

 DUAL-I'UNCUIUN I'UDAL
by

SUDESH KUMAR CHAWLA
Graduate (Mechanical), The Institution of Engineers (India), Calcutta, India, 1966

A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1969

$$
\begin{aligned}
& \text { Approved by: } \\
& \text { Major Professor }
\end{aligned}
$$

ACKNOWLEDGMENTS

The author is deeply indebted to Dr. Stephan A. Konz, major professor, for his expert guidance, helpful suggestions, and unselfish contribution of time during the preparation of this thesis.

The help and cooperation of the faculty, especially Professor Byers, Professor Smethers, and staff of the Departmont of Industrial Engineering is appreciated.

'TABLL OF CONTENTS

PSE
INTRODUCTION 1
IITERATURE SURVEY 6
Single-Function Pedals 6
Dual-Function Pedals 7
PROBLEM 11
METHOD 13
Experimental Apparatus 13
Design of the Experiment 100
Subjects 22
Sequence 22
Experimental Procedure 23
RESULTS 24
Phase I 24
Phase II 27
Phase III 30
Phase IV 30
Comparison of Dual-Function Pedal with Conven- tional Brake-Accelerator System 36
DISCUSSION 49
CONCLUSION 52
REFERENCES 53
APPENDIX I 57
APPENDIX II 58
APPENDIX III 66

LISI Ol TAELUS

Table Pąe

1. Mean reaction time (milliseconds) of ten
trials in Phase I 26
2. Consolidated main effects and 95 per cent
error limits (Phase I) 26
3. Mean reaction time (milliseconds) of ten trials in Phase II 29
4. Consolidated main effects and 95 per centerror limits (Phase II) 29
5. Mean reaction time (milliseconds) of ten trials in Phase III 32
6. Consolidated main effects and 95 per cent error limits (Phase III) 32
7. Mean reaction time (milliseconds) of tentrials in Phase IV 35
8. Consolidated main effects and 95 per centerror limits (Phase IV) 35
9. Mean reaction time (milliseconds) of ten trials
on conventional brake-accelerator system 42
10. Mean reaction time (milliseconds) of ten
trials on dual-function pedal 43
11. Mean reaction time (milliseconds) of ten
trials on conventional system 45 45

LIST OF FIGURES

Figure Page

1. Sketch of dual-function pedal showing the variables (α, β, S.R.D.) in experiment nine . . 12
2. Circuit diagram showing the apparatus usedin experiment nine 17
3. Sketch showing a 2^{3} factorial design with a center point 204. Pattern of variants and results for threevariables for Phase I 25
4. Pattern of variants and results for threevariables for Phase II 28
5. Pattern of variants and results for threevariables for Phase III 31
6. Pattern of variants and results for threevariables for Phase IV 348. Reaction times (milliseconds) after ignoringthe effect of angle of twist, for PhasesI to IV 37
7. Learning effect for dual-function pedal in
experiment nine 38
8. Reaction times (milliseconds) after ignoringthe effects of angle of twist, with respectto Phase IV as base, for Phases I to IV 39
Figure Page
9. Average reaction times (milliseconds) after
ignoring the effect of angle of twist, with
respect to Phase IV 40
10. Histograms for the two types of controls,
each having 500 reaction times 47
11. The effect of age versus reaction time for the two types of controls 48
LIST OF PLATES
Plate Page
I. Dual-function pedal with two fulcrums 15

INTRODUCTIUN

Tha people of America, who had been quick to regard the locomotive and airplane as dangerous, were startled to discover that "horseless carriages" were killing people in large numbers. In the four years of America's participation in World War II, 1,070,000 American servicemen were killed or wounded in combat; during the same period, 3,394,000 people were killed or injured in traffic accidents on the home front. In fact, more people have been killed or injured on highways than have been killed or wounded in all the wars in which the United States has been involved. These facts are presented, not to detract from the horror and suffering due to war, but to give perspective to the magnitude and seriousness of the traffic problem (Center for Safety Education, 1959).

Driving an auto is a complex task, involving the highest stakes of life, limb, and money. Yet most of the people think that they are able to drive, and, in fact, more than 96 million persons in this country are licensed to do so.

The statistics show that a traffic death occurs every ten minutes and an injury every 19 minutes. In 1967, there were more than 53,100 deaths and about 1,900,000 injuries. In addition to the suffering and sorrows from death or injury, there is the dollar, \$l0.7 billion of them in 1967 (NSC, 1968). So it can be realized that beside sufferings there is a tremendous loss of money. The problem is complex and needs a proper solution as soon as possible. To reduce this tremendous toll, many

Erotops are trying to mako automobile travel safer. Jazer andving, safer cars and safer highways tend to improve the situation. Most of these efforts may be classified under these general headings: man, machine, and environment.

The man - machine - environment components of automobile driving are represented by the operator, the car, and the road. Which one of the three should be modified to obtain optimum results?

We are far from exercising any control on human characteristics except perhaps by training. Basically, the ability of human beings to use various devices depends on their psychomotor abilities and anthropometric characteristics (McComick, 1964). An expenditure of a billion dollars distributed over a hundred million drivers is only $\$ 10$ per driver. It is not expected that a driver would benefit much from this amount of direct training. Next consider the development of the road. On an average, one mile of road costs between .5 to 3 million dollars a mile, depending upon the environment and the type of the highway. One billion dollars would pave one thousand miles and keep 99.06 per cent of existing roads untouched. Thus neither the man nor the environment is economic to modify to increase safety.

In the U.S.A., automobiles are sold at an average rate of 8.I million per year. The estimated half life of cars is five years; that is, five years from today more than half of the cars on American roads will be manufactured after today. One billion dollars would allow \$135 per automobile. Therefore, the modification of the automobile seems the most cost-effective approach.

Safety depends upon the permissible margin of error fos the operator. The greater this margin, the less would be the chance of an accident. It is assumed that the shorter the operator's reaction time, the greater the permissible margin of error and thus the greater the time that will be available to control the automobile to attain a specified condition. In other words, the car can be driven at higher speeds or closer intervals with equal safety or maintain the same speed or interval with increased safety; which option the driver will select is unknown.

When you are driving and the light changes to red, there is always a delay before you begin the sequence of responses that will slow your car. The delay between the occurrence of a stimulus event and the initiation of a response of the vehicle to it is called the reaction time (Fitts and Posner, 1968). If the time to apply the brakes on the presentation of a stimulus is reduced, the overall reaction time of braking will be decreased. Reaction time as defined above comprises:

1. Sensing time is the time required to sense a signal. It is a function of the properties of the signal (i.e., size, intensity, duration).
2. Decision time is the time required to complete the neurological process of selection of the correct response to the presented stimulus. Decision time varies widely, depending on the complexity of the decision to be made.
3. Response time is the time required to respond to a
signal and is a function of the complexity of tre response (i.e., force, displacement, and precision requirements), of the body member being used and the amount of practice.

If any of these factors can be controlled so that their tirne of execution is reduced, the reaction time will be reduced.

Under simple conditions, sensing time is up to 50 milliseconds. Sensing time depends upon the signal characteristics such as the size of the source, intensity, duration, and location. The larger the size of the visual signal, the faster to some extent is the sensing time. Simultaneous stimulation of more than one sense modality produces faster reaction times than stimulation of just one. On the other hand, successive stimulation of different senses produces slower reaction times than stimulation of a single sensory channel (Teichner, 1954).

Decision time depends upon the central transmission of the sensory impulses to the motor fibers. This is comprised of the time taken by the perceptual, translation, and central effectory mechanisms (Hicks, 2952). In general, decision time is proportional to the logarithm of the number of alternative choices (Morgan, et. al., 1963).

Some of the factors that affect sensing and decision time (Morgan, et. al., 1963) can be listed as follows:
a. The sense used.
b. The characteristics of the signal.
c. The complexity of the signal.
d. The signal rate.
e. Whether or not anticipatory information is provided.
f. The response characteristics of the body-mernber weed.
Response time is approximately 20-30 milliseconds faster for hand movements than for foot movements (Fits and Posner, 1968). Response with the preferred limb is about 10 to 15 milliseconds faster than with the nonpreferred limb (Teichner, 1954). So, if the speed of activation of a control is the prime factor, the order of selection for right-handod operators should be right hand, left hand, right foot, and left foot.

The extent of variation in tho reaction time also depends on the environmental conditions as well as the persons involved (Woodworth and Schlosberg, 1954).

The emphasis in designing a brake control system was to reduce the response time, because it is not economically leasible to modify the input signals (sensing time). Since the hands, while driving, have many tasks to perform, it is desirable to assign the control of braking to the feet. Which foot?

Konz and Daccarett (1967) demonstrated that reduction in reaction time occurs only when the foot is on the brake pedal; there is no savings if the foot must move to the pedal. The left foot could be used in the cars with automatic transmission but, in this situation, the operator would be denied the freedom of movement of any of his limbs. It appears that this way of driving a car is not comfortable. Also, left foot braking is not possible in the automobiles without automatic transmission. Thus it was decided to combine braking and acceleration in one control. The question then arises: what is the optimal design of a dual-function pedal?

LITJRATURE SURVEY

Single-Function Pedals

The first efforts to determine the optimal design of foot pedals were made by Barnes, et. al. (1942). The five pedals investigated differed primarily in the location of the fulcrum. Fifteen operators (twelve male and three female) performed the routine twice, first using the pedals in order, 1, 2, 3, 4,5, and the second time in the reverse order. Using a 90-second session of continuous up and down movement, it was found that the foot pedal with the fulcrum at the heel had 109 milliseconds for the downward stroke; the worst pedal had 137 milliseconds.

Some formal studies on the man-machine aspects of a foot pedal have been advanced by Trumbo and Schneider (1963). Their criterion was the number of times the subjects could depress and release the pedal pivoted at the heel. The pedal having a downward movement of the toe resulted in the maximum number of responses per minute.

Ayoub and Trombley (1967) measured reaction time to a stimulus of light and travel time to move the pedal to a fixed stop. Five subjects performed the experiment in a single session requiring approximately two hours and 15 minutes. The position of the fulcrum at the heel, with the load attached at the ball of the foot, provided minimum time of 247 milliseconds; the worst pedal had a time of 258 milliseconds. The foot tibia angle should be between 78 to 96 degrees, with 84 degrees the recommended angle.

McFarland, et. al. (1966) sugeested that for light pedai pressures (under 20 pounds), the axus of the foot and lowor lee should form a 90-degree angle, the angle which needs the least possible muscular effort, to hold the foot in position. They recommended that, for the light pedal forces, the knee ancle should be at least 90 degrees, with 135 degrees or more preferred.

Every operator has an optimum pedal location, or range of locations, requiring the least energy expenditure and providing the most comfort. This location is specified with reference to the seat reference point (S.R.P.), the intersection of the back of the seat surface with the back rest, in the midine. The S.R.P.-pedal distance should be such, so as to provide maximum comfort to the operator. McFarland, et. al., recommend 55 per cent of the person's height.

Dual-Function Pedals

One type of "one-pedal control" of a car has been developed by Humphrey, Inc. (1968). In this design three different zones are provided: an upper braking zone, a middle neutral zone, and a lower acceleration zone. The limitation in this design is that the driver has to keep his foot constantly on the pedal. If, due to fatigue or some other reason, the foot is removed from the pedal, the car will come to a sudden stop.

Versace (1966) in the human factors department at the Ford Motor Company conducted some preliminary investigation of a dual brake-accelerator system on automobiles but failed to show any "unusual advantage" over the conventional two-pedal system.

To the author's knowledge, no experimental investigatior of reaction times on dual-function systems has been done except at Iansas State University.

To date eight experiments have been conducted on dualfunction pedals at Kansas State University. The first three of these experiments have been described in detail by Konz and Daccarett (1967). Experiment numbor four, five, and six have been described in detail by Kalra (1968).

In the first experiment the relative quickness of activating a control by hand and by foot was compared for twelve subjects. The conditions were:

1. Honk horn. Starting position--hand on horn ring.
2. Honk horn. Starting position--hand on steering wheel.
3. Depress brake. Starting position--left foot on brake.
4. Depress brake. Starting position--right foot on depressed accelerator.

The average time found for condition 1 was 380 milliseconds, for 2 was 560 milliseconds, for 3 was 390 milliseconds, and for 4 was 590 milliseconds. A Wilcoxen Matched-Pairs Signed-Ranks test showed that 1 and 3 were not significantly different, and 2 and 4 were not significantly different. However, 1 and 3 were significantly shorter than 2 and 4 .

Experiment two, on 121 subjects, used a dual-function (brake and accelerator) pedal designed by Winkleman (U.S. patent 2,878,908). In this system pressing of the toe resulted in acceleration while depressing the heel provided the braking action. An interlock prevented simultaneous operation. It was
fond that the average time lor he dual-pedal system (hic millisuconds) was significantly lowor than that for condition lour in experiment one (590 milliseconds).

Experiment three provided more direct comparison of the conventional system versus the dual-function pedal system. The three conditions were as follows:

1. Depress conventional brake. Starting position of the left foot on the brake.
2. Depress conventional brake. Starting position of the right foot on the depressed accelerator.
3. Depress dual-function pedal. Starting position of the right foot on depressed accelerator position of dualfunction pedal.

It was found that times of 25 subjects were significantly $(p<.05)$ less in condition $1(290$ milliseconds) than 3 (360 milliseconds) than 2 (450 milliseconds).

Experiment four was conducted on the highway with the experimental pedal mounted on a 1960 Rambler having automatic transmission. It was found that the time for the dual-function pedal system (470 milliseconds) was significantly (p<.01) lower than that for the conventional system (570 milliseconds).

Experiment five was performed without the interlock which prevents the simultaneous operations of both controls. The three conditions were:

1. AAA reaction timer. Starting position of the right foot was on the depressed accelerator.
2. 1960 Rambler parked in the lab. Starting position of the right foot on the depressed accelerator.
3. Tual-function control without interlock. Startine position--depressed accelerator.

It was concluded that the combined podal with a reaction time of 323 milliseconds was significantly ($p<$. Ol) faster than Rambler (432 milliseconds) and the American Automobile Association (AAA) reaction timer (482 milliseconds).

Experiment six was conducted to find the effect of varying some of the parameters in the design of the dual-function pedal system. The distances from the heel of the pedal to the accelerator and to the brake shaft were altered. The purpose was to obtain the minimum reaction time. No specific values of the variables or any combinations of them were better than others.

Experiment seven (Wadehra, 1968) was conducted to determine the optimum values of the pedal angle with the floor, seat reference distance (S.R.D.), brake force, and accelerator force for minimal reaction time. It was concluded that the brake and accelerator force had little effect on the reaction time. The recommended accelerator force was within the range of 4 to 8 pounds which is quite in agreement with that of Morgan, et. al. (1963) who recommended 6.5 to 9 pounds. The recommended range of brake force was between 13 to 21 pounds, without losing more than 15 milliseconds. The optimum range of pedal angle was between 40 to 50 degrees. S.R.D. seemed to be optimum between 45 to 55 per cent of the subject's height.

Experiment eight (Sathaye, 1969) was conducted to determine the effect of varying some of the parameters in the design of
tho dual-function pedal. Four subjocts wore usod f'or lert oxperimont. Ton trials wero takon for oach of the tor coriditions. It was found that tho rango of optimum podal arselo was between 30 to 45 degroes without losing more than 10 milliseconds. β, the angle by which the pedal unit was twisted in the clockwise direction around the vertical axis (range considered 90 to 104 degrees) did not have a significant effect on the reaction time. The optimum value of the seat height was recommended to be around nine inches; however, the range from 8 to 10 can be used without losing 10 milliseconds. The recommended range of S.R.D. was between 40 to 50 per cent of the subject's height, without losing more than 15 milliseconds.

PROBLEM

Experiment nine was conducted to investigate the effect of varying some of the parameters in the design of the dualfunction pedal. The parameters involved were (I) α, inclination of the foot pedal with the floor,(2) S.R.D., the seat reference distance, the distance between the heel of the pedal and the intersection of the seat surface with the back rest of the seat, (3) β, the angle by which the pedal unit was twisted in the clockwise direction around the vertical axis (Fig. 1). The purpose of this investigation was to determine the combination of these variables which have the minimum reaction time.

(Front views of the pedal showing angle of twist)

Fig. 1. Sketch of dual-function pedal showing the variables ($\alpha, \beta, S . R . D$.$) in$ experiment nine.

Experimental Apparatus

The experimental arrangement used, shown in Plate I, was similar to that of Sathaye (1969). The arrangement for experiments six and seven consisted of the following:

1. Biomechanic chair
2. Integrated accelerator/brake pedal unit
3. Actuation indicator bulb
4. 1/100-second reaction timer
5. 100-watt lamp covered with red cellophane
6. Control switch
7. D-c power (12-V/200-ma).

Experiments six and seven were conducted in the Human Engineering Laboratory, without providing a driving environment.

On the other hand, experiments eight and nine were conducted in an automobile (1956 Chevrolet) with its engine in gear and running. The subject felt engine noise and vibrations and had to watch through the windshield for the red light. The 100-watt lamp covered with red cellophane was kept 15 feet away from the operator at eye level.

The front seat of the automobile was removed and a biomechanic chair was installed. The seat was rectangular in shape (27.5 inches wide and 15 inches long) with the corners rounded off. It had a backrest. A seat pad provided comfort. The height of the chair was kept constant at 10 inches (Sathaye, 1969). The lower half of the steering wheel was cut in order

to make room for the subjoct's logs. Who accolerator portion or the pedal was attached by a link arrangement so that the engine speed could be varied by the subject.

The accelerator force was held constant at 6 pounds and the brake spring force was held constant at 15 pounds (Wadehra, 2968). In experiment seven, Wadehra found that accelerating spring force affects the reaction time no more than 20 milliseconds, if varied between 4 to 8 pounds. The optimum range recommended for the brake force is between 13 to 21 pounds, without losing more than 15 milliseconds. The distances of the brake shaft and accelerator shaft from the heel of the pedal were kept fixed at 4.5 and 7.5 inches respectively, although these distances presumably have no significant effect on the reaction time (Kalra, 1968). The rear shaft (Fig. 1), A, acted as a fulcrum when the pedal was pressed in the forward direction and the foreshaft, B, acted as a fulcrum when the pedal was pressed in backward direction. The forward and backward pressing motions correspond to the accelerating and braking the car, respectively.

The two shafts of the pedal were connected to two cut-out switches which, in turn, were connected to the two actuation indicator bulbs, one green and one red. The bulbs were off when no operation was executed. When the accelerator was depressed, the green bulb went on, and when it was released and the brake depressed, the green bulb went off. If, by chance, both the shafts were depressed, the buzzer sounded with the red bulb on, indicating the faulty operation to the operator. A d-c power supply (12-V/100-ma) was used in the circuit (Fig. 2).

Fig. 2. Circuit diagram showing the apparatus used in experiment nine.

The "reaction timer" was connected through an operating switch to both the rear shaft relay switch and the 100 -watt lamp. The control switch had a dual role to play; one was to turn on the bulb along with starting the reaction timer at the same time and the second was to reset the reaction timer to zero position after the reaction time of one trial had been recorded. The reaction timer was electrically connected through the rear of the shaft cut-out switch and was stopped as soon as the rear shaft (brake) was depressed by $1 / 16$ th of an inch. Then the time was recorded from the reaction timer by the experimenter. The reaction timer used is of The Standard Electric Time Co., Mass. (Type S-1, Inst. No. 47450, Speed 1 RPS, Cycles 60).

The reaction timer was calibrated against a strip chart recorder. It was found that the reaction timer was recording about 1.5 per cent more time than the strip chart recorder. This indicates that the reaction times recorded by this reaction timer in this experiment are reasonably accurate.

Design of the Experiment

A searching technique called EVOP (Evolutionary Operation of Processes) (Box and Hunter, 1959) was employed for calculating the effect of the variables being considered in this experiment. The main features of the EVOP are:
a. Variation.
b. Selection of favorable variables.

The parameters are changed in small intervals so that, due to changes made, the path of the steepest descent (ascent) can be approximated to head toward the extremum. In EVOP a single
periomance of a complete set of operating conditions is called a cycle, and the repeated running through of a cycle of operating conditions is called a phase. A new phase of EVOP begins When new conditions are explored with the help of information from the previous phase.

Before any change in the selection of variables is macie, the process is run for a number of cycles at one level of the variables. The response surface is determined, and the new changes introduced so as to lead to the extremum. The 'evolution' thus is a step-by-step process--each change representing a new step and with the direction of the step so selected as to lead to the extremum.

A 2^{3} factorial design (Fig. 3) with a center point was used in the experiment. Three-variable EVOP was employed to evaluate the significance of the main effects (A, B, C) (Fig. 3) and the interaction effects ($A \times B, A \times C, B \times C$). Running averages, Yi's (i $=1$, 10 conditions), were calculated from the mean times for each subject. A single cycle was broken into two blocks of five runs each as indicated by the open and solid circles (Fig. 3). The values of $E_{1}, E_{2}, . . ., E_{7}$, are given by the following set of equations:

$$
\begin{aligned}
& E_{1}=(A-B C) \text { effect }=1 / 2\left(Y_{3}+Y_{4}-Y_{2}-Y_{5}\right) \\
& E_{2}=(B-A C) \text { effect }=1 / 2\left(Y_{3}+Y_{5}-Y_{2}-Y_{4}\right) \\
& E_{3}=(-C+A B) \text { effect }=1 / 2\left(Y_{2}+Y_{3}-Y_{4}-Y_{5}\right) \\
& E_{5}=(A+B C) \text { effect }=1 / 2\left(Y_{8}+Y_{9}-Y_{7}-Y_{10}\right) \\
& E_{6}=(B+A C) \text { effect }=1 / 2\left(Y_{8}+Y_{10}-Y_{7}-Y_{9}\right) \\
& E_{7}=(C+A B) \text { effect }=1 / 2\left(Y_{7}+Y_{8}-Y_{9}-Y_{10}\right)
\end{aligned}
$$

Fig. 3. Sketch showing a 2^{3} factorial design with a center point.

- --- Conditions of a cycle for Block I.
© --- Conditions of a cycle for Block II.

From the combined information of Block I and Block II, the main efifects (A, B, C) and the interaction offocts ($A x B, A x C$, B x C) were calculated as given bolow:

A effect $=1 / 2\left(E_{5}+E_{1}\right)$
B effect $=1 / 2\left(E_{6}+E_{2}\right)$
C effect $=I / 2\left(E_{7}-E_{3}\right)$
A $\times B$ interaction effect $=1 / 2\left(E_{7}+E_{3}\right)$
$A \times C$ interaction effect $=1 / 2\left(E_{6}-E_{2}\right)$
$B \times C$ interaction effect $=1 / 2\left(E_{5}-E_{1}\right)$
A data recording sheet is given in Appendix l. Sample calculations for four successive cycles illustrating the use of EVOP in calculating Yi's (i $=1,10$ conditions), the main effects, interaction effects, and the 95 per cent standard error limits for these effects are shown in Appendix II. The EVOP calculation form used is that given by G. Box and S. Hunter (1959). In this experiment, the effect of each variable used 320 time values and the error used 400 times.

The three variables studied were α, S.R.D., and β. In Phase l, the angle of the pedal with the floor was varied from 35 to 45 degrees (Sathaye, 1969), in steps of 5 degrees. S.R.D., the seat reference distance, was varied from 40 to 50 per cent (Sathaye, 2969) of the subject's height, in steps of 5 per cent. β, the angle of twist, was varied from 85 to 105 degrees, in steps of 10 degrees. S.H., the seat height from the heel of the pedal, was kept fixed at 10 inches (Sathaye, 1969). The specific values taken in Phase I are shown in Fig. 4.

Four staff members (3 male) from Kansas State University, each having at least 35 years of driving experience, were used as subjects; the average age was 60 years. Older subjects were chosen because subjects in former experiments primarily had been students. All were between 64 to 69 inches in height. The same four subjects were run in all the phases in order to minimize the subject effect.

Also, 50 subjects (40 male and 10 female) were used from an Engineering Open House held on March 15 and 26, 1969 at Kansas State University. For each of these 50 subjects, ten reaction times on the dual-function pedal and ten times on a conventional brake-accelerator system (AAA reaction timer) were taken.

Sequence

Some learning effect was noticed in experiment seven (Wadehra, 2968). To reduce this effect each subject was given 15 to 20 practice trials at each of the ten conditions (only in Phase I) before the actual experiment started.

The sequence of the first subject was arranged in such a manner so as to reduce the effort of changing the experimental set-up. The sequence of the subject two was the mirror image of subject one's. Subject three followed a different sequence and subject four's sequence was the mirror image of subject three's. The sequence was varied in each phase (consisting of four cycles).

Experimental Procedure

Before the experiment was started, the personal qata of the subject (name, age, sex, height, and years of driving experience) were recorded. The subject was told the purpose of the experiment. Questions, if any, were answered. The rear wheels of the car were lifted up from the ground with the help of a jack. The engine of the car was started and it was put in drive gear during the experiment. The subject was asked to depress the accelerator so that the speed indicated by the needle was between 20 to 30 miles per hour and watch the red lamp through the windshield. As soon as the bulb under the red cellophane was on, the subject was to release the accelerator and apply the brake. When the brake was applied the red light went off and the reaction time was indicated on the reaction timer in milliseconds. During the experiment the subject kept his hands on the steering wheel. No special rest period was provided except the one available during the changing and fixing of conditions. A time gap of five seconds is quite enough to prevent treating the two consecutive stimuli as one stimulus (Telford, 1931).

Twelve readings were taken for each condition and the highest and the lowest eliminated. The experiment was run in four phases. The values of the parameters for each phase were selected after analysis of the previous phase.

RESULTS

Phase I

The parameters under study were the angle of twist (β), seat reference distance (S.R.D.), and the pedal ancle (α). The points 1 through 10 are given in Fig. 4 (a). Block I (Appendix II) consists of points 1 through 5 and Block II (Appendix II) consists of points 6 through 10. Reaction times for the four subjects are given in Table l. The reaction times, in milliseconds, are the mean times taken at each point for each subject, based on ten readings (twelve readings at each point were taken and the lowest and the highest were eliminated) and are shown in Fig. 4 (b).

Three-variable EVOP was used to calculate the significance of the main effects of α, β, S.R.D., and the first order (two factor) interaction effects of $\alpha x \beta, \alpha x$ S.R.D., and β x S.R.D. The results of each cycle of Phase I are summarized in Table 2. The 95 per cent error limits are also tabulated.

The average response was 308 milliseconds. At the end of Phase I, the variation of the response surface at 95 per cent error limits was ± 8.00 milliseconds by chance. Therefore, the effects above or below ± 8.00 milliseconds were significant.

As seen from the Table 2, the main effects of β and S.R.D. had a significant effect on the reaction times at the completion of Phase I. A change of 20 degrees in β changed the response 31.7 milliseconds; the surface sloped upward from 85 degrees by 1.6 milliseconds per degree. A change of 10 per

(b) Mean reaction time (milliseconds) after 4 cycles (seat height constant at 10 inches)

Fig. 4. Pattern of variants and results for three variables for Phase I.

Table 1
Mean reaction time (millisoconds) of ten trials in phaso I.

Subjects	Points										
	1	2	3	4.	5	6	7	8	9	10	Avora象
L.W.	307	349	304	362**	338	295*	352	334	337	305	320
E.B.	298	301	277	329	300	288	334**	288	299	263*	298
T.P.	286	321	284	$354 * *$	301	278	328	327	319	277**	307
H.S.	283	319	282	311	284	294	$337^{* * *}$	305	292	268*	298
$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	293	322	287	339	306	289	338	313	312	278	308

*Subject's minimum mean time for his or her ten points (row minimum).
**Subject's maximum mean time for his or her ten points (row maximum).

Table 2
Consolidated main effects and 95 per cent error limits (Phase I).

Cycle			Cumulative Effects				$\begin{aligned} & 95 \% \text { Error } \\ & \text { Limits } \\ & \hline \end{aligned}$
No.	α	β	S.R.D.	$\alpha \times \beta$	$\alpha \times \mathrm{SRD}$	$\beta \times$ SRD	
2	-1.75	-31.75%	25.25\%	0.75	-1.25	2.75	± 11.78
3	3.25	-32.25*	25.75\%	1.25	3.25	3.75	± 8.96
4	1.75	-31.75*	24.25 \%	6.25	2.25	2.75	± 8.00

*Significant effect.
cent in S.R.D. changed the response 24.3 milliseconds; the surface sloped down 2.4 milliseconds per per cent from 40 per cent. The effect of α was not significant. None of the interactions were significant.

Phase II

As β, the angle of twist, was significant in the last phase, the higher angles being more favorable, it was decided to vary β at $100-105-110$ versus the $85-95-105$ of Phase I. Also, S.R.D. was significant, the higher values of percentages being more favorable, so it was decided to vary S.R.D. at 45-50-55 per cent of the subject' height instead of 40-45-50. In order to have two points. in common between Phase I and II, the pedal angle was varied at 30-35-40 instead of 35-40-45.

The new values of the variables selected are shown in Fig. 5 (a). The mean reaction times for the ten points after completion of four cycles are shown in Fig. 5(b). The mean times for each cycle are given in Table 3. Table 4 shows the cumulative effects and 95 per cent error limits for various effects; the average response was 294 milliseconds; the error was ± 8.90 milliseconds. Only the main effect of S.R.D. was found significant. The change of 10 per cent in S.R.D. changed the response 33.3 milliseconds; the surface sloped upward 3.3 millisoconds per per cent from 45 per cent.

The results of Phase I and II show that the optimum value of S.R.D. lies between 45 to 50 per cent of the subject's height.

(b) Mean reaction time (milliseconds) after 4 cycles (seat height constant at 10 inches)

Fig. 5. Pattern of variants and results for three variables for Phase II.

Table 3
Moan reaction time (milliseconds) of ten trials in Prase II

Subjects	Points										
	1	2	3	4	5	6	7	8	9	10	Aver- age
L.W.	275	309	320	268*	314	279	302	311	321	333\%	305
T.P.	257**	321	323**	280	262	266	267	277	311	318	288
H.S.	277*	300	314	295	286	278	291	280	323	330\%	298
E.B.	273	296	302	268	272	266\%	270	281	311	317%	286
$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	270	306	315	278	283	272	282	287	316	324	294

*Subject's minimum mean time for his or her ten points (row minimum).
**Subject's maximum mean time for his or her ten points (row maximum).

Table 4
Consolidated main effects and 95 per cent error limits (Phase II)

Cycle			Cumulative Effects				95\% Error
No.	α	β	S.R.D.	$\alpha \times \beta$	$\propto \times$ SRD	$\beta \times \operatorname{SRD}$	Limits
2	-1.75	9.75	-34.25*	2.75	-0.25	2.25	± 22.26
3	-1.00	6.50	-32.50\%	-2.00	-1.00	-2.50	± 13.16
4	0.35	6.75	-32.75\%	-2.75	-0.25	-1.65	± 8.90

[^0]As the effect of β was not ifignificant in Phaso II, it was decided to explore the range of angle β further. In the Prase III, β was varied at 100-107.5-115 versus the 100-105-110 of Phase II. It was decided to vary S.R.D. at $35-45-55$ to have a wider range of contours (for showing the best and the worst designs) versus the 45-50-55 of Phase II. The pedal angle was kept the same as that of Phase II (30-35-40).

The new values of the variables selected are shown in the Fig. 6 (a). The mean reaction times for the ten points after completion of Phase III are shown in Fig. 6 (b). Reaction times for the four subjects are given in Table 5. Table 6 shows the cumulative effects and 95 per cent error limits for various effects in Phase III; the average response was 315 milliseconds and the error was ± 5.72. The main effect of α was found significant. A change of 10 degrees in pedal angle changed the response 5.8 milliseconds; the surface sloped upward from 30 degrees by 0.6 millisecond per degree. The S.R.D. response, when 35 per cent was contrasted against 55 per cent, was not significant. Angle of twist, β, was not significant.

Phase IV

To explore the lower and higher levels of α, it was decided to vary α at 25-40-55 instead of the previous 30-35-40. S.R.D. was kept the same as that of Phase III (35-45-55). As the main effect of β and its interaction effects with the other two variables ($\alpha, S . R . D$.$) were not significant in Phase III, it was$

(b) Mean reaction time (milliseconds) after 4 cycles (seat height constant at 10 inches)

Fig. 6. Pattern of variants and results for three variables for Phase III.

Tablo 5
Mean reaction time (milliseconds) on ton trials in Phase III

Sub-
jects
Points

	1	2	3	4	5	6	7	8	9	10	伦e
L.W.	297	322	334	338	325	296\%	320	340\%\%	328	318	322
T.P.	289*	327	327	366\%	331	292	330	329	317	324	323
E.B.	281	299	309	301	301	281*	299	301	306	$314 \% \%$	299
H.S.	287*	321	327	329**	319	288	321	324	312	326	316
$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	288	317	324	333	319	289	317	323	316	320	315

*Subject's minimum mean time for his or her ten points (row minimum).
**Subject's maximum mean time for his or her ten points (row maximum).

Table 6

Consolidated main effects and 95 per cent error limits (Phase III)

Cycle			Cumulative Effects			$3 \times$ SRD	95\% Error
No.	α	β	S.R.D.	$\underline{\alpha} \times$	$\underline{\alpha} \times$ SRD		Limits
2	10.00*	-2. 50	10.50\%	-2.50	6.50	-5.00	± 8.60
3	7.00	0.00	4.50	-3.00	4.50	-4.50	± 8.17
4	5.75\%	0.75	3.75	-1.75	4.25	-4.75	± 5.72

*Significant effect.
decided to lower the values of β to a range which was most suitable to the subjects; 90-95-100.

The new values of the variablos selected are shown in the Fig. 7 (a). The mean reaction times for the ten points after completion of Phase IV are shown in Fig. 7(b). Reaction times for the four subjects are summarized in Table 7. Cumulative efiects and 95 per cent error limits for various effects in Phase IV are summarized in Table 8. The average response was 329 milliseconds and the error was ± 11.39.

As seen from the Table 8 , the main effect of α had a significant effect on the reaction times. A change of 30 degrees in α changed the response 18 milliseconds or a slope upward of. 0.6 millisecond per degree from 25 degrees. Although the response of 330 at 25 degrees was better than 348 at 55 degrees, both were higher than the response at 30 and 35 degrees in previous Phases or the 286 for 40 degrees in this Phase. Angle of twist, β was not significant. The S.R.D. response, when 35 per cent was contrasted against 55 per cent, was not significant. Only the αx S.R.D. interaction effect was significant.

The search was terminated after Phase IV, as the feasible surface had been scanned. The minimum reaction time was 270 milliseconds for point $1(\alpha=35$ degrees, $\beta=105$ degrees, S.R.D. $=50$ per cent) in Phase II.

Since β was never significant in the range 90 to 115 degrees, its effect was ignored and the overall results for α and S.R.D. for all the four Phases is shown in Fig. 8. The common points of the four Phases showed some learning as the number of

(b) Mean reaction time (milliseconds) after 4 cycles
(seat height constant at 10 inches)
Fig. 7. Pattern of variants and results for three variables for Phase IV.

Table 7
Mean reaction time (milliseconds) of ten trials in Phase IV

Sub-
jects
Points
$1 \begin{array}{llllllll}1 & 2 & 4 & 5 & 8 & 9 & 10 & 10\end{array}$

I.W. $283 \% 329 \quad 340 \quad 350 * 328 \quad 292 \quad 322 \quad 337 \quad 322 \quad 314 \quad 322$

$\begin{array}{llllllllllllll}\text { H.S. } & 284 & 340 & 345 & 404 * * & 323 & 279 * & 327 & 333 & 343 & 330 & 331\end{array}$
Aver-
$\begin{array}{llllllllllllll}\text { age } & 286 & 334 & 345 & 365 & 322 & 286 & 330 & 351 & 331 & 334 & 329\end{array}$
*Subject's minimum mean time for his or her ten points (row minimum).
**Subject's maximum mean time for his or her ten points (row maximum).

Table 8
Consolidated main effects and 95 per cent error limits (Phase IV)

Cycle			Cumulative Effects				95\% Error
No.	α	β	S.R.D.	$\alpha \times \beta$	$\alpha \times$ SRD	$\beta \times$ SRD	Limits
2	9.25*	1.25	4.75	0.25	7.75	-2.25	± 7.85
3	15.75\%	3.75	6.25	7.75	13.25*	-6.75	± 12.53
4	18.00\%	-2.00	6.00	2.00	14.00\%	-9.00	± 11.39

*Significant effect.
trials increased. The learning curve for the dual-function pecial is shown in Fig. 9. For direct comparison the reaction times of each Phase were reduced to Phase IV as their reference base, by multiplying by a certain correction factor obtained from Fig. 9. The multiplying factor was obtained by taking each point of the different phase (Fig. 8) as 100 per cent and then finding what per cent the fourth phase point was of the 100 per cent. The multiplying factor for each phase is given in Appendix III. Adjusted points for all the four phases are shown in Fig. 10. The appearance of the response surface showing its contours is shown in Fig. 11. The times shown in Fig. ll are the adjusted average reaction times at different conditions.

Comparison of Dual-Function Pedal with Conventional

Brake-Accelerator System

Twelve reaction times (highest and the lowest eliminated) of the same four subjects were taken on the conventional brakeaccelerator system. The seat height was fixed at 10 inches. S.R.D. was fixed according to the subject's own convenience. The mean reaction time for these subjects on dual-function pedal at the best condition $\left(\alpha=35^{\circ}, \beta=105^{\circ}\right.$, S.R.D. was fixed according to the subject's own convenience) was found to be 270 milliseconds. This showed that there was a saving in reaction time of 249 milliseconds by using the dual-function pedal.

Twelve reaction times (highest and the lowest eliminated) were taken on the dual-function pedal and twelve times (highest and lowest eliminated) on a conventional brake-accelerator system for each of the 50 subjects of 16 to 67 years of age (average

age: 30 years), from Engineering Open House (March 15, 1964) at Kansas State University. Before the trials on dual-function pedal and conventional system were taken, each subject was given a small amount of instmuctions (about a minute) explaining the procedure to be followed. No practice was given to the subjects. For showing the direct comparison between dual-function pedal and conventional brake-accelerator system, the histograms for reaction times (500 in each case) in both the systems were drawn on the same sheet (Fig. 12). On the dual-function pedal the average time was 280 milliseconds (Table 10), and conventional brake-accelerator system averaged 470 milliseconds (Table ll). Thus there was a saving in reaction time of 190 milliseconds by using the dual-function pedal. This saving in time was achieved with small amount of instructions (about a minute) and without practice given to the subjects. Figure 12 shows that 90 per cent of the time, the reaction time for dualfunction pedal would be 350 milliseconds and for conventional brake-accelerator system would be 650 milliseconds.

For determining the effect of age on reaction time, a graph (Fig. 13) of age versus reaction time was plotted. It showed that in case of a dual-function pedal age has very little effect on the reaction time, but in case of the conventional brake-accelerator system the reaction time goes on increasing appreciably with respect to age. This means that older people can be well adjusted on the dual-function pedal system using the criterion of reaction time. The saving for a 60 -year-old subject would be
predicted to be 260 milliseconds; this is compatible with 249 milliseconds made by the four subjects.

Table 9
Mean reaction time (milliseconds) of ten trials on conventional brake-accelerator system

Sub-
jects
Sub-
jects

*Subject's minimum time out of ten trials. \%*Subject's maximum time out of ten trials.
 0
00
00
4
4
0
B
4
 NMํํํ

 Total OO No
HO Ho
N MNO

응ㅇㅇㅇㅇN
ONN~No
MNN
nuno
NMMO
NMN

a| $\begin{aligned} & \text { No ino } \\ & \text { NN NN N N }\end{aligned}$
으N ${ }^{\text {NoNN }}$ N

오오으N
NNMMN

OnOOO
NNMNN

잉№
NNN N
no ino
NMMNN OMO~
MMNN

 옹ㅇㅇㄴN
NNN N
01
mNNNM

응ㅇN
MNN

OnOLnun
NMMNN N OOOOO
MNoMm
응ㅇㅇㅇ BOOHO
ทnining ~NNN N $m \left\lvert\, \begin{aligned} & \text { OㅇㅇㅇㅇㅇㅇN } \\ & \text { mN }\end{aligned}\right.$ OONOO
MMNNM
MNNM 은능 은nnin
mmina 으응
No으N
 오옹웅
mNN Oㅇㅇㅇ№
MNNN OO№
© MnNo noun in - $\left\lvert\, \begin{gathered}\text { noino } \\ \text { NMNM }\end{gathered}\right.$

 은응
Nmin 옹ㅇNN
NMM Subjects

Table 10 (Continued)

 -

[^1]Table 11 (Continued)

DISCUSSION

Figure 11 shows the optimum range for selecting the variables of α and S.R.D. It indicated that optimum value for S.R.D. seems to lie between 45 to 50 per cent of the subject's height; the optimum value of pedal angle is between 30 to 40 degrees. Selection of values beyond this region would increase the reaction time.

It was found that S.R.D. was significant in Phase I when 40 per cent was compared versus 50 per cent, and in Phase II when 45 per cent was compared versus 55 per cent of the subject's height. But in Phases III and IV, S.R.D. was not significant in both the Phases when 35 per cent was compared versus 55 per cent of the subject's height. Figure 11 indicates that when we consider the points at S.R.D. of 35 per cent and 55 per cent, we come out of the optimum range (bottom of the valley) and approach toward higher levels of nearly the same magnitude on both sides of the valley. These values of the S.R.D. nearly provide the same reaction times. Thus S.R.D. was not significant after Phases I and II.

Another possible reason for S.R.D. being insignificant in Phase III was observed by the author during the period when the experiment was in progress. The reaction time varied with the same subject at a particular condition, that is, if the subject was used for this experiment at different times of the day (i.e., morning, afternoon, evening). This kind of instance was observed in Phase III. At the end of the second cycle (Phase III) the main effect of S.R.D. was significant for the
first two subjects, but was made insignificant by the third subject (third cycle) who was the only subjoct used in the morning in that particular phase. This ultimately resulted in making S.R.D. insignificant at the end of Phase III (consistine of four cycles).

This kind of situation indicated that a subject's reaction time also depends upon the time of the day when subject is used for this experiment. In other words, it can be said that one is more active in the morning and is likely to show a low reaction time than in the afternoon or evening when one is tired due to the day's hard work and does not have the proper intention to work.

After completion of all the four phases, it was observed that subject T.P. (sex: female, height: $5^{\prime \prime} 4^{\prime \prime}$, age: 60 years), who showed low average reaction times in Phases I and II, had sufficiently higher average reaction times in Phases III and IV. She was especially poor at S.R.D. of 55 per cent. This kind of situation indicated that shorter people do not feel comfortable if S.R.D. is increased beyond 50 per cent, and are prone to give higher reaction times. On the other hand, taller people may feel comfortable if S.R.D. is increased beyond 50 per cent to some extent. It is obvious that the reverse is true if we approach below S.R.D. of 40 per cent. Thus, in general, S.R.D. value should be selected from 40 to 50 per cent of the subject's height.

Contrary to the expectation of the author, angle of twist (within the range 90 to 115 degrees) did not have a significant
effect on the reaction time. However, the minimum roaction times were observed at the conditions when angle of twist was 105 and $1071 / 2$ degrees.

Contrary to the expectation of the author, the mean reaction time at the best condition of the older subjects (average age, 60 years) used in this experiment was less than that of young students (average age, 23 years) used in experiment eight (Sathaye, 1969). This might be due to the fact that older subjects had nearly 10 times more driving experience than young students.

Another possible design of a dual-function pedal could have a larger size plate (21 x l' $^{\prime}$) for the pedal. This plate size. would cover the same area in the new system which the brake and accelerator already occupy in the conventional system. A person thinking he was actuating a conventional system would lift his foot and move it to the left. A wide pedal would accommodate even this type of error. In this kind of arrangement the operator would be at liberty to use either foot for applying brake or accelerator.

The information given above provides a fairly wide working range to select the values of pedal angle, S.R.D., and angle of twist on criteria of more mechanical nature.

CONCLUSION

There is no definite optimum design since reaction time is more or less the same over a certain range of the values of the variable. The above discussion provides a conclusion which is significant for the designers. It says that to obtain minimum reaction time along with comfortable situation for the operator, the values of the variables considered in this experiment can be taken as given below.

The optimum pedal angle is between 30 to 40 degrees. The optimum seat reference distance can lie between 45 to 50 per cent of the subject's height. Beyond this region a change in S.R.D. of one per cent will increase reaction time approximately 7 milliseconds per per cent. A change in pedal angle of one degree will increase reaction time 4 milliseconds per degree. Minimum reaction time can be obtained when the angle of twist is between 105 to 107.5 degrees.

REFERENCES

Ayoub, M. M., and Trombley, D. J., 1967, Experimental determination of an optimal foot pedal design, Journal of Industrial Engineering, 18, 9, 550-559.

Barnes, R. M., Hardaway, H., and Podolsky, 0., 1942, Which pedal is best? Factory Management and Maintenance Magazine, McGraw-Hill, January.

Box, G. E. P. and Hunter, J. S., 1959, Condensed calculations for evolutionary operations programs, Technometrics, 1, 1, 77-95.

C S E, 1959, Man and the Motor Car, Center for Safety Education, New York University, Prentice-Hall, Inc., Englewood Cliffs, N.J.

Fitts, P. M. and Posner, M. I., 1968, Human Performance, Basic concepts in psychology series, Wadsworth Publishing Co., Inc.

Hicks, W. E., 1952, On the rate of gain of information, Quarterly Journal of Experimental Psychology, 4, 11-26.
Humphrey Inc., 1968, Brouchure, 2805 Canon Street, San Diego, Calif., 92106.

Kalra, G., 1968, Optimizing the design of a dual-function brakeaccelerator pedal, M.S. Report, Kansas State University.
Konz, S., and Daccarett, J., 1967, Controls for automotive brakes, Highway Research Record Number 195, Highway Research Board, Washington, D.C.

McCormick, E. J., 1964, Human Factors Engineering, McGraw-Hill.
McFarland, R. A., Stoudt, H. W., Damon, A., 1966, Human Body in Equipment Design, Harvard University Press, Mass.
Morgan, C. T., Chapanis, A., Cook, J. S., and Lund, M. W., 1963, Human Engineering Guide to Equipment Design, McGraw-Hill.
N S C, 1967 and 1968, Accidents Facts, National Safety Council, 168.

Sathaye, S. M., 1969, Optimizing the design of a dual brakeaccelerator pedal, M.S. Thesis, Kansas State University.
Teichner, W. H., 1954, Recent studies of simple reaction time, Psychological Bulletin, 51, 2, 128-144.

Telford, C. W., 1931, The refractory phase of voluntary and associative responses, Journal of Experimental Psycholocy, 14, 1-36.

Trumbo, D. and Schneider, M., 1963, Operation time as a function of the foot design, Journal of Engineering Psychology, 2, 4, 139-143.
Versace, J., 1966, Personal letter to Dr. S. Konz, March 18.
Wadehra, N. P., 1968, Design considerations of a combined brake accelerator pedal system, M. S. Thesis, Kansas State University.

Woodworth, R. S., and Schlosberg, H., 1954, Experimental Psychology, Henry Holt and Company, New York.

APPENDICES

APPENDIX I

DATA RECORDING SHEET

Name:
Height: \qquad
Yrs. of Driving Exp. \qquad

Phase:
Cycle: \qquad
Date:

Sequence											
Conditions											
Trials	1	2	3	4	5	6	7	8	9	10	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$
1											
2											
3											
4											
5											
6											
$?$.							
8											
9											
10											
11											
12											
Total											
Average											

APPENDIX II
Project Dual-Function Pedal
il

$$
॥
$$

$$
\|
$$

॥
THREE-VARIABLE EVOLUTIONARY OPERATION PROGRAM CALCULATION WORK SHEET
Operating Conditions
(i) Previous Sum for Block I
(ii) Previous Average for Block I
(iii) New Observations for Block I
(iv) Differences (ii) less (iii)
(v) New Sums for Block I
(vi) New Averages for Block I
BLOCK I Project
Response Reaction Time (Milliseconds)
(1) (2) (3) (4) (5)
Calculations of Effects

$$
\begin{aligned}
& E_{1}=(A-B C) \text { Effect }=1 / 2\left(\bar{y}_{3}+\bar{y}_{4}-\bar{y}_{2}-\bar{y}_{5}\right)=6.0 \\
& E_{2}=(B-A C) \text { Effect }=1 / 2\left(\bar{y}_{3}+\bar{y}_{5}-\bar{y}_{2}-\bar{y}_{4}\right)=-8.0 \\
& E_{3}=(-C+A B) \text { Effect }=1 / 2\left(\bar{y}_{2}+\bar{y}_{3}-\bar{y}_{4}-\bar{y}_{5}\right)=-5.0 \\
& E_{4}=\text { Change in Mean Effect }=1 / 5\left(\bar{y}_{2}+\bar{y}_{3}+\bar{y}_{4}+\bar{y}_{5}-4 \bar{y}_{1}\right)=26.0
\end{aligned}
$$

Phase

$$
\begin{aligned}
& n=1 \\
& 4
\end{aligned}
$$

Calculation of Standard Deviation
Previous Sum s (all blocks) =

$$
\text { Previous Average s (all blocks) }=
$$

səgexə

APPEINDIX 1 I
Response Reaction Time (Milliseconds)

THREE-VARIABLE EVOLUTIONARY OPERATION PROGRAII CALCULATIOII WORK SFESA
Response Reaction Time (Milliseconds)

SHEET
$n=2$
BLOCK II Project Dual-Function Pedal
LATIOI WORK SHEFT
Project Dual-Function Pedal
Cycle $\quad n=2$
Phese $\quad 4$
APPENDIX II
Response Reaction Time (Milliseconds)

		Calculation of Averages					Calculation of Stenderd Deviation	
	Operating Conditions	(1)	(2)	(3)	(4)	(5)		
(i)	Previous Sum for Block I	560	637	646	669	633	Previous Sum s (all blocks)	$=15.6$
(ii)	Previous Average for Block I	280	318	323	334	316	Previous Average s (all blocks)	$=7.8$
(iii)	New Observations for Block I	300	359	388	389	331	New $s=$ Range $\times f_{k, n}$	$=17.5$
(iv)	Differences (ii) less (iii)	-20	-41	-65	-55	-15	Ranz	$=50.0$
	New Sums for Block I	860	996	1034	1058	964	New Sum s (all blocks) (New Sum s)	$=33.1$
(vi)	New Averages for Block I	287	332	345	353	321	New Average s	$=11.03$

$E_{1}=(A-B C)$ Effect $=1 / 2\left(\bar{y}_{3}+\bar{y}_{4}-\bar{y}_{2}-\bar{y}_{5}\right)=22.5$
$E_{2}=(B-A C)$ Effect $=1 / 2\left(\bar{y}_{3}+\bar{y}_{5}-\bar{y}_{2}-\overline{\mathrm{y}}_{4}\right)=-9.5$
$E_{3}=(-C+A B)$ Effect $=1 / 2\left(\bar{y}_{2}+\overline{\mathrm{y}}_{3}-\overline{\mathrm{y}}_{4}-\overline{\mathrm{y}}_{5}\right)=1.5$
$\mathrm{E}_{4}=$ Change in Mean Effect $=1 / 5\left(\overline{\mathrm{y}}_{2}+\overline{\mathrm{y}}_{3}+\overline{\mathrm{y}}_{4}+\overline{\mathrm{y}}_{5}-4 \overline{\mathrm{y}}_{1}\right)=40.6$
APPENDIX II
THREE-VARIABLE EVOLUTIONARY OPERATION PROGRAM CALCULATION WORK SHEET

APPENDIX II
APPENDIX II
Response Reaction Time (Milliseconds)

Project	Duel-Function Pedsl
Cycle	$n=4$
Phase	4

BLOCK I
Response Reaction Time (Milliseconds)

$$
\begin{aligned}
& \text { ATION WORK SHEET } \\
& \text { Project Duel-Fu } \\
& \text { Cycle } \quad n=4 \\
& \text { Phase } \quad 4
\end{aligned}
$$

-

860	996	1034	1058	964	Previous Sum s (all blocks)
287	332	345	353	321	Previous Average s (all blocks)
284	340	345	404	323	New s = Range $x f_{k, n}$
3	-8	0	-51	-2	Range
1144	1336	1379	1462	1287	New Sum s (all blocks)
286	334	345	365	322	New Average $\frac{(\text { New Sum s) }}{(2 n-3)}$

Calculations of Effects

$$
\begin{aligned}
& E_{1}=(A-B C) \text { Effect }=1 / 2\left(\bar{y}_{3}+\bar{y}_{4}-\overline{\mathrm{y}}_{2}-\overline{\mathrm{y}}_{5}\right)=27.0 \\
& E_{2}=(B-A C) \text { Effect }=1 / 2\left(\bar{y}_{3}+\overline{\mathrm{y}}_{5}-\overline{\mathrm{y}}_{2}-\overline{\mathrm{y}}_{4}\right)=-16.0 \\
& E_{3}=(-C+A B) \text { Effect }=1 / 2\left(\overline{\mathrm{y}}_{2}+\overline{\mathrm{y}}_{3}-\overline{\mathrm{y}}_{4}-\overline{\mathrm{y}}_{5}\right)=-4.0 \\
& E_{4}=\text { Change in Mean Effect }=1 / 5\left(\overline{\mathrm{y}}_{2}+\overline{\mathrm{y}}_{3}+\overline{\mathrm{y}}_{4}+\overline{\mathrm{y}}_{5}-4 \bar{y}_{1}\right)=44.4
\end{aligned}
$$

$$
\begin{aligned}
& \text { tion } \\
& =61.1 \\
& =15.27 \\
& =19.98 \\
& =54.0 \\
& =81.08 \\
& =16.21
\end{aligned}
$$

APPENDIX II

Response Reaction Time (Milliseconds)

(A)

Calculations for Points in Fig. 9

1. Common points to Phases I and II
(a) S.R.D. $=50 \%, \alpha=35^{\circ}, \beta=105^{\circ}$ (point 10 for Phase I, point 1 for Phase II).
(1) $270 / 278=.971$ or 97.1% of Phase I.
(b) S.R.D. $=50 \%, \alpha=35^{\circ}, \beta=105^{\circ}$ (point 10 for Phase I, point 6 for Phase II).
(I) $272 / 278=.978$ or 97.8% of Phase I.
2. Common points to Phases II and III
(a) S.R.D. $=55 \%, \alpha=30^{\circ}, \beta=100^{\circ}$ (point 2 for Phase II, Point 2 for Phase III).
(1) $317 / 306=.1036$ or 103.6% of Phase II.
(2) $\frac{103.6(97.1+97.8) / 2}{100}=100.9 \%$ of Phase I.
(b) S.R.D. $=55 \%, \alpha=40^{\circ}, \beta=100^{\circ}$ (point 9 for Phase II, point 9 for Phase III).
(1) $316 / 316=1.0$ or 100% of Phase II. $\frac{100(97.1+97.8) / 2}{100}=97.45 \%$ of Phase I
3. Common points to Phases I and IV
(a) S.R.D. $=45 \%, \alpha=40^{\circ}, \beta=95^{\circ}$ (points 1, 6 for Phase I, points 1,6 for Phase IV).
(I) $\frac{(286+286) / 2}{(293+293) / 2}=.976$ or 97.6% of Phase I
(B)

Correction Factor for Adjusting all Phases to Phase I Using Curve of Fig. 9.

The learning factor was determined by considering each point of different phase (Fig. 9) as 100% and finding what per cent the fourth phase point was of the 100%.

Phase I
Considering the points I and IV of Fig. 9, it was concluded that IV is 97.6% of I.

$$
\text { Correction factor }=\frac{0.976}{100} \times 100=0.976
$$

Hence the mean reaction times of Phase I were multiplied by 0.976 for direct comparison.

Phase II

Considering the points II and IV,

$$
\text { Correction factor }=\frac{0.976}{0.984} \times 100=0.992
$$

Hence the mean reaction times of Phase II were multiplied by 0.992 for direct comparison.

Phase III

Considering the points III and IV,

$$
\text { Correction factor }=\frac{0.976}{0.977} \times 100=0.999
$$

Hence the mean reaction times of Phase III were multiplied by 0.999 for direct comparison.

Phase IV

This phase being the base, mean reaction times remained unchanged.

DESIGN CONSIDERATIONS OF A

 DUAL-FUNCTION PEDALby

SUDESH KUMAR CHAWLA
Graduate (Mechanical), The Institution of Engineers (India), Calcutta, India, 1966

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1969

The effect of varying three paramoters in the dosien of a dual-function pedal was determined. The experiment was conducted under partially simulated driving conditions.

A reaction time of 270 milliseconds was found for the optimum design; the conventional brake-accelerator system requires 519 milliseconds for the four experimental subjects. For fifty Engineering Open House visitors, the dual-function pedal required 280 milliseconds and the conventional system 470 milliseconds.

The optimum pedal angle is between 30 to 40 degrees. The optimum seat reference distance is estimated between 45 to 50 per cent of the subject's height. Beyond this region a change of one per cent in S.R.D. will increase reaction time approximately 7 milliseconds per per cent. A change in pedal angle of one degree will increase reaction time about 4 milliseconds per degree. The angle of twist, when varied between 90 to 115 degrees did not have a significant effect on the reaction time. Negative angles (less than 90 degrees) increased the reaction time.

[^0]: *Significant effect.

[^1]:

