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INTilODUCTION

Methods of solving a differential equation by digital conputer are

neither ne\-r nor few. The question of the neans of obtaining the solution

icith a i.ia:'CLiaun accuracy, a rrLniiiiui^ nuraber of computer instructions and

storage, and a iriiniauii amount of calculation tiiae consistent vxith stability

of the answer has been the source of e:>rtensive investigations. Standard

numerical analysis texts give raany procedures but these are rjst the subject

of this report.

This report reviews pre^'/ious works on trapezoidal convolution and

Romberg integration for digital solution of differential equations.

Numerical examples of solving first order differential equations vjith

above methods are presented. Efforts have been made to iinprove the accuracy

of the solution. Simpson's rule and higher order Newton-Cotes quadratures

require ultimately recursive calculations. Only instantly recursive calcu-

lations are amenable to Z-transform notation.

It is necessary to note that trapesoidal convolution cannot be carried

out readily on a digital computer because of the large number of multipliers,

adders, and storage capacity required if the operation is carried out in a

parallel scheme or the increasingly long computation times vxhen done serially'-,

rnis difficulty is by-passed by using recurrence relations.



TRAPEZOIDAL COWOLUTION

Trapezoidal convolution can be used to solve time-invariant, tine-

variant, continuous nonlinear, discontinuous nonlinear equations i-rith

arbitary initial conditions. There are many ways of utilizing trapezoidal

convolution to solve a given differential equation. Each of these is called

a program. Three classes of programs are discernible: the multiple-integrator

substitution program; the many-single-integrator prograra; and the single-

integrator program, Halijak (^) has generated a multiple-integrator

substitution program and a single-integrator prograra, the recursive program.

Approximate Convolution

The solution of a linear differential equation t'Tith constant coefficients

has the form of a convolution. The digital computer must approximate convo-

lution on a denumerable set of equally spaced points. The Riemann sum

appro^djaation is the one commonly used on digital differential analyzers

and finite differences. This first member of the Newton-Cotes quadrature

family is by-passed for the trapezoidal quadrature.

The trapezoidal approximation proceeds as follows:

rt n-1 /"(i^+l )T

J f(r) g (t-r) dr= X / ^^"^ s (nT-r) d^- (i)

k=o At

^1 Y. i"(^<T) g (nT-kT) + f(kT+T) g (nT-kT-T)1= J

2 k=0
'^ ^

The Z-transform of the sequence i J I is

X J 2- = T(Zf) (Zg) - 0.5T| f(0)Zg + g(0)Zf = Z(fg) (2)

n=0



The transforn for the Simpson's rule approxLmation need not be derived

because it and higher order quadratures do not yield an algebra under the

operations of addition and discrete convolution. The abbreviation of

trapezoidal convolution to T-convolution vri.ll be enployed.

The progran for solving a given n-^h order differential equation is

generated by viev^ing it as the integral equation.

y(t) -r/^ g(t-r) yWdT= / ^ il=2ll. :.:(r)dr (3)
^0 <) (n-1)!

where g(t-T) is a poljmonaal of degree (n-1 ) and xCt"/ is the forcing function.

It is evident that the primary task is to find the approximate Z-transforms

of l/s^ and Y/s''^ in order to solve this problem on a digital computer. This

can be done appropriately employing equation (2) and the additional starting

fact that Z(l/s) = l/(l-z).

Recursive Prograai

The recursive prograiTi uses a sequence of ascending order differential

equations derived from the given differential equation to solve same.

Consider the differential equation

(D^ H-aD^ -r bB + c) y(t) = ::(t), D = d/dt,

7(0) = y(0) = f(0) = 0, ^ t ^ 00 (^)

First, set up the differential equation

(i>i-a) y^(t) = 1, y^(0) = (5)

The Laplace transform of this D.E, yields after division by s

(l.|)y, =1^



Talcing the Z-transform of both sides and employing the approximate Z-transform

equation (2), of the convolution ^ y, yieldsS.I

2y, ^ 2Tz ^ V f-J \ (6)= 2Tz ^ 2: j^-J
\

[l-z] [(2+aT) - (2-aT)zJ ^s(s+a))

Tii3 above appro:>CLriiation is now used in the next derivate y (t), vrhich satisfies

(D^-faT+b) y^(t) =1, y (O) = y (O) = (?)
2 2 2

Dividing now by s(s+a) and solving yields

Zy i Td+z) 2Tz

2(1-z) (2-i-aT) - (^-2bT2)2 + (2-aT)z2 ^3^

= zf 1

(s(s^ + as + b).

The third derivative yields the complete solution of

ilP -f aD^ + bD + c) y(t) = x(t)

y(o) =y(o) =y(o) = (9)

Dividing its Laplace transform by s(s t- as + b) and using the previous

approximation yields

Zy i t3 zd-i-z) rzx-o.5x(o)3
(10)

(2+aT) - (6+aT-2bT^-cT^)z + (6-aT-2bT^+cT^)z2 - {2-3.1) z^

Initial conditions other than zero can be introduced at the last step.

Tne approximating recurrence relation is prepared from the transformation:

^ '

Zy ~> y z^'Zy ->
y^__^^

(11)



mtegratoi- Substitution Program

The integrator substitution program casts the Laplace transfora of the

given differential equation into inverse powers of s by a suitable division

and substitutes for then definite functions of z. First of all, the approxinate

sampled values of t^/n! , wliich corresponds to the transform l/s , are four-d

for a large positive integer n. The derivation of the approydinate sampled

r /

values depends on the fact that the initial value of t "fnl is zero except

for n=0. For non-urdty positive integers n, one calculates that

The above is now used as a descending recurrence relation

s s--i I s^-'v

T(1+z)

2(1-z)J '^ib^)
1 \ \^h+zx
s" -/ UCl-z)

(12)

(13)

until it stops at

^2(l-z)J '
'^'~^

, 2, 3, . . . (1^)

Calculating Z(l/s~) fror.i equation (2) and replacing n by (n-l), yield

2/U = I2 . r
T(l-t-z)

n-2

'(s^) (l-z)2 I 2(i-z)J . ^--2. 3. ^>, . . . (15)

Of course, the case of the missing integer has the knovrn value

\l]
" TTI (16)

which cannot be continued from the previous formula. One should note tl-.at

for n=1 , 2, 3» "the appro:djnate Z-transfom of l/s'^ coincides '-Jith the e:-:act

Z-transfom. The integrator substitution program is at hand when one finds

the sampled values of (l/s^) f (s). '.vlien n=l , direct calculation i-rith (2) yields



„ n -\ Td+z) ,- Tf(o)

VJhen 11=2, 3» . . .» direct calculation XiJith equations (I5) and (2) yields

lE(l-z),

Differentiator Substitution Prograra

Tiie differentiator substitution program does not require an intermediate

Laplace transfonaation, but does require one more initial condition which is

readily obtained from the given initial conditions and differential equation.

The derivation of the now program depends on equatiors (I6) and (1?) and

the Laplace transforms for D f (t). One must deal trith tx:o categories of

derivatives, the first and the others.

The approximate Z-transform of the first derivative is now obtained,

5irst, take the Laplace transform to obtain

Df(t) = sfCs) - f(0) = g(s) (19)

Divide by s to obtain

li = f-lf(0) (20)

Sampling, T-convolution and identification of g(0) = f(0) yields

T(±t4 2" . MQO ^ 2f - ^^ (21 )zCUz) ^^ 2(1-z) ^^ 1-z
'^'^' ''

Solving for Zg yields the desired

^V^.xl z. 2(l-z) ^ 2f(0) - T f(0) /ppNZ.Lx(o)i - ^rr-^ Zx -
Vr(i,-2) ^22;

The ne^rc. category of derivatives contains those of order two and liigher.

Starting ;^th



^^^ = S-^f(s) - Yl
^"^'^ ^^"'^(0) = E(s). i^^ 2 (23)

and dividing by s^ yields

Tald.n2 the appi-o:>ci2i2.te Z-transform jd.elds

Tz (y [zi - 0.5 s(o)] = -^ - z: ^ (^ttt)'
^^^^^ (25)

Keeping in riind the transition from l/s to l/s and noting that g(0) =

f^'^'ho) -lelds

- 1
n-k-1 fv) (n)

- 1: r^C'-^n i"^ no) + 0.5 f (0). n^ 2 (26)
::=1 L?C1-i-z)J

The presence of the teras f (O) in equation (22) and f (0) in equation

(26) evidence the need for one nore initial condition—a very slight penalty

for elird-nating the inten.iediato Laplace transfon-iation.

Tliis differentiator substitution prograir. is equivalent to the integrator

substitution and recursive prograia.

IM??.0^/3D T?.A.PSZOIDAL II-ITSGPJITIOM F0R:-IUIA

A:^ its SFF2CT 01! ZIAI>3Z01DXL COin^OLUTIO:i

The inprovenient eiTiploys an alternative fom of the Euler-Xaclaurin

fonr.ula. ilecall that the Taylor series representation of a function vjith

reiiainder is

S(x) = g(0) + xg^^\o) -i- 4 o^~^C0) -i- 4 2^''*(0) -^

/"" ^^^=^ g^''^(u)du

(27)
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If the given function is integrated, then lengthy computations involving

repeated use of this Taylor series yield

1 r^ g(x)dx = ^^^ -K !0 til ^^^(1,) ^28)
h^Q 2 IE 2

R(h) = )Lr (A- 2>.^ H-A?') g^^^ Uh)dX (29)

The remainder Il(h) is given by

Since the polynomial in the integrand is always positive on the interval of

integration, the first mean value theorem for estimating integrals can be

applied and yields

R(h):^ a— g^^^ (9h) 0< S< 1 (30)
120

The essential point of this forraiila is that the added terms involve only the

even derivatives of the function at the ^rA points of the interval.

Improved trapezoidal integration utilizes the first two terms of the

approximate integral. A lengthy application of this approximation to the

convolution of functions f (t) and g(t) yields

Z(fg) = T [(Zf)(zi) - 0.5(fQ zi - g^ Zf)j

[(zf)(zi-) - o.5(fQ zi+ g^ Zf)]

^[(z^)(zl) -o.5(fQ zi + g^ Zf))

- % [(zf)(Zg) - o.5(f^ zg H- s^ zf)]
•

(31

)

If this formula were used to solve a differential equation, the solution of

a recurrence-differential equation vrould be required. This is a more difficiilt

problem, than the original. The impasse can be broken by using the trapezoidal

12

V



dei'ivativG substitution prograai. Hovrever, difficulties can be anticipated

because the second derivative introduces points outside the integration

interval.

The improved trapezoidal int32ration in conjunction with the trapezoidal

derivatives leads to the general bilinear forn

Z(fi) = c^(Zf)(Zi) -:- ^Zf -r ^Z5 + ^

Computation yields

° '' z(l-^z)2 J

(32)

(33)

13 = Tg. p - 26z ~ 122^ - ^kJ + z'y ^^^ n - 2z + 3 z^

' "-

2^1-2 (i-i-22) J I 12 (i+z)2 -

" ^ 2i^2 (l-z2)
-• L 12 (1+z)2 J

^ - T r -1 + 7z -^ 2~ 4- z^
l

^ ^ T^
f
5 - 2z H- z^- 1 . «

12 I z(l4-z)2 J
^0"0 -2^ ^,^,)2 J

^0^0

(3^)

35)

- 22 "^ 2"

(1-^)2

'P-^ r ,7 "1 * * 171J ••

t- Lr^wJ Vo^fe Vo

J
"0^=0

(36)

Tito stumbling blocks are apparent in these formulas: the presence of the

2
factors l/z and l/(l-j-z) 'trhich represent a predictor and unbounded function

oscillating about zero respectively.

Recall that solution of a differential equation reo^uires knowledge of the

sampled values of l/s^ and (l/s^)i. The first step is to find Z(l/s'^). It

n+l n+2 •>^—

T

is possible to find Z(l/s" ), Z(l/s* ), and Z(l/s**'-^) which implies that

descending recurrence relations can be found which decrement the e:cponent by
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one, t'.7o, or three integers. The long series of calciilations are not

e:-±ibited. Hovrever, the recurrence relation which decreraents by two

integers is the only one which yields the expected e:cact Z(l/s ) and

Z(l/s ). This determines which systeai should be used in the next step.

Calculations of ZCg/s* ) produce or.l.7 tvro formulas free of l/(l-i-z)

factors. These are

7 M -\ ^ T f1+sl r -1 + I i!.z - 2^
1 - T(1 - 122 - z^

^ is ^J" 2 ll-zJl iTi J 2S - 242 (1-z) '0

4-
T~(l-i-z) „ ^'P
2i^(1-z) ''O 48 ^0 (37)

7 f 1 "^ • T^
f
1 + 1Q z 4-.. 2^1 - _ T^ 1 + 5z „ 4- T^ . /^^N

The 1/(1+2) factor or its powers introduce spurious approiximations even for

small sain.pling interval sizes.

_ J.

Testing the formula for Z(g/s) in the differential equation of e

cuic-ily reveals that this foriuula is spurious, though for a different reason.

The predictor l/z is the source of difficulty.

The formula for Z(g/s ) is satisfactory and is similar to the Boxer-

Thaler. Z-form operator for second order integration. A test computation in

the differential equation for sin a) t reveals that the resulting errors are

Sjialler than those obtained using the unimproved integrator substitution

program. On the other hand, some test computations on a second order

differential eq.uation vrith non 2ero coefficient for the first derivative term

has revealed that T-convolution yields better approxLination than those of

Z-form. It is therefore conjectured that equation (38) is best enployed in

differential eo^uations involving only even order derivatives.



11

Use of an ii'iprovsd trapezoidal quadrature introduces a maze of

possibilities vxliich \Than traversed yields a lone double integration formula 1

R0:-S2RC- i:JTEGIL'i.TIOrT

Romberg Algoritl^jn

Consider the IJowton-Cotes formulas of integration,

(1 ) Zie trapezoidal approiomaticn of the second order

/ f(x)dx = 1 (f +f ) - h f^^hv* B = 1 (39)

(2) Simpson's rule

r1 H . B,

'0
f (x)d.x = j U^f.j^^ )-^T^ f^-"(5). -'^ = 5J (W)

(3) Gauss formula

•1

J fC:c)dx = ^ (7f^ ^ 32f . -12f , +32f +7f ) - 3 77 f^°'(S)
-t 90 l/i^ 1/2 3/^ 1

2-^ 6)

3 = ^
. (^1

)

6 i^2

vrhere f _
= f (x).

One can observe some disadvantages:

1 ) The formation of tlie coefficients is complicated, and it is not e3.sj

to obtain a great nuir.ber of these coefficients nor to calculate them in a

recurrent marjrier;

2) Ey increasing the number 01 points for a fixed interval, one needs to

calculate again other numerical values;

3) Some of the coefficients become negative for n=3. For n=9 they are

all positive, but for n :^10 there are negative coefficients. This tends to

produce ooor roundoff nro-Derties.
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As a result, the higher order -Ie"'.-rbon-Cotes foriaulas are seldon used.

The order of the error ter^is jurcps by 2 in going frora an odd nuraber to the

ne:rt even nuraber, which tends to favor the even-order fomulas.

V/e desire an algorithm wliich '-.'e could apply easily to the digital

coviputcr; thJ.s algorithrr. i;iust be such that the coefficients do not appear

e:vplicitly; in other words > it vrill not ccnpel us to calculate the numerical

value of the integrand. Roriberg's method (10) has this advantage and besides

the error ter.^s are net worse than those of the ilewton-Cotes formulas. The

coefficients are always positive.

To obtain his algorithir-, Roi'iborg observed that Simpson's rule is a

linear cor.ioination of trapezoiaaj. formula: tj

1 (f -i- i^f , ^-r ) =±\l(b.^r tlb] -1-1 (Zlll^tl)
6 ^^0 1/2 'V 3 U^2 2 ^ 2 ^ 2 2 /J

"312 2 J

i-Ioreover, the Gauss formula is a linear coiiibination of the Simpson's rule:

50^?^0^^^^lA-'^2^l/2-^32f3/^^7f^)

15 12 I 5 6 6 ) - 2[ 6 ' 6 6/,

. t f-0..^^-l/2 ;

-11
"5 IT "^^ Tj

•7ne combination is such that the error terms disappear and the order of error

is two degrees higher than that of the Hewton-Cotes o^uadrature. Consequently,

starting iTLth. trapezoidal sums

(2) - -^

n
1 -^

? "0
. 1 -O

-/n 2 lj

n = 1, 2, ^, 8. . . .
(i^3)
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Ronber^ proposes the follovdns algorithn:

^n = 2n -^ Jl^ J}
2n

^ - 1

v:here ra = 1 , 2, 3i -^-i . <> .

n = 1, 2,A^
, . . . i^)

(2) (2) f2)
lie can thsrofore express T in function of T , T ... T^^ ' using

2:n 1 2
'^*'

2^ + 1 points, ?or ra = 0, 1 , 2 this algorithn produces fornulas which are

identical vrith trapezoidal for::iula, Sinpson's r^ole, and Gauss formula

respectively, but for n 5j 3 the resulting forr^ulas are different from the

Newton-Cotes formulas.

If we define

(2) = 1 ^ .p^^^ n = 1. 2, ^, 3, . , , (ij.5)

the evaluation of tho trapezoidal sums becomes

,
'2) ^i

^
(2) _,.^ (2)) n = l. 2,4, , . .

• (i^)
2n 2 ^^ n

and the higher order terms vrill be

(2m-i-2) _ ^^ (2m) t (2:.i) - (2m)
^ 2n " "r-

2^^ 2^

E^^'' - 1

n^ m (^7)



1i^

The whole Romberg algorithm can be shox-m bj the folloi-ring diagran:

(2) ^(2) .^(2)

1 2
.

k

^ (2)^ . ^2)__^^ (2)__ \ (2)12 ^' ^

\ (6; \ (6)

Diagonal elements of high order are not necessarily more accurate than those

of lower order; this has been first shown by Bauer (1 ) by means of test

calculations.

In the same manner Romberg's second algorithra defines the recurrence

formula.

, (2m-f2) . (2m) U
^^^^^

- U
^^^"^

m = 1 , 2, 3, . . .

n = 1, 2,1;. , . . . (48)

If ire elaborate the diagram of T and U, we are able to use the

following relations

2 n = -^

^ (2m+2) ^2^m-1_^-^ ^ (2m) ^ 2^-ai-\ y (2m)
2 _ n n

2^" . 1
«50)

m— 1,2,3»»»» n — 1,2,^-,.».
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(2m+2) (2) (2)
.'e can also eroress T as a linear coraoination of ? , U

^n 1 1
(2) ^2)

U . . . u
'' iTith positive coefficients.

2 2a ^

Nuraerical Example

To illustrate the application of Romberg's integration process, consider

a definite integral

I = / f cos |: :: dx =/ f (:.:)dx

^0 " "0

-•rhich has e^i^ct solution of 1. ./o first divide the whole interval 0, 1 in

eight ea,ual parts, then using equation ('v5) to calculate U , U , U,
1 2 4'

(2)
U/ = f(l/2)

U,^^^ =\ [f(l/^) +f(3A)]

uj^^ =
I [i(l/8) -f f(3/3) H- f(5/3) -r f(7/3:]

Frora. equation (43)

t/^^ =|[f(0) -Hfd)]

Then using equation (46) yields

, (2) . i (,
(2) , , (2))

2 2 ^^1
1

^

3 2 ^4 4 ^

(4) (4) (4) C6) (6)
Finall^r enoloying equation (4?) to generate T , T , T , T. , T ,-

2 4 d 4 8

and T successively.
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Kimerical results are as xollo/7s:

T ^ = 0.73539715
1

(2)
U ^ ^ = 1. 11 0721

3

(2)
T = 0.9^305920
2

(2)
u ^ ^ = 1.0261722 u '""' = 0,99793920

T ^ '^ = I.OC

TT (^)

i22798

T ^"^ = 0.93711570

u ^^^ = 1.006^5^5

(2)
0.99673510

(8)

T ^ ^ = 1.00013^5
4"

U ^^^ = 0.99988200
Hr

T = 1.0000082
8

Ilote that T is nost accurate.
8

(2)
Error ? = -0. 00321^^9

8

Error T ^ '' = 0.0000082
8

Error T = -0.0000002
8

(8)
Error T = -0.00000007

(6) _

(6)

^

= 0.99999150

1.0000081

(6) (8)
T = 0.99999980 T^' ' = 0.99999993
8 o

ie-7T0N-C0TES QUADRATURES FOR DIGITAL SOLUTION
0? DI?FSREITTL\L EQUATIOK^S

The use of integral equations to establish e:d.stence theorems is a

starjaard device in the theory of differential equations, both ordinary and

partial. It oires its efficiency to the smootliing properties of integration,

as contrasted TJith coarsening properties of differentiation. If two functions

are close their integrals raust be close, whereas their derivatives may be far
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apart and may not even exist. It follows that a key to tlie solution of a

differential equation lies in the conversion to the proper integral equation.

Trapezoidal Rule

Dahlquist (3) has shovm that tho trapezoidal rule has the sjr^llost

truncation error ainong all linear i.iultistep methods "i-rith a certain stability

property. Tlius, trapezoidal quadrature's modest accuracy perforiiiance is

compensated for by better stability.

Consider the vector first-order differential equation

^ + A;7 = V (51 )
ax,

Integration yields

W(t) + A / w(r) d-r = V- -:- / v(7-) dr (52)

liiployins trapezoidal rule yields

:^ = w
(53)

W, + hi (-,i + 17 ) = IT + i (v + V ) (54-)
2 1 2 1

K rr\

w^ -^ ~ (v7 + 2ir + w ) = \: + - (v + 2v -r v ) {^S)
2 2 1 2 2 1 2

Talcing differences of adjacent pairs of equations yields the desired

recurrence relation

^j - ^.r
" + *^ i:^ + -^-^

. ) = - (v 4- V Jn n-1 ^ -n n-1 2 ^^ '^'^"'

or
1 - AT - . .

w = Z ,, ^£_>Vl7n-1^
^ W AT n-1 ^--^7 (35)

2 2
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w =2i-:i + ^ n>1 (57)
n n-1

I'lote that equation (57) is identical Tvlth the recurrence relation obtained by

applying trapezoidal convolution to equation (51). It is worthwhile to notice

tliat if the coefficients ^ and B are functions of sarapling interval T only, then

2

n-i
^^^^''^^^^^r ^d^ (^a^-^ , . . -. Pol

which is 2iuch nore convenient to use than equation (5?) because we can obtain

the desired value directly xrithout going through step-by-step calculation.

vrnen n approaches infinity, vt converges to
n

liv.i w = __L„ (59)

provided that such lir^iit exists.

The quadrature iiriproverient process due to equation (28) improves the

second-order integration forrri-ala onl^'. If an additional term such as

(.'. (-:•) + „ (^))/2

wore added to the quadrature, then thJLs weald improve the fourth-order

integration formula, and so on. The contradictory demand that these improved

formulas presents—that not only the past but the future values of the unknown

solution m.ust be used—effectively blocks iciprovement of first-order integration

forrrdlas. It is natural to turn to the higher order NexTton-Cotes q.uadi'atures

for imtjrovement of thjis formula.
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.liio'ii^-.cr possibility is to ir.iprovo Sinpson's rule 07 adding higher order

terir.s. ?.easo>iins similar to that employed to derive equation (28) Halijak(6^

shows that a :.iora general forr. oi" Sinpson's rule is

i_[ cU)dx = ::o
—

-1 -2 ..v r^o :js :_i2_., p,,)

J

.^(h) ^ ->—
s^^^ ( e h) c - ^ 2 (60)

1512

3nployins only the first tenr. ^ivos Sinpson's quadrature rule. This result

i-rill not be used for accuracy inprovenent of solutions.

Appl;;,Hr.2 Sirapson's rule to the vector first-order differential equation

(51 ) L.d-elds

w = w

vr_ + ~ {\7 + \r ; = w^ + - (v^ -^ V ;
1 2 1 2 1

2 ^ '
1 2 3 1 2

3 I2 ' r 3
'

1 2 3 J

= W +^ (v -i- V ) -r - (v + ^V + V J
i-

1 ;- 1 2 3
'^

I'ote that tT-ro estinates of the sar,ie integral are being generated. Tne first

cstiriato occ-ors vrith the odd nunbered equations, and this cstinate r.ust be

started vjith a trapezoidal integration. The second estiriate occurs vrith the

even numbered equations.

Talcing differences of adjacent pairs of even numbered equations and odd

nuribered equations yields the syste:.i of equations
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\-T = W

A fyi rji12^010201
!: - T-r + ~ (ij- + ^w , ^- tt )

n n-2 3 n n-i n-z

= - (v + iiy + V ) for n ^ 2 (61 )

3 n n-1 n-2
•

Note that a drastic change of s^'-stematics has occurred. The calculations are

rec-orsive orJ.y for n ^ 2. '

Defirition: A system which is recursive after a finite nuiaber of values 1^^ill

be called an ultimately recursive calculating systera.

Definition: A systen which requires only one value to become recursive x^ll

be called an instantly rec-orsive calculation system..

It is these that are amenable to Z-transform notation. The most conspicuous

example is trapezoidal convolution.

One slight change in the system of equations can improve accuracy. If .

w can be calculated by an independent method to a greater degree of accuracy

than by trapezoidal quadrature, then over all accuracy i-7ill be improved. A

readily available method is the Taylor series expansion about the time origin.

The resulting ultimately recxirsive system is

w = w

2 3

• 1 2i 3j

AT
IT - vr ^ + -^-Cw T -^w -f- \i ^ )
n n-2 • -5 n n-1 n-^

= :7(v -f 4v + V ) for n ^ 2 (62)
3 n n-1 n-2
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Follo'.vrins the sane procedure we can derive ultimately recursive systems for

higher order Newton-Cotes quadratures.

The corresponding integrator substitution progran does not exist if the

conputer menoiy is liirited and coraputor tirae r.ust be short.

Fxmctional Iteration

The investigation starts x-Jith eo^uation (3). Simpson's rule is then

applied and the resulting equations become an instantly recursive system.

VJe shall call this metliod "the functional iteration method" which xrill be

denoted as ST. From equation (3)

y(t) -:- / g(t-r) y ('>) d«r = / g(t-r) xCt) dn-
u

y(t) = -
/

g(t-r) y»dT-:- Z^" s(t-7-) x:t) d?
^0 -<)

we generate trapezoidal solution of above equation first. Then the desired

functional iteration solution t-rill be obtained Ij/ applying Simpson's rule or

higher order Ne*.-rton-Cotes quadratures to the right-hand side of the folloiri.ng

eaquation:

'^(t) =
-J g(t-r} y:^.dr -7 " g(t->: x('^;d7- (63)

where y\t) is, as mentioned above, the trapezoidal solution.

Si-IPIRICAL 2RR0R ANALYSIS

A comparison of the computational errors generated hy various sampling

sizes vrhen using T-convolution, functional iteration, and hi[;her-order

Hewton-Cotes quadratures is presented for the follovring first-order ordir-ary

differen':.ial equations,
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4r + y = 1 yCo) = o

||-fy = y(0) = 1

^ + ty = t y(0) = 2

# + y^ = 1 y(o) =

In order to carry out error analysis the folloi-ring noraenclatures are

employed:

JE ^{ ~ the largest absolute value of error in the fixed period of

computation (0.3 seconds);

T = sasipling interval size;
.

T = trar>ezoidal convolution;
c

ST = trapezoidal convolution followed by Simpson's rule;

S = Sirapson's l/3 2*ule;

3/8 = Simpson's 3/8 rule;

G = G-auss' quadrature.

Derivation of .Recursive Formulas

The process of derivation of the rec^orsive formula for the differential

equation ^^-^7 = 0, y(0) = 0, -.-rill be shovrn in detail. For the other three

cases, orHy recursive formulas "i-jill be presented.

1. dv
dt

a) T

§? H- y = 1 y(0) =0 -(6^1^)
do

c
1

^7 "^ 7 = s

- 1 - 1
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Z'r + I
(iFF) = My

-y ^ - -~ -y = "'^

9
2 \-Z (l-2)~

2 1 -a

(1 H. |)Zy - (1 - |).Zy = ^
J1 -^|) -y^_^ (1 -|)=J0. T. T. T. . . . }y

y = y +0=0
14-1 -1

1 - ^ fji

~

1 + T ^n--1

4-
, ,

"

1 T
n

2 2

y.
— 2. - T1

m y <*

4.
,

2 n ;> 1 (63)

Ilote that if -^^e apply the trapezoid rule alone to equation (6^), the

sane recurrenoe forriula as {i^S) "i-n.!! be obtained.

-T "
~

t
= ^oV '^^-y "^^ ^^°^

Y = y
-^0 "^0

y =y +T-|(y +y) (6?)10 2 1

y = y + 2T - I (y + 2y + y ) (63)
2 2 12
Taking the difference of the adjacent formulas we obtain the recurrence

foritiiila



2i^

^r = y ^ + 'T" _ £ (y -r y )

1 -^
Tr -r-

T*

2

n-1 1 T —
2

7 =
9 _ T , ?;

11 2 + T "^n-l 2 -^ T (69)

which, is identical vrith equation {6S) » It tiill be emphasized that i-fne-n

er.iplo^'i.n^ the trapezoidal rule alone it is much easier to get recurrence

formula than using T-convolution method as far as the first-order ordinary

differential equation is concerned, but the same is not true for higher-

order ones. In this particular case, the coefficients of y's are the

function of ? only, so equations (53) and (59) ^.re applicable.

> n, _ ./ n

-n=^%^Mrf^J = P(f-^j (70)

v' - 2 - T r - 2T
'.-here C( = -^^-^-i /^ =

2-^T, r 2-i-T

2T

lira y = -i— = HtlL. = 1 (71 )

n-^co n 1 -od ., _ 2 - T

2 + T

b) ST

^2=^0'"''"3 ^^O-''^^
^^-^

1 2

->7i,
= y„ - ^T - i (y + i^y -f- 2y -:- ^,7 + 7 )1^0 3 1 2 3 ^

?alclng the difference of the above eo^uations, we get the recurrence formula

>7 = y? ^ -i- 2T - ^ (y -:- 4y + y ) (72)
/ -^ /n-2 3 ^-^n "^n-l ' n-2

n = 2, ^>, 6, 3, . . .
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T-iiere y's are trapezoidal solutions,

c) 3

n
V = -/ -i- 9'? ^ - (^^ ~ ij-y + y )

Tr = y + :j,;;: _ -q- (y + li-Y -r 2y + -^7 "l- Y )
^^ "^0 '^

'^l '^Z '^3 "^I^

y. = 7 + 2T - ? (y -^ 'V ,
^y .)

i^ n-1 ^ n -.-1 n-2

J'
r - 6? ^ 3 _ ? ^

i;/^

^- 3 t ? ' 3 + T ^"-2 " 3T~T -^n-l n ^ 2 (73)

I'ote "ihat instead of using trapezoid foriuula, Taylor series eZ'^pansion is

en"oloyed to estimate the first iterative -ooint, y , to ir^orove accuracy,
1

d) 3/8

1 Q 2i JT

.. = y + (2T) V -^ (2?)" y . Lgi:L.y -l- . . .

.2 "0
21

° 3'1

7 =7 , -^ 3T - 3/3T (y -i- 3y . - 3y ^ + y J
n n-3 -^ n-i n-2 n-3

-^ 3 + 3T 3 + 3? -^^-3 3 -r 3T *^n-1 ' •^n-2^

n:^ 3 (7^)

In this case it is oh\a.ous that ::e need two points to start tlio recursive

forir.-ala (7^)» '"^e shall use the Taylor series to goncrate necessary initial

joints

.

\
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ii n-^- ^5 n n-1 n-2 n-3 n-'-J-

^r = 130^ bd^JJ£l.r ST
(8y 3y . + Sy )

n-3

n ^ ^ (?5)

Si: + y = 7(0) = 1

Co

o _ f?

n 2
— y ^ 1 (76)

.) 3:

^n 7n-.
i (7 + ify -f 7 )

3 "^n '^n-l ^^11-2

n = 2, ^J-, o, b, . (77)

c)

= 2^-^J:. V i^T 7
3 + T ^"2 3 -H T

" ^-''
(73)

d) 3/3

7 = 3^:^
n 8 + 3T n-3 8 + 3T ' n-1 ' n-2

(7 -^ 7 ) ^ ^ 3 (79)

y. = thi-nJii:
fn "^

'O + lifT n-^ ^^5 -f 1

T (87
'•T

n-i
^37 + S7 )^n-2 n-3

n ^ if- (30)

0.7

dt
t7 = t 7(0) = 2

2^nT2 ^n-1 ^
^__ ^^^^

n ^ 1 (31)
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b) ST

n = 2, ^^, 6, 8, . . . (32)

c) S

3 + n^- 3 + nT~ 3 - nT^ '^ '>

d) 3/S

^ 8 + 3nT'- '^ -^ ^" y.n-3

e)

^"''''
f" r.--1 W -r (r-2)Y 1

3 + 3ni ^

n ^ 3

v-'X

!•• 2Z -H y- = 1 y(0) =
Q o

a) -

y..

-1 + 1 - 2T (f- y*^ - 7 - T) n ^ 1

(8^)

(35)

(36)

o; S'

n = 2, s'-, 6, 3, . . . (37)
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c; i

n — ~ ^ 3 ^3 n-1 n-2 n-? ''

;ar2.

2T
3" n ^ 2 (83)

d) 3/3

\ =

-1 v /1 - ^ ^ (37^^
^

- 3y^
2 I 8 n-1 n-2

+ y
lz

) - 7 -3T
n-3 .

21
n S: 3 (39)

e; G

-1

^v,
=

51 (32y I2y
n-2

-^ 32y^ -^7-/ J -J .-''^]

28T

^5 n 5= 4 (90)

Results

The error neasures for various appro>d.inations are presented in Tables 1 ,

2, 3» ^ i^-d these sane error neasures are graphed in Figures 1 through 11.

It should be pointed out that the values of error raeasxires are presented

vjith floating point systen. For instance,

0.112 i -05 = 0.112 X 10"^
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Table 1.
j 1^^_,.| :or p -i- y - I

, 7(0) = 0,

.--

(

:-coir7 ij,
_' s ->! ^ :-

0.003 .1122-05 .9302-06 .3302-06 .6502-06 .1802-06
0.00^:- .5602-06 .5102-06 .3902-06 .4702-06 .2602-06

0.005 .3302-06 .1302-06 .U:-02-06 .4402-06 .2602-06
0.006 .5SO2-O6 .1602-06 .2702-06 .1802-06 . 1 702-06
0.007 .9302-06 .3702-06 .3102-06 .3502-06 .2302-06
0.003 .1-^22-05 .6902-06 .1502-06 .2302-06 .1302-06
0.009 .2162-05 .IO^a-05 .1402-06 .1402-06 .1602-06
0.010 .2522-05 .1302-05 .1202-06 .1602-06 .1602-06
0.012 .3392-05 .19^:'2-05 . 1^^-02-06 .1902-06 .1302-06
0.01i> .5692-05 .2902-05 .3002-07 .1502-06 .1902-06
0.016 .7332-05 .3952-05 .1802-06 .1902-06 .1102-06
0.018 .9':'72-05 .^^922-05 . 1

502-06 .1402-06 .1402-06
0.020 .1132-0^ .6302-05 .1502-06 .1602-06 .8102-06
0.022 .1-^32-Oi^ .7-^32-05 . 1 502-06 .1602-06 .9002-07
0.02^1- .1702-0^ .8922-05 . 1 302-06 .1502-06 .1202-06
0.026 .1992-0^ .1022-0^ .1372-06 .1102-06 .1302-06
0.023 .2322-Oii- .1202-C--> .1502-06 .1302-06 .1002-06

0.030 .2672-0^^ .1372-C^ .1 if02-06 .1502-06 . 1 302-06
0.032 .3052-0^ .l6l2-0-> .1102-06 .1102-06 .1102-06
0.03^ .3^32-0-^ .1762-04 .1102-06 .1002-06 .1402-06
0.036 .3362-0^' .2022-0^ .1102-06 .1002-06 .1202-06

0.033 .^^312-0^ .2272-0^' . 1 082-06 .1002-06 .1002-06
O.Oi^O ^772-Oii .2552-C^ .1002-06 .1002-06 .9002-07
0,0^2 .5272-Oi!- .2772-C-. .1302-06 .1002-06 .1102-06
O.OVi- .5772-0^ .3032-0^ .9002-07 .1002-06 .9002-07
0.0^6 .6302-0^ .3222-0^ .1302-06 .1002-06 .1502-06
O.O-^I'S ,63^^-2-0^:- .3^:42-0^ .1602-06 .9002-07 .1102-06
0.050 7^72-Oif .3932-0^ .6002-07 .7002-07 .1002-06
0.052 .8052-0^ .^llE-0^ . 1 202-06 .9002-07 .1002-06
0.05^ .8622-0-^ .i^262-0^ .6002-07 .1102-06 .1002-06
0.056 93-:'2-0A'' .iu3ij,2-0^ .3002-07 .6002-07 .1302-06
0.G53 .9932-0^!- .ii'S52-04 .3002-07 .3002-07 .3002-07
Vj • W s^ tj 1.1072-03 .5^62-0^ .lii.02-06 .4002-07 .1002-06
0.062 ,1132-03 .5^r32-0^ .1002-06 .3002-07 .1102-06
0.06^ ,1212-03 .6132-oii' .3002-07 . 1 1 02-06 .1102-06
0.066 ,1322-03 .6332-0^ .3002-07 .8002-07 .9002-07
0.063 ,1362-03 .6552-0^^ .1002-06 .5002-07 .9002-07
0.070 .1^52-03 .7272-0^^ .7002-07 .9002-07 .9002-07
0.072 ,15^'^2-03 .3022-0^ .9002-07 .1002-06 .1002-06
0.07^ .1612-03 .77^>2-0^- .1202-06 .1702-06 .3002-07
0.076 .1712-03 .3502-0-> .1202-06 .1302-06 .9002-07
0.073 .1312-03 .9322-0^ .1502-06 .1402-06 .6002-07
0.030 .1912-03 .1012-03 .6002-07 .I5OE-O6 .5002-07
0.032 .1972-03 .9232-0^;- .1202-06 .1402-06 .9002-07
0.03-.- .2052-03 .1012-03 .9002-07 .1802-06 .1102-06
0.036 .2202-03 .1092-03 .1002-06 .2302-06 .3002-07
0.033 .2312-03 .1192-03 .1502-06 .2602-06 .5002-07
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Tabic 1 . (cont.)

l' T-conv oT i> 3/8 G

0.090 .236E-O3 .1093-03 .1303-06 .2103-06 .3003-07
0.092 .2^92-03 .1133-03 .1103-06 . 2^1-03-06 .1003-06
0.09^' .2613-03 .1233-03 .1003-06 .2703-06 .1003-06
0.096 .2733-03 .1373-03 . 1 503-06 .3203-06 .9003-07
0.093 .2363-03 .U^83-03 .2203-06 .3303-06 ,3003-07
0.1 00 .2993-03 .1593-03 . 1 603-06 ,^203-06 .7003-07
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blc 2.
I -..I 7 = 0, 7(0) =1, t = 0.3

_.

.

--conv ST --. _'
: I

0.003 .530"^-06 .1013-05 .6003-06 .1003-06 .1503-06 . 1 503-06
0.0C4 .35o:i;-o6 .9903-06 .2603-06 .1603-06 .1^^03-06 .2403-06

0.005 .135^-05 .11 7-1-05 .2203-06 .1003-06 .1503-06 .2003-06

C.006 .1^3-05 .1153-05 .1^.^03-06 .1303-06 .1303-06 .1303-06
0.007 .175--05 .12^:'3-05 .i6c:-j-06 .1003-06 .1002-06 .3003-07
0.003 .2023-05 .1^03-05 . 1 ! 03-06 .5003-07 .1103-06 .1703-06

0.009 c 2733-05 .1733-05 . 1 Ov'_j-0o .9003-07 .7003-07 .1203-06

0.010 .30i>3-05 .1333-05 .9003-07 .9003-07 .1003-06 .1703-06
0.012 .;oo3-o5 .2513-05 .9003-07 .5003-07 .7003-07 .1703-06

.6133-C5 .3^03-05 .1503-06 .6003-07 .5003-07 .2303-06
0.016 .7763-05 .i^263-05 .1103-06 .3003-07 .9003-07 .3203-06
0.01s .9793-05 .5363-05 . 1 1 03-06 .1003-06 .1003-06 .4703-06
0.020 .t2i3-04 .6593-05 .1303-06 .1003-06 .6003-07 .7003-06
0.022 .i^52-a'-> .7753-05 .9003-07 .8003-07 .5003-07 .3703-06
0.02^' .1723-oi^ .9173-05 .9003-07 .6003-07 .8003-07 .1143-05
0.026 .2013-0^ .1053-Ci-;- .1103-06 .7003-07 .3003-07 .1473-05
0.023 .23^-3-0^ .1232-Oii. .9003-07 .;'-003-07 .iK)03-07 .1773-05
0.030 .2693-0^+ .1393-Oi^ .5003-07 .7003-07 .7003-07 .2223-05
0.032 .3073-Oi^ .16^1-3-0.^ .1203-06 .6003-07 .5003-07 .2653-05
0.03^ .3^5:^-0^ .1733-0^ .3003-07 .i:.003-07 .i|O03-C7 .3133-05
0.036 .3S73-0i> .20^3-0;'- . 1 003-06 .6003-07 .6003-07 .3793-05
0.033 .^333-0i> .2293-0^ .3003-07 .5003-07 .5003-07 .^4^>3-05

OoOifO .4793-Oij- .2563-0^ .1203-06 .^003-07 .6003-07 .5103-05
0.0^2 , . 1 003-06 .5003-07 .^003-07 .5913-05
0.0^.' .5792-0^ .30^3-0^!- .9003-07 .^003-07 .5003-07 .6753-05
O.Oi^ .6313-0-^ .32^3-0^ .1003-06 .3003-07 .5003-07 .6393-05
O.Oi^o .63^3-0i> '5''.<\-> oil .9003-07 .6003-07 .3003-07 .3743-05
0.050 .7-:'9H;-0i^ .39o3-0v .5003-07 .^003-07 .3003-07 .4313-05
0.052 .8063-0^ .^>133-0i^ .1003-06 .5003-07 .5003-07 .1113-04
0.05^ . .1003-06 .6003-07 .6003-07 .1243-04
0.056 .9363-0^ .i^'353-O;'' .7003-07 .6003-07 .^003-07
0.053 .9953-0^ .4363-0^.^ .3003-07 .6003-07 .5003-07 .1533-04
OoOcO .1073-03 .5^73-0^ .3003-07 .7003-07 .6003-07 .1703-04
0.062 .1133-03 .5^93-Oii. .7003-07 .9003-07 .7003-07 .1373-04
O.Ooi^ .1213-03 .61^3-0^ ; 7003-07 .6003-07 .3003-07 .2053-04
0.066 .1303-03 .63i;-3-0i^ .9003-07 .9003-07 .2003-07 .2243-04
0.068 .1363-03 .6572-Oi^ .8003-07 .1003-06 .2003-07 .2453-04
0.070 .1ii-53-03 .7273-OiJ- .7003-07 .1003-06 .i+003-07 .2663-04
0.072 . 155:^-03 .8033-0^:- .1303-06 .1203-06 .3003-07 .2903-04
0.07'-^ .1613-03 .7753-Oi^ .1303-06 ,1103-06 .3003-07 .3133-04
0.076 .1713-03 "- •• ni. .6003-07 .1503-06 .i>003-07 .3393-04
0.073 .1313-03 .93i>3-0i^ .3003-07 .1703-06 .3003-07 .3653-04
0.030 .1913-03 . 1 01 3-03 .6003-07 .1303-06. .4-003-07 .3933-04
0.032 .1973-03 .9293-c^ .6003-07 .2103-06 .^^003-07 .4233-04
0.03i^ .2033-03 .1013-03 .S00£-07 .2^03-06 .4003-07 .-•'43-04

0.036 .2203-03 .1093-03 .I303-O6 .2303-06 .5003-07 .• .73-04
0.033 .2313-03 .1193-03 .1^03-06 .2803-06 .4003-07 .5203-04
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jablG 3. W:l '- ^ -^- V = ^, y(o) = 2. 0, t =2.0

•-1

T-Gonv Cr.l
.

COOS .7IOE-O5 . 1 932-04 .2302-05 .1302-05
0.0C9 . 5502-05 .' -^:-04 .2002-05 .1202-05
0.010 .^.!^-03-05 J-Oi> . ; ^:-02-05 .1102-05
C.C12 .3002-05 :-05 .1602-05 .1002-05
o.ou .6702-05 .•.-..2-05 .1302-05 .1002-05
O.Clo .1232-04 .1-^:2-04 .1402-05 .6002-06
O.OiS .1752-04 ]- .9002-06 .8002-06
0.020 .2272-04 • -^ t'

,'-' -'j^'^ * .9002-06 < -, ^ -. n^

0.022 .2402-a4 "n-l r. 1, .1002-05 » _/ J ^ _. — w -

C.02i^ .3522-04 .4:':-2-0i> .6002-06 .5002-06
0.026 .4192-04 .5552-04 .3002-06 .5002-06
0.023 .4952-04 .6612-04 .7002-06 .4002-06
0.030 .5732-04 .7752-04 .6002-06 .4002-06
0.032 .6532-04 .9002-04 .9002-06 .4002-06
0.034 .7502-04 .1022-03 .7002-06 .4002-06
0.036 .3422-04 .1152-03
0.033 .9402-0^!- .1302-03
0.040 .1042-03 .1432-03
0.042 .1152-03 .15:2-03
0.04^' .1272-03 .1762-03
0.046 .1392-03 .1922-03
0,043 .1522-03 .2092-03
0.050 .1642-03 .2322-03
0.052 .I7S2-O3 .2432-03
0.054 .1922-03 .2712-03
0.056 .2072-03 .2352-03
0.053 .2262-03 .31 02-03
0.060 .2332-03 .3322-03
0.062 .2552-03 .3572-03
0.064 .2712-03 .3792-03
0.066 .2892-03 .4052-03
0.063 .3062-03 .4262-03
0.070 .3252-03 .4522-03
0.072 .3432-03 .4702-03
0.074 .3632-03 .5112-03
0.076 .3332-03 .5332-03
0.073 .4042-03 .55-2-03
0.030 .4252-03
0.032 .4462-03
0.034 .4692-03 .6372-03
0.036 .4912-03 .6342-03
0.033 .5142-03 .7072-03
0.090 .5392-03 .7532-03
0.092 .5622-03 .7632-03
0.094 .31 52-03
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Table 3- Uont.

)

0.096
0.093
0.100
0.150
0.200

T-cor.v

.6123-03

.6393-03

.oo5-3-03

.1493-02

.2663-02

iT

.0352-03

.3903-03
73-03r>,i

I

I

,2023-02

,3323-02

3/8
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Table ^

ua..

.

for i^ + r = n 7(0) = 0, t = 0.3

-1
T-conv -i 3/3

-

0.003 .9212-03 .2632-03
0.00^ .1092-02 .5352-03 .3112-03 ./^732-03 .^922-03
0.005 .^ii:-03 .2192-03 .iW72-C3 .3^22-03 .3162-03
0.006 .i!.50i^-03 .1322-03 .3672-03 .2072-03 .2652-03
0.007 .239:i:-03 .1372-03 .3532-03 .1^52-03 .1772-03
0.003 .3152-03 .1212-03 .1732-03 .1232-03 .1662-03
0.009 .13^3-03 .8002-Oii. .lii-22-03 .7332-0^ .1022-03
0.010 .5302-Oi^ . 1 032-03 .1092-03 .3iM2-0i^

0.012 .1092-03 .4732-0^^ .3072-0^1- .6272-0^ .5512-0^
0.01^ .6692-0^1- .2752-0^'4. .7732-0^ .3362-0^ .5l^S-0i{'

0.016 .5552-04. .2562-0^ .6122-0^ .2992-0^ ..^762-oi;-

0.013 .6332-0^ .2372-04 .3572-0^ .2472-0^ .3352-Oi^

0.020 .5502-Oi^ .26l2-C-'4- .3922-0^!- .1672-0'^:- .2352-Oi^

0.022 .^5S2-0i> .2362-0-^ .3382-Oi; .2132-0^ .2152-0.4'

0.02^ .6^52-0-'v .3122-0-!- .2132-0^ .1/^92-0^ . 1 5^2-0-^

0.026 .'^532-0'^ .2252-0^ . 1 632-0-1^ .1002-0^ .2122-0^^

C.023 .5952-0'^ .2332-0.^ .2l62-0i^ .1562-0^ . 1 1 22-0^1-

0.030 .6l32-0^> .2962-0-'> .1672-0^ . 1 222-C-i- .1672-C^
0.032 ,59o2-0^ .3022-0--;- .1 •'-1-32-0^ .1^,02-0^^ .9962-05
0.G3;- .7202-0i> .3532-0^1- .1202-0-^!- .6102-05 .7732-05
0.0JO O'.C'.T' nil .3032-05 .1902-0^ .7522-05
0.033 7292-0-1- -JOT"' r\\t .1172-Oii .6792-05 .5632-05
0.0:^0 .3612-0^ .^>3?2-C4 .1302-Oi!- M 02-05 .6^32-05
0.0^2 .9522-0^:- .;732-0^- .92^2-05 .2302-05 .56.^''2-05

0.0^!- .1072-03 .5322-0-r .1112-Oii' .6672-05 .3332-05
O.O'^o .1 1-^2-03 .5522-0'^ .7^^32-05 .5132-05 .6532-05

,1212-03 .6^;-i;-2-05 .6532-05 .1772-05
0.050 . 1 31 2-03 .66l2-0.^:- .3752-05 .i^952-C5 .il-922-05

0.052 . 1 ^-02-03 .6762-0-> .9':-62-05 .1792-05 .3112-05
0.05^ .1522-03 .7012-0^;- .3722-05 .3632-05 .1512-05
0.056 .1602-03 .73^2-0i> .5532-05 .2172-05 .2962-05
0.053 .1712-03 .7352-Oir .1932-05 .3372-05 .2662-05
O.OoO .1352-03

^ _ ^ ~, _

.

. u9o_.-0-> .i!'562-05 .2902-05 .2>:-22-05

0.062 , 1 972-03 .3332-0-'^- .3032-05 .1172-05
0.06;- 2032-03 .9792-0^- 3262-05 2692-05 2062-05
0.066 2232-O3 .1102-03 3002-05 1 302-05 3352-05
0.063 23-S-O3 .1052-:,.; 17^2-05 3232-05 ^\——< - >
C.070 2^^92-03 .117--C3 2062-05 1 702-05
0.C72 2622-03 .1292-03 3052-05 3502-05 8202-06

0.0?^ 2792-03 .1232-03 2532-05 1 932-05 2332-05
0.076 . 1 jO.^—Oj a 31 32-05 1932-05 1 532-05
0.073 3072-03 .1i:-32-03

1 632-05 2692-05 ii:'02-05

0.030 3232-03 .1622-03 2-':-1 2-05 UM2-05 U32-05
0.082 3;'-22-03 .1502-03 1312-05 1 1 62-05 1052-05
O.Ooi'. 3592-03 .16^-2-03 1 092-05 2232-05 7^02-06
0.036 3762-03 .1732-03 2602-05 2^32-05 1 022-05
0.083 3932-03 .19^2-03 1 /;-92-05 2252-05 1552-05
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Tablo ^'. (cont.

)

T ?-conv ST 3/3 a

0.090 AO^I^Ok- .1732-03 . 1 002-05 .3302-05 .2162-05

0.092 .i:-252-03 .1382-03 . 1 1 72-05 .2622-05 .1292-05
0.09^ .ir462-03 ,20^^2-03 .9302-06 .2532-05 .9302-06
0.096 .i^o72-03 .2202-03 .19^2-05 .^-2'^2-05 .159^2-05

0.093 .^352-03 .2362-03 .1702-05 .^1-072-05 .2262-05
0.100 .5072-03 .25^^2-03 . 1 762-05 .^.^722-05 .1102-05
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DISCUSSION

Investigation of the graphs shows that there e:d,sts a saiupling interval

sise t-j-hich iraniinizes the largest absolute value of error for the fixed

conputation duration in T-convolution (T ) and function iteration (ST).

For tho case of ^ + y = 0, y(0) = 1, the optimura sarapling interval size are

not shoT-m but tlie author has confirmed this by other coraputation wliich shows

that the optim-un interval size falls between 0.002 and 0.003 seconds. There

is sorae he--u.-*istic justification for the existence of this riiininuni error in

the T-convolution case. If the interval size is large, then trapezoidal

integration generates large errors. If one observes the function of z obtained

by the T-convolution process, then the liimit as T approaches zero yield a

, \n
factor C1-z; in the denoriiinator, where n is the order of the differential

equation being studied. In spite of the exact solution being bounded,

unbo-oiided approxLnating functions then occur when r. ^ 2 and the errors are

correspondingly large.

The mininuDi error point is a function of coraputation time t. Referring

to Figure 8, one i-rill observe that for T-convolution \-ihen computation time,

t, increases from 1 second to 2 seconds, the minimum error point moves from

T = 0.01 to T = 0.12. Few examples do not justify any definite conclusion,

but from the above example the rd-nimuai error point may be the function of the

solution time. If one increases the computation time, t, further, one can find

the optimum sampling range for ininimum error point for the particular differential

equation under consideration.

Functional iteration technique is primarily designed for improvement of

accuracy in computation. Test computations show that it surely lowers the

maicLmuirL error, |E,„,.], for some interval of computation tirae t, but as t

increases further, the rate of increase in l^^^^l exceeds that of T-convolution
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and it "Till becorie less accurato than that of T-convolution. This accuracy

regression property of functional iteration technio^ue is vividly displayed in

Figures 7 sjnd 8. In this particular exanple, when T lies betiieen 0,012 and

0.015, the accuracy of 3T is greater than that of T , but for _ > 0.016 or

_ "^ 0.012 the accuracy is poorer than T . Again, there is a problem of

estirtiating optimum sampling range. As in the case of the opti^ron sampling

ran^e for nininur.i error, one can only assume that one of the deciding factors

Tn.ll be computation tiir.e, t. Since the accuracy inprovenent property of the

functional iteration (ST) is not hi^h even if one uses the sampling size, ",

in optir.ura range, unless one can estimate regression point beforehand, one

sho-uld avoid employing this method.

Generally speaking, application of Simpson's rule and other higher-order

"e'.rton-Cotcs integration formula in the solution of differential equation

gives better results than ?-convolution method. Especially \:hen the ir-itial

values are estimated as accurately as possible, the solutions arc a::iazingly

acc'^-ate. The effect of initial values to the accuracy of solution is clearly

sho".."n in Figure v. '.7aen trapezoidal rule is used to approj±matc y. , the error

curve of Simpson's rule is siirdlar to the T-convolution, thou:jh|E..,j,
|
of ih.e

for.::er is lovrer than that of the latter. On the other hand, tl.c adoption of

Taylor series in approxiiiiation of y gives a much better error characteristic.

There is one often overlooked trouble that occurs when Simpson's formula is used

to start the chain for the odd-numbered sample points. I^ne result of this

jumping t'.ro steps ahead is that the accumulated errors at the odd- and even-

numbered points are rather independent of each other, especially as the weights

attached to the computed integrand values are different. This tends to produce

an oscillation, vrnile this oscillation is due to errors committed and hence

gives some measure of the accuracy of the results, it can be very arjioying.
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Oscillation is observed in everj case of test computations; it is conjectiared

that for special case of y' = f(t), oscillation may be avoided if we estimate

y hy Tarflor series , then even-ntudbered point chain only is computed by

Sir.ipson's rule and the half Simpson's formula (Hamming, p« 12?) is used to

produce each odd-numbered point.

Considering that Simpson's second rule and Gauss' formula have to

appro:>ajaate more starting points, that coefficients are more complex, that

acc-Liracy improvement effect is about the same as Simpson's rule, higher-order

iTet'rton-Cotes o^uadrature formulas have doubtful performance in digital solution

of differential equations.
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Tiie essential content of tliis report is laotaprograiXTiing for the digital

approiciiiiation of the solution of first-order difforontial equations using

Newton-Cotes quadratures.

'.Jhen trapezoidal quadratures are employed, there are two possible

programs: the first-order vector differential eo^uation prograra and the

integrator substitution progran. These can be succinctly described in

Z-transfonn notation.

Rom.berg proposes an algoritlira for nucaerical integration which generates

high-order integration quadratures by repeated use of linear combinations of

trapezoidal quadrature. The coefficients of Roraberg o^uadratures are always

positive and the error terns are not worse than those of the Ilewtoii-Cotes

quadratures. It could be very useful in digital solution of differential

equations.

VJhen Sinpson's rule or higher-order rIewton-Gotes quadratures are employed,

the phenoraenon of ultimately rec^orsiveness appears in the first-order vector

differential equation program, but there is no integrator substitution program

possible for high-speed calculation. Z-transform notation must be dropped in

ultimately recursive calculations.

Empirical error analysis shows that there exists an optimuiu sampling
.

range which riiinirriizes the largest absolute value of error for the fixed

commutation duration in T-convolution (T ) and function iteration (ST); that
c

as a result of accuracy regression property, ST has only limited use in the

solution of differential equations; that Simpson's rule or higher-order

riev;ton-Cotes quadratures has higher accuracy but less stable than T-convolution;

that the estimation of starting points plays a vital role in accuracy

improvement of the solution of differential equations by higher-order Nevrton-

Cotes cuadratures.



In conclusion, if one employs Nev7ton-CotGS quadratures to solve differential

eo^uations, one can expect that trapezoidal rule has lo;:er accuracy but higher

stability and less coiiputation time while the reverse is true for higher-order

quadratures.




