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Abstract 

Big bluestem (Andropogon gerardii Vitman) is an ecologically dominant grass of the 

North American grasslands with precipitation-dependent productivity.   However, climatic 

predictions for big bluestem’s dominant range in the Great Plains include increased periods of 

drought.   The main objectives of this research were to determine the extent of neutral and non-

neutral genetic differentiation and diversity among putative big bluestem ecotypes using 

amplified fragment length polymorphism (AFLP) markers.   This is the first study of both neutral 

and non-neutral genetic diversity of big bluestem which also includes source populations of well-

described ecotypes studied in reciprocal common gardens.  A total of 378 plants were genotyped 

from 11 source prairies, originating from one of three ecoregions (Central Kansas, Eastern 

Kansas, and Illinois). Using two AFLP primer sets, 387 polymorphic markers (error rate 9.18%) 

were found. Un-rooted neighbor joining tree and principle-component analyses showed 

continuous genetic differentiation between Kansas and Illinois putative ecotypes, with genetic 

overlap occurring between Kansas ecotypes.   Analysis of molecular variance showed high 

diversity within-prairie sites (80%) relative to across-prairies (11%), and across- ecoregions (9%) 

(p<0.001).  Within-prairie genetic diversity levels were similar among ecoregions (84-92%), 

with the highest genetic variation maintained in Illinois prairies (92%). Population structure 

analyses supported K=6 genetic clusters across the environmental gradient, with Kansas prairies 

belonging to three main genetic groups, and Illinois prairies having largely divergent allele 

frequencies from Kansas prairies.  Interestingly, BAYESCAN analysis of the three putative 

ecotypes identified eight FST -outlier AFLP loci under potential diversifying selection. Frequency 

patterns of loci under diversifying selection were further linked to geo-environmental descriptors 

including precipitation, temperature severity, diurnal temperature variation, prairie location, and 



  

elevation. The observed allele frequency divergence between Kansas and Illinois ecotypes 

suggests tallgrass restorations should consider possible maladaptation of non-local ecotypes and 

genetic swamping.  However, high within-prairie genetic variation may help individual big 

bluestem populations withstand climatic variability. 
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Chapter 1 - Literature Review 

 

 The Threatened U.S. Grasslands and Biodiversity  

 

A child said What is the grass? fetching it to me with full hands, / How could I answer the child? 

I do not know what it is any more than he. / I guess it must be the flag of my disposition, out of hopeful 

green stuff woven.  

                                                                                  -Walt Whitman, Leaves of Grass 

 

The grasslands biome once contributed to 42% of the total plant cover world-wide, dispersed 

across all continents (Bailey 1998, Anderson 2006). Grasslands are important for carbon 

sequestration (Seastedt and Knapp 1993), biological diversity and ungulate grazing 

(McNaughhton 1984, Coughenour 1985, Samson and Knopf 1994). The area that once extended 

south from Canada to the Mexican border, east from the Rocky Mountains to western Indiana 

and Wisconsin is referred to as the Great Plains of North America (Samson and Knopf 1994).  

This is a landscape that Walt Whitman (1819-1892) once referred to as the “limitless and 

lonesome prairie” (“Song of Myself” in Leaves of Grass 1855).  Still, the expanse of the once 

seemingly “limitless” tallgrass prairie is dwindling.  Today, only about 4% of tallgrass prairie 

remains (Samson and Knopf 1994), primarily due to conversion to row crop agriculture and 

anthropogenic fragmentation.  

 

Grasslands harbor substantial biodiversity for flora and fauna. Within the United States, prairies 

are a high priority for conservation of biodiversity, and perhaps the highest (Samson and Knopf 

994). Worldwide, almost half of 234 Centers of Plant Diversity (CPDs) include grassland habitat 
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(WRI 2000). These CPDs, found in most regions of the world, represent areas with high diversity 

where conservation practices could protect a large number of grassland species. Furthermore, of 

136 terrestrial ecoregions identified as outstanding examples of the world’s diverse ecosystems, 

35 are grasslands, supporting some of the most important grassland biodiversity in the world 

today (WRI 2000). Unfortunately, protected grasslands comprise only 7.6 percent of total 

grassland area (WRI 2000). Thus it becomes imperative to survey the current genetic diversity 

and possible locally-adapted ecotypes of the existing Central grasslands in the United States.  

Understanding genetic differentiation and genetic diversity levels of important grassland species 

will help inform species’ conservation and restoration of the endangered grassland ecosystem. 

 

The U.S. grasslands cover a total of 3 million km
2
 and is a recently formed (~20,000 years), 

dynamic landscape with a number of endemic species and fragmented habitat regions (Axelrod 

1985).  The vegetative structure of the grasslands has been greatly influenced by burning, 

grazing, and anthropogenic changes, with fires maintaining grassland structure and growth 

(Axelrod 1985, Anderson 2006). Grasslands are also importantly and largely shaped, both 

structurally and functionally, by water availability (Fay et al. 2003). Across the U.S. Midwest, a 

sharp precipitation gradient corresponding to an increase in primary productivity from the 

shortgrass steppes in the West to the tallgrass steppes of the central United States exists 

(Transeau 1935, Sala et al. 1988) (Figure 1.1).   

 

Variability in rainfall and temperature are major abiotic factors controlling productivity, structure 

and many ecosystem processes of tallgrass prairie (Axelrod 1985, Knapp et al. 2002).  Rainfall is 

a major factor controlling aboveground net primary productivity (ANPP) worldwide (Sharp et al. 
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2004) and especially in tallgrass prairies. The amount of rainfall has been found to be a limiting 

factor in affecting plant community composition and forb ANPP (Knapp et al 2001).  Water 

availability depends on a number of factors, including temperature and frequency of rainfall 

events (Sala et al. 1988).  Thus, changes in both precipitation and temperature are expected to 

pose a serious threat to the tallgrass prairie ecosystem (Knapp et al. 2002).  For the Great Plains 

region, it is predicted that longer periods of drought will occur in the future with more intense 

but punctuated rainfall evens, and droughts have been observed to indeed be severe for this 

region (IPCC 2007, NOAA 2012) Yet, we do not know the extent to which prairies harbor 

sufficient genetic variation to be able to respond to natural and human caused changes such as 

climatic shifts.  

 

 Andropogon gerardii: an Ecologically-Dominant Prairie Grass  

  

Andropogon gerardii (big bluestem) is a warm-season ecological-dominant of the North 

American tallgrass prairie.  Big bluestem comprises approximately 70% of the biomass of the 

tallgrass prairie ecosystem (Gale et al. 1990) and is a co-dominant species along with 

Sorghastrum nutans and Panicum virgatum (Riley and Vogel 1982). Big bluestem’s has a wide 

distribution spanning the United States and Canada, with its dominant distribution east of the 

Rockies (Figure 1.2).  Big bluestem propagates vegetative growth in the form of reproductive 

and non-reproductive tillers (McKendrick et al. 1975).  After a season of dormancy, the bud 

forms following cold weather, and leads to the elongation of the bud usually around April, 

signaling the start of the growing season of big bluestem (Owsley 2003).  A perennial grass, big 

bluestem is long-lived through maintenance of rhizomes, and root cores have been observed to 
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last for approximately 3-5 years. The stages of growth of big bluestem tillers include five main 

stages, common to perennial forage grasses: 1) germination, 2) vegetative growth, 3) elongation, 

4) reproductive growth, and 5) seed ripening (Moore et al. 1991).  Pollen is largely wind-

pollinated.  Less than 5% pollen from the three-pronged spikelet (hairy inflorescence) is wind- 

has been tracked to travel ~30 meters (Jones and Newell 1946).  Seed dispersal is important to 

the maintenance of populations and also to diversity levels. Ripe seed of big bluestem is 

positioned approximately 1-3 meters in the air, free-standing.  The hairiness of the seed as well 

as position allow for likely seed attachment to bison fur as well as humans (Keeler 2000).  This 

suggests that seed dispersal is wide-ranging especially in the extant prairie landscape, with bison 

transporting seed to where furs are shed in the springtime. Big bluestem is an obligate outcrosser 

with low to non-existent selfing (Normann et al. 2003), with strong self-incompatibility (no seed 

set when 27 accessions were selfed).    

 

As with many other grass systems (Stebbins 1971), big bluestem consists of a large polyploid 

genome.  The base chromosome number in big bluestem is ten chromosomes (Gould 1956).  As 

an autopolyploid, each chromosome may be duplicated six-nine times with intermediate numbers 

of chromosomes (between 60-90 chromosomes) possibly the result of enneaploids producing an 

unbalanced set of gametes (Keeler and Davis 1999, Normann et al. 2003).  Ploidy level variation 

studies found mixed cytotypes occurring in natural habitat (6X-9X) within the species (Keeler 

and Davis 1999).  
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Ecological and Genetic Studies  

 

Big bluestem has served as a model species for prairie ecology for nearly a hundred years.  The 

use of big bluestem for research has included studies on climate effects, community structure, 

physiological responses, and restoration effectiveness (Epstein et al. 1998, Knapp et al. 2001, 

Silletti and Knapp 2002, Fay et al. 2002, Fay et al. 2003).  Most studies of this ecological 

dominant have historically taken an ecological and eco-physiological approach (Knapp et al. 

1993, Gustafson 2004, Tompkins 2010). While these studies have provided a plethora of 

information regarding water limitations, productivity, physiology and distribution of species 

across its range, the utility of population genetics combined with a large sub-continental 

landscape/environmental approach  has rarely been undertaken (except see Tompkins 2011, 

Rouse et al. 2011, and Price et al. 2012).  

 

Previous studies using neutral genetic markers to detect genetic diversity in big bluestem have 

been performed.  Using 37 random amplified polymorphic DNA (RAPDs), Gustafson et al. 

(1999) found that genetic diversity retained within seven Arkansas remnant prairies dispersed 

within a similar region was greater than among-prairie genetic diversity, with within-prairie 

diversity ranging between 82.7-99.3% and comprising 89% of the total present genetic variation.  

However, this study did not find evidence for prairie genetic structuring along the landscape 

sampled.  The high within-prairie diversity discovered is consistent for outcrossing systems 

(Hamrick and Godt 1996).  Furthermore, when attempting to correlate genetic diversity with size 

of the study prairie, no significant association was detected.  However, the lack of association 

detected between increasing geographical distance and genetic dissimilarity of individuals is a 

factor that must be considered when restoring tallgrass prairie as this suggests that the genetic 
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variation is influenced more highly by selection pressures.  Contrasting results were found in a 

study by Rouse et al. (2011) of natural populations of big bluestem sampled across the U.S. 

Midwest precipitation gradient; in this study, dissimilarity among individuals increased with 

increasing geographic distance.   The presence of fine-scale genetic structuring in big bluestem 

has been demonstrated, with an interesting high frequency of certain genotypic clones that may 

have implications for community diversity (Avolio et al. 2011).  Even at small scales (1 m
2
) 

genotypic diversity is noted, with certain genotypes maintain higher frequencies in plots, 

suggestive of competitive hierarchy among genotypes of big bluestem at finer scales.  Genotype 

frequency has in plants which can propagate through vegetative growth such as big bluestem 

(through tillers) may signify selection for that genotype in a given environment.  

 

Information regarding genetic diversity of local vs. non-local seed is potentially important to 

restoration efforts.  Local remnant populations have been shown to have a higher genetic 

diversity compared with sites planted with artificial outside seed sources (Selbo and Snow 2005). 

Introduction of foreign seed source to local populations could increase genetic diversity and the 

likelihood of species persistence and adaptation in a changing system. However, the use of non-

local plant materials in restoration efforts presents a suite of issues (McKay et al. 2005) and thus 

particular attention should be paid to the range over which a particular plant species is adapted if 

this plant is to be implemented in restoration and/or conservation efforts. However, some studies 

on prairie land restoration caution against using outside seed source to increase genetic diversity 

and adaptive capabilities (Havens 1998, Montalvo and Ellstrand 2001, Hufford and Mazer 2003, 

Gustafson et al. 2004) as this may result in a maladaptation. 
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Ecotypes 

 

Ecotypic adaptive genetic variation has been widely studied across plant species, and previous 

work has uncovered differences in plant biomass, freezing and drought tolerance levels, root 

growth and phenology across ecotypes (Smith et al. 1946, Clausen and Heisey 1958, McMillan 

1969, McKell et al. 1962,  Leimu and Fisher 2008, and Dionne et al. 2009).  Ecotypic 

differentiation studies have proven useful to several fields including agriculture, plant breeding, 

and restoration ecology (Hufford and Mazer 2003, Juenger et al. 2005), as well as to broaden 

basic understanding of plant population structure and dynamics.  Studies involving ecotype 

differentiation have taken advantage of variation across the environmental extremes of a climatic 

region like the U.S. central grasslands to address complexities in plant structure and diversity in 

traits (McMillan 1969, Mintenko et al. 2002, Etterson 2004).  However, rarely has a 

multidisciplinary approach been employed which merges traditional ecological studies with 

modern molecular techniques to study ecotype neutral and functional variation across such a 

grand spatial scale (Knight et al. 2006).   

 

 Phenotypic variation was noted in big bluestem as early as the 1960s, with seminal studies by 

McMillan (1965a, 1965b).  McMillan sampled six big bluestem ecotypes along a latitudinal 

gradient in the United States, and planted each ecotype in a common garden in Texas (McMillan 

1965a), but also in a light-controlled greenhouse setting (McMillan 1965b).  McMillan noted that 

the native geographic location of the source population (plant ecotype) played a role in the 

vegetative biomass, with southern-most ecotypes of big bluestem having greater biomass in their 

native site (Texas), and bluestem native to northern parts of the United States having less and 

shorter flowering stalks.  Gustafson previously also noted the presence of visible phenotypic 
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differences in big bluestem communities across environmental gradients in the 1970s, indicating 

the possibility of locally adapted ecotypes.  However, no studies have linked phenotypic 

differences in the species to more in-depth genetic studies of both neutral and non-neutral 

genome diversity.   

 

The work outlined here seeks to fill a gap between ecological and diversity studies by providing 

such a genetic analysis of prairie sources that are also seeded in reciprocal gardens to test for 

adaptation of plant ecotypes.  In the reciprocal garden tests, Johnson et al. (in prep) take 

advantage of historically-observed phenotypic variation across prairies of big bluestem by 

planting naturally-occurring ecotypes along the U.S. Midwest precipitation gradient in seeded 

gardens and in single transplants, without competition, along the gradient (Figure 1.3).  The 

seeded gardens planted include natural competitors (forbs and grasses native to tallgrass prairie) 

to simulate natural community response to ecotype plantings.  Data from the first two years of 

field studies suggests that the western-most (Central Kansas) ecotype has native-site advantage, 

with increased cover in its dry home environment in comparison to the Illinois ecotype from the 

most mesic end of the precipitation regime (Johnson et al. in prep).  Furthermore, in even drier 

locations at the edge of the species’ native range, the western-most occurring big bluestem 

ecotype still out-competes the Illinois and the Eastern Kansas ecotype, suggesting local 

adaptation to drier climates.  As an extension of these studies of local adaptation and ecotypic 

differentiation, we utilize a genome scan approach using neutral markers (amplified fragment 

length polymorphisms, or “AFLPs”) but also relate these markers to the environmental cline 

along which ecotypes of big bluestem occur.   This work is presented herein.  
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 Amplified Fragment Length Polymorphisms (AFLP) and Genome Scans  

 

Amplified fragment length polymorphisms (AFLPs), as neutral markers, have great utility for 

non-model systems as no prior genomic sequence is required (Vos et al. 1995).  The major steps 

of the AFLP reaction include 1) restriction of genomic DNA, 2) ligation or annealing of AFLP 

adapters, and 3) two steps of fragment amplification (pre-amplification and selective 

amplification) using different sets of primer pairs (Figure 1.4).  The advantage of the AFLP 

method is that after being applied to a non-model species, the number of bands or markers 

generated per primer pair is large (~150 bands/primer pair) and the bands are highly reproducible 

(except see genotyping error control, Bonin et al. 2004).  Currently, the use of capillary 

fluorescence has allowed for avoidance of radioisotope staining of gels and greater resolution of 

AFLP bands (bands with one base pair difference can easily be distinguished using capillary 

fluorescence although this is not true with the radioisotope method).  The main disadvantage of 

AFLPs as markers is their dominant nature, which does not allow heterozygosity levels to be 

consistently estimated as heterozygous genotypes cannot distinguished from dominant 

homozygous individuals (Vos et al. 1995).   

 

In the last few years, there has been an increase in number of studies using “AFLP genome 

scans” to test for local adaptation of natural populations (for some examples see Balding and 

Beaumont 2004, Freedman et al. 2010, Keller et al. 2011, and Collin and Fumagalli 2011), with 

the hope of gleaning more information from traditional AFLP neutral marker studies.  Neutral 

markers have been used heavily in conservation of non-model, ecologically-relevant species in 

the past (Ronikier 2002, Lucchini 2003).   In part, newer AFLP genome scan studies involve 

studying organisms with wide distributions over environmental gradients where environment 
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may be correlated to the AFLP markers generated (Balding and Beaumont 2004, Luikart et al. 

2003, Oleksyk et al. 2010).  The environmental gradients studied in these studies include 

altitudinal variation, precipitation regimes, and more (Keller et al. 2011, Lee and Mitchell-Olds 

2012).  Teasing apart environmental factors, geography, demography, and selective processes 

within or across species is a daunting task that has been made possible in recent years by 

developments in statistical genetics (for example, Bayesian methods).  Such advances and the 

use of AFLP genome scans have allowed the study of how these different factors (environment, 

geography, etc.) may associate with observed genetic differentiation and population structuring 

in natural populations (Gaggiotti et al. 2009).  In the hunt for “ecologically relevant adaptive 

variation” (Karrenberg and Widmer 2008), these developments are key.  
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Figures and Tables 

 

 

 

Shading corresponds to mean annual rainfall totals in millimeters (greener shades = more rainfall, 

with dark green representing 1200 mm rainfall/year and light blue representing 400 mm 

rainfall/year).  Adapted from Burke et al. 1997. 

 

 

 

 

 

 

 

Figure 1.1 Sharp precipitation gradient in the United States U.S. Midwest.  
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Regions of growth include Canada and the United States. Distribution of big bluestem is 

shaded in green although the current distribution is fragmented and primarily east of the 

Rocky Mountains (depicted by dotted line).  Adapted from USDA Plants Database. 

   Figure 1.2 Wide distribution of big bluestem (Andropogon gerardii Vitman).  
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When grown as singly transplanted plants (above) and seeded gardens (not shown), ecotypes 

display phenotypic divergence.  The Illinois reciprocal garden site is shown here in May 2010, at 

the start of the growing season.  Plants here are grown in non-competitive environments and each 

prairie source is replicated 10X.  Similar growth differences were observed between ecotypes 

when grown in similar greenhouse conditions with the dwarfed KS ecotypes having more 

drought-adaptive traits.   Pictured Left: Illinois ecotype; Right: Eastern KS ecotype native to 

Manhattan, KS. Photo credit: Dr. Sara Baer.  

 

 

 

Figure 1.3 Ecotypes of big bluestem show morphological variation in common gardens.  
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There are three primary steps shown:  (a) Whole genome is sheared with restriction enzymes  (b)  

adaptors of known sequence are annealed to restriction sites, and (c) fragments with adaptor 

sequence attached are PCR-amplified. Credit:  Mueller and Wolfenbarger (1999). 

Figure 1.4 Amplified fragment length polymorphism (AFLP) fingerprinting method. 
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Chapter 2 - Big Bluestem (Andropogon gerardii Vitman) 

Ecotypes Exhibit Genetic Divergence Along the U.S. Midwest 

Environmental Gradient 

 

 Introduction  

 

Genetic variation makes adaptive evolution possible (Hoekstra 2006, Wu et al. 2010, Chan et al. 

2010). Within the last five years, great interest in the ecological relevance of widespread genetic 

variation in natural populations has been informed by connecting traditional ecological studies to 

a population genetics and genomics framework (Manel et al. 2003, Luikart et al. 2003, 

Karrenberg and Widmer 2008, Holdenregger and Wagner 2008, Sork and Waits 2010, 

Hohenlohe et al. 2010, Lee and Mitchell-Olds 2011). Studying adaptive (non-neutral) genetic 

variation relative to the existing landscape and environment allow hypotheses to be formed 

regarding what important environmental and selective pressures exist.  Using such landscape 

genetics approaches, many loci are sampled and FST-outliers are chosen as candidate loci that 

may be under selection (e.g., balancing or diversifying selection). A number of studies have 

attempted to utilize this approach on non-model, ecologically-important systems to answer the 

questions regarding what environmental variables are most important for species adaptation 

through natural selection (Gaggiotti et al. 2009, Nielsen et al. 2009, Parisod and Joost 2010, 

Hancock et al. 2011, Keller et al. 2011, Mattersdorfer et al. 2012). Using these methods, attempts 

have thus been made to separate the result of natural selection acting on traits with genetic bases 

from random genetic drift, and complex demography and life histories.   
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Big bluestem (Andropogon gerardii Vitman) is an ecologically-dominant C4 prairie grass of the 

U.S. central grasslands. Big bluestem is an obligate outcrosser that is largely wind-pollinated.  Its 

distribution is widespread, including habitat east of the United States Rockies, extending 

northward into Canada, east to the Carolinas, and south to Texas. However, the primary range of 

big bluestem in tallgrass prairie ecosystem spans a longitudinal environmental gradient in the 

U.S. Midwest and overlying much of the Great Plains region.  This environmental gradient 

includes a sharp precipitation cline with a two-fold increase in rainfall moving west-east (58-116 

cm rainfall/year). Species’ distributed along environmental gradients may exhibit clinal genetic 

variation, in which local adaptation of the native ecotype may occur and/or species divergence be 

present, either at large or fine geographic scales (Knight et al. 2006, McKay et al. 2001, Lowry et 

al. 2009). 

 

Most historic studies of big bluestem have taken an ecological and eco-physiology approach 

(Sala et al. 1988, Knapp et al. 1993, Gustafson 2004). While these studies have provided a 

plethora of information regarding water limitations, productivity, and eco-physiology 

distribution of species across its range, the utility of population genetics combined with a large 

sub-continental landscape/environmental approach has yet to be taken advantage of in this 

system. While Tompkins 2011, Rouse et al. 2011, and Price et al. 2012 all address big bluestem 

neutral genomic differentiation at somewhat larger scales, none of these studies probe both 

neutral and non-neutral diversity of described big bluestem ecotypes at great depth.  

Furthermore, such studies have not sampled along environmental gradients into the historic 

center of the tallgrass prairie ecosystem (Illinois) as we do here. Spatial genetic approaches are 

instrumental if we are to understand ecotypic differentiation that may potentially help manage 
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the small number of acres left of tallgrass prairie ecosystem in the United States. As of 1994, 

only 4% of historical tallgrass prairie remained in the United States (Samson and Knopf 1994), 

and the USDA Conservation Reserve program consists of 3 million acres of land in Kansas alone 

to help conserve prairie (SCS 1990).  The use of non-local varieties in restoration may have 

disadvantages, including reduced success and exchange of maladapted genes to local ecotypes 

through gene flow (Hufford and Mazer 2003, McKay et al. 2005).   

 

Our study benefits from a co-occurring two-year reciprocal garden experiment conducted across 

the U.S. Great Plains environmental gradient and extending eastward into Illinois, the historic 

center of the tallgrass prairie ecosystem.  In seeded prairie communities planted across the 

gradient over two seasons, the Central Kansas ecotype had greater success (based on total plant 

cover) in its dry home environment than the non-native Eastern KS and Illinois ecotypes.  This is 

indicative of potential local adaptation (Johnson et al. in prep).  Ecotypes were also shown to 

differ in photosynthetic rate, with the Central Kansas ecotype having overall higher 

photosynthetic rates in a satellite field site located in Colby, Kansas at the most arid end of the 

reciprocal gardens.  

 

Given an outcrossing system, we expected high within-prairie genetic diversity, with perhaps 

decreased diversity in more fragmented remnant prairies found in Illinois (Corbett 2004) where 

genetic drift processes would potentially play a stronger role. We also predicted that the genetic 

distance between big bluestem individuals would decrease with increasing geographic proximity 

(isolation by distance) as the majority of big bluestem pollen dispersal occurs over relatively 
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short distances (~30 meters in the literature though more recent measurements have not been 

reported to our knowledge).  

 

The specific objectives of this research project were then to 1) probe neutral and non-neutral 

genetic diversity across the genome of big bluestem putative ecotypes using an AFLP genome 

scan approach, 2) determine whether ecotypes are genetically differentiated or have similar 

diversity levels, and 3) discover candidate loci associated with specific geographical and 

environmental factors which vary across three ecoregions along the U.S. Midwest environmental 

gradient (Central Kansas, Eastern Kansas, and Illinois).  The last objective was included in order 

to formulate hypotheses regarding what selective pressures may be important in describing 

highly differentiated outlier loci across the three putative big bluestem ecotypes.   

 

 Methods 

 

Seed Collection 

 

Seeds were collected from eleven prairies across the U.S. Midwest environmental gradient 

including the Great Plains region. Prairies were partitioned into three main ecoregions (Central 

Kansas [in Hays, Kansas]; Eastern Kansas [in Manhattan, Kansas]; and Illinois [in Carbondale, 

Illinois]) with varying climates and environmental factors (Table 2.1). All prairies were pristine, 

i.e., no prior restoration using big bluestem cultivars and unplowed. Prairies were occasionally 

burned and historically grazed. All of the prairies are currently protected state park land and/or 

research areas. Prairies ranged in size, and our sampling area covered was thus proportional to 
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individual prairie size (Table 2.2).  Several dispersed collection points, at several time points 

during Fall 2008 were used. Seed from collection points was mixed together and subsampled to 

attain an unbiased representation of each prairie site.  

 

Leaf Collection and DNA Isolation 

 

Approximately 3.5 g of seeds was physically scarified by hand to increase the species’ low 

germination rate and was densely sown in flats. Seedlings were well-watered and grown in 

ambient conditions in a greenhouse at temperatures between ~20-25˚C with a 12 hour day 

length. At two-months, seedlings were singly transplanted into 3 x 4 inch pots with Metro-Mix 

510 potting soil and grown until 75-100 mg of young leaves/tillers could be collected per plant. 

For each prairie, 15-55 leaf samples were collected. Tissue was lyophilized in a freeze-drier 

(ModulyoD-115, Thermo Savant, Holbrook, New York) for three days and ground to a fine 

powder with 3.969 mm stainless steel beads (Abbott Ball Company Inc., Hartford, Connecticut) 

using a Mixer Mill 400 (Retsch Inc., Newton, PA) at 25-30 cycles/sec for ~15 min. 

 

DNA was isolated using a CTAB method (Doyle & Doyle, 1987) and re-suspended in 50-100 ul 

Tris (10mM) + Triton X-100 (0.003125%) buffer (pH=8.0) overnight. Quality and quantity of 

the DNA was verified using a spectrophotometer (NanoDrop Technologies, Wilmington, DE), 

with OD requirements of 260/280=2.0 and 260/230 ≥ 1.80 for genotyping. Several randomly 

selected samples per 96-well plate were checked for degradation on a 0.8% agarose gel as well to 

verify that the extraction method used was consistent in producing non-degraded, high quality 

DNA for downstream reactions.  
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AFLP Genotyping 

 

For all reactions, ~300 ng starting DNA was used; fine adjustments to DNA starting amounts 

across samples was not made as this was found to not be critical to fingerprint reproducibility nor 

band intensity values (data not shown). Our overall AFLP protocol was adapted extensively from 

Vos et al. (1995) and followed some aspects of Rouse et al. (2011) specific to big bluestem. The 

DNA restriction digestion and adaptor ligation steps of the AFLP protocol were combined and 

comprised of: ~300 ng genomic DNA (~25 ng/uL), 5 units of EcoRI HF (New England Biolabs, 

0.25 uL) and 5 units of MseI (New England Biolabs, 0.5 uL), 100 units of T4 DNA ligase (New 

England Biolabs, 0.25 uL), 2 uL of 10X ligase buffer (New England Biolabs), 1.0 uL of each 

adaptor pair (5 pm/uL of EcoRI adaptors; 50 pm/uL of MseI adaptors, Integrated DNA 

Technologies), and 12 ul ddH2O for a total reaction volume of 30 uL. The restriction-ligation 

mixture was incubated at room temperature overnight to ensure complete digestion. Restricted-

ligated DNAs were diluted 10X in ddH2O. 

 

Pre-amplification reactions used primers complementary to the DNA restriction site and adaptor 

pair and also with an additional one-base pair overhang (EcoRI=5’-AGACTGCGTACCAATTC-

A-3’and MseI=5’-GATGAGTCCTGAGTAA-C-5’). Individual pre-amplification PCRs 

consisted of a final volume of 40 uL per reaction well and included: 10 uL diluted restricted-

ligated DNA template, 1.2 uL of each primer (10 uM), 6 uL 5X PCR buffer (Promega), 3 uL 

MgCl2 (Promega, 25 mM), 0.64 uL dNTPs (5 mM), and 0.75 units of Go Taq Flexi DNA 

polymerase (Promega, 0.15 uL). PCR steps were as follows: 20˚C, 5 sec; ramp from 20˚C to 
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70˚C (0.2˚C/sec); 70˚C, 2 min.; 94˚C, 1 min.; 94˚C, 1 min..; 30 cycles of 94˚C, 30 sec; 56˚C, 1 

min.; 72˚C, 1 min.; followed by 72˚C, 10 min.; 15˚C, 5 min. Pre-amplified template was diluted 

20X with ddH2O.  

 

A selective PCR was performed using two primer sets with three additional bases (primer set 1: 

5’GATGAGTCCTGAGTAA-CTG-3’ + 5’HEX-AGACTGCGTACCAATTC-ACC-3’; Primer 

Set 2: 5’GATGAGTCCTGAGTAACGC-3’ + 5’6FAM-AGACTGCGTACCAATTC-AAA-3’). 

We chose these two selective primer pairs after examining the quality of profiles resulting from 

eight different primer combinations (data not shown). Each selective PCR had a 20.5 uL final 

volume and consisted of: 1.5 uL diluted pre-amplified template, 1.62 uL M-side primer (10 uM, 

M-CTG or M-CGC), 1.62 uL fluorescently labeled E-side primer (10 uM, 5’-6HEX or 5’-

6FAM), 4 uL 5X PCR buffer (Promega), 2 uL MgCl2 (Promega, 25 mM), 0.8 uL dNTPs (5 

mM), and 1 unit Go Taq Flexi DNA polymerase (Promega, 0.2 uL). The touchdown PCR cycle 

implemented was as follows: 95˚C for 2 min.; 13 cycles of 65˚C for 30 sec (-0.7C per cycle), 

72˚C for 90 sec, and 94˚C for 30 sec; 23 cycles of 56˚C for 30 sec, 72˚C for 90 sec, and 94˚C for 

30 sec; 72˚C for 10 min. and 15˚C for 5 min. To optimize the efficiency (overall band intensity) 

of primer set 2 (M-CGC + 6-FAM), a slight alteration in the PCR profile was made which 

included touchdown PCR starting at60˚C rather than 65˚C. The selective PCR was diluted 10X 

in ddH2O.  

 

 A well-mixed solution of 9.5 uL formamide + 0.5 uL GeneScan-500 LIZ internal size standard 

(Applied Biosystems) was distributed throughout the well plate and 1.5 uL diluted selective 

template added to each well. Samples were loaded on an ABI Prism 3730 DNA Analyzer 
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(Applied Biosystems, Foster City, CA) at the DNA and Genotyping Facility, Kansas State 

University. A 50 cm capillary was used with an electrokinetic injection voltage of 1 kV applied 

for 10 sec. This lower injection voltage and shorter injection time was found to improve the 

resolution of AFLP bands of similar molecular weights. This method also improved the 

repeatability of longer fragments observed in profiles and prevented over-saturation of peak 

intensities.  

 

Marker Scoring and Error Rate Estimation 

 

Non-normalized profiles were scored using GeneMarker software version 1.97 (SoftGenetics 

LLC, State College, PA). AFLP panels were auto-created with a 1.0 base pair total width; 

afterward, bins were manually checked and adjusted to retain smoothly shaped peaks. 

Irreproducible peaks and extremely wide or irregularly shaped peaks were discarded. A 100 

relative fluorescent unit (RFU) minimum peak height was used for peak scoring as this was 

reliably above the noise of negative controls (PCR reagents and water) included in the study 

(data not shown).  

 

To verify the consistency of the AFLP technique, a set of four reference DNAs were included in 

each successive AFLP reaction and genotyping run. In addition, 2-3 independent restriction-

ligations and PCRs were performed on one DNA sample per prairie and genotyped. The 

reference DNAs and replicate samples comprised 4% of total samples genotyped. The AFLP 

technical error rate estimation was calculated by the dividing total number of mismatched bands 

by total number of AFLP bands produced overall in the fingerprint (Bonin et al. 2004).  
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AFLP Data Analysis  

 

Marker statistics, diversity analyses, and correlations between genetic distances and geographic 

distance between prairie sites were calculated in GENALEX version 6.41 (Peakall & Smouse 

2006). We performed an analysis of molecular variance (AMOVA), pooling the data two ways: 

1) by prairie site, with the starting null hypothesis that the eleven prairie sites could be 

considered together as one large, randomly mating population, and 2) at a larger scale based on 

Kansas as one region and Illinois as the second region, adjusting the null hypothesis so that each 

of the regions were considered as separate, randomly mating populations. The AMOVA 

consisted of 999 random permutations to test these two hypotheses. For isolation by distance 

tests, the null hypothesis of no isolation by distance across prairies was tested using a Mantel test 

comparing the Euclidean genetic distance and geographic distance matrices. Relatedness among 

all individuals was depicted using an un-rooted neighbor joining tree where pairwise genetic 

distance among individuals was calculating using the Dice coefficient of dissimilarity (Dice 

1945).  The Dice coefficient is analogous to the Nei and Li coefficient (Nei and Li 1979) and 

Sorensen coefficient (Sorensen 1948).  The Dice coefficient of dissimilarity between two 

individuals (i1 and i2) is given by:  

 

d(i1, i2) = 1 – D (i1, i2) = (b + c) / (2a + b + c),  

 

where a=band presence in i1  and i2, b= band presence in i1 only, c= band presence in i2 only. 

Note that bands absent in both i1 and i2 do not affect the resulting distance matrix.  
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Spatial Population Structure using Bayesian Clustering  

 

To determine the possibility of population structure within and between prairies and ecotypes, 

the AFLP marker data set was analyzed using STRUCTURE version 2.3.3 with 20,000 burn-in 

and 500,000 MCMC steps (Pritchard 2000). The possibility of admixture was allowed and the 

correlated allele frequency setting was selected. The correlated allele frequency setting is 

appropriate for finding differentiation between ecoregions such as in this study, where prairies 

belonging to an ecoregion are within a 50-mile radius of one another. Thus, our default settings 

were chosen to detect fine population structure. . The value of K was determined by taking into 

consideration both the point at which the mean estimated log likelihood did not increase any 

further and appeared to plateau and where delta K sharply increased (Evanno et al. 2005). 

STRUCTURE HARVESTER was used for the calculation of delta K following the Evanno 

method (Earl et al. 2012).  

 

Detection of FST-Outlier Loci  

 

Outlier loci were detected using BAYESCAN version 2.01 (Foll and Gaggiotti 2008) which 

handles dominant marker data. Data were analyzed in two ways: 1) by prairie site and 2) by 

ecoregion. Run parameters included 20 pilot runs of length 5,000, 50,000 data burn-in, a thinning 

interval of 10, and a sample size of 5,000. The prior odds for the neutral model was set to 10 and 

the inbreeding coefficient (FIS prior) was allowed to vary between 0.0 and 1.0, where 1.0 

represents complete inbreeding within the population. Data sets were run with all 387 
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polymorphic loci, and again with 325 marker loci (excluding highly monomorphic loci present in 

>90% individuals and minor alleles at <2% frequency across all individuals). The two models 

which are compared in BAYESCAN are a neutral model (M1) and a model including selection 

(M2).  To choose between the two models using data set N, the Bayes factor (BF) or scale of 

evidence used for the model with selection (M2) is given by (Foll and Gaggiotti 2008) 

 

BF= (P(N|M2) / P(N|M1). 

 

BAYESCAN also considers that each locus may be under selection. In this case, the prior odds 

for the neutral model is set as P(M1/M2) and the posterior odds (PO) is used rather than the 

Bayes factor and is given by 

 

PO = (P(M2|N)/P(M1|N) = BF*P(M2)/P(M1). 

 

 In the case of this work, the criterion for substantial evidence of selection and rejection of the 

null hypothesis was a result of log10 (BF) > 0.5 which is equivalent to log (PO) > 0.5.  This 

criterion was used as it is represents a strength of at least substantial evidence for selection using 

Jeffrey’s interpretation.  In addition, log (PO) between 1.0 and 1.5 signifies strong evidence for 

selection, between 1.5 and 2.0 indicates very strong evidence for selection, and log(PO) 

equivalent to 2.0 or increasing toward infinity is decisive evidence for selection.  
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Relating Marker Allele Frequency to the Environmental Gradient  

 

In addition to looking for candidate loci under possible selection, we performed a spatial analysis 

using multiple univariate logistic regression to find significant associations of prairie-specific 

environmental predictors with the AFLP markers (Joost et al. 2007, 2008).  For all weather data, 

we used the National Oceanic and Atmospheric Administration database and historical records 

dating back to 1961. Information for each of the eleven prairies was gathered, or when necessary, 

weather data was taken from a nearby weather station. Eight geo-environmental predictors 

describing the environmental gradient and prairie location were entered in total. All prairie 

locations were entered using GPS coordinates.  In addition to longitude and latitude coordinates, 

prairie elevation and the following weather data were also entered: mean annual precipitation in 

2011, annual precipitation in 2011, mean annual diurnal temperature variation during the 

growing season since 1961 (calculated by averaging the daily maximum temperature in ˚C – 

minimum temperature in ˚C) and a temperature severity index (fraction of days > 35˚C since 

1961) (Table 2.3). The mean annual precipitation in 2011 is useful as it is a recent measure of 

climate in the U.S. Midwest.  

 

For the spatial analysis of environment-marker associations, the program MATSAM was used 

(Joost et al. 2007, 2008). The MATSAM program was run using a component in Matlab® which 

utilizes a generalized linear model (MacCullagh & Nelder 1989), where the number of models 

tested equals the product of the total number of markers and the total number of environmental 

parameters per collection site. For our purposes, significant correlations were defined as models 

with both McFadden and Efron pseudo R
2
>0.3 as well as significant Wald and G-tests.  
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 Results 

  

AFLP Genotyping Results and Error Rate Estimate 

 

In total, 387 polymorphic AFLP loci were identified (mean= 194 bands per primer set, σ=47). 

Approximately 330 bands were amplified per plant. Most markers were present at ≥25% 

frequency, with 8% of the data set represented by minor alleles (frequency <2%) (Figure 2.1).  

The overall error rate (number of mismatched bands per replicate sample/total number of bands 

per replicate profile) was 9.18% and thus within the error range typically reported for AFLP 

studies (Bonin et al. 2007, Holland et al. 2008, Arrigo et al. 2009, Rouse et al. 2011, Avolio et al. 

2011, Price et al. 2012).  

 

Genetic Differentiation and Population Structuring of Phenotypically-Distinct Ecotypes 

 

Un-rooted neighbor-joining tree analyses demonstrated genotypic differentiation of the big 

bluestem ecotypes, with the greatest genetic similarity observed between the Central Kansas and 

Eastern Kansas ecotypes (Figure 2.2). The Illinois ecotype was split into several unique 

branches or clusters, largely separated from Kansas ecotypes. A number of tree branches 

included individuals from several prairie sites, indicating within-prairie genetic differentiation.  

Nei’s pairwise genetic distance measurement showed genetic distances between prairies to be 

between 0.01-0.08, indicating mild genetic differentiation of prairies (Table 2.4).  In principle 

coordinate analysis plots, a similar trend was found in the genetic relationships across individuals 

within prairies and ecotypes, with the two main clusters of data formed by Illinois ecotype and 
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Kansas (Central and Eastern) ecotypes; ecotypes were discernible in just one axis (38%), with 

two axes representing 61% of the present variation (axis 1=38%; axis 2=23%), with the two 

main clusters of data formed by Illinois ecotype and Kansas ecotypes (Figure 2.3). Moderate 

overlap between Illinois and Kansas ecotypes was observed.   

 

In addition to genetic variation between the Kansas and Illinois of ecotypes, evidence for 

population structuring based on similar marker allele frequencies was found.  The results from 

STRUCTURE supported the presence of K=6 clusters through both the number of K clusters 

with highest mean likelihood over replicates and the calculation of the steepest increase in delta 

K (Evanno et al. 2005) (Figure 2.4, 2.5 respectively). The model converged to this result during 

both short and long chain lengths (MCMC=10,000 steps and MCMC=500,000 steps, with a data 

burn-in of 10,000-20,000 each time). STRUCTURE results were consistent with PCA analysis.  

We observed allele frequencies to be highly similar within Kansas, with three main genetic 

groups present (Figure 2.6) and allele frequencies to be highly similar within prairie (Figure 

2.7), with some admixed individuals noted.  

 

It is likely that along the longitudinal environmental gradient of the U.S. Midwest, population 

subdivision or fragmentation of prairie populations exists, especially in more topographically 

disturbed prairie in Illinois. When considering an isolation-by-distance model (Wright 1942), the 

total pairwise Euclidean genetic distance between the 3 ecoregions (with each prairie site 

included in the analyses) increased significantly with increasing geographical distance.  

However, there was a very weak correlation between genetic distance and geographical distance 

(Figure 2.8, R
2
=0.17, regression line fit: p<0.001). 
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Ecoregion-specific AFLP Markers 

 

Several AFLP markers were found to be major alleles (frequency >2%) as well as ecoregion-

specific (Table 2.5).  Four major alleles were private to Illinois and six to Manhattan, Kansas in 

Eastern Kansas. No private alleles were found segregating only in the Hays, Kansas (Central 

Kansas) ecoregion at major frequencies. We did find evidence for markers shared between 

Central Kansas/Eastern Kansas ecoregions and Eastern Kansas/Illinois ecoregions, as might be 

expected within the same species.  

 

High Within-prairie Genetic Diversity Exists  

 

When considering the 11 prairies as individual sampling units, the analysis of molecular variance 

partitioned the most variation within-prairie (80%) vs. across-prairies (11%) (Figure 2.9, Table 

2.6, p<0.001). The remaining total variation (9%) was partitioned between Kansas vs. Illinois as 

regions.  We were interested in the comparison of Kansas to Illinois on a regional scale as most 

of the genetic differentiation as well as population structure present in our study occurred 

between these two regions.  When the 3-4 prairie sites within each of the three geographically 

distinct ecoregions (Central KS, Eastern KS, and Illinois) were considered as one sampling unit, 

within-ecoregion variation was still considerable, ranging from 84%-92% in each ecoregion 

(p<0.001, data not shown). Thus, despite fragmentation, prairies sampled in Illinois still retain 

high amounts of genetic variation (92% of total variation).  

 

 



36 

 

FST-outlier Analysis Indicates Presence of Diversifying Selection  

 

In addition to markers under neutral divergence in the genome, we found eleven FST-outlier loci, 

highly differentiated in comparison with an overall species FST of 0.1 determined in 

BAYESCAN and AFLP-SURV version 1.0 (Foll and Gaggiotti 2008, Vekemans 2002) (Figure 

2.10). The 11 outlier loci were identified when entering the total set of 387 AFLP markers 

according to ecoregion/ecotype.  When the data were entered in a similar way, but after 

discarding markers at the highest and lowest frequencies (present in >90% and <2% of 

individuals) to remove uninformative data from the data set (and thus to avoid the posterior odds 

being equivalent to prior odds), eight FST -outliers were observed. Each of these eleven outlier-

loci and eight outlier-loci in both data sets were deemed “high outliers” (alpha greater than zero), 

and thus highly differentiated among ecoregion/ecotype (locus-specific FST=0.3-0.5, Figure 

2.11), indicating possible diversifying selection acting on these particular genomic regions.  In 

pairwise-comparisons between ecoregion / ecotype (data not shown), Eastern KS vs. Illinois 

ecotype had 5 highly differentiated markers (marker 221 [275]*, 255 [292], 219 [250], 200 

[228], 203 [232]), Central Kansas vs. Illinois ecotype had 1 highly differentiated marker (marker 

255 [292]), and Eastern Kansas vs. Central Kansas ecotype had 1 highly differentiated marker 

(marker 298 [not found in BAYESCAN when comparing all 3 ecoregions, marker 336]). Three 

outlier loci recovered using the reduced 325 AFLP marker data set were also recovered in the 

initial 387 marker data set ([marker 228, 256, and 292]).  The other five outlier loci were newly 

found only after the data set was reduced.  *[ ] = previous marker ID number when set of 387 

loci were considered. 
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Marker Frequencies Correlate with Environmental Predictors along Gradient  

 

The prairie local environments and geographic coordinates within each ecoregion were used in 

spatial analysis methods.  In total, 7 out of 8 environmental variables showed significant 

correlations with marker frequency patterns, with cumulative seasonal precipitation (from April-

August during the growing season of big bluestem) in 2011 having no significant correlation 

with any AFLP markers (Table 2.7). We found 55 total significant models of marker frequency 

shifts related to the environmental variables (Figure 2.12). The most highly significant 

environmental factors in terms of marker correlations included prairie longitude, mean annual 

precipitation, temperature severity, and mean annual diurnal temperature variation.  In totality, 

14 marker loci response variables were associated with environmental predictors.  

 

All eight marker loci (from the reduced 325 marker loci data set) for which we found evidence of 

diversifying selection in BAYESCAN were also detected in spatial analysis. Thus, 57% of loci 

detected in spatial analysis appear to be under potential diversifying selection and to have 

frequencies correlated with environmental variables. We found six total non-outlier marker loci 

whose frequency patterns correspond to six of the eight geo-environmental variables tested 

(prairie longitude, 2011 precipitation, temperature severity, diurnal temperature variation, prairie 

elevation, and prairie latitude), that thus are not associated with selection processes uncovered in 

BAYESCAN (Figure 2.13).  
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 Discussion  

 

Kansas and Illinois Phenotypic-divergent Ecotypes are Genetically Differentiated Along the 

Large-Scale Environmental Gradient  

 

The use of a variety of metrics for analyzing binary AFLP data is useful for understanding the 

strength of the genotyping result (Kosman and Leonard 2005).  For our study, we used the Dice 

coefficient to build the neighbor-joining tree, which attaches greater weight to shared AFLP 

bands (rather than shared 0s or marker absence), which is appropriate for a dominant marker 

where a null allele may be due to absence of the allele, as well as other factors such as point or 

insertion mutation in the endonuclease restriction site (Kosman and Leonard 2005). The un-

rooted neighbor joining tree calculated using Dice coefficient of similarity gave support to the 

genetic differentiation of Kansas ecotypes from the Illinois ecotype in PCA analysis calculated 

using Euclidean distance data, further strengthening the argument for differentiation of Kansas 

ecotypes from the Illinois ecotype.   

 

Interestingly, even though the prairie populations from Central Kansas and Illinois are ~1000 km 

apart geographically, our isolation by distance results indicate that geographic distance only 

explains a small part of the observed differentiation of the ecotypes (R
2
=0.17, p<0.001). Central 

and Eastern Kansas ecotype source prairies are roughly 257 km apart from one another; 

however, Manhattan and Illinois sources are separated by 740 km, pointing toward geographic 

isolation as a possible mechanism of divergence.  In addition to isolation by distance over this 

sub-continental scale, genetic differentiation of Illinois and Kansas ecotypes may be influenced 

population founder effects, genetic drift following population subdivision, and selection for 
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favorable loci (Boileau 1992, Ramsted 2003, Yeung 2010). A high correlation (R
2
=0.47) 

between mean annual rainfall estimates (data not shown) and PCA axis 1 eigenvalue after 

transformation suggests that environmental factors may play a role in ecotype differentiation. 

 

The lack of strong isolation by distance along large environmental scales may also be a factor of 

the sampling scheme.  Ehrich and Stensoth (2003) found that with increasing distance of 

transects sampled, genetic differentiation among Lemmus sibiricus decreased. The lack of 

correlation between geographic and genetic distance in big bluestem natural populations is also 

in line with the Price et al. (2012) study that covered large geographic and environmental 

diversity. Avolio et al. (2011), in an examination of fine spatial population structuring of big 

bluestem genotypes, found that at ecologically-relevant scales (neighborhood scale of 1 m
2
), high 

amounts of genotypic diversity and genetic structuring are obvious, with higher frequencies of 

certain genotypes. The highest frequency genotype is typically of selective advantage (Stuefer et 

al. 2009) and at fine population scales competitive advantage may play a role in propagation of 

certain genotypes. This may explain that sampling at finer scales and along transects may 

recover stronger isolation by distance mechanism of population structuring.  

 

The observed genetic differentiation between Kansas and Illinois ecotypes is consistent with the 

phenotypic divergence between ecotypes; when planted in reciprocal seeded gardens along with 

natural competitors across the environmental gradient, the Central Kansas ecotype was always 

observed to significantly outcompete in its native environment as well as outside the species’ 

range in a drier environment (Johnson et al. in prep). Allele frequency divergence of the Illinois 
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ecotype source prairies may suggest maladaptation may occur when the Illinois ecotype is faced 

with drier environments than its local environment.  

 

Population Structure Exists Despite High Within-prairie Diversity 

 

The amount of genetic variation found within designated natural populations, versus across 

populations, is informative to population processes and spatial genetic differentiation. When 

genetic variation was partitioned within-prairies, across-prairies, and across-ecoregions, the 

highest genetic variation (80%, p<0.001) was observed within-prairie. This was confirmed by 

previous studies of big bluestem genetic diversity levels in remnant prairies in Wisconsin and the 

Northeast U.S. and Midwest as well as Arkansas remnant prairie [Gustafson et al. 1999 (89% 

within-prairie diversity), Price et al. 2012 (86% within-prairie diversity), respectively]. Despite 

differences in marker types used in the Gustafson et al. study (RAPD; 1999) and our study 

(AFLP), we were able to detect consistently high levels of within-population genetic diversity. 

The Price et al. (2012) study using AFLP markers was also consistent with levels of within-

population diversity found in our study, with 86% of the diversity they found sequestered within-

prairies. Price et al. (2012) also showed that natural big bluestem prairie sources from Wisconsin 

and the Northeast United States form three distinct genetic groups; these genetic groups also had 

some genetic overlap present between prairies. When they partitioned the total amount of 

variation into among-prairie variation within each of the three ecoregions, however, it was 

determined that greater genetic variation is retained among-prairies from certain ecoregions.  In 

contrast, we did not detect differences in the level of genetic variation among prairies partitioned 

into each of the three ecoregions we include in this study.  This suggests that within each 
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ecoregion a number of diverse individuals exist which maintain the high within-prairie genetic 

diversity. 

 

High within-prairie genetic diversity was expected for several reasons. In the AFLP data set, 

several highly diverse individuals were detected, as highlighted by STRUCTURE results 

(admixed individuals). Furthermore, big bluestem is known to be highly self-incompatible, with 

viable seed production following selfing events either low or completely absent (Normann et al. 

1997, Owsley 2003, Tompkins et al. 2011). Obligate outcrossing across organisms has also 

traditionally resulted in increased genetic variation (Bomblies et al. 2010, Price et al. 2012, 

Gustafson et al. 1999). Furthermore, the complex polyploid genome of big bluestem allows for 

higher genetic variability to be present.  However, Rouse et al. (2011) found that AFLP 

dissimilarity did not increase with known increases in ploidy level. Furthermore, we have tested 

ploidy level within the Manhattan, Kansas ecotype source prairies as well as in field sites and 

found that one cytotype predominates (6X) (Johnson and Gaffney, unpublished data). Big 

bluestem is an autopolyploid, however, so it is predicted that increased ploidy level would result 

in an increase in chromosome number but not necessarily in number of allelic variants.  The 

opposite may be expected for allopolyploids unlike big bluestem. Thus, we suggest that the high 

genetic diversity can be more attributed to the outcrossing nature of big bluestem rather than 

genome size.  

 

Interestingly, population genetic structure exists across big bluestem ecotypes despite high 

within-prairie diversity.  A number of individuals are admixed, sharing similar genetic identities 

with samples across regions, but the majority of individuals from Illinois or Kansas share similar 
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allele frequencies.  The separation of clusters using distance-based methods into two visible 

clusters (cluster 1 = Central and Eastern Kansas; cluster 2 = Illinois) further support Bayesian 

methods and serve to strengthen these results. When structure is visualized at the prairie-level, 

considerable similarity is found within-prairies; this decrease in admixed individuals within-

prairies despite large amount of genetic variability found within-prairies can be caused by biased 

sampling of genetic clones (genets) of big bluestem. Average clonal size in big bluestem can be 

up to 3 m
2
 (Jurik and Kliebenstein 1999), and potentially a factor even in dispersed sampling and 

pooled seed collections like ours.  However, it may also be a factor of decreased pollen dispersal 

outside of prairie sites or landscape fragmentation.   

 

Evidence for Diversifying Selection Linked to Environmental Predictor Variables  

 

The eight loci under potential diversifying selection were all correlated with environmental 

predictor variables.  The identification of highly differentiated loci possibly linked to the 

environment is critical to understanding important environmental variables and to understanding 

ecotypic differentiation. In this study, we sought to determine how selection, rather than just 

neutral processes, plays a role in shaping ecotypic differentiation within big bluestem by making 

use of the widespread occurrence of big bluestem along sharp environmental clines in the 

grassland ecosystem. In contrast to markers detected under diversifying selection, we did not 

detect any markers in BAYESCAN that are under balancing or purifying selection, suggesting 

that these regions of the genome characterized by the AFLP are in regions diverging across 

ecotypes. Another possibility is that with the low overall genetic differentiation of prairies, we 

did not have the power to detect markers under potential balancing selection.  The presence of 

diversifying selection would suggest that the ecotypes are possibly influenced by geo-
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environmental pressures along the environmental gradient that have led Kansas ecotypes to be 

genetically differentiated from the Illinois ecotype, despite evidence for gene flow still being 

maintained between these ecoregions (based  on STRUCTURE analyses, see Laurent 2003 for 

another such example).  The conservative nature of Bonferroni correction allows for only strong 

associations between marker frequency and environmental variables to be detected and thus 

these results can be considered robust (Foll and Gaggiotti 2008).  

 

Based on spatial analysis methods, no markers were correlated with cumulative seasonal rainfall 

amounts in 2011 while 10 markers were significantly correlated with 2011 annual precipitation. 

We expected that mean annual precipitation would play a greater role in divergence of the big 

bluestem ecotypes given drought-related phenotypic differences within the ecotypes (Johnson et 

al. in prep) and our finding that PCA eigenvalue 1 was significantly correlated with mean annual 

rainfall amounts across the three ecoregions (R
2
=0.48, data not shown). However, temperature 

variation also was largely associated with AFLP markers. Temperature variables also may exert 

selective pressures on populations of big bluestem as sites studied included western regions with 

more frequent heat stress. Temperature variables (long-term mean annual diurnal variation and 

fraction of days over 35˚C) were associated with a total of 17 marker loci.  Interestingly, two 

markers (marker 269 and marker 301 in the 387 loci data set) were associated with temperature 

but not precipitation variables.  This suggests that our marker density is high enough to have 

covered regions of the genome that may be influenced by distinct environmental pressures.   All 

outlier loci identified to be under potential diversifying selection across ecotypes were also 

correlated with at least one geo-environmental factor, suggesting we have successfully probed 

both neutral and non-neutral diversity across the big bluestem genome.  
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Genetic Structuring Implications for Restoring the Dwindling Tallgrass Prairie Ecosystem 

 

The loss of genetic diversity, habitat fragmentation, environmental and demographic changes, 

and inbreeding depression all contribute to the risk of species’ loss (Frankham 2003, Rouse et al. 

2011). The small percentage of tallgrass prairie ecosystem left in the U.S. Midwest occurs along 

the longitudinal precipitation gradient studied here.  The genetic information we have derived 

along this gradient are thus relevant to conservation and restoration practices in the U.S. Midwest 

occurring along this environmental gradient.  While we cannot make broad recommendations at 

this point in the study, one point of concern for future restoration of tallgrass prairie lies in 

evidence for marker allele frequency divergence across Illinois and Kansas ecoregions.  Allele 

frequency divergence between Illinois ecotype and Kansas ecotypes has the potential to result in 

genetic swamping or loss of local adaptation if mixed plantings of these ecotypes were planted 

along the environmental gradient.   Field studies complemented with genetic analyses on these 

particular prairie gene pools are necessary to make any further conclusions or land management 

recommendations, however.  

  

 Concluding Remarks 

  

We have shown that there is indeed genetic differentiation of the three big bluestem ecotypes (in 

particular Central and Eastern Kansas ecotypes from Illinois ecotypes) which are dispersed 

naturally across the United States Midwest environmental cline. The potential to utilize native 

ecotypes for restoration practices is useful given the high genetic diversity discovered in each of 

the 11 prairies populations/sites in this study; however, increased genetic similarity among a 
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large number of individuals from the same prairie indicates that planting mixed populations 

stands may provide the greatest buffer against future climate change due to maintaining 

biodiversity. Another benefit of planting mixed ecotypes is to maintain diversity over landscapes 

which may include small-scale habitat variation or pressures.  One might expect planting mixed 

seed from many populations of big bluestem would thus potentially avoid genetic maladaptation 

to given regional climates; however the genetic divergence of various gene pools from Kansas 

vs. Illinois shown here may result in potential genetic swamping.  The divergence of allele 

frequencies across Kansas into Illinois suggests that there is reduced gene flow between these 

sites, despite weak detection of isolation by distance along the longitudinal environmental 

gradient. The lack of isolation by geographical distance yet allele frequency divergence can be 

explained by other isolating factors (reduced population size, founder effects, and habitat-

specific environmental pressures) playing a larger role in the divergence of Kansas and Illinois 

ecotypes or a sampling bias.  Interestingly, this weak relationship between geographic distance 

and genetic distance may suggest environmental adaptation is more significant than geographic 

isolating factors among Kansas and Illinois ecotypes (as found in Lee and Mitchell-Olds 2011 in 

Boechera stricta natural populations).  

 

A weakness in past studies of genetic diversity in big bluestem and other studies is that genetic 

markers are studied in isolation without any tests for local adaptation of ecotypes across 

environmental gradients (Moncado et al. 2005).  A great strength of this research is that the 

prairie sources investigated here are also included in a long-term reciprocal garden test for 

ecotypic adaptation.  Thus, better conclusions can be made over years of the study to inform land 

management and tallgrass prairie restoration. We would encourage more studies of sequence-
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based genetic markers (RAD tags) co-performed with reciprocal garden or transplant tests for 

making recommendations for restoration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

References 

Arrigo, N., J. W. Tuszynski, D. Ehrich, T. Gerdes, and N. Alvarez. 2009. Evaluating the impact 

of scoring parameters on the structure of intra-specific genetic variation using RawGeno, 

an R package for automating AFLP scoring. BMC Bioinformatics 10:1–14.   

Avolio, M.L., C.C. Chang, and M.D. Smith. 2011. Assessing fine-scale genotypic structure of a 

dominant species in native grasslands. American Midland Naturalist 165: 211–224. 

Boileau, M.G., P. Hebert, and S.S. Schwartz. 1992. Non-equilibrium gene frequency divergence: 

persistent founder effects in natural populations. Journal of Evolutionary Biology 5: 25-

39.  

Bomblies, K., L. Yant, R.A. Laitinen, S. Kim, J.D. Hollister, N. Warthmann, J. Fitz, and D. 

Weigel. 2010. Local-scale patterns of genetic variability, outcrossing, and spatial 

structure in natural stands of Arabidopsis thaliana. PLoS Genetics 6(3): e1000890. 

doi:10.1371/journal.pgen.1000890 

Bonin, A., E. Bellemain, P.B. Eidesen, F. Pompanon, C. Brochmann, and P. Taberlet. 2004. How 

to track and assess genotyping errors in population genetics studies. Molecular Ecology 

13:  3261-3273.  

Bonin, A., D. Ehrich, and S. Manel. 2007. Statistical analysis of amplified fragment length 

polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular 

Ecology 16(18): 3737-58.  

Cremieux, L., A. Bischoff, H. Muller-Scharer, and T. Steinger. 2009. Gene flow from foreign 

provenances into local plant populations: fitness consequences and implications for 

biodiversity restoration. American Journal of Botany 97(1): 94-100.  

Dice L.R. 1945. Measures of the amount of ecologic association between species. Ecology 26: 

297–302. 

Doyle J.J., J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf 

tissue. Phytochem Bull 19: 11-15.  

Earl, D.A. and B.M. vonHoldt. 2012. STRUCTURE HARVESTER: a website and program for 

visualizing STRUCTURE output and implementing the Evanno method. Conservation 

Genetics Resources 4(2): 359-361.  

Ehrich, D. and N.C. Stenseth. 2001. Genetic structure of Siberian lemmings (Lemmus sibiricus) 

in a continuous habitat: large patches rather than isolation by distance. Heredity 86: 716-

730.  



48 

 

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals 

using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.  

Foll, M. and O. Gaggiotti. 2008. A genome-scan method to identify selected loci appropriate for 

both dominant and codominant markers: A Bayesian perspective. Genetics 180: 977–993. 

Frankham, R. 2003. Genetics and conservation biology. C.R. Biologies 326: S22-S29.  

Gaggiotti, O.E., D. Bekkevold, H.B.H. Jorgensen, M. Foll, G.R. Carvalho, C. Andre, and D.E. 

Ruzzante. 2009. Disentangling the effects of evolutionary, demographic, and 

environmental factors influencing genetic structure of natural populations: Atlantic 

herring as a case study. Evolution 63(11): 2939-2951.  

Gustafson, D.J., D.J. Gibson, D.L. Nickrent. 1999. Random amplified polymorphic DNA 

variation among remnant big bluestem (Andropogon gerardii Vitman) populations from 

Arkansas’ Grant Prairie. Molecular Ecology 8: 1693-1701.  

Gustafson, D.J., D.J. Gibson, and D.L. Nickrent. 2004. Competitive relationships of Andropogon 

gerardii (Big Bluestem) from remnant and restored native populations and select 

cultivated varieties. Functional Ecology 18: 451-457.  

Hancock, A.M., D.B. Witonsky, G. Alkorta-Aranburu, C.M. Beall, A. Gebremedhin, et al. 2011. 

Adaptations to climate-mediated selective pressures in humans. PLoS Genetics 7(4): 

e1001375. doi:10.1371/journal.pgen.1001375 

Hohenlohe, P.A. S. Bassham, P.D. Etter, N. Stiffler, E.A. Johnson, W.A. Cresko. 2010. 

Population genomics of parallel adaptation in threespine stickleback using sequenced 

RAD tags. PLoS Genetics 6(2): e1000862. doi:10.1371/journal.pgen.1000862 

Holland, B.R., A.C. Clarke, and H.M. Meudt. 2008. Optimizing automated AFLP scoring 

parameters to improve phylogenetic resolution. Systematic Biology 57(3): 347-366.   

Holderegger R. and H.H. Wagner. 2008. Landscape genetics. Bioscience 58(3): 199-207.  

Hufford, K.M. and S.J. Mazer. 2003. Plant ecotypes: genetic differentiation in the age of 

ecological restoration. Trends in Ecology and Evolution 18:147-155 

IPCC Report. 2007. Climate change 2007: Physical Science Basis. Approved at 10
th

 session of 

Working Group I. at the IPCC. IPCC, Paris, France, February 2007.  

 

Johnson et al. in prep. Differential establishment, cover, and gas exchange among ecotypes of a 

dominant grass big bluestem Andropogon gerardii in reciprocal gardens along a Great 

Plains climatic gradient.  

 

Jones, M.D. and L.C. Newell. 1946. Pollination cycles and pollen dispersal in relation to grass 

improvement. Nebraska Agricultural Experimental Station Research Bulletin 148 



49 

 

Joost, S., A. Bonin, M.W. Bruford, L. Despres, C. Conord, G. Erhardt, P. Taberlet. 2007. A 

spatial genetic analysis method (SAM) to detect candidate loci for selection: towards a 

landscape genomics approach to adaptation. Molecular Ecology 16(18): 3955-3969.  

Joost, S., M. Kalbermatten, A. Bonin. 2008. Spatial analysis method (SAM): a software tool for 

combining molecular and environmental data to identify candidate loci for selection. 

Molecular Ecology Research 8: 957-960.  

Keeler, K. H.. and G. A. Davis. 1999. Comparison Of Common Cytotypes of Andropogon 

gerardii (Andropogoneae, Poaceae). American Journal of Botany 86(7):974 –979. 

Keller, I., A. Taverna, and O. Seehausen. 2011. Evidence of neutral and adaptive genetic 

divergence between European trout populations sampled along altitudinal gradients. 

Molecular Ecology 20: 1888-1904. 

 

Knapp, A.K., J.K. Koelliker, J.T. Fahnestock, and J.M. Briggs. 1993. Water relations and 

biomass responses to irrigation across a topographic gradient in tallgrass prairie. 13
th

 

North American Prairie Conference pp. 215-219.  

Knight, C.A., H. Vogel, J. Kroymann, A. Shumate, H. Witsenboer, and T. Mitchell-Olds. 2006. 

Expression profiling and local adaptation of Boechera holboellii populations for water 

use efficiency across a naturally occurring water stress gradient. Molecular Ecology 15: 

1229-1237.  

Kosman, E. and K.J. Leonard. 2005. Similarity coefficients for molecular markers in studies of 

genetic relationships between individuals for haploid, diploid, and polyploid species. 

Molecular Ecology 14: 415-424.  

Laurent, R., M. Legault, and L. Bernatchez. 2003. Divergent selection maintains adaptive 

differentiation despite high gene flow between sympatric rainbow smelt ecotypes 

(Osmerus mordax Mitchill). Molecular Ecology 12: 315-330.  

Lee C.R. and T. Mitchell-Olds. 2011. Quantifying effects of environmental and geographical 

factors on patterns of genetic differentiation. Molecular Ecology 20: 4631-4642.  

Lowry, D.B., M.C. Hall, D.E. Salt, and J.H. Willis. 2009. Genetic and physiological basis of 

adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New 

Phytologist 183: 776-788.  

Luikart, G., P.R. England, D. Tallmon, S. Jordan, and P. Taberlet. 2003. The power and promise 

of population genomics: from genotyping to genome typing. Nature Reviews Genetics 4: 

981-994.  

Manel, S., M.K. Schwartz, G. Luikart, and P. Taberlet. 2003. Landscape genetics: combining 

landscape ecology and population genetics. Trends in Ecology and Evolution 18(4): 189-

197. 



50 

 

 

Mattersdorfer, K. S. Koblmuller, and K.M. SEFC. 2012. AFLP genome scans suggest divergent 

selection on colour patterning in allopatric colour morphs of a cichlid fish. Molecular 

Ecology 19: 3806-3823.  

 

McCullagh, P. and J.A. Nelder. 1989. Generalized linear models. Chapman and Hall: London. 

 

McKay, J.K., J.G. Bishop, J. Lin, J.H. Richards, A. Sala, and T. Mitchell-Olds. 2001. Local 

adaptation across a climatic gradient despite small effective population size in the rare 

sapphire rockcress. Proceedings of the Royal Society of London, Biological Sciences 268: 

1715-1721.  

McKay, J. K., C. E. Christian, Harrison S, and K. J. Rice. 2005.  "How local is local?" - A 

review of practical and conceptual issues in the genetics of restoration.  Restoration 

Ecology 13: 432-440.  

Moncada, K.M., N.J. Ehlke, G.J. Muehlbauer, C.C. Sheaffer, D.L. Wyse, and L.R. DeHaan. 

Crop Science 47: 2379-2389.  

National Oceanic & Atmospheric Administration (NOAA). U.S. Department of Commerce. 

2012. “U.S. Drought Monitor”. Updated July 12 2012.  

 

Nei , M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of 

restriction endonucleases. Proceedings of the National Academy of Sciences 76: 5269-

5273.  

 

Nielsen, E., J. Hemmer-Hansen, N.A. Poulsen, V. Loeschcke, T. Moen, T. Johansen, C. 

Mittelholzer, G. Taranger, R. Ogden, and G.R. Carvalho. Genomics signatures of local 

directional selection in a high gene flor marine organism; the Atlantic cod (Gadus 

morhua). 2009. BMC Evolutionary Biology 9: 276 

 

Norrmann, G. A., C. L. Quarin, and K. H. Keeler.  1997.  Evolutionary implications of meiotic 

chromosome behavior, reproductive biology, and hybridization in 6X and 9X cytotypes of 

Andropogon gerardii (Poaceae).  American Journal of Botany 84:201-207. 

 

Owsley, C.M. 2000. USDA-NRCS Jimmy Carter Plant Materials Center, Americus, GA. Jun. 

200. 16p.  

Parisod, C. and S. Joost. 2010. Divergent selection in trailing- versus leading-edge populations of 

Biscutella laevigata. Annals of Botany 105(4): 655-660.  

Peakall, R. and P.E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population genetic 

software for teaching and research. Molecular Ecology Notes 6: 288-295. 

Price, D., P. Salon, and M.D. Casler. 2012. Big bluestem gene pools in the Central and 

Northeastern United States. Crop Science 52: 189-200.  



51 

 

Pritchard, J.K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using 

multilocus genotype data. Genetics 155: 945-959.  

Ramstad, K.M. C.A. Woody, G.K. Sage, and F.W. Allendorf. 2004. Founding events influence 

genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, 

Alaska. Molecular Ecology 13: 277-290.  

Rosenberg N.A. 2004. Distruct: a program for the graphical display of population structure. 

Molecular Ecology Notes 4: 137-138.  

Rouse, M. N., A.A. Saleh, A. Seck, K.H. Keeler, S.E. Travers, S.H. Hulbert, and K.A. Garrett. 

2011. Genomic resistance gene homolog diversity of the dominant tallgrass prairie 

species across the U.S. Great Plains precipitation gradient. PLoS ONE 6(4): e17641.  

Samson, F. and F. Knopf. 1994. Prairie Conservation in North-America. Bioscience 44: 418-421. 

Soil Conservation Service (SCS). 1999. Conservation Reservation Program. U.S. Department of 

Agriculture, Washington, D.C. National Bulletin No. 300-0-8.  

Sorensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based 

on similarity of species content and its application to analyses of the vegetation on 

Danish commons. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter 5: 1-

34.  

Sork, V.L., F.W. Davis, R. Westfall, A. Flint, M. Ikegami, H. Wang, and D. Grivet. 2010. Gene 

movement and genetic association with regional climate gradients in California valley 

oak (Quercus lobata Nee) in the face of climate change. Molecular Ecology 19: 3806-

3823.  

 

Stearns, S.C. 1976. Life history tactics: a review of the ideas. Quarterly Review of Biology 51: 3-

47.  

 

Stuefer, J.F., N.P.R. Anten, H. de Kroon, J.L. Peters, A. Smit-Tiekstra, P.J. Vermeulen, and H.J. 

During. 2009. Genotypic selection shapes patterns of within-species diversity in 

experimental plant populations. Journal of Ecology 97: 1020-1027.  

 

Tompkins, R.D., W.C. Stringer, and W.C. Bridges Jr. 2011. An outcrossing reciprocity study 

between remnant big bluestem (Andropogon gerardii) populations in the Carolinas. 

Ecological Restoration 29: 339-345. 

 

Vekemans, X. 2002. AFLP-SURV version 1.0. Distributed by the author. Laboratoire de 

Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium. 

Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. 

Pelman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA 

fingerprinting. Nucleic Acids Research 23: 4407–4414. 



52 

 

Wright, S. 1942. Isolation by distance. Genetics 28: 114-138.  

 

Yeung, C.K.L. P. Tsai, R.T. Chesser, R. Lin, C. Yao, X. Tian, and S. Li. 2010. Testing founder 

effect speciation: divergence population genetics of the spoonbills , C.K.L. P. Tsai, R.T. 

Chesser, R. Lin, C. Yao, X. Tian, and S. Li. 2010. Testing founder effect speciation: 

divergence population genetics of the spoonbills Platalea regia and P. minor 

(Threskiornithidae, Aves). Molecular Biology and Evolution 28(1): 473-482. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

 Figures and Tables 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prairie site is listed on the x-axis and total number of bands on the y-axis.  A similar 

number of total bands (blue) were recovered across two primers for each of the eleven 

source populations.  The majority of total AFLP bands generated per prairie site were at 

frequencies ≥ 5% (orange). DES, FUL, TM, WAL=Illinois ecotype; CAR, KON, TAL, 

TOW= Eastern Kansas ecotype; CDB, SAL, WEB = Central Kansas ecotype 

 

 

 

 

 

 

 

 

 

 

 

        

        Figure 2.1 AFLP band results across natural prairie sources.   



54 

 

 

 

 

The tree was built in R using the Dice coefficient of dissimilarity (Dice 1945). Individuals are 

color-coded according to ecotype/ecoregion: Blue=Illinois, Green=Eastern Kansas, Red= Central 

Kansas.  

 

 

 

 

 

 

 

Figure 2.2 Un-rooted neighbor-joining tree of genetic dissimilarity between individuals. 
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Principle coordinate analysis based on the presence/absence of 387 AFLP marker loci across 378 big bluestem DNA samples.  

Individuals are color-coded according to ecoregion/ecotype: Blue=Central Kansas, Green= Eastern Kansas, Red= Illinois ecotype.  

Kansas ecotypes (red) clearly separate from Illinois ecotype (blue) within 2 PCA axes (axis 1 explaining 38% of the variation and 

axis 2 explaining 23% of the variation, total variation captured=61%).   

 

 

Figure 2.3 Genetic principle coordinate analysis between individuals.  
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Results are from STRCUTURE run with burn-in=20,000 and MCMC steps=500,000.  The 

plateau of highest likelihood at K=6 confirms delta K calculations that K=6 is indeed the most 

likely solution.  After K=6, the variation across 10 iterations of each K increases.  

 

 

  

Mean of ln 

estimated prob of 

data 

 

 

 

      K clusters 

Figure 2.4 Plot of ln estimated probability of data for each K. 
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STRUCTURE analysis (20,000 burn-in and 500,000 MCMC steps) across 10 runs of K=1-10    

was performed prior to calculation.  The sharp increase at K=6 in delta K suggests the most 

likely solution to be K=6 clusters.  (Evanno et al. 2005). 

 

 

 

 

 

 

 

 

 

Figure 2.5 Delta K calculation plotting change in Delta K with increasing K clusters. 
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The most likely solution, K=6 (six genetic groups) is shown. Dark black lines separate individual 

locations (regions) across the environmental gradient.  Each color indicates one genetic group to 

which individual (represented by bars or columns) belong.  Hays and Manhattan individuals 

consist of individuals belonging to the same genetic cluster, with admixture observed in the all 

locations.  Illinois shares some similarity with Hays and Manhattan-derived individuals but 

remains distinct. Hays=Hays, Kansa (Central Kansas ecoregion), Manhattan=Manhattan, Kansas 

(Eastern Kansas ecoregion).  

 

  Figure 2.6 STRUCTURE barplot organized by location across environmental gradient.   
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     Figure 2.7 STRUCTURE barplot organized by Q (ancestry fractions).   

     Each color represents a genetic group or population (K) with mixed ancestry designated by 

mixed colors in each column of the barplot.  The STRUCTURE run resulted in K=6 genetic 

clusters as most likely. Within each prairie (separated by thin black lines), similar allele 

frequencies and thus shared ancestry were observed with some admixed individuals evident.  

Webster, Saline, Cedar Bluff=Central Kansas ecotype; Carnahan, Konza, Tallgrass, and Top 

of the World = Eastern Kansas ecotype; Fult’s Hill, Walters, DeSoto, and Twelve 

Mile=Illinois ecotype.  
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  Figure 2.8 Mantel test of Nei genetic distance matrix with pairwise geographic distance matrix between prairie sites.   

The results are given for 999 random permutations.  Each dot represents one pairwise comparison. Geographic distance 

between prairie sites is given in kilometers (km) and genetic distance was calculated using Nei genetic distance (Nei and 

Li 1978, analogous to the Dice coefficient). The regression line fit is shown in red (R
2
= 0.17, p<0.001).  
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Figure 2.9 Analysis of molecular variance.  

The pie chart shows the partitioning of total genetic variation within-prairies, among-prairies, 

and across-ecoregios (Kansas and Illinois).  Central Kansas and Eastern Kansas ecoregions 

were grouped as an ecoregion based on population structure results. The results are shown for 

999 total random permutations (p<0.001).  
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Plot shows FST vs. significance (log 10 posterior odds, PO) across 387 polymorphic AFLP markers.  Data was organized by ecotype 

(Central Kansas, Eastern Kansas, Illinois).  The observed global FST-= 0.1.  Eleven marker loci (ellipse) are high outliers with greater 

genetic differentiation than expected under neutravlity (FDR=0.05, vertical line showing singificance cut-off).  These eleven candidate 

loci are under possible positive or diversifying (bi-directional) selection (alpha>0) wih substantial (Log(Po)≥0.5) to decisive 

(Log(PO)>2.0) evidence for selection. 

  Figure 2.10 FST-outlier analysis with 387 polymorphic markers included.  
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Plot shows FST vs. significance (log 10 posterior odds, PO) across 325 polymorphic AFLP markers.  Data was organized by ecotype 

(Central Kansas, Eastern Kansas, Illinois).  The observed global FST- = 0.1.  Eight marker loci (ellipse) are high outliers with greater 

genetic differentiation than expected under neutravlity (FDR=0.05, vertical line showing singificance cut-off).  These eight candidate 

loci are under possible positive or diversifying (bi-directional) selection (alpha>0) with substantial (Log(Po)≥0.5) to decisive 

(Log(PO)>2.0) evidence for selection.

Figure 2.11 FST-outlier analysis with 325 polymorphic markers included. 
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Figure 2.12 AFLP marker frequency shifts related to geo-environmental variables.  

The frequency pattern plots show probability of marker (y-axis) relative to (A) elevation of prairie (m) (B) historical mean annual precipitation 

(cm), (C) temperature severity index (fraction of days >35˚C since 1961), and (D) mean annual diurnal temperature variation (˚C).  In (A), Marker 

371 is shown at high frequency with greater prairie elevation. For all logistic regressions, McFadden and Efron R
2 
is greater than 0.3. Marker 

frequency shifts across the environmental gradient suggests important environmental pressures or conditions to AFLP marker differentiation.  
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Associations were generated using the MATSAM program (Joost 2007, 2007).  Blue bars are representative of the number of AFLP 

loci which were identified as “neutral” loci in BAYESCAN which are associated with geo-environmental variables. Black bars 

represent the number of FST-outlier loci identified in BAYESCAN which are associated with geo-environmental variables. 

         Number of Loci 

Figure 2.13 Frequency barplot of AFLP loci associated with geo-environmental variables.  
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Table 2.1 Environmental factors varying by ecoregion along big bluestem’s dominant range.  

Factors varying across location / ecoregion (Hays, KS=Central Kansas; Manhattan, KS=Eastern KS; Carbondale, IL) in the U.S. 

Midwest include soil type, elevation (m), mean annual precipitation (MAP, cm) calculated in 2010 and historically since 1961, 

precipitation of the driest year since 1961, average and 2010 growing degree days (GDD), potential evapotranspiration from lakes 

(PET, cm/year) based on free water surface evaporative demand (Koelliker personal comm.), and an aridity index.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location 

(Ecoregion) 
Soil Type 

 

Elevation 

(m) 

 

MAP, 2010 

(cm) 

 

MAP,  

since 1961 (cm) 

 

 

 

 

Ppt of driest 

year (cm) 

 

 

 

 

Average 

GDD 

 

 

 

 

2010 

GDD 

 

 

 

 

PET 

(cm/yr) 

 

 

 

 

 

Aridity 

 

      

         

Hays, KS     

Roxbury Silt-

loam 
603 50.11 58.22 (± 13.13) 36.27 3799 3237 139 81 

(Central KS) 

Ellis County 

 

Manhattan, 

KS  

Sandy-loam 315 67.82 87.15 (± 20.04) 39.16 4156 3205 127 41 (Eastern KS) 

Riley County 

 

Carbondale, 

Illinois          

Silt-loam 127 66.95 116.73 (± 24.76) 67.38 4087 3597 99 -18 
(Illinois)  

Jackson 

County 
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Table 2.2 Prairie collection site including AFLP sample size and prairie size in acres.  

 

 

 

 

 

 

Ecoregion (Location) Collection Site County AFLP Sample Size Prairie Size (acres) 

 
Webster Res.  Rooks 40 880 

Central Kansas  
Saline Expt 

Range 
Ellis 30 2,400 

(Hays, KS) 
Cedar Bluffs 

Res 
Trego 33 1,100 

 

Carnahan 

Cove St. Pk 
Pottawatomie 47 245 

Eastern Kansas Konza Prairie Riley/Geary 22 3,487 

(Manhattan, KS) 
Tallgrass Nat. 

Pk 
Chase 23 10,894 

  
Top of the 

World Pk 
Riley 28 150 

 
Desoto Jackson 55 7 to 24 

Illinois Twelve Mile 
Effingham, Fayette, and 

Marion 
43 NA 

(Illinois) Fults Monroe 15 528 

  Walters Jasper 42 NA 
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Table 2.3 Prairie environmental variables used in AFLP marker-environmental correlation (SAM) analyses.  

Prairie weather site for weather data is included as well as supplementary weather sites used from NOAA database.  Environmental 

descriptors include location (GPS coordinates), prairie elevation (m), 2011 cumulative seasonal precipitation (during bluestem 

growing season from April-August), 2011 mean annual precipitation (cm, 2011 MAP), long-term mean annual precipitation (cm, LT 

MAP), a temperature severity index (fraction of days since 1961 above 35˚C), and mean annual diurnal temperature variation (from 

average daily max temp-min temp) since 1961 (MAD, ˚C). NA= Carnahan Cove site 2011 MAP was omitted as data was unavailable. 

 

 

 

 

 

 

REGION  PRAIRIE 

WEATHER 

SITE(S) 

PRAIRIE 

LONG (W) 

PRAIRIE 

LAT (N) 

PRAIRIE 

ELEVATION (m) 

2011  SEASONAL 

PPT (cm) 

2011 MAP 

(cm) 

LT MAP 

(cm) 

TEMP SEVERITY 

INDEX 

MAD 

(˚C) 

CENTRAL 

       KS 

 
 

Webster Res Webster Dam 99.32 39.24 606.00 99.67 58.47 56.62 0.054 -2.73 

Saline Experimental Range 

Ellis 12, Hays1S, 

Ellsworth 99.14 39.02 641.00 99.11 51.64 66.36 0.040 -4.11 

Cedar Bluffs Res Cedar Bluff Dam 99.46 38.45 688.00 97.66 38.13 51.42 0.055 -3.35 

EASTERN 

      KS 
 

 

 

Konza Prairie Manhattan 6 SW 96.36 39.05 366.00 99.19 79.88 85.34 0.037 -5.00 

Tallgrass Prairie NP Tallgrass Prairie  96.33 38.25 392.00 97.16 74.32 79.89 0.067 -5.00 

Carnahan Cove St. Park 

Westmoreland, 

Wamego 96.38 39.20 389.00 50.47 NA 84.11 0.032 -4.86 

Top of the World Park Tuttle Creek, KSU 96.37 39.13 379.00 99.39 84.61 85.70 0.039 -4.63 

 
 

 

ILLINOIS  
 

 

 
 

DeSoto Prairie 

Murphysboro, 

Carbondale 89.14 37.51 119.00 95.28 175.62 111.82 0.014 -5.50 

Twleve Mile Prairie Kinmundy, Salem 88.50 38.46 160.00 97.69 148.72 103.76 0.014 -6.13 

Fults Hill Prairie 

 

Sparta, Prairie Du 

Rocher 89.48 37.58 215.00 95.45 120.42 107.43 0.018 -5.91 

Walters Prairie Newton, Charleston 88.09 38.59 150.00 98.02 141.45 99.14 0.008 -7.01 
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Table 2.4 Pairwise Nei’s unbiased genetic distances between 11 prairies.  

Nei’s unbiased genetic distance = -1 * Ln (Nei Identity) (Nei and Li 1978). Prairies are color-coded by ecotype/ecoregion: Blue= 

Illinois, Green= Eastern Kansas, Red= Central Kansas.     

 

 

 

 

 

 DES FUL TM WAL CAR KON TAL TOW CDB SAL WEB 

DES 0.000                     

FUL 0.054 0.000                   

TM 0.012 0.048 0.000                 

WAL 0.019 0.044 0.008 0.000               

CAR 0.047 0.071 0.058 0.060 0.000             

KON 0.053 0.023 0.048 0.043 0.056 0.000           

TAL 0.042 0.034 0.038 0.033 0.035 0.022 0.000         

TOW 0.051 0.030 0.050 0.047 0.043 0.012 0.020 0.000       

CDB 0.048 0.038 0.058 0.057 0.029 0.028 0.025 0.020 0.000     

SAL 0.053 0.071 0.066 0.066 0.004 0.054 0.037 0.043 0.026 0.000   

WEB 0.068 0.076 0.066 0.064 0.032 0.056 0.034 0.048 0.049 0.035 0.000 
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Table 2.5  Ecoregion-specific AFLP marker loci. 

 

Selective Primer Set BandBand  Length (bp) Marker ID Private Band Ecoregion 

FAM-E-AAA+M-CGC 135 M34 Hays / Manhattan 

FAM-E-AAA+M-CGC 257 M118 Hays / Manhattan  

FAM-E-AAA+M-CGC 378 M193 Hays / Manhattan 

HEX-E-ACC+M-CTG 363 M365 Hays / Manhattan 

FAM-E-AAA+M-CGC 365 M187 Manhattan  

FAM-E-AAA+M-CGC 419 M210 Manhattan  

FAM-E-AAA+M-CGC 443 M217 Manhattan  

HEX-E-ACC+M-CTG 323 M349 Manhattan  

HEX-E-ACC+M-CTG 366 M366 Manhattan  

HEX-E-ACC+M-CTG 394 M374 Manhattan  

FAM-E-AAA+M-CGC 367 M188 Illinois / Manhattan 

FAM-E-AAA+M-CGC 374 M191 Illinois / Manhattan 

HEX-E-ACC+M-CTG 265 M326 Illinois / Manhattan 

HEX-E-ACC+M-CTG 273 M330 Illinois / Manhattan 

HEX-E-ACC+M-CTG 275 M331 Illinois / Manhattan 

HEX-E-ACC+M-CTG 280 M333 Illinois / Manhattan  

HEX-E-ACC+M-CTG 294 M338 Illinois / Manhattan 

HEX-E-ACC+M-CTG 310 M344 Illinois / Manhattan 

HEX-E-ACC+M-CTG 318 M347 Illinois / Manhattan 

HEX-E-ACC+M-CTG 327 M351 Illinois / Manhattan 

HEX-E-ACC+M-CTG 337 M357 Illinois / Manhattan 

HEX-E-ACC+M-CTG 372 M368 Illinois / Manhattan  

HEX-E-ACC+M-CTG 395 M375 Illinois / Manhattan 

HEX-E-ACC+M-CTG 298 M339 Illinois  

HEX-E-ACC+M-CTG 349 M361 Illinois  

HEX-E-ACC+M-CTG 400 M376 Illinois  

HEX-E-ACC+M-CTG 453 M385 Illinois 
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Table 2.6 Analysis of molecular variance statistical summary.  

AFLP marker data with 11 prairie sites entered as assumed populations.  Regions are Kansas ecoregion and Illinois ecoregions based 

on population structuring observed in STRUCTURE. In analyses, control samples were included.   p<0.001.  df= degrees of freedom, 

SS= sum of squares, MS= mean squares.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of variation         df      SS      MS 

Estimated       

Variance 

             Percent        

Total variance 

            

Among Regions 1 1320.239 1320.239 5.120 9% 

Among Prairies 9 2387.695 265.299 6.081 11% 

Within Prairies 401 17386.880 43.359 43.359 80% 

Total 411 21094.813  54.560 100% 
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Table 2.7 Significant associations of AFLP markers with geo-environmental predictor variables 

For all models, logistic regression analyses in MATSAM were performed (Joost 2007, 2008).  Geo-environmental predictor variables, 

in order of number of significant associations with AFLP markers included: prairie longitude (W), prairie annual precipitation in 2011 

(cm), prairie temperature severity given by fraction of days over 35˚C since 1961, mean annual diurnal temperature variation given by 

average daily max. temperature – min temperature since 1961 (˚C), prairie elevation (m), prairie mean annual precipitation since 1961 

(cm), and prairie latitude (N).  Marker ID associated with the geo-environmental predictor variable is given in parentheses. 

Associations were deemed significant if it was significant in both Wald and G tests and had McFadden and Efron pseudo R
2
>3.0. 

 

 

Geo-environmental Predictor Variable                                                Number of Significant AFLP Marker Correlations (Marker ID) 

Prairie Longitude  10 (228, 232, 237, 250, 252, 256, 263, 275, 292, 371) 

Annual Precipitation in 2011 10 (228, 232, 237, 242, 250, 252, 256, 275, 292, 371) 

Historical Temperature Severity 9 (228, 232, 237, 250, 256, 269, 275, 336, 371) 

Mean Annual Diurnal Temperature Variation 8 (228, 232, 237, 275, 292, 301, 336, 371) 

Prairie Elevation 8 (228, 232, 237, 250, 256, 275, 292, 371) 

Historical Mean Annual Precipitation  6 (228, 232, 250, 256, 275, 371) 

Prairie Latitude  4 (242, 252, 292, 336) 
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Chapter 3 - Summary and Future Directions 

Big bluestem (Andropogon gerardii Vitman) is a vital ecological-dominant of the rapidly 

disappearing tallgrass prairie ecosystem; thus, studies of ecotypic genetic variation within the 

species will help to inform prairie restoration practices and land management currently underway 

in the U.S. Midwest. The foundation behind this research was based on greenhouse and field 

reciprocal garden experiments in which significant phenotypic differentiation of big bluestem 

occurring naturally across a sharp precipitation gradient was observed (Johnson et al. in prep). 

Given phenotypic diversity of ecotypes along this gradient, we predicted differentiation of 

ecotypes. The specific objectives of this research project were to: 

 

1) probe the extent of neutral and non-neutral genetic differentiation and diversity across the 

genome of big bluestem ecotypes using an AFLP genome scan approach  

2) determine whether large-scale geographic isolation leading to population structuring can 

be detected across the Midwest environmental gradient 

3) discover whether environmental conditions of the native locations of big bluestem prairie 

sites are associated with AFLP marker loci frequency patterns and thus may generate 

hypotheses regarding important environmental selective pressures to ecotype 

differentiation. 
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Based on our study of neutral genetic diversity, which developed 387 AFLP marker loci for big 

bluestem, it was discovered that: 

 

 Kansas (Central and Eastern) and Illinois ecotypes of big bluestem are able to be 

genetically discriminated based on AFLP marker presence/absence, although Kansas 

ecotypes have significant overlap and thus cannot be genetically discriminated given this 

analysis. This trend in the data was strengthened by confirmation with different 

measures:  marker presence/absence, Dice coefficient of genetic distance, and marker 

allele frequencies.   

 

 There is a weak correspondence (R
2
=0.17, p<0.001) between increasing geographic 

distances across prairie sites/populations with increasing Nei’s unbiased genetic distance.  

This suggests ecotypes are differentiated also based on factors other than geographic 

isolation (founder effects, subdivision) or that results are limited by the geographic scales 

this study investigated (relatively large distances between ecoregions with very small 

distances between prairies within ecoregions). A different sampling design may find 

better support for isolation by distance.  

 

 Population structure is evident among Kansas vs. Illinois prairie ecoregions across the 

U.S. Midwest environmental gradient. Based on similar allele frequencies, six genetic 

clusters were identified.  Individuals from Kansas prairies, however, largely share 

membership in three genetic clusters. Thus, allele frequency divergence exists between 

Kansas and Illinois ecotypes.  
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 Despite population structure and genetic differentiation, high within-prairie diversity still 

exists, suggesting high genetic variation is maintained through the outcrossing nature of 

big bluestem or the large polyploidy genome of big bluestem, or a combination of both.  

 

 Eight AFLP outlier-loci were found to be highly differentiated (substantial to decisive 

evidence for selection for AFLP loci) relative to the species overall species FST (FST=0.1).  

These AFLP marker loci were detected when prairies were entered according to 

ecoregion into BAYESCAN, and thus represent loci that are highly differentiated across 

the three ecotype groups.  

 

 All marker loci identified to be under possible divergent selection were also significantly 

associated with environmental predictors (R
2
>0.3 for all marker-environment 

associations, significant Wald and G test results), namely mean annual precipitation (7 

markers associated) and longitude (8 markers associated). The marker loci under 

divergent selection and linked to geo-environmental parameters represented about half 

(57%) of the total number of markers linked to the environmental cline. By nature, 

environmental variables are correlated and some commentary on this correlation remains 

to be made.  
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 Given our findings, we can make the prediction that the superior Central Kansas ecotype 

(which appears to be locally adapted to drier environments in the field), if planted in 

restorations in Illinois, has the potential to be genetically “swamped” due to differences 

in allele frequencies between Kansas and Illinois ecoregions. However, genetic testing on 

field tests is needed to make substantial recommendations for restoring the tallgrass 

prairie ecosystem. 

This current neutral marker study could benefit from development of sequence-based markers 

(RAD-tags, for example) such that more detailed studies of sequence divergence across the 

genome between the Kansas ecotypes and Illinois ecotype may be studied.   Furthermore, it is 

recommended that fine-scale and broad-range sampling for genetic diversity of big bluestem be 

connected more extensively.  Such a study could lead to a better understanding of the population 

genetic processes leading to the genetic structuring of big bluestem populations along an 

important environmental gradient found here.   
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