AN INVESTIGATION OF NUCLEAR EXCURSIONS TO DETERMINE THE SELF-SHUTDOWN EFFECTS IN THERMAL, HETEROGENEOUS, HIGHLY ENRICHED, LIQUID-MODDERATED REACTORS
by

JOHN ROBERT FAGAN<br>B.S., University of Nebraska, 1957

A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
1.0 INTRODUCTION ..... 1
2.0 THEORY ..... 13
2.1 Derivation of Equations ..... 13
2.2 Analytical Solutions. ..... 16
2.2.1 Temperature Distributions ..... 23
2.2.2 Surface Heat Flow ..... 26
2.3 Reactivity Effects Due to Temperature Coefficient and Fuel Expansion. ..... 28
2.4 Reactivity Effects Due to Steam Formation. ..... 30
3.0 RESULTS AND DISCUSSION ..... 37
3.1 Temperature Distributions and Surface Heat Flow. ..... 37
3.2 Reactivity Effects. ..... 47
3.3 Conciusions ..... 59
3.4 Further Investigation ..... 64
ACKNOWLEDGEMENT ..... 66
LITERATURE CITED ..... 67
APPERDICES ..... 71
APPENDIX A: Derivation of Solutions for the Temperature Distribution in the Fuel and Moderator of a Unit Cell ..... 72
APPENDIX B: Description and Explanation of the IBM-650 Computer Program Used for Fitting Empirically Experimental Data with the Sum of Several Terms of Exponential Form ..... 88
APPENDIX C: Description and Explanation of the IBM-650 Computer Program for Fitting Empirically Experimental Data with an Even Fourier Series. ..... 96
APPENDIX D: Description and Explanation of the IBM-650 Computer Program Used to Calculate Temper-ature Distributions103
APPENDIX E: Description and Explanation of the IBM-650 Computer Program Used to Calculate the Surface Heat Flow. ..... 113

Nomenclature of Terms Not Defined in Text

| $\mathrm{k}_{\text {eff }}$ | Effective multiplication factor. |
| :---: | :---: |
| $\varepsilon$ | Fast fission factor. |
| p | Resonance escape probability. |
| $\eta$ | Neutrons born per thermal absorption in fuel. |
| f | Thermal utilization. |
| $B^{2}$ | Buckling, $\mathrm{cm}^{-2}$. |
| L | Thermal diffusion length, cm. |
| K | $1 / \mathrm{L}, \mathrm{cm}^{-1}$. |
| $\underline{1}$ | Fermi age, $\mathrm{cm}^{2}$. |
| v | Neutron velocity, cm/sec. |
| $\mathrm{q}_{00}$ | Heat generation rate in center of fuel at start of pulse, btu/hrft ${ }^{3}$. |
| $\tau$ | Reciprocal period of power rise, $\sec ^{-1}$. |
| $A_{j}, \lambda_{j}$ | Parameters for empirical fit of heat generation rate, btu/hrft ${ }^{3}$ and $\sec ^{-1}$ respectively. |
| $B_{i}, \beta_{i}$ | Parameters for empirical fit of fuel plate surface boundary condition, ${ }^{\circ} \mathrm{F}$ and $\mathrm{sec}^{-1}$ respectively. |
| ${\mathrm{L}, \mathrm{L}_{1}}$ | Thickness of fuel and moderator, respectively in slab geometry, cm. |
| $\mathrm{R}, \mathrm{R}_{1}$ | Thickness of fuel and moderator, respectively in cylindrical geometry, cm. |
| X | Distance in fuel from the centor of unit cell, slab geometry, cm. |
| X | Distance in moderator from outside of unit cell, slab geometry, cm. |
| r | Distance in fuel and moderator from center of unit cell, cylindrical geometry, cm. |
| f, $\mathrm{j}, \mathrm{n}$ | Summation indices. |

f,m
p,s

Subscripts denoting fuel and moderator, respectively.
No. of terms in heat generation rate and interface boundary condition approximations.

### 1.0 INTRODUCTION

The concept of reactor safety is extremely important in the engineering application of nuclear power systems. The United States Atomic Energy Commission has therefore authorized an extensive study in this area. This investigation uses experimental data resulting from that study to attempt to define the mechanisms of reactor shutdown.

The safety of a nuclear reactor system is usually considered in terms of its void and temperature coefficients of reactivity. If one designs a reactor in such a manner as to make both of these coefficients negative, the system will tend to stabilize itself if some external perturbation is placed on the system. This is due to the fact that when the excess reactivity, $\mathrm{k}_{\text {eff }}-1$, of a system is increased, the power tends to rise, thereby increasing the temperature of the system, and this in turn causes a decrease in reactivity. In the case of a liquid moderated system, voids may be introduced whici will further decrease the reactivity.

If one considers the bare reactor age-diffusion criticality equation, $k_{e f f}=\frac{\varepsilon p \eta f e^{-B^{2} \tau}}{1+L^{2} B^{2}}$, it is possible to see how these effects manifest themselves in the nuclear constants (22). In the case of the void coefficient, the significant effect is on the Fermi age, $\underline{x}$. Since part of the moderator is removed, the age increases, thus decreasing the fast non-leakage factor, $e^{-B^{2} \boldsymbol{\tau}}$. In the case of the temperature coefficient there are several fffects that must be considered. First, the moderator expands because of the positive coefficient of expansion of the liquid.

This results in a decrease in the density of the moderator, and if the reactor is under-moderated the fast non-leakage factor and $\underline{p}$ will decrease. Thus it is evident that one safety criteria is that the core should always be slightly under-moderated even though this will increase the critical mass. Second, the fuel elements expand, expelling more of the moderator from the core causing $\underline{e f f}_{\text {eff }}$ to decrease; however, simultaneously, the effective size of the core increases, causing a decrease in the buckling, $\underline{B}^{2}$, of the system. This decrease in buckling has both a positive and a negative effect.upon reactivity or $\mathrm{k}_{\mathrm{eff}}$. The increase in size increases the non-leakage factor for both fast and thermal leakage, $\underline{e}^{-B^{2} \tau}$ and $\underline{1 /\left(1+L^{2} B^{2}\right)}$, respectively. The removal of moderator increases $\underline{\underline{x}}$ reducing reactivity as described in the void coefficient discussion. All of the effects described above with the exceptior of the buckling, must be considered to be of a delayed nature.

Another group of effects exists which affect the reactivity immediately and these effects are therefore classified as prompt (41). The first of these prompt effects is Doppler broadening (38). Becairse of the increased kinetic energy of $U^{238}$ target nuclei with increased temperature, the width of resonance absorption is increased, but the height of the peak is decreased (22), because the total area beneath the resonance curve remains constant If the resonance absorption cross sections are large, so that essentially all neutrons with energies in the resonance region are captured, the widening of the region will result in a decrease in the resonance escape probability, $\underline{p}$, and thus the reactivity decreases as the temperature rises. A second prompt effect is caused by hardening of the thermal neutron spectrum as the moderator temperature
rises. The result of this hardened spectrum is that the average thermalneutron velocity increases, $\underline{L^{2}}$ increases and the thermal non-1eakage factor, $\frac{1}{1+\mathrm{L}^{2} \mathrm{~B}^{2}}$, decreases. One would expect that the neutrons per absorption would also be affected by this spectral change but assuming the normal $1 / v$ dependence for all cross sections, this effect cancels since the terms comprising this effect are composed of the ratios of cross sections.' One final effect which is neither part of the temperature coefficient nor the void coefficient must be considered. This is the formation of radiolytic gases.

The reasons that one is inclined to speak of prompt and delayed coefficients of reactivity is that for power bursts of low reactivity and correspondingly long periods, the delayed effects may play a great part in the shut-down mechanism. However, if one supposes a burst with a very short period then it is obvious that these delayed effects will not have had time to act. What constitutes a "short time" can be answered by determining the heat transfer time constant of the fuel elements. This, in part, is the subject of the proposed investigation. Iriarte (27) reported heat transfer time constants for infinitely long cylindrical $\mathrm{VO}_{2}$ fuel elements surrounded by a helium film which served as a thermal lond and which were clad with zirconium, stainless steel or aluminum. While the data presented by Iriarte are not applicable to the SPERT-I or TRIGA Reactors, the techniques may be useful in determining the relative importance of the delayed effects.

Before considering further the scope of this project it is informative to investigate the prior work in the field. During the early summer of 1954 a series of experiments were made on the BORAX-I Reactor to investigate the ability of the reactor, when opesated in the subcooled (non-boiling)
condition, to protect itself against the results of sudden, artificially induced increases in reactivity. Inasmuch as this set of experiments completed the program for the BORAX-I Reactor, the final runaway experiment was intentionally made under conditions which led to destruction of the reactor. In the final experiment, a control rod worth four per cent $k_{\text {eff }}$ was ejected from the reactor core, inducing an exponential power increase which had a period of 2.6 milliseconds. This final experiment resulted in a melting of most of the fuel plates and failure of the reactor tank. Fuel plate fragments were scattered for a distance of 200 to 300 feet (8). This set of experiments, along with the earlier operation of the BORAX-I, (7), established two important safety axioms for water moderated reactors. First, for any given system there is a reactivity insertion beyond which the reactor cannot react fast enough to shut itself down before damage is done, and second, water moderated reactors can be designed to have a high degree of inherent self-protection against the effects of sudden large reactivity increases. A less critical fact that resulted from these tests was that if the transients are started at boiling conditions (such as in a boiling water reactor), the maximum power and fuel-plate temperature reached are less than if the transient is started with the reactor in a subcooled condition. This is as would be expected if void formation due to boiling were the shut-down mechanism, since for the subcooled system the reactor could actually achieve a stable positive period before any negative reactivity would result. This, along with the observation of large quantities of steam and water being expelled from the system, led to the conclusion that it was the void formation which was shutting the reactor down. With this background in mind, the Atomic Energy Commission set out on an intensified program
to determine empirically the safe upper operating limits on each class of reactors including the pressurized and unpressurized, boiling and non-boiling thermal reactors, both heterogeneous and homogeneous, and fast-reactor systems (23). This program initiated the SPERT (Special Power Excursion Reactor Tests) and KEWB (Kinetic Experiments on Water Boilers) programs. SPERT is the heterogeneous reactor test facility and KEWB is the design for the same type of tests on a homogeneous reactor test facility. In 1956, W. B. Nyer, et. al. (39), reported the results of the initial transient test on the SPERT-I facility and concluded that the SPERT-I (43) reactor demonstrated qualitatively the results of the BORAX-I experiments although SPERT-I was more stable after the initial power burst. Factors which could contribute to this difference in behavior were the known differences in the fuel assembly construction, the possible differences in the effective void coefficients, and/or the differences in the reflector-tank environment. Another important point discovered at this time was that there was a unique relationship between the peak power and the transient period. The data were fitted rather we 11 by two straight lines on a plot of $\log$ reciprocal period versus peak power. The slopes of these 1 inea were approximately 0.8 and 1.7 for the lower and upper regions respectively. The point of intersection occurred at $\Delta k=0.74 \%$, or abuut prompt critical. In June of 1957 , R. W. Miller reported on some interesting work in analyzing the reactivity behavior during SPERT-I transients (34). Miller pointed out that it was not necessary to remove all of the initially inserted reactivity to limit a power excursion. This is a result of the delayed neutrons, which for a very short period excursion, do not contribute to the flux during the rise in power. Thus, for short excursions the reactivity
compensation at maximum power need only be $\Delta k(1-\beta)-\beta . \Delta k$ is the initial change in $k_{e f f}$ and $\beta$ is the delayed neutron fraction. The total $\Delta k$ must be accounted for in very long period transients. In the case of intermediate period transients the compensated reactivity was calculated as a function of the reciprocal period by numerical solution of the reactor kinetics equations using the experimentally determined power traces. Later in 1957, G. O. Bright, et. al., suggested a model for reactor burst behavior (2), based on the earlier work of Klaus Fuchs at Los Alamos (21). This model postulated a shutdown effect proportional to the energy release. However, the model provided no method for the shutdown energy to be removed and allowed for no time-delays between the energy release and the appearance of the shutdown effect. Much later this model was further modified by S. G. Forbes (13) who let the shutdown effect be proportional to the energy release raised to some power, $n$, and allowed for some arbitrary delay time. In this analysis the model was tested against some experimental transients from SPERT-I and values of $n$ from 1.5 to 2 were successively used. The results also showed that the delay time was significant in matching the data; however no exact value of the delay time was determined. The overall effect of these works is to convince one that the primary shutdown mechanisms are intimately tied up with the energy release although no real information on the exact phenomena can be found. In 1958, Griffing and. Deverall (10) coupled the energy shut-down model with the reactor kinetics equation including six delay groups and again showed that the energy model could describe qualitatively the power traces obtained in. the SPERT-I transients even long after the initial burst. This work used a mathematical structure of the shut-down equation considered much earlier (1951)
by Chernick (4) for no delay groups and in 1956 by Margulies (31) with one delay group.

In December of 1958 , Deverall and Griffing (9) reported the first attempts at trying to relate the shutdown reactivity with the thermodynamic characteristics of the SPERT-I system. In this report the change in reactivity for transients with long periods was related to the temperature rise in the moderator alone although the fact was recognized that the fuel element temperature ise should also be considered. Considering only the moderator temperature rise, they found reactivity compensations at peak power that were roughly one-half of those reported by Miller (34). Since they felt that the data with which they were working were only accurate to within a factor of tro, they did not pursue the investigation further. In January of 1958 , Horning of Ramo-Woolridge reported on a model for transients in SPERT-I (18). This report develops a general model, taking into account the void formation and the thermal expansion. However, no real attempt was made to interpret these constants in terms of the distributinn of energy in the fuel and moderator or "he nuclear and thermodyn mic constints of the system. nother report, nd under the same cover, by H. C. Corben (26) treats the problem of oscillations found after the burst as the power approaches some steady $s$ ate level. Although the mechanism responsible for the oscillations need not be the same as the shut-down mechanism, there is certainly the possibility that they are one and the same. A third report by 3 . Birkhoff (26) treats the problem of void formation from the foi. of view of the growth of bubbles. The "Bubble Void" is probably the dominant shutdown effect in a certain type of excursion such as in the initial BORAX-I experiments. The analytic representation of this effect is the least known and thus is being widely
sought. An extensive study of bubble formation including a critical review of the 1 iterature, an evaluation of the merits of purely theoretical approaches to the development of a void model, and an investigation of the possible formulation of the nucleate boiling void was reported by the Vitro Engineering Company in May of 1959 (28).

Although an exact definition of bubble formation may not be within the scope of this investigation, the determination of the heat flow into the moderator and the transient temperature distribution in the moderator should shed some light on even this difficult problem.

In July of $1958, \mathrm{~J} . \mathrm{C}$. Haire (25) reported the results of a great number of the SPERT-I transients. This report presented data on the reactor power, fuel plate surface temperatures and pressures as a function of time during the transients. These are the data that will be used extensively in the initial phases of the investigation proposed herein.

During late 1958 and 1959 , several models were proposed to investigate and explain the inherent shutdown characteristics of the SPERT-I reactor. The "Conduction Boiling" model suggested by S. G. Forbes (14) is certainly credible in that it takes into account the flow of heat into the moderator in a much more exact manner than any of the earlier investigations. This model was quite successful in predicting the power, energy release and temperature at the time of peak power as a function of the reciprocal veriod. However the model still represents the shutdown mechanism in terms of empirical parameters. Also the non-boiling shutdown effects are not taken into account. The "Clipped Exponential" model suggested by R. W. Miller (35) made some very useful assumptions on the shape of the reactor Dower burst to ease the analytical solution of kinetics equations. While this model produced some useful criteria in the understanding of self-shutdown
it again made use of lumped parameters which were not easily interpreted in terms of the thermodynamic and nuclear characteristics of the system. E. T. Clark $(5,6)$ as early as 1956 had postulated a prompt fission product having a large absorption cross section for thermal neutrons as an explanation of the self-shutdown of power excursions observed in the SPERT-I Reactor. Later evidence (42) seems to indicate that this model is less likely to be valid than the more conventional models.

Also in 1958, General Atomic introduced their TRIGA Reactor with zirconium hydride moderator which demonstrated a larger prompt shutdown mechanism than either the BORAX-I or the SPERT-I (41). In this case the reactor was designed to have a shutdown mechanism which would act by hardening the thermal neutron energy spectrum thus increasing the thermal leakage to cause shutdown. The reason for choosing this effect was that they felt that it would act more quickly and thus provide a safer reactor than the accepted moderator expansion and expulsion mechanisms. The spectrum effect, so important in the TRIGA Reactors must also act to some extent in SPERT-I. The amount of this effect has apparently never been determined.
P. French, in 1959, (18) reported an attempted solution of the transient heat conduction equation in the fuel and moderator to determine the temperature distribution. However, this work appears to be in error in that he forced a separation of variables solution on the equations whereas the spatial and time dependence cannot be expressed as a simple product except after sufficiently long times so that the transient term has disappeared. H. L. McMurry (32) reported the temperature distribution in a fuel plate, cladding and moderator with exponentially rising power for pure conduction. This is an excellent piece of work but the mathematical
model turns out to be more difficult than is either warranted or necessary for the analysis of the SPERT-I data. The McMurry report makes mention of earlier work by H. Greenspan (24) on the same problem with similar results. Several investigators, Kattwinkel (29), Kirchenmayer (30), Stein (40), Epe1 (11), Arpaci and Clark (1), Ermakov and Ivanov (12), report analytical solutions to the transient heat conduction equation. However, none of them were working on the problem with reference to the SPERT-I investigations and their results are not directly applicable to the use of the SPERT-I experimental measurements. As a result the temperature distribution in the fuel and moderator during a transient is not well known to date.

In July of 1959, Forbes, et. a1. (16), summarized the work done up to that time. They showed that by fftting empirically the "Conduction Boiling" model to the SPERT-I data and including the effect of moderator and fuel element expansion they could fit the experimental compensated reactivity at peak power versus reciprocal period curves for values of the reciprocal period greater than 5 seconds $^{-1}$. They also showed that for values of the reciprocal period greater than $20 \operatorname{seconds}^{-1}$, the steam void contribution to reactivity was considerable. For the longer period region they postulated an additional shutdown effect from radiolytic gases. This, of course, lends considerable credence to the "Boiling Conduction" model, however it does have one glaring shortcoming. To extend it to another reactor requires at least one transient burst experiment to determine the parameters. However, if the fundamental mechanism were understood exclusively in terms of the basic nuclear, themodynamic and hydrodynamic characteristics of the system, one could confidently predict the limits of safe operal Lons for different reactor systems.

The satisfactory application of the "Boiling Conduction" model led to two sets of experiments designed to test that model and the postulated radiolytic gas effect. The first set of experiments (20) showed with reasonable certainty that radiolytic gas formation was not a primary contributor to self-shutdown in the SPERT-I Reactor. The second set of experiments (19) consisted of coating all of the fuel plates with approximately five mils of insulation, Lithocote LC-34, and of performing transient tests on the reactor. Some of the tests were run with transients of such magnitude that boiling would occur in the bare core and not in the insulated core. The remaining tests involved transients in which there would be boiling in both cores, and the differences in heat transfer rates were expected to be reflected as changes in the reactor behavior. Power burst shapes for transients of the same period in both the bare and insulated cores were essentially the same. In view of the identical reactor behavior for the bare and insulated tests, it would appear that the core insulation produced no appreciable effects on the shutdown mechanism. Since it seems reasonable to assume that any shutdown effect due to boillng would be effected by the core insulation, boiling would not seem to play any part in the self-shutdown mechanism. However, if the heat transfer rate was small enough there would be negligible temperature drop across the insulation and thus the effect on boiling might be unchanged by the insulation. This experiment shows clearly the need for detailed calculation of the temperature distributions in the fuel and moderator during the transients. One final report should be cited in this summary. In April of 1960 , Miller (36) xeported on some photographic investigations of boiling during transients
in SPERT-I. These results clearly indicated that boiling was an important agent in the initial reactor self-shutdown whener the fuel plate temperature was sufficiently high.

### 2.0 THEORY

### 2.1 Derivation of Equations

The direct approach to determining the self-shutdown effects must include the determination of the temperature distributions in the fuel elements and moderator throughout the core during a transient. This problem can be accomplished by investigating the exact temperature distribution in a center element only and relating all effects to this center element. The exact solution of the multi-region, transient heat conduction equations even for a single fuel element, making use of only the power versus time data from the SPERT-I transients, is exceedingly difficult as pointed out in the work by McMurry (32). However, if use is made of the available fuel plate surface temperature data as well as the power data during a transient, the problem is reduced to two single region problems. Although the solutions are much simplified over the two region problem, they are still complicated and therefore have been programmed for the Kansas State University IBM 650 computer.

The methods for determining the steady state temperature distribution throughout a unit cell of thermal, heterogeneous liquid-moderated reactor are discussed in Nuclear Engineering (41) by C. F. Bonilla and in Nuclear Reactor Physics (37) by R. L. Murray. It will be considered sufficient for this work to outline the differences that must be accounted for in transient operation.

The vartial differential equation for conductive heat transfer applicable in the fuel and moderator of a nuclear power reactor during
a transient but before boiling is established is

$$
\begin{equation*}
\nabla^{2} \theta(x, t)+\frac{q(x, t)}{k}=1 / \alpha \frac{\partial \theta(x, t)}{\partial t} \tag{1}
\end{equation*}
$$

where $\nabla^{2}$ is the Laplacian operator (44), $\underline{\theta}$ is the temperature rise above the initial temperature $\left[T(x, t)-T_{0}\right]$, $x$ is the position variable, $k$ is the mean thermal conductivity, $\underline{\alpha}$ is the mean thermal diffusivity, $t$ is the time variable and $g$ is the volumetric heat generation rate. This equation in slab and cylindrical geometries is directly applicable to the analysis of transient behavior in a reactor following a change in reactivity. The derivation of solutions to this equation in the fuel and moderator during power transients will be shown in detail for slab geometry (Appendix A) and the important elements of the solution in cylindrical geometry will be tabulated in Section 2.2.1.

In any nuclear reactor there are heating effects due directly to fission fragments and to the attenuation of other nuclear particles. Within the fuel element, fission heating far overrides the other attenuation effects. Therefore, the heat generation rate, $\mathrm{q}_{\mathrm{f}}(\mathrm{x}, \mathrm{t})$, in the fuel elements is proportional to the thermal neutron flux. The neutron flux during a transient can be expressed as a simple product of the spatial and the time dependencies. Thus the heat generation rate is also separable in space and time as shown in equation (2).

$$
\begin{equation*}
q_{f}(x, t)=f_{f}(x) \quad g_{f}(t) \tag{2}
\end{equation*}
$$

The spatifal dependence, $f_{f}(x)$, can be obtained easily from the steady state analysis (40) and is given in equation (3).

$$
\begin{equation*}
f_{f}(x)=q_{o \infty} \cosh k x \tag{3}
\end{equation*}
$$

Here $q_{0 o}$ is the heat generation rate at the center of the fuel, $\underline{k}$ is the inverse thermal neutron diffusion length and $\underline{x}$ is the distance from the center of the fuel.

The time dependence, $g_{f}(t)$, of the neutron $f$ lux and thus the heat eneration rate is expressed as the sum of exponentials, thus

$$
\begin{equation*}
g_{f}(t)=\sum_{j=1}^{s} a_{j} e^{\lambda_{j} t} \tag{4}
\end{equation*}
$$

Substituting equations (3) and (4) into equation (2), an expression for $\underline{q_{f}(x, t)}$ is obtained; that is

$$
\begin{equation*}
q_{f}(x, t)=\sum_{j=1}^{s} q_{o o} \cosh (k x) a_{j} e^{\lambda_{j} t} \tag{5}
\end{equation*}
$$

Substituting equation (5) into equation (1) yields the differential equations which must be solved to obtain the temperature distribution in the fuel, that is

$$
\begin{equation*}
\nabla \nabla^{2} \theta_{f}(x, t)+\sum_{j=1}^{s} \frac{q_{o O} \cosh (k x) a_{j} e^{\lambda_{j} t}}{k}=1 / \alpha \frac{\partial \theta_{f}(x, t)}{\partial t} \tag{6}
\end{equation*}
$$

Now from investigation of the heat generation rate, $q_{m}(k, t)$ in the moderator, it is noted that there is no heating due to fission, but there is heating due to nuclear particles which stream out of the fuel and are attenuated in the moderator. The moderator heating is approximately 5 to $7 \%$ (3) of the recoverable energy from fission and is sufficiently uniform in space to be so considered. Therefore, $q_{m}(x, t)$ in the moderator is independent of the spatial variable but still is time dependent as shown in quation (7).

$$
\begin{equation*}
q_{m}(x, t)=\sum_{j=1}^{s} F a_{j} e^{\lambda_{j} t} \tag{7}
\end{equation*}
$$

The heating effects in the moderator are proportional to the neutron flux in the fuel; thus $F$ is the fraction of the recoverable energy released in the fuel which is dissipated in the moderator.

Substitution of equation (7) into equation (1) yields the differential equation to be solved for the temperature distribution in the moderator, that is

$$
\begin{equation*}
\nabla^{2} \theta_{m}(x, t)+\sum_{j=1}^{s} \frac{F a_{j} e^{\lambda} j^{t}}{k}=1 / \alpha \frac{\partial \theta_{m}(x, t)}{\partial t} \tag{8}
\end{equation*}
$$

Equations (6) and (8) form the general set which must be solved to obtain the temperature distribution in a unit cell of the reactor during a transient. The geometry of the unit cell in which these equations must be applied is shown in Figure 1. The simultaneous solution of these equations is extremely difficult. The avallability of the fuel element surface temperature as a function of time during the transients greatly simplifies this situation. The problem is reduced to solving the equations independently in the fuel and moderator, using the experimentally measured temperatures at the interface as a boundary condition for both equations. The other boundary condition necessary in each case is a zero heat flow condition at the center of the unit cell for the fuel regions and at the boundary of the unit cell for the moderator.

### 2.2 Analytical Solutions

The stime dependent thermal diffusion equations in the fuel and moderator can be solved for the temperature distribution assuming that conduction is the primary mode of heat transfer. The equation will hold for all time in the fuel plate. In an attempt to represent as well as

SLAB GEOMETRY

$$
\begin{aligned}
& \operatorname{Lic}_{0 \rightarrow x}^{L} L_{x_{1} \rightarrow 0}^{L}-\left.\frac{\partial \theta_{m}\left(x_{1}, t\right)}{\partial x_{1}}\right|_{x_{1}=0}=0
\end{aligned}
$$

CYLINDRICAL GEOMETRY

Figure I. Geometry and boundary conditions in the unit cell used to determine the temperature distributions.
possible the experimental data which is used as input to this problem and to allow some flexibility in the application of these equations, the differential equations were solved subject to several forms of representation of the boundary conditions and the forcing functions. In one case the problem was solved in cylindrical geometry.

In slab geometry the one-dimensional solutions to the transient heat transfer equation, in which the time dependence of heat generation rate and the fuel element surface temperature are represented empirically as $\sum^{s} A_{j} e^{\lambda, t}$ and $\sum_{1}^{p} B_{i} e^{B} i^{t}$ respectively, are derived in Appendix A $\mathrm{j}=1$ $1=1$
and are given here as

$$
\begin{align*}
& \theta_{f}(x, t)=\sum_{i=1}^{p} \frac{B_{i} \cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} x_{1} e^{\beta} i^{t}\right.}{\cosh \sqrt{\frac{\beta}{\alpha} i} L}-\sum_{n=1,3,5, \cdots\left(L^{2} / n \pi \alpha\right) \sin \frac{n \pi}{2}}^{\infty} \\
& X\left\{\sum_{i=1}^{p} \frac{B_{i}}{\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+B_{i}}+\sum_{j=1}^{s} \frac{q_{00} \alpha A A_{0} \cosh \left(k^{L}\right)}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha_{k}{ }^{2}\right)}\right\}  \tag{9}\\
& -\sum_{j=1}^{s} \frac{A_{1} q_{00} \alpha_{e^{\lambda} j}}{k\left(\alpha_{k}^{2}-\lambda_{j}\right)}\left\{\cosh k x-\frac{\cosh (k L) \cosh \left(\sqrt{\frac{\lambda_{1}}{\alpha}} x\right)}{\left.\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} L\right)}\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \theta_{m}(x, t)=\sum_{i=1}^{p} \frac{B_{1} \cosh \left(\sqrt{\frac{\beta}{\alpha}} x_{1}\right)^{\beta_{1} t}}{\cosh \sqrt{\frac{\beta_{1}}{\alpha}} L_{1}}-\sum_{n=1,3,5, \ldots\left(L_{1}^{2} / n \pi \alpha\right) \sin \left(\frac{n \pi}{2}\right)}^{\infty} \frac{\cos \frac{n \pi x}{L}, e^{\frac{-n^{2} \pi^{2} \alpha}{4 L^{2}} t}}{} \\
& x\left\{\sum_{i=1}^{p} \frac{B_{i}}{\frac{n^{2} \pi^{2} \alpha}{4 L_{1}^{2}}+B_{i}}+\sum_{j=1}^{s} \frac{\alpha F_{i}^{A}}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L_{i}^{2}}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L_{i}^{2}}+\lambda_{j}\right)}\right\} \tag{10}
\end{align*}
$$

$+\sum_{j=1}^{s} \frac{\alpha E A_{j} e^{\lambda_{j} t}}{k \lambda_{j}}\left\{1-\frac{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} x_{1}}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha} L_{i}}}\right\}$
in the fuel and moderator, respectively.
The equivalent solutions in cylindrical geometry are derived in Appendix $A$ and are given here as

$$
\begin{align*}
& x\left\{\sum_{i=1}^{p} \frac{{ }^{B} 1}{\frac{\omega_{1}{ }_{n}^{\alpha}}{R^{2}}+\beta_{i}}+\sum_{j=1}^{s} \frac{q_{o o} \alpha A_{j} I_{o}(k R)}{k\left(\frac{\omega_{n}^{2} \alpha}{R^{2}}+\lambda_{j}\right)\left(\frac{\omega_{n}^{2} \alpha}{R^{2}}+\alpha k^{2}\right)}\right\}  \tag{11}\\
& -\sum \frac{A_{j} q_{o o} \alpha e^{\lambda_{j} t}}{k\left(\alpha k^{2}-\lambda_{j}\right)}\left\{I_{o}(k r)-\frac{I_{o}(k R) I_{o}\left(\sqrt{\frac{\lambda_{i}}{\alpha}} r\right)}{I_{o}\left(\sqrt{\frac{\lambda_{i}}{\alpha}} R\right)}\right\}
\end{align*}
$$

and

$$
\begin{aligned}
& \theta_{m}(x, t)=\sum_{i=1}^{p} B_{i}\left\{\frac{K_{1}\left(\sqrt{\frac{\beta_{1}}{a}} R_{1}\right) I_{o}\left(\sqrt{\frac{\beta_{1}}{a}} r\right)+I_{1}\left(\sqrt{\frac{\beta_{i}}{\alpha}} R_{1}\right) K_{o}\left(\sqrt{\frac{\beta_{1}}{a}} r\right)}{K_{1}\left(\sqrt{\frac{\beta_{1}}{a}} R_{1}\right) I_{o}\left(\sqrt{\frac{\beta_{1}}{a}} R\right)+I_{1}\left(\sqrt{\frac{\beta_{1}}{a}} R_{1}\right) K_{o}\left(\sqrt{\frac{\beta_{1}}{a}} R^{2}\right.}\right\} e^{\beta_{i} t} \\
& +\sum_{n=1}^{\infty} \frac{2 \sqrt{\rho_{n}^{\alpha}}\left[K_{1}\left(\sqrt{\frac{\rho_{n}}{\alpha}} R\right) I_{0}\left(\sqrt{\frac{\rho_{n}}{\alpha}} r\right)+I_{1}\left(\sqrt{\frac{\rho_{n}}{\alpha}} R\right) K_{o}\left(\sqrt{\frac{\rho_{n}}{\alpha}} r\right)\right] e^{\rho_{n} t}}{R\left[K_{1}\left(\sqrt{\frac{\rho_{n}}{\alpha}} R_{1}\right) I_{( }\left(\sqrt{\frac{\rho_{n}}{\alpha}} R\right)-K_{1}\left(\sqrt{\frac{\rho_{n}}{\alpha}} R\right) I_{1}\left(\sqrt{\frac{\rho_{n}}{\alpha}} R_{1}\right)-I_{0}\left(\sqrt{\frac{\rho_{n}}{\alpha}} R_{1}+I_{0}\left(\sqrt{\frac{\rho_{n}}{\alpha}} R\right) K_{0} \sqrt{\frac{\rho_{n}}{\alpha}} R\right)\right]}
\end{aligned}
$$

$$
\begin{equation*}
x \sum_{i=1}^{p}\left\{\frac{B_{1}}{\rho_{n}-\beta_{i}}-\sum_{j=1}^{s} \frac{\alpha F A_{j}}{k \rho_{n}\left(\rho_{n}-\lambda_{j}\right)}\right\} \tag{12}
\end{equation*}
$$

$+\sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j} t}}{k}\left\{\frac{K_{1} \sqrt{\frac{\lambda_{i}}{\alpha}} R_{1} I_{o} \sqrt{\frac{\lambda_{j}}{\alpha}} r+I_{1} \sqrt{\frac{\lambda_{j}}{\alpha}} R_{1} K_{o} \sqrt{\frac{\lambda_{j}}{\alpha}} r}{\left.\left.K_{1} \sqrt{\frac{\lambda_{i}}{\alpha}} R_{1}\right) I_{0} \sqrt{\frac{\lambda_{j}}{\alpha}} R\right)+I_{1}\left(\sqrt{\frac{\lambda_{j}}{\alpha}} R_{1} K_{o}\left(\sqrt{\frac{\lambda_{i}}{\alpha}} R\right)\right.}\right\}$
where $\omega_{n}$ 's are the roots of the equation, $J_{0}(x)=0$ and $P_{n}{ }^{\prime} s$ are the roots of the equation,

$$
\left[K,\left(\sqrt{\frac{S}{\alpha}} R_{1}\right) I_{0}\left(\sqrt{\frac{S}{\alpha}} R\right)+I_{1}\left(\sqrt{\frac{S}{\alpha}} R_{1}\right) K_{0}\left(\sqrt{\frac{S}{\alpha}} R\right)\right]=0
$$

The solutions to the transient heat transfer equations in slab geometry in which the time dependence of the heat generation rate and the first derivative of the surface temperature with respect to $x$ are $\sum_{j=1}^{s^{\prime}} A_{j} e^{\lambda_{j} t}$ and $\sum_{i=1}^{p^{\prime}} B_{f} e^{\beta_{i} t}$ respectively are derived in Appendix $A$ and are given here as

$$
\begin{align*}
& \theta_{f}(x, t)=\sum_{j=1}^{p^{\prime}} \frac{B_{i} \cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} x\right) e^{\beta_{i} t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh \left(\sqrt{\frac{\beta_{1}}{\alpha}} L\right)}-\frac{B_{i} \alpha}{B_{i} L}-\sum_{n=1}^{\infty} \frac{\cos \frac{n \pi x}{2 L} e e^{\frac{n^{2} \pi}{2} \alpha} 4 L^{2}}{(L / \alpha) \cos n \pi} \\
& x\left\{\sum_{i=1}^{p^{\prime}} \frac{B_{i}}{\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\beta_{i}}+\sum_{j=1}^{s^{\prime}} \frac{q_{o o} \alpha A_{j} k \sinh k L}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right)}\right\}  \tag{13}\\
& -\sum_{j=1}^{s^{\prime}} \frac{q_{00} \alpha A_{j} e^{\lambda_{j} t}}{k\left(\alpha k^{2}-\lambda_{j}\right)}\left\{\cosh k x-\frac{k \sinh (k L) \cosh \left(y \sqrt{\frac{\lambda_{j}}{\alpha}} x\right)}{\sqrt{\frac{\lambda_{j}}{\alpha}} \sinh \left(\sqrt{\frac{\lambda_{i}}{\alpha}} L\right)}\right\} \\
& -\frac{q_{O O} \alpha A_{j} \sinh k L}{k} \frac{\lambda_{j} L k}{}
\end{align*}
$$

and
in the fuel and moderator, respectively.
The solution to the transient heat transfer equation in slab geometry in which the time dependence of the heat generation rate and the surface temperature are represented by $\sum_{j=1}^{S} A_{j} e^{\lambda_{j} t}$ and $\sum_{i=1}^{p} B_{i} \cos \beta_{i} t$
respectively are derived in Appendix $A$ and are given here as

$$
\theta_{f}(x, t)=\sum_{i=1}^{p} B_{i} Z_{i}^{\frac{1}{2}} \cos \left(\beta_{i} t+\varphi_{i}\right)-\sum_{n=1,3,5, \cdots}^{\infty} \frac{\cos \frac{n_{\pi x}}{2 L} e^{4 L^{2}}}{\left(L^{2} / n_{\pi} \alpha\right) \sin \frac{n_{\pi}}{2}}
$$

$$
\begin{equation*}
x\left\{\sum_{i=1}^{p} \frac{B_{i}\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}\right)}{\left(\frac{n^{4} \pi^{4} \alpha^{2}}{16 L^{4}}+\beta_{L}{ }^{2}\right)}+\sum_{j=1}^{s} \frac{q_{o o} \alpha A_{j} \cosh k L}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)}\right\} \tag{15}
\end{equation*}
$$

$$
\begin{aligned}
& \theta_{m}(s, t)=\sum_{i=1}^{p^{\prime}} \frac{B_{i} \cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} x\right) e^{\beta_{i} t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh \sqrt{\frac{\beta_{1}}{\alpha}} L}-\frac{B_{1} \alpha}{\beta_{i}{ }^{L}} \\
& -\sum_{n=1}^{\infty} \quad \frac{\cos \frac{n_{\pi} x}{2 L} e^{-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}} t}}{\left(L_{1} / \alpha\right) \cos n_{\pi}}\left\{\sum_{i=1}^{p^{\prime}} \frac{B_{1} \alpha}{\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\beta_{1}}\right\} \\
& +\sum_{j=1}^{s^{\prime}} \frac{\alpha F A_{i}}{k\left(\lambda_{j}\right)} \quad\left(e^{\lambda_{j} t}-1\right)
\end{aligned}
$$

$$
-\sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} e^{\lambda_{j} t}}{k\left(\alpha k^{2}-\lambda_{j}\right)}\left\{\cosh k x-\frac{\cosh (k L) \cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha}} x\right)}{\cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha}} L\right)}\right\}
$$

$$
\begin{align*}
& \text { and } \\
& \theta_{m}(x, t)=\sum_{i=1}^{p} B_{i} Z_{i}^{\frac{1}{2}} \cos \left(B_{1} t+\varphi_{i}\right)+\sum_{n=1,3,5, \cdots\left(L^{2} / n_{\pi} \alpha\right) \sin \frac{n_{\pi}}{2}}^{\infty} \frac{\cos \frac{n_{\pi x}}{2 L} e^{-\frac{L^{2}}{}{ }^{2}}}{} \\
& x\left\{\sum_{i=1}^{p} \frac{B_{i} \frac{n^{2} \pi^{2} \alpha}{4 L^{2}}}{\frac{n^{4} \pi^{4} \alpha^{2}}{16 L^{4}}+B_{1}^{2}}-\sum_{j=1}^{s} \frac{\alpha F_{j}{ }_{j}}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L_{1}{ }^{2}}+\alpha k^{2}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)}\right\}  \tag{16}\\
& +\sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j} t}}{k \lambda_{j}}\left\{1-\frac{\cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha}} x_{1}\right)}{\cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha}} L_{1}\right)}\right\}
\end{align*}
$$

where

$$
z_{1}=\frac{\cos ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} x\right) \cosh ^{2}\left(\sqrt{\frac{B}{2 \alpha}} x\right)+\sin ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} x\right) \sinh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} x\right)}{\left.\cos ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \cosh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right)+\sin ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sinh 2 \sqrt{\frac{\beta}{2 \alpha}} L\right)}
$$

and

$$
\varphi_{1}=\tan ^{-1} \frac{\sin \left(\sqrt{\frac{B_{i}}{2 \alpha}} x\right) \sinh \left(\sqrt{\frac{\beta}{2 \alpha}} x\right)}{\cos \left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \cosh \left(\sqrt{\frac{\beta}{2 \alpha}} L\right)} \tan ^{-1} \frac{\sin \left(\sqrt{\frac{\beta_{1}}{2 \alpha}} L\right) \sinh \left(\sqrt{\frac{\beta_{1}}{2 \alpha}} L\right)}{\cos \left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \cosh \left(\sqrt{\frac{1}{2 \alpha}} L\right)}
$$

2.2.1 Temperature Distributions. Equations (15) and (16) of the previous section can be evaluated to obtain the temperature as a function of position and time in any unit cell of a reactor if the heat generation rate, $q(x, t)$, and the fuel surface temperature, $\theta_{f}(L, t)$, are known and can be expressed in the appropriate analytical form. The experimental values of these variables during applicable transient tests on the SPERT-I reactor system were obtained in graphical form from "Sub-cooled Transient Tests in the SPERT-I-A Reactor - Experimental Data" by J. C. Haire (25). Numberical power and temperature data were obtained from the graphs. These numerical data were normalized to a zero initial temperature then fit empirically by an even trigonometric series, $\sum_{i=1}^{p} A_{i} \cos \beta_{i} t$, for the temperature traces. The power traces were reduced to give the heat generation rate in the center of a central fuel element and moderator region and then fit empirically by an exponential series, $\sum_{j}^{s} A_{j} e^{\lambda_{j}}{ }^{t}$. $\mathrm{j}=1$
The reduction of the power data to give the appropriate heat generation rate in the fuel region was accomplished in the following manner. The SELRT-I core contained 28 assemblies, 51 plates per assembly and an active volume of $7.523 \mathrm{~cm}^{3}$ per plate. Therefore,

$$
\begin{gather*}
\overline{\mathrm{H}}_{\text {plate }}(\mathrm{t})=\left(\frac{\mathrm{P}(\mathrm{t}) \times 10^{6}}{28 \text { assemblies }}\right)\left(\frac{1 \text { assembly }}{51 \text { plates }}\right)\left(\frac{1 \text { plate }}{7.523 \mathrm{~cm}^{3}}\right)  \tag{16}\\
=97.78 \mathrm{P}(t) \text { watts } / \mathrm{cm}^{3}
\end{gather*}
$$

was the average heat generation rate in an average fuel plate, where $P(t)$ is the total power in megawatts. Converting this to the required dimensions of cal/sec- $\mathrm{cm}^{3}$ yielded $\overline{\mathrm{H}}_{\mathrm{plate}}(\mathrm{t})=23.37 \mathrm{P}(\mathrm{t}) \mathrm{cal} / \mathrm{sec} \mathrm{cm}^{3}$. The heat generation rate in the center of the fuel plate is found in terms of the average heat generation rate since the heat generation rate is proportional to the neutron flux distribution.
$\bar{H}_{\text {plate }}(t)=\frac{\int_{0}^{L} C \Phi(x) A d x}{\int_{0}^{L} A d x}=\frac{\int_{0}^{L} H_{0} \cosh k x d x}{L}=\frac{H_{0} \sinh k L}{k L}$
where $L$ is half-thickness of plate, 0.0254 cm , and $\bar{H}_{0}$ is heat generation rate at center of the average fuel plate.
$K$ was determined from the neutron transport theory relationship for heavy absorbers (44),

$$
\begin{equation*}
\frac{\kappa}{\Sigma_{\text {tot }}}=\tanh \frac{\kappa}{\Sigma_{s}} \tag{18}
\end{equation*}
$$

to be $0.7973 \mathrm{~cm}^{-1}$.

$$
\begin{equation*}
k L / \sinh k L \doteq \frac{0.02025}{0.02025}=1.0 \tag{19}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\vec{H}_{\text {of }}(t)=\bar{H}_{\text {plate }}(t)=23.37 \mathrm{P}(\mathrm{t}) \mathrm{cal} / \mathrm{sec} \mathrm{~cm}^{3} . \tag{20}
\end{equation*}
$$

The correction from the average fuel element to the one of interest, a central fuel element, required a maximum to average correction. Therefore,

$$
\begin{equation*}
H_{o f}^{\prime}(t)=\bar{H}_{o f}(t) \quad\left(\Phi_{\text {max }} / \bar{\Phi}\right)=23.37 \mathrm{P}(t)(1.9)=44.38 \mathrm{P}(t) \mathrm{ca} / / \mathrm{cm}^{3} \mathrm{sec} . \tag{21}
\end{equation*}
$$

The final correction was to assume that approximately $5 \%$ of the power was generated in the moderator. Therefore,

$$
\begin{equation*}
H_{o f}(t)=0.95 \mathrm{H}_{\mathrm{of}}^{\prime}(t)=42.16 \mathrm{P}(\mathrm{t}) \mathrm{cal} / \mathrm{cm}^{3} \mathrm{sec} . \tag{22}
\end{equation*}
$$

The relation used to calculate the heat generation rate in the moderator
was
$q_{m}(t)=0.05 \bar{q}_{f}(t) \frac{V_{f}}{V_{m}}=0.05 \bar{q}_{f}(t) \frac{L_{f}}{L_{m}}=0.05 H_{o f}(t)\left(\frac{0.0254}{0.071755}\right)=0.017695 H_{o f}(t)$
where $\bar{q}_{f}$ is average heating rate in the fuel,
$V_{f}$ is volume of the fuel, $V_{m i}$ is volume of the moderator, $L_{f}$ is half-thickness of the fuel, $\mathrm{L}_{\mathrm{m}}$ is half-thickness of the moderator,
and $\quad q_{m}$ is the heat generation rate in the moderator. The above equation assumes that there is a flat spatial distribution of the heating rate, that approximately $5 \%$ of the total heat generation takes place in the moderator and that the average heat generation rate in the fuel is well approximated by the heat generation rate in the center of the fuel.

As previously mentioned that data from the temperature traces were fit with a finite number of terms of a Fourier series of the form

$$
\begin{equation*}
\sum_{n=0}^{p} b_{n} \cos \frac{2 \pi n t}{a} \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{0}=\frac{2}{a} \int_{0}^{a} y(t) d t \\
& b_{n}=1 a \int_{0}^{a} y(t) \cos \frac{2 \pi n t}{a} d t, \\
& y(t)=\text { experimental temperature trace data, } \\
& a=\text { interval of periodicity. }
\end{aligned}
$$

and
The data reduced from the power traces, actually $H_{o f}(t)$, were fitted with a finite number of terms of an exponential function of the form,

$$
\begin{equation*}
\sum_{j=1}^{s} A_{j} e^{\lambda_{j} t} \tag{25}
\end{equation*}
$$

where $A_{i}$ and $\lambda_{i}$ were parameters which were determined by trial and error to give the best fit. The best fit parameters were determined by means
of an IBM-6.50 computer program described in Appendix B. This program resulted from a very minor modification of one written by $L$. R. Foulke (17). The data for $H_{o f}(t)$ and the approximating equations are shown in Figures 8 through 11.

The thermal, nuclear and geometric constants used in determining the temperature distributions are given in Table 1.

Table 1. Constants Used to Evaluate the Temperature Distributions

| Constant | Fuel | Moderator |
| :--- | :---: | :---: |
| a, Thermal Diffusivity, $\mathrm{cm}^{2} / \mathrm{sec}$ | 0.82 | 0.001512 |
| k, Inverse Diffusion Length, $\mathrm{cm}^{-1}$ | 0.7973 | 0.0 |
| L, Half-thickness of Region, cm | 0.0254 | 0.071755 |
| k, Thermal Conductivity, cal/cm sec ${ }^{\circ}{ }^{\circ} \mathrm{C}$ | 0.5002 | 0.001488 |

2.2.2 Surface Heat Flow. The heat flow rate out of the fuel and into the moderator as a function of time was evaluated by forming the partial derivative with respect to position evaluating it at the outside of the respective region and multiplying by the respective thermal conductivity. The heat flow out of the fuel and into the moderator are, respectively,

$$
\begin{equation*}
(q / A)_{f}(t)=-\left.k_{f} \frac{\partial \theta_{f}(x, t)}{\partial x}\right|_{x=L} \tag{26}
\end{equation*}
$$

and

$$
(q / A)_{m}(t)=-\left.k_{m} \frac{\partial \theta_{m}(x, t)}{\partial x}\right|_{x=L}
$$

Evaluating the above equations yields in the fuel
and in the moderator

$$
-\sum_{j=1}^{s} \frac{\alpha F_{i}^{A_{j}}}{k_{j}}\left\{\frac{\sqrt{\frac{\lambda_{j}}{\alpha}} \sinh \left(\sqrt{\frac{\lambda}{\alpha}} L\right)}{\left.\cosh \sqrt{\frac{\lambda_{i}}{\alpha} L}\right)}\right\}
$$

where $D_{1}=\frac{\cosh \left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sinh \left(\sqrt{\frac{B}{2 \alpha}} L\right)-\cos \left(\sqrt{\frac{1}{2 \alpha}} L\right) \sin \left(\sqrt{\frac{\beta}{2 \alpha}} L\right)}{\cos \left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \operatorname{cosin}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right)+\sin ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sinh ^{2}\left(\sqrt{\frac{B}{2 \alpha}} L\right)}$

$$
\begin{aligned}
& (q / A)_{m}(t)=-k_{m} \sum_{1=1}^{p}\left(\sqrt{\frac{B_{1}}{2 \alpha}}\right)_{1}^{B_{1}}\left(D_{1} \cos B_{1} t+E_{1} \sin \beta_{1} t\right)
\end{aligned}
$$

$$
\begin{aligned}
& (q / A)_{f}(t)=-k_{f} \sum_{1=1}^{p}\left(\sqrt{\frac{1}{2 \alpha}}\right) B_{1}\left(D_{1} \cos B_{1} t+E_{1} \sin B_{1} t\right) \\
& +\sum_{n=1,3,5, \cdots\left(L^{2} / n \pi \dot{\alpha}\right)}^{\infty} \frac{\left(\frac{n \pi}{2 L}\right)}{\infty} e^{-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}} t} \sum_{1=1}^{p}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{j=1}^{s} \frac{q_{o o} A_{1} e^{\lambda_{j} t}}{k_{f}\left(\alpha_{k}^{2}-\lambda_{j}\right)}\left[\frac{\sqrt{\frac{\lambda_{j}}{\alpha}} \cosh (k L) \sinh \left(\sqrt{\frac{\lambda_{i}^{\alpha}}{\alpha}} L\right)}{\cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha} L}\right)}-\kappa \sinh k L\right]\right\}
\end{aligned}
$$

and $E_{1}=\frac{\cosh \left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sinh \left(\sqrt{\frac{\beta}{2 \alpha}} L\right)+\cos \left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sin \left(\sqrt{\frac{1}{2 \alpha}} L\right)}{\cos ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \cosh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right)+\sin ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sinh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right)}$

### 2.3 Reactivity Effects Due to Temperature Coefficient and Fuel Expansion

It is pointed out by Deverall and Griffing (9) that the temperature rise in the moderator in the central unit cell cannot be used directly to determine reactivity changes. "Since the temperature coefficient of reactivity, $a$, was determined under conditions of a uniform temperature throughout the core - a condition that does not exist in a transient it is necessary to define a properly weighted average temperature. This average temperature would then produce the same change in reactivity as if an actual uniform temperature change of this amount had been made. This average is defined by

$$
\begin{equation*}
\overline{\Delta T}=\frac{\int I(\vec{x}) \Delta T(\vec{x}) d \vec{x}}{\int I(\vec{x}) d \vec{x}} \tag{30}
\end{equation*}
$$

where
$\Delta T(\overrightarrow{\mathbf{x}})$ is the change of temperature at position $\vec{x}$, $I(\vec{x})$ is the statistical importance at position $\vec{x}$, and the integration is carried out over the whole volume of the reactor." The authors also show that for SPERT I-A (17/28) core, the system under consideration,

$$
\begin{equation*}
\frac{\overline{\Delta T}}{\Delta T_{\max }}=0.65 \tag{31}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Delta \mathrm{k}=0.65 \alpha(\mathrm{~T}) \Delta \mathrm{T}_{\max } \tag{32}
\end{equation*}
$$

A value for $\alpha(t)$ of $0.9 \times 10^{-4}\left(\Delta \mathrm{~K} / \mathrm{C}^{0}\right)$ was used yielding

$$
\begin{equation*}
\Delta \mathrm{k}=\left(-5.85 \times 10^{-5} / \mathrm{C}^{0}\right) \Delta \mathrm{T}_{\max } \tag{33}
\end{equation*}
$$

A similar problem was faced by Forbes (13). In determining the reactivity effect due to fuel plate expansion he stated,
"In order to obtain the reactivity change, the temperature distribution and void importance function in the core must be combined to obtain the dynamic reactivity coefficient as opposed to the static coefficient which applies only to uniform void distributions. Applying the observed distribution functions for temperature and void worth, it is found that the effective average temperature rise under dynamic conditions can be obtained from the temperature rise at the center of the core by the relation

$$
\begin{equation*}
\Delta \theta=0.7 \Delta \theta_{\max } \tag{34}
\end{equation*}
$$

The reactivity change due to plate expansion, $\Delta k_{1}$, will be

$$
\begin{equation*}
\Delta \mathrm{k}_{1}=\left(\frac{\overline{\partial k}}{\partial v}\right) 3 \text { a } v\left(0.7 \Delta \theta_{\max }\right), \tag{35}
\end{equation*}
$$

where $\left(\frac{\overline{\partial k}}{\partial v}\right)$ is the average void coefficient for the core,
a is the Iinear expansion coefficient of aluminum,
$v$ is the volume of the aluminum which is heated (i.e., the volume of fuel plates proper),
$\overline{\Delta \theta^{\prime \prime}}$ is the average temperature rise of the aluminum
and $\Delta \theta_{\text {max }}$ is the temperature rise at center of the core.
For the SPERT I-A $(17 / 28)$ core the appropriate constants are the following:

$$
a=2.5 \times 10^{-5},{ }^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
v & =2.8 \times 10^{4} \mathrm{~cm}^{3} \\
\left(\frac{\partial \mathrm{k}}{\partial v}\right) & =-3.5 \times 10^{-6} \Delta \mathrm{k} / \mathrm{cm}^{3}
\end{aligned}
$$

Therefore, the expression for the reactivity change becomes

$$
\begin{equation*}
\Delta \mathrm{k}_{1}=\left(-5 \times 10^{-6} \frac{\Delta \mathrm{k}}{\mathrm{o}_{\mathrm{C}}}\right)\left(\Delta \theta_{\max }\right) \tag{36}
\end{equation*}
$$

In order to avoid erroneously taking into account the void formation due to fuel element expansion in both the temperature coefficient and in the fuel element expansion calculation, the fuel element expansion was calculated only for the temperature rise in the fuel over the temperature rise in the moderator. Therefore, the reactivity effects due to the temperature coefficient, $\Delta \mathrm{k}_{\mathrm{T}}$, and due to the fuel plate expansion, $\Delta \mathrm{k}_{\mathrm{E}}$, are

$$
\begin{equation*}
\Delta \mathrm{k}_{\mathrm{T}}(\mathrm{t})=-5.85 \times 10^{-5}\left(\Delta \mathrm{k} /{ }^{\circ} \mathrm{C}\right) \bar{\theta}_{\text {mod }}(\mathrm{t}) \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta k_{E}(t)=-5 \times 10^{-6}\left(\Delta k /{ }^{\circ} C\right)\left(\bar{\theta}_{\text {fue } 1}(t)-\bar{\theta}_{\text {mod }}(t)\right) \tag{38}
\end{equation*}
$$

where $\quad \bar{\theta}_{\text {mod }}(t)$ is the average temperature rise in the moderator at time $t$
$\bar{\theta}_{\text {fuel }}(t)$ is the average temperature rise in the fuel at time $t$
as obtained from Tables 2 through 5 .

### 2.4 Reactivity Effects Due to Steam Formation

The "calculation of the steam production was based on the same assumptions as those used in the "Conduction Boiling Model for Reactor Self-Shutdown" suggested by S. G. Forbes (15). In Forbes' work the steam volume, $\mathrm{V}_{\mathrm{s}}$, was assumed to be proportional to a fraction, $\mathrm{f}_{\text {as }}$, of the energy, $E_{s}$, transferred to the moderator after the time boiling first occurred
in the core. The steam volume is given by

$$
\begin{equation*}
v_{s}=\frac{f_{a s} E_{s}}{h_{s}}, \tag{39}
\end{equation*}
$$

where $h_{s}$ is the energy required to form a unit volume of steam from boiling water at standard pressure ( 1.35 watt-sec $/ \mathrm{cm}^{3}$ steam). The term $f_{\text {as }}$ was regarded as a combination of factors involving the fraction of the energy actually forming steam during nucleate bolling (about $1 \%$ ) and the fraction of the core heat transfer area, $A$, which is involved in boiling heat transfer (about 10\%) (15). The reactivity effect of the steam is

$$
\begin{equation*}
\Delta k_{s}=v_{s} C_{v}=\frac{f_{a s} E_{s}}{h_{s}} C_{v}, \tag{40}
\end{equation*}
$$

where $C_{v}$ is the void coefficient in the center of the core, $\left(C_{v}=-7.2 \mathrm{x}\right.$ $10^{-6} \Delta \mathrm{k} / \mathrm{cm}^{3}$ for Spert $\mathrm{I}-\mathrm{A}$ ). In this investigation the factor $\mathrm{f}_{\mathrm{as}}$ was divided into its two components, the fraction of the core involved in boiling, $f_{a}$, and the fraction of the energy actually forming steam during nucleate boiling, $f_{s}$. This was done since it was possible to approximate fa directly from the fuel surface temperature and the assumption that the gross temperature distribution over the core was proportional to the bare core power distribution: It is expected that the final factor, $\mathrm{f}_{\mathbf{s}}$, will be independent of the pulse parameters for a particular system and that it will prove essentially independent of the reactor parameters in any heterogeneous water moderated system. In effect, the final parameter, $f_{s}$, was left to be calibrated by any particular pulse. The test of this model was of course a constant $f_{s}$. For the two bolling runs considered, the values of $f_{s}$ calculated were $3.7 \times 10^{-3}$ and $3.3 \times 10^{-3}$ which differ
by less than $2 \%$. The $2 \%$ difference is less than would be expected for the accuracy of the input data. The reactivity effect of the steam is then

$$
\begin{align*}
\Delta k_{s}(t) & =\left(\frac{-7.28 \times 10^{-6}}{1.35 \times 10^{-6}} \Delta k / M W-s e c\right)\left(f_{a} f_{s} E_{s}(t)\right)  \tag{41}\\
& =-1.87 \times 10^{-2} f_{a} E_{s}(t)
\end{align*}
$$

$f_{a}$ is fraction of core heat transfer area involved in boiling, $\mathrm{f}_{\mathrm{s}}$ is fraction of energy actually forming steam,
and $E_{s}(t)$ is total energy into core after initial boiling in MW-sec; The fraction $f_{a}$ was calculated assuming the gross core temperature distribution had reached a dynamic equilibrium with the power and the power distribution could be approximated by that of an equivalent bare core with an effective height, $2 Z_{e}$; and radius, $R_{e}$. The gross temperature distribution in the core is then

$$
\begin{equation*}
\theta(r, Z)=\theta_{0} \cdot J_{0}\left(\frac{2.4048 r}{R_{e}}\right) \quad \cos \frac{\pi Z}{2 Z_{e}} \tag{42}
\end{equation*}
$$

where $\theta_{0}$. is the surface temperature at the time of interest on the axial center line of a central fuel element. The maximum value of $Z, Z_{\max }$, for which boiling will occur on any plate can then be obtained knowing the boiling temperature, $\theta_{b}$, and the axial centerline surface temperature,

$$
\theta_{0} J_{0}\left(\frac{\left.2 \cdot \frac{4048 r}{R_{e}}\right)}{}\right.
$$

That is

$$
\begin{equation*}
\cos \frac{\pi Z_{\max }}{2 Z_{e}}=\frac{\theta_{b}}{\theta_{0} J_{0}\left(\frac{2.4048 r}{R_{e}}\right)} \tag{43}
\end{equation*}
$$

so that

$$
\frac{\mathrm{Z}_{\max }}{\mathrm{Z}_{\mathrm{e}}}=\frac{2}{\pi} \quad \cos ^{-1}\left(\frac{\theta_{\mathrm{b}}}{\theta_{0} J_{0}\left(\frac{2.4048 x}{R_{e}}\right)}\right)
$$

The maximum value of $\underline{r}$ for which bolling will occur, $r_{\text {max }}$, on the core axial centerline can be obtained from

$$
\begin{equation*}
\theta_{b}=\theta_{0} \quad J_{0}\left(\frac{2.4048 r_{\max }}{R_{e}}\right) \tag{44}
\end{equation*}
$$

so that

$$
\frac{r_{\max }}{R_{e}}=\frac{1}{2.4048} \cdot J_{o}\left(\frac{\theta_{b}}{\theta_{0}}\right)
$$

where $y=J_{0}^{-1}(x)$ is the inverse of $x=J_{0}(y)$.
The volume fraction of the core having a fuel surface temperature above the boiling temperature is

$$
\begin{aligned}
f_{v} & =\frac{1}{\pi R_{e}^{2}\left(2 Z_{e}\right)} \int_{0}^{r_{\max }} 2 Z_{\max } 2 \pi r d r \\
& =\frac{2}{R_{e}^{2}} \int_{0}^{r_{\max }} \frac{Z_{\max }}{Z_{e}} \quad r d r
\end{aligned}
$$

Making the change in variable $\eta=r / R_{e}$, the integral becomes

$$
\begin{equation*}
f_{v}=2 \int_{0}^{\eta_{\max }} \frac{Z_{\max }(\eta)}{Z_{e}} \eta d \eta \tag{46}
\end{equation*}
$$

Substituting the value of $Z_{\max } / Z_{e}$ from equation (43) yields

$$
\begin{equation*}
f_{v}=4 / \pi \int_{0}^{\eta} \max \cos ^{-1} \frac{\theta_{b}}{\theta_{\infty} J_{0}(2.4048 \eta)} \quad \eta d \eta \tag{47}
\end{equation*}
$$

This integration was then carried out numerically using the value of $\eta_{\text {max }}=r_{\text {max }} \prime R_{e}$ determined from equation (44). Since there is a
constant heat transfer area per unit volume in the core then $f_{v}=f_{a}$. For the two boiling runs $\underline{\tau}=15.8 \mathrm{msec}$ and $23 \mathrm{msec}, \underline{f}_{\text {a }}$ was equal to 0.116 and 0.084 , respectively.

The total energy transferred to the moderator after the time of initial boiling was obtained by considering the moderator volume associated with unit surface area in the central fuel element. The heat content of the moderator at the time boiling temperatures were reached at the surface and at the time of peak power were calculated based on the ronduction model. While this model gave a somewhat erroneous temperature distribution above boiling temperatures it accurately represented the heat flow into the moderator. The difference between the moderator heat content at the time of interest and at the time boiling temperatures were first reached was the energy available for boiling per unit fuel surface area. Plots of the central fuel surface temperature and the average moderator temperature in a central element used to calculate the moderator heat contents are shown in Figures 2 and 3. The total energy available for steam formation is obtained by multiplying by the total heat transfer surface area of the core. This somewhat overestimates the total energy but is probably the best estimate of the energy of interest since the boiling region is confined to a rather small central portion of the core. Therefore

$$
E_{s}(t)=\left(\bar{\theta}_{m}(t)-\bar{\theta}_{m}\left(t_{b}\right)\right) C_{p} M
$$

where $C_{p}$ is the heat capacity of the moderator
$M$ is the mass of the moderator in the system
$\bar{\theta}_{m}(t)$ is the average moderator


Figure 2. Graph used to determine the moderator energy for boiling calculations during a transient with an initial period of 15.8 msec .


Figure 3. Graph used to determine the moderator energy content for boiling calculations during a transient with an initial period of 23 msec .

### 3.0 RESULTS AND DISCUSSION

### 3.1 Temperature Distribution and Surface Heat Flow

The temperature distributions as obtained from equations 15 and 16 are shown in Figures 4 through 7. These plots were obtained using experimental data from four transient tests on the SPERT I-A (17/28) reactor having initial periods, $\tau$, of $15.8,23,120$, and 150 msec , respectively. The transient burst for $\tau$ equal 15.8 and 23 msec show regions in the moderator which have temperatures above the boiling point at a pressure of one atmosphere. . It is not believed that this superheating takes place. These temperature distributions are shown since such a small portion of the moderator is above the saturation point that it is not likely that it will materially affect the temperature in the remainder of the moderator or the average moderator temperature. One possibility which must be considered in calculating the reactivity effects if that pressure transients are developed which raise the boiling point above the temperatures observed in the core. This appears not to be the case for two reasons. First, experimental measurements of the pressures do not indicate sufficient rises in pressure and second, the total reactivity compensations at peak power indicate that boiling must have taken place.

The experimental surface temperature traces and the approximate analytical fits for the four transient tests are shown in Figures 8 through 11. The parameters for the analytical fits, $\theta(L, t)=\sum_{i=1}^{p} B_{i} \cos R_{i} t$, are shown in Table 2. The experimental power traces, actually $H_{o f}(t)$, and the approximate analytical fits for the same four transient tests


Figure 4. Temerature distributions, $\theta(x, t)$, ws position in fuel and moderator based on , conduction daring a transient with an initial period of 15.8 msec .


Figure 5. Temperature distributions, $\theta(x, \uparrow)$, vs posifion in fuel and moderator based on pure conduction during a transient with an initial period of 23 msec .


Figure 6. Temperature distributions, $\theta(x, t)$, vs position in fuel and moderator based on pure conduction during a transient with on initial period of 120 msec .


Figure 7. Temperature distributions, $\theta(x, t)$, vs position in fuel and moderator based on pure conduction during a transient with an initial period of 150 msec .

Figure 8. Interface temperatures, $\theta_{\mathrm{s}}$, vs arbitrary time during a transient with
on initial period of 15.8 msec .

Figure 9. Interface temperatures, $\theta_{S}$, vs arbitrary time during a
transient with an initial period of 23 msec .


Figure 10. Interface temperatures, $\theta_{s}$, vs arbitrary time during a transient with an initial period of 120 msec .

Figure 11 . Interface temperatures, $\theta_{S}$, vs arbitrary time during a transient with an
initial period of 150 msec.

Table 2. Numerical Values of Parameters for Emnirical Fits of $A(L, t)$ Used in Equations (15) and (16)

| $\tau$, msec | $\left\lvert\, \begin{array}{ll} B_{1} \\ & \\ & \\ & \\ & \\ & \\ \end{array}\right.$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | $\underbrace{+14.593}_{0.00}$ | ${ }_{3}^{-20.958}$ | $+\underset{6.2832}{+9.474}$ | $\begin{array}{r} -3.763 \\ \hline 9.4279 \end{array}$ | $\begin{array}{r} +1.313 \\ +12.566 \\ \hline \end{array}$ | $-1$ | $+$ | $\begin{array}{r} -0.447 \\ 21.991 \end{array}$ |
| 120 | $+12.033$ | $+4$ | $+5.875$ | $14.280$ | $+19.040$ | $\underbrace{-0.829}_{23.800}$ | $+28.560$ | $\begin{array}{r} -0.100 \\ 33.320 \end{array}$ |
| 23 | $+35.752$ | $\underbrace{-54.937}_{17.405}$ | $+34.810$ | $\underbrace{-7.248}_{52.215}$ | -2.118 |  | $\underbrace{-3.802}_{104.429}$ |  |
| 15.8 |  | -59.957 | $+25.821$ | $\underbrace{-9.279}_{104.718}$ | $+139.624$ | $\left.\right\|_{174.530} ^{0.838}$ |  |  |

are shown in Figures 12 thro! gh 15. The parameters for the analytical fits, $H_{o f}(t)=\sum_{j=1}^{A_{j}} e^{\lambda . j^{t}}$ are shown in Table 3 .

One physical check on the solutions not required by the mathematical formulation of the problem is that the heat flow out of the fuel must equal the heat flow into the moderator. The heat flow data are shown in Figures 16 through 19. It is obvious from inspection of these data that the equivalent heat flow condition is not well satisfied. There are several possible explanations for this discrepancy. First, the heat flow data is somewhat more sensitive to the analytical fits of the surface temperature and the heat generation rates than the average temperatures. Second, the cladding between the meat and the moderator was neglected in calculating the temperature distributions. Again, the average temperatures are far less sensitive to this approximation than the heat flow calculations. Finally, it can be seen by investigating the heat flow equations that the discrepancies could be decreased by introducing a positive phase angle to the surface temperature fits. This could be attributed to a delay time in the surface temperature measurements.

The average temperatures in the fuel and moderator as a function of time were calculated by means of a numerical integration of the calculated temperature distributions. These data are given in Tables 4 through 7.

### 3.2 Reactivity Effects

The reactivity compensations

$$
\Delta k_{c}(t)=\Delta k(0)-\Delta k(t)
$$

|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 12 . Interhal plate heat generation rate, $H_{0 f}(t)$, vs arbitrary time during a
transient with an initial period of 15.8 msec .

Figure 13. Internal plate heat generation rate, $\mathrm{H}_{\text {of }}(t)$, vs arbitrary time during
a transient with an initial period of 23 msec .


Figure 14. Internal plate heat generation rate, $H_{\text {of }}(t)$, vs arbitrary time during a transient with an initial period of 120 msec .


Figure 15. Internal plate heat generation rate, $H_{o f}(t)$, vs arbitrary time during a transient with an initial period of 150 msec .

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 16. Comparison ot, $Q$, heat flow rates per unit area out of the
fuel and into the moderator vs arbitrary time during a transient
with an initial period of 15.8 msec .


Figure 17. Comparision of, $Q$, heat flow rates per unit area out of the fuel and into the moderator vs arbitrary time during a transient with an initial period of 23 msec .


msec.



Table 3. Numerical Values of Parameters for Emoirical Fits of $H_{o f}(t)$ Used in Equations (15) and (16)

| $\tau$,msec |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 150 |  | $21.090$ | $+6.062 \times 10^{-8}$ |  |  |
| 120 |  | $20.233$ | $+3.564 \times 10^{-4}$ |  | $+3.019 \times 10^{-19}$ |
| 23 | $2.414 \times 10^{1}$ | $124.03$ |  |  |  |
| 15.8 | $1.364 \times 10^{2}$ |  |  |  |  |

Table 4. Average Temperature Rise in the Fuel and Moderator for $\tau=15.8 \mathrm{msec}$.
$t$, sec.
$\bar{\theta}_{\text {fue } 1}(t){ }^{\circ} \mathrm{C} \quad \bar{\theta}_{\text {mod }}(t),{ }^{\mathrm{OC}}$
$\left(\bar{\theta}_{\text {fuel }}{ }^{-\bar{\theta}_{\text {mod }}}\right),{ }^{\circ} \mathrm{C}$
.085
.080
0.075
.070
.060
.050
.040
.030
.020
.010
138.53
127.34
110.34
89.99
50.12
24.58
13.91
8.51
3.52
1.039

$\square .0767 \longrightarrow .962$
16.732
121.80
13.99
113.35
10.81
8.664
99.53
81.33
4.87
45.25
2.446
22.13
1.333
12.58
0.692
7.82
3.25
. 962

Table 5. Average Temnerature Rise in the Fuel and Moderator for $\tau=23 \mathrm{msec}$.
$t, \sec$.
$\bar{\theta}_{\text {fuel }}(t),{ }^{\mathrm{O}} \mathrm{C}$
$\bar{\theta}_{\text {mod }}(t),{ }^{\mathrm{C}} \mathrm{C}$
$\left(\bar{\theta}_{\text {fue } 1}-\bar{\theta}_{\bmod }\right),{ }^{\circ} \mathrm{C}$
.16
117.76
108.71
.15
86.92
59.48
16.832
100.93
.14
.13
.12
36.58
.11
23.17
16.28
.10
11.25
13.371
95.34

9.764
77.16
6.459
53.02
32.35
4.218
20.41
.09
3.13
2.759
15.21
.05
1.869
10.02
. $\qquad$
1.231
2.87

Table 6. Average Temperature Rise in the Fuel and Moderator for $\tau=120 \mathrm{msec}$.

| t, sec. | $\bar{\theta}_{\text {fue } 1}(t),{ }^{\circ} \mathrm{C}$ | $\bar{\theta}_{\text {mod }}(t),{ }^{\mathrm{C}} \mathrm{C}$ | $\left(\bar{\theta}_{\text {fuel }}{ }^{-\bar{\theta}_{\text {mod }}}\right.$ ) ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| . 59 | 32.66 | 8.572 | 24.09 |
| . 57 | - 29.95 | 7.738 | 22.21 |
| . 55 | 27.33 | 6.935 | 20.39 |
| . 50 | 21.15 | 5.212 | 15.94 |
| . 45 | 16.40 | 3.834 | 12.57 |
| . 40 | 11.98 | - 2.660 | 9.32 |
| . 35 | 7.84 | 1.744 | 6.10 |
| . 30 | 4.89 | 1.143 | 3.75 |
| . 20 | 2.59 | . 534 | 2.06 |
| . 10 | 1.17 | . 164 | 1.01 |

Table 7. Average Temperature Rise in the Fuel and Moderator for $\tau=150 \mathrm{msec}$.

| $t$, sec. | $\bar{\theta}_{\text {fue } 1}(t),{ }^{\circ} \mathrm{C}$ | $\bar{\theta}_{\text {mod }}(t),{ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| $\left(\bar{\theta}_{\text {fue } 1}-\bar{\theta}_{\text {mod }}\right),{ }^{\circ} \mathrm{C}$ |  |  |

. 90
.85
.80
.75
.70
.65
.60
. 55
. 50
.40
. 30
.10
44.46
37.49
30.87
25.23
20.31
15.70
11.48
8.11
4.86
3.58
1.91
.602

| 12.994 | 31.47 |
| ---: | ---: |
| 10.630 | 26.86 |
| 8.510 | 22.36 |
| 6.678 | 18.55 |
| 5.111 | 15.20 |
| 4.644 | 11.06 |
| 2.750 | 8.73 |
| 1.989 | 6.12 |
| 1.472 | 4.39 |
| .834 | 2.75 |
| .431 | 1.48 |
| .0652 | .537 |

where $\triangle k(0)$ is the initial reactivity insertion to start the transient and $\Delta k(t)$ is the excess reactivity of the system at any time, $t$, are shown as a function of time in Tables 8 through 11. Tables 8 through 11 also show the components of the compensated reactivity due to the temperature coefficient $\Delta k_{T}(t)$, fuel plate expansion $\Delta k_{E}(t)$ and steam formation, $\Delta k_{s}(t)$. The excess reactivity $\Delta k(t)$ for two of the transients,工 equals 120 and 150 msec respectively, is compared with equivalent data obtained from a kinetic analysis of the power burst shapes by Miller (34) in Figures 20 and 21. The reactivity compensation at peak power, is shown along with comparable data from the kinetic analysis in Figure 22. Figure 22 also includes the components of the reactivity compensations for a model suggested by S. G. Forbes (15) as well as for the model suggested in this report.

### 3.3 Conclusions

The forms of all of the solutions shown in equations (9) through (16) are such that three terms are developed. The first term represents the steady state solution resulting from the surface temperature boundary condition. The second term includes the transient portion of both the surface temperature boundary condition and the forcing function, the heat generation rate. The final term represents the steady state or equilibrium solution resulting from the forcing function. It has been common in several previous works $(27,36)$ to assume that the temperature is separable in space and time. It can be seen from the derived solutions that this will be a good approximation of the temperature distribution only when the second term, the transient solution, has died out. The


Figure 20. Comparison of calculated percent excess reactivities, $\Delta k$, and those obtained by kinetic analysis vs arbitrary time during a transient with an initial period of 120 msec .


Figure 21. Comparison of calculated percent excess reactivities, $\Delta k$, and those obtained by kinetic analysis vs arbitrary time during a transient with on initial period of 150 msec .

Figure 22. Peak power compensated reactivities, $\Delta k_{c}$, vs reciprocal period, $\alpha$.

Table 8. Compensated Reactivities for $\tau=15.8 \mathrm{msec}$ Run

| $\mathrm{t}, \mathrm{sec}$ | $\Delta k_{\mathrm{T}}(\mathrm{t})$ | $\Delta k_{\mathrm{E}}(\mathrm{t})$ | $\Delta \mathrm{k}_{\mathrm{S}}(\mathrm{t})$ | $\Delta \mathrm{k}_{\mathrm{C}}(\mathrm{t})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.084 | $0.979 \times 10^{-3}$ | $0.609 \times 10^{-3}$ | $1.86 \times 10^{-3}$ | $3.45 \times 10^{-3}$ |
| 0.080 | $0.818 \times 10^{-3}$ | $0.546 \times 10^{-3}$ | $1.21 \times 10^{-3}$ | $2.60 \times 10^{-3}$ |
| 0.075 | $0.632 \times 10^{-3}$ | $0.498 \times 10^{-3}$ | $0.46 \times 10^{-3}$ | $1.59 \times 10^{-3}$ |
| 0.070 | $0.684 \times 10^{-3}$ | $0.407 \times 10^{-3}$ | $0.13 \times 10^{-3}$ | $1.22 \times 10^{-3}$ |
| 0.060 | $0.285 \times 10^{-3}$ | $0.226 \times 10^{-3}$ | 0.0 | $0.51 \times 10^{-3}$ |
| 0.050 | $0.143 \times 10^{-3}$ | $0.111 \times 10^{-3}$ | 0.0 | $0.25 \times 10^{-3}$ |
| 0.040 | $0.078 \times 10^{-3}$ | $0.063 \times 10^{-3}$ | 0.0 | $0.14 \times 10^{-3}$ |
| 0.030 | $0.050 \times 10^{-3}$ | $0.039 \times 10^{-3}$ | 0.0 | $0.08 \times 10^{-3}$ |
| 0.020 | $0.016 \times 10^{-3}$ | $0.016 \times 10^{-3}$ | 0.0 | $0.03 \times 10^{-3}$ |
| 0.010 | $0.004 \times 10^{-3}$ | $0.005 \times 10^{-3}$ | 0.0 | $0.01 \times 10^{-3}$ |

Table 9. Compensated Reactivites for $\tau=23 \mathrm{msec}$ Run

| $\mathrm{t}, \mathrm{sec}$ | $\Delta k_{T}(t)$ | $\Delta k_{E}(t)$ | $\Delta k_{S}(t)$ | $\Delta k_{C}(t)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.16 | $0.985 \times 10^{-3}$ | $0.505 \times 10^{-3}$ | $1.21 \times 10^{-3}$ | $2.70 \times 10^{-3}$ |
| 0.15 | $0.782 \times 10^{-3}$ | $0.468 \times 10^{-3}$ | $0.54 \times 10^{-3}$ | $1.79 \times 10^{-3}$ |
| 0.14 | $0.571 \times 10^{-3}$ | $0.386 \times 10^{-3}$ | $0.003 \times 10^{-3}$ | $0.96 \times 10^{-3}$ |
| 0.13 | $0.378 \times 10^{-3}$ | $0.265 \times 10^{-3}$ | 0.0 | $0.64 \times 10^{-3}$ |
| 0.12 | $0.247 \times 10^{-3}$ | $0.162 \times 10^{-3}$ | 0.0 | $0.41 \times 10^{-3}$ |
| 0.11 | $0.161 \times 10^{-3}$ | $0.102 \times 10^{-3}$ | 0.0 | $0.26 \times 10^{-3}$ |
| 0.10 | $0.109 \times 10^{-3}$ | $0.076 \times 10^{-3}$ | 0.0 | $0.18 \times 10^{-3}$ |
| 0.09 | $0.072 \times 10^{-3}$ | $0.050 \times 10^{-3}$ | 0.0 | $0.12 \times 10^{-3}$ |
| 0.05 | $0.015 \times 10^{-3}$ | $0.014 \times 10^{-3}$ | 0.0 | $0.03 \times 10^{-3}$ |

Table 10. Compensated Reactivities for $\tau=120 \mathrm{msec}$ Run

| sec | $\Delta k_{T}(t)$ | $\Delta k_{E}(t)$ | $\Delta k_{S}(t)$ | $\Delta k_{C}(t)$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $0.501 \times 10^{-3}$ | $0.120 \times 10^{-3}$ | 0.0 | $0.621 \times 10^{-3}$ |  |
| 0.57 | $0.453 \times 10^{-3}$ | $0.111 \times 10^{-3}$ | 0.0 | $0.564 \times 10^{-3}$ |  |
| 0.55 | $0.406 \times 10^{-3}$ | $0.100 \times 10^{-3}$ | 0.0 | $0.506 \times 10^{-3}$ |  |
| 0.50 | $0.305 \times 10^{-3}$ | $0.080 \times 10^{-3}$ | 0.0 | $0.385 \times 10^{-3}$ |  |
| 0.45 | $0.224 \times 10^{-3}$ | $0.063 \times 10^{-3}$ | 0.0 | $0.287 \times 10^{-3}$ |  |
| 0.40 | $0.156 \times 10^{-3}$ | $0.047 \times 10^{-3}$ | 0.0 | $0.203 \times 10^{-3}$ |  |
| 0.35 | $0.102 \times 10^{-3}$ | $0.030 \times 10^{-3}$ | 0.0 | $0.132 \times 10^{-3}$ |  |
| 0.30 | $0.067 \times 10^{-3}$ | $0.019 \times 10^{-3}$ | 0.0 | $0.086 \times 10^{-3}$ |  |
| 0.20 | $0.031 \times 10^{-3}$ | $0.010 \times 10^{-3}$ | 0.0 | $0.041 \times 10^{-3}$ |  |
| 0.10 | $0.010 \times 10^{-3}$ | $0.005 \times 10^{-3}$ | 0.0 | $0.015 \times 10^{-3}$ |  |
|  |  |  |  |  |  |

Table 11. Compensated Reactivities for $\tau=150 \mathrm{msec}$ Run

| $\mathrm{t}, \mathrm{sec}$ | $\Delta k_{T}(t)$ | $\Delta k_{E}(t)$ | $\Delta k_{S}(t)$ | $\Delta k_{C}(t)$ |
| :--- | :--- | :--- | :--- | :--- |
| 0.90 | $0.760 \times 10^{-3}$ | $0.157 \times 10^{-3}$ | 0.0 | $0.915 \times 10^{-3}$ |
| 0.85 | $0.622 \times 10^{-3}$ | $0.134 \times 10^{-3}$ | 0.0 | $0.756 \times 10^{-3}$ |
| 0.80 | $0.498 \times 10^{-3}$ | $0.112 \times 10^{-3}$ | 0.0 | $0.610 \times 10^{-3}$ |
| 0.75 | $0.391 \times 10^{-3}$ | $0.093 \times 10^{-3}$ | 0.0 | $0.484 \times 10^{-3}$ |
| 0.70 | $0.299 \times 10^{-3}$ | $0.076 \times 10^{-3}$ | 0.0 | $0.375 \times 10^{-3}$ |
| 0.65 | $0.272 \times 10^{-3}$ | $0.055 \times 10^{-3}$ | 0.0 | $0.327 \times 10^{-3}$ |
| 0.60 | $0.161 \times 10^{-3}$ | $0.044 \times 10^{-3}$ | 0.0 | $0.205 \times 10^{-3}$ |
| 0.55 | $0.116 \times 10^{-3}$ | $0.031 \times 10^{-3}$ | 0.0 | $0.147 \times 10^{-3}$ |
| 0.50 | $0.086 \times 10^{-3}$ | $0.022 \times 10^{-3}$ | 0.0 | $0.108 \times 10^{-3}$ |
| 0.40 | $0.049 \times 10^{-3}$ | $0.014 \times 10^{-3}$ | 0.0 | $0.063 \times 10^{-3}$ |
| 0.30 | $0.025 \times 10^{-3}$ | $0.007 \times 10^{-3}$ | 0.0 | $0.032 \times 10^{-3}$ |
| 0.10 | $0.004 \times 10^{-3}$ | $0.003 \times 10^{-3}$ | 0.0 | $0.007 \times 10^{-3}$ |
|  |  |  |  |  |

numerical results obtained from evaluating the set of equations (9) and (10) and the set of equations (15) and (16) show that the transient term is negligible for all times of interest in the fuel region but it makes a significant contribution for all times of interest in the moderator.

In one sense it would be more informative to investigate the reactor burst behavior using the minimum of input data (i.e. the physical dimensions and the inftial reactivity insertion) and test for corroboration of all of the experimentally measured variables. However, it seemed better in analyzing for the shutdown mechanisms to use as much of the data as possible leaving only the compensated reactivities as a check on the validity of the model. The compensated reactivity was established as a criterion because of its extreme sensitivity to the state of the system and because of its direct influence on the safety of nuclear reactors.

The results of this work are two-fold. First, a more accurate view of distribution of the energy during a transient burst is presented and second, a model based on the energy distribution was shown to predict the reactivity effects as well as any of the existing models. The advantage of this model is that assuming the fractional energy associated with void formation can be determined as the mechanism of transient boiling becomes better understood, the final empiricism can be removed from the model.

### 3.4 Further Investigation

There are several avenues of attack for further work in determining the inherent shutdown mechanisms. First, additional data on Spert I-A should be tested on the model proposed in this report to make certain that it is as capable of determining reactivity effects as these preliminary runs indicate. Second, application of this model to any new system
will mean that the surface temperatures and power traces would not be available. This problem can be circumvented by studying the two region conduction problem subject only to the heat generation rate forcing function. The heat generation rate can be calculated from the infial reactivity insertion, allowing a feedback from the induced negative reactivity to the heat generation rate through the reactor kinetics equations. This,suggests an analog solution or possibly a digital analog combination. Third, application of the heat transfer equations developed in this report should be used to determine the mode of heat transfer during transient operation by investigating a single plate ir as much detail as possible. The application of this study can probably be done more simply using electrical heating. Fourth, a detailed study of nucleate boiling at low heat fluxes is necessary before complete understanding of the mechanisms of shutdown can be obtained. This study should provide a direct measurement of the fraction of the energy used to produce steam, $\mathrm{f}_{\mathrm{s}}$. Fifth, work on this model should be extended to investigate further available evidence on other Spert reactors to see if it will account for changes in other parameters such as neutron lifetime, pressure and coolant flow. Fịnally, experimental and analytical work should be done on the zircomium hydride moderated Triga systems since qualitatively they show the greatest inherent safety that has been demonstrated to date.

ACKNOWLEDGEMENT

The author wishes to exoress his gratitude to Dr. W. R. Kimel and Dr. J. O. Mingle under whose direction this work has been done. In addition, I wish to extend sincerest thanks to Dr. C. A. Halijak and Professor R. C. Ballie for their efforts in the most difficult ohases of this work. Sincere aporeciation is given to the Kansas State University Engineering Experiment Station, the Dedartment of Nuclear Engineering and the National Science Foundation for their financial support of this research.

## LITERATURE CITED

1. Arpaci, V. S. and Clark, J. A.

Dynamic Response of Heat Exchangers Having Internal Heat Sources. J. Heat Transfer, 81, 253-66 (1959).
2. Bright, G. O. et. al.

An Elementary Model for Reactor Burst Behavior.IDO-16393 (August 1957).
3. Bonilla, C. F.

Nuclear Engineering. McGraw-Hill (1957).
4. Chernick, J. BNL-173 (T-30) (1951).
5. Clark, E. T.

Analysis of Initial Shutdown in SPERT-I. NYO-4726 (1956).
6. Clark, E. T.

Initial Shutoff in a SPERT Type Reactor Transient. Paper presented at the June 1957 meeting of the American Nuclear Society.
7. Deitrich, J. R. and Layman, D. C.

Transients and Steady State Characteristics of a Boiling Reactor The BORAX Experiments. AECD-3840 (1953).
8. Deitrich, J..R.

Experimental Investigations of the Self-limitation of Power During Reactivity Transients in a Subcooled, Water-moderated Reactor. AECD-3688 (1954).
9. Deverall, L. I. and Griffing, G. W.

Kinetic Studies on the SPERT-I Reactor, II, On the Initial Shutdown of the SPERT-I Reactor for Periods Greater Than Fifty Milliseconds. IDO-16404 (December 1957).
10. Deveral1, L. I. and Griffing, G. W. Kinetic Studies on the SPERT-I Reactor, I, Initial Behavior by the Energy Model. IDO-16397 (Apri1 1958).
11. Epel, L. G.

Transient Temperatures in Infinite Plates, Infinite Cylinders and Spheres Following a Simultaneous Step Change in Internal Heat Generation Rate, Coolant Temperature and Heat Transfer Coefficient. ORNL-2597 (1958).
12., Ermakov, V. S. and Ivanov, V.

Investigations of Non-Uniform Heat Transfer in Nuclear Reactor Heat Releasing Elements. Inzhener, Fiz. Zhur., Akad, Nauk Belorus. S.S.R., 1, No. 12, 960112 (1958).
13. Forbes, S. G.

Quarterly Progress Report. IDO-16452, p. 38 (September 1958).
14. Forbes, S. G.

Conduction Boiling Model - Quarterly Progress Report. IDO-16489, pp. 71-88 (January 1959).
15. Forbes, S. G.

Calculation of Thermal Shutdown Effects in SPERT I-A. Quarterly Progress Report. IDO-16512 (May 1959).
16. Forbes, S. G., et. al.

Analysis of Self-Shutdown Behavior in the SPERT-I Reactor. IDO-16528 (July 1959).
17. Foulke, L. R.
K.S.U. Pile Standardization and Study of Slowing Down and Diffusion Models. Kansas Engineering Experiment Station Special Report Number 8, (1961).
18. French, P.

Analytical Treatment of Transient Heat Conduction During Reactor Power Excursions - Quarter Progress Report. IDO-16512 (May 1959).
19. French, P.

Insulated Core Experiment - Quarterly Progress Report. IDO-16539 (November 1959).
20. French, P. and Forbes, S. G. Preliminary Moderator Expulsion Experiments. IDO-16539 (November 1959).
21. Fuchs, Klaus

Efficiency for Very Slow Assembly. LA-596 (August 1946).
22. Glasstone, S. and Edlund, M. C.

Elements of Nuclear Reactor Theory. Van Nostrand (1952).
23. Graham, R. H. and Boyer, D. G.

AEC Steps Up Reactor Safety Experiments. Nucleonics. Vol. 14, No. 3, (1956).
24. Greenspan, H.

Argonne Quarterly Report for September - November 1952. ANL-4951 (1952).
25. Haire, J. C.

Subcooled Transient Tests in the SPERT-I Reactor - Experimental Data. IDO-16343 (July 1958).
26. Horning, W. A.

Theory of Power Transient in the SPERT-I Reactor. IDO-16434 (January 1958).
27. Iriarte, M., Jr. An Accurate Transfer Function for the Dynamic Analysis of Temperature and Heat Release in Cylindrical Fuel Elements. Nuclear Science and Engineering. I 26-32 (1960).
28. Kaminsky, S.

Study of Nucleation and Bubble Dynamics to Evaluate Void Shutdown Mechanism in a Heterogeneous Water Moderated Reactor. KLX-1809 (May 1959).
29. Kattwinkel, Willy

The Question of the Temperature Distribution in a Bare Cylindrical Fuel Element of Great Length in the Non-steady State Heating Up. Atomkern-Energie, 3, 342-5 (1958).
30. Kirchenmayer, A. The Transient Behavior of the Heat Transfer from Fuel Elements to a Coolant of Constant (Boiling) Temperature in a One Dimensional Heat Flux. Atomkern-Energie, 3, 337-41 (1958).
31. Margulies, R. S. GNL-200 (T-47) (1954).
32. McMurray, W. L.

Temperature Distribution in a Fuel Plate with Exponentially Rising Power. IDO-16214 (March 1955).
33. Mickley, H. S., Sherwood, T. K. and Reed, C. E. Applied Mathematics in Chemical Engineering. McGraw-Hill (1957).
34. Miller, R. W.

Calculations of Reactivity Behavior During SPERT-I Transients. IDO-16317, (June 1957).
35. Miller, R. W. The "Clipped Exponential" Power Burst Model - Quarterly Progress Report. IDO-16489, pp. 88-96 (January 1959).
36. Miller, R. W.

Photographic Investigations of Reactor Shutdown Mechanisms. IDO-16584 (Apri1 1960).
37. Murray, Raymond L.

Nuclear Reactor Physics. Prentice-Hall (1957).
38. Nicholson, R. B. The Doppler Effect in Fast Neutron Reactors. APDA-139 (1960).
39. Nyer, W. E. et. al.

Experimental Investigations of Reactor Transients. IDO-16285 (1956).
40. Stein, R. P.

Transient Heat Transfer in Reactor Coolant Channels. AECU-3600 (1957).
41. Technical Foundations of TRIGA. General Atomic, Division of General Dynamic GA-471 (1958).
42. Walker, R.

An Investigation of the Poison Model for Reactor Self-Shutdown Quarterly Progress Report. IDO-16489, p. 960110 (January 1959).
43. Wilson, T. R.

An Engineering Description of the SPERT-I Reactor Facility. IDO-16318.
44. Wylie, C. R., Jr.

Advanced Engineering Mathematics. McGraw-Hill (1960).

APPENDICES

## APPENDIX A

Derivations of Solutions for the Temperature Distribution in the Fuel and Moderator of a Unit Cell

The differential equations governing the time dependent temperature distribution in the fuel and moderator are

$$
\begin{equation*}
\nabla^{2} \theta_{f}(x, t)+\sum_{j=1}^{s} \frac{q_{\infty} \cosh (k x) \varepsilon_{j} e^{\lambda_{j} t}}{k}=\frac{1}{\alpha} \frac{\partial \theta(x, t)}{\partial t} \tag{A-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} \theta_{m}(x, t)+\sum_{j=1}^{s} \frac{F A_{j} e^{\lambda_{j} t}}{k}=\frac{1}{\alpha} \frac{\partial \theta_{m}(x, t)}{\partial t} \tag{A-2}
\end{equation*}
$$

The differential equations, (A-1) and (A-2), are most easily solved by use of Laplace transforms. Considering the fuel region first and transforming the time variable in equation (1) yields

$$
\nabla^{2} \Phi_{f}(x, S)+\sum_{j=1}^{s i} \frac{q_{\infty} \cosh (k x) A_{i}}{k\left(S-\lambda_{j}\right)}=\frac{1}{\alpha}\left[S 0_{f}(x, S)-\theta(x, 0)\right]
$$

$\Phi(x, S)$ is the transform of $\theta(x, t)$, and $\theta(x, 0)$ is the initial temperature distribution. Assuming the initial temperature distribution to be flat, the equation can be normalized by letting $\underline{\theta(x, 0)}$ equal zero. Thus $\theta(x, t)$ is the temperature excess in the fuel over the infitial temperature. The initially flat temperature distribution in the fuel is unreal but it 18 a good approximation if the transients are started from low power leve1s.

Letting $\underline{\theta(x, 0)}=0$ anc rearranging the terms in equation ( $A-3$ ) ylelds

$$
\begin{equation*}
\nabla^{2} \Phi_{f}(x, s)-\frac{S}{\alpha} \Phi_{f}(x, s)=-\sum_{j=1}^{8} \frac{q_{o o} \cosh (k x) A_{j}}{k\left(S-\lambda_{j}\right)} \tag{A-4}
\end{equation*}
$$

The usual one-dimensional slab assumption is made and $\nabla^{2}$ becomes $\frac{\partial^{2}}{\partial x^{2}}$. This assumption neglects the axial flow of heat in the fuel compared to the radial. While this might be the limiting assumption in the analysis, it is probably not seriausly in error.

The homogeneous solution to the one dimensional form of equation (A-4) is well known and is derived in many standard texts. This solution is

$$
\begin{equation*}
\Phi_{f h}(x, S)=A \cosh \sqrt{\frac{S}{\alpha}} x+B \sinh \sqrt{\frac{S}{\alpha}} x \tag{A-5}
\end{equation*}
$$

The particular solution is found by the method of undetermined coefficients and is

$$
\begin{equation*}
\Phi_{f p}(x, S)=\sum_{j=1}^{s} \frac{q_{o o} \alpha A_{j} \cosh k x}{k\left(S-\lambda_{j}\right)\left(S-\alpha k^{2}\right)} \tag{A-6}
\end{equation*}
$$

Therefore,

$$
\Phi_{f p}(x, S)=A \cosh \sqrt{\frac{S}{\alpha}} x+B \sinh \sqrt{\frac{S}{\alpha}} x+\sum_{j=1}^{s} \frac{q_{o o} \alpha A_{j} \cosh (k x)}{k\left(S-\lambda_{j}\right)\left(S-\alpha k_{2}\right)} \cdot(A-7)
$$

The boundary conditions used to determine the constants $\underline{A}$ and $\underline{B}$ are as follows First, the temperature gradient in the center of the region ( $x=0$ ) is zero for all time. Second, the surface temperature is matched with the experimental data. ${ }_{\dot{p}}$ The surface temperature is
 $\sum^{p} B_{i} \cos \beta_{i} t$. First consider the solution in which the exponential $i=1$
boundary condition is used.
The transformed boundary conditions are

$$
\begin{equation*}
\mathcal{L}\left\{\frac{\partial \theta_{f}(x, t)}{\partial x}\right\}=\mathcal{L}\{0\} \text { or } \frac{d \Phi_{f}(x, s)}{d x}=0 \tag{A-8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}\left\{\theta_{f}(L, t)\right\}=\mathcal{L}\left\{\sum_{i=1}^{p} B_{i} e^{\beta} i^{t}\right\} \quad \text { or } \quad \Phi_{f}(L, S)=\sum_{i=1}^{p} \frac{B_{i}}{\left(S-\beta_{i}\right)} \tag{A-9}
\end{equation*}
$$

Applying equation ( $A-8$ ) to equation ( $A-7$ ) shows that $\underline{B}$ must equal zero. $\underline{A}$ is determined by evaluating equation ( $A-9$ ). The solution in the transform domain is shown in equation (A-10).

$$
\begin{align*}
\Phi_{f}(x, S)= & \sum_{i=1}^{p} \frac{B_{i} \cosh \sqrt{\frac{S}{\alpha}} x}{\left(S-\beta_{i}\right) \cosh \sqrt{\frac{S}{\alpha}} L}-\sum_{j=1}^{S} \frac{q_{00}{ }^{\alpha A_{j}}}{k\left(S-\lambda_{j}\right)\left(S-\alpha k^{2}\right)}\{\cosh (k x)- \\
& \left.\frac{\cosh (k L) \cosh \sqrt{\frac{S}{\alpha}} x}{\cosh \sqrt{\frac{S}{\alpha}} L}\right\}
\end{align*}
$$

Transforming equation ( $\mathrm{A}-10$ ) back into the time domain is greatly simplified since no poles of order greater than one occur in the inversion integral. It is interesting to note that it is the occurence of higher order poles which complicates the solution to the multiple region problem. Equation (A-11), shown below, (33) can be used to invert transformed functions of the form $\bar{f}(s)=j(s) / \ell(s)$ if the degree of $\ell(s)$ is at least one greater than $j(s)$ and only poles of order one occur,

$$
\begin{equation*}
\mathcal{L}-1\{\bar{f}(s)\}=\sum_{n=1}^{m} \frac{j\left(\rho_{n}\right)}{l^{\prime}\left(\rho_{n}\right)} e^{\rho_{n} t} \tag{A-11}
\end{equation*}
$$

$\rho_{n}$ denotes, the $n$ simple poles of $\underline{\bar{f}(S)}$ and $\underline{\ell^{\prime}\left(\rho_{n}\right)}$ denotes the value of $\frac{d \ell(S)}{d S}$ evaluated at $S=\rho_{n}$.

The inversion of equation $(A-10)$ is shown in detail below. First
consider the third term of equation (A-10).

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\sum_{j=1}^{s} \frac{q_{\infty} \alpha \cosh k L A_{j} \cosh \sqrt{\frac{S}{\alpha} x}}{k\left(S \sim \lambda_{j}\right)\left(S \sim \alpha k^{2}\right) \cosh \sqrt{\frac{S}{\alpha}} L}=\sum_{j=1}^{s} \frac{q_{\infty} \alpha \cosh (k L) A_{j}}{k} \mathcal{L}-1\{I\}\right. \tag{A-12}
\end{equation*}
$$

The obvious poles of $\underline{I}$ are at $\underline{S}=\underline{\lambda}_{j}$ and $S=\underline{\alpha} k^{2}$. Additional roots of the denominator exist for $\cosh \sqrt{\frac{S}{\alpha}} L=0$. The roots of $\cosh \sqrt{\frac{S}{\alpha}}$ L are obtained by making the transformation $S=-\mathcal{A}$. This is done since cosh $\sqrt{\frac{S}{\alpha}}$ L cannot equal zero for real values of the argument and $\alpha$ and $L$ are always positive, real constants.

$$
\begin{equation*}
\cosh \sqrt{\frac{\xi}{\alpha}} \mathrm{L}=\cosh 1 \sqrt{\frac{\alpha}{\alpha}} \mathrm{~L}=\cos \sqrt{\frac{-\alpha}{\alpha}} \mathrm{L}=0 \tag{A-13}
\end{equation*}
$$

therefore

$$
\begin{align*}
& \sqrt{\frac{-\alpha}{\alpha}} R_{0}=\frac{n \pi}{2}, n \text { odd } \\
& S_{n}=\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}  \tag{A-14}\\
& S_{n}=-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}
\end{align*}
$$

Evaluating $\mathcal{L}^{-1}\{I\}$ by means of equation (A-11) at the poles $\rho=a k^{2}, \rho=\lambda_{j}$ and $\rho=-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}$ yields equation (A-15).

$$
\begin{align*}
\mathcal{L}^{-1}\{I\}= & \frac{\cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha}} x\right) e^{\lambda_{j} t}}{\cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha}} L\right)\left(\lambda_{j}-\alpha k^{2}\right)}+\frac{\cosh (k x) e^{\alpha k^{2} t}}{\left.\cosh (\kappa L) \alpha k^{2}-\lambda_{j}\right)} \\
& +\sum_{n=1,3,5 \ldots\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha \kappa^{2}\right)\left(\frac{2 L^{2}}{n \pi \alpha}\right) \sin \left(\frac{n \pi}{2}\right)}^{\infty} \tag{A-15}
\end{align*}
$$

Considering the second term in equation ( $\mathrm{A}-10$ ), the inversion as obtained through use of equation (A-11) is given in equation (A-16).

$$
\begin{equation*}
\mathcal{L}^{-1} \sum_{j=1}^{s} \frac{q_{\infty} \alpha^{A} i}{k} \frac{1}{\left(s-\lambda_{j}\right)\left(S-\alpha k^{2}\right)}=\sum_{j=1}^{s} \frac{q_{\infty}^{\alpha A^{A}} 1}{k}\left(\frac{e^{\lambda_{i} t}}{\left(\lambda_{j}-\alpha k^{2}\right)}+\frac{e^{\alpha k^{2} t}}{\left(\alpha k^{2}-\lambda_{j}\right)}\right) \tag{A-16}
\end{equation*}
$$

In a similar manner the first term of equation ( $A-10$ ), the inversion, again using equation (A-11), is given in equation (A-17).
$\mathcal{L}^{-1}\left\{\sum_{i=1}^{p} \frac{c_{i} \cosh \sqrt{\frac{s}{\alpha}} x}{\left(S-\beta_{i}\right) \cosh \sqrt{\frac{s}{\alpha}} L}\right\}=\sum_{i=1}^{p} \frac{B_{i} \cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} x\right) e^{\beta_{i} t}}{\cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} L\right)}$

$$
\begin{equation*}
+\sum_{i=1}^{p} \sum_{n=1,3,5, \cdots\left(-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}-\beta_{1}\right) \frac{L^{2}}{n_{\pi} \alpha}\left(\sin \frac{n_{\pi}}{2}\right)}^{B_{i} \cos \frac{n_{\pi x}}{2 L} e^{n^{2} \alpha} 4 L^{2} t} \tag{A-17}
\end{equation*}
$$

The temperature distribution in the fuel plate, $\theta_{f}(x, t)$ is obtained by substituting equation (A-15) in equation (A-12) and adding equations (A-12), ( $A-16$ ) and ( $A-17$ ). The result is

$$
\theta_{f}(x, t)=\sum_{1=1}^{p} \frac{B_{1} \cosh \sqrt{\frac{\beta_{1}}{\alpha}} x}{\cosh \sqrt{\frac{\beta_{1}}{\alpha}} L} e^{\beta_{1} t}-\sum_{n=1,3,5, \cdots\left(\frac{L^{2}}{\alpha n \pi}\right) \sin \left(\frac{n_{\pi}}{2}\right)}^{\infty} \frac{\cos \frac{n_{\pi} x}{2 L} e^{-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}} t}}{\infty}
$$

$$
\begin{equation*}
x\left\{\sum_{1=1}^{p} \frac{B_{1}}{\frac{n^{2} \Pi^{2} \alpha}{4 L^{2}}+\beta_{1}}+\sum_{j=1}^{s} \frac{q_{\infty} \alpha^{A} A_{j} \cosh k L}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right)}\right\} \tag{A-18}
\end{equation*}
$$

$-\sum_{j=1}^{s} \frac{A_{j} q_{o o} \alpha e^{\lambda}{ }^{t}}{k\left(\alpha k^{2}-\lambda_{j}\right)}\left\{\cosh (k x)-\frac{\cosh (k L) \cosh \left(\sqrt{\lambda_{j}} x\right)}{\cosh \left(\sqrt{\frac{\lambda_{j}}{\alpha} L}\right)}\right\}$

As seen by comparing ( $A-1$ ) and ( $A-2$ ) the differential equations to be solved in the fuel and moderator are almost the same, the only difference being in the heat generation term. Thus, the total differential equation for the moderator in the Laplace transform domain after having applied the zero initial temperature condition is given in equation ( $\mathrm{A}-19$ )

$$
\begin{equation*}
\nabla^{2} \Phi_{m}(x, s)-\frac{S}{\alpha} \Phi_{m}(x, S)=-\sum_{j=1}^{S} \frac{F A_{j}}{k\left(S-\lambda_{j}\right)} \tag{A-19}
\end{equation*}
$$

The homogeneous solutions are the same as before and particular solutions are easily obtained, as before, from the method of undetermined coefficients. Therefore, the solutions to equation (A-19) in the transform domaln are

$$
\Phi_{m}(x, S)=C \quad \cosh \sqrt{\frac{S}{\alpha}} X_{1}+D \sinh \sqrt{\frac{\widetilde{S}}{\alpha} X_{1}+\sum_{j=1}^{s} \frac{F \alpha A_{j}}{k S\left(S-\lambda_{j}\right)}}(A-20)
$$

The transform boundary conditions for the moderator are same as those for the fuel if the origin in the moderator is taken at the outside of the unit cell, i.e.,

$$
\begin{equation*}
\Phi(L, S)=\sum_{i=1}^{p} \frac{B_{i}}{S-\beta_{i}} \quad \text { and }\left.\frac{d \Phi\left(x_{1}, S\right)}{d x_{1}}\right|_{x_{1}=0}=0 \tag{A-21}
\end{equation*}
$$

Thus $\underline{D}$ equals zero and $A$ takes the same form as for the solution in the fuel. The complete solution in the transform domain is given in equation ( $\mathrm{A}-22$ ).

$$
\begin{gather*}
\Phi_{m}(x, s)=\sum_{i=1}^{p} \frac{B_{i} \cosh \sqrt{\frac{S}{\alpha}} x_{1}}{\left(S-\beta_{i}\right) \cosh \sqrt{\frac{s}{\alpha}} L_{1}}+\sum_{j=1}^{s} \frac{\alpha F A_{j}}{k s\left(s-\lambda_{j}\right)} \\
{\left[1-\frac{\cosh \sqrt{\frac{S}{\alpha}} x_{1}}{\cosh \sqrt{\frac{S}{\alpha}} L_{1}}\right] .} \tag{A-22}
\end{gather*}
$$

The inversion of this solution is easily accomplished by the same method used for the fuel region. The solution for the temperature is

$$
\theta_{m}(x, t)=\sum_{i=1}^{p} \frac{B_{i} \cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} x_{1}\right) e^{\beta_{i} t}}{\cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} L_{1}\right)}-\sum_{n=1,3,5 ; \cdots\left(\frac{L_{1}^{2}}{n_{\pi} \alpha}\right)^{\sin }\left(\frac{n_{\pi}}{2}\right)}^{\cos ^{\frac{n_{\pi} x_{1}}{2 L_{1}}} e^{-\frac{n^{2} \pi^{2} \alpha}{4 L_{1}^{2}} t}}
$$

$$
\begin{align*}
& X\left\{\sum_{i=1}^{p} \frac{B_{i}}{\frac{n^{2} \pi^{2} \alpha}{4 L_{1}^{2}}+\beta_{i}}+\sum_{j=1}^{s} \frac{\alpha F A_{i}}{\frac{n^{2} \pi^{2} \alpha}{4 L_{i}^{2}} \frac{n^{2} \pi^{2} \alpha}{4 L_{1}^{2}}+\lambda_{j}}\right\}  \tag{A-23}\\
& +\sum_{j=1}^{s} \frac{\alpha F A_{j} e_{j}{ }^{t}}{k \lambda_{j}}\left\{1-\frac{\cosh \sqrt{\frac{\lambda_{i}}{\alpha}} x_{1}}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} L_{i}}\right.
\end{align*}
$$

This solution could have been obtained from the solution in the fuel by setting $\underline{x}=0$ and $g_{00}=F$.

The equivalent solution in cylindrical geometry ( $r$ dependence only) for the exponential boundary condition is obtained in the same general manner, however, several important differences do occur. The equations governing the temperature in the fuel and moderator are

$$
\begin{equation*}
\nabla^{2} \theta_{f}(r, t)+\sum_{j=1}^{s} \frac{q_{o o} I_{o}\left({ }_{k} r\right) A_{j} e^{\lambda, t}}{k}=\frac{1}{\alpha} \frac{\partial \theta_{f}(r, t)}{\partial t} \tag{A-24}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} \theta_{m}(r, t)+\sum_{j=1}^{s} \frac{F A_{j} e^{\lambda_{j} t}}{k}=\frac{1}{\alpha} \frac{\partial \theta_{m}(x, t)}{\partial t} \tag{A-25}
\end{equation*}
$$

Considering the fuel region first, transforming with respect to time and applying the zero initial condition yields

$$
\begin{equation*}
\nabla^{2} \Phi(r, S)-\frac{S}{r} \Phi(r, S)=-\sum_{j=1}^{s} \frac{q_{\infty} A_{j} I_{o}(K r)}{k\left(S-\lambda_{j}\right)} \tag{A-26}
\end{equation*}
$$

The spatial overator for this case is

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \tag{A-27}
\end{equation*}
$$

The particular solution, again by the method of undetermined coefficients, is

$$
\begin{equation*}
\Phi_{p}(r, S)=\frac{q_{\infty} \alpha A_{i} I_{o}(k r)}{k\left(S-\lambda_{j}\right)\left(S-\alpha_{k}^{2}\right)} \tag{A-28}
\end{equation*}
$$

The homogeneous solution, noting the fact that $\Phi(0, s)$ if finite is

$$
\begin{equation*}
\Phi_{h}(r, s)=A I_{0} \sqrt{\frac{S}{\alpha} r} \tag{A-29}
\end{equation*}
$$

The final constant $A$ is evaluated by use of the surface temperature boundary condition and the solution in the transform domain is

$$
\begin{gather*}
\Phi_{f}(r, s)=\sum_{i=1}^{p} \frac{B_{1}}{S-\beta_{1}} \frac{I_{0} \sqrt{\frac{s}{\alpha} r}}{I_{0} \sqrt{\frac{s}{\alpha}} R_{0}}+\sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{i}}{k\left(S-\lambda_{j}\right)\left(S-\alpha_{k}{ }^{2}\right)}\left(I_{0}\left({ }_{k} r\right)-\right. \\
\left.\frac{I_{0}\left(k R_{0}\right) \sqrt{\frac{s}{\alpha} r}}{I_{o} \sqrt{\frac{s}{\alpha} R_{0}}}\right) \tag{A-30}
\end{gather*}
$$

Inverting this expression is entirely analogous to the inversion of the equivalent expression, equation $(A-9)$ of this appendix. The analogy carries even to the point that in determining the zeros of $I_{o} \sqrt{\frac{S}{\alpha}} R_{0}$ as in determining the zeros of Cosh $\sqrt{\frac{S}{\alpha}}$ L imaginary values of S yield an infinite set of zeros. In this case the zeros are

$$
\begin{equation*}
I_{0} \sqrt{\frac{5}{\alpha}} R_{0}=I_{0} \sqrt{\frac{-\mu}{\alpha}} R_{0}=I_{0} 1 \sqrt{\frac{\mu}{\alpha}} R_{0}=J_{0} \sqrt{\frac{\mu}{\alpha}} R_{0}=0 \tag{A-31}
\end{equation*}
$$

therefore,

$$
\begin{align*}
& \sqrt{\frac{s}{\alpha}} R_{0}=\omega_{n} \text {, where } \omega_{n}=2.4048 \text {, } 5.5201 \text {, etc. (the zeros of } J\left(\omega_{n}\right)=0 \text { ) } \\
& \frac{\alpha}{\alpha} R_{0}^{2}=\omega_{n}^{2}, \\
& A_{n}=\frac{\omega_{n}^{2}{ }_{n}}{R_{0}^{2}}  \tag{A-32}\\
& \text { and } \quad S_{n}=\frac{\omega_{n}^{2} \alpha}{R_{o}^{2}}
\end{align*}
$$

The details of the remainder of the inversion are not included.
The result is

$$
\begin{aligned}
& \theta_{f}(x, t)=\sum_{i=1}^{p} \frac{B_{1} I_{0}\left(\sqrt{\frac{\beta_{1}}{\alpha}} r\right) e^{\beta} i^{t}}{I_{0}\left(\sqrt{\frac{\beta_{1}}{\alpha}} R\right)}+\sum_{n=1,2,3, \cdots}^{\infty} \frac{\left.J_{0} \frac{R^{\left(\frac{\omega}{n} r\right.}}{R}\right)}{R^{2}} e^{-\frac{\omega_{n} n^{2}}{R^{2}} t} J\left(\omega_{n}\right) \\
& x\left\{\sum_{i=1}^{p} \frac{B_{i}}{\frac{\omega^{2}{ }^{2}{ }^{\prime}}{R^{2}}+\beta_{i}}+\sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} I_{o}\left({ }_{k} R_{o}\right)}{k\left(\frac{\omega_{n}{ }^{2}{ }^{\alpha}}{R^{2}}+\lambda_{j}\right)\left(\frac{\omega_{n}{ }^{2}{ }^{\alpha}}{R^{2}}+\alpha_{k}{ }^{2}\right)}\right\} \\
& -\sum_{j=1}^{s} \frac{A_{j} q_{o 0} \alpha e^{\lambda_{j} t}}{k\left(\alpha_{k}{ }^{2}-\lambda_{j} t\right)}\left\{\left[I_{0}\left({ }_{k} r\right)\right]-\frac{\left[I_{0}\left({ }_{k} R\right) I_{o} \sqrt{\frac{\lambda_{j}}{\alpha} r}\right]}{I_{o} \sqrt{\frac{\lambda_{j}}{\alpha}} R}\right\},
\end{aligned}
$$

where the $W_{n}$ 's are the roots of the equation, $J_{0}(X)=0$.

The solution for the cylindrical geometry in the moderator is complicated only by the fact that the symmetry condition cannot be located at the coordinate $r=0$. Thus both terms $I_{o} \sqrt{\frac{S}{\alpha}} r$ and $K_{o} \sqrt{\frac{S}{\alpha}} \mathrm{r}$ of the homogeneous solution must be retained. The details of this solution are not included. The result is

$$
\theta_{m}(x, t)=\sum_{i=1}^{p} B_{1}\left\{\frac{K_{1}\left(\sqrt{\frac{\beta_{1}}{\alpha}} R_{1}\right) I_{o}\left(\sqrt{\frac{\beta_{1}}{\alpha}} r^{1}+I\left(\sqrt{\frac{\beta_{1}}{\alpha}} R_{1} K_{o}\left(\sqrt{\frac{\beta_{1}}{\alpha}} r\right)\right.\right.}{\left(K_{d} \sqrt{\frac{\beta_{1}}{\alpha}} R_{1}\right) I_{o}\left(\sqrt{\frac{\beta_{1}}{\alpha}} R_{1}+I_{1}\left(\sqrt{\frac{\beta_{1}}{\alpha}} R_{1}\right) K_{o}\left(\sqrt{\frac{\beta_{1}}{\alpha}} R\right)\right.}\right\} e^{\beta_{1} t}
$$

$$
\begin{equation*}
x\left\{\sum_{i=1}^{p} \frac{B_{i}}{\rho_{n}-\beta_{i}}-\sum_{j=1}^{s} \frac{\alpha F A_{j}}{k \rho_{n}\left(\rho_{n}-\lambda_{j}\right)}\right\}+\sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda}{ }^{t}}{k} \tag{A-34}
\end{equation*}
$$

$X\left\{\frac{\left.K_{1}\left(\sqrt{\frac{\lambda_{i}}{\alpha}} R_{1}\right) I_{0}\left(\sqrt{\frac{\lambda_{i}}{\alpha}} r\right)+I_{1} \sqrt{\frac{\lambda_{i}}{a}} R_{1}\right) K_{0}\left(\sqrt{\frac{\lambda_{i}}{a}} r\right)}{K_{1}\left(\sqrt{\frac{\lambda_{i}}{a}} R_{1}\right) I_{0}\left(\sqrt{\frac{\lambda_{i}}{a}} R_{1} I_{1}\left(\sqrt{\frac{\lambda}{a}} R_{1}\right) K_{0}\left(\sqrt{\frac{\lambda_{j}}{\alpha}} R^{2}\right.\right.}\right\}$
where the $\rho_{n}^{\prime}$ 's, are the roots of the equation,

$$
\left.K_{( }\left(\sqrt{\frac{S}{\alpha}} R_{1}\right) I_{0}\left(\sqrt{\frac{S}{\alpha}} R\right)+I_{( } \sqrt{\frac{S}{\alpha}} R_{1} \right\rvert\, K_{0}\left(\sqrt{\frac{S}{\alpha}} R\right)=0
$$

The next solution considered again uses an exponential fit for the heat generation rate, however, the boundary condition was that the first derivative with respect to $x$ evaluated at the outside of the plate or effectively the heat flow out of the plate could be expressed as a sum of exponentials. The general solution with the exception of the evaluation of the final constant $\underline{A}$ is exactly the same as the first derivation in this appendix. Including the one undetermined coefficient the solution is

$$
\begin{aligned}
& +\sum^{\infty} \\
& \frac{2 \sqrt{\rho_{n}{ }^{\alpha}}\left[K_{( } \sqrt{\frac{\rho_{n}}{\alpha}} R, I_{o}\left(\sqrt{\frac{\rho_{n}}{\alpha}} r_{r}+I\left(\sqrt{\frac{\rho_{n}}{\alpha}} R, K_{o}\left(\sqrt{\frac{\rho_{n}}{\alpha}} r\right)\right]^{\rho} n^{t}\right.\right.}{}
\end{aligned}
$$

Evaluation of A through use of the boundary condition leads to $\Phi_{f}(x, S)=\sum_{i=1}^{p^{\prime}} \frac{B_{i} \cosh \left(\sqrt{\frac{S}{\alpha}} x\right)}{\left(S-\beta_{i}\right) \sqrt{\frac{S}{\alpha}} \sinh \left(\sqrt{\frac{S}{\alpha}} L\right)}+\sum_{j=1}^{S^{\prime}} \frac{q_{00}{ }^{\alpha} A_{j}}{k\left(S-\lambda_{j}\right)\left(S-\alpha_{k}{ }^{2}\right)}$

$$
\begin{equation*}
\left(\cosh k x-\frac{\cosh (k L) \cosh \left(\sqrt{\frac{S}{\alpha}} x\right)}{\cosh \left(\sqrt{\frac{S}{\alpha}} L\right)^{\prime}}\right) \tag{A-36}
\end{equation*}
$$

The details of this inversion are not included. The result is
$\rho_{f}(x, t)=\sum_{i=1}^{p^{\prime}}\left(\frac{B_{i} \cosh \left(\sqrt{\frac{\beta_{1}}{\alpha}} x\right) e^{\beta} i^{t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh \left(\sqrt{\frac{\beta_{i}}{\alpha}} L\right)}-\frac{B_{i}}{\beta_{i} L}\right)-\sum_{\pi=1}^{\infty} \frac{\cos \left(\frac{n \pi x}{2 L}\right)}{} e^{\frac{-}{\frac{n^{2} \pi^{2} x}{4 L^{2}}} \cos n_{\pi}}$
$X\left\{\sum_{i=1}^{p^{\prime}} \frac{B_{i}}{\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\beta_{i}}+\sum_{j=1}^{s^{\prime}} \frac{q_{\infty} \alpha A_{i} k \sinh k^{L}}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha_{k}{ }^{2}\right)}\right\}$
$-\sum_{j=1}^{s^{\prime}} \frac{q_{\infty} \alpha A_{j} e^{\lambda_{j} t}}{k\left(\alpha_{k}{ }^{2}-\lambda_{j}\right)} \quad\left[\cosh k x-\frac{k \sinh (\lambda L) \cosh \left(\sqrt{\frac{\lambda_{i}}{\alpha}} x\right)}{\sqrt{\frac{\lambda i}{\alpha}} \sinh \left(\sqrt{\frac{\lambda_{i}}{\alpha}} L\right)}\right]-\frac{q_{\infty} \alpha A_{j} \sinh k L}{k \lambda_{j} k L}$.

The time dependent temperature distribution in the moderator for the comparable boundary conditions is obtained by setting 15 equal to zero and $q_{\infty}$ equal to $F$ in equation ( $A-37$ ). The result is

$$
\theta_{m}(x, t)=\sum_{i=1}^{p^{\prime}}\left(\frac{B_{i} \cosh \left(\sqrt{\frac{\beta_{i}}{\alpha}} x\right) e^{\beta_{i} t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh \left(\sqrt{\frac{\beta_{i}}{\alpha}} L_{i}\right)}-\frac{B_{i} \alpha}{\beta_{i} L}\right)
$$

$$
-\sum_{n=1}^{\infty} \frac{\cos \frac{n \pi x}{2 L} e^{-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}} t}}{\left(\frac{L}{\alpha}\right) \cos n \pi}\left\{\sum_{i=1}^{p^{\prime}} \frac{B_{i}}{\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\beta_{i}}\right\}
$$

$+\sum_{j=1}^{s^{\prime}} \frac{a F A_{j}}{k\left(\lambda_{j}\right)} \quad\left(e^{\lambda_{j} t}-1\right) .$.

The final solution considered again used a sum of exponential to represent the time dependence of the heat generation rate, however, the surface temperature boundary condition was approximated by an even Fourier series, $\sum_{i=1}^{p} B_{i} \cos \beta_{i} t$. With the exception of the steady state term resulting from the surface temperature boundary condition the derivation follows exactly the first derivation of this appendix. The steady state term is handled most easily in a slightly different manner as shown below. The general solution in the transform domain is

$$
\begin{align*}
\Phi_{f}(x, S)= & \sum_{i=1}^{p} \frac{B_{i} S \cosh \left(\sqrt{\frac{S}{\alpha}} x\right)}{\left(S^{2}+\beta_{i}^{2}\right) \cosh \left(\sqrt{\frac{S}{\alpha}} L\right)}+\sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j}}{k\left(S-\lambda_{j}\right)\left(S-\alpha_{k}{ }^{2}\right)} \\
& {\left[\cosh k x-\frac{\cosh (k L) \cosh \left(\sqrt{\frac{S}{\alpha}} x\right)}{\cosh \left(\sqrt{\frac{s}{\alpha}} L\right)}\right.} \tag{A-39}
\end{align*}
$$

The first term presents the only change and there only for the poles at $S= \pm j \beta_{i}$. The terms generated from the inversion integral by these two poles are

$$
\begin{equation*}
\left.\rho_{1}\right|_{S=j \beta_{i}}=\frac{B_{i} j \beta_{i} \cosh \left(\sqrt{\frac{j \beta_{i}}{\alpha}} x\right)}{2 j \beta_{i} \cosh \left(\sqrt{\frac{j \beta_{i}}{\alpha}} L\right)} e^{j \beta_{i} t} \tag{A-40}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{2} \left\lvert\,=\frac{B_{i}\left(-j \beta_{i}\right) \cosh \left(\sqrt{\frac{-j \beta_{i}}{\alpha}} x\right)}{2\left(-j \beta_{i}\right) \cosh \left(\sqrt{\frac{-j \beta_{i}}{\alpha}} L\right)} e^{-j \beta_{i} t}\right. \tag{A-41}
\end{equation*}
$$

$$
S=-j \beta_{1}
$$

These terms are most easily handled by recognizing the fact that the sum $\rho_{1}+\rho_{2}$ is the sum of a function and its conjugate. That is $\rho_{1}+\rho_{2}=f(z)+f(\bar{z})=f(z)+\overline{f(z)}$ since $z$ is a pure imaginary number.
Therefore

$$
\begin{aligned}
\rho_{1}+\rho_{2} & =2 \operatorname{Re}\{f(z)\}=2 \operatorname{Re}\left\{\rho_{1}\right\} \\
& =2 \operatorname{Re}\left\{\frac{B_{i} \cosh \left(\sqrt{\frac{j \beta_{i}}{\alpha}} x\right)}{2 \cosh \left(\sqrt{\frac{j \beta_{i}}{\alpha}} L\right)} e^{\left.j \beta_{i} t\right\}}\right. \\
& =B_{i} R_{e}\left\{\frac{\cosh \left(\sqrt{\frac{j \beta_{i}}{\alpha}} x\right)}{\cosh \left(\sqrt{\frac{j \beta_{i}}{\alpha}} L\right)} e^{j \beta_{i} t}\right\} \\
& \left.\left.=B_{i} R_{e} \left\lvert\, \frac{\cosh \left(\sqrt{\frac{j \beta_{i}}{\alpha}} x\right)}{\left.\cosh \sqrt{\frac{j \beta_{i}}{\alpha}} L \right\rvert\,} e^{j\left(\beta_{i} t+\arg \left\{\frac{\cosh \sqrt{\frac{j}{\alpha}} x}{\cosh \sqrt{\frac{j \beta_{i}}{\alpha}}} \mathrm{~L}\right.\right.}\right.\right\}\right) \\
& =B_{i} z_{i}^{\frac{1}{2}}(x) \cos \left[\beta_{i} t+\rho_{1}(x)\right],
\end{aligned}
$$

where

$$
Z_{i}(x)=\left|\frac{\cosh \sqrt{\frac{j \beta_{i}}{\alpha}}}{\cosh \sqrt{\frac{j \beta}{\alpha}} L}\right|^{2}=\left|\frac{\cosh \left(\sqrt{\frac{\beta_{i}}{2 \alpha}} x\right) \cos \left(\sqrt{\frac{\beta_{i}}{2 \alpha}} x\right)+j \sin \left(\sqrt{\frac{\beta_{i}}{2 \alpha}} x\right) \sinh \left(\sqrt{\frac{\beta_{i}}{2 \alpha}} x\right)}{\cosh \left(\sqrt{\frac{\beta_{i}}{2 \alpha}} L\right) \cos \left(\sqrt{\frac{\beta i}{2 \alpha}} L\right)+j \sin \left(\sqrt{\frac{\beta_{i}}{2 \alpha}} L\right) \sinh \left(\sqrt{\frac{\beta_{i}}{2 \alpha}} L\right)}\right|^{2}
$$

$=\left\{\frac{\cos ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} x\right) \cosh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} x\right)+\sin ^{2}\left(\sqrt{\frac{\beta_{i}}{2 \alpha}} x\right) \sinh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} x\right.}{\cos ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \cosh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right)+\sin ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sinh ^{2}\left(\sqrt{\frac{\beta}{2 \alpha}} L\right)}\right\}$
and

$$
\begin{aligned}
& \varphi_{1}(x)=\arg \left\{\frac{\cosh \sqrt{\frac{j \beta_{1}}{\alpha}} x}{\cosh \sqrt{\frac{\beta_{1}}{\alpha}} L}\right\}=\arg \left\{\cosh \sqrt{\frac{j \beta_{1}}{\alpha}} x\right\}-\left\{\arg \cosh \sqrt{\frac{j \beta}{\alpha}} L\right\} \\
& =\tan ^{-1}\left(\frac{\sin \sqrt{\frac{\beta_{1}}{2 \alpha}} \times \sinh \left(\sqrt{\frac{\beta_{1}}{2 i}} x\right)}{\cos \sqrt{\frac{\beta_{1}}{2 \alpha}} \times \cosh \left(\sqrt{\frac{\beta_{1}}{2 \alpha}} x\right.}\right)-\tan ^{-1}\left(\frac{\sin \left(\sqrt{\frac{\beta}{2 \alpha}} L\right) \sinh \left(\sqrt{\frac{\beta_{1}}{2 \alpha}} L\right)}{\cos \left(\sqrt{\frac{\beta_{1}}{2 \alpha}} L\right) \cosh \left(\sqrt{\frac{\beta_{1}}{2 \alpha}} L\right)}\right) \cdot(A-44)
\end{aligned}
$$

The resultant time dependent temperature distributions are

$$
\begin{align*}
& e_{f}(x, t)=\sum_{i=1}^{p} B_{i} z_{i}^{\frac{1}{3}} \cos \left(\beta_{1} t+C_{i}\right)-\sum_{n=1,3,5, \cdots\left(L^{2} / n_{\pi} \alpha\right)}^{\infty} \frac{\cos \frac{n_{\pi} x}{2 L} e^{-\frac{n^{2}{ }_{\pi}{ }^{2} \alpha}{4 L^{2}} t}}{\sin \frac{n_{\pi}}{2}} \\
& x\left\{\sum_{i=1}^{p} \frac{B_{i}\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}\right)}{\left(\frac{n^{4} \pi^{4} \alpha^{2}}{16 L^{4}}+\beta_{i}{ }^{2}\right)}+\sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} \cosh k L}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)}\right\} .  \tag{A-45}\\
& -\sum_{j=1}^{s} \frac{q_{00} \alpha_{i} e^{\lambda_{j} t}}{k\left(\alpha k^{2}-\lambda_{j}\right)}\left\{\cosh k x-\frac{\cosh (k L) \cosh \left(\sqrt{\frac{\lambda_{i}}{\alpha}} x\right)}{\cosh \left(\sqrt{\frac{\lambda_{i}}{\alpha}} L\right)}\right\}
\end{align*}
$$

and
$\theta_{m}(x, t)=\sum_{i=1}^{p} B_{i} z_{i}^{\frac{1}{2}} \cos \left(\beta_{1} t+\varphi_{i}\right)+\sum_{n=1,3,5, \cdots\left(L^{2} / n_{\pi} \alpha\right) \sin \frac{n_{\pi}}{2}}^{\infty} \frac{\cos \frac{n_{\pi} x}{2 L} e^{4 L^{2}}}{}$
$x\left\{\sum_{i=1}^{p} \frac{B_{i}{ }^{\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}\right)}}{\frac{n^{4} \pi^{4} \alpha^{2}}{16 L^{4}}+\beta_{i}^{2}}-\sum_{j=1}^{p} \frac{\alpha F A_{i}}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)}\right\}$
$+\sum_{j=1}^{s} \frac{\alpha F A_{i} e^{\lambda_{j} t}}{k\left(\lambda_{j}\right)}\left\{1-\frac{\cosh \sqrt{\frac{\lambda_{i}}{\alpha} x}}{\cosh \sqrt{\frac{\lambda_{i}}{\alpha}} L}\right\}$
in the fuel and moderator, respectively.

## APPENDIX B

Description and Explanation of the IBM-650
Computer Program Used for Fitting Empirically
Experimental Data with the Sum of Several
Terms of Exponential Form

The computer code was written to fit an analytical function of the form of the sum of exponentials to the experimentally determined power traces during a transient burst. The program was written in SOAP II and floating point form. The object program is listed and the logic diagram is shown in this appendix.

The criteria that the machine inspected was that the sum of the squares of the residuals between the experimental data and the calculated values should be made as smallas possible. Each of the fitting parameters was varied in turn by a specified increment, holding all other parameters constant, until such a time that a specified increment could make no further reduction in the sum of the squares of the residuals. This parameter was then stored as the best available estimate of the particular empirical parameter. When none of the parameters could be varied by the specified increment to give a smaller sum of the squares of the residuals, the increments were refined and the trial and error process was repeated with the refined increments. This procedure continued until the increments were less than a specified precision.

The data were fit empirically with a function of the fnrm

$$
\begin{equation*}
P_{i}=\sum_{j=1}^{s} A_{j} e^{\lambda_{j} t_{i}} \quad s \leqq 10 \tag{B-1}
\end{equation*}
$$

As stated above, the best fit criterion was that

$$
\begin{equation*}
\text { ERROR }=\sum_{i=1}^{c} \frac{1}{w_{i}{ }^{2}} \sum_{j=1}^{s}\left(A_{j} e^{\lambda} j_{i}-\Phi_{i}\right)^{2} \tag{B-2}
\end{equation*}
$$

be a minimum.

The program required, in addition to the experimental data and their respective times, initial cstimates for a specific number of parameters. The program had a capacity for up to 20 data points and 10 terms in the summation of equation ( $\underline{B}-\underline{1}$ ). These input data were read into the machine along with the program deck on one-word load cards. Each one-word load card contained a particular constant or an initial value and its specified storage location. Table B-1 lists the various input data needed for this program.

Table $B-1$. Input data required for use of the IBM-650 program which fit empirical$1 y$ experimental data with several terms of Exponential form.

| Symbol | Explanation | Location |
| :---: | :---: | :---: |
| ZERD | 0.00 | 0073 |
| FPONE | 1.00 | 0129 |
| FOUR | 4.00 | 0185 |
| TEN | 10.00 | 0158 |
| HNDRD | 100.00 | 0090 |
| ONE | Index Number 1 (0000000001) | 0392 |
| EIGHT | Index Number 8 (0000000008) | 0024 |
| INDXB | Number of Exponential Terms (00000000xx) | 0412 |
| INDXA | Number of Data Points (00000000xx) | 0062 |
| ONEHD | Precision | 0168 |
| DELB $\dagger$ | Initial increments of the Amplitude, $\mathrm{B}_{j}$ | $(1800+i)$ |
| DELR ${ }_{j}$ | Initial increments of Rj | $(1810+j)$ |
| BINIT ${ }_{j}$ | Initial estimate of $\mathrm{Bj}_{j}$ | $(1300+j)$ |
| RINIT ${ }^{\text {d }}$ | Initial estimate of Rj | $(1310+j)$ |
| $\mathrm{Z}_{1}$ | Time of ith data point | $(1200+\mathrm{i})$ |
| $\mathrm{FLUX}_{1}$ | Experimental data at ith point | $(1200+i)$ |
| $\mathrm{W}_{\mathrm{i}}$ | Weighting function at ith point | $(1750+1)$ |

The machine yielded an answer card having a capacity of 8 words, a word being ten digit numbers and a sign. For the first answer the machine punched out the initial estimates of the fitting parameters on as many cards as was necessary to accommodate them. $\underline{A}$ and $\underline{\lambda}$ for the first term were stored in word locations 1 and 2 , respectively. After a card was filled to its 8 word capacity, it was punched and a new card began to fill. This procedure continued until all of the fitting parameters had been punched out. Then a separate card was punched giving in the word 8 location, the value of the sum of the weighted of the residuals between the experimental data and the calculated values. The machine then punched out values of the time, residual and correct values at the last data point in word locations 1,2 and 3 , respectively and the next to last data point in word locations 5,6 and 7 , respectively. The same information for two previous data points was punched out on a second card in the same format and this procedure was continued until the position residual and correct value was punched out for each data point. Subsequent improvements in the parameters and the weighted sum of squares of the residualswere printed out after each cycle of trying to vary each parameter. The positions, residuals and correct values at each data point were obtained at this time if the console instruction was negative. When the fitting parameters could not be further improved with the most refined increment specified, the punching of the best fit parameters, the sum of the weighted square of the residuals, the position, residual and correct values took place according to the procedure described above.

LOGIC DIAGRAM-APPENDIX B





## APPENDIX C

Description and Explanation of the IBM-650
Computer Program Used for Fitting Empirically
Experimental Data with an Even Fourier Series

The computer code was written to fit an even Fourier series to the experimentally determined surface temperature traces during a transient burst. The program was written in SOAP II and floating point form. The object program is listed and the logic diagram is shown in this appendix.

The data were fit empirically by a finite number of terms of the even trigonometric series.

$$
\begin{equation*}
\theta(t)=\sum_{i=1}^{p} B_{i} \quad \cos \frac{2 \pi i t}{a}, \tag{C-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{0}=2 / a \int_{0}^{a} y(t) d t \\
& B_{i}=1 / a \int_{0}^{a} y(t) \cos \frac{2 \pi i t}{a} d t .
\end{aligned}
$$

and

The integrations were carried out numerically by means of Simpson's rule thus requiring an odd number of data points.

The program input consisted of the experimental data and their respective times, the period, the time increment between data points and a specification of the number of terms. These data were read into the machine on one-word load cards. Each one-word load card contained a particular constant or piece of data and its specific storage location. Table C-1 lists the input data needed for this program. Storage locations limit the product of the number of terms and the number of data points to
less than 550 . The number of terms and the number of data points are each 1 imfted to less than 50 .

$$
\begin{array}{ll}
\text { Table C-1. } & \text { Input data required for use of the } \\
& \text { IBM- } 650 \text { program which fits empirically } \\
& \text { experimental data with a finite number } \\
& \text { of terms of an even Fourier series. }
\end{array}
$$

| Symbol | Expanation | Storage Location |
| :---: | :---: | :---: |
| ZERO | 0.00 | 0083 |
| PPONE | 1.00 | 0034 |
| FPTWO | 2.00 | 0108 |
| FPTRE | 3.00 | 0207 |
| FPFOR | 4.00 | 0008 |
| PI | 3.14159 | 0261 |
| INDX2 | Index Number 2 (0000000002) | 0160 |
| INDXJ | Number of Terms (00000000xx) | 1001 |
| INDXK. | Humber of Data Points (00000000xx) | 1002 |
| A | Period of Cosine Terms | 1003 |
| H | Time Increment Between Data Points | 1004 |
| $\mathrm{T}_{\mathrm{i}}$ | Time of ith data point | $(1100+i)$ |
| $\mathrm{Y}_{\mathrm{i}}$ | Experimental data at ith point | $(1150+i)$ |

The machine punched out a card having an eight word capacity, each work consisting of 10 digits and a sign. The first output consisted of the time, the calculated value and the residual between the calculated values and the experimental data for the last data point in word locations 1,2 and 3 , respectively. The same information for the next to last data point was punched out in columns 5, 6 and 7 of the same card. The same information for the two previous data points was punched out on the next card. The above procedure was continued until the time, residuals and calculated values were punched for each data point. $\mathrm{B}_{1}$ was then stored in word location $1, B_{2}$ in word location two, etc. until all of the B's
had been stored and punched. If more than 8 B's were calculated the first 8 were stored and a card punched. Additional B's were punched in succeeding cards with the lower number B's starting on the left of each card. Finally the summation of the square of the residual at each data point was punched out in word location 8 of a final card.

LOGIC DIAGRAM-APPENDIX C

|  | OLR | 1000 | 2999 |  | 1 | 0000 | 00 | 0000 | 0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sin | ERROR | 1050 |  | 3 | 0000 | 00 | 0000 | 0000 |
|  | 8 L | － 0977 | 0985 |  | 3 | 0000 | 00 | 0000 | 0000 |
|  | 8 YN | 1 | 1100 | T2 8MALL | 4 | 0000 | 00 | 0000 | 0000 |
|  | SYN | r | 2150 | Y1｜rı 1 | 5 | 0000 | 00 | 0000 | 0000 |
|  | OYN | － | 180 |  | 6 | 0000 | 00 | 0000 | 0000 |
|  | SYM | $8{ }^{1} 1$ | 1450 |  | 7 | $\bigcirc 000$ | 00 | 0000 | 0000 |
|  | OYN | PHI | 1300 |  | A | 0000 | 00 | 0000 | 0000 |
|  | 8 YN | FLUX | 1350 |  | 9 | 0000 | 00 | 0000 | 0000 |
|  | SYM | cosey | 1400 |  | 10 | 0000 | 00 | 0000 | 0000 |
|  | SYM | 8TART | 1000 |  | 11 | 0000 | 00 | 0000 | 0000 |
|  | 8 OH |  | 1001 | NO TERMA | 13 | 0000 | 00 | 0000 | 0000 |
|  | Orn | ＇INOXK | 100 a | NO DATA PY | 13 | 0000 | 00 | 0000 | 0000 |
|  | 8 $\mathrm{YN}^{\text {N }}$ | A | 1003 |  | 14 | 0000 | 00 | 0000 | 0000 |
|  | SYM | H | 1004 |  | 15 | 0000 | 00 | 0000 | 0000 |
| EOOCR | －${ }^{\text {r }}$ | ExIT |  |  | 16 | 0000 | 24 | 0003 | 0006 |
|  | 8 ml | HEGAT | WEOUC |  | 17 | 0006 | 46 | 0009 | 0010 |
| negat | ${ }_{6}{ }^{\text {a }}$ | TWOPI |  |  | 1 A | 0 0 009 | 32 | 0012 | 0039 |
|  | 日心1 | negat |  |  | 19 | 0039 | 46 | 0009 | 0043 |
|  | F98 | ONEPI | COE10 |  | 20 | 0043 | 33 | 0046 | 0023 |
| REOUC | F80 | T＊OP1 |  |  | 21 | 0010 | 33 | 0012 | 0089 |
|  | 日M1 |  | REOUC |  | 22 | 0089 | 46 | 0042 | 0010 |
|  | FAD | ONEPI | cosiu |  | 23 | 0042 | 32 | 0046 | 00？3 |
| cos 10 | STU | THETA |  |  | 34 | 0023 | 21 | 0028 | 0031 |
|  | Rsu | FPDME |  |  | 25 | 0031 | 61 | 0034 | 0139 |
|  | 314 | TERUM |  |  | 26 | 0139 | 21 | 0044 | 0047 |
|  | －iU | FUNKT |  |  | 27 | 0047 | 21 | 0002 | 0005 |
|  | 315 | ENN | NECST |  | 28 | 0005 | 20 | 0059 | 006 ？ |
| E00sR | 810 | EXIT |  |  | 29 | 0050 | 24 | 0003 | 0056 |
| MEGAY＊ | $8 \% 1$ $F M 0$ | NEGAY | REOUO |  | 30 | 0056 | 46 | 0109 | 0060 |
| hegav | $\mathrm{FAO}_{0}$ | TMOPI |  |  | 31 | 0109 | 32 | 0012 | 0189 |
|  |  | NEGAV |  |  | 32 | － 0189 | 46 | 0109 | 0093 |
|  | Fsi | ONEP！ | OnEt |  | 33 | 0093 | 33 | 0046 | 0073 |
| REDUU | Fs 8 | TMOPI |  |  | 34 | 0060 | 33 | 0012 | 0239 |
|  | 8 ml |  | REOUO |  | 35 | 0239 | 46 | 0092 | 0060 |
|  | FAO | ONEPI | －INET |  | 36 | 009 ？ | 32 | 0046 | 0073 |
| S INET | $0{ }^{0} \mathrm{~T}$ | THETA |  |  | 37 | 0073 | 21 | 0028 | 0001 |
|  | Reu | 8003 |  |  | 38 | 0081 | 61 | 8003 | O2H9 |
|  | $\theta$ ¢ | TERMM |  |  | 39 | 0289 | 21 | 0044 | 0097 |
|  | STU | FUMKT |  |  | 40 | 0097 | 21 | 0002 | 0055 |
|  | 100 | FPONE |  |  | 41 | 0055 | 69 | 0034 | 0037 |
|  | $8{ }^{8} 10$ | ENM | NEGOT |  | 43 | 0037 | 24 | 0059 | 0062 |
| neg ${ }^{\text {t }}$ | RAU | EN N |  |  | 43 | 0062 | 60 | 0059 | 0013 |
|  |  |  |  |  | 44 | $\begin{array}{llllll}0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1\end{array}$ |  | 0034 | 0 0 011 |
|  | － 10 | NPONE |  |  | 45 | 0011 | 21 | 0016 | 0019 |
|  | FAO | FPONE |  |  | 46 | 0019 | 32 | 0034 | 0061 |
|  | 810 | EN |  |  | 47 | 0061 | 21 | 0059 | 0112 |
|  | RSU | TERMM |  |  | 48 | 0112 | 61 | 0044 | 0049 |
|  | Fmp | THETA |  |  | 49 | 0049 | 39 | 0028 | 0078 |
|  | FMP | THETA |  |  | 50 | 0078 | 39 | 002．女 | 012 B |
|  | FOV | NPONE |  |  | 51 | 0128 | 34 | 0016 | 0066 |
|  | 8 y | TERMM |  |  | 53 | － 0159 | 21 | OO4 | 0159 0147 |
|  | RAM | FUNKT |  |  | 54 | 0147 | 67 | 0002 | 0007 |
|  | $8{ }^{81}$ | FMAG |  |  | 55 | 0007 | 20 | 0111 | 0014 |
|  | RAM | TERMM |  |  | 56 | 0014 | 67 | 0044 | 0099 |
|  | RAU | 8003 |  |  | 57 | 0099 | 60 | 8002 | 0057 |
|  | FOV | FMAG |  |  | 58 | 0057 | 34 | 0111 | 0161 |
|  | FO8 | SIzE日 |  |  | 59 | 0161 | 33 | 0064 | 0041 |
|  |  | ENUFF |  |  | 60 | 0041 | 46 | 0094 | 0045 |
|  | RAU | FUNKT |  |  | 61 | 0045 | 60 | 0002 | 0107 |
|  |  |  |  |  | 62 | 0107 | 32 | 0044 | 0021 |
|  | $8{ }^{8}$ | FUNKT | negor |  | 63 | 0021 | 21 | 0002 | 0052 |
| ENUFF | RAU | FUNKT | ExIT |  | 64 | 0094 | 60 | 0002 | 0003 |
|  | 10 | 000 | 0043 |  | 65 | 0064 | 10 | 0000 | O 00443 |
| TMOP！ | $6{ }^{6} 1$ | 8318 4159 | 5 3 3 |  | 66 | $\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 4 \\ 0\end{array}$ | 62 31 |  | 3 3 2 751 |
| ONEPI FPONE | 31 | 4159 | 3751 |  | 67 | 0046 | 31 | 4159 | 2751 |
| FPONE $C 08$ | sio | E×010 |  |  | 68 69 | 0 0 034 | $2{ }_{2} 10$ | － |  |
|  | RAU | 8ta |  |  | 70 | 0106 | 60 | 3250 | 0105 |
|  | FMP | T |  |  | 71 | 0105 | 39 | 5100 | 0150 |
|  | 100 |  | COOCH | OUSLİ日 | 73 | 0150 | 69 | 0103 | 0000 |
|  | STU | coset | EXITC |  | 73 | 0103 | 21 | 7400 | 0053 |
| INTGT |  |  |  |  |  |  |  |  | 0156 |
| Het | RAA | $\begin{array}{lll} \text { OOOOR } \\ \text { POO } \end{array}$ |  |  | 75 76 | 0 0 156 | 88 |  | 0 0 1 0 1625 |
|  | STU | Accum | LOP33 |  | 77 | 0155 | 21 | 0110 | 0063 |
| LOP 33 | A $\times 1$ | OOO1 | しくッコ |  | 78 | 0063 | 52 | 0001 | 0069 |
|  | RAU | PHI |  |  | 79 | 0069 | 60 | 5300 | 0205 |
|  | FMP | FPFOR |  | INPUT | 日 0 | 0205 | 39 | 0008 | 0058 |
|  | FAO | Accum |  |  | 81 | 0058 | 32 | 0110 | 0087 |
|  | $8{ }^{10}$ | Accum |  |  | 日 2 | 0087 | 21 | 0110 | 0113 |
|  | ${ }^{4 \times 8}$ | 0001 |  |  | 83 | 0113 | 52 | 0001 | 0119 |
|  | RAU | PHI |  |  | 84 | O119 | 60 | 5300 | O255 |
|  | FMP | FPT＊O |  | INPUT | 85 | 0255 | 39 | 0108 | 015 A |
|  | FAO | ${ }^{\text {Accum }}$ |  |  | 86 | 015 | 32 | 0110 | －137 |
|  | OTU | accum |  |  | 87 | 0137 | 21 | 0110 | ${ }^{0} 163$ |
|  | RAU | 8006 |  |  | 88 | 0163 | 60 | 8006 | 0071 |
|  | sup | INOXK |  |  | 89 | 0071 | 11 | 1002 | 0157 |
|  | AUP | 1 NOXz |  | INPUT | 90 | 0157 | 10 | 0160 | 0015 |
|  | mz | LOP33 | G0111 |  | 91 | 0015 | 44 | 0063 | 0020 |
| G0111 | ${ }^{\text {A }} \times$ | 0001 |  |  | 92 |  |  |  | －026 |
|  | RAU | PHPIOR |  |  | 93 | 0 0 0 0 205 | 60 39 | 5300 00008 | 0305 0 0 |
|  | FMP | FPFOR |  |  | 94 | 0305 | 39 | 0008 | ${ }^{0} 208$ |
|  |  | Accum Accum |  |  | 95 | 020 0 0 1 187 | 32 21 51 | 01110 0 0 110 |  |
|  | Stu $4 \times 8$ | ${ }^{\text {ccccus }}$ |  |  | 97 | 0213 | 53 | －0101 | －1ヶ9 |
|  | RAU | PHI |  |  | 98 | 0169 | 60 | 5300 | 0355 |
|  | ${ }_{F}{ }^{\text {A O }}$ | ${ }_{\text {accum }}$ |  |  | 99 900 | 0355 0 0 | 32 | $\begin{array}{ll}011 \\ 10 & 1 \\ 0\end{array}$ | $\begin{array}{ll}0 & 2 \\ 0 & 3 \\ 0 & 0 \\ 0\end{array}$ |
|  | FMP |  |  |  | 100 |  | 39 |  |  |
|  | ${ }_{8} \mathrm{FOH}_{8} \mathrm{Y}$ |  | EGOIT | IMPUT，\％STR | 101 10 102 | 0 0 004 | 34 | 0207 0203 020 | $\begin{array}{llllll}0 & 1 & 5 & 3 \\ 0 & 2 & 0 & 6\end{array}$ |
| EOOCL | LOO | 222 2 2 |  | Extronata | 103 | 0206 | 69 | 0209 | 0212 |
|  | 8 ¢0 | 0977 |  |  | 104 | 0212 | 24 | 0977 | 0030 |
|  | 810 | －978 |  |  | 105 | OO30 | 24 | 0y7 | $\begin{array}{lllll}0 & 1 & 3 & 1 \\ 0 & & \\ 0 & 3 & \end{array}$ |
|  | 810 | 0979 0980 |  |  | 108 107 | 0 0 0 0 1318 | 24 | － | 1 0 0 $03{ }^{1}$ |
|  | 810 890 | O980 0981 0981 |  |  | 108 108 | O033 | 24 | －981 | 0084 |
|  | 810 | － 0983 |  |  | 109 | 00日4 | 24 | 0982 | ${ }^{0} 035$ |
|  | 8 T0 | 0983 |  |  | 110 | 0035 | 24 | 0983 | 0 0 0 03 |
|  | ST0 | －984 | $\begin{array}{llllll}2 & 2 & 2 & 1 \\ 0 & 0 & 0\end{array}$ |  | 1111 11 1 |  | $2 \begin{aligned} & 24 \\ & 0\end{aligned}$ | － 0984 | 0203 0000 |
| 22 8 | R O |  | 0000 |  | 113 | 1000 | 60 | 1002 | －257 |
| －${ }^{\text {arat }}$ |  | （NOXJ |  |  | 1 1 11 15 | 1 0 0 0278 | 19 20 | 1001 0 0 | $\begin{array}{llllll}0 & 0 & 3 & 2 \\ 0 & 0 & 8 & 0\end{array}$ |


|  | $\begin{array}{lll} \angle & O & 0 \\ \text { R A A } \\ \text { STO } \end{array}$ | $\begin{aligned} & 2 E R O \\ & \text { BUOL } \end{aligned}$ | LOOP1 | INPUY | $\begin{array}{lll} 1 & 1 & 6 \\ 1 & 1 & 7 \\ 1 & 1 & 8 \end{array}$ | 0080 0142 | 69 80 20 | $\begin{array}{llll} 0 & 0 & A & 3 \\ 9 & 0 & 0 & 1 \\ 0 & 0 & 9 & 5 \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOOP 1 | $\cdots \times 1$ | 0001 |  |  | 119 | 004 ${ }^{\text {A }}$ | 50 | 0002 | 005 |
|  | A AU | N |  |  | 120 | 0054 | 60 | 0095 | 0149 |
|  | FAO | fPONE |  | INPUT | 121 | 0149 | 32 | 0034 | 0 ? 11 |
|  | 810 | N |  |  | 122 | 0211 | 21 | 0095 | 0098 |
|  | FMP | FP T* 0 |  | INPUT | 123 | 0098 | 39 | 010 \% | 025 n |
|  | FMP | P1 |  | INPUT | 124 | 0258 | 39 | 0261 | 0311 |
|  | For | A |  | INPUT | 125 | 0311 | 34 | 1003 | 0253 |
|  | STU | H ${ }_{8}{ }^{\text {a }}$ | A |  | 128 | 0253 | 21 | 3250 | 0303 |
|  | RAU | 8005 |  |  | 137 | 0303 | 60 | 8005 | 0361 |
|  |  | 1NOXJ |  |  | 128 | 0361 | 11 | 1001 | 0405 |
| CONI 1 | NOO | Lefox | CONT 1 |  | 139 130 | 04 4 <br> 0  <br> 0 1 | 64 | 004 <br> 1001 <br> 18 | 0 <br> 2 100 |
|  | RAA | 8001 |  |  | 131 | 0104 | 80 | 8001 | 0260 |
|  | Lod | INDXK |  |  | 132 | 0260 | 69 | 1002 | 0455 |
|  | RAB | 80 <br> 101 |  |  | 133 | 0455 | 82 | B001 | 0411 |
|  | LOD | $1{ }^{1} 0 \times 0$ |  |  | 134 | 0411 | 69 | 0027 | 0130 |
|  |  | B001 | LOOP A |  | 135 136 | 013 0 0 136 | $\begin{array}{r}88 \\ 68 \\ \hline 8\end{array}$ | $\begin{array}{lllll}8 & 0 & 0 & 1 \\ 0 & 3 & 3\end{array}$ | 0136 |
| LOOP: | 10 80 |  | COS | SUBROUTINE | 136 | 0136 | 69 | 0339 | 0100 |
|  | $8 \times$ | 0001 |  |  | 137 | 0339 | 53 | 0001 | 0145 |
|  | $8 \times$ | 0001 |  |  | 138 | 0145 | 59 | 0001 | 0001 |
|  | ${ }^{\sim} 28$ | LOOPa | MORET |  | 139 | 0001 | 42 | 0136 | U 505 |
| MORET | $8 \times 1$ | 0002 |  |  | 140 | 0505 | 51 | 0001 | 0461 |
|  | $\cdots 2$ | CONT2 | CONT3 |  | 141 | 0461 | 40 | 0114 | OO65 |
| CONI2 | 100 $\times 1$ | INOXK |  |  | 142 | 0114 | 69 | 1002 | 0555 |
|  | ${ }^{1} \times 8$ | BOO1 | LOOPa |  | 143 | 0555 | 52 | 8001 | 0136 |
| CONT3 | RAAA |  |  |  | 144 | - 0125 | 80 69 | 000 100 | $\begin{array}{lllll}0 & 2 & 2 & 1 \\ 0 & 6 & 1 \\ 0 & 5\end{array}$ |
|  | A×A | 8001 | LODP3 |  | 146 | 0605 | 52 | 8001 | 0511 |
| LOOP3 | ${ }^{-100}$ | $r$ | 8 |  | 147 | 0511 | 69 | 5150 | 0353 |
|  | 810 | PHI | 8 |  | 148 | 0353 | 24 | 5300 | 0403 |
|  | $8 \times 8$ | 0001 |  |  | 149 | 0403 | 53 | 0001 | 0259 |
|  | $N 28$ | LOOP3 | CONT |  | 150 | 0259 | 42 | 0511 | 0263 |
| CONT4 | LOO |  | INTGT | SUBHOUTINE | 151 | 0263 | 69 | 0116 | 0200 |
|  | FMP | FP1*0 |  |  | 152 | 0116 | 39 | 0108 | 0308 |
|  | Fov |  |  |  | 153 | 0308 | 34 | 1003 | 0453 |
|  | $8{ }^{810}$ | HzERO | CON: ${ }^{\text {S }}$ |  | 154 | 0453 | 21 | 0358 | 0561 |
| CONT 5 |  | 0000 |  |  | 155 | 0561 | 80 | 0000 | 0017 |
|  | RAB | 0000 |  |  | 156 | $\begin{array}{llll}0 & 0 & 1 \\ 0 & 1 & 7\end{array}$ | 8 | 0000 | 0123 |
|  | RAC A C OR | - 10000 | cons ${ }^{\text {S }}$ |  | 157 158 | 01 0 0 123 | 88 | ${ }^{0} 000$ | 0 0 1229 |
| CONS 5 | RAC | BOO1 |  |  | 159 | 0180 | 88 | \%001 | -186 |
|  | LOD | INDXJ |  |  | 160 | 0186 | 69 | 1001 | 0154 |
|  | RAA | 8001 | LOPPP |  | 161 | 0154 | 80 | 8001 | 0310 |
| LOPPP | LOA RAB |  | LOOP4 |  | 162 163 | 031 0 0 655 | 69 82 | 10 0 <br> 102  <br> 0 0 | 0655 0611 |
| LOOP4 | RAU |  | 8 |  | 164 | 0611 | 60 | 5150 | 0705 |
|  | FMP | COBAT | C |  | 165 | 0705 | 39 | 7400 | 0300 |
|  | 810 | PHI | R |  | 166 | 0300 | 21 | 5300 | 0503 |
|  | $8 \times 8$ $8 \times 8$ | $\begin{array}{lllll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}$ |  |  | 167 168 | - 0503 | 53 | OOOO1 | 0309 0 |
|  | $5 \times c$ | 0001 |  |  | 168 | 0309 | 59 | 0001 | 0115 |
|  | ${ }^{\text {M } 2 R}$ | LOOP4 | CONTO |  | 169 | 0115 | 42 | -611 | 0219 |
| CONT 6 | 100 |  | INTOI |  | 170 | 0210 | 69 | 0072 | 0200 |
|  | FMP | FPFOR |  |  | 171 | 00712 | 39 | 0008 | 0408 |
|  | For | A |  |  | 172 | 040 A | 34 | 1003 | 0553 |
|  | $8{ }^{51}$ | B | A |  | 173 | 0553 | 21 | 3200 | 0603 |
|  | s ${ }_{\text {cha }}$ | 0001 |  |  | 174 | 0603 | 51 | 0001 | 0359 |
|  | m 2 A | LOPPP | CONT 7 |  | 175 | 0359 | 40 | 0310 | 0313 |
| CONT 7 | RAA | 0000 |  |  | 176 | 0313 | 80 | 0000 | 0269 |
|  |  | INOXK |  |  | 177 178 | 0269 0 0 | 82 69 | 0000 1002 | 0025 0755 |
|  | A $\times 1$ | 8001 |  |  | 179 | 0758 | 52 | 8001 | 0661 |
|  | LOD | INDXJ |  |  | 180 | 0661 | 69 | 1001 | 0204 |
|  | A $\times$ A | 8001 |  |  | 181 | 0204 | 50 | R001 | 0360 |
|  | RAf | 0000 | CON 77 |  | 182 | 0360 | 88 | 0000 | 0166 |
| CON77 | 100 | inoxc |  |  | 183 | 0166 | 69 | 0027 | 0230 |
|  |  |  |  |  | 184 185 | 0 0 0 0 330 | 58 69 | $\begin{array}{ll}8 & 0 \\ 101\end{array}$ | 0236 0254 |
|  | Ras | B001 |  |  | 186 | 0254 | 80 | 0001 | 0410 |
|  | LOD | 2 ERO |  |  | 187 | 0410 | 69 | OOA3 | 0286 |
|  | $8{ }^{8} 0$ | HOLO | LOOPS |  | 188 | 0286 | 24 | 0389 | 0192 |
| LOOPS | RAU | - | A |  | 189 | 0192 | 60 | 3200 | O月05 |
|  | FMP | cos8 | c |  | 190 | 0805 | 39 | 7400 | 0350 |
|  | FAD | HOLO |  |  | 191 | 0350 | 32 | 0389 | 0165 |
|  | $8{ }_{8}^{810}$ | H0LO |  |  | 192 |  | 21 51 | $\begin{aligned} & 03 \\ & 0 \\ & 0 \text { A } \\ & 0\end{aligned}$ | 0242 0148 |
|  | $8 \times 1$ | 0001 |  |  |  |  | 51 | 1002 |  |
|  | 100 $8 \times C$ |  |  |  | 195 | 0855 | 59 | 8001 | 0855 0711 |
|  | m 2 C |  | CONTE |  | 196 | 0711 | 48 | 0164 | 0215 |
|  | 8 cm | COMT8 | LOOPS |  | 197 | 0164 | 49 | 0215 | 0192 |
| CONTA |  | HOLO |  |  |  |  |  |  |  |
|  | FAO | HzERO |  |  | 199 | 0143 | 32 | 0358 | 0085 |
|  | $8{ }^{8}$ | flux |  |  | 200 | 0085 | ${ }_{2} 1$ | 5350 | 0653 |
|  | F88 |  | 8 |  | 201 | 0653 | 33 | 5150 | 0077 |
|  | $8{ }^{81}$ | ERROR | B |  | 202 | 0077 | 21 | 5050 | 0703 |
|  | $8 \times 8$ | 0001 |  |  | 203 | 0703 | 53 | 0001 | 0409 |
|  | $8 \times 8$ $N 20$ |  | PRINT |  | 204 205 205 | 0409 0265 | $\begin{array}{r}59 \\ 42 \\ \hline\end{array}$ | $\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 1 & 6 & 6\end{array}$ | 0 0 0 0 15 |
| PRINT | LOO | inoxk |  |  | 206 | 0319 | 69 | 1002 | 0905 |
|  | $1 \times 8$ 180 | 8001 | LOOPT |  | 207 | 0905 | 53 | 8001 | 0761 |
| LOOP 7 | 100 |  | EOOCL | SUAKOUTINE | $200$ | 0761 | 69 | 0214 | 0250 |
| LOOP6 | R 8 a | 0008 | $\angle O O P G$ |  | 209 210 | $\begin{array}{ll}0 & 2 \\ 0 & 1 \\ 0 & 7\end{array}$ | 81 69 | 000 5100 | 0 0 0780 |
|  | ¢00 | ${ }^{1} 0985$ | ${ }_{\text {A }}$ |  | 2110 211 | 0 0 0 75 | 69 29 | 5100 <br> 29 <br> 15 | 0753 0 0 |
|  | 100 | Ftux | 8 |  | 213 | 0038 | 69 | 5350 | 0803 |
|  | 910 | O9R6 | A |  | 3113 214 | 0803 0439 | 34 | 2986 5050 | 0 0 ${ }^{4} 395$ |
|  | 100 | ERROR | 8 |  | 214 | 0439 | 69 | 5050 | OAS 3 |
|  | 810 | 0987 | A |  | 215 | 0853 | 34 | 29 R 7 | 0040 |
|  | A $\mathbf{B X} \times \mathrm{B}$ | $\begin{array}{ll}0 & 0\end{array} 004$ |  |  | 2116 217 | 004 0 0 | 50 5 | - 0001 | 0 0 0 0 0 |
|  | $\begin{array}{r}\text { N } \\ \\ \\ \hline\end{array}$ |  | FIN: |  | 218 | 0052 | 42 | 0955 | $025 \times$ |
|  | $\cdots 2$ | LOOP6 | CONY9 |  | 219 220 | 0955 0 | 41 | 0070 097 |  |
| COMTOF OMTS | HCH | 0977 097 097 | LOOPT |  | 220 221 | 0459 0 0 | 71 | 0977 0977 | 0761 012 012 |
|  |  | 0977 0 0 007 |  |  | 221 222 | 0256 0127 | 71 83 | 0977 0007 | $\begin{array}{lllll}0 & 1 & 2 & 7 \\ 0 & 1 & 3 & 3 \\ 0 & 5 & \\ 0\end{array}$ |
|  | R 88 <br> LOO <br> 0 |  | EOOCL |  | 223 | 0133 | 69 | 0336 | 0250 |
|  |  | B2ERO |  |  | 224 | 0336 | 69 | 0358 |  |
|  | - ${ }^{\text {co }}$ | 0977 |  |  | 225 | ${ }_{0}^{0} 811$ | 24 | 0977 | $\bigcirc 2 R 0$ |
|  | RAA | 0001 | LOOPG |  | 226 | 0280 | 80 | 0001 | 0306 0 0 |
| LOOP ${ }^{\text {O }}$ | 100 | ${ }^{+} 0985$ | $\hat{B}$ |  | $\begin{aligned} & 227 \\ & 220 \end{aligned}$ | 0386 0903 | 69 24 | 3200 4985 |  |
|  | $\begin{aligned} & B 10 \\ & A \times A \\ & A \times B \end{aligned}$ | $\begin{array}{llll}0 & \text { OR } \\ 0 & 0 & n \\ 0 & 0 & 0 \\ 0\end{array}$ | B |  | $\begin{aligned} & 228 \\ & 229 \\ & 230 \end{aligned}$ |  | 20 50 52 | 0001 00001 | $\begin{array}{llll}0 & 1 & 4 & 4 \\ 0 & 4 & 0 & 0\end{array}$ |


|  | R $\lambda$ U | 8006 |  | 231 | 0400 | 60 | 8005 | 0307 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | U | 1 MOH |  | 232 | 0307 | 11 | 1001 | 0306 |
|  | M 20 |  | F\|mal | 333 | 0306 | 44 | 0509 | 0460 |
|  | - 20 | $100 P 8$ | Most | 234 | 0509 | 42 | 0386 | 0363 |
| M 081 | PCN | 0977 |  | 235 | 0363 | 71 | 0977 | 0177 |
|  | L0\% |  | FOOCL | 336 | 0177 | 69 | 0330 | 0250 |
|  | 88 | 0007 | LDOPA | 237 | 0330 | 83 | 0007 | 0386 |
| F \\| NaL | 100 | B | $A$ | 238 | 0460 | 69 | 3200 | 0953 |
|  | $4{ }^{1}$ | 0 ¢ 5 | 8 | 239 | 0953 | 24 | 4985 | 0138 |
|  | $P \mathrm{CN}$ | 6977 |  | 340 | 0138 | 71 | 0977 | 0227 |
|  | 100 | 1 NOXK |  | 241 | 0227 | 69 | 1002 | 0356 |
|  | 14 | 8001 |  | 342 | 0356 | 82 | 8001 | 0262 |
|  | 100 | 2ERO |  | 243 | 0263 | 69 | 0083 | 0436 |
|  | $8 \% 0$ | $80 \sim 4 E$ | LOPPO | 244 | 0436 | 24 | 0489 | 0292 |
| LOPPO | RAU | ERROR | 8 | 245 | 0292 | 60 | 5050 | 0406 |
|  | $\boldsymbol{T M P}$ | ERROR | 8 | 246 | 0406 | 39 | 5050 | 0450 |
|  | If 0 | 80MME |  | 247 | 0450 | 33 | 0489 | 0315 |
|  | STU | SOMME |  | 248 | 0315 | 21 | 0489 | 0342 |
|  | S $\times$ 8 | 0001 |  | 249 | 0342 | 53 | 0001 | 019 A |
|  | 128 | LOPPO | MDONE | 350 | 0198 | 42 | 0292 | 0102 |
| MOOME | LOO |  | EOOCL | 251 | 0102 | 69 | 0456 | 0250 |
|  | 100 | SOMME |  | 253 | 0456 | 69 | 0489 | 0392 |
|  | 910 | 0984 |  | 253 | 0392 | 24 | 0984 | 0287 |
|  | PCH | 0977 | 0000 | 254 | 0267 | 71 | 0977 | 8000 |
|  |  |  |  |  | 0083 | 00 | 0000 | 0000 |
|  |  |  |  |  | 0034 | 10 | 0000 | 0051 |
|  |  |  |  |  | 0108 | 30 | 0000 | 0051 |
|  |  |  |  |  | 0207 | 30 | 0000 | 0051 |
|  |  |  |  |  | 0008 | 40 | 0000 | 0051 |
|  |  |  |  |  | 0160 | 00 | 0000 | 0002 |
|  |  |  |  |  | 0261 | 31 | 4159 | 2751 |

APPENDIX D

Description and Explanation of the IBM-650 Computer Program Used to Calculate Temperature Distributions.

The computer program was written to calculate the temperature distribution in a unit cell of a nuclear reactor system given the heat generation rate and fuel element surface temperature as a function of time. The temperature rise over the initial temperature is given by

$$
\theta_{f}(x, t)=\sum_{i=1}^{p} B_{i} z_{i}^{\frac{1}{2}} \cos \left(\beta_{i} t+\varphi_{i}\right)-\sum_{n=1,3,5, \cdots\left(L^{2} / n_{\pi \alpha}\right)\left(\sin \frac{n_{\pi}}{2}\right)}^{\infty} \frac{\cos \left(\frac{n \pi x}{2 L}\right)}{e}
$$

$$
\begin{equation*}
x\left\{\sum_{i=1}^{p} \frac{B_{1}\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}\right)}{\frac{n^{4} \pi^{2} \alpha^{2}}{16 L^{2}}+\beta_{i}^{2}}+\sum_{j=1}^{s} \frac{q_{00} \alpha A_{j} \cosh k L}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}+\lambda} j\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right)}\right\} \tag{D-1}
\end{equation*}
$$

$+\sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{i} e^{\lambda, t}}{k\left(\alpha k^{2}-\lambda_{j}\right)}\left\{\frac{\cosh \left(\sqrt{\frac{\lambda}{\alpha}} x\right) \cosh k x}{\cosh \left(\sqrt{\frac{\lambda 1}{\alpha}} L\right)}-\cosh k x\right\}$
in the fuel and by
$\theta_{m}(x, t)=\sum_{i=1}^{p} B_{i} Z_{i}^{\frac{1}{2}} \cos \left(\beta_{i} t+\varphi_{1}\right)+\sum_{n=1,3,5, \ldots\left(L^{2} / n \pi \alpha\right)\left(\sin \frac{n \pi}{2}\right)}^{\infty} \frac{\cos \left(\frac{n_{\pi} x}{2 L} e^{-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}} t}\right.}{}$

$$
\begin{aligned}
& x\left\{\sum_{i=1}^{p} \frac{B_{i}\left(\frac{n^{2} \pi^{2} a}{4 L^{2}}\right)}{\frac{n^{4} \pi^{2} \alpha^{2}}{16 L^{4}}+\beta_{i}}-\sum_{j=1}^{s} \frac{F \alpha A_{i}}{k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)}\right\} \\
& +\sum_{j=1}^{s} \frac{F \alpha A_{j} e^{\rho j_{j} t}}{k\left(-\lambda_{j}\right)} \quad\left\{\frac{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} x}{\cosh \sqrt{\frac{\lambda_{i}}{\alpha}} L}-1\right\}
\end{aligned}
$$

in the moderator. The moderator equation is obtained from the fuel temperature distribution by setting qo equal to $\underline{F}$ and $\underline{K}$ equal to zero.

The equivalence between elements of the algebraic equations and the symbolic logic of the computer program is shown in Table D-1.

Table D-1. Definition of symbolic terms of the LBM-650 computer progrem for calculating temperature distributions.

$$
\begin{aligned}
& A 1_{i}=B_{i} Z_{i}(x) \cos \beta_{i} t \\
& A 3 P_{j}=q_{\infty} \alpha A_{j} e^{\prime \lambda}{ }_{j}^{t} / k\left(\alpha k^{2}-\lambda_{j}\right)
\end{aligned}
$$

$$
\operatorname{ABSUM}_{\mathrm{j}}=\frac{\cosh k L \cosh \sqrt{\frac{\lambda_{i}}{\alpha}} x}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} L}-\cosh k x
$$

$$
A 3_{j}=\left(A 3 P_{j}\right)\left(A 3 S U M_{j}\right)
$$

$$
\operatorname{CSHLL}_{j}=\cosh \sqrt{\frac{\lambda_{i}}{\alpha}}
$$

$$
\operatorname{CSHLX}_{j}=\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} x
$$

$$
\operatorname{cosLL}_{j}=\cos \sqrt{\frac{\lambda_{i}}{a}} \frac{L}{}
$$

$$
\operatorname{cosLX}_{j}=\cos \sqrt{\frac{\lambda_{1}}{a}} x
$$

Table D-1 çont.

$$
\begin{aligned}
& \operatorname{ARG} 1_{n}=n_{\pi} 2 L \\
& \operatorname{ARG} 2_{\mathrm{n}}=\mathrm{n}^{2} \pi^{2} \alpha \quad 4 \mathrm{~L}^{2} \\
& A 2 S T 1_{i}=B_{i}\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}\right) /\left(\frac{n^{4} \pi^{4} \alpha^{2}}{16 L^{2}}+\beta_{i}{ }^{2}\right) \\
& \operatorname{A2ST1}{ }_{j}=q_{\infty} \alpha A_{j}{ }^{\prime} \cosh k L / k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right) \\
& A 2 D D T_{n}=\frac{\cos \frac{n_{\pi} x}{2 L}}{e^{-\frac{n^{2} \pi^{2} \alpha}{4 L^{2}} t}} \underset{\left(\frac{L^{2}}{n_{\pi} \alpha}\right) \sin \frac{n_{\pi}}{2}}{ } \\
& A 2 S U M_{n}=\left(\sum_{i=1}^{p} A 2 S T 1_{i}+\sum_{j=1}^{s} A 2 S T 1_{j}\right)_{n} \\
& \Gamma E R H_{n}=\left(A_{n} D T_{n}\right)\left(\text { A2SUM }_{n}\right)
\end{aligned}
$$

Table D-2. Input Data Required for Use of the IBM-650 Computer Program Used to Calculate Temperature Distributions.

| Symbol | Explanation | Storage Location |
| :--- | :--- | :---: |
| ZERO | 0.00 | 0264 |
| ONE | 1.00 | 0662 |
| TWO | 2.00 | 0520 |
| PI | 3.14159 | 0018 |
| FIFTY | 50.00 | 0361 |
| CRIT | 0.0001 | 0788 |
| ALPHA | Thermal Diffusivity | 0278 |

Table D-2 cont.

| Symbol | Explanation Storag | Storage Location |
| :---: | :---: | :---: |
| KAPPA | Reciprocal of Thermal Neutron Diffusion Length in Fuel | 0436 |
| Qoo | Normalization Factor for Heat Generation | 0324 |
| KAY | Thermial Conductivity | 0581 |
| L | Half-Thickness of Region | 0186 |
| INDXM | No. of Terms, Surface Temperature Fit (00000000xx) | 0076 |
| NOLAM. | No. of Terms, Heat Generation Fit (00000000xx) | 0456 |
| AYEJ ${ }_{j}$ | Amplitude Parameter, Heat Generation Fit, $A_{j}$ | $(0200+j)$ |
| $\mathrm{LAMDA}_{j}$ | Exponential Parameter, Heat Generation Fit, $j$ | $(0220+j)$ |
| $\mathrm{AMMM}_{1}$ | Amplitude Parameter, Surface Temperature Fit, $\mathrm{B}_{\mathrm{i}}$ | $(0100+i)$ |
| $\mathrm{BTAA}_{1}$ | Period Parameter Surface Temperature Fit, $\mathrm{B}_{i}$ | (0120 + i) |

The output from this program is punched out on one card having an eight word capacity, one word consisting of 10 digits and a sign. The form of the output is shown in Table D-3.

Table D-3. Output Form for IBM-650 Computer Program Used to Calculate Temperature Distribution

| WORD 1 | WORD 2 | WORD 3 | WORD | 4 | WORD 5 | WORD 6 | 6 WORD 7 | WORD 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta(\mathrm{x}, \mathrm{t})$ | $\sum_{i=1}^{p} A 1_{i}$ | $\sum_{n=1,3,5}^{\infty}\left(\text { Term }{ }_{n}\right.$ | $\sum_{j=1}^{s}$ | ${ }^{\mathrm{A}}{ }_{\mathrm{j}}$ | x | t | -- | -- |




0 XION3ddV-ตรy9ที $9190 า$





|  | $\begin{aligned} & 814 \\ & \text { SY } \\ & \text { N } 28 \end{aligned}$ |  | COOMA | $\begin{aligned} & 480 \\ & 481 \\ & 482 \end{aligned}$ | $\begin{array}{llll} 0 & 6 & 5 & 1 \\ 0 & 9 & 7 & 7 \\ 0 & 5 & 3 & 3 \end{array}$ | 21 53 48 | $\begin{array}{llll}0 \times 2 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 4 & 8 & 7\end{array}$ | $\begin{array}{llll} 1 & 7 & 7 & 7 \\ 4 & 5 & 3 & 3 \\ 0 & 7 & 3 & 7 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G00Na | Rsu | HOLO |  | 483 | 0737 | 61 | 0670 | $15 \% 5$ |
|  | FAD | CELL |  | 484 | 1525 | 32 | 0574 | 0701 |
|  | $F A D$ | cell3 |  | 485 | 0701 | 32 | 0624 | 0751 |
|  | STU | ANSTR | FINIS | 486 | 0751 | 21 | 0056 | U） 09 |
| F｜N｜ 8 | 100 | ANSWR |  | 487 | 0909 | 69 | 0856 | 0759 |
|  | STO | 1977 |  | 408 | 0959 | 24 | 1977 | U4 40 |
|  | 100 | CELL |  | 489 | 0480 | 69 | 0574 | 10 ？ 7 |
|  | 810 | 1978 |  | 490 | 1027 | 24 | 1978 | 1031 |
|  | 108 | H6LO |  | $44^{4} 1$ | 1031 | 69 | 0670 | 0773 |
|  | 810 | 1979 |  | 492 | 0973 | 24 | 1979 | 0532 |
|  | 100 | CELL3 |  | 493 | 0532 | 69 | 0624 | 1077 |
|  | 810 | 1900 |  | 494 | 1077 | 24 | 19 O 0 | U 583 |
|  | 100 | X |  | 495 | 0583 | 69 | 0707 | 1860 |
|  | 870 | 1981 |  | 496 | 0860 | 24 | 1381 | $\bigcirc 5 \mathrm{HC}$ |
|  | 100 | 1 |  | 497 | 0544 | 69 | 0058 | 4461 |
|  | 87 | 1988 |  | 498 | 0461 | 24 | 19 12 | 0635 |
|  | $P \mathrm{CH}$ | 1977 | OTAHT | 499 | 0635 | 71 | 1977 | $190 \%$ |
| ONE | 10 | 0000 | 0051 | 500 | 0662 | 10 | 0000 | 0051 |
| 100 | 20 | 0000 | 0051 | 501 | 0520 | 20 | 0000 | 0051 |
| P1 | 31 | 4159 | 3751 | $5 \cup$ | 0018 | 31 | 4159 | 2751 |
| FIFTV | 50 | 0000 | 005 ？ | 503 | 0361 | 50 | 0000 | 0052 |
| $2 E R O$ $C$ | 00 | 0000 | 0060 | 504 | 0264 | 00 | 0000 | 0000 |
| CRIT | 10 | 0000 | 0047 | $5 \cup 5$ | 0788 | 10 | 0000 | 0047 |
| ARTAN | 810 | EXIt |  |  | 1800 | 24 | 1803 | 1806 |
|  | N 2 E |  | $\boldsymbol{E X I T}$ | 5 | 1806 | 45 | 1810 | 1803 |
|  | 8 CH | M1NU8 |  | 6 | 1410 | 46 | 1813 | 1814 |
|  | 9TU | ARTAO |  | 7 | 1814 | 21 | 1818 | 1 \＆ 21 |
|  | 180 | FPONE |  | 8 | 1821 | 69 | 182 | 1827 |
|  | 510 | ENNはN |  | 9 | 1827 | 24 | 1030 | 1033 |
|  | 810 | AYE | SUATH | 10 | 1833 | 24 | 1036 | 1839 |
| MINU8 | R 3 L | 8003 |  | 11 | 1813 | 66 | 0003 | 1ค71 |
|  | 8 TL | ${ }_{4}{ }^{\text {RTAO}}$ |  | 12 | 1471 | 20 | 1818 | 18 ？ 2 |
|  | R 30 | FPONE |  | 13 | 18 ？ 2 | 61 | 1024 | 1829 |
|  | 890 | ENNNH |  | 14 | 1820 | 24 | 1830 | 1883 |
|  | 8 TU | A YE | SUSTH | 15 | 18 ¢ 3 | 21 | 1836 | 1ค 3 y |
| SU8TA | RAU | ${ }_{\text {arta }}^{\text {co }}$ |  | 16 | 1839 | 60 | 1818 | 1 ค？ 3 |
|  | F38 | FPONE |  | 17 | 1823 | 33 | 1824 | 1801 |
|  | $\cdots 2 \mathrm{c}$ | DIFFE |  | 18 | 1801 | 45 | 1804 | 1 1005 |
|  | 100 | P10v4 |  | 19 | 1805 | 69 | 1808 | 1月11 |
|  | ST0 | FUNGT | MULTA | 20 | 1811 | 24 | 18 C | 1817 |
| OIFFE | 841 | SMALL |  | 21 | 1804 | 46 | 1807 | 1858 |
|  | F 88 | FPONE |  | 22 | 1858 | 33 | 1824 | 1851 |
|  | RMI | NEGAT | POS1t | 23 | 1851 | 46 | 1854 | 1255 |
| NEGAT | LDO | PIGVA |  | 24 | 1854 | 69 | 1808 | 1851 |
|  | 370 | FUNGT |  | 25 | 1861 | 24 | 1864 | 1857 |
|  | RAU | A TAO |  | 26 | 1867 | 60 | 1818 | 1873 |
|  | FAD | FPONE |  | 27 | 1873 | 32 | 1824 | 180 ？ |
|  | 370 | TURR： |  | 28 | 1802 | 21 | 1856 | 1809 |
|  | F 38 | FPTMG |  | 29 | 1809 | 33 | $1 \mathrm{Al} \mathrm{I}^{2}$ | 1 ¢ H 9 |
|  | FDV | TURH | COUB1 | 30 | 18 H 9 | 34 | 1856 | 1957 |
| SWALL | FAD | ARTAS |  | 31 | 1807 | 32 | 1818 | 1845 |
|  | 8 MI |  | NEO 1 T | 32 | 1845 | 46 | 1848 | $1 \mathrm{~A}^{1} 5$ |
|  | RAU | ARTAO |  | 33 | 1848 | 60 | 1818 | 1874 |
|  | F 88 | LO8ND |  | 34 | 1874 | 33 | 1877 | 1日 03 |
|  | 8 Cl | TINEY |  | 35 | 1853 | 46 | 1859 | 1日50 |
|  | ¢AU | ARTAO |  | 36 | 1860 | 60 | 1818 | 1日？ 5 |
|  | 315 | FUNGT | $\therefore: M 1$ | 37 | 1825 | 20 | 18 C | 1857 |
| POSIT | 100 | plova |  | 38 | 1855 | 69 | 18 C 2 | 1815 |
|  | 310 | FUNGT |  | 39 | 1815 | 24 | 1864 | 185号 |
|  | F88 | UP8HD |  | 40 | 1868 | 33 | 187 ？ | 1849 |
|  | 8 MI |  | MULTA | 41 | 1849 | 46 | 1852 | $1 日 17$ |
|  | RSU | FPOHE |  | 42 | $18 \leq 2$ | 61 | 1324 | 1870 |
|  | FOV | ARTAO | COMB1 | 43 | 1879 | 34 | 1818 | $1 \times 57$ |
| COM 81 | ． 310 | TURRN |  | 44 | 1857 | 21 | 1856 | $18 \times 3$ |
|  | 810 | TURRM |  | 45 | 1863 | 24 | 1016 | 1419 |
|  | FMP | TURRN |  | 46 | 1819 | 39 | 1356 | 1865 |
|  | 814 | －RGUE | F10 OK | 47 | 1865 | 21 | $18 \% 0$ | 1875 |
| FIGUR |  |  |  |  |  |  |  |  |
|  | FAD | FUNGT |  | 43 | 1826 | 32 | 18 k 4 | 1 ¢ 41 |
|  | 8 TU | FUNGT |  | 50 | 1841 | 21 | $18 \times 4$ | 1月69 |
|  | RAU | ENNNH |  | 51 | 1869 | 60 | 1830 | 1835 |
|  | FAB | FPT 10 |  | 52 | 1835 | 32 | 1812 | 1840 |
|  | 810 | ENNNM |  | 53 | 1840 | 21 | 1830 | 1934 |
|  | R 80 | TURRN |  | 54 | 1834 | 61 | 1856 | 1966 |
|  | FMP | ArGUE |  | 55 | 1866 | 39 | 18 ？ 0 | 1.70 |
|  | 8 TU | TURRN |  | 56 | 1870 | 21 | 1856 | 1876 |
|  | FDV | ENMNH |  | 57 | 1875 | 34 | 1830 | 1880 |
|  | 8 TU | TURRM |  | 58 | 1080 | 21 | 1816 | 1928 |
|  | atw | FUNGT |  | 59 | 1829 | 67 | 1864 | 1 ค 78 |
|  | 8 TL | FMAGG |  | 60 | 1878 | 20 | 1884 | 1 1月37 |
|  | RAN | TURAU |  | 61 | 1837 | 67 | 1816 | $1 口 31$ |
|  | RAU | 8003 |  | 62 | 1831 | 60 | 8002 | 1 ロッ |
|  | FOV | FMAGG |  | 63 | 1890 | 34 | 1894 | 1885 |
|  | F88 | S12E8 |  | 64 | 1885 | 33 | 1838 | 1981 |
|  | 8 ml | MULTA | F1GUH | 65 | 1881 | 46 | 1 נ 17 | 1 ¢ 75 |
| TINEY | RAU | ARTAO | MULTA | 66 | 1859 | 60 | 1818 | 1 ก 17 |
| MULTA | RAU | ${ }_{\text {A Y M }}$ ¢ |  | 67 | 1817 | 60 | 1836 | 1891 |
|  | FMP | FUNGT | Ex1 | 68 | 1891 | 39 | 1864 | 1 คO 3 |
|  | 10 | 0000 | 0051 | 69 | 1824 | 10 | 0000 | 0051 |
| FPTMO | 30 | 0000 | 0051 | 70 | 1812 | 20 | 0000 | 0051 |
| 81268 | 10 | 0000 | 0043 | 71 | 1838 | 10 | 000 | 0043 |
| P10Y2 | 15 | 7079 5098 | 6351 1650 | 72 | 1862 1808 180 | 15 | 7079 5398 | 635 <br> 155 |
| PIOVA | 78 | 5 5 198 | 1650 | 73 | 1808 1872 | 78 10 | 5398 0000 | $\begin{array}{ll}1550 \\ 0 & 0\end{array}$ |
| UPRNU LORNII | 10 | 0000 0000 | 0 0 060 | 74 | 1872 1877 | 10 | 0000 00.000 | $\begin{array}{lll}0 \\ 0 & 0 & 0 \\ 0\end{array}$ |

## APPENDIX E

Description and Explanation of the IBM -650 Computer Program Used to Calculate Surface Heat Flow.

The computer program was written to calculate the heat flow out of the fuel and into the moderator. The neat flow out of the fuel surface is given،by

$$
\begin{align*}
& (q / A){ }_{f}(t)=-k_{f}\left\{\sum_{i=1}^{p} \sqrt{\frac{\beta_{i}}{2 \alpha}} B_{i}\left(D_{i} \cos \beta_{i} t+E_{i} \sin \beta_{i} t\right)\right. \\
& +\sum_{n=1,3,5, \cdots}^{\infty} \frac{\left(\frac{n}{2 L}\right)}{e^{2}} \frac{-\frac{n^{2} \pi^{2} \alpha}{4 \pi \alpha} t}{4 L^{2}} \tag{E-1}
\end{align*}
$$

$$
\left.+\sum_{j=1}^{s} \frac{q_{o o} \alpha A_{i} \cosh k L}{k_{m}\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right)}\right)
$$

$\left.+\sum_{j=1}^{s} \frac{q_{00-}-A_{j} e^{\lambda_{j} t}}{k_{f}\left(\alpha k^{2}-\lambda_{j}\right)} \quad\left[\frac{\sqrt{\frac{\lambda_{i}}{\alpha}} \cosh (k L) \sinh \left(\sqrt{\frac{\lambda_{j}}{\alpha}} L\right)}{\cosh \left(\sqrt{\frac{\lambda_{1}}{\alpha}} L\right)}-k \sinh k L\right]\right\}$
and the heat flow into the moderator is given by

$$
\begin{aligned}
& (q / A)_{m}(t)=\rho k_{m}\left\{\sum_{i=1}^{p} \sqrt{\frac{\beta_{i}}{2 \alpha}} B_{i}\left(D_{i} \cos \beta_{i} t+E_{i} \sin \beta_{i} t\right)\right.
\end{aligned}
$$

$-\sum_{j=1}^{s} \frac{\alpha F A_{i}}{k_{m}^{\lambda_{j}}}\left(\frac{\sqrt{\frac{\lambda_{i}}{\alpha}} \sinh \sqrt{\frac{\lambda_{i}}{\alpha}} L}{\cosh \sqrt{\frac{\lambda_{i}}{\alpha} L}}\right)$,
where $D_{i}=\frac{\cosh \gamma_{i L} \sinh \gamma_{i L}-\cos \gamma_{i \mathrm{~L}} \sin \gamma_{j L}}{\cos ^{2} \gamma_{i L} \cosh ^{2} \gamma_{i \mathrm{~L}}+\sin ^{2} \gamma_{i \mathrm{~L}} \sinh ^{2} \gamma_{i \mathrm{~L}}}$,

$$
E_{i}=\frac{\cosh \gamma_{i L} \sinh \gamma_{i L}+\cos \gamma_{j L} \sin \gamma_{i L}}{\cos ^{2} \gamma_{i L} \cosh ^{2} \gamma_{i L}+\sin ^{2} \gamma_{i L} \sinh ^{2} \gamma_{i L}}
$$

and $\gamma_{i}=\sqrt{\frac{\beta_{i}}{2 \alpha}}$.

The equivalence between elements of the algebraic equation and the symbolic logic of the computer program is shown in Table E-1.

$$
\begin{array}{ll}
\text { Table E-1. Definition of symbolic terms of the } \\
& \text { IBM- } 650 \text { computer program for cal- } \\
& \text { culating surface heat flow. }
\end{array}
$$

$$
\gamma_{i}=\sqrt{\frac{\beta_{i}}{2 \alpha}}
$$

$$
\mathrm{ZMX} 1_{i}=\frac{\cosh \gamma_{i} L \sinh \gamma_{i} L-\cos \gamma_{i}^{L} \sin \gamma_{i} L}{\cos ^{2} \gamma_{i}^{L} \cosh ^{2} \gamma_{i} L+\sin ^{2} \gamma_{i} L \sinh ^{2} \gamma_{i} L}=D_{i}
$$

$$
A 1_{i}=\gamma_{i} A_{i}\left(Z M X 1_{i} \cos \beta_{i} t-Z M X 2_{i} \sin \beta_{i} t\right)
$$

$$
\text { ASP }_{j}=\frac{q_{\infty} \alpha A_{j} e^{\lambda_{j} t}}{k\left(\alpha k^{2}-\lambda_{j}\right)}
$$

$$
\text { AkSUM }_{j}=\frac{\sqrt{\frac{\lambda_{i}}{\alpha}} \cosh k L \sinh \sqrt{\frac{\lambda}{\alpha}} L}{\cosh \sqrt{\frac{\lambda_{i}}{\alpha}} L}-k \sinh k L
$$

$$
\mathrm{ZMX} 2_{i}=\frac{\cos \gamma_{1} L \sin \gamma_{1} L+\cosh \gamma_{1} L \sinh \gamma_{1} L}{\cos ^{2} \gamma_{1} L \cosh ^{2} \gamma_{1} L+\sin ^{2} \gamma_{1} L \sinh ^{2} \gamma_{1} L}=E_{1}
$$

Table E-1 cont.

$$
\begin{aligned}
& A 3_{j}=\left(A 3 P_{j}\right)\left(A_{j S U M}^{j}\right) \\
& \operatorname{CSHLL}_{j}=\cosh \sqrt{\frac{\lambda_{1}}{\alpha}} \mathrm{~L} \\
& \operatorname{cosLL}_{j}=\cos \sqrt{\frac{\lambda i}{\alpha}} L \\
& \operatorname{ARG}_{n}=n_{\pi} / 2 L \\
& \text { ARG } 2_{n}=n^{2}{ }_{\pi}^{2} \alpha / 4 L^{2} \\
& \mathrm{~A}^{2 S T}{ }_{i}=\mathrm{B}_{i}\left(\frac{\mathrm{n}^{2} \pi^{2} \alpha}{4 \mathrm{~L}^{2}}\right) /\left(\frac{n^{4} \pi^{4} \alpha^{2}}{16 \mathrm{~L}^{2}}+\beta_{i}{ }^{2}\right) \\
& \operatorname{A2ST} 1_{j}=q_{\infty} \alpha A_{j} \cosh k L / k\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\lambda_{j}\right)\left(\frac{n^{2} \pi^{2} \alpha}{4 L^{2}}+\alpha k^{2}\right) \\
& A 2 D D T_{n}=\frac{\frac{n_{\pi}}{2 L} \cdot-\frac{n^{2} \pi^{2} e^{2}}{4 L^{2}}}{L^{2} / n_{\pi} a} \\
& \operatorname{A2SUM}_{n}=\sum_{i=1}^{p} \operatorname{A2ST1}_{i}+\sum_{j=1}^{s}{\operatorname{A2ST} 1_{j}}^{p} \\
& \operatorname{TERM}_{\mathrm{n}}=\left(\mathrm{A} 2 \mathrm{DDT}_{\mathrm{n}}\right)\left({\left.\mathrm{A} 2 \mathrm{SUM}_{\mathrm{n}}\right)}\right)
\end{aligned}
$$

The input data consists of the heat generation and surface temperature parameters, appropriate material constants, half-thickness of the region and numerical constants. Table E-2 lists input data required for the program.

Table E-2. Input Data Required for Use of the IBM-650 Computer Program Used to Calculate Surface Heat Flow Rates.

| Symbo 1 | Explanation Storage | Location |
| :---: | :---: | :---: |
| ZERO | 0.00 | 0164 |
| ONE | 1.00 | 0656 |
| TWO | 2.00 | 0820 |
| $\mathrm{P}_{1}$ | 3.1415 .9 | 0779 |
| FIFTY | 50.00 | 0461 |
| CRIT | 0.0001 | 0388 |
| ALPHA | Thermal Diffusivity | 0278 |
| KAPPA | Reciprocal of Thermal Neutron Diffusion Length in Fuel | 0436 |
| Q 00 | Normalization Factor for Heat Generation | 0324 |
| KAY | Thermal Conductivity | 0581 |
| L | Half-thickness of Region | 0186 |
| INDXM | No. of Terms, Surface Temperature Fit (00000000xx) | 0076 |
| NOLAM | No. of Terms, Heat Generation Fit (00000000xx) | 0456 |
| $\mathrm{AYEJ}_{j}$ | Amplitude Parameter, Heat Generation Fit | $(0200+j)$ |
| LAMDAg | Exponential Parameter, Heat Generation Fit | $(0020+j)$ |
| AMMM $_{j}$ | Amplitude Parameter, Surface Temperature Fit | $(0100+j)$ |
| $\mathrm{BTAA}_{j}$ | Period Parameter, Surface Temperature Fit | $(0120+j)$ |

The output from this program is punched out on one card having an eight word capacity, one word consisting of 10 digits and a sign. The form of the output is shown in Table E-3.

Table E-3. Output form for LBM-650 Computer Program Used to Calculate Surface Heat Flow Rates.

WORD 1 WORD 2 WORD 3 WORD 4 WORD 5 WORD 6 WORD 7 WORD 8
(q/A)
 A3

LOGIC DIAGRAM-APPENDIX E

|  | 81 A | 0200 | 0360 | 1 | 0000 | 00 | 0000 | 0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SL ${ }^{\text {S }}$ | 1800 | 1899 | 2 | 0000 | 00 | 0000 | 0000 |
|  | $\mathrm{SO}_{8} \mathrm{Y} \mathrm{H}$ | ARTAN | 1800 1999 | 3 | 0000 | 00 | 0000 | 0000 |
|  | $\mathrm{SO}_{8} \mathrm{Y} \mathrm{Y}$ | START | 1999 | 4 | 0000 | 00 | 0000 | 0000 |
|  | SYM 8 YH |  | － 200 | 5 | 0000 | 00 | 0000 | 0000 |
|  | $\mathrm{SO}_{8}^{\mathrm{Y}} \mathrm{Y} \mathrm{N}$ | A ${ }^{\text {a MOA }}$ | 0330 0240 | 6 | 0000 | 00 | 0000 | 0000 |
|  | HLR | 1951 | 1960 | 7 | 0000 0000 | 00 | 0000 | 0000 |
|  | sLa | 1977 | 19 H | 8 | 0000 | 00 | 0000 | 0000 |
|  | 8LR | 0100 | 0160 | 10 | $\begin{array}{ll}\text { lla } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array} 0$ | 0 0 0 0 | 0 0 0 00000 | $\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$ |
|  | 8 YN | Ammu | 0100 | 11 | 0000 | 00 |  | 0000 |
|  | GYN | ¢TAA | 0130 | 13 | 0000 | 00 | NOOO 0 0 | 0 0 000 |
|  | 3 YN | ALPHA | 0278 | 13 | OOOO | 00 | 0000 | －000 |
|  | SYN | KAPHA | 0430 | 14 | 0000 | 00 | 0000 | 0000 |
|  | SY ${ }_{\text {SH }}$ |  | 0186 | 15 |  | 00 |  | 0000 |
|  | SY ${ }^{\text {r }}$ | Q 00 | 0324 | 16 | 0000 | 00 | O00 0 | 0000 |
|  | 9 SN | K A Y | 0581 | 17 | 0000 | 00 | 0000 | 0000 |
|  | Y Y N | $1 \times 0 \times M$ | 0076 | 18 | 0000 | 00 | OOOO | 0 0 000 |
|  | SYN | NOLAM | 0456 | 19 | 0000 | 00 | OOOO | OOOO |
|  | ${ }^{\text {S }}$ Y | $A^{1}$ | 0140 | 20 | 0000 | 00 | 0000 | OOOO |
| EOOEA | STO | A A 1 |  | 21 | 0000 | 24 | 0003 | 0005 |
|  | STU | AAA14 |  | 22 | 0006 | 21 | 0010 | 0013 |
|  | RAU | AAA16 |  |  |  |  |  | 0021 |
|  | FAM | AAA14 |  | 24 | $\bigcirc 001$ | 37 | － 01010 | 0 0 0 0 0 |
|  | $3{ }^{51}$ | $A_{A} A^{\text {a }}$ |  | 25 | 0037 | 21 | 0042 | 0045 |
|  | LOO | $A_{\text {AA }}{ }^{\text {a }}$ |  | 26 | 0045 | 69 | 0048 | 0001 |
|  | $8{ }^{8}$ | $A^{\text {A }}$ A | AAA | 27 | 0001 |  |  | 0007 |
| AAAB | RAU | AAA＇d |  | 28 | 0007 | 60 | OO4 4 | 0047 |
|  | F98 | AAA5 |  | 29 | 0047 | 33 | 0050 | 0027 |
|  | 8 m ！ | $A^{A} A^{6}$ |  | 30 | 0027 | 46 | 0030 | 0031 |
|  | $99^{\text {¢ }}$ | AAA 2 |  | 31 | 0031 | 21 | 0042 | 0095 |
|  | RAU | AAAA |  | 32 | 0095 | 60 | 0004 | 0009 |
|  | FMP | AAAT |  | 33 | 0009 | 39 | 0012 | 0062 |
|  | STU | AAA 4 | AAAB | 34 | 0062 | 21 | ． 0004 | 0007 |
| A A 46 | PAU | $A^{\text {A }}$ A |  | 35 | 0030 | 60 | 0042 | 0037 |
|  | Fs ${ }^{\text {s }}$ | $\wedge_{A} \wedge^{\prime}{ }^{3}$ |  | 36 | 0097 | 33 | 0048 | 0025 |
|  | 8 MI | AAACB |  | 37 | 0025 | 46 | 002 y | 0029 |
|  | $8{ }^{81}$ | $A A A 2$ |  | 38 | 0029 | 21 | 0042 | 0195 |
|  | RAU | $A^{\prime} A{ }^{4}$ |  | 39 | 0195 | 60 | 0004 | 0059 |
|  | FMP | AAA9 |  | 40 | 0030 | 39 | 0162 | 02ヶ2 |
|  | $\delta^{8} \mathrm{~T}$ | AAA ${ }^{\text {a }}$ | A 146 | 4 | 0262 | 21 | 0004 | 0030 |
| AAA38 | RAU | $A_{A} A^{2}$ |  | 43 | 0029 | 60 | 0042 | 0197 |
|  | Fsi | AAA10 |  | 43 | 0197 | 33 | 0300 | 0077 |
|  | $8{ }^{81}$ | AAA11 |  | 44 | 0077 | 46 | ОО 00 | 0081 |
|  | 8 T | $\wedge_{A} A^{\prime}{ }^{\text {a }}$ |  | 45 | $\bigcirc 0{ }_{0}^{01}$ | 21 | 0042 | 0295 |
|  | RAU | AAA4 |  | 46 | 0295 | 50 | OOO4 | O309 |
|  | FMP | AAA12 |  | 47 | $\bigcirc 309$ | 39 | 0312 | 0362 |
|  |  | A A A ${ }_{\text {a }}$ | AAA2日 | 48 | 0362 | 21 | 0004 | 00 ○ |
| A A11 | RAU | AAAz |  | 49 | 0080 | 60 | 0042 | U297 |
|  | Lod |  | A A 17 | 50 | 0297 | 69 | 0350 | $00^{5} 3$ |
|  | FMP | A A A 4 |  | 51 | 0350 | 39 | 0004 | 0054 |
|  | 9TU | AA113 |  | 52 | 0054 | 21 | OOOH | 0011 |
|  | AAU | AAA14 |  | 53 | 0011 | 60 | 0010 | 0015 |
|  | 8 m | AAA15 |  | 54 | 0015 | 46 | 0018 | 0019 |
|  | AAU | AAA 13 | A A A1 | 55 | 0010 | ¢0 | 0003 | 0 0 0133 |
| AAA15 | ${ }^{\text {a Au }}$ | $A^{\wedge} A^{3}$ |  | 56 | 0018 | 60 | 004＊ | 0303 |
| AAA17 | ¢0\％ |  | A A A1 | 57 58 | 0 0 $0 \begin{aligned} & 0 \\ & 0\end{aligned}$ | 34 | － | 0 0 0 085 |
| AAA17 | RAu | AAA ${ }^{\text {a }}$ |  | 59 | － 035 | 60 | 004日 | U353 |
|  | FAO | $A^{\prime} A A^{\text {d }}$ |  | 60 | 0353 | 32 | 0042 | 0069 |
|  | STU | AAA19 |  | 61 | 0069 | 21 | 00？ 4 | U177 |
|  | Loo | AAA27 |  | 62 | 0177 | 69 | 0180 | 0033 |
|  | － 8 T0 | AAAzo |  | 63 | 0033 | 34 | 0036 | 0039 |
|  | $8{ }^{810}$ | $\wedge^{\wedge} A^{2} 1$ |  | 64 | 0039 | 24 | 0092 | 0345 |
|  | RAU | $A^{\text {A A }}$ |  | 65 | 0345 | 60 | 0042 | 0347 |
|  | siv |  |  | ${ }^{6}$ | －347 | 39 | $004{ }^{2}$ | 0192 |
| A A 22 | 8 c | anazs | ARA2． | 67 | 0192 | 21 | 0046 | 0049 |
|  | \％ | AAA |  | 68 | － 0 | 24 | －092 | 0292 |
|  | STV | AAAL |  | 79 | 0 0 0 0 0 | 31 | － | 0099 |
|  | Stu | AAA19 |  | 71 | 0051 | 21 | 0024 | 0277 |
|  | ¢aU | AAA24 |  | 72 | 0277 | 60 | 0095 | 0301 |
|  | For | AAA19 |  | 73 | 0301 | 34 | 0024 | 0074 |
|  | F98 | AAAES |  | 74 | 0074 | 33 | 0327 | 0403 |
|  | SMI |  |  | 75 76 | 0403 0 0 | 46 | 03 0026 006 | 00057 |
| AAA36 | RAU | A A A A |  | 77 | －057 | 60 | －036 | 0041 |
| AAD | fa | AAA3 |  | 78 | 0041 | 32 | 0048 | 0075 |
|  | ¢TU |  |  | 79 | 0075 | 21 | 0036 | 0089 |
|  | FMP | AAA21 |  | 30 | 0089 | 39 | 0092 | 0342 |
|  | 38 | AAAst |  | 81 | 0342 | 21 | 0092 | 0395 |
|  | Rau | AAA己3 |  | 82 | 0395 | 60 | 0046 | 0351 |
|  | Fsp | A A A 2 |  | 83 | 0351 | 39 | 0042 | 0392 |
|  | 8 TU | A A A z3 | A A 3 | 84 | 0392 | 21 | 0046 | 0049 |
| AAA3 | 10 | 000 | 0051 | 85 | 0048 | 10 | 0000 | 0051 |
| AAAS | 50 | 0000 | 0051 | 86 | 0050 | 50 | 0000 | 00051 |
| AAA | 14 |  |  | 87 88 | 0 0 01512 | $1{ }_{2} 1$ | 84 <br> 183 <br> 18 | 0 0 0 $05 \begin{aligned} & 5 \\ & 5\end{aligned}$ |
| AAA10 | 20 | 100 0 0 | OOS | 89 | － 300 | 20 | 10000 | 0050 |
| AAA12 | 12 | 2140 | 0051 | 90 | 0312 | 12 | 2140 | 0051 |
| AAA16 | 00 | 0000 | 0000 | 91 | 0016 | 00 | 0000 | 0000 |
| AAA35 | 70 | 0000 | 0047 | 93 | 0327 | 70 | 0000 | 0047 |
| AAA27 | 20 | 0000 | 0051 | 93 | 0180 | 20 | 0000 | 0051 |
| 2 mxab | $9{ }^{5}$ | ${ }^{\wedge} 8 \mathrm{COR}$ |  | 94 | 0400 | 24 | 0453 | 0356 |
|  | RAOU | ARGGL |  | 95 | 0356 | 60 | 0409 | 0063 |
|  | $8{ }^{1} \mathrm{O}$ |  | Coshe | 97 | 0 0 063 | 69 29 | － 0106 | 0169 0 0 |
|  | RAu | ARGGL |  | 98 | 0023 | 60 | 0409 | 0163 |
|  | Loo |  | EOOCR | 99 | 0163 | 69 | 0166 | 0269 |
|  | $8{ }^{8}$ | CsAAL |  | 100 | 0166 | 21 | 0070 | 0073 |
|  |  | ARGGL |  |  | 0073 | 60 |  | 0263 |
|  | LOO 810 |  | SINHX | 102 102 103 | 0263 0 0 268 | 69 29 | 026 0170 | 03 0 0 179 |
|  | RAU | ARGGL |  | 103 104 | 0 0 173 | 61 | 0170 0409 | － 0313 |
|  | Loo |  | EOOS A | 105 | 0313 | 69 | 0316 | 0369 |
|  | $8{ }^{8}$ | SNAAL |  | 106 | O316 | 21 | 0270 | 0273 |
|  | RAU | CHAAL |  | 107 | 0273 0 0 75 | 60 | $00 \% 0$ | 0175 |
|  | ${ }^{5} \mathrm{MP}$ | c satl |  | 108 | 0175 | 39 | 0070 | 0320 |
|  | STU | FCCLAL |  | 109 110 | 0320 0377 | 21 39 | 0174 0020 | 0377 0370 |
|  | FMP | CBAAL |  | 111 | － 370 | 39 | 0070 | －420 |
|  | $8{ }^{8}$ | OEIIN |  | 112 | 0420 | 21 | 0274 | 0427 |
|  | atu | gnall |  | 113 | 0427 | 60 | 0270 | 0275 |
|  |  | \％SHAL $^{8}$ |  | 11145 115 | 0275 0470 | 3.1 | 0170 0374 | 0470 047 |










# AN INVESTIGATION OF NUCLEAR EXCURSIONS TO DETERMINE THE SELF-SHUTDOWN EFFECTS IN THERMAL, HETEROGENEOUS, HIGHLY ENRICHED LIQUID-MODERATED REACTORS 

by

JOHN ROBERT FAGAN<br>B.S., University of Nebraska, 1957

AN ABSTRACT OF
A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

The safe operation of nuclear reactors is imperative if there is to be increased engineering application of these systems. Transient reactor experiments, such as the SPERT tests, have demonstrated that thermal, heterogeneous, liquid-moderated reactor systems will safely shut themselves down following step and ramp insertions of 1 imited amounts of excess reactivity. It is important that a model based on the nuclear, thermodynamic and hydrodynamic properties of the reactor system be developed to explain this phenomena so that it can be used in the design of new systems.

Equations for the fine structure of the temperature distribution in a unit cell of a heterogeneous reactor during a transient burst were derived based on the known power and fuel surface temperature distributions. A mode! based on recognized shutdown effects was developed to calculate the excess reactivity during a transient using the temperature distributions to define the deposition of energy. The calculated excess reactivities show this model to be satisfactory. The effect on reactivity due to steam formation required one empirical parameter which can probably be removed when a greater knowledge of transient boiling is available.


