JAVA BYTECODE TO PILAR TRANSLATOR
by
VIDIT OCHANI

B.E., Rajiv Gandhi Technical University, 2011

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department Of Computing and Information Sciences
College Of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2014

Approved by:

Major Professor
Robby

Copyright

Vidit Ochani

2014

Abstract

Software technology is the pivot around which all modern industries revolve. It is not
surprising that industries of diverse nature such as finance, business, engineering, medicine,
defense, etc. have assimilated sophisticated software in every step of functioning. Subse-
quently, with larger reach of application, software technology has evolved intricately; thereby
thwarting the desirable testing of software. Companies are investing millions of dollars in
manual and automated testing, however, software bugs continue to persist. It is well known
that even a trivial bug can ultimately cost the company millions of dollars. Therefore, we
need smarter tools to help eliminate bugs.

Sireum is a research project to develop a software analysis platform that incorporates
various tools and techniques. Symbolic execution, model checking, deductive reasoning
and control flow graph are few examples of the aforementioned techniques. The Sireum
platform is based on previous projects like the Indus static analysis framework, the Bogor
model checking framework and the Bandera Java model checker. It uses the Pilar language
as intermediate representation. Any language which can be translated to Pilar can be
analyzed by Sireum. There exists translator for Spark - a verifiable subset of Ada for
building high-integrity systems.

In this report, we are presenting one such translator for Java Bytecode - A frontend
which can generate Pilar from Java intermediate representation. The translator emulates
the working of the Java Virtual Machine(JVM), by simulating a stack-based virtual machine.
It will help us analyze JVM based softwares, such as, mobile applications for Android. We

also evaluate and report statistics on the efficiency and speed of translation.

Table of Contents

Table of Contents
List of Figures
Acknowledgements

1 Introduction

1.1 Motivation

1.2 Contribution

1.3 Organization

Background

2.1 Java Virtual Machine
2.1.1 Java bytecode Instructions
2.1.2 JVM Data types
2.1.3 Bytecodeexample. oL

2.2 SITGUIN e e
2.2.1 Pilaro
2.2.2 Sireum JVM1
223 Kiasano
2.2.4 Alir . ..
2.2.5 Amandroid

Translation

3.1 Class Translation e
3.1.1 Fields e
3.1.2 Method
3.1.3 Annotation

3.2 Method Translation
3.2.1 Locals e
3.2.2 Label.
3.2.3 Load and Store
3.24 Call Frame
3.2.5 Object creation and Manipulation
3.2.6 Operand Stack Management
3.2.7 Control Transfer Instruction
3.2.8 Method Invocation and Return Instructions
3.2.9 Arithmetic Instructions

v

3.2.10 Type Conversion
3.2.11 Monitor Instructions
3.2.12 Exceptions
3.3 Annotation Translation

4 FEvaluation
4.1 Testing
42 Results.

5 Related Work

51 LLVMIR
52 GCCRTL
5.3 Boogie 0oL

6 Future Work
Bibliography
A A complete example

B User Manual
B.1 Setting up Development Environment
B.2 Sireum JVM Command Line manual

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

5.1
5.2

List of Figures

Java Virtual Machine 4
JVM internal architecture 5
Java Data Types 7
Java Sample source code L 8
Java bytecode 8
Pilar Example o0 9
Alir Components 11
Java Frames 17
LLVM Implementation of Three phase design 27
Boogie Pipeline 29

vi

Acknowledgments

I am grateful to the Department of Computing and Information Science for providing
me the opportunity for Masters. I am lucky to have Dr. Robby as my Major Professor.
He is one of the most passionate software engineer I have came across. This project would
not have been possible without his continuous guidance. He fostered my interest in this
area, and has always helped me by taking out time from his busy schedule to advise me.
His technical thoroughness are second to none, and his cutting edge research in software
analysis is fascinating. I have learned a lot from him, especially the art of compilers.

I would also like to thank my committee members, Dr. John Hatcliff and Dr. Simon Ou,
for their insightful comments, support and guidance. Last, but not the least, I thank my

family and fellow graduate students in the department for their help and emotional support.

vil

Chapter 1

Introduction

1.1 Motivation

We live in a world which is increasingly dependent on software for most basic and advanced
functioning. Software and computing technology has evolved to a point where most in-
dustries are dependent on amelioration in technology for materializing innovation. It is,
therefore, not presumptuous to state that software technology is shaping the world we live
in. Innovation in industries such as medical, education, finance, military, and air travel are
few of the many testaments for practical usefulness of software technology. With the am-
bition to tackle increasingly difficult problems, software technology is getting subsequently
intricate with respect to both size and the underlying logic. Increasing dependency of most
industries has also increased the demand for more sophisticated and flexible software.

Organizations are struggling to manage the ever increasing complexity of software. Soft-
ware testing is getting harder. It is becoming increasingly difficult to test software. Software
companies are leveraging automation to systematize the tiring process of manual testing.
However, the process largely remains inadequate and some bugs may still remain unde-
tected. As a result, we see a surge in demand for tools to help software companies improve
testing, thereby ensuring product safety to the end user.

Industries such as aeronautics, automotive, medicine, military and nuclear plants hinge

on safety and therefore cannot afford software with lurking bugs. One of the recent examples

of a software crash is the Toyota’s killer firmware| 8], which caused uninteded acceleration
causing death of the occupant. Often, these industries demand zero failure rate of their
software under all circumstances. It can result in security vulnerabilities, ultimately causing
billions of dollars in damage; so the software employed in the abovementioned industries
demand exhaustive testing.

Another important requirement of software engineering is maintenance. In industry,
maintenance of the codebase using old technology with ever changing staff is not trivial.
The employees working on old systems do not comprehend it completely and often work
in an adhoc manner: fixing bugs and adding features. This has resulted in an increase in
demand of software analysis tools.

Sireum is a long term research project to develop a software analysis platform. It includes
various static analysis techniques like data-flow, control-flow, symbolic-execution, model-
checking, and deductive reasoning. The Sireum framework is based on previous extensive
efforts in the Indus static analysis framework| 17], the Bogor model checking framework] 9]
and the Bandera model checker[4]. It can be used to build different kinds of static analyzers.
It is also very flexible, and can be easily extended to support different languages.

The framework uses an intermediate language representation named Pilar. The tools
are generic and work on the intermediate representation(IR). Any language which can be
translated into Pilar can be analyzed using the Sireum tools. There exists translator for
Spark - a verifiable subset of Ada for building high-integrity systems. In this report, we
will present a front-end designed for translating Java bytecode into Pilar. This will help
us analyze Java based softwares and libraries using the static analysis tools available in the

framework.

1.2 Contribution

The contributions of this report are as follows:

1. A translator for Java bytecode to Pilar.

2. Evaluation of existing Java classes using Sireum tools.

3. A high level discussion on how other languages can be translated.

1.3 Organization

The report is organized in six chapters. Chapter 1 is the introduction that details the
problem and description of my project. Chapter 2 is Background that gives details about
Java Virtual Machine, Sireum IR(Pilar) and Sireum JVM v1. Chapter 3 discusses about
the implementation of my translator and goes into specifics for each bytecode instruction.
Chapter 4 presents the testing strategy and some statistics about the speed. Chapter 5
discusses related work that has been done on this topic. The last chapter, Chapter 6, is the

future work that can be done on this topic.

Chapter 2

Background

2.1 Java Virtual Machine

Java Virtual Machine(JVM) lies at the heart of Java technology. It is the abstract computer
which executes Java programs. JVM can be implemented in software or on hardware directly.
One of the main reasons of Java success is it’s “write once, run anywhere” model which has
been made possible because of the JVM. It is the component responsible for Java’s hardware

and operating system independence, garbage collection, security and portability.

rd oy
Local variables
1]2|3|4 N
Operand stack N/ \._\
f'x]f' '-.l
K,J | Constantp?l
L o

Figure 2.1: Java Virtual Machine

JVM is similar to other computers at many levels. It executes instructions and ma-

4

nipulates memory. Contrary to register-based x86 computers, JVM is a stack-based ma-
chine(Fig: 2.1). A stack based virtual machine makes very few assumptions about the
target architecture, which makes it easy to implement on a wide variety of hardware. JVM
also feature techniques like just-in-time compilation and adaptive optimization, designed to

improve performance.

clasg
class files loader
subsystem
native
method heap Java pe method
area stacks registers
stacks
runtime data areas
// \\
s
\v/ .
: native
erosTiism 1 native method method
i inferface . .
engine e f A libraries

Figure 2.2: JVM internal architecture

The behavior of JVM is defined in terms of subsystems, memory areas, data types, and
instructions. The abstract nature of the JVM'’s specification| 16] makes it easy to have dif-
ferent implementations on a wide variety of platforms. It gives the individual implementors
freedom to design the machine according to their requirement and that of the hardware

As shown in figure 2.2, all JVMs have an execution engine, heap, stack, method area and
native methods area. The memory is used for storing class data, global variables, method
locals and other intermediate values. Instructions are executed by the execution engine and
is one of the main components of the machine. The JVM has no registers, instead it uses
stack for all intermediate storage.

The language understood by JVM is called Java bytecode. The bytecode is independent

of the source language, which opens a lot of possibilities as other language designers can

use the power of JVM by writing translators which can translate to bytecode. There are
many translators capable of translating different languages into Java Bytecode such as the

following:
e NestedVM] 1] - A C to Java translator
e GCJ[11] - GCC Java compiler
e LLJVM] 18] - Java compiler based on LLVM toolchain
e Cibyl[13] - C to Java, targets J2ME devices

2.1.1 Java bytecode Instructions

The Java bytecode is the instruction set of the JVM. The reason behind the term bytecode
is that all instructions are of a single byte. A single byte has 256 possible values, which
limits the total number of possible instructions to 256. Among them, 0x00 through Oxca,
Oxfe, and Oxff are assigned values. Some are special purpose instructions. For example, Oxca
for setting a breakpoint in Java debuggers, Oxfe and 0xff are for internal use by JVM. The

different instructions fall into the following groups:
e Arithmetic Instructions - xADD, xSUB etc
e Load and Store - xLOAD, xSTORE etc
e Type Conversion Instructions - x2y etc
e Object Creation Manipulation - NEW, NEWARRAY etc
e Control Transfer Instruction - IFEQ, IFNE etc
e Method Invocation and Return Instructions - INVOKEVIRTUAL etc
e Throwing Exceptions - ATHROW

e Monitor Instructions - MONITORENTER, MONITOREXIT

6

where x and y can be any one of the following data types: B for byte, C for character,
I for an Integer, D for double, F for float, L for long, Z for boolean, and A for an object or

array data type.

2.1.2 JVM Data types

As shown in Figure 2.3, JVM has two type categories: value (primitive types) and reference
(object types). The value types are scalar types and are further classified into three types,
numeric types, boolean type and returnAddress type.

Numeric types are divided into integral type and floating point type. Integral types are
byte, short, int, long and char. Floating point types are float and double. Boolean type is
a true or false value.

Reference types are either: class types, array types, or interface types. They refer to
dynamically created objects. An array consists of a component type and a dimension. The
component type can again be an array, however, it ultimately resolves to a primary type,

class type or interface type which is called the element type of the array.

Floating-Point <
Types

Numeric
Types

Primitive
Types

boolean

Reference
\ﬂ‘;._ I
Types hel

Figure 2.3: Java Data Types

2.1.3 Bytecode example

An example Java source file(2.4), which gets compiled to(2.5).

Figure 2.4: Java Sample

public class Foo {
private String bar;

public String getBar(){
return bar;

}

public void setBar(String bar) {
this.bar = bar;

}
}

Figure 2.5: Java bytecode for 2./

public class Foo extends java.lang.Object {
public Foo() :

Code:
0: aload_0
1: invokespecial #1; //Method java/lang/Object.”<init >":()V
4: return

public java.lang.String getBar();

Code:
0: aload_0
1: getfield #2; //Field bar:Ljava/lang/String;
4: areturn

public void setBar(java.lang.String);

Code:
0: aload_0
1: aload_1
2: putfield #2; //Field bar:Ljava/lang/String;
5: return

2.2 Sireum

Sireum is a collection of tools for software analysis. Sireum’s different modules depends on

an intermediate representation which is described in the following section:

2.2.1 Pilar

Pilar is the intermediate language used by Sireum framework. It is a Guarded Command
language|[7] inspired by Bogor Modeling Languague(BIR)[9]. There are many salient features
of Pilar which makes it suitable for analysis. It is a simple, flexible and structured language.

The main quality of Pilar is the extensibility. One can add annotations of different
kinds, which might or might not be used during the analysis. This also differentiates it
from other intermediate representations which have strictly defined semantics. An example

of Pilar is shown in Figure 2.6. All the identifiers in generated Pilar are fully qualified,

Figure 2.6: Pilar FExample

procedure (|int]|) {|org.sireum.test.jvm.samples.HelloWorld.sum(II)I|} ((]|
int|) [lal], (lint]) [|b]])
@MaxLocals 2
@MaxStack 2
@QOwner (|org.sireum. test.jvm.samples.HelloWorld|)
@Access (PUBLIC,STATIC)
@Desc ”org.sireum. test.jvm.samples.HelloWorld .sum (I1)I”

local jmp;

: #L00000Aa. return ([|al|]+][|b]|]);

“package.Class.name”. Another feature is visually separating different classes of identifiers
by using different types of delimiters. Method names are shown as “{|package.class.sum(II)I
|}7, global fields are “+|package.class.field|+”, local variables are “[|a|]”, types are “(|int]|)”

and fields are surrounded by “<|package.class.field|>".

2.2.2 Sireum JVM1

Sireum JVM1 is the name of the previous version of current project. It was used to translate
Java bytecode to Pilar, however, there were some caveats. Firstly, Sireum JVM1 was not
a complete implementation of the Java Virtual Machine specification. It translated byte-
code instructions with little modification, in a Pilar compatible format, which caused other

problems. Here’s an example of Pilar generated using Sireum JVM1:

#11 .
ALOAD 0; //bytecode instruction

This caused the tools used for analysis to be modified to support the generated Pilar.
As an example, Kiasan| 2.2.4], one of the Sireum tools, had to be modified to interpret
bytecode instructions embedded within Pilar generated by Sireum JVMI1 effectively creating
a Symbolic JVM. However, it does not allowed Kiasan to be used for other languages,
resulting in creation of a different Kiasan for other languages such as Spark.

Regardless, Sireum JVM]1 gave pointers on how to translate Java bytecode. It used the
same libraries, ObjectWeb ASM and StringTemplate, for Pilar generation. The new version

described in this report is a completely independent version, and is done from the ground

up.
2.2.3 Kiasan

Kiasan[5, 6, 12] is the tool for symbolic execution, which is an effective technique for auto-
matically finding bugs in program. It can provide highly-automated and precise reasoning
about programs. Kiasan can dynamically unroll loops and data structures can be explored
up to a certain limit. This helps not only with test case generation, but can also aid in the

verification of the program.

2.2.4 Alir

Alir[19] is Sireum’s data flow analysis tool that can perform various kinds of inter and

intra-procedural analyses. The common ones are Control Flow Graph, Reaching Definition

10

Analysis, Control Dependence Graphs, Data Dependence Graphs, Program Dependence

Spark Query
program Language

Spark
compiler Query
‘ Pilar intermediate parser
AST l

representation
Query

interpreter

Graphs etc.

[

lir

CFG DDG SDG Slicing

RDA CDG PDG Chopping

Figure 2.7: Alir Components; figure taken from 19

2.2.5 Amandroid

Amandroid is a new framework being developed for Android, which has a tool called
Dex2Pilar. It can translate Dalvik| 3] dex files into Pilar. The Pilar generated from

Dex2Pilar tool was really useful as a reference for this project.

11

Chapter 3

Translation

The translation of Java bytecode to Pilar involves reading the class file and generating
corresponding Pilar instructions. We use ObjectWeb ASM library to read and process Java
bytecode.

Translation works by visiting different classes of bytecode instructions and then taking
appropriate action. The translator uses a stack data structure to simulate JVM stack
machine. As an example, whenever a “ILOAD X” instruction is encountered, the variable
X is pushed on the local stack. Similarly, a IADD instruction pops two values from the
local stack, creates a new value by adding them, and then pushes it back on the stack. For
example, assume the stack has X and Y, if the next instruction is IADD, it will pop X and
Y, add them and push the result “X 4+ Y” on the stack.

StringTemplate library is used for defining the templates; which defines the format of
Pilar output. It also provides a single place to define the view of generated Pilar. This follows
good software practices. The specifics of how it is used will be defined in the subsequent
sections. The different templates are hierarchically defined, starting from the Pilar record
which represents a Java class.

The different structures in Pilar are defined as classes which are created while visiting
the bytecode. It clearly separates responsibilities: visitor does the translation and creates
models, the translator translates models using templates to Pilar. This closely resembles

the well-known software pattern - Model View Controller(MVC).

12

The reading of class files or the bytecode is done using the ClassReader class from ASM.
ClassReader accepts a ClassVisitor which uses visitor pattern to visit different members of a
class. A class visitor translates all java classes, delegating to other visitors like field visitor,
annotation visitor, method visitor as required. The exact details of each of these are covered

in subsequent sections.

ClassVisitor cv = new ClassVisitor (Opcodes.ASM4, cw) { };
ClassReader cr = new ClassReader(bl);
cr.accept(cv, 0);

There are two modes of translation:

e Intermediate values in stack - This mode stores the intermediate values while trans-
lating the bytecode in Stack and produces Pilar code which resembles the Java source

more closely.

ILOAD 1 //Load variable [|vl]|] onto stack
ICONST2 //Load constant 2 onto stack

IMUL //Multiply top two stack wvariables, ([|vl]|] % 2)
ILOAD 3 //Load variable 3 on stack [|v3]]
IADD //Add top two stack wvariables (([|vl]|] * 2) + [|v3]])

ISTORE 5 //Store the result into variable [[v5]]

translates to:

[Iv5[] o= (C([Ivl[] = 2) + [|v3]]) @type (|int]);

e Intermediate values in Variables - This mode stores all intermediate value in variables,
and then use them for further calculation. It produces code which more closely re-
sembles the bytecode, where each instruction is translated to Pilar code that access

at most 3 address.

ILOAD 1
ICONST 2
IMUL
ILOAD 3
TADD
ISTORE 5

translates to:

13

sO := [|vl]|]; //ILOAD 1
s1 = 2; //ICONST 2
s3 := s0 x sl; //IMUL
s4 = [|v3]|]; //ILOAD 3
sb = s3 4+ s4; //IADD
[|v5|] := sb; //ISTORE 5

3.1 Class Translation

ClassVisitor is the class responsible for translating Java classes. It visits all the different class
bytecode instructions and creates the record model for the class. The different instructions

a class bytecode have are as follows.

3.1.1 Fields

A field is a variable inside class and it stores the state of the class. It should have a name,
a type, and might have some modifiers like public, private etc. ClassVisitor creates a field
model and adds it to a record model. It then delegates the responsibility of visiting further

to a FieldVisitor. This instruction doest not use the stack. A few examples :

// access flags 0x1
public I field2

(|type|) <|name|> @AccessFlag (XXX, YYY);

A field with public static and final modifiers is treated as a global field.

// access flags 0x19
AccessFlags TYPE NAME

global (|TYPE|) @@+ |[NAME|+ @AccessFlag (XXX, YYY);

3.1.2 Method

Method defines the behavior of a class. It has a method signature, access type and the
method body. The method signature consists of the name, the parameter types and their
order. The corresponding model in Pilar is called a procedure.

An example of what is read by the ClassVisitor..

14

public static main ([Ljava/lang/String;)V throws java/io/IOException java/io/
FileNotFoundException

which is used to create a Procedure model with the given name, signature and accesstypes.

It is then passed to MethodVisitor which takes care of the method body.

3.1.3 Annotation

In Java, classes can have annotation and they are used to give meta information. An
annotation can be runtime or compile time, it can be used by a compiler or the program
using reflection. An annotation is translated by an AnnotationVisitor which is covered later

in section 4.3(3.3).

3.2 Method Translation

The translation of a method starts at ClassVisitor level, where a Procedure model is created
for the method and then passed to MethodVisitor. A MethodVisitor is responsible for
translating the bulk of the method, including method body. The different parts of a method

are translated as follows:

3.2.1 Locals

Local variables have a name and a type. In bytecode, they are addressed by a number
starting at zero, which is an index into the local variable slots. They are available as debug
information, and might not be always available. If present, it is used to get the names of

variables.

LOCALVARIABLE NAME TYPE; LO L3 0

translates to:

(|TYPE[) [|NAME]]

and is used within the scope LO and L3.

15

JVM also uses local variables to pass method parameters, including the class instance.

The length of the local variable array is determined at compile time.

3.2.2 Label

Labels represent a mark position, which is used by JVM to jump to certain locations.
A single label can be associated with more than one bytecode instructions. And so
for translating it to Pilar “Aa-Zz” is appended at the end of Label to distinguish different

Y

instructions under the same Label. We tried using single letters “a-z” as suffix, but they
were not sufficient in some cases and therefore we chose “Aa-Zz”. In bytecode, label is just

a number followed by a character, usually 'L’.

LN

translates to:

#L0000NAa

3.2.3 Load and Store

Load and store instruction transfer values between local variables and operand stack. Load-
ing a local variable from the stack is xLoad, where x represents the data type. It can be
i, d, f, z and a. They do not generate anything, except operating on the local stack. An

example of load instruction is:

ILOAD 2

Storing a value from the stack to a local variable is of the form: xStore, where x is a

data type.

ALOAD 2
ISTORE 3

The above statement pops a value from the stack and emits an assignment statement. If we
have the debug information and local variable names are present, they are used; otherwise

a pseudonym is used.

16

[Iv3 1] = [Iv2]];

LDC instruction is similar to the Load instruction, but instead of loading a variable

value it loads a constant.

LDC X

And similar to the LOAD instruction, it does not generate any output and loads a constant

value on the stack.

3.2.4 Call Frame

A call frame(Fig: 3.1) is created and destroyed when a method is invoked and when the
invocation completes respectively. It is created from the stack area of the thread calling the
method. Only one frame is active at any time, called the current frame and the method
who ownes it is known as the current method. Similarly, the class owning the method is

called current class. There are no instruction for frames define in JVM specs, but ASM

Local Variable Array

Stack Frame k:] Operand Stack

Reference to Constant
Pool

WM Stack per Thread

Figure 3.1: Java Frames

inserts pseudo instructions for it. They are inserted just before any instruction that follows

17

an unconditional branch instruction, that is the target of a jump instruction, or that starts
an exception handler block.

ASM has the following frame types:

SAME - Frame with exactly the same locals as the previous frame and with empty

stack.

e SAMELI - Frame with exactly the same locals as the previous frame and with the single

value on the stack.

e APPEND - Current locals are the same as the locals in previous frame, except addi-

tional locals are defined.

e CHOP - Frame with current locals are the same as locals in the previous frame, except

the last 1-3 locals are absent and with empty stack.
e FULL - Represents complete frame data.

The template for translation of frame structure is

@Frame (@<type>, <nLocal>, ‘[<local; separator=", ”>], <nStack>, ‘[<stack;
separator=", 7 >])

where type is the type of the frame, nLocal is the number of locals in the frame, local is the
array of local variables, nStack is the number of stack values and stack is the array of stack

values.

3.2.5 Object creation and Manipulation

Classes and arrays, both are considered objects but JVM uses different instructions for

them.

e NEW - This instruction is used to create a new instance of a class. A new stackvar is

created in pilar and then stored in stack on the translator side.

NEW classname

18

translates to:

s0 := new (|classname]|) ;

NEWARRAY, ANEWARRAY and MULTINEWARRAY are used to create different

kinds of array, however, have a similar translation template.

ALOAD dimension
ANEWARRAY type

translates to:

new (|typel) [dimension]

GETFIELD and PUTFIELD - These instructions are used to access the field members

of a class using an object.

ALOAD Y
GETFIELD fieldname: type

translates to:

[|vY]] = null 4> throwNPE(); | sX = [|vY]|]. <|fieldname|>

where sX is a stack variable. Putfield is similar but pops two values from the stack,

the objectref and the value to put in the field.

GETSTATIC and PUTSTATIC - They are similar to Getfield and Putfield, except
that they are used for static fields. Also, instead of an objectref classname is used to

access them.

GETSTATIC StaticFieldName : Type;

translates to:

sX := +|StaticFieldName|+ @QType (|Type]l) ;

where sX is a stack variable.

xALOAD - Loads an array component on the stack. This does not emit any instruc-

tions, however, pushes value on the stack.

19

xLOAD y
ICONST.0
xALOAD

The above sequence of instruction will push “y[0]” on the stack; x represents some

data type and y represents a variable.

e XASTORE - Stores a value from the stack to an array index.

ALOAD value
xSTORE m

translates to:

[| ref|]J==null +> throwNPE() ;
| else [|m|]<0 || [|m|]>[|ref]|].length +> throwAOB() ;
| else [|ref]|][|m|] := value;

where x is the type, m is the index of the local variable array.

e ARRAYLENGTH - A special instruction to get the length of an array.

ATLOAD m
ARRAYLENGTH

translates to:

sX := m.length;

where sX is the local stack variable.

e INSTANCEOF, CHECKCAST - These instructions are used to check properties of

objects. They generate different instructions, the templates are..

ALOAD ref
INSTANCEOF Type

translates to:

sX := [|ref|] <: (|Typel);

where sX is a stack variable.

20

3.2.6 Operand Stack Management

The stack management instructions are pop, pop2, dup, dup2, dupx1, dup2_x1, dup_x2,
dup2 x2, swap. They do not emit any Pilar instructions, rather operate directly on the

stack datastructure used by translator.

3.2.7 Control Transfer Instruction

The instructions transfer the control of JVM from one place to another and are often used

for conditional and loop constructs. They can be classified in three different categories.

e Condition Branch - Jumps based on some condition. They include ifeq, ifne, iflt,
ifle, ifgt, ifge, ifnull, ifnonnull, if icmpeq, if icmpne, ificmplt, if.icmple, if icmpgt

if icmpge, if_acmpeq, and if_acmpne.

xLOAD vY
IFEQ LX

translates to:

if vY==0 then goto LX;

where LX is the label to jump to.

e Compound conditional branch - It can test for multiple conditions, they are ta-
bleswitch, lookupswitch. Lookupswitch is similar to tableswitch, except the values

need to be continuous in tableswitch.

ILOAD i
LOOKUPSWITCH
x: LX
y: LY
z: LZ
default: LD

translates to:

switch [|i]]
| x = goto LX
| v = goto LY

21

| z => goto LZ
| => goto LD;

where x, y and z are the values, and LX, LY and LZ are the labels.

e Unconditional branch - GOTO and RET

GOTO LX

translates to:

goto LX

where LX is the label.

3.2.8 Method Invocation and Return Instructions

Methods are called using different instructions; based on their type. If they are instance
methods, they are invoked using INVOKEVIRTUAL, INVOKEINTERFACE, INVOKE-
SPECIAL and INVOKEDYNAMIC. If they are static methods, they are invoked using
INVOKESTATIC.

INVOKEx functionName (argsl, ..., argsN)returntype

translates to:

call temp := functionName (argsl, ..., argsN);

The args are popped from stack and return type, if not void, is pushed on stack..

3.2.9 Arithmetic Instructions

All the instructions performing some kind of arithmetic, they include addition, subtraction,
multiplication, division, remainder, negate, shift, binary operations and a few comparison

operations.

xLOAD sY
xLOAD sZ
xINS

translates to:

22

sT := sY OP sZ;

where xINS is an binary arithmetic instruction operating on x data type, and OP is the

operator for corresponding instruction.

3.2.10 Type Conversion

Often one type is converted to another, and that’s where this instructions are used. They

are i2b, i2c, i2s, 121, £2i, f21, d2i, d21, d2f, i21, i2f, i2d, 12f, 12d, and f2d.

xLOAD vl
X2y

translates to

(YD) [hvif]

where Y represents some data type.

3.2.11 Monitor Instructions

JVM supports synchronization of methods and block of instructions, and for this it has two
instructions, MONITORENTER and MONITOREXIT. It first pops an object reference(sX)

from the stack, and then emit following Pilar code.

sX = null +> throwNPE(); | sX != null && lockAvailable(sX) +> lock(sX);

3.2.12 Exceptions

Java has extensive support for exception handling. The bytecode has only one instruction

for the same.

ALOAD sm
ATHROW

translates to:

throw sm

23

3.3 Annotation Translation

Annotations adds metadata about the source code. They are used for different purpose,

such as:

e Information for the compiler
e Compile-time and deployment-time processing

e Runtime processing.

Annotations can be nested inside each other, and the general template for translation is:

@Lpackage/class /Name(namel = valuel, ..., nameN = valueN)

gets translated to:

Q(|package. class .Name|) (namel = valuel, ..., nameN = valueN)

24

Chapter 4

Evaluation

This section evaluates the translation of several Java libraries using the translator and the

testing strategies used for evaluation.

4.1 Testing

The test project translates the classes and then uses ChunkingPilarParser to test if the
generated files are parsing properly. This assures that the generated Pilar is syntactically
correct. If there are expected output files, it also test if those matches the resulting output
files.

There were several sample classes whose translation was inspected manually, and then

those files were used as expected output.

4.2 Results

We have translated the complete Scala library using the translator, and it was tested using
the above strategy. Since there were no expected output files, it only went through the
first phase which verifies the syntax of generated files. Also, many Java and Scala classes
were translated for those we had expected output and the generated output matched the
expected ones.

As shown in table: 4.1, we also report some statistics on the speed of translation. It is

25

found to be linear in the lines of code.

26

Project Lines of Code | Translation time | Total time
Sireum JVM 23 3.259s 4.816s
Sireum Core 31814 30.15s 44.481s

Scala Collection 44016 36.083s 43.445s
Scala 210000 213.43s 302.588s
Table 4.1: Results

Chapter 5
Related Work

5.1 LLVM IR

LLVM] 14] is a collection of compiler technologies, based on an intermediate language rep-

resentation, known as LLMV IR.

Clang C/C++/ObjC LLWVM
C Frontend / X86 Backend > X86
LLWVM n LLWVM
Fortran —#=| llvm-gce Frontend Optimizer *| bowerPG Backend —» PowerPC
LLWVM
Haskell | GHC Frontend LR LvMIR | ARM Backend —= ARM

Figure 5.1: LLVM Implementation of Three phase design; figure taken from 14

The LLVM IR is the most important aspect of its design. It is the form used to represent
code in the compiler. LLVM IR is mainly designed to be easy for mid-level analysis and
transformation, which is generally done in the optimizer section of the compiler(Fig: 5.1).
The specific goals the developer had when designing the IR were support for lightweight
runtime optimizations, cross functional interprocedural optimizations, whole program anal-
ysis, and aggressive restructuring transformations. Another important aspect of the IR is
itself a first-class language with well defined semantics. Here’s an example of a C function

and its corresponsing LLVM intermediate representation:

unsigned addl(unsigned a, unsigned b) {

27

return a+b;

}

define 132 @add1(i32 %a, 132 %b) {
entry:

Y%tmpl = add 132 %a, %b

ret i32 %tmpl

}

LLVM IR is strongly typed compared to other low-level languages. Rather than using
fixed set of registers in the representation, LLVM uses Infinite temporaries named with a
%character.

Pilar is similar to LLVM in many aspects. It is designed for analysis, has a type system
and is a first-class language. However, it differs in other aspects. It does not have fixed

semantics, and is very flexible.

5.2 GCC RTL

GCC uses Register Transfer Language(RTL)[10] as a low-level intermediate representa-
tion, which is very close to assembly language. The source code is first translated into a
tree(GIMPLE) representation, which is the central data structure for the GCC Front end.
The tree is translated into RTL.

RTL instructions are described in an algebraic form that describes what the instruction
does. It is inspired by Lisp lists. It has two forms; one used internally and other used
for debugging(a textual description). The textual form looks very similar to lisp and uses

parentheses to indicate pointers.

(set (reg:SI 140)
(plus:SI (reg:SI 138)
(reg:SI 139)))

5.3 Boogie

Boogie[2, 15] is a program verifier built for verifying Spec# programs in the .NET object

oriented framework. It performs a series of transformations from the source program to

28

verification conditions to an error report. The Boogie pipeline is centered around BoogiePL,
an intermediate representation tailored for expressing proofs and obligations. It separates

the semantics of a program from generating proof obligations.

Spec# Compiler Boogie Boogie
Bytecode
’ L Source-Level Bytecode r » Translation ’ L Invariant | | vC Theorem ||
Analysis Generation Inference \ Generation \ Proving

. BoogiePL First-Order
Spectt cL BoogiePL with InvuriantsJ Formula

Figure 5.2: Boogie Pipeline, figure taken from 2

BoogiePL provides assert statements to encode proof obligations and assume statements
for properties guaranteed by the source language. It also includes declarations for mathe-

matical functions and axioms.

procedure F(n: int) returns (r: int)
ensures 100 < n => r = n — 10; // This postcondition is easy to check
ensures n <= 100 => r = 91; // Do you believe this one is true?
{
if (100 < n)
r ;= n — 10;
} else {
call r
call r

Listing 5.1: Ezample taken from 2

Like Pilar, BoogiePL can be represented in a textual form, and parsed from it. This
makes it convenient for debugging and other similar purposes. In contrast to Pilar which
is designed for different kinds of analysis, BoogiePL is meant for verification of correctness

using VCGen approach with a fixed semantics.

29

Chapter 6
Future Work

The Sireum-JVM project has lot of scope. The next step can be to add support for different
kinds of translation and many more languages. The most important one would be to make
it faster. There are lot of optimizations that can be done. It takes quite some time to run
for big libraries.

Another idea would be to translate Pilar back to Java Bytecode. It will present interest-
ing problems and will open several possibilities. Another possible work would be to write a

concrete interpreter for Pilar, so as to run the code directly.

30

1]

Bibliography

Brian Alliet and Adam Megacz. Complete translation of unsafe native code to safe
bytecode. In IVME ’04: Proceedings of the 2004 workshop on Interpreters, virtual
machines and emulators, pages 32-41, New York, NY, USA, 2004. ACM.

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs 0002, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In
Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, Formal Methods for Components and Objects, 4th International Symposium,
FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures,

volume 4111 of Lecture Notes in Computer Science, pages 364-387. Springer, 2005.
Dan Bornstein. Dalvik virtual machine internals. Google 1/0 2008, Juni 2008.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Bandera: a source-
level interface for model checking java programs. In Carlo Ghezzi, Mehdi Jazayeri, and

Alexander L. Wolf, editors, ICSFE, pages 762-765. ACM, 2000.

Xianghua Deng, Jooyong Lee, and Robby. Bogor/kiasan: A k-bounded symbolic ex-
ecution for checking strong heap properties of open systems. In Automated Software
Engineering, 2006. ASE "06. 21st IEEE/ACM International Conference on, pages 157
166, 2006.

Xianghua Deng, Robby, and John Hatcliff. Kiasan: A verification and test-case gen-
eration framework for java based on symbolic execution. In Proceedings of the Second
International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, ISOLA ’06, pages 137—, Washington, DC, USA, 2006. IEEE Computer

Society.

31

[14]

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM, 18(8):453-457, August 1975.

Michael Dunn. Toyota’s killer firmware. http://www.edn.com/design/automotive/

4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences, 2013.

Matthew B. Dwyer, John Hatcliff, and Matthew Hoosier. Supporting model checking
education using bogor/eclipse. In Michael G. Burke, editor, ETX, pages 88-92. ACM,
2004.

GCC. Gece rtl representation, 2013.
GCC. Gc¢j : Gnu compile for java programming language, 2013.

John Hatcliff, Robby, Patrice Chalin, and Jason Belt. Explicating symbolic execution
(xsymexe): An evidence-based verification framework. In Proc. ICSE, pages 222-231.
IEEE, 2013.

Simon Kagstrom, Hakan Grahn, and Lars Lundberg. Cibyl: An environment for lan-
guage diversity on mobile devices. In Proceedings of the 3rd International Conference
on Virtual Execution Environments, VEE '07, pages 75-82, New York, NY, USA, 2007.
ACM.

Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec

2002. See http://1lvm.cs.uiuc.edu.

K. Rustan M. Leino. This is boogie 2, 2008.
Oracle, 2013.

Robby. Indus, 2006.

David A. Roberts. Lljvm, 2013.

32

http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

[19] Hariharan Thiagarajan, John Hatcliff, Jason Belt, and Robby. Bakar alir: Supporting
developers in construction of information flow contracts in spark. Source Code Analysis

and Manipulation, IEEE International Workshop on, 0:132-137, 2012.

33

Appendix A

A complete example

// class version 51.0 (51)

// DEPRECATED

// access flags 0x20021

public class org/sireum/test/jvm/samples/HelloWorld2 {

// compiled from: HelloWorld2.java

@Ljava/lang/Deprecated ;()

// access flags 0x0

INNERCLASS org/sireum/test /jvm/samples/HelloWorld2$Point org/sireum/test/
jvm/samples/HelloWorld2 Point

// access flags 0x19
public final static I field = 9

/] access flags 0x1
public T field2

// access flags 0xl
public Lorg/sireum/test/jvm/samples/HelloWorld2$Point; p

/] access flags 0x1
public <init >()V
LO
LINENUMBER 13 LO
ATOAD 0
INVOKESPECIAL java/lang/Object.<init >()V
L1
LINENUMBER 16 L1
ATOAD 0
NEW org/sireum/test /jvm/samples/HelloWorld2$Point
DUP
ATLOAD 0
ICONST1
ICONST 2

34

INVOKESPECIAL org/sireum/test /jvm/samples/HelloWorld2$Point.<init >(Lorg/
sireum/test /jvm/samples/HelloWorld2; IT)V
PUTFIELD org/sireum/test /jvin/samples/HelloWorld2.p : Lorg/sireum/test/jvm
/samples/HelloWorld2$Point ;
L2
LINENUMBER 13 L2
RETURN
L3
LOCALVARIABLE this Lorg/sireum/test/jvm/samples/HelloWorld2; L0 L3 0
MAXSTACK = 6
MAXLOCALS = 1

// access flags 0x9
public static main ([Ljava/lang/String;)V throws java/io/IOException java/io
/FileNotFoundException
@Lcom/google /common/annotations /Beta;() // invisible
TRYCATCHBLOCK LO L1 L2 java/lang/ArithmeticException
TRYCATCHBLOCK L3 L4 L5 java/lang/ArithmeticException
L6
LINENUMBER 21 L6
GETSTATIC java/lang/System.out : Ljava/io/PrintStream:;
LDC ” hello”
INVOKEVIRTUAL java/io/PrintStream. println (Ljava/lang/String;)V
L7
LINENUMBER 22 L7
ICONST-1
ISTORE 1
L8
LINENUMBER 23 L8
ICONST_ 2
ISTORE 2
L9
LINENUMBER 24 L9
ILOAD 1
ILOAD 2
IADD
ISTORE 3
L10
LINENUMBER 26 L10
ILOAD 1
INEG
ISTORE 4
L11
LINENUMBER 27 L11
ILOAD 1
I2L
LSTORE 5
L12
LINENUMBER, 29 L12
NEW org/sireum/test /jvm/samples/HelloWorld2
DUP

35

INVOKESPECIAL org/sireum/test /jvmm/samples/HelloWorld2.<init >()V
ASTORE 7

L13

LINENUMBER 30 L13

ALOAD 7

BIPUSH 9

NEW org/sireum/test /jvm/samples/HelloWorld2

DUP

INVOKESPECIAL org/sireum/test /jvm/samples/HelloWorld2.<init >()V
GETFIELD org/sireum/test /jvm/samples/HelloWorld2. field2 : I
TADD

L14

LINENUMBER 31 L14

ILOAD 1

ILOAD 2

IF ICMPLE L15

ICONST_2

GOTO L16

L15
FRAME FULL [[Ljava/lang/String; I I I I J org/sireum/test/jvm/samples/

HelloWorld2] [org/sireum/test/jvm/samples/HelloWorld2 I]

ICONST.3

L16
FRAME FULL [[Ljava/lang/String; I I I I J org/sireum/test/jvm/samples/

HelloWorld2] [org/sireum/test/jvm/samples/HelloWorld2 I T]

IADD

NEW org/sireum/test /jvm/samples/HelloWorld2

DUP

INVOKESPECIAL org/sireum/test /jvmm/samples/HelloWorld2.<init >()V
GETFIELD org/sireum/test/jvm/samples/HelloWorld2. field2 : I
IADD

L17

LINENUMBER 30 L17

PUTFIELD org/sireum/test /jvm/samples/HelloWorld2. field2 : I

L18

LINENUMBER 32 L18

ALOAD 7

GETFIELD org/sireum/test /jvm/samples/HelloWorld2.p : Lorg/sireum/test/jvm
/samples/HelloWorld2$Point ;

ICONST_ 3

PUTFIELD org/sireum/test /jvin/samples/HelloWorld2$Point.x : 1

L19

LINENUMBER 34 L19

BIPUSH 10

NEWARRAY T_INT

ASTORE 8

L20

LINENUMBER 35 L20

IINC 4 1

L21

LINENUMBER 37 L21

36

ILOAD 1

ILOAD 2

ICONST_ 3

IMUL

IADD

ICONST 4

ISUB

ISTORE 9

L22

LINENUMBER 39 L22
ILOAD 1

ILOAD 2
IFICMPGE L23

L24

LINENUMBER 40 L24
GETSTATIC java/lang/System.out : Ljava/io/PrintStream;
LDC ”less than”
INVOKEVIRTUAL java/io/PrintStream. println (Ljava/lang/String;)V
L23

LINENUMBER 42 L23
FRAME APPEND [[I I]
ILOAD 1

IFNE L25

L26

LINENUMBER 43 L26
ALOAD 7

IFNULL L25

L27

LINENUMBER 44 L27
ALOAD 7

ILOAD 1

ILOAD 2
INVOKEVIRTUAL org/sireum/test /jvm/samples/HelloWorld2.sum(II)I
POP

L25

LINENUMBER 48 L25
FRAME SAME
ICONST.0

ISTORE 10

L28

GOTO L29

L30

LINENUMBER 49 L30
FRAME APPEND [I]
ALOAD 7

ILOAD 10

ILOAD 2
INVOKEVIRTUAL org/sireum/test /jvm/samples/HelloWorld2 .sum (IT)I
POP

L31

LINENUMBER 48 L31

37

IINC 10 1

L29

FRAME SAME

ILOAD 10

BIPUSH 10

IF_ICMPLT L30

L32

LINENUMBER 52 L32

ALOAD 7

INSTANCEOF org/sireum/test /jvm/samples/HelloWorld2
IFEQ L33

L34

LINENUMBER 53 L34

ALOAD 7

ILOAD 1

ILOAD 2

INVOKEVIRTUAL org/sireum/test /jvm/samples/HelloWorld2.sum(II)I
POP

L33

LINENUMBER 56 L33

FRAME CHOP 1

LDC ” adfa”

ASTORE 10

L35

LINENUMBER 57 L35

ALOAD 10

CHECKCAST java/lang/String

ASTORE 11

L36

LINENUMBER 59 L36

BIPUSH 10

ANEWARRAY org/sireum/test /jvm/samples/HelloWorld2
ASTORE 12

Lo

LINENUMBER 61 LO

ATLOAD 12

BIPUSH 9

AATOAD

ICONST_2

PUTFIELD org/sireum/test /jvm/samples/HelloWorld2. field2 : I
L1

LINENUMBER 62 L1

GOTO L3

L2
FRAME FULL [[Ljava/lang/String; I I I I J org/sireum/test/jvm/samples/

HelloWorld2 [I I java/lang/Object java/lang/String [Lorg/sireum/test/
jvm/samples/HelloWorld2 ;] [java/lang/ArithmeticException]

ASTORE 13

L3

LINENUMBER 67 L3
FRAME SAME

38

ICONST 2
ISTORE 1
L4
LINENUMBER. 68 L4
GOTO L37
L5
FRAME SAME1 java/lang/ArithmeticException
ASTORE 13
L37
LINENUMBER, 72 L37
FRAME SAME
ILOAD 1
LOOKUPSWITCH
1: L38
200: L39
3000: L40
default: L41
L38
LINENUMBER 74 L38
FRAME SAME
ICONST 2
ISTORE 1
L39
LINENUMBER. 76 L39
FRAME SAME
ICONST_ 3
ISTORE 1
L40
LINENUMBER 78 L40
FRAME SAME
ICONST 4
ISTORE 1
L41
LINENUMBER 81 L41
FRAME SAME
ILOAD 1
TABLESWITCH
1: L42
2: L43
3: L44
default: L45
L42
LINENUMBER, 83 L42
FRAME SAME
RETURN
L43
LINENUMBER, 85 143
FRAME SAME
RETURN
L44
LINENUMBER 87 L44

39

FRAME SAME
RETURN

L45
LINENUMBER &89

FRAME SAME
RETURN

L46
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE
LOCALVARIABLE

L45

args [Ljava/lang/String; L6 L46 0

i I L8 L46 1

i 1 L9 L46 2

k I L10 L46 3

1 T L11 L46 4

12 J L12 L46 5

hw Lorg/sireum/test /jvm/samples/HelloWorld2; L13 L46 7
arr [I L20 L46 8

adf I L22 L46 9

laf T L28 L32 10

o Ljava/lang/Object; L35 L46 10

lajfa Ljava/lang/String; L36 L46 11

hw2 [Lorg/sireum/test/jvm/samples/HelloWorld2; LO L46 12

MAXSTACK = 4
MAXLOCALS = 14

// access flags 0xl1
public sum(II)I
LO
LINENUMBER 96 LO
ILOAD 1
ILOAD 2
TADD
IRETURN
L1
LOCALVARIABLE this Lorg/sireum/test/jvm/samples/HelloWorld2; L0 L1 0
LOCALVARIABLE i T LO L1 1
LOCALVARIABLE j I LO L1 2
MAXSTACK = 2
MAXLOCALS = 3

}
record (|org.sireum.test.jvm.samples.HelloWorld2|)
@Source ”HelloWorld2.java”
@Type class
@AccessFlag (PUBLIC)
@Annotation (|java.lang.Deprecated;]|)
@InnerClass (
@Name (|org.sireum.test.jvm.samples.HelloWorld2$Point|) ,
@OQOuterName (|org.sireum.test.jvm.samples.HelloWorld2]) ,
@InnerName Point ,
@AccessFlag ()
)
extends

40

(|java.lang.Object |)

(|int]) <|HelloWorld2. field2|> @AccessFlag (PUBLIC);
(|org.sireum. test .jvm.samples. HelloWorld2$Point |) <|HelloWorld2.p|>

@AccessFlag (PUBLIC) ;

global (|int|) @A+|HelloWorld2. field |+ @AccessFlag (PUBLIC,STATIC,FINAL) ;

procedure (|void|) {|org.sireum.test.jvm.samples.HelloWorld2.<init >()V|}

}

((|org.sireum. test.jvm.samples.HelloWorld2|) [|this]|])
@MaxLocals 1
@MaxStack 6
@QOwner (|org.sireum. test.jvm.samples.HelloWorld2|)
@Access (PUBLIC,CONSTRUCTOR)
@Desc ”org.sireum. test.jvm.samples.HelloWorld2.<init >()V”

local jmp;
s0;
sl;

#L00000Aa. call sO := {|java.lang.Object.<init >()V|}([|this|])
@ClassDescriptor (|java.lang.Object|) QType special;

#L00001Aa. s0 := new (|org.sireum.test.jvm.samples.HelloWorld2$Point|) ;

#L00001Ab. call sl := {|org.sireum.test.jvm.samples.HelloWorld2$Point.<
init >(Lorg.sireum. test .jvm.samples. HelloWorld2;IT)V|}(s0,[| this|],1,2)

@ClassDescriptor (|org.sireum. test.jvm.samples.HelloWorld2$Point |)

@Type special;

#L00001Ac. [|this|]. <|org.sireum. test.jvm.samples.HelloWorld2.p|> := s0
@Type (|org.sireum.test.jvm.samples.HelloWorld2$Point|) ;

#L00002Aa. return Qvoid;

procedure (|void|) {|org.sireum.test.jvm.samples.HelloWorld2.main ([Ljava.

lang . String;)V|} ((|java.lang.String[]]) [|args]|])
QThrows [|java.io.IOException|],[|java.io.FileNotFoundException |]
@MaxLocals 14
@MaxStack 4
@Owner (|org.sireum. test.jvm.samples.HelloWorld2|)
@Annotation (|Lcom.google.common.annotations.Beta;|)
@Access (PUBLIC,STATIC)
@Desc "org.sireum. test.jvm.samples.HelloWorld2.main ([Ljava.lang.String;)V

”

local jmp;
s0;
sl;
s2;
s3;
s4
S9;
(Jmel) 1]

([int]) []]

41

([int]) [|k[];

([int]) [[1]];

(|long|) [|12]];

(|org sireum . test .jvm.samples. HelloWorld2|) [|hw]];
([int [][) [larr[];

([int]) [|adf]];

([int]) [|laf[];

(|java.lang.Object|) [|o]];

(|java.lang.String|) [|lajfa|];

(|org.sireum. test .jvm.samples. HelloWorld2 []|) [|hw2]];

#L00006Aa. sO := +|java.lang.System.out|+ @QType (|java.io.PrintStream]|);
#L00006Ab. call sl := {|java.io.PrintStream.println(Ljava.lang.String;)V
|} (s0,”hello”) @ClassDescriptor (|java.io.PrintStream|) @QType virtual;

#L00007Aa. [|i]] := 1 @QType (|int]);

#L00008Aa. [|j|] = 2 @QType (|int]);

#100009Aa. [k|] = ([|1]]+[il]) @Type (|int]):

#L00010Aa. [|1]] = —=[|i|] QType (|int]);

ALV Aa. - [12]] = ((Jlong|]) (][] Type (|long|).

#L00012Aa. s0 := new (|org.sireum.test.jvm.samples.HelloWorld2]|) ;

#L00012Ab. call sl {|org.sireum. test .jvm.samples. HelloWorld2.<init >()
VI]}(s0) @ClassDescrlptor (|org.sireum. test .jvm.samples.HelloWorld2 |)
@Type special;

#L00012Ac. [|hw]|] := s0 @QType (|java.lang.Object]);
#L00013Aa. s0 := new (|org.sireum.test.jvm.samples.HelloWorld2]) ;
#L00013Ab. call sl := {|org.sireum.test.jvm.samples.HelloWorld2.<init >()

V|}(s0) @ClassDescriptor (|org.sireum.test.jvm.samples.HelloWorld2|)
@Type special;

#L00013Ac. s2 := s0.<]|org.sireum.test.jvm.samples.HelloWorld2. field2|>
QType (|int]);

#L00014Aa. if [|i|] <= []j]|] then goto L00015Aa;

#L00014Ab. jmp := 2;

#L00014Ac. goto L0O0016Aa;

#L00015Aa. <@Frame (@QFull, 7, ‘[(]java.lang.String[]|), (|int|), (|int]),

([int]), (lint[), ([long[), ([java.lang.Object[), ([top|), (|top]),
([top|), (ltop[), ([top[), ([top|), (ltop[)], 2, ‘[(|java.lang.Object
1), (lint[), (ltop]), ([top|)])>

#1,00015Ab. jmp := 3:
#L00016Aa. <Q@QFrame (@QFull, 7, ‘[(]java.lang.String[]]), (|int]|), (|int]),
([int]), ([int]), (\10ng\) ([java.lang.Object|), ([top|), (|top]),

(Itop]), ([top]), (Itop|), (Itopl), (top])], 3, ‘[(|java.lang.Object
), (lint]), (lint]), (|top|)])>

#L00016Ab. s3 := new (|org.sireum.test.jvm.samples.HelloWorld2]);

#L00016Ac. call s4 := {|org.sireum. test.jvm.samples.HelloWorld2.<init >()
V]}(s3) @ClassDescriptor (|org.sireum.test.jvm.samples.HelloWorld2|)
@Type special;

#L00016Ad. s5 := s3.<]|org.sireum.test.jvm.samples.HelloWorld2. field2|>
QType (|int]);

#L00017Aa. [|hw|]. <|org.sireum.test.jvm.samples.HelloWorld2. field2|> :=
(((9+s2)+jmp)+s5) Q@Type (|int]);

#L00018Aa. s0 := [|hw|]. <|org.sireum.test.jvm.samples.HelloWorld2.p|>

42

QType (|org.sireum.test.jvm.samples.HelloWorld2$Point |) ;

#L00018Ab. s0.<|org.sireum. test.jvm.samples.HelloWorld2$Point.x|> := 3
QType (|int]);

#L00019Aa. s0 := new (|int|)[10];

#L00019Ab. [|arr|] := s0 QType (|int]);

#L00020Aa. [|1|] = [|1]] + 1 @QType (|int]);
#1000218a. [|adf|] = (([|i]]+([]j1]%3))—4) @Type (|int]);
#L00022Aa. if [|i|] >= [|j|] then goto L00023Aa;

#L00024Aa. s0 := 4|java.lang.System.out|+ @QType (|java.io.PrintStream]|);
#L00024Ab. call sl := {|java.io.PrintStream.println(Ljava.lang.String;)V
|}(s0,”less than”) @ClassDescriptor (|java.io.PrintStream|) QType

virtual;

#L00023Aa. <Q@QFrame (@QAppend, 2, ‘[(]int][]]), (|int]), (|int]), (|int]),
([int]), (|long|), ([java.lang.Object|), (|top|), ([top[), ([top[), (|
top|), (ltop|), ([top|), ([top[)], 0, “[([java.lang.Object|), ([int]),
([int]), ([top])])>

#L00023Ab. if [|i]|] != 0 then goto L00025Aa;
#L00026Aa. if [|hw|] == null then goto L00025Aa;
#L00027Aa. call s0 := {|org.sireum. test.jvm.samples.HelloWorld2.sum(IT)I

[J([Ihw] ,[11]],[1j]]) @ClassDescriptor (|org.sireum.test.jvm.samples.
HelloWorld2|) @Type virtual;

#L00025Aa. <@Frame (@Same, 0, ‘[(|int[]|), (|int|), (|int]), (|int]), (|
int|), ([long[), (|java.lang.Object|), ([top[), (|top[), (|top|), (]
top|), (ltop|), ([top|), ([top[)], 0, *[([java.lang.Object|), ([int]),

(lint]), (ltop])])>

#L00025Ab. [|laf]|] := 0 @Type (|int|);

#L00028Aa. goto L00029Aa;

#L00030Aa. <Q@QFrame (@QAppend, 1, ‘[(|int]), (|int]|), (|int]), (|int]|), (]
int|), (|long|), (|java.lang.Object|), ([top|), (Itop]), (Itop]), (|
top|) . (Itop), ([top|), (Itop|)], 0, ‘[(|java. lang.Object|), (|int]),

(lint]), ([top])])>

#L00030Ab. call sO0 := {|org.sireum.test.jvm.samples.HelloWorld2.sum(II)I
[}([|aw|] ,[]|1af|],[|j]]) @ClassDescriptor (|org.sireum.test.jvm.
samples. HelloWorld2|) @Type virtual;

#L00031Aa. [|laf]|] := [|laf]|] + 1 @QType (|int]);

#L00029Aa. <Q@QFrame (@Same, 0, ‘[(|int]|), (|]int]), (|int]), (|int]), (]|int
). (llong|), (ljava.lang.Object|), ([top|), (top|), (Itop|), (|top])
» ([top[), ([top[), ([top[)], O, “[(|java.lang.Object|), (lint]|), (]
int |), ([top|)])>

#L00029Ab. if [|laf|] < 10 then goto L00030Aa;

#L00032Aa. s0 := instanceof Qvarname [|hw|] @QType ” (|org.sireum. test .jvm.
samples. HelloWorld2 |)” ;

#L00032Ab. if sO = 0 then goto L00033Aa;

#L00034Aa. call sO := {|org.sireum.test.jvm.samples.HelloWorld2.sum(II)I
[}([|hw|] ,[I1]],[lj]]) @ClassDescriptor (|org.sireum.test.jvm.samples.
HelloWorld2|) Q@QType virtual;

#L00033Aa. <@QFrame (@QChop, 1, ‘[(]int]|), (|]int]), (|int]), (|int]), (]|int
)., (llong|), (ljava.lang.Object|), ([top|), ([top|), (Itop|), (|top])
» ([top[), ([top[), ([top[)], 0, “[(|java.lang.Object|), (lint]|), (]
int |), ([top|)])>

#L00033Ab. [|o]] := ”adfa” QType string;

43

#L00035Aa. [|lajfa|] := ((]java.lang.String]|)) [|o|] @Type (|java.lang.

String|) ;
#L00036Aa. s0 := new (|org.sireum.test.jvm.samples.HelloWorld2|)[10];
#L00036Ab. [|hw2]|] := s0 @QType (|java.lang.Object]);

#L00000Aa. sO := [|hw2|][9];
#L00000Ab. s0.<|org.sireum.test.jvm.samples.HelloWorld2. field2|> := 2
QType (|int]) ;

#L00001Aa. goto L00003Aa;

#L00002Aa. <Q@QFrame (@Full, 12, ‘[(|java.lang.String[]|), (|int]|), (]int])
. (lint|), (lint]), (|long|), (|java.lang.Object|), (|int[]|), (|int]|)
, (ljava.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorld2 []|), (|top|), (|top|)], 1, ‘[(|java.lang.Object]|),
(lint|), (lint]), (Jtop])])>

#L00002Ab. [|v13]|] := ”Exception” @Type (|java.lang.Object]|);

#L00003Aa. <Q@QFrame (@Same, 0, ‘[(|java.lang.String[]]), (|int]|), (|int]),
(lint]), (|int]), (|long|), (|java.lang.Object|), (|int[]]), (|]int]),
(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorld2 []|), (|top|), (|top|)], 0, ‘[(|java.lang.Object]|),
(lint|), (Jint]), (Jtop])])>

#L00003Ab. [|i|] := 2 @QType (|int]);

#L00004Aa. goto L00037Aa;

#L00005Aa. <Q@QFrame (@Samel, 0, ‘[(|java.lang.String[]|), (|int|), (]|int]|)
, (Jint|), (lint]), (|long]), (]java.lang.Object|), (]int[]]), (|int])
, (ljava.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples. HelloWorld2 []|), (|top|), (|top|)], 1, ‘[(|java.lang.Object]|),
([int]), ([int]), (|top[)])>

#L00005Ab. [|v13]|] := ”Exception” @Type (|java.lang.Object]|);

#L00037Aa. <Q@QFrame (@Same, 0, ‘[(|java.lang.String][]]), (|int]|), (|int]|),
([int]), ([int[), ([long]|), (|java.lang.Object|), ([int[][), ([int]),
(ljava.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorld2 []]), (|top]|), (|top])], O, ‘[(]java.lang.Object]),
([int[), ([int]), ([top|)])>
#L00037Ab. switch []i]]
| 1 => goto L00038Aa
| 200 => goto L00039Aa
| 3000 => goto L00040Aa
| => goto L00041Aa;

#L00038Aa. <Q@QFrame (@Same, 0, ‘[(|java.lang.String][]]), (|int]|), (|int]|),
(lint]), (|int]), (|long|), (|java.lang.Object|), (|int[]]), (|]int]),
(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples. HelloWorld2 []|), (|top|), (|top|)], 0, ‘[(|java.lang.Object]|),
([int]), ([int]), (|top])])>

#L00038Ab. [|i]] := 2 QType (|int]|);

#L00039Aa. <Q@QFrame (@Same, 0, ‘[(|java.lang.String][]]), (|int]|), (|int]|),
([int]), ([int[), (|long]|), (|java.lang.Object|), ([int[]]), ([int]),
(ljava.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorld2 []]), (|top]|), (|top])], O, ‘[(]java.lang.Object]),
([int[), ([int]), ([top|)])>

#L00039Ab. [|i]] := 3 @QType (|int]|);

#L00040Aa. <QFrame (@Same, 0, ‘[(|java.lang.String][]]), (|int]|), (|int]),
([int|), (lint]), (|long|), ([java.lang.Object|), ([int[]|), ([int]),

|
t

44

(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.
samples. HelloWorld2 []|), (|top|), (|top|)], 0, ‘[(|java.lang.Object]|),
(lint]), (|int]), (Jtop|)])>

#L00040Ab. [|i|] := 4 QType (|int]);

#L00041Aa. <@Frame (@Same, 0, ‘[(]java.lang.String[]|), (|int|), (|int]),
([int]), (lint]), (|long|), (|java.lang.Object|), ([int[][), (|int]),
(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorldQ[H) (|top|), (Jtop|)], 0, ‘[(|java.lang.Object]|),
(lint|), (|int]), (Jtop|)])>
#L00041Ab. switch []i]]
| 1 => goto L00043Aa
| 2 = goto L00044Aa
| 3 => goto L00045Aa
| => goto L00042Aa;

#L00043Aa. <Q@QFrame (@Same, 0, ‘[(|java.lang.String[]]), (|int]|), (|int]),
(ut)). (lint]). (Jlong]). ([jave, lang. Obiect) (|t [}]). (Jint).
(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorldQ[H) (|top|), (Jtop|)], 0, ‘[(|java.lang.Object]|),
(lint]), (|int]), (Jtop|)])>

#L00043Ab. return Qvoid;

#L00044Aa. <Q@Frame (@Same, 0, ‘[(|java.lang.String[]|), (|int|), (|int]),
([int[), (lint]), (|long|), (|java.lang.Object|), ([int[][), (|int]),
(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorldQ[H) (|top|), (Jtop|)], 0, ‘[(|java.lang.Object]|),
(lint|), (|int]), (|top|)])>

#L00044Ab. return Qvoid;

#L00045Aa. <Q@Frame (@Same, 0, ‘[(|java.lang.String[]|), (|int|), (|int]),
([int[), ([int]), (|long|), (|java.lang.Object|), ([int[][), (|int]),
(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorldQ[H) (|top|), (Jtop|)], 0, ‘[(|java.lang.Object]|),
(lint|), (lint]), (|top])])>

#L00045Ab. return Qvoid;

#L00042Aa. <Q@QFrame (@Same, 0, ‘[(|java.lang.String[]|), (|int|), (|]int]),
([int[), ([int]), (|long|), (|java.lang.Object|), ([int[][), (|int]),
(|java.lang.Object|), (|java.lang.Object]|), (|org.sireum.test.jvm.

samples.HelloWorldQ[H) (|top|), (Jtop|)], 0, ‘[(|java.lang.Object]|),
(lint]), (|int]), (|top|)])>
#L00042Ab. return @void;
catch (\java.lang.ArithmeticException|) @[L00000Aa ..L00001Aa] goto
L00002Aa;
catch (|java.lang.ArithmeticException|) @Q[L00003Aa..L00004Aa] goto
L00005Aa;
}
procedure (|int|) {|org.sireum.test.jvm.samples.HelloWorld2.sum(IT)I|} ((|
org.sireum. test.jvm.samples. HelloWorld2|) [|this|], (]int]|) [|i]], (|int
L)

@MaxLocals 3

@MaxStack 2

@QOwner (|org.sireum.test.jvm.samples.HelloWorld2|)

@Access (PUBLIC)

@Desc ”org.sireum. test .jvm.samples. HelloWorld2.sum (I1)I”

45

{

local jmp;

} #L00000Aa. return ([|i|]+][]j|]);

record (|org.sireum.test.jvm.samples.HelloWorld2$Point |)
@Source ”HelloWorld2.java”
@Type class
@AccessFlag ()
@InnerClass (
@Name (|org.sireum.test.jvm.samples.HelloWorld2$Point|) ,
@OuterName (|org.sireum . test.jvm.samples.HelloWorld2]) ,
@InnerName Point ,
@AccessFlag ()
)
extends
(|java.lang.Object |)
{
(lint|) <|HelloWorld2$Point.x|> @AccessFlag ()
(|int]) <|HelloWorld2$Point.y|> @AccessFlag ();
(|org.sireum. test .jvn.samples. HelloWorld2|) <|HelloWorld2$Point.this$0|>
@AccessFlag (FINAL,SYNTHETIC) ;

procedure (|void|) {|org.sireum.test.jvm.samples.HelloWorld2$Point.<init >(

Lorg.sireum . test .jvm.samples. HelloWorld2; IT)V|} ((|org.sireum.test.jvm.
samples . HelloWorld2$Point |) [|this|], (|org.sireum.test.jvm.samples.
HelloWorld2) [[v1[], (lint|) [|x|]. (Jint[) [|y|])

@MaxLocals 4

@MaxStack 2

@Owner (|org.sireum.test.jvm.samples.HelloWorld2$Point |)

@Access (CONSTRUCTOR)

@Desc "org.sireum. test.jvm.samples.HelloWorld2$Point.<init >(Lorg.sireum.

test.jvm.samples. HelloWorld2; IT)V”

local jmp;
s0;

#L00000Aa. [|this|]. <|org.sireum.test.jvm.samples.HelloWorld2$Point.
this$0|> := [|vl]|] QType (|org.sireum.test.jvm.samples.HelloWorld2|) ;

#L00000Ab. call s0 := {|java.lang.Object.<init >()V|}([]|this]|])
@ClassDescriptor (|java.lang.Object|) QType special;

#L00001Aa. [|this|]. <|org.sireum.test.jvm.samples.HelloWorld2$Point .x|>
== [[x[] @Type (|int]);

#L00002Aa. [|this|]. <|org.sireum.test.jvm.samples.HelloWorld2$Point.y|>
= [ly]] @Type (|int|)

#L00003Aa. return @Qvoid;

procedure (|void|) {|org.sireum.test.jvm.samples.HelloWorld2$Point.print ()V
|} ((]org.sireum. test.jvm.samples.HelloWorld2$Point|) [|this]|])

46

@MaxLocals 1

@MaxStack 2

@Owner (|org.sireum.test.jvm.samples.HelloWorld2$Point |)
@Access ()

@Desc ”org.sireum. test.jvm.samples.HelloWorld2$Point . print ()V”

local jmp;
s0;
sl;

#L00000Aa. s0 := +|java.lang.System.out|+ @Type (|java.io.PrintStream|) ;

#L00000Ab. call s1 := {|java.io.PrintStream.println (I)V|}(s0,9)
@ClassDescriptor (|java.io.PrintStream|) QType virtual;

#L00001Aa. return Qvoid;

47

Appendix B

User Manual

B.1 Setting up Development Environment

1. Download and install Sireum by following insutrctions at http://sireum. org/download.
2. Lauch Sireum Development Environment using
sireum launch sireumdev

Select any directory for workspace when asked. You need to run Scala diagonistics;

enable JDT Weaving for Scala IDE and then restart the development environment.

3. Add “SIREUM_HOME/ apps/platform/java” in Eclipse’s Java Installed JREs prefer-
ence page, and make it the default. You also need to set Eclipse’s Java compiler
compilance level to 1.7. Note: You might get a warning saying ”Subversion Native
Library Not Available”. You can correct this by setting SVN Client interface to

"SVNKit” in Eclipse’s Team-; SVN preference page.
4. Import all projects in

e Clone Sireum Prelude Repo
git clone https://github.com/sireum/prelude.git

e Clone Sireum Pilar Parser

48

http://sireum.org/download
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fdebug%2Fref-installed_jres.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fdebug%2Fref-installed_jres.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fref-preferences-compiler.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fpreferences%2Fjava%2Fref-preferences-compiler.htm
https://github.com/sireum/prelude
https://github.com/sireum/prelude.git
https://github.com/sireum/parser

git clone https://github.com/sireum/parser.git
e Clone Sireum Core Repo

git clone https://github.com/sireum/core.git
e Clone Sireum JVM

git clone https://github.com/sireum/jvm.git
5. Run the project sireum-core-test to test if Sireum core has been imported properly.

6. Now, run sireum-jvm-test to test if Sireum JVM has been imported properly.

B.2 Sireum JVM Command Line manual

Sireum JVM is part of Sireum tools cmd.

sireum tools jvm
Usage:

sireum tools jvm [options] <classes>

where the available options are:

-h | --help

-d | --directory Output Directory [Default: "(current direcory)"]
Example usage :

sireum tools jvm scala.collection

sireum tools jvm ./Strings.class

49

https://github.com/sireum/parser.git
https://github.com/sireum/core
https://github.com/sireum/core.git
https://github.com/sireum/jvm
https://github.com/sireum/jvm.git

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Contribution
	Organization

	Background
	Java Virtual Machine
	Java bytecode Instructions
	JVM Data types
	Bytecode example

	Sireum
	Pilar
	Sireum JVM1
	Kiasan
	Alir
	Amandroid

	Translation
	Class Translation
	Fields
	Method
	Annotation

	Method Translation
	Locals
	Label
	Load and Store
	Call Frame
	Object creation and Manipulation
	Operand Stack Management
	Control Transfer Instruction
	Method Invocation and Return Instructions
	Arithmetic Instructions
	Type Conversion
	Monitor Instructions
	Exceptions

	Annotation Translation

	Evaluation
	Testing
	Results

	Related Work
	LLVM IR
	GCC RTL
	Boogie

	Future Work
	Bibliography
	A complete example
	User Manual
	Setting up Development Environment
	Sireum JVM Command Line manual

