on North, West, and South sides within 100 ft of plots 
• Average precipitation, 21 in, 2013 (14.5 in) and 2014 (17.9 in) were 
below average 
• Min/Max Temperature -16.4F (-26.8C,2012)/112.2F (44.5C, 2014) 
• Soil classification: Keith silt loam, 0-1 percent slope 

• Fall planting recommended but cold snap occurred 
with snow at planting 
• Watering was not adequate as evidenced by soil 
moisture data 
•Average Volumetric water content percent 
(VWC)_12% 

15% 

Salina 
 Cold 

Hardiness 
Zone 6a 

• Located at a local KSU Extension Master Gardener display garden 
within 30 ft of a creek 
• Trees on South side within 10 ft of plots provided shade much of the day 
• Average precipitation 31 in, 2013 (36 in) and 2014 (29 in) were above 
and below normal, respectively 
• Min/Max Temperature 12.5F (-10.8C, 2013)/108F (42.2C, 2014)  
• Soil classification: McCook silt loam, rarely flooded 

• Volunteer support from Kansas Extension Master 
Gardeners was consistent from planting through 
maintenance 
• Some animal damage 
• VWC_37.9% 

76% 

Manhattan 
Cold 

Hardiness 
Zone 6a  

• Forestry research station located near Tuttle reservoir river ponds in 
Northeastern Kansas 
• Protected on all sides by trees within 300 ft, providing no shade 
• Average precipitation 33 in, 2013 (33 in) and 2014 (29 in) were at or 
slightly below normal 
• Min/Max Temperature -6.1F (-21.2C, 2013)/106.6F (41.4C, 2014) 
• Soil classification: Eudora silt loam, rarely flooded 

• Deer browsing was noted, and deer fence added 
• String trimmer hit plants once 
• VWC_45.9% 

51% 

Olathe  
Cold 

Hardiness 
Zone 6a 

• Located at a horticulture research station in Northeast Kansas 
• Windbreaks were South and West of plots providing no shade 
• Plots were terraced North to South 
• Average precipitation 40 in, 2013 (36 in) and 2014 (35 in) were below 
normal 
• Min/Max Temperature -10.0F (-23.3C, 2014)/101.0F (38.3C, 2013) 
• Soil classification: Oska-Martin silty clay loam, 4-8 percent slope 

• Maintenance did not manage weed pressure well 
• Watering was not monitored as evidenced by soil 
moisture readings 
• VWC_26.6% 49% 

Parsons  
Cold 

Hardiness 
Zone 6b  

• Located at a local arboretum where Cynodon dactylon (Bermuda grass) 
was sprayed out and tilled in 
• Some shading during afternoon from established shade trees 
• Creek was within 100 ft 
• Average precipitation 43 in, 2013 (51 in) and 2014 (35 in) were above 
and below normal, respectively 
• Min/Max Temperature -12.9F (-24.9C, 2014)/119.5 (48.6C, 2014) 
• Soil classification: Lanton silt loam, 0-2 percent slope, occasionally 
flooded 

• Some periods of short-term flooding 
• Volunteer support from Kansas Extension Master 
Gardeners was consistent from planting through 
maintenance 
• VWC_37% 87% 

Haysville 
Cold 

Hardiness 
Zone 6b  

• Horticulture research station in Southcentral Kansas 
• Plots were located in area with full sun, windbreaks on South and East 
sides within 100 ft 
• Cynodon dactylon (Bermuda grass) was sprayed prior to tilling 
• Average precipitation 33 in, 2013 (41 in) and 2014 (26 in) were above 
and below normal, respectively 
• Min/Max Temperature -5.0F (-20.5C, 2014)/110.6 (43.6C, 2013) 
• Soil classification: Canadian-Waldeck fine sandy loams, rarely flooded 

• Weed pressure was severe from Cynodon dactylon 
(Bermuda Grass) 
• Plot maintenance was not consistent 
• VWC_ No data 31% 

Garden City 
Cold 

Hardiness 
Zone 6a 

• Back Acreage of Prairie Wind Aquatics  
• No windbreaks or shading 
• Average precipitation 20 in, 2013 (17.8 in) and 2014 (21.9 in) were near 
normal 
• Min/Max Temperature 11.55F (-11.4C, 2013)/ 100.7F (38.2C, 2013) 
Data only from 2013 
• Soil classification: Bridgeport clay loam, rarely flooded  

• Fall planting recommended but cold snap occurred 
with snow at planting  
• Rabbit damage was severe 
• Herbicide drift contributed to failure 
• VWC_27.3% (Only 2013) 

0% 
Site was 

abandoned  
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Table 4.3 Nineteen Viburnum spp. percent survival across six sites, Kansas State University (KSU) 

Northwest Research Center (Colby, KS), Saline County demonstration garden (Salina, KS), KSU 

Tuttle Creek Forestry Research Center (Manhattan, KS), KSU Olathe Horticulture Research and 

Extension Station (Olathe, KS)  Prairie Wind Aquatics (Garden City, KS), KSU John C. Pair 

Horticulture Research Center (Haysville, KS), and the Parsons Arboretum (Parsons, KS) after two 

growing seasons (2013-2014), n=3. 

 Location  
Species Olathe  Manhattan  Salina  Colby  Haysville  Parsons  OverallZ 

V. carlesii ‘Diana’ 33% 100% 100% 0% 66% 100% 67% 
V. dentatum ‘Chicago 
Lustre’ 100% 100% 100% 0% 66% 100% 78% 
V. dilatatum ‘Michael 
Dodge’ 0% 33% 33% 0% 0% 66% 22% 
V. farreri 0% 0% 0% 0% 0% 100% 33% 
V. nudum ‘Winterthur’ 100% 100% 100% 0% 100% 100% 83% 
V. opulus ‘Roseum’ 100% 100% 100% 100% 100% 100% 100% 
V. plicatum ‘Popcorn’ 100% 0% 66% 0% 0% 100% 44% 
V. plicatum tomentosum 
‘Shasta’ 100% 0% 66% 0% 0% 100% 44% 
V. rhytidophyllum ‘Cree’ 0% 0% 100% 0% 0% 100% 33% 
V. rufidulum 0% 0% 33% 0% 0% 100% 33% 
V. sargentii ‘Onondaga’ 66% 66% 0% 33% 100% 100% 61% 
V. sieboldii ‘Wavecrest’ 0% 0% 100% 0% 100% 100% 50% 
V. trilobum 
'Compactum’ 66% 100% 100% 33% 0% 100% 67% 
V. x bodnantense 
‘Dawn’ 0% 0% * 0% 0% 100% 28% 
V. x burkwoodii ‘Conoy’ 0% 0% 33% 0% 0% 0% 6% 
V. x carlcephalum 
‘Cayuga’ 66% 66% 100% 0% 33% 100% 61% 
V. x juddii 33% 100% 100% 66% 0% 33% 55% 
V. x pragense ’Decker’ 66% 100% 100% 0% 0% 66% 55% 
V. x rhytidophylloides 
‘Alleghany’ 66% 100% 100% 66% 66% 100% 83% 
OverallY  49% 51% 76% 15% 31% 87% 51%X 

* Species was not planted at this site 
Z Species overall survival, n=18 
Y Site overall survival across all species, n= 57 
X Study overall survival across all sites and all species, n= 342  
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Table 4.4 Physiological effects of geographic location on growth of Viburnum carlesii 'Diana' 

planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
34.0ns --- --- ---  43.0ns --- --- --- 

Salina 

(Central) 

 
19.8 75.0abx 81.9ns 119.6a  32.4 70.2ab 45.5ns 49.7ns 

Manhattan 

(Northeast) 

 
--- 67.3ab 81.2 102.2ab  --- 72.1ab 47.4 72.4 

Olathe (East 

Central) 

 
--- --- --- ---  --- --- --- --- 

Parsons 

(Southeast) 

 
59.0 86.0a 99.2 126.8a  59.0 71.9ab 42.9 67.4 

Haysville (South 

Central) 

 
46.3 65.6ab 72.2 111.2ab  44.4 74.4a 45.2 75.9 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measure in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.5 Physiological effects of geographic location on growth of Viburnum dentatum 'Chicago 

Lustre' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

    

34.6bx 
---         ---         ---     36.2b --- --- --- 

Salina 

(Central) 

 
35.3b 108.6a 110.2ns 140.9ns  32.7b 35.0ns 32.9a 39.8ns 

Manhattan 

(Northeast) 

 
56.2ab 85.4ab 88.6 101.7  43.4b 39.2 33.2a 36.9 

Olathe (East 

Central) 

 
36.0ab 67.1b 75.7 100.7  39.5b 37.2 25.9b 38.9 

Parsons 

(Southeast) 

 
67.5a 76.0b 77.8 114.6  67.4a 38.8 35.0a 40.9 

Haysville (South 

Central) 

 
--- --- --- ---  --- --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.6 Physiological effects of geographic location on growth of Viburnum dilatatum 'Michael 

Dodge' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
50.7ns --- --- ---     31.4ns --- --- --- 

Salina 

(Central) 

 
43.3 41.7bx 39.0ns 66.7ns  37.7 54.2ns 29.4ns 41.6b 

Manhattan 

(Northeast) 

 
60.2 27.7b 11.5 15.3  41.0 47.5 43.4 49.2ab 

Olathe (East 

Central) 

 
--- --- --- ---  --- --- --- --- 

Parsons 

(Southeast) 

 
35.9 51.8a 33 38.3  35.9 48.5 42.4 51.4a 

Haysville (South 

Central) 

 
39.6 --- --- ---  39.4 --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.7 Physiological effects of geographic location on growth of Viburnum farreri planted in 

Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
--- --- --- ---  --- --- --- --- 

Salina 

(Central) 

 
--- --- --- ---  --- --- --- --- 

Manhattan 

(Northeast) 

 
--- --- --- ---  --- --- --- --- 

Olathe (East 

Central) 

 
21.2ns --- --- ---  30.7ns --- --- --- 

Parsons 

(Southeast) 

 
40.0 40.1 47.1 63.0  39.8 58.9 56.5 --- 

Haysville (South 

Central) 

 
--- --- --- ---  --- --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.8 Physiological effects of geographic location on growth of Viburnum nudum 

'Winterthur' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
36.3ns --- --- ---     57.1a --- --- --- 

Salina 

(Central) 

 
56.5 65.3ax 61.3bc 84.1ab  33.7b 57.1a 44.1ns 47.4b 

Manhattan 

(Northeast) 

 
37.0 69.2a 68.5ab 82.5ab  41.8ab 40.1b 37.1 46.1a 

Olathe (East 

Central) 

 
38.7 71.8a 80.1a 96.9a  46.8ab 46.1ab 40.6 40.7c 

Parsons 

(Southeast) 

 
45.7 66.1a 66.8ab 79.1ab  45.7ab 52.4ab 43.3 46.3b 

Haysville (South 

Central) 

 
24.7 50.6b 46.2c 56.7b  34.7ab 47.8ab 41.7 54.3a 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.9 Physiological effects of geographic location on growth of Viburnum opulus 'Roseum' 

planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
51.9ns 55.6ns 53.1bx 52.0c  41.5ab 39.9cd 36.9ab 35.0b 

Salina 

(Central) 

 
39.1 64.3 83.1a 119.9a  41.4ab 57.2a 33.8b 47.1a 

Manhattan 

(Northeast) 

 
28.7 54.9 76.6a 104.1ab  26.7b 35.9d 36.1ab 49.6a 

Olathe (East 

Central) 

 
--- 52.0 63.0ab 82.8b  --- 52.5ab 33.2b 43.3ab 

Parsons 

(Southeast) 

 
51.8 63.4 74.4ab 95.2b  51.8a 46.0bc 38.9a 50.0a 

Haysville (South 

Central) 

 
38.8 62.4 66.8ab 99.1ab  33.0ab 46.9bc 36.9ab 49.6a 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.10 Physiological effects of geographic location on growth of Viburnum plicatum 

'Popcorn' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
--- ---         ---         ---  --- --- --- --- 

Salina 

(Central) 

 
42.0ns 76.5ns 73.3ns 100.8ns  38.0ns 38.8ns 44.4ax 39.9b 

Manhattan 

(Northeast) 

 
--- --- --- ---  43.8 --- --- --- 

Olathe (East 

Central) 

 
--- 76.9 83.0 110.5  52.6 41.4 34.6b 54.2a 

Parsons 

(Southeast) 

 
44.0ns 93.4 100.0 120.3  44.0 39.6 41.9a 48.8ab 

Haysville (South 

Central) 

 
23.5ns --- --- ---  53.4 --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.11 Physiological effects of geographic location on growth of Viburnum plicatum  var 

tomentosum 'Shasta' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
48.7abx ---         ---         ---     32.5b --- --- --- 

Salina 

(Central) 

 
64.5a 99.8a 101.2a 117.7b  32.6b 35.0ns 41.3a 42.2b 

Manhattan 

(Northeast) 

 
45.0ab --- --- ---  41.6ab --- --- --- 

Olathe (East 

Central) 

 
50.2ab 71.7b 79.9b 105.2b  51.2ab 37.2 31.7b 48.0ab 

Parsons 

(Southeast) 

 
63.6a 95.9a 102.4a 135.8a  63.6a 38.8 40.5a 53.6a 

Haysville (South 

Central) 

 
22.3b --- --- ---  43.0ab --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.12 Physiological effects of geographic location on growth of Viburnum rhytidophyllum 

'Cree' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
33.8ns ---         ---         ---  43.0ns --- --- --- 

Salina 

(Central) 

 
30.0 50.4ns 45.4ns 57.1ns  47.6 67.3ns 60.0ns 64.8ns 

Manhattan 

(Northeast) 

 
27.7 --- --- ---  34.7 --- --- --- 

Olathe (East 

Central) 

 
32.5 --- --- ---  29.1 --- --- --- 

Parsons 

(Southeast) 

 
38.4 48.7 43.8 59.0  38.5 77.7ns 57.9 70.1 

Haysville (South 

Central) 

 
32.3 --- --- ---  53.5 --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.13 Physiological effects of geographic location on growth of Viburnum rufidulum planted 

in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
36.2ns ---         ---         ---  42.6ns --- --- --- 

Salina 

(Central) 

 
27.7 --- --- ---  39.1 --- --- --- 

Manhattan 

(Northeast) 

 
39.9 --- --- ---  39.1 --- --- --- 

Olathe (East 

Central) 

 
34.0 --- --- ---  43.6 --- --- --- 

Parsons 

(Southeast) 

 
32.3 58.8 75.9 104.3  32.3 57.5 37.3 56.0 

Haysville (South 

Central) 

 
--- --- --- ---  --- --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.14 Physiological effects of geographic location on growth of Viburnum sargentii 

'Onondaga' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
--- --- --- ---  --- --- --- --- 

Salina 

(Central) 

 
39.9ns --- --- ---  41.0ns --- --- --- 

Manhattan 

(Northeast) 

 
35 37.5ns 62.7ax 77.7ns  34.9 29.2ns 34.9ns 53.9ns 

Olathe (East 

Central) 

 
--- --- --- ---  --- --- --- --- 

Parsons 

(Southeast) 

 
35.3 33.8 50.8ab 60.0  35.3 49.0 38.1 54.8 

Haysville (South 

Central) 

 
26.8 28.7 33.9b 50.6  47.6 55.8 32.7 54.9 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.15 Physiological effects of geographic location on growth of Viburnum sieboldii 

'Wavecrest' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
36.6ns --- --- ---  38.5ns --- --- --- 

Salina 

(Central) 

 
35 78.4abx 82.3b 114.2ns  29.7 55.5ns 40.1ns 41.8b 

Manhattan 

(Northeast) 

 
--- --- --- ---  --- --- --- --- 

Olathe (East 

Central) 

 
35.8 --- --- ---  36.1 --- --- --- 

Parsons 

(Southeast) 

 
62.2 83.7a 99.6a 137.1  62.2 59.3 43.9 57.9a 

Haysville (South 

Central) 

 
42.5 69.3b 74.9b 123.0  41.9 60.8 39.4 61.2a 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.16 Physiological effects of geographic location on growth of Viburnum trilobum 

'Compactum' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
39.3 ns ---         ---         ---     34.4ns --- --- --- 

Salina 

(Central) 

 
24 37.1ax 44.9ab 62.0a  27.4 48.6a 31.8ns 46.8a 

Manhattan 

(Northeast) 

 
44.1 21.1b 49.2ab 57.2ab  41.3 17.4b 28.9 32.3bc 

Olathe (East 

Central) 

 
40.7 16.8b 27.3b 25.0b  32.2 24.5b 28.7 29.6c 

Parsons 

(Southeast) 

 
30.9 33.6a 51.1a 61.8a  30.9 22.1b 29.8 37.9b 

Haysville (South 

Central) 

 
--- --- --- ---  --- --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.17 Physiological effects of geographic location on growth of Viburnum x bodnantense 

'Dawn' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
16.2bx --- --- ---  --- --- --- --- 

Salina 

(Central) 

 
--- 69.5ns 68.2ns 107.5ns  --- 45.1ns 39.5ns 39.2ns 

Manhattan 

(Northeast) 

 
--- --- --- ---  --- --- --- --- 

Olathe (East 

Central) 

 
17.3b --- --- ---  --- --- --- --- 

Parsons 

(Southeast) 

 
82.4a 103.2 89.0 118.7  82.4ns 51.1 40.9 53.8 

Haysville (South 

Central) 

 
16.8b --- --- ---  --- --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.18 Physiological effects of geographic location on growth of Viburnum x burkwoodii 

'Conoy' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
30.3ns --- --- ---  --- --- --- --- 

Salina 

(Central) 

 
--- --- --- ---  --- --- --- --- 

Manhattan 

(Northeast) 

 
20.7 --- --- ---  33.0ns --- --- --- 

Olathe (East 

Central) 

 
--- --- --- ---  --- --- --- --- 

Parsons 

(Southeast) 

 
--- --- --- ---  --- --- --- --- 

Haysville (South 

Central) 

 
--- --- --- ---  --- --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.19 Physiological effects of geographic location on growth of Viburnum x carlcephalum 

'Cayuga' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
62.3ax ---         ---         ---     43.9ns --- --- --- 

Salina 

(Central) 

 
41.5ab 66.9ns  72.0a 86.6a  45.5 67.1ns 53.6ns 63.1ns 

Manhattan 

(Northeast) 

 
41.8ab 47.5 62.5ab 70.8ab  48.0 64.3 48.8 76.4 

Olathe (East 

Central) 

 
36.2ab 50.0 66.0ab 70.3b  47.0 60.0 45.8 62.5 

Parsons 

(Southeast) 

 
42.4ab 52.9 63.8ab 81.2a  42.4 64.5 50.5 71.0 

Haysville (South 

Central) 

 
25.0b 48.3 43.3b 45.3b  47.0 64.8 56.4 60.8 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.20 Physiological effects of geographic location on growth of Viburnum x juddii planted in 

Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
29.4ns 40.0ns 47.0ns 50.2bx     52.8ns 74.3a 44.7ns 57.5ns 

Salina 

(Central) 

 
40.5 54.0 60.9 82.5ab  51.5 60.6b 47.4 51.5 

Manhattan 

(Northeast) 

 
27.3 49.3 66.1 84.3a  43.1 57.1b 44 62.4 

Olathe (East 

Central) 

 
--- --- --- ---  --- --- --- --- 

Parsons 

(Southeast) 

 
--- --- --- ---  --- --- --- --- 

Haysville (South 

Central) 

 
31.7 --- --- ---  49.9 --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.21 Physiological effects of geographic location on growth of Viburnum x pragense 

'Decker' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
--- --- --- ---  --- --- --- --- 

Salina 

(Central) 

 
27.6ns 83.1abx 96.1ns 121.4a  48.5abc 67.3b 57.0ns 68.5ns 

Manhattan 

(Northeast) 

 
--- 68.1bc 51.6 78.7b  31.0c 74.3ab 53.8 63.8 

Olathe (East 

Central) 

 
30.3 52.5c 46.0 57.8b  57.7a 69.3b 50.4 74.7 

Parsons 

(Southeast) 

 
54.1 100.7a 96.1 121.7a  54.1ab 79.6a 57.4 79.0 

Haysville (South 

Central) 

 
49.5 --- --- ---  38.1bc --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Table 4.22 Physiological effects of geographic location on growth of Viburnum x 

rhytidophylloides 'Alleghany' planted in Fall 2012 at six locations across Kansas (n=3). 
 

 
Growth indexz  SPAD valuey 

Location 
 Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 
 

Spring 

2013 

Fall 

2013 

Spring 

2014 

Fall 

2014 

Colby 

(Northwest) 

 
--- --- --- ---  --- --- --- --- 

Salina 

(Central) 

 
27.6ns 83.1abx 96.1ns 121.4a  --- 67.3b 57.0ns 68.5ns 

Manhattan 

(Northeast) 

 
--- 68.1bc 51.6 78.7b  --- 74.3ab 53.8 63.8 

Olathe (East 

Central) 

 
30.3 52.5c 46.0 57.8b  --- 69.3b 50.4 74.7 

Parsons 

(Southeast) 

 
54.1 100.7a 96.1 121.7a  39.8 79.6a 57.4 79.0 

Haysville (South 

Central) 

 
49.5 --- --- ---  --- --- --- --- 

Garden City 

(Southwest) 

 
--- --- --- ---  --- --- --- --- 

zGrowth index = (height + width1 + width2) / 3 measured in cm. 
yLeaf chlorophyll content quantified using a SPAD-502 chlorophyll meter (Minolta Camera Co., 

Ramsey, NJ; average of 3 leaves per plant).  
xMeans within column followed by the same letter are not significantly different based on Waller-

Duncan k ratio t tests at α =0.05 (n = 3). 
nsMeans not significantly different. 

--- Data point dropped due to less than 2 plants survived 
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Figure 4.1 Red balloons indicate seven replicated trial sites, Kansas State University (KSU) 

Northwest Research Center (Colby, KS), Saline County demonstration garden (Salina, KS), KSU 

Tuttle Creek Forestry Research Center (Manhattan, KS), KSU Olathe Horticulture Research and 

Extension Station (Olathe, KS)  Prairie Wind Aquatics (Garden City, KS), KSU John C. Pair 

Horticulture Research Center (Haysville, KS), and the Parsons Arboretum (Parsons, KS)  (3 reps of 

each species) for an establishment study on 19 Viburnum spp. planted in the fall of 2012 for a two 

season (2013-2014) establishment trial. Blue balloons indicate Extension agent cooperator sites 

(non-replicated sites--each agent received one plant of each species to record observational data). 
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Figure 4.2 Kansas normal mean annual precipitation (in) during the period of 1981-2010. 
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Chapter 5 - Summary 

The purpose of this research was two-fold, discover Viburnum spp. that can survive in the 

Great Plains and evaluate the validity of greenhouse drought and heat tolerance data to 

recommend plants for field trial. Viburnum was chosen because it is a widely available, popular 

shrub species, with enough variability in species characteristics to examine environmental stress 

adaptability in an effort to develop an assay for future plant evaluations. We conducted a short-

term recurring drought study on 6 Viburnum spp., a heat acclimation and tolerance trial on three 

Viburnum spp., and a field trial on 19 Viburnum spp. 

Viburnum awabuki, V. dentatum, V. nudum, V. tinus, V. trilobum, and V. x 

rhytidophylloides were subjected to short-term recurring drought in a controlled atmosphere 

greenhouse at Throckmorton Plant Sciences Center (Manhattan, KS). Treatments were well 

watered (WW; 90% container capacity [CC]), moderate drought (MD; based on signs of wilt) 

and severe drought (SD). Severe drought was determined by Scholander pressure chamber. 

Plants were measured for pre-dawn water potential and when plants reached -1.5 megapascal, 

container capacity was measured and classified as severe drought. Viburnum dentatum, V. 

nudum, and V. trilobum are species that have potential to be recommended as drought-tolerant 

species able to withstand the rigors of the Great Plains, specifically Kansas. With the three being 

deciduous, their ability to shed leaves, go dormant and then recover once moisture returns is to 

their advantage. Viburnum tinus and V. x rhytidophylloides exhibited significant challenges when 

managing drought and overwatering. Viburnum awabuki exhibited the most promise to be used 

in the Great Plains but it is a Southern ecotype selection that will have difficulty acclimating to 

the cold winter temperatures of the region. Further studies on the ability of V. awabuki to survive 

the cold temperatures of the region would be of interest. To recommend V. x rhytidophylloides 
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further studies are needed paying close attention to well-watered treatment plants to ensure that 

the root system is not subjected to flooding conditions causing root damage prior to drought 

treatment.  

The heat study was conducted at the Throckmorton Plant Sciences Center (Manhattan, 

KS), where plants were acclimated at 38C/25C (100F/77F) day/night within a controlled 

atmosphere greenhouse for 28 days. The plants chosen were V. dentatum, V. nudum, and V. tinus. 

Heat acclimation resulted in smaller plants yet V. tinus did not reduce biomass accumulation 

whereas V. dentatum and V. nudum reduced biomass. Viburnum dentatum and V. nudum both 

increased temperature optimum (Topt) for net photosynthetic rate (Pnet) following acclimation to 

high temperature. Viburnum tinus exhibited high Pnet values for control and acclimated plants. 

With the reduced growth yet increased photosynthesis, these plants acclimated to heat by 

reducing size and adjusting Topt to be able to maintain growth during periods of high heat. This 

characteristic is crucial to surviving in sites that experience prolonged periods of high day/night 

temperatures. The increased photosynthetic capacity afforded Viburnum nudum and V. dentatum 

the ability to continue increasing in size and biomass even during periods of high stress.   

Field trials were conducted across the state of Kansas to account for variability in site 

across the state. Plants were grown out from liners at the John C. Pair Horticulture in Haysville, 

KS and then planted at seven sites across Kansas; Colby, Salina, Manhattan, Olathe, Parsons, 

Haysville, and Garden City. Planting time that is recommended by many Universities as most 

successful is Fall (King and Nance, 2012). Plants were installed during Fall of 2012. At planting 

in Colby and Garden City temperatures switched rapidly which may have resulted in shock to the 

plants. These two sites both had significantly more losses and resulted in the Garden City site 

being omitted. Garden City also had limitations due to rabbit browsing and pesticide drift. 
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Eastern and Southern sites had better survival and growth. Sites that provided shade (Salina and 

Parsons had greater than 75% survival). These sites had volunteers who were invested in the 

outcome of the study and paid careful attention to the site. Manhattan, Olathe, and Haysville had 

significant weed pressure and a survival of 51% or less. Colby had less than average 

precipitation during the study, resulting in 31% survival. The trials were a success in identifying 

several species of Viburnum which could be evaluated in the field trial for overall survival and 

adaptation to sites of varying characteristics. Viburnum nudum, V. dentatum, V. trilobum, V. 

sieboldii, and V. tinus all performed well in the drought study. From these studies, a field trial of 

V. dentatum, V. nudum, and V. trilobum can be recommended to evaluate the survival of the 

species over several years to account for the variability in the Great Plains climate and the many 

environmental stresses that can be encountered.   

Limitations 

Field trials are time consuming, expensive and labor intensive. If volunteers are not 

invested and interested in the project, it will not be as successful as possible. Weed 

encroachment was a problem at several sites. Parsons, even with the weed pressure from 

Cynodon dactylon (Bermuda grass), was still able to have a survival rate of 87% showing that 

volunteer participation in weed control may have been helpful. In contrast Haysville and 

Manhattan had weed pressure and volunteer participation was not adequate to keep weed levels 

at an acceptable tolerance and percent survival was 31% and 51%, respectively. 

The greenhouse studies on drought and heat tolerance were a team effort with many late 

nights to collect data. Without the team in place to help to collect the data, one researcher could 

not have conducted these trials without sacrificing all regard for personal and family time. Pests 

were a problem for the deciduous species and caused Viburnum dentatum and V. trilobum to 
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shed leaves throughout the heat and drought studies. Water was used to knock them off the 

leaves, but a severe infestation caused considerable leaf drop, making photosynthetic 

measurements impossible on Viburnum trilobum. Length of time exposed to heat also was 

crucial and proved to affect the rate of photosynthesis. The 28-day acclimation would be 

considered a chronic stress resulting in considerable damage and down regulation of 

photosynthesis. If conducting this trial a heat shock exposure of 24 hours would illicit a response 

toward acclimation.  

Future work 

Future studies of the best performing species in all studies should include cold tolerance 

studies. The field studies did have cold conditions but a study to find low temperatures that can 

be tolerated and not reduce overall aesthetic qualities and growth. Additional field trials when 

conducted should be sure to have clear expectation and guidelines for care. Volunteer 

participation should be vetted to ensure cooperation from the Extension Master Gardeners or 

others by gathering their input on what plants are of interest and how they are willing to 

participate in the study because without their support these kinds of studies cannot be conducted 

successfully. This support is crucial to ensuring the trials are run effectively and in a manner that 

is economical in times when research dollars are limited. The assays we performed were 

successful in identifying plants that performed well under drought and high heat conditions and 

those species also survived well in the field study. These types of assays can be recommended as 

a means to identify plants that are suited to a trial geography that already have been identified as 

environmental stress tolerant prior to investing the time and money into conducting a long-term 

field trial. Sites should be as condensed as possible and still cover all hardiness zones and 
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precipitation gradients in the geographical area. This will capture the variability in precipitation 

and temperatures that can be experienced across distinct geographical regions.  
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Appendix A -  

Viburnum sieboldii ‘Wavecrest’ May 2013 located at the Parsons Arboretum (Parsons, 

KS). 
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Viburnum x pragense ‘Decker’ October 2013 at the Salina Master Gardener Display Garden (Salina, KS). 
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Viburnum nudum ‘Winterthur’ November 2012 located at the Parsons Arboretum (Parsons, 

KS). 
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Viburnum rhytidophyllum ‘Cree’ November 2012 located at the Parsons Arboretum (Parsons, 

KS).  
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Viburnum dentatum ‘Chicago Lustre’ November 2012 located at the Parsons Arboretum 

(Parsons, KS). 
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Viburnum plicatum ‘Popcorn’ November 2012 located at the Parsons Arboretum (Parsons, 

KS). 
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Viburnum carlesii ‘Diana’ October 2013 located at the John C. Pair Horticulture Center 

(Haysville, KS). 
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Viburnum x rhytidophylloides ‘Alleghany’ October 2013 located at the John C. Pair 

Horticulture Center (Haysville, KS).  
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Viburnum sargentii ‘Onondaga’ October 2013 located at the John C. Pair Horticulture Center 

(Haysville, KS).  
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Viburnum opulus ‘Roseum’ May 2013 located at the John C. Pair Horticulture Center 

(Haysville, KS).  

Viburnum x carlcephalum ‘Cayuga’ May 2013 located at the John C. Pair Horticulture Center 

(Haysville, KS).  
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Viburnum trilobum ‘Compactum’ May 2013 located at the John C. Pair Horticulture Center 

(Haysville, KS).  
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Viburnum x juddii May 2013 at the Salina Master Gardener Display Garden (Salina, KS). 
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Viburnum rufidulum May 2013 at the Salina Master Gardener Display Garden (Salina, KS). 
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Viburnum dilatatum ‘Michael Dodge’ May 2013 at the Salina Master Gardener Display 

Garden (Salina, KS). 
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Viburnum x bodnantense ‘Dawn’ May 2013 at the Salina Master Gardener Display Garden 

(Salina, KS). 
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Viburnum x burkwoodii ‘Conoy’ May 2013 at the Salina Master Gardener Display Garden 

(Salina, KS). 
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Viburnum farreri November 2012 located at the Parsons Arboretum (Parsons, KS).  
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Viburnum plicatum f. tomentosum ‘Shasta’ November 2012 located at the Parsons Arboretum 

(Parsons, KS).  
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Manhattan planting plan  

 
Plant Number Key 
1.  V. x bodnantense 'Dawn' 
2.  V. burkwoodii 'Conoy' 
3.  V. carlcephalum 'Cayuga' 
4.  V. carlesii 'Diana' 
5.  V. dentatum 'Chicago Lustre' 
6.  V. dilatum 'Michael Dodge' 
7.  V. juddi 
8.  V. nudum 'Winterthur' 
9.  V. opulus 'Roseum'  

10.  V. plicatum 'Popcorn' 
11.  V. plicatum tomentosum 'Shasta' 
12.  V. pragense 'Decker' 
13.  V. rhytidophylloides 'Alleghany 
14.  V. rhytidophyllum 'Cree' 
15.  V. rufidulum 
16.  V. sargentii 'Onondaga' 
17.  V. sieboldii 'Wavecrest' 
18.  V. trilobum 'Compactum' 
19. V. farreri 
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Salina planting plan 

 
 

Plant Number Key 
1.  V. x bodnantense 'Dawn' 
2.  V. burkwoodii 'Conoy' 
3.  V. carlcephalum 'Cayuga' 
4.  V. carlesii 'Diana' 
5.  V. dentatum 'Chicago Lustre' 
6.  V. dilatum 'Michael Dodge' 
7.  V. juddi 
8.  V. nudum 'Winterthur' 
9.  V. opulus 'Roseum'  
10.  V. plicatum 'Popcorn' 
11.  V. plicatum tomentosum 'Shasta' 
12.  V. pragense 'Decker' 
13.  V. rhytidophylloides 'Alleghany 
14.  V. rhytidophyllum 'Cree' 
15.  V. rufidulum 
16.  V. sargentii 'Onondaga' 
17.  V. sieboldii 'Wavecrest' 
18.  V. trilobum 'Compactum' 
19. V. farreri 
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Garden City planting plan 

 
Plant Number Key 
1.  V. x bodnantense 'Dawn' 
2.  V. burkwoodii 'Conoy' 
3.  V. carlcephalum 'Cayuga' 
4.  V. carlesii 'Diana' 
5.  V. dentatum 'Chicago Lustre' 
6.  V. dilatum 'Michael Dodge' 
7.  V. juddi 
8.  V. nudum 'Winterthur' 
9.  V. opulus 'Roseum'  
10.  V. plicatum 'Popcorn' 
11.  V. plicatum tomentosum 'Shasta' 
12.  V. pragense 'Decker' 
13.  V. rhytidophylloides 'Alleghany 
14.  V. rhytidophyllum 'Cree' 
15.  V. rufidulum 
16.  V. sargentii 'Onondaga' 
17.  V. sieboldii 'Wavecrest' 
18.  V. trilobum 'Compactum' 
19. V. farreri 
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Colby planting plan 

 
Plant Number Key 
1.  V. x bodnantense 'Dawn' 
2.  V. burkwoodii 'Conoy' 
3.  V. carlcephalum 'Cayuga' 
4.  V. carlesii 'Diana' 
5.  V. dentatum 'Chicago Lustre' 
6.  V. dilatum 'Michael Dodge' 
7.  V. juddi 
8.  V. nudum 'Winterthur' 
9.  V. opulus 'Roseum'  
10.  V. plicatum 'Popcorn' 
11.  V. plicatum tomentosum 'Shasta' 
12.  V. pragense 'Decker' 
13.  V. rhytidophylloides 'Alleghany 
14.  V. rhytidophyllum 'Cree' 
15.  V. rufidulum 
16.  V. sargentii 'Onondaga' 
17.  V. sieboldii 'Wavecrest' 
18.  V. trilobum 'Compactum' 
19. V. farreri 
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Olathe planting plan 

 
Plant Number Key 
1.  V. x bodnantense 'Dawn' 
2.  V. burkwoodii 'Conoy' 
3.  V. carlcephalum 'Cayuga' 
4.  V. carlesii 'Diana' 
5.  V. dentatum 'Chicago Lustre' 
6.  V. dilatum 'Michael Dodge' 
7.  V. juddi 
8.  V. nudum 'Winterthur' 
9.  V. opulus 'Roseum'  

10.  V. plicatum 'Popcorn' 
11.  V. plicatum tomentosum 'Shasta' 
12.  V. pragense 'Decker' 
13.  V. rhytidophylloides 'Alleghany 
14.  V. rhytidophyllum 'Cree' 
15.  V. rufidulum 
16.  V. sargentii 'Onondaga' 
17.  V. sieboldii 'Wavecrest' 
18.  V. trilobum 'Compactum' 
19. V. farreri 
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Parsons planting plan 

 
Plant Number Key 
1.  V. x bodnantense 'Dawn' 
2.  V. burkwoodii 'Conoy' 
3.  V. carlcephalum 'Cayuga' 
4.  V. carlesii 'Diana' 
5.  V. dentatum 'Chicago Lustre' 
6.  V. dilatum 'Michael Dodge' 
7.  V. juddi 
8.  V. nudum 'Winterthur' 
9.  V. opulus 'Roseum'  

10.  V. plicatum 'Popcorn' 
11.  V. plicatum tomentosum 'Shasta' 
12.  V. pragense 'Decker' 
13.  V. rhytidophylloides 'Alleghany 
14.  V. rhytidophyllum 'Cree' 
15.  V. rufidulum 
16.  V. sargentii 'Onondaga' 
17.  V. sieboldii 'Wavecrest' 
18.  V. trilobum 'Compactum' 
19. V. farreri 



 

147 

 

Haysville planting plan 

 
Plant Number Key 
1.  V. x bodnantense 'Dawn' 
2.  V. burkwoodii 'Conoy' 
3.  V. carlcephalum 'Cayuga' 
4.  V. carlesii 'Diana' 
5.  V. dentatum 'Chicago Lustre' 
6.  V. dilatum 'Michael Dodge' 
7.  V. juddi 
8.  V. nudum 'Winterthur' 
9.  V. opulus 'Roseum'  
10.  V. plicatum 'Popcorn' 
11.  V. plicatum tomentosum 'Shasta' 
12.  V. pragense 'Decker' 
13.  V. rhytidophylloides 'Alleghany 
14.  V. rhytidophyllum 'Cree' 
15.  V. sargentii 'Onondaga' 
16.  V. sieboldii 'Wavecrest' 
17.  V. trilobum 'Compactum' 
18. V. farreri 
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