IUSTRULEN'AAION CE A SEVONIUS WLND TUREINE
by

SAMUEL MARTIN BABB

B. S., Kansas State Jniversity, 1976
A MASTER'S THESIS
submiteed in partial fulfiliment of the requirements for the degree MASTER OF SCTENCE
Department of Electrical Engineering
ǨANSAS STATE UNTVERSTM
Manhattan, Kanses
1979

Anproved by:

TABLE OF CONTENTS

Chapter Page
LIST OF FIGURES i1i
LIST OF TABLES v

1. INTRODUCTION 1
2. SYSTEM HARDWARE 5
2.1 Introduction 5
2.2 Microcomputer 7
2.3 4k RAM Expansion 10
2.4 Multiplexer-Counter 11
2.5 Angular Velocity Transducer 11
2.6 Digital Anemometer 15
2.7 Analog Anemometer 21
2.8 Pressure Transducer 23
2.9 Temperature Transducer 25
2.10 Wind Direction Transducer 25
2.11 Torque Transducer 29
2.12 Electrical Power Transducer 31
2.13 Alternator Voltage Transducer 31
2.14 Analog to Digital Converter 34
2.15 Lightning Protection 39
2.16 Calibrations and Errors 42
3. SYSTEM SOFTWARE 44
3.1 Introduction 44
3.2 MOS Technology Cross-Assembler 44
3.3 Binned Data Acquisition 45
3.4 Sequential Data Acquisition 47
4. SYSTEM OPERATION 49
4.1 Introduction 49
4.2 Memory Allocstion 50
4.3 Paper Tape Format 50
4.4 Data Reconstruction 50
5. CONCLUSIONS 61
6. ACKNOWLEDGEMENTS 62
7. REFERENCES 63

TABLE OF CONTENTS (cont.)

Chapter Page
8. APPENDICES 65
APPENDIX A: Modification of the S.D.S. 4k RAM Board 66
APPENDIX B: Multiplexer-Counter Board 73
APPENDIX C: MP21 Connections 80
APPENDIX D: Cross-Assembler Reader 84
APPENDIX E: System Program Flow Charts 89
APPENDIX F: KIM-1 Data Collection Program Listing 105
APPENDIX G: System Operation 124

LIST OF FIGURES

Page
1.1-1. Wind Speed Historgram 3
1.1-2. The Kansas State University Savonius Wind Turbine 4
2.1-1. Block Diagram of the KSU Wind Laboratory Data Acquisition System 6
2.3-1. KIM-1 Memory Map 12
2.4-1. Block Diagram of the Multiplexer-Counter Board and Interfacing 13
2.5-1. Angular Velocity Transducer and Interface 16
2.6-1. Digital Anemometer Photo Chopper and Voltage Comparator 19
2.6-2. Diagram of the KSU Prototype Digital Anemometer Signal Conditioning, Gating and Pulse Rate Counter 20
2.8-1. National LX1602A Pressure Transducer and Interface Block Diagram 24
2.9-1. Westinghouse Temperature Transducer, Filter and Amplifier Block Diagram 26
2.10-1. +3 Vdc Regulator for Wind Direction Indicator 27
2.10-2. Wind Direction Indicator Connections 27
2.10-3. +5 Vdc Regulator for Air Pressure-Wind Direction Card 28
2.10-4. Wind Direction Indicator Rose 28
2.11-1. Block Diagram of the KSU Savonius Wind Turbine Power Shaft 30
2.12-1. Electrical Power Transducer Block Diagram 32
2.13-1. Halfwave Rectifier for Alternator Output Voltage Transducer 33
2.14-1. MP21 Block Diagram 35
2.14-2. Input Protection for A/D (MP21) 38

LIST OF FIGURES (cont.)

Page
2.15-1. Lightning Protection Circuit 41.
3.3-1. Generalized Operating Scheme for Data Collection 46
3.4-1. Flow Chart for Sequential Data Collection 48
4.3-1. Paper Tape Format 52
4.3-2. Example of Time Paper Tape File 53
4.4-1. Analog Transducer Output Mapped into Bins 56
4.4-2. Angular Velocity at Transducer Versus Bin Number 58
4.4-3. Mechanical Power Versus Bin Number 59

LIST OF TABLES

Page
2.2-1. TTY-KIM-1 Connections 8
2.4-1. KIM-1 Port B Bit Patterns for Peripheral Control 14
2.14-1. MP21 Memory Map 37
4.2-1. System Memory Allocation 51
4.3-1. Output Record Tape 54

1. INTRODUCTION

Instrumentation of the Kansas State University (KSU) Savonius wind turbine was needed to develop a method of measuring turbine performance in free air. In the past, tests were performed on scale models in wind tunne1s. These tests and results are difficult, if not impossible, to extrapolate in order to predict full scale performance. At the KSU Wind Laboratory we wanted to measure wind speeds and power output from the turbine in the proper way to determine wind turbine characteristics without the need of a full scale wind tunnel.

The power output of a turbine and the wind speed measured at the same time do not exhibit a one-to-one correlation. It is necessary to take large quantities of data to determine wind turbine performance by statistical methods.

The simple scheme of collecting wind data sequentially does not give good results. Poor results arise from the fact that there is a large amount of scatter or variation in the data. This scatter is attributed to the phenomenon that the effective instantaneous wind speed over the surface of the turbine is not equal to the instantaneous wind speed at the anemometer. In most cases, data taken sequentially are of little use due to this scattering. The method developed here for taking reasonable data is called the Method of Bins.

The Method of Bins assumes that statistically the wind speeds over the surface of the turbine and at an anemometer placed at the median height of that turbine are the same. In other words, if the wind speeds are sampled for a long enough period of time the mean and the variance of the
wind speed will be the same for both locations. With the Method of Bins, data are typically collected several times a second and the bin corresponding to each sampled value is incremented by one. When a bin becomes full, all bin contents are dumped to bulk storage.

The type of data taken by the Bin Method is illustrated in Figure 1.1-1. This is a histogram of actual wind speeds at about 10 m above the ground during a 4 minute period on March 31, 1978 at Manhattan, Kansas. Each bin represents a range of wind speed of $0.13 \mathrm{~m} / \mathrm{s}$. Bin 70 includes wind speeds between 10.13 and $10.26 \mathrm{~m} / \mathrm{s}$, for example. The wind speed was in this range 8 times during this particular test. The average wind speed for this period was $12.17 \mathrm{~m} / \mathrm{s}(27.22 \mathrm{mph})$, somewhat above average but not uncommon for Kansas. The minimum wind speed measured was $10 \mathrm{~m} / \mathrm{s}$ while the maximum was $15.37 \mathrm{~m} / \mathrm{s}$.

The KSU Savonius wind turbine shown in Figure 1.1-2 was completed in May 1977. This turbine was designed to deliver 5 kilowatts of threephase electrical power to a load in an 11 meter per second wind speed. The turbine was built to study open air testing of wind machines. The major project goal was to develop a system by which any wind machine could be tested and analyzed. The Savonius tests, however, have turned out to be quite encouraging. Initial field testing in March 1978 indicated a peak coefficient of performance about equal to those of the Darrieus or large two-bladed propeller type wind turbines.

Fig. 1.1-2. The Kansas State University Savonius Wind Turbine.

2. SYSTEM HARDWARE

2.1 Introduction

The instrumentation necessary for the data acquisition from the Savonius wind turbine was a natural place for a microcomputer and a high quality analog to digital (A/D) converter. A block diagram of the data collection system is shown in Figure 2.1-1. The KSU Wind Laboratory instrumentation consists of a microcomputer, a paper tape punch, a variety of analog transducers, an angular velocity digital transducer and a digital anemometer. The microcomputer is a MOS Technology KIM-1 with an extra 4 k of Random Access Memory (RAM) and a Burr-Brown analog to digital microperipheral. The A / D microperipheral has eight selectable differential inputs which are all connected to the transducers through RC filters for the reduction of high frequency noise. The microcomputer system utilizing a multiplexer board has an 8-bit digital Input-Output (I/O) port and two pulse rate inputs. These pulse rate inputs are connected to the digital anemometer and angular velocity transducer. Included on the multiplexer board is a paper tape punch digital interface for data output.

The instrumentation is powered by +8 Vdc regulated to +5 Vdc for the microcomputer, the digital portion of the A / D, the multiplexer-counter board, and the 4 k RAM card. $\pm 15 \mathrm{Vdc}$ is needed for the A / D and +12 Vdc for the audio cassette interface. However, the cassette interface only needs +12 Vdc in the read mode and can remain disconnected at all other times.

2.2 Microcomputer

The MOS Technology KIM-1 is a single board machine with a monitor residing in Read Only Memory (ROM) and with 1 K bytes of RAM available for the user. The microcomputer employs a MCS6502 (6502) microprocessor as the Central Processing Unit (CPU). The 6502 is an 8 -bit machine (8-bit bidirectional data bus) with a 16-bit program counter (16-bit address bus). Details of the 6502 can be found in the MOS Technology 6502 Hardware manual [1]. Internal registers in the CPU include one 8-bit accumulator, two 8 -bit index registers--X and Y, an 8 -bit stack pointer confined to page one, an 8 -bit processor status register and a 16-bit program counter. Programming the 6502 is much the same as any present day 8-bit microprocessor with the exception of the zero page and zero page indexed address capabilities. This addressing ability allows for extended table programming operations to be done with ease. Details of the addressing can be found in the MOS Technology 6502 Hardware and Programming Manual [2].

One feature of the KIM-1 is its on board interfaces for TTY and audio cassette. The I/O ports, interrupt timer and hexadecimal display are also useful features. The TTY interface is a 4 wire 20 ma current loop configuration allowing a serial teleprinter to be connected directly to the KIM-1. The signal connections between the KIM-1 and TTY are given in Table 2.2-1.

The primary function of the TTY is to load cross-assembled programs from paper tape into the data acquisition system. By using the crossassembly method for programming and receiving a paper tape, a hard copy of the system program can be on file at all times. The teleprinter may also be used for hard copy of data recorded by the system. This feature,

TABLE 2.2-1
TTY - KIM-1 Connections

KIM-1	KSU Standard
Application	Cinch Jones
Connector	8-pin Connector

R	3	Keyboard Return
S	1	Printer Return
T	4	Keyboard
U	2	Printer

though not exploited by current software, could easily be added using routines in the KIM-1 monitor.

The audio cassette interface on the KIM-1 employs a frequency shifted signal to encode program information on cassettes. Audio quality cassettes can be recorded or read by routines in the KIM-1 monitor. Details of the audio interface are given in the KIM-1 user manual [3]. The audio cassette feature is used to load the system program into RAM. The system is powered on and reset from the keyboard. After reset the data collection program is loaded from audio cassette. This method allows user adjustable software to reside in RAM while keeping a semipermanent record of the program on tape. User adjusted software can be rerecorded on tape to save any user changes or adjustments. It can be useful to keep an extra copy of the program on tape in case of programming problems. This extra tape is not essential because of the availability of the hard copy paper tape received from the cross-assembler.

The I/O ports on the KIM-1 allow 15-bits of input and/or output partitioned as 8-bits from port A and 7 -bits from port B. On the wind laboratory system, port A is multiplexed (1 to 4) to give 4 inputs and/or outputs. Two of these multiplexed ports are connected to pulse rate counters, one to the paper tape punch and one left for digital expansion. Port B is used to control the port A multiplexer, the paper tape punch, and receive interrupts from the timer on bit 7.

The interrupt timer is located on board in the MCS6530-002. This timer generates an interrupt upon count-out. It can be set at count-out or any other time by a write to the proper address. Details of the timer
address are given in the KIM-1 User manual Appendix H and in the MOS Technology MCS6502 Hardware Manual. Bit 7 of port B is switched to interrupt request (IRQ) on the KIM-1 Expansion Connector to allow use of both the timer and interrupts in software debugging.

The KIM-1 has a built-in display which allows information to be entered or passed to the user. This display has 6 digits of display and is normally operated as 4 digits of hexadecimal address and 2 digits of hexadecimal data. This display along with the KIM-1 hexadecimal keyboard is used to make user modifications to the program. During operation the display is used to exhibit currently sampled data. It may also display any channel or data value recorded by the microcomputer. The ability to display this information gives the user some type of feedback and reassurance that they system is operating properly.

2.3 4k RAM Expansion

The Wind Laboratory microcomputer memory was expanded by 4 k bytes with the use of an S.D. Sales $4 k$ Low Power Ram Board [4]. This board is plug compatible with the $\mathrm{S}-100$ bus and includes 4096 8-bit memory words with buffered outputs and on board power regulation. 21102 memory chips are used, each having a capacity of one bit at each of 1024 addresses.

The 4 k board decoding must be modified for use with the KIM-1. Modification is accomplished by following the step by step procedure given in Appendix A after normal assembly of the board. Also provided in Appendix A is a memory march test for testing the RAM.

The intention of the modification is to provide memory in the K 1 , K2, K3 and K4 positions of the already decoded locations of the KIM-1.

See Figure 2.3-1. Modification is accomplished by disabling the S-D decoding and providing the proper decoding for the KIM-1. The modification can best be understood by referring to the logic diagram in Appendix A. IC 39 (7400) on the S-D board is altered from an active high NAND gate to an active low OR gate which is true when $\mathrm{K} 1, \mathrm{~K} 2$, K 3 and K 4 are low. See KIM-1 User Manual.

2.4 Multiplexer-Counter

The KIM-1 microcomputer is interfaced to the digital anemometer, angular velocity transducer and the paper tape punch by the multiplexercounter board. The board employs 4 CMOS 4052's for multiplexing port A of the KIM-1 to the 4 digital I/O ports. The 4052^{\prime} s are analog multiplexers and therefore care must be taken to set port A to an input before selecting input signals with the multiplexer, so that two outputs are not tied together. The multiplexer is controlled by bits $C \not \emptyset$ and $C l$. These control bits correspond to port B bit 4 and 5 respectively. Anyone of the four ports or devices can be selected by the appropriate bit pattern at port B. See Table 2.4-1. A block diagram of the multiplexer-counter board is shown in Figure 2.4-1. The paper tape punch is wired with a solid state relay for power control. The punch powers-on when selected, that is, when $C \emptyset$ and $C 1$ are both zero. Details of the multiplexer, punch connections, multiplexer-counter card connections, angular velocity counter and digital anemometer counter are given in Appendix B.

2.5 Angular Velocity Transducers

The angular velocity of the wind turbine is measured by a magnetic pick-up from a 60 tooth gear enclosed in the Lebow torque transducer. See

Fig. 2.3-1. KIM-1 Memory Map.

Fig. 2.4-1. Block Diagram of the Multiplexer - Counter Board and Interfacing.

Table 2.4-1. KLM-1 Port B Bit Patterns for Peripheral Control.

Bit 非 76
 Port B

X	\emptyset	\emptyset	\emptyset	1	\emptyset	\emptyset	Punch select
X	\emptyset	\emptyset	1	\emptyset	\emptyset	\emptyset	Punch command, Punch busy X $\mathrm{\emptyset}$
X	1	\emptyset	1	\emptyset	\emptyset	Angular velocity counter X	\emptyset
X	1	\emptyset	1	\emptyset	1	Inhibit counter	
X	1	\emptyset	\emptyset	1	\emptyset	1	Digital Anemometer counter selected and inhibited Reset counter and release inhibit Release reset
X	X	X	\emptyset	1	1	$\emptyset *$	Select digital expansion
X	X	X	\emptyset	1	\emptyset	$\emptyset *$	port

*Don't cares (X) in bits 4 and 5 must not be both \emptyset. This condition will select the punch and power it on.

Figure 2.5-1. The signal from the magnetic pick-up is fed by shielded cable to the input of the multiplexer-counter board. The input is protected against high voltage transients with a gas discharge tube (NE-2), a $1.3 \mathrm{k} \Omega$ resistor and a 6.8 V silicon voltage suppressor (Transzorb [5]). The $1.3 \mathrm{k} \Omega$ resistor is also used in conjunction with a $0.1 \mu \mathrm{f}$ capacitor to form a low pass filter. The filtered signal is amplified and shaped by a CA3140 [6] operational amplifier and CMOS 4093 Schmitt trigger. The signal is also gated by the 4093 using bit \emptyset of port B (inhibit). The angular velocity counter is read by writing a 1 to bit 4 and a \emptyset to bit 5 of the KIM-1 I/O port B. This condition connects port A to the angular velocity counter through the 4052 multiplexer on the multi-plexer-counter board. The counter is inhibited, to reduce glitches, by writing a 1 to bit \emptyset of port B. After the counter is inhibited a read of port A will yield the contents of the counter. Writing a 1 to bit 1 of port B will reset the counter and a \emptyset written to bit \emptyset of port B will release the inhibit. The counter will then count until the next inhibit, read and reset. With the Wind Laboratory system, the angular velocity signal is counted for one-sixth of a second and the angular velocity recorded from these results. The location of the angular velocity transducer in the KSU Savonius wind turbine power shaft yields an output of 423.5 pulses per turbine revolution which produces a count of 1.18 in one sixth of a second per turbine rpm.

2.6 Digital Anemometer

A digital anemometer was developed to overcome problems and errors associated with 'Weather Bureau' type of anemometers. 'Weather Bureau' anemometers are generally analog permanent magnet generators with a

Fig. 2.5-1. Angular Velocity Jransducer and Interface. Electronics are located on the
Multiplexer - Counter board. Transducer outputs 423.53 pulse per turbine revolution.
cup-wheel assembly. Large errors can arise from the use of these anemometers because of their inherent design. 'Weather Bureau' analog anemometers have a cup-wheel driven armature with a commutator and brush assembly. If the bearings, commutator, or brushes become worn or dirty the output of the anemometer will be lower at equivalent wind speeds. Another problem stems from the fact that all anemometers are averaging devices which act as non-linear low pass filters. The velocity of the anemometer approaches the speed of the wind at the beginning of a wind gust, but due to its mass it overruns and is traveling faster at the end of the gust than the wind. To overcome this second problem, the mass of the anemometer must be reduced. This is done with a pulse rate encoded digital anemometer. The digital anemometer uses a cup-wheel assembly identical to the analog anemometer but reduces the mass of the rotor by eliminating the armature. The cup-wheel assembly on the digital device drives a photo chopper arrangement which outputs a pulse rate proportional to wind speed. The mass of the chopper wheel is small compared to the analog anemometer armature reducing its inertial effects. The first problem is also diminished with the photo chopper arrangement because there are fewer moving parts to get dirty or worn.

The cost of the analog anemometer is also higher than that of the digital anemometer, attributable to its wire-wound armature, brushes and commutator. In contrast, the digital device has a chopper wheel, a light emitting diode, and a photo-transistor or photodiode. This reduces the cost to mainly the cup-wheel assembly and housing. Some problems did arise with the KSU prototype digital anemometer built by Bootman [7]. The major problem with the anemometer was the bearings used on the cup-wheel shaft.

These bearings were standard industrial type sealed ball bearings. Drag factor introduced by these types of bearings were so high that in one case the anemometer did not register until wind speeds reached $3 \mathrm{~m} / \mathrm{s}$. Also after prolonged use, the bearing performance deteriorates, making the anemometer unusable for instrumentation purposes.

Improved performance could be obtained by a better choice of bearings similar to the ones used by Electric Speed Indicator Company [8] in their model F420-C wind speed transmitter. These bearings are New Departure SS-7034 and SS-7R4, stainless steel types or equivalents. They are lubricated with a mixture of $2 / 3$ Dow Corning DC-33 silicon grease fluid consistency and $1 / 3$ Hamilton Oil T-3358. Other bearings, especially synthetic ones, might exhibit better results but further development was beyond the scope of this research.

The KSU prototype digital anemometer did produce a 0.4 volt peak to peak sinusoidal signal. This signal was sent by shielded cable to a remote amplifier and counter. However, due to noise and signal level, the system was modified to amplify the signal within the anemometer and send a $0-5 \mathrm{~V}$ pulse train to the counter. The 0.4 volt signal produced by the LED-photodiode pair is compared with a 0.2 volt reference by a LM311 voltage comparator. The output of the LM311, pulled to ± 5 Vdc with a $21 \mathrm{k} \Omega$ resistor, is connected to the input of the multiplexer-counter board via shielded cable. See Figure 2.6-1. The terminating end of the cable at the input to the board is pulled high with another $21 \mathrm{k} \Omega$ resistor and protected against lightning by an $8 \mathrm{k} \Omega$ resistor- 6.8 volt Transzorb pair. The signal is shaped and gated by a CMOS 4093 Schmitt trigger NAND Gate. The pulse train is counted by a 4520 (Dual 4 bit binary counter). See Figure 2.6-2.

Fig. 2.6-1. Digital Anemometer Photochopper and Voltage Comparator.

Fig. 2.6-2. Diagram of the KSU Prototype Digital Anemometer Signal Conditioning, Gating and Pulse Rate Counter. Components are located on the multiplexer - counter board.

The digital anemometer counter is read by writing a to bit 4 of port B and a 1 to bit 5. This write connects port A through the multiplexer to the anemometer counter. The counter is inhibited by writing a \emptyset to bit \emptyset of port B and the counter contents read by fetching port A. The counter is then reset by a 1 written to bit 1 of port B. Note that both the digital anemometer counter and the angular velocity counter are inhibited and reset by bits \emptyset and 1 of port B.

2.7 Analog Anemometer

Analog anemometers used at the KSU Wind Laboratory are Electric Speed Indicator Company type F420-C wind speed transmitters. These devices are direct current permanent magnet generators which are selfcontained and require no external source of electrical power. With the Wind Laboratory instrumentation system, the fact that the anemometers are self-powered is of little concern, but with a battery powered system, this is of major importance. The output of the anemometer is loaded with a 430Ω resistor, passed through a lightning protection network and fed to the A / D. The input range of the A / D is 0 to 3 volts allowing wind speeds from 0 to $34 \mathrm{~m} / \mathrm{s}$ (0 to 77 mph). See equation 2.7-1.

Calibration of the anemometer is achieved by driving the armature of the anemometer with a synchronous electric motor and setting the output by adjusting the commutator. With the calibration system used at the KSU Wind Laboratory, the anemometers are driven at 525 RPM with a synchronous motor and the output of the anemometer adjusted to 2.1 volts. With the errors measured during calibration of six anemometers, it is likely that many previous wind records are in error. For example, the output of one anemometer in use for two years was off by a factor of two.

Errors arise from dirty commutator brushes or dragging bearings. The method of calibration given above is quite adequate if the bearings in the anemometer are good. However, if any drag develops from the bearings, the calibration results will be correct, but the field results will be in error. The errors arise from the fact that the driving motor develops enough torque to overcome the bearing effects. Drag related errors are impossible to detect with this calibration method. It would be desirable to have a device to determine the rolling resistance of the bearings. This type of test could be performed in many different ways, but it would be preferable to define one method as a standard. It is suggested to lubricate the bearings once a season and if they are untestable to replace them at the same time. The method of bearing removal and proper lubricants can be found in the Electric Speed Indicator Company F420-C manual.

The six anemometers were tested after calibration for linearity and deviation with the use of the USDA Wind Erosion Laboratory wind tunnel at Manhattan, Kansas. The anemometers were tested with one cup assembly to reduce data variation. The output of each anemometer was loaded with a 430Ω resistor and connected to an A/D input on a Hewlett-Packard Data Acquisition system (Mcdel 2114). The A/D computer system sampled the anemometer and pitot tube assembly 100 times per second and averaged the values over 10 seconds. The test results were quite good with an approximate 1% non-linearity measurement between $2 \mathrm{~m} / \mathrm{s}(4.5 \mathrm{mph})$ and $13 \mathrm{~m} / \mathrm{s}$ (29 mph). The absolute error of wind speed at 1 volt output is within 1% and the standard deviation of the anemometers was equal to 0.06 at the 1 volt output level. Another test was performed comparing the output of the anemometers with different cup assemblies. Cup assemblies, 3 new
and one pitted were tested on the same anemometer. The output of the anemometer with the three new assemblies was virtually the same. The pitted assembly, however, had an approximate 2% reduction in output at $10 \mathrm{~m} / \mathrm{s}$ wind speed.

Data given by the Electric Speed Indicator Company and verified by tests performed in the USDA wind tunnel demonstrated that the voltage across the 430Ω load resistor is described by the following equation:

$$
\begin{equation*}
V_{0}=\frac{u-2.3}{25} \tag{2.7-1}
\end{equation*}
$$

where $u=$ wind speed in mph

$$
V_{0}=\text { output in volts }
$$

Electric Speed Indicator Company also gave data for a relationship between wind speed and angular velocity of the anemometer which can be found to be

$$
\begin{equation*}
\mathrm{n}=10(\mathrm{u})-23 \tag{2.7-2}
\end{equation*}
$$

where $n=$ angular velocity in rpm

Solving equation 2.7-2 for wind speed and substituting it into equation 2.7-1, yields:

$$
V_{0}=\frac{n}{250}
$$

Equation $2.7-1$ is used to compute the wind velocity after data collection and equation 2.7-3 is used for calibration purposes.

2.8 Pressure Transducer

A National Semiconductor Model LX1602A [9] pressure transducer is used to measure atmospheric pressure: This transducer is a hybrid device and is easily interfaced to the A / D microperipheral. See Figure 2.8-1. The device has an overall span accuracy of $\pm 3 \%$ with better than $\pm 0.5 \%$ repeatability over the rated pressure span. The pressure transducer is limited to a range of absolute pressure between 0 and $103 \mathrm{kPa}(0-15 \mathrm{psia})$.

Fig. 2.8-1. National LX1602A Pressure Transducer and Interface Block Diagram.

Another choice of transducer would probably be better in this application because of the transducer's operation close to the upper end of tis pressure range. This results from the fact that the mean pressure at Manhattan, Kansas, is 98 kPa (14.2 psia).

2.9 Temperature Transducer

A Westinghouse model VT2-841 temperature transducer [10] is used because of its availability and simplicity. This transducer uses a bridge circuit to convert the resistance of a copper detection coil into a voltage. The detection coil resistance is linearly proportional to its temperature over the range of interest. The temperature transducer output is low pass filtered, amplified, and connected to the A/D. See Figure 2.9-1. The accuracy of the transducer is within 2% between 9 and $100^{\circ} \mathrm{C}$.

2.10 Wind Direction Transducer

The wind direction is measured by an Electric Speed Indicator [11] model F420-CR2 wind direction transmitter. This transducer is equivalent to a 206Ω potentiometer with the wiper driven by the direction vane. The ends of the resistor are connected to a 3 volt regulated power source. The regulated power supply is necesary because not all direction indicators have the same internal resistance. Regulation is achieved by the use of a transistor, operational amplifier pair as shown in Figure 2.10-1. Shown in Figure 2.10-2 are the connections to the direction indicator and Figure 2.10-3 shows the 5 Vdc reference for the 3 Vdc regulator.

The wind direction indicator arrangement equates both zero and three volts to North. See Figure 2.10-4. The absolute accuracy of the wind direction transmitter is dependent on the linearity of the potentiometer element and was never checked.

Fig. 2.9-1. Westinghouse Temperature Transducer, Filter and Amplifier Block Diagram. Amplifier

Fig. 2.10-1. +3 Vdc Regulator for Wind Direction Indicator.

Fig. 2.10-2. Wind Direction Indicator Connections.
"A \& 1" +8 Vdc
"Z \& 22"
GND
Fig. 2.10-3. +5 Vdc Regulator for Air Pressure - Wind Direction Card.

Fig. 2.10-4. Wind Direction Indicator Rose. Output voltage and bin magnitude given.

2.11 Torque Transducer

A Lebow [12] model 1604-1k torque sensor is used for torque sensing in the wind turbine power output shaft. This device employs a power shaft that deforms linearly and in a repeatable manner under a load torque. An array of strain gages are bonded to the power shaft in a Wheatstone bridge configuration. Wheatstone bridge strain gage arrangments inherently compensate for temperature and variations in loading. The strain gage bridge is connected to the secondary of a rotary transformer with the primary of the transformer driven by a Lebow [13] model 7535 strain gage indicator. This indicator generates a 3.2 kHz carrier to excite the sensor rotary transformer. In turn, the sensor modulates the carrier with torque information and returns the modulated carrier to the indicator. The indicator demodulates and filters the signal with a cutoff frequency of 5 Hz . The signal is then amplified and fed to the A / D microperipheral card.

The Lebow strain gage indicator has adjustable gain and the output is set to 3 volts at 1000 in-1b of torque. The torque sensor location in the turbine power shaft is shown in Figure 2.11-1. Torque relationships between the sensor turbine rotor and the sensor alternator, neglecting gear and sprocket losses, are as follows:

$$
\begin{array}{ll}
\mathrm{Tr}=\frac{120}{17} \mathrm{Ts} & \mathrm{Tr}=\text { rotor torque } \\
\mathrm{Ta}=\frac{17}{42} \mathrm{Ts} & \mathrm{Ts}=\text { sensor torque } \\
& \mathrm{Ta}=\text { alternator torque }
\end{array}
$$

With the Wind Laboratory system, the strain gage indicator output is sampled and a bin incremented corresponding to the sampled value. Results of this operation are given in Section 4.4.

Fig. 2.11-1. Block Diagram of the KSU Savonius Wind Turbine Power Shaft.

2.12 Electrical Power Transducer

The electrical power produced by the Wind turbine is measured with an F.W. Bell [14] model PR-2401SX three-phase watt transducer. This transducer is a 4 wire, balanced voltage device that provides a direct current output proportional to three-phase power. Isolation and the dc output are achieved by use of the Hall-effect. The output of the transducer is 1.0 ma at rated power into a load resistor between 0 and $10 \mathrm{k} \Omega$. A resistor value of $1.78 \mathrm{k} \Omega$ was used on the Wind Laboratory system giving a 3 Vdc signal at 6754 watts with the potential and current transformers used. See Figure 2.12-1. With this transducer, accurate measurements of real power to within 0.5% with linearity to within $\pm 0.2 \%$ of rated output are attainable. Accuracy deviated as input frequency and voltage varied but was within 1% between 20 Hz and 70 Hz . Belnw 20 Hz this watt meter was not tested but similar Hall effect transducers were accurate to within 1% as frequency varied to a few Hertz if voltage varied with frequency.

2.13 Alternator Voltage Transducer

A signal proportional to the wind turbine alternator output is obtainable by a three-phase halfwave rectifier circuit. The rectified output is reduced by a resistor voltage divider and fed to the A / D microperipheral card where it is filtered. See Figure 2.13-1. The voltage divider network is an $18.2 \mathrm{k} \Omega$ resistor and a 430Ω resistor to give an output of 3 V at 130 V rectified input.

Fig. 2.12-1. Electrical Power Transducer Block Diagram.

Fig. 2.13-1. Halfwave Rectifier for Alternator Output Voltage Transducer.

Analog to Digital Converter

Desirable features of an A / D converter for the Wind Laboratory data acquisition system include easy programming, no input-output ports needed on the microprocessor, no external logic, and being completely self-contained.

The Burr-Brown [15] MP21 is such a device with analog inputs and a digital output. The device contains a high speed, eight bit A/D converter, an input multiplexer that can accept up to sixteen single ended or eight differential signals, and an instrumentation amplifier. The block diagram is shown in Figure 2.14-1. The offset and gain are factory laser trimmed so that no external adjustments are required on the ± 5 volt or the 0 to 5 volt input range to obtain an absolute accuracy of better than $\pm 0.4 \%$ (1 LSB). Our instrumentation used an input signal of 0 to 3 volts with only the addition of one resistor and a single potentiometer for gain adjustment. By changing the gain, input ranges as low as ± 10 mV can be used.

The MP21 is treated as memory with each analog input channel occupying one memory location. The analog inputs are read with a load or fetch instruction from the processor. Conversion time requirements demand that the address for a given analog channel be read twice in order to get one correct value. The first read addresses the channel, samples the input and starts the conversion. The first read also sets a flip-flop to note that it is the first read. After the required conversion time another read can be made to input data.

The conversion delay is obtainable using four different methods. One is to start the conversion with a read, allowing the MP21 to halt the processor for conversion. When the halt is finished the processor reads

Fig. 2.14-1. MP21 Block Diagram.
the channel to fetch the data. The second delay method is to connect the Halt line of the MP2l to an input port of the processor. Periodically, after the first read, the processor checks the line to detect a complete conversion. When the conversion is complete, the MP21 is read again to obtain the new data. The third method is to connect the interrupt line of the MP21 to the processor. Conversion is started with a read and the MP21 will interrupt the processor when finished. At this point, the data can be fetched. The fourth, and the method used in the Wind Laboratory instrumentation system, is to read a channel and start the conversion. Then a sofware time delay equal to the conversion time is followed by a second read to fetch the data.

Conversion time is a function of amplifier gain, multiplexer setting, and the actual A/D conversion. This time is typically between 40 and 200 microseconds depending upon the gain of the amplifier. Industry tends to use successive approximation A / D 's because they offer an excellent compromise between accuracy and speed. The MP21 uses such an A/D with a throughput of 25 kHz per channel. This includes 35 microseconds for multiplexing and amplification and 5 microseconds for A / D conversion. The throughput rate can be increased substantially if an external instrumentation amplifier is used. Burr-Brown, for instance, claims a throughput of 125 kHz per channel with their 3626 high speed amplifier.

The MP21 is directly compatible with the 6800 and 6502 microprocessors. The MP20 performs the same function as the MP21 but is compatible with the 8080 family. Either device can be placed directly on the microprocessor address and data bus; each line is equivalent to one LSTTL load. In general, no external logic is needed because logic levels and timing are microprocessor
compatible. The MP21 has fully decoded address capability and can lie anywhere above $\mathrm{C} \emptyset \emptyset \emptyset \mathrm{H}$ without additional gating. On the Wind Laboratory system the two high order bits were inverted for compatibility with the KIM-1. The KIM-1 is decoded for addresses below lFFFH. The memory map for the MP21 is given in Table 2.14-1. Edge card connections and MP21 connections are given in Appendix C.

Table 2.14-1. MP21 Memory Map	
Analog	
Channe1	
1	Address
2	$14 \varnothing \varnothing \mathrm{H}$
3	$14 \varnothing 1 \mathrm{H}$
4	$14 \emptyset 2 \mathrm{H}$
5	$14 \emptyset 3 \mathrm{H}$
6	$14 \emptyset 4 \mathrm{H}$
7	$14 \emptyset 5 \mathrm{H}$
8	$14 \emptyset 6 \mathrm{H}$

The power requirements for the MP21 are ± 30 and 90 mA at ± 15 and 5 Vdc, respectively. The device when first viewed is an impressive 80 pin package, but the application and use of the MP21 is very simple and straightforward. After deciding on the mode of operation, and connections have been made to the address bus, data bus, control lines, power and analog inputs, the MP21 is ready to work.

The analog inputs are internally protected by reverse biased diode circuits against over voltages up to $\pm 23 \mathrm{~V}$. External protection is added by means of series resistors and Zener diodes. See Figure 2.14-2. The external diodes also protect the input from damage by static; however,

All channels except channel 7

Channel 7

Fig. 2.14-2. Input Protection for A/D (MP21).
static precautions should still be observed. Neither the internal diodes nor Zener diodes protect against lightning. The MP2l will work without difficulties over a wide range of input voltages. Typically, these voltages are between $\pm 10 \mathrm{mV}$ to $\pm 5 \mathrm{~V}$.

Problems arising with the MP21 were few. However, one problem that developed was that the 6502 does not have a Valid Memory Address (VMA) line. To compensate for this, the VMA line on the MP2l was tied high. In this mode of operation, everything operates properly unless the Halt capabilities are also used. The Halt feature is such that after a read of the MP21, the MP21 pulls the Halt line low. This stops the microprocessor for 40 microseconds, allowing for settling and conversion. Since the address lines on the 6502 are still valid, the MP21 decodes and starts conversion every other clock cycle. This decoding keeps the Halt line low and the processor is latched in the halt state. Writing a software loop of 40 microseconds avoids the use of the Halt line and also allowed the interrupts to be serviced at any time.

Another problem--and a very major one in outdoor work--is lightning protection. With wind turbine instrumentation, the input of the MP21 must be protected against lightning and transients. The proposed method is a series resistor and a parallel transient suppressor.

2.15 Lightning Protection

Any instrumentation system used in the out-of-doors is subject to lightning and its induced transients. Protection against lightning can be accomplished by many different methods.

Active lightning protectors typically come in three types of devices: crowbar, constant voltage, and combinations of these [16]. A crowbar
device will effectively become a short to ground when the input voltage exceeds some value and remain shorted until the current drops to a low level. On the other hand, a constant voltage device will conduct very heavily when the voltage rises above a specified level and below this level the device conducts very little.

Common constant voltage devices used today are Zener diodes, varistors, and silicon voltage suppressors. These devices will all accomplish the same function, but vary significantly with respect to response time. A lightning induced voltage can rise to thousands of volts in a few microseconds. Therefore, it is important to select a device with an extremely fast response time. The silicon voltage suppressor has this feature.

Gas discharge tubes and spark gaps are the most widely used crowbars. To obtain a low cost device with fairly constant striking voltage, standard NE-2 neon lamps can be used. These lamps break down and ignite at approximately 80 Vdc and will conduct a few milliamperes of current until the lamp extinguishes at about $60 \mathrm{Vdc}$. At voltages above 170 Vdc , the lamp allows extremely large amounts of current to flow. Currents of these magnitudes will destroy the lamp if allowed to flow for more than a few microseconds; however, with lightning this is of little concern.

Combinations of neon lamps, $1.4 \mathrm{k} \Omega$ resistors and 6.8 V silicon suppressors were used to protect the A/D inputs on the Wind Laboratory instrumentation system. The arrangement is shown in Figure 2.15-1. The A/D used in this system has differential inputs with input impedances of approximately 5 gigaohms. Therefore, the additional impedance of the resistor is of little importance. The resistance in this circuit can be

Fig. 2.15-1. Lightning Protection Circuit.
replaced by an inductor if the dc resistance is intolerable. The combinnation used eliminates impluse spikes, allows large fault currents to flow yet maintains a safe voltage at the output.

Power supply protection is also necessary to ensure that voltage transients do not damage the instrument. One of the simplest methods of providing protection is a battery placed in parallel with the power supply as a buffer.

None of these systems will provide protection against a direct hit, which will destroy the instrument. They will, however, protect against near misses.

Another possible method of protecting wind instruments from lightning is the use of light-coupled transducers. For anemometers, this would entail a fiber optic channel from a light source in a protected environment to the anemometer. The anemometer would interrupt the light with a chopper wheel and return the information through another fiber optic channel to a photo sensor in the protected instrument. A similar type arrangement could be utilized by a wind direction indicator employing a gray code. With fiber optics being the only exposed information channel, lightning problems would essentially be eliminated. Power consumption of the fiber optics system is not large, but may be substantially larger than the power requirements of a CMOS microprocessor. This would be an important consideration in a battery powered wind instrumentation system.

2.16 Calibrations and Errors

Errors can arise in any instrumentation system from many sources.
It is of utmost importance to achieve a system that can be used with
complete confidence. The only way to gain this confidence is careful calibration of each transducer and of the instrumentation system. With the Wind Laboratory system, each transducer was calibrated by methods given in their appropriate sections. The A / D was calibrated by a standard 1 volt cell and the pulse rate counters by a signal generator and frequency meter. Calibration must be done regularly to ensure quality data. Some possible errors can be reduced by proper design and the use of high quality devices such as instrumentation amplifiers.

3. SYSTEM SOFTWARE

3.1 Introduction

Software is given for two different modes of operation. The first mode of operation is binned data acquisition, and the second mode is sequential data acquisition. The sequential data acquisition program samples all of the transducers 6 times per second for 256 samples each. These sampled values are stored in memory and punched on paper tape after complete acquisition. The binned data acquisition system samples each channel 6 times per second and increments a memory location corresponding to the magnitude of the sampled value and its channel number.

The software is divided and written as subroutines for ease of programming. Subroutine and the main program flow charts are given in Appendix E and the cross-assembled code in Appendix F. The flowcharts and programs are hopefully self-explanatory and therefore little discussion is given here. However, generalized flow charts are provided in the following sections to allow an overview of the system software.

3.2 MOS Technology Cross-Assembler

To allow ease of programming an MOS Technology cross-assembler was used to assemble the programs. The KIM-1 program is punched on standard IBM cards by using the format given in the cross-assembler manual. The punched cards are fed to the computer with the proper job control cards [18] to route the cross-assembler output to a user available file. The file produced by the cross-assembler includes much unwanted output. Techniques given by the KSU CMS Manual [19] can be employed to delete the
unwanted output. The output needed is type '; 3^{\prime}. This type of output is in the form ; 3,8 spaces, starting address, space, 16 bytes of data, space and 2 bytes of checksum. Everything punched following and including the first line of type '; 3^{\prime} data is the program. The program is retrieved on paper tape by use of a modem and TTY (see details in the CMS manual). The program given in Appendix D will load the cross-assembled paper tape into the appropriate memory locations.

3.3 Binned Data Acquisition

The complete software to control the instrument is given in detail in Appendices E and F. However, a brief explanation of the system is given here with the aid of the generalized flow chart shown in Figure 3.3-1. After power-up, the processor idles, checking the keyboard. A user selected channel (key) will display that channel's most recently sampled value. At regular intervals, the timer will interrupt the processor which in turn resets the timer, updates the calendar and collects new data. Data collection is performed as two reads or fetches from the microperipheral. The first read starts the conversion and, after an appropriate wait, the second read fetches the data. The collected data byte is used as an address to increment the appropriate bin. After complete data collection, the processor will return to the display routines. If any bin is full, the processor will output the complete data file including time, date, and checksums to the paper tape punch.

An appropriate sampling rate must be chosen to sample the transducers and give reconstructable results. The analog anemometers have the fastest usable response time. Selecting the sampling rate to accommodate

Fig. 3.3-1. Generalized Operating Schemes for Data Collection.
these anemometers will ensure that the sampling period is shorter than all other time constants of the wind turbine system. Analysis given by Bootman indicates that a sampling frequency of 1 to 4 samples per second would be adequate to reconstruct the original signal. Because of programming ease, a sampling frequency of 6 Hz was chosen. The analog inputs of the A / D board are low pass filtered to a 1.2 Hz cutoff frequency. With this cutoff frequency, sampling rates as low as 3 Hz can be made without a frequency aliasing problem. There is some question whether aliasing can be considered a problem with binned data sampling and needs further investigation.

3.4 Sequential Data Acquisition

The sequential data acquisition routine samples the transducers 6 times per second and records the sampled value in order of sampling for 256 samples of each transducer. A generalized flow chart is shown in Figure 3.4-1. The machine is initialized for one-sixth of a second interrupts and the channel count set to zero. After an interrupt to wait for $1 / 6$ of a second, both digital channels and all 8 analog channels are read. Upon the collection of 256 samples from each channel, the computer jumps to the output routine of the binned data program and punches the data on paper tape.

Fig. 3.4-1. Flow Chart for Sequential Data Collection.

4. SYSTEM OPERATION

4.1 Introduction

System operation is both simple and straightforward. System programs are recorded on audio cassette by methods given in the KIM-1 user manual. For operation the system is powered-on with $\pm 15.7 \mathrm{Vdc}, \pm 12 \mathrm{Vdc}$ and +5 Vdc . The +12 Vdc is only required for the audio cassette operation. After power-on, the system program is loaded into the system memory. See Appendix A for deatils. Once the system program is loaded, the user must initialize time, date and mode of data collection. There are three types of data collection - binned data above angular velocity threshold, binned data and sequential data. In the binned data above angular velocity threshold mode, the transducers are sampled 6 times per second and the information built into a histogram only when the turbine's angular velocity is above a specified level. If the turbine's angular velocity is not great enough, the transducers are not sampled nor the bins incremented. The binned data mode functions the same as the binned data above angular velocity threshold mode only with a zero threshold. In either bin mode, data can be viewed while the system is running. Viewing is accomplished by the user selecting the channel of interest with the appropriate key. This operation displays in the KIM-1 address field, the last value the system sampled from the channel selected. A table of the channel numbers and their corresponding transducers is given in Appendix C.

In the binned data modes, the calendar does not update to a new year and must be done manually. It should also be noted that the delta wind speed is derived from positive changes in wind speed from the digital anemometer.

The sequential mode collects data in an ordered manner at 6 samples per second and stores the data in the microcomputer memory. After 256 consecutive samples are taken, the system dumps the data on paper tape and returns to the binned data mode. See Appendix G for detailed operations.

4.2 Memory Allocation

The microcomputer memory space is divided into regions for data, program, stack and temporary storage. Each transducer and computed value, such as mechanical power, has one page of memory reserved for data between $\emptyset 8 \emptyset \emptyset \mathrm{H}$ and 13FFH. See Table 4.21. These locations are used for both sequential data and binned data acquisition modes. Locations between $\emptyset 2 \emptyset \emptyset \mathrm{H}$ and $\emptyset 7 F F H$ are reserved and contain the system program. Temporary storage locations are on page zero and the processor stack is confined to page 1.

4.3 Paper Tape Format

Data are collected and ordered in bins from \emptyset to 255 . However, data are punched on paper tape in reverse order, high bin through low bin (i.e., bin $255,254,253, \ldots, 2,1, \emptyset)$. The punch format is given in Figure 4.3-1 and is in the form of sync character, record type, number of data points, data and a two-byte checksum. After all records have been punched, a record type zero is punched to indicate end of file. An example time record is given in Figure 4.3-2, and record numbers which correspond to channel numbers are given in Table 4.3-1.

4.4 Data Reconstruction

All transducer values collected with the method of bins are mapped into a range or distribution. This range is defined as the bin width. The KSU Wind Laboratory system has 256 separate bins in which the span of

Table 4.2-1. System Memory Allocation

Address
Page (Hex)
1301 Anemometer (Analog) \#1
$12 \emptyset \emptyset$ Torque
$11 \varnothing \emptyset$ Electrical Power
$1 \varnothing \varnothing$ Alternator Voltage
ØFøø Wind Direction
ØЕøø Air Temperature
ØDøø Air Pressure
øCøø Anemometer (Analog) \#2
ØBØø Angular Velocity
ØAøø Digital Anemometer
ø9øø Delta Anemometer
Ø8øø Shaft Mechanical Power
$\emptyset 7 \emptyset \emptyset \quad$ Program
ø $6 \emptyset \emptyset \quad$ "
ø5øø "
毋4øの "
$\emptyset 3 \emptyset \emptyset \quad "$
Ø2øø "
Ø1øø Stack
$\emptyset \emptyset \emptyset \emptyset \quad$ Temporary Storage

A ASCII Sync character (16H)
B Record type (non-zero)
C Number of points (16 bits, high byte low byte)
D Data (b bits) bytes punched in reversed order
E Check-sum (16 bits, high byte, low byte)
F Record type $=\emptyset$ (indicates end of file)
Fig. 4.3-1. Paper Tape Format.

葛

$\begin{array}{c}\text { present } \\ \text { day } \\ \text { high byte }\end{array}$	$\begin{array}{c}2 \text { byte } \\ \text { check-sum }\end{array}$

 present
hour

al
01
き1
$\underset{\text { U }}{\substack{\text { U }}} \mid$
nulls
Fig. 4.3-2. Example of Time Paper Tape File.

Table 4.3-1. Output Record Type

Record Number
Dec Hex
$\emptyset \quad \emptyset \quad$ End of file
11 I-Analog anemometer
22
Torque
33
Electrical Power
44
53
Alternator voltage
Wind direction
$6 \quad 6$
Air temperature
$7 \quad 7$
Air pressure
88
2 - Analog anemometer
$9 \quad 9$
Digital anemometer
10 A
Delta wind speed
11 B
Angular velocity
12 C
Shaft mechanical power
13 D
Time
the transducer is mapped. To properly reconstruct the transducer information some estimations must be made. All analog transducers used in the KSU system map a 3 volt signal range into the 256 bins as shown in Figure 4.4-1. Plotting a straight line through the center of the range yields a line 'A' and the following equation:

$$
\begin{equation*}
V=\frac{3-\frac{3}{256}}{256} V^{\prime}+\frac{3}{2(256)} \tag{4.4-1}
\end{equation*}
$$

where $\quad V=$ output voltage
$V^{\prime}=$ bin number.
Equation 4.4-1 will yield results for all binned data taken with analog transducers. For the analog anemometer equation 2.13-1 yields:

$$
\begin{equation*}
u=25 v_{0}+2.3 \tag{4.4-2}
\end{equation*}
$$

where

$$
\begin{aligned}
u & =\text { wind speed (mph) } \\
\nabla_{0} & =\text { output voltage. }
\end{aligned}
$$

Equation 4.4-1 and substituting into equation 4.4-2 gives:

$$
\begin{equation*}
u=25\left(\frac{3-\frac{3}{256}}{256} v^{\prime}+\frac{3}{2(256)}\right)+2.3 \tag{4.4-3}
\end{equation*}
$$

From information given in Section 2.11 on the torque transducer, it is known that with a torque of 112.99 Nm the output of the torque meter will be 3 V . This information and equation $4.4-1$ yields the following results for turbine torque:

$$
\begin{equation*}
T=\left(\frac{3-\frac{3}{256}}{256} T^{\prime}+\frac{3}{2(256)}\right) 37.66 \tag{4.4-4}
\end{equation*}
$$

where

$$
\mathrm{T}=\text { Torque at sensor (Nm) }
$$

$T^{\prime}=$ bin number.

By following the above examples, relationships can be found for any analog transducer using the method of bins. Similar results can be found for the pulse rate transducers. For instance, it is known that from the angular velocity transducer

$$
\begin{equation*}
\omega_{s}=\frac{\pi}{5} \omega^{\prime \prime} \tag{4.4-5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \omega_{\mathrm{s}}=\text { angular velocity at the transducer (rad/sec) } \\
& \omega^{\prime \prime}=\text { sampled value. }
\end{aligned}
$$

The angular velocity values are also mapped into a range as shown in Figure 4.4-2. Equation $4.4-5$ is also shown as line B. Upgrading the line to the center of each range or bin (line C) yields

$$
\begin{equation*}
\omega=\frac{\pi}{5} \omega^{\prime}+\frac{\pi}{10} \tag{4.4-6}
\end{equation*}
$$

where ω^{\prime} is the bin number.
To obtain a mechanical power value from the turbine, the instrumentation system does a multiplication of the sampled angular velocity (ω^{\prime}) and the sampled torque (T^{\prime}). From equations $4.4-4$ and $4.4-5$ and Figures 4.4-1 and 4.4-2, it can be seen that this multiplication is a low or conservative value of the power product. See line F, Figure 4.4-3. To get a better value, the system does a $T^{\prime}+1, \omega^{\prime}+1$ multiplication (Figure 4.4-3, line E) and adds the results to the T^{\prime}, ω^{\prime} multiplication. However, only the high byte of addition is recorded, which is equivalent to a division by 256. To reconstruct the appropriate power value use equation 4.4-7. See line D, Figure 4.4-3.

$$
\begin{equation*}
P=35.49 \mathrm{P}^{\prime}+17.75 \tag{4.4-7}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
P & =\text { power in watts } \\
P^{\prime} & =\text { bin number } .
\end{aligned}
$$

[^0]

For example, assume that the sampled torque (T^{\prime}) equals 20 and the sampled angular velocity (ω^{\prime}) equals 10 . The $T^{\prime}, \omega^{\prime}$ multiplication would yield 200 or 60 W , which is a low estimate of power. Therefore, by using the product of the $T^{\prime}+1, \omega^{\prime}+1$ multiplication averaged with the $T^{\prime}, \omega^{\prime}$ product, a better estimate of the power will result, which is 215 or 77.5 W.

5. CONCLUSIONS

The KSU Wind Laboratory data acquisition system performed well and at the time of this writing is in use at the KSU Wind Laboratory. The system, although not elegant, is simple, low cost, and has enabled us to collect quality data.

There is only one major recommendation to be considered for the system. That is improved software. Better software would entail a more concisely written version and software that would run in ROM, for instant-on capabilities. The present software performs well, but alterations could be made to improve table functions. The tables could be moved to page zero and handled with zero page addressing, thus reducing software.

6. ACKNOWLEDGEMENTS

This work is dedicated to the author's father and mother, James M. and Geneva P. Babb.

The author thanks his major professor, Dr. G. L. Johnson, for expert advice during the course of this research, and Dr. M. S. P. Lucas for his assistance. Thanks are also given to the Department of Electrical Engineering at Kansas State University for financial assistance received while enrolled as a graduate student. Finally, the author expresses his appreciation for the understanding and the love given by his wife, Kathryn.

7. REFERENCES

1. "MOS Microcomputers Hardware Manual," 2nd Edition, MOS Technology Inc., Norristown, PA, 1976.
2. "MOS Microcomputers Programming Manual," 2nd Edition, MOS Technology Inc., Norristown, PA, 1976.
3. "KIM-1 User Manual," 2nd Edition, MOS Technology Inc., Norristown, PA, 1976.
4. "4k Low Power RAM Board," S.D. Sales, Dallas, TX, 1976.
5. O. Melville Clark, "EMP Transient Suppression," Final Report, FAA Florida Institute of Technology Workshop on Grounding and Lightning Protection, National Technical Information Service, Springfield, VA, 1977.
6. CA 3140 Linear Integrated Circuits, RCA Solid State Division, Somerville, NJ, 1976.
7. Steven R. Bootman, "Estimation of Wind Energy Near the Earth's Surface," M.S. Thesis, Kansas State University, Manhattan, KS, 1977.
8. "Instruction Book for Type $\mathrm{F} 420-\mathrm{C}$ and Type FAA-277 Wind Measuring Equipment," Electric Speed Indicator Co., Cleveland, OH.
9. "Transducers-Pressure and Temperature," National Semiconductor, 1974.
10. "VT2-841 Temperature Transducer" Westinghouse Electric Corporation Relay-Instrument Division, Newark, NJ, 1968.
11. "Instruction Book for Type F420-CR2 Wind Measuring Equipment," Electric Speed Indicator Co., Cleveland, OH.
12. "Instruction Manual for Lebow 1600 Series Rotary Transformer Torque Sensor," Lebow, Troy, MI.
13. "Model 7535 Carrier Based Digital Gage Indicator Instruction Manual," Lebow, Troy, MI.
14. "WATT and VAR Transducers R-200 Series," F.W. Bell, Columbus, OH, 1973.
15. "MP21 Analog Input Microperipheral," Burr-Brown Research Corporation, Tucson, AZ, 1977.
16. "Federal Aviation Administration - Florida Institute of Technology Workshop on Grounding and Lightning Protection, FAA-RD-77-84, National Technical Information Service, Springfield, VA, 1977.
17. "Cross-Assembler Manual Preliminary," MOS Technology, Inc., Norristown, PA, 1975.
18. "IBM System/360 Operating System: Job Control Language Reference," 4th Edition, International Business Machines Corporation, 1973.
19. "IBM Virtual Machine Facility 370: CMS User's Guide," 2nd Edition, International Business Machines Corporation, 1976, 1977.
20. Myron A. Calhoun, Personal Communication, Kansas State University, 1978.
21. Donald H. Lenhert, Personal Communication, Kansas State University, 1979.
22. APPENDICES

APPENDIX A

Modification of the S.D.S. $4 k$ RAM Board [20]
and Test Program [21]

The S.D.S $4 k$ RAM board is assembled according to instructions given by S.D. Sales. The following modifications are made to adapt the RAM board for KIM-1 use.

1. Remove IC's $33,35,36$ and 37 . File these IC's for other projects.
2. Temporarily remove IC 39.
3. Jumper IC 39 socket pin 8 to 9 with a very short wire.
4. Bend pins 1, 8, 9, and 10 of IC 39 so that they point opposite from their original position.
5. Replace IC 39.
6. Using a piece of insulated wire about 2.5 inches long, strip about 1 inch of insulation from one end. From the component side of the board, push the stripped end all the way through address selection hole "a" which is near pin 1 of IC 34. Now, turn the board over, bend the wire flat, and push the end back through the other address selection hole "a" near pin 14 of IC 37. Solder both holes and clip the uninsulated excess.

Strip the free end of the wire and push it into pin 3 of IC 33 socket.
7. Repeat step 6 three more times, connecting:
b to b to pin 8 on IC 33 socket
c to c to pin 11 on IC 33 socket
d to d to pin 6 on IC 33 socket
8. Connect pin 1 of IC 39 (should be sticking straight up into the air) to a spare edge connector location such as 24 .
9. Remove and address selection jumper wires which may be present in the holes between IC 34 and IC 37. Wire all four address selection holes $\bar{a}, \bar{b}, \bar{c}$, and \bar{d} together on the component side of the board and connect to Vcc by inserting the end of the wire into pin 14 of IC 37. Make sure only $\bar{a}, \bar{b}, \bar{c}$, and \bar{d} are so connected and solder these connections.
10. Bend the leads of four $560 \Omega 1 / 4$ watt resistors into hairpins and cut the leads to about $1 / 4$ of an inch past the end of the resistor. Then be sure the resistor leads are clear and free of all tarnish.
11. Insert one hairpin resistor into pins 13 and 12 on IC 37 socket and repeat for pin sockets $11-10,9-8$, and $5-6$.
12. Finished.

The above procedure will modify the S.D. Sales logic to accommodata the KIM-1 decoding. The final modification diagram is given in the following pages. Also given is a table for the connection of the 4 k RAM card to the KIM-1. A memory march test is provided to enable testing of the modified RAM.

Logic diagram of final modifications.

Edge Connector for Modified S.D.S. 4 k RAM

Locations

1	+8V	26		51	+8V	76	
2		27		52		77	
3		28		53		78	
4		29	A5	54		79	$A \emptyset$
5		30	A4	55		80	Al
6		31	A3	56		81	A2
7		32	K4	57		82	A6
8		33	K1	58		83	A7
9		34	A9	59		84	A8
10		35	D01	60		85	K2
11		36	DOØ	61		86	K3
12		37		62		87	
13		38	D04	63		88	D02
14		39	D05	64		89	D03
15		40	D06	65		90	D07
16		41	DI2	66		91	DI4
17		42	DI3	67		92	DI5
18		43	DI7	68	中2	93	DI6
19		44		69		94	DII
20		45		70		95	DIØ
21		46		71		96	
22		47	R/w	72		97	
23		48		73		98	
24	R / w	49		74		99	
25		50	ground	75		100	ground

This program tests any RAM memory block below page 17 not including $\emptyset 1 F A H$ to $\emptyset 1 F F H$ (reserved for the stack). To test any memory block, place the lower memory block address into location 17 F 5 H (low byte) and 17 F 6 H (high byte) and the high memory block address plus 1 into location 17F7H (low byte) and 17 F 8 H (high byte). Start the program at location 1780 H . If the memory test passes, the display will show the last address tested plus 1. If there is a bad location, the display will show that location. To test the memory with complemented test pattern, change MEMTST: to LDX 非§FE and FLIP: to BCS NEXT.

Routine to test RAM.

Memory Test Program

Address	Code	Label	Mnemonic	Operand	Comments
$178 \emptyset$	A2 01	MEMTST:	LDX	\#\$01	Install test pattern
1782	A9 8E	NEXT:	LDA	非8E	Install volatile execution block
1784	8D EC 17		STA	VEB	(VEB) for STX
1787	2Ø 3219		JSR	INTVEB	Set up starting address
178A	8A		\%XA		Complement test pattern
178B	49 FF		EOR	\#\$FF	
178D	A8		TAY		and save in Y
178E	$2 \emptyset$ BE 17	FILL:	JSR	EXVEB	Execute VEB, test for done
1791	90 FB		BCC	FILL	If not done go back
1793	$2 \emptyset 3219$		JSR	INTVEB	Install starting address
1796	A9 EC	TEST:	LDA	\#\$EC	Install CPX in VEB
1798	8D EC 17		STA	VEB	
179B	$2 \emptyset$ EC 17		JSR	VEB	Test memory location
179E	$D \emptyset \emptyset \mathrm{~F}$		BNE	FAULT	If error install address
17 AD	A9 8C		LDA	非8C	Install STY in VEB
17A2	8D EC 17		STA	VEB	
17A5	$2 \emptyset \mathrm{BE} 17$		JSR	EXVEB	Execute VEB, test for done
17A8	$9 \emptyset$ EC		BCC	TEST	If not done go back
17AA	8A		TXA		Generate new test pattern
17 AB	8A		ASL		
17AC	AA		TAX		
17 AD	$9 \emptyset$ D3	FLIP1:	BCC	NEXT	If not done go back
17AF	86 F5	FAULT:	STX Z	\#F5	Save test pattern
17B1	AD EE 17		LDA	VEB+2	Set up address of last cell
17B4	85 FB		STA A	\$FB	Tested in display
17B6	AD ED 17		LDA	VEB+1	or ending address
17B9	85 FA		STA	Z\$FA	
17BB	4 C 22 1C		JMP	RST	Return to monitor
17BE	$2 \emptyset$ EC 17	EXVEB:	JSR	VEB	Execute VEB
17C1	$2 \emptyset$ EA 19		JSR	INCVEB	Increment address in VEB
$17 \mathrm{C4}$	AD ED 17		LDA	VEB+1	Test to see if ending
17 C 7	CD F7 17		CMP	EAL	address same as in
17CA	AD EE 17		LDA	VEB+2	VEB
17 CD	ED F8 17		SBC	EAH	
17Dø	$6 \emptyset$		RTS		

APPENDIX B

Multiplexer-Counter Board

The schematic and edge connector locations for the MultiplexerCounter Board are given on the following pages.

Mux-Counter Board Edge Connector

PIN NO.

Angular velocity signal conditioning and pulse rate counter.

Digital anemometer input conditioning and pulse rate counter. Components are located on the Multiplexer - Counter board.

Multiplexer and punch buffers. Numbers and letters are edge card connector orientations.

Punch power configuration.

Buffer for punch command.

KIM-1 Application Connector

Pin No.			
1	GND	A	+ 5 Vdc
2	A3	B	
3	A2	C	
4	Al	D	
5	A4	E	
6	A5	F	
7	A6	H	
8	A7	J	
9	В \emptyset	K	Decode Enable (GND)
10	B1	L	Audio IN
11	B2	M	
12	B3	N	$+12 \mathrm{Vdc}$
13	B4	P	Audio Out (HI)
14	A \varnothing	R	TTY KYBD RTRN(+)
15	B7*	S	TTY PTR RTRN (+)
16	B5	T	TTY KYBD
17		U	TTY PTR
18		-	
19		W	
20		X	
21		Y	
22	closed for TTY	2	
	open for keyboa		

*IRQ from expansion connection Pin 4 is connected through a switch to B7.

APPENDIX C

MP21 Connections

This appendix gives block diagrams, pin connections, and edge card connections for the A/D board.

Edge Connection for A/D Board

No.			No.			No.			No.		
1	+8 Vdc		26			51	+8 Vdc		76		
2	+15.7 Vdc		27			52	-15.7 Vdc		77		
3			28			53			78		
4			29	Address Bus:	A5	54			79	Address Bus:	A \emptyset
5			30		A4	55			80		A1
6			31		A3	56			81		A2
7			32		A15	57			82		A6
8			33		A12	58	Analog Input:	+7	83		A7
9			34		A9	59		-7	84		A8
10			35			60		+6	85		A13
11			36			61		-6	86		Al4
12	Analog Input:	+5	37		A1ø	62		-5	87		All
13		+4	38			63		-4	88		
14		+3	39			64		-3	89		
15		+2	40			65		-2	90		
16		+1	41	Data Bus:	D2	66		-1	91	Data Bus:	D4
17		$+\varnothing$	42		D3	67		- \emptyset	92		D5
18			43		D7	68	Clock $\dagger 2$		93		D6
19			44			69			94		D1
20			45			70			95		Dø
21			46			71			96		
22			47	R/w		72			97		
23			48			73			98		
24			49			74			99		
25			50	ground		75	$\overline{\text { Reset }}$		100	ground	

Block diagram of the Analog Microperipheral connection.
$+8 \mathrm{Vdc}$

1N4002

Power regulation and filtering on the Analog Microperipheral board.

APPENDIX D

Cross-Assembler Reader

The program included in this section loads a paper tape coded program received from the MOS Technology cross-assembler into the KIM-1. To use the program, do the following:

1. Set address $\emptyset \emptyset \mathrm{F} 1 \mathrm{H}$ to $\emptyset \emptyset$.
2. Load cross-assembler reader program.
3. Set display pointer at $13 \emptyset \emptyset \mathrm{H}$.
4. Start the program (push GO).
5. Insert the cross-assembly tape into the tape reader.
6. Start the paper tape reader.
7. KIM-1 will return to the monitor when finished. If in error, the TTY will type 'ERR KIM'. Stop the tape reader and restart the tape before the error and restart the program at $13 \emptyset \emptyset \mathrm{H}$.

Flow chart of program to load paper tape from cross-assembler.

Code for Cross-Assembler Reader

Location		Code	Mnemonic	Comments
$13 \emptyset \emptyset$	$2 \emptyset$	LOAD	JSR GETCH	Fetch character and
1301	5A			look for ;
$13 \emptyset 2$	1 E			
1303	C9		CMP 非\$3B	
1304	3B			
1305	D \emptyset		BNE LOAD	
1397	A9		LDA \#\$	IF; clear
$13 \emptyset 8$	$\emptyset \emptyset$			checksum.
1399	85		STA CHKSUM	
130A	F7			
130 B	85		STA CHKHI	
130С	F6			
13øD	$2 \emptyset$		JSR FETCH	Fetch character and
13ØE	5A			
130F	1E			if it is 4 return
1310	C9			to KIM-1 monitor.
1311	34			
1312	D \emptyset		BNE COMP	
1313	$\emptyset 3$			
1314	4 C		JMP START	
1315	4 F			
1316	1 C			
1317	C9	COMP	CMP \#'3'	If character is a
1318	33			3 skip 8
1319	D \emptyset		BNE LOAD	spaces.
131A	E5			
131B	A2		LDX \#8	
131C	$\emptyset 8$			
1310	$2 \emptyset$	LOOP1	JSR GETCH	Fetch and discard
131E	5A			for the 8 spaces.
131F	1E			
132ø	CA		DEX	
1321	D \emptyset		BNE LOOP1	If 8 spaces go on.
1322	FA			
1323	A2		LDX \#\$1	Number of data
1324	10			bytes per record.
1325	A \emptyset		LDY \#\$ $¢ \emptyset$	Clear Y.
1326	$\emptyset \emptyset$			
1327	$2 \emptyset$		JSR GETBYT	Fetch high byte
1328	9D			address.
1329	1F			
132A	85		STA POINTH	Save .
132B	FB			
132C	$2 \emptyset$		JSR GETBYT	Fetch low byte address.
132D	9D			
132E	1 F			

Location		Code	Mnem	onic	Comments
132F	85		STA	POINTL	Save.
1330	FA				
1331	20		JSR	FETCH	Skip space.
1332	5A				
1333	1E				
1334	$2 \emptyset$	LOAD1	JSR	GETBYT	Fetch data.
1335	9D				
1336	1F				
1337	91		STA	(POINTL), Y	Store.
1338	FA				
1339	$2 \emptyset$		JSR	CHK	Add to checksum.
133A	91				
133B	1F				
133C	$2 \emptyset$		JSR	INCPT	Next address.
133D	63				
133E	1F				
133F	CA		DEX		Decrement number of data bytes per record.
134ø	Dø		BNE	LOAD1	Branch and fetch until
1341	F2				all data bytes are read.
1342	$2 \emptyset$		JSR	GETCH	Skip space.
1343	5A				
1344	1E				
1345	$2 \emptyset$		JSR	GETBYT	Fetch checksum
1346	9D				high byte.
1347	1 F				
1348	C5		CMP	CHKHI	Compare to KIM's
1349	F6				value.
134A	D \emptyset		BNE	ERROR	If not equal branch
134B	$\square \mathrm{A}$				to ERROR.
134C	20		JSR	GETBYT	Fetch checksum
134D	9D				low byte.
134E	1F				
134F	C5		CMP	CHKSUM	Compare to KIM's
1350	F7				value.
1351	Dø		BNE	ERROR	If not equal branch
1352	$\emptyset 3$				to ERROR.
1353	4C		JMP	LOAD	Return to fetch
1354	$\emptyset 0$				next record.
1355	13				
1356	4C	ERROR	JMP	\$1D3E	On error jump
1357	3E				to KIM error
1358	1 D				loader routine.

APPENDIX E
System Program Flow Charts

Flow charts of the complete system program and listings are given. The name of each flow chart corresponds to a routine in the listing.

Routine Name

Function

WAIT4 \emptyset
Time delay of 40 microseconds.
NULL2 \emptyset
Output 20 nulls and an ASCII synch.
Interrupt routine for binned acquisition mode.
Interrupt routine for sequential acquisition mode.
8-bit by 8-bit multiply.
Read digital transducers.
Update calendar.
Clear bins.
Output contents of the accumulator to the punch.
Select and display data.
OUTPUT
DATACT
Collect data.
OUTSUB
CLEAR \emptyset
ISOUTF

AINA
ONWAR
Turn on the paper tape punch.

Output contents of the bins.
Initialize the processor.
Idle until data collection.
Collect data (part of DATACT)
Turn off the punch.

NULL20 - Subroutine to output 20 nulls and an ASCII sync.

IRQ1 - Interrupt routine for binned data acquisition program.

IRQ2 - Interrupt routine to set timer for sequential routine.

READ - Subroutine to fetch digital anemometer and angular velocity values. The routine has adjustable threshold for data collection.

CLEARB - This subroutine clears all memory between $\emptyset 8 \emptyset \emptyset \mathrm{H}$ and 13 FFH .

OUTPOK - Subroutine to output the contents of the accumulator to the paper tape punch.

SCX, DIOUT - Subroutines to select and display data on the KIM-l display.

OUTPUT - This routine outputs data to the paper tape punch. It also handles the table for data input.

CLEAR \emptyset - Initializes the Data Collection System.
ISOUTF - The processor idles in this routine until interrupt.

ONWAR - This routine turns the punch off, updates time to last time, reinitializes the system and then returns to the main routine.

APPENDIX F

KIM-1 Data Collection Program Listing

The program listing given in this appendix is for both sequential data collection and the method of bins data collection. The listing is ordered from left to right as card number, memory location, code, memonic, operand, and comments.

PAGE 5

CANO	LCC	CODE	CARO 10	20	30 40 50	60
$22:$	UこF3	EO	RTS			
222	02F4	0607	acay STX He	HRS		
223	02F6	A5 06	LこA C	CAYL		
224	C2F8	18	CLC			
225	02FS	0901	ADC \＃	$\# 1$		
226	－2Fs	55 is	STA C	CAYL		
227	02F0	4505	LUA D	DAYH		
228	02FF	－9 00	ADC \＃	\＄00		
229	0301	8505	STA O	DAYH		
230	0303	60	RTS			
231	0304		：			
232	0304		：			
233	0304		＊$=*$	＊＋5		
234	0309		－cleare			
235	0305		；			
230	0309	4908	CLEARB LOA	\＃ 508	CLEAR ALL MEMCRY 3ETHEEN O80CH	AND 13 FFH
237	0309	ع० 1503	STA	THERE＋2		
238	C3CE	10 14	LOY	\＃ 514	STCP CLEAP AT l3FFH	
239	03：0	ay 00	FES LOA	\＄00	CLEAR ACCum．	
240	03：2	AA	tax		CLEAR X	
24 ！	03i3	G5 0008	THERE STA	50800，x	CLEAR PAGE， X	
242	c3：0	Ej	INX		Clear next X	
243	0317	E0 00	CPX	－ 00	CLEAR ALL 2；6	
244	0319	00 FS	BNE	There	DU inext paize	
2\％）	0318	EE 1503	1 C	THESE＋2		
240	O31E	CC 1503	CPY	THEFE＋2	FINSHED AT PAGE 14	
24？	0321	CO EO	SNE	FES		
240	0323	to	RTS		RETURN	
249	C 324		；			
250	0324		＊$=*$	$*+5$		
25：	0329		；			
252	0329		；INCPPC			
253	0329		；lincrements	S PC ON STA	CK（PPC），LCNU＇NP，CARRY ADOEO TO	HINOMP
254	0329	A5 28	INCPPC LUA	LCNCin	fetch value in	
255	0328	18	ClC		LCNOWP AUD 1	
250	032 C	\＆9 01	さコく \＃	\＃1	ANE SAVE	
257	C32E	¢5 20	Sti L	LCNOMP	cetch value in	
255	C330	1529	LOA H	HINOHP	HINSMP ADO	
255	0332	69 0	AOC \＃	$\# 00$	CAREY AND	
250	0334	8529	STA H	HINOW？	Save	
251	0330	60	2is			
262	0337		；			
263	0337		＊$=$＊	＊+5		
254	0330		；			
20う	O33C		：©ut？ck			
265	033C		；			
267	$033 C$		－LSES ACCUY			
238	0336		；subrcutin	NE USED IN	Qutput to puineh	
267	0336		－lcad oata	A REGISTERS	in output part	
270	0336	ED DC 17	CUTPOK STA P	PRA	CUTPUT DATA Sis accuy	
271	0338	2908	LDA	\＃508	LDAU PUNGH CEMMAND	
272	$0 \equiv 41$	E） 021 ？	STA P	PR8		
273	0344	19 心1	LOA	\＃ 1	STOP PUNCH CCMMAND	
274	0346	\＆c c2 17	STA PR	PR3		
275	0349	i） 0217	SUSY LDA ？	PRB	FETCH BUSY	

PAGE Ó

CARD \#	LOC	CODE	CARD	1020	3040	50
276	0340	2904	Aivo	D \$80000100	MASK ALL BUT SLSY	
277	034E	FO F9	BEQ	Q BuSY	if bust pest asain	
278	0350	三A	NOP		WAIT AFTER EUSY FOR	
279	0351	EA	NGP		PUNCH	
230	0352	60	RTS		RETURN	
281	0353		;			
282	0353		*	= * +5		
283	0358		;			
234	0358		; SCX SUB	BRCUTINES IKEY	CCARO)	
285	0358		; These S	Subrcutines sel	EET THE OUTPUT DISPLAYED	Value
200	0358		;			
287	0358	29 -3	SCO L	LDA \#\$5		
288	035A	A2 84		LDX \#53A		
204	$035 C$	$4 C$ CD 03		jMP discut		
290	035F	AS OE	SC1 L	LCA Cl		
291	0361	A2 00		Lux $\% 0$		
292	0363	$4 C$ CO 03		JMP DISOUT		
293	0360	A5 OF	SC2 L	lca c2		
294	0306	2200		LDX $0^{\text {O }}$		
295	036A	$4 C$ CD 03		JMP Disout		
296	0360	A5 10	SC3	LCA C3		
297	$036 F$	A2 00		LDX \#0		
298	0371	$4 C$ CD C3		JMP OISOUT		
299	0374	A5 11	SC4 L	LCA Ca		
300	0376	A2 60		LUX \#0		
$30:$	-376	45 CJ 03		jup oisout		
302	0373	A5 12	SC5 L	LDA C5		
303	0370	2200		LDX \#O		
304	037F	$4 C 6003$		JMP DISOUT		
305	0382	A5 13	SC6 L	LOA CG		
306	-50\%	A2 00		LOX \#0		
307	0386	$4 C \quad 2003$		jMp discut		
303	0339	4514	SC7 L	LOA C7		
309	0338	2200		LDX		
310	0300	$4 \mathrm{C} C 003$		jup disiut		
311	0340	A5 15	SC3 L	LOA C8		
312	0392	A2 00		LDX \#0		
313	0394	4 C C0 03		JMP DISSUT		
317	0397	4524	SC9 L	LCA ANEM		
315	2399	1200		Loxfo		
310	C393	4 C CO 03		JMP DISSUT		
317	O3sE	1517	SE: 0	LEA C:O		
313	0310	A2 00		LDX $\# 0$		
319	0342	4 CCO 03		jMP disout		
320	03.45	45 23	SC11 L	LDA RPM		
321	0347	A2 00		LOX \#0	-	
322	$03 \sim 9$	$4 C$ CD 03		JMP DISOUT		
323	$03 \sim$	A5 19	SC: 2	LDA Ci2		
224	O3AE	A2 00		LOX \# 0		
32%	0360	4C CO 03		JMP UISCUT		
326	0303	A5 06	SC13 L	LCA BAYL		
327	0335	4605		LDX OAYH		
328	0337	4 C C0 03		JMP DISCUT		
329	03BA	A5 07	SCi4	LDA HRS		
330	0386	A2 00		LDX \#0		

CARD \＃	LOC	¢оэを	CARD	0 10 20	$30-4050$
3ist	－ 426	203503		JSR CuTpuk	OUTPUT Higideyte
387	042F	93		TYA	OATA POINTS
388	0430	203603		JSR CUTPOK	CUTPUT LOW BYJE
339	0433	38		DEY	
390	0434	B1 26	state	LCA（LPAGE），y	
391	0436	8428		STY CHKTC	SAVE
392	0438	204619		JSR CHKT	CCMPUTE CHECK－SUM
393	043 a	1428		LOY CHKTC	RESTORE Y
354	0430	$20 \quad 3603$		JSR CUTPCK	cutput value
345	0440	co 00		CPY $\# 0$	if y is o
390	0442	DU EF		BNE STATE－1	FINSHED
397	044＊	AO ¢ 17		LDA ChKh	CUIPUT HIGH CHECK－SUM
398	0447	20 3C 03		JSÑ OUTPOK	
399	C44i	AD E7 17		LDA CHKL	CUTPUT LOH CHECK－SUM
400	0440	203603		JSA OUTPOK	
$\div 01$	C450	60		RTS	
402	0451		；		
403	0451			＊$=*+5$	
404	0456		，		
405	0450	19 00	CLEARO	LDA \＃0	clear accum
406	0458	48		PHA	CLEAR proces Sor status
407	045\％	28		PLP	
408	0454	85 2C		STA FIRSTF	RESET FIRST TINE flag
409	045C	200903		JSR CLEARB	Clear eins
410	3457	A9 FF	BACK	LDA ${ }_{\text {J }}$ SFF	SEJ A PORT AS ALL
411	0461	800117		STA DORA	Cutputs
412	0404	A9 21		LOA \＃521	TURN PUNCH OFE RESET COUNTERS
413	$0 \div 66$	वら） 0217		STA PRB	
414	0408	1933		LCA \＃53B	SET PORT B
415	040́3	\＆D 0317		STA DUR3	
410	040 E			LDA ${ }^{\text {LSA3 }}$	RESET KIM COUNTER TO：／6 SEC
417	0470	ED OF 17		sta time	
418	0473			MOS＝IRQ1／256＊25	
419	0473	A9 27		LOA \＃1RQ1－MOS	LOW EYTE OF IRQ1
420	0475	ED FE 17		STA sitre	STCRE IN IRQ VECTCR
421	0479	4902		LJA siRQ1／250	HIGH BYTE CF IRCI
422	く475	ED Fन्r 17		STA S1．7FF	STCRE IN IRQ VECTCR
423	0470	49 00	ISCUTF	LDA ituo	if outf is set ge to gutput
424	047F	C5 14		CMp Eutf	
425	048：	FO 03		BEQ FETCH	
426	0483	4 C ：C 05		JMP CuTPUT	
427	04136	A5 1C	FETCH	Lida catacf	if data collecticn time－collect data
420	0463	cy 01		CifP \＃1	
42%	－424	CO OE		bive getkey	FETCH KEY
430	0450	2J 5905		JS．R EATACT	
431	－435	A9 01		LOA 41	
432	0491	C5 2C		CHP FIRSTF	IF FIRST TIHE CLEAN sins
433	0453	F0 05		BEQ GETKEY	THIS RESET COUNTERS
434	0455	85 2C		STA FIRSTF	RESET FLAC TO PRaNCH MEXT TIME
435	0497	200903		JSR ClEARB	clear zins
436	049A	20 OA 15	GETKEY	JSR SIFÓA	KIm Getkey
437	0490	C9：0		CMP ${ }^{\text {H16 }}$	MUST BE＜ 15 TC
430	045 F	$30 \quad 63$	－B	BMI KEY	EEVALIo
439	C4AL	$4 C \quad 7004$		JMP ISOUTF	If inct valio
440	$04 \lambda 4$	C9 00	KEY	C．MP \＄0	If zeã juitp tc súgroltine fer co


```
GARD # LOC CCDE CARD 10 20 40
    49S 05:C {9FE OUTPUT:OH $5FF
    497 USIE SD OL 17 SBA UUKA
    498 0521 \Delta9 00 LDA $00
    499 0523 85 22 SIA INF
    500 0525 &D 02 17 STA PRB
    501 0528 ;WAIT FOR 1 TO 2 SEC FO
    S02 0528 &5 1B 
    504 052C FOFC BEQ WIAIMR
    BTA SECND REEET SECONDS FLAG
    halSMR CMP SECNO SEE IF FIAG IS SET
    BEG WALSMR GO ON AFTER 1 TC 2 SEC
    ;
    OUT
    ;OUTPUS ANALGG ANEMOMETER L
    jSR CUTSUB
    - SBYTE $1300
    .&YTE 255
    .byTE 1
        ;OUTPUT TORQUE
    jSR gutSUb
    -DSYTE $1200
    .BYTE }25
    .BYTE 2
        ; OUTPUT alJERNATOR voltagE
    JSR OUTSUB
    .0byte $1000
    .BYTE }25
    .BYT5 4
    ; OUTPUT nINU EIRECTIEN
        JSR CLUTSUE
        .DBYTE SOFOO
        .BYTE }25
        .BYTE 5
        ; output alr tehp
        JSR GLTSUZ
        .cayre có
        . BYTE O
        .EYTE 6
            : CUTPUT AIK preSSURE
        JSR CUTSUB
        .LBYTE C7
        .BYTE O
        .BYTE 7
            ; CUTPUT ANALOG ANEMOMETER 2
        JSR CUTSUB
        .DBYTE SOCOO
        -BYTE }25
        .BYTE 8
            ; OUTPUJ ANGULAR VELOCITY
        jSa OUTSUB
        .DBYTE SCBOO
        .BYTE 255
        .BYTE 11
50
    PORT A AS AIi OUTPUT
    FOR FUNCH
    TURN ON PUNCH
    ClEAR IN FLAG
SEC FOR PUNCH TO CCME LP
    RESET SECONDS FLAG
    SEE IF FLAG IS SET
    if IT IS GU CN
```

496 O5:C 497 USIE
4980521
$\begin{array}{ll}499 & 0523 \\ 500 & 0525\end{array}$

- 0525

5020528
$\begin{array}{lll}504 & 052 C & F O \\ 50 \\ 505 & 052 E & \text { F5 } \\ \text { 50 }\end{array}$
$5060530 \quad$ C5 1B
$\begin{array}{llll}507 & 0532 & \text { FO FC } \\ 508 & 0534\end{array}$
5080534
5090534
$510 \quad 0534$
5120533
$5120535 \quad 20$ DC 03
$513 \quad 0538 \quad 1300$
5140534
515053 B
$516053 C$
20 -2 03

517 053C 20 DC 03
518 053F 1200
5290541 FF
5200542 C2
C2
20 DC 03
1000
FF
04
-BYTE 255
-BYTE 4
; OUTPUT WINL DIRECTIEN
20 DC 03 JSR CUTSUE
OF 00 .DBYTE SOFOO
FF -BYTE 255.
05
20 D 03
; output alr tehp JSR GLTSUZ

- Dayte có
- BYTE O
.EYTE 6
: CUTPUT aik pressure
JSR CUTSUB
- LBYTE C7
- BYIEO
- BYTE 7
; CUTPUT ANALOG ANEMOMETER 2
JSR CuTSUB
- DBYTE SOCOO
- BYTE 255
. BYTE 8
; OUTPUT ANGULAR VELDCITY
JSA OUTSUB
- DByte scboo
- BYTE 11


```
            PAGE 11
```


					PAGE
CARD \＃	LOC	code	CARO	$10 \quad 20$	$30 \quad 40$
7！6	U0：40	$8 \mathrm{CFFF}^{\text {F }} 7$		Sta sl？Ff	STORE INTERRLPT VECICR LCCAIIIN
is？	Goas	A9 21		LCい \％s2！	TUAM PUNCH OFF ARIS SE：COUNTER
718	06i5	80 02 ！7		SIA PHo	
719	0645	A9 31		LCA＋\＄33	
720	06AA	800317		STA DDRB	SET E AS INPUT／CuTPUT
721	OOAD	4962		LCA \＃562	SET KIM TIMER
722	06AF	80 OF 17		STA TIME	
723	0652	A9 02	START	LDA 42	FETCH DATA THICE
724	0634	C5 2C		C．MP FIRSTF	ANO CLEAR BIINS
325	cous	FO 0^{4}		BEQ THIRD	Makes CCUNTER lSt cata gcod
726	Cos8	E6 20		INC FIRSTF	
727	06४入	2200		LCX 500	
723	008C	E5 2i	THIRD	sta ceunt	
729	O6BE	C5 2A	ME	CMP COLNT	ha IT FOR INTERRUFT TO SET CLUNT
730	06CO	FO FC		BEQ ME	hHEN Changed cellect lata
731	CoC 2	1910		LDA 4510	SELECT RPM CCUATER
732	OOC4	80 0217		STA PRB	
733	30C7	AD 0017		LEA PRA	FETCH ANOULAR VELOCITY
734	OSCA	900003		STA 50300， x	STCRE RPM COUNT
735	OoCl	A9 20		LUA $\$ 520$	SELECT Aivey sigital count
735	OtCF	20 0217		STA PKS	
737	0602	aj 0017		LUA PRA	FETCH ANEM DIGITAL CCUNT
738	0005	So 000 O		STA \＄OMOO，X	STA ANEM
739	－0．08	A9 23		LUA \＃\＄23	RESET CCUNTEK
740	CSOA	$\begin{array}{lllll}80 & 0 & 17\end{array}$		Sta PRS	
$7+1$	－ 0 Cub	A9 21		LCA \＃521	RELEASE INHIBIT GO COLNT
742	000F	3） $02: 7$		STA PṘ̇	
743	CUE 2	40 00		LDY 500	CLEAR FOR MP 21 Crandel
744	O6EC	A9 13		LDA jS 13	LOA HIGH BIN
745	OSEG	80 F4 06		STA LOP3＋2	STCRE IN AOORESS LOC
746	OSES	E9 0014	LCP4	LCA S1400， Y	START CONVERSICN
747	ObSC	$20 \quad 0002$		JSí malt 0°	WAIT
748	0eef	$3900 \quad 14$		LCA \＄14CO．Y	fetch value
745	コと：2	5 00013	LOP3	STA S1300． X	STCRE IN MEMCRY
750	06F5	C3		iny	SET NEXT Chainivel
751	OOF6	CE F4 C6		DEC LOP3＋2	SET NEXT LOWER FAGE
752	Ubr9	C0 08		CPY \＃	OO ALl Chanivels cF ypll
753	D6F3	CO EC		BNE LOP4	
754	C6F？	E3		INX	CO 250 SAMPLES
755	OSFE	E0 00		CPX \ddagger CO	
750	うここし	20 30		BiNE START	
757	0\％02	$40 \quad 0514$		LDA 51405	CO CHANNEL MP21 5 TEMP
758	0705	200002		JSR WAIT40	
759	0708	i0 0514		LDA \＄1405	
760	0708	عう 13		STA C6	STCRE TEMP．
751	0700	$44^{2} 0014$		LDA \＄1406	CO CHANIVEL MPZl 6 Pressure．
762	0710	200002		USR WAIT40	
763	0713	$\therefore 0614$		LDA 51400	
10\％	0710	E5 i4		STA C7	stcre value
765	0718	Ay $0:$		LCA \＃！	SET Cut flag
766	071～	8514		STA DUTF	
767	071C	$4 C 5504$		J．MP 2ick	JUMP TO IS OUT FLAG SET

GARJ\# LOC CODE CARD IO IO
769 OTIF

ENO CF MOS/TECHNOLOGY 650X ASSEMBLY VERSICN 5
NUMBER OF ERRORS $=0$, NUMBER CF WARNINGS $=0$

SYMBCL TAGLE

SYMBCL	value	LINE DEFI			CROSS	REFE	RENCE					
Aこのi	22F\％	222	こ20									
dirs	02E9	2：6	214									
aina	05 Cl	c11	373									
Sitin	O2EO	211	205									
AIVEM	0024	55	169	180	314	633	637					
AIVEML	0025	56	170	639								
iRE	0200	712	$7: 3$									
ASEC	0253	204	202									
UACK	045 F	410	757									
5AT	0500	607	608									
OUSY	0348	275	277									
chlend	02 C 3	198	105									
CHKH	17 E 8	11	347	$3 ¢ 7$								
CHKL	17 E 7	10	348	399								
ChKt	1940	12	392									
ChKic	0023	62	391	393								
CLEARO	0309	236	409	435	597							
CLEARO	0456	405	19									
comput	05 FO	631	614									
COuNT	0028	61	129	72 \％	729							
COUNTT	C020	64	73	74								
C1	OOCE	32	290	E20								
C： 0	0017	41	317	641								
cil	0013	42	\＃\＃＊＊									
c． 2	0019	43	323	673								
C2	OO．F	33	293	652	663							
C3	0010	34	296									
C_{4}	OC1：	35	299									
C5	ここ12	36	302									
Co	0013	37	305	533	684	760						
C 7	0014	38	308	538	691	764						
C8	0015	39	311	ES8								
Cs	0016	40	も\＃\＃\＃									
LA TACF	0016	47	109	191	427	602						
－Sitact	05 E9	601	430									
DAYH	0005	22	227	229	327	558	588					
DAYL	0006	23	223	226	326	590						
DごA	1701	t	172	412	497	711						
CJRE	1703	o	45	720								
UISOUT	0360	330	289	252	295	298	301	304	367	310	313	315
			319	322	325	328	331	334				
OON	0289	163	149									
FEa	0310	239	247									
FETCH	0486	427	425									
EIRSTF	0026	63	408	432	434	7：0	724	726				
FURTH	0415	374	372									
CETKEY	049 A	435	429	－33								
H！Gryp	0020	51	142	150	15：	655	672					
HINCMP	0029	60	2503	280	352	366						
hP AGE	0027	58	256									
HRS	0007	24	217	219	222	329	586					
INCBIN	0500	621	634	642	64 ？	674	699					
SACPPC	0329	254	35う	357	3 こ0	363						
ins	0022	53	3？：	499	604							

SYM3GL	valle	LINE DEFIN		CRCSS－REF ERENCES								
1R2］	0227	98	418	419	421							
IRGE	0244	122	712	713	715							
ISCLSF	0470	423	341	439	598							
ITISO	0265	143	154	162								
KEY	0－14	440	438									
LOAYH	0009	26	589									
－こ̇YL	こうCd	27	591									
LESS	0069	643	340									
LHES	00cb	28	587									
L．YIN	vocc	29	585									
LONOMP	0023	59	254	257	350	355	358	361	364	368		
Lut3	06 F 2	749	745	751								
LOP4	$\bigcirc 6$ ご	746	753									
LJ．保	0021	52	143	157	158	とう7	670					
LPAUE	0020	57	359	350	622	625						
ME	000 E	729	730									
MiN	0008	25	212	213	215	332	584					
MOS	0200	418	419									
Mult	0261	141	054	667								
MJ！	OO：E	49	151	155	651	662						
MJLIH	0020	48	144	152	159							
MuL2	$001 F$	50	140°	153	653	665						
NExil	$04 \lambda B$	443	441									
inexT：O	04 EA	470	468									
NExT11	04 FL	473	471									
－EXT12	04F8	＋70	474									
ご心よ厂：う	04FF	479	477									
NEXT：${ }^{\text {a }}$	$05 こ 0$	482	480									
NEx：13	－500	435	483									
－	C5：	428	486									
ivext2	04 ¢2	446	444									
NEXT3	0459	449	447									
NEXT4	04 CO	452	450									
NEXT5	こんご	455	453									
NEXTS	こんご	453	450									
－ivext？	0455	401	459									
NEXTO	$0 \div 5$	－64	462									
NEXT9	04 E	407	405									
No	0648	675	606									
NOCOL	02C？	192	189									
NuLbrix	0212	85	88									
ivjuczo	02 CE	$\bigcirc 2$	377	$5>2$								
こ，M0R	－500	$6: 5$	613									
Eいいころ1	－5F\％	635	532									
Civicaz	－ 600	544	630									
C．0．0．43	06.5	043	645									
ciniun 4	0043	676	049									
Civicis	0052	079	677									
CNnon＇s	0054	036	680									
Cindom］	0670	653	－${ }^{\text {d }}$									
Civionz	0683	700	894									
こいいink	－557	594	376									
OUT	0534	510	605	607	608							
cure	0014	45	107	424	596	629	766					
cutrek	0332	270	06	90	379	386	388	394	358	400		
output	051 C	496	426									
cjitsue	0306	346	512	517	522	527	532	537	542	547	5 52	§う？

SY430L	value
PSINTH	0075
POLINTL	00.8 A
PON	$023 \bar{F}$
PRA	1700
PRB	1702
READ	0291
RPM	0023
र̇UN	0278
SCALE	0567
SCO	0358
SC 1	C35F
SCio	0395
SCIL	03 A5
SC 12	$03 A C$
SC13	0323
SC 14	C32a
SC15	03 Cl
SC2	0366
SC3	0360
5 SC	0374
SC5	0373
SC6	0382
SC？	0389
SCu	0350
SC9	0397
SECN	0004
SECiVo	0018
SECE	$00 C 3$
SESUAL	0650
START	0682
ごらTE	0434
YHERE	0313
THIRJ	068 C
TIME	1708
VOL	$02 \mathrm{C4}$
WAIAR	0524
WA I SMR	0530
NA IT40	0200
Wi TH	0416
YEAR	0000

563
$\begin{array}{rr}14 & \# \# \# 7 \\ 13 & \forall 7 \% 7 \\ 111 & 108\end{array}$

111	108
5	175
7	174

179	270	733	737					
178	182	184	272	274	275	413	500	594

569574 57S
$\begin{array}{llll}732 & 736 & 740 & 742\end{array}$
718
$169 \quad 110$
$\begin{array}{ll}54 & 176 \\ 155 & 147\end{array}$
$\begin{array}{ll}155 & 147 \\ 610 & 627\end{array}$
287442
$290 \quad 445$
$317 \quad 472$
320475
$323 \quad 478$
$\begin{array}{ll}326 & 481 \\ 329 & 484\end{array}$
332407
293443
$\begin{array}{ll}296 & 451 \\ 299 & 454\end{array}$
$\begin{array}{ll}302 & 457 \\ 305 & 460\end{array}$
$\begin{array}{ll}305 & 460 \\ 308 & 463\end{array}$
$\begin{array}{ll}311 & 400 \\ 314 & 409\end{array}$
$\begin{array}{rr}4 i & 205 \\ 2 i & 205 \\ 46 & 207 \\ 20 & 200\end{array}$
$\begin{array}{llll}208 & 211 & & \\ 502 & 503 & 505 & 506\end{array}$
201
＊＊＊＊
$\begin{array}{ll}723 & 750 \\ 390 & 396\end{array}$
$\begin{array}{ll}390 & 396 \\ 241 & 237 \\ 720 & 725\end{array}$
$\begin{array}{rr}728 & 725 \\ 9 & 104\end{array}$
$\begin{array}{rr}7 & 104 \\ 74 & 75 \\ 503 & 504\end{array}$
506507
$\begin{array}{rr}72 & 618 \\ 377 & 375\end{array}$
30 あもあも
CRCSS－REFERENCES
$\begin{array}{lllll}186 & 320 & 646 & 650 \quad 660\end{array}$
$\begin{array}{llllll}630 & 643 & 675 & 678 & 685 & 692\end{array}$
＋ 204
$244 \quad 245 \quad 246$
$128417 \quad 722$
$\begin{array}{llllll}682 & 659 & 696 & 747 & 753 & 702\end{array}$

APPENDIX G

System Operation

The KSU Wind Laboratory system operation is both straightforward and simple. Details given in this appendix include program loading procedures and actual data collection procedures.

To load the program from audio cassette:

1. Set the single step-IRQ switch to IRQ.
2. Set the TTY-DISPLAY switch to DISPLAY.
3. Set the tone on the tape player to high.
4. Set tape player volume to $1 / 2$ plus.
5. Connect a patch cord between the output of tape player to input (IN) on the system.
6. Turn on the $\pm 15.7 \mathrm{~V}$, +12 V and +5 V power supplies.
7. Follow the procedure given below by keying in the proper values:

Key	Display	Comments
RS	XXXX XX	Reset.
AD	XXXX XX	Address mode.
$\emptyset \emptyset \mathrm{F} 1$	ØØF1 XX	
DA	ØøF1 $\emptyset \emptyset$	Data mode.
$\emptyset \emptyset$	$\emptyset \emptyset \mathrm{F} 1 \emptyset \emptyset$	Set processor
AD	ØøF1 XX	status to zero.
17 F 9	$17 \mathrm{F9}$ XX	Tape number.
DA	17F9 XX	Address.
$\emptyset 1$	17F9 ${ }^{1}$	Tape number $=1$.
AD	17F9 ${ }^{1}$	Address mode.
1873	1873 XX	Tape input.
GO	Blank	Start program.

8. Start the audio cassette before the first of the program.
(Rewind cassette.)
9. Finish when display shows $\emptyset \emptyset \emptyset \emptyset 4 \mathrm{C}$. If the display shows FFFF XX , there is an error in the tape read. Restart at step 1.
10. Stop the cassette player.
11. The program is ready to run in the binned data angular velocity threshold mode, after initialization of angular velocity threshold and calendar.

Calendar Time and Data
To enter the time and date, do the following:

Key	Display	Comments
RS	XXXX XX	Reset.
AD	XXXX XX	Address mode.
$\emptyset \emptyset \emptyset 5$	$\emptyset \emptyset \emptyset 5 \mathrm{XX}$	
DA	$\emptyset \emptyset \emptyset 5 \mathrm{XX}$	Data mode.
**	$\emptyset \emptyset \emptyset 5$ **	Day of the year
+	$\emptyset \emptyset \emptyset 6$ XX	high byte (Hex)
**	$\emptyset \emptyset \emptyset 6 * *$	Day low byte
+	$\emptyset \emptyset \emptyset 7 \mathrm{XX}$	
**	$\emptyset \emptyset \emptyset 7 * *$	Hour (24 hour
+	$\emptyset \emptyset \emptyset 8 \mathrm{xx}$	day)
**	$\emptyset \emptyset \emptyset 8$ **	Minute
+	ゆø¢ XX	
**	$\emptyset \emptyset \emptyset 9$ **	Last day high
+	$\emptyset \emptyset \emptyset \mathrm{A} \mathrm{XX}$	byte.
**	$\emptyset \emptyset \emptyset \mathrm{A}$ **	Last day low
+	$\emptyset \emptyset \emptyset \mathrm{B} \mathrm{XX}$	byte.
**	000B **	Last hour
+	$\emptyset \emptyset \emptyset \mathrm{CX}$	(24 hour day)
**	$\emptyset \emptyset \emptyset \mathrm{C}$ **	Last minute
+	000D XX	
**	$\emptyset \emptyset \emptyset \mathrm{D} * *$	Year (Hex)
AD		last two digits Address mode.

Determine the minimum value of angular velocity that data is to be recorded above and store the value at location 02BBH by keying in the following commands:

Key	Display	Comments
AD	XXXX XX	Addres mode
$\emptyset 2$ B B	$\emptyset 2 \mathrm{BB} \mathrm{XX}$	Select address
DA	$\emptyset 2 \mathrm{BB} \mathrm{XX}$	Data mode
**	$\emptyset 2 \mathrm{BB}$ **	

** Hexadecimal value of angular velocity threshold. Desired minimum RPM of the turbine multipled by 1.176 equals angular velocity threshold in decimal. Convert to hexadecimal before entering.

Input/Output to the Paper Tape Punch

The KIM-1 will output data to the punch when any bin is full. If the punch is punching and the data is not wanted, press the following keys:

Key	Display	Comments
RS	XXXX XX	Reset
AD	XXXX XX	Address mode
$\emptyset \emptyset 1 \mathrm{~A}$	$\emptyset \emptyset 1401$	
DA	$\emptyset \emptyset 1 \mathrm{~A} \emptyset 1$	Data mode
$\emptyset \emptyset$	$\emptyset \emptyset 14 \emptyset \emptyset$	Reset output flag
AD		Address mode
$\emptyset \emptyset \emptyset \emptyset$	¢ $\varnothing \square \varnothing \mathrm{xx}$	Beginning of program
GO	Blank	Start data collection

Selection of Channels to be Recorded
Decide which channels are to be recorded and follow the format given in the listing of the output section of Appendix F. The table given in the output section dictates both data collection and output.

Data Collection by Method of Bins

After all initial inputs are made（date，time，etc．），do the
following：

Key	Display	Comments
AD	XXXX XX	Address mode
$\emptyset \emptyset \emptyset \emptyset$	ØゆФФ 4С	Beginning of program
GO	Blank	Start

Values of the current samples can be displayed by the following method：

Key and Channel Number

1	Analog anemometer 非1
2	Torque Meter
3	Electrical power
4	Alternator voltage
5	Wind direction
6	Air temperature
7	Air pressure
8	Analog anemometer $⿰ ⿰ 三 丨 ⿰ 丨 三$

Displayed

Analog anemometer 非1
Torque Meter
Electrical power
Alternator voltage
Wind direction
Air temperature
Air pressure
Analog anemometer 非2
Digital anemometer
Delta wind speed（only positive values）
Angular velocity
Shaft power
Day high and low
Hour
Minute

Values are displayed in a $\emptyset \emptyset * * X X$ mode，where $* *$ is the value of the channei．

Sequential Data Collection

For sequential data collection，key in the following：

Key	Display	Comments
RS	XXXX XX	Reset
AD		XXXX XX
$\emptyset 69 \emptyset$	$\emptyset 69 \emptyset$ A2	Address mode
GO		Blank

The system will return to the bin data collection mode after sequential data collection and output only the channels requested in that mode．

```
    INSTRUMENTATION OF A SAVONIUS WIND
        TURBINE
                    by
                    SAMUEL MARTIN BABB
B. S., Kansas State University, }197
    AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
        requirements for the degree
            MASTER OF SCIENCE
    Department of Electrical Engineering
        KANSAS STATE UNIVERSITY
            Manhattan, Kansas
            1 9 7 9
```


ABSTRACT

This thesis describes instrumentation to measure performance of a Savonius wind turbine. Performance analysis requires data histograms of wind speed, turbine torque, and turbine power. These histograms are produced by a KIM-1 microcomputer and A/D system. Sensors--both analog and digital--for wind speed, wind direction, turbine velocity, turbine torque, air temperature, atmospheric pressure, and electrical power are described. Also included are the complete system software and operating procedures.

[^0]: Angular
 Velocity
 at $\begin{gathered}\text { transducer } \\ \text { (rad/sec) }\end{gathered}$

