# AN INVESTIGATION OF NUCLEAR EXCURSIONS TO DETERMINE THE SELF-SHUTDOWN EFFECTS IN THERMAL, HETEROGENEOUS, HIGHLY ENRICHED, LIQUID-MODERATED REACTORS

by

# JOHN ROBERT FAGAN

B.S., University of Nebraska, 1957

-----

### A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

TABLE OF CONTENTS

1-164 - 5510 F2-0-5510

| ,<br>, | Facil                     | nils                           |                                                                                                                                                                          |    |  |  |  |
|--------|---------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| 1.0    | INTRO                     | ODUCTION                       |                                                                                                                                                                          |    |  |  |  |
| 2.0    | THEO                      | EORY                           |                                                                                                                                                                          |    |  |  |  |
|        | 2.1                       | Derivation of                  | E Equations                                                                                                                                                              | 13 |  |  |  |
|        | 2.2                       | Analytical So                  | olutions                                                                                                                                                                 | 16 |  |  |  |
|        |                           | 2.2.1 Temper                   | rature Distributions                                                                                                                                                     | 23 |  |  |  |
|        |                           | 2.2.2 Surfac                   | ce Heat Flow                                                                                                                                                             | 26 |  |  |  |
|        | 2.3                       | Reactivity E:<br>and Fuel Expa | ffects Due to Temperature Coefficient                                                                                                                                    | 28 |  |  |  |
|        | 2.4                       | Reactivity E                   | ffects Due to Steam Formation                                                                                                                                            | 30 |  |  |  |
| 3.0    | RESU                      | LTS AND DISCU                  | SSION                                                                                                                                                                    | 37 |  |  |  |
|        | 3.1                       | Temperature 1                  | Distributions and Surface Heat Flow                                                                                                                                      | 37 |  |  |  |
|        | 32                        | Reactivity E                   | ffects                                                                                                                                                                   | 47 |  |  |  |
|        | 3.3                       | Conclusions.                   |                                                                                                                                                                          | 59 |  |  |  |
|        | 3.4 Further Investigation |                                |                                                                                                                                                                          |    |  |  |  |
|        |                           |                                |                                                                                                                                                                          |    |  |  |  |
|        | LITERATURE CITED          |                                |                                                                                                                                                                          |    |  |  |  |
|        | APPENDICES                |                                |                                                                                                                                                                          | 71 |  |  |  |
|        |                           | APPENDIX A:                    | Derivation of Solutions for the<br>Temperature Distribution in the Fuel<br>and Moderator of a Unit Cell                                                                  | 72 |  |  |  |
|        |                           | APPENDIX B:                    | Description and Explanation of the<br>IBM-650 Computer Program Used for<br>Fitting Empirically Experimental Data<br>with the Sum of Several Terms of<br>Exponential Form | 88 |  |  |  |
|        |                           | APPENDIX C:                    | Description and Explanation of the IBM-650<br>Computer Program for Fitting Empirically<br>Experimental Data with an Even Fourier<br>Series                               | 96 |  |  |  |

| APPENDIX | D: | Description and Explanation of the IBM-650<br>Computer Program Used to Calculate Temper-<br>ature Distributions | 03 |
|----------|----|-----------------------------------------------------------------------------------------------------------------|----|
| APPENDIX | Е: | Description and Explanation of the IBM-650<br>Computer Program Used to Calculate the Surface<br>Heat Flow       | 13 |

Nomenclature of Terms Not Defined in Text

| keff                           | Effective multiplication factor.                                                                                       |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ε                              | Fast fission factor.                                                                                                   |
| p                              | Resonance escape probability.                                                                                          |
| η                              | Neutrons born per thermal absorption in fuel.                                                                          |
| f                              | Thermal utilization.                                                                                                   |
| в <sup>2</sup>                 | Buckling, cm <sup>-2</sup> .                                                                                           |
| L                              | Thermal diffusion length, cm.                                                                                          |
| к                              | 1/L, cm <sup>-1</sup> .                                                                                                |
| x                              | Fermi age, cm <sup>2</sup> .                                                                                           |
| v                              | Neutron velocity, cm/sec.                                                                                              |
| q <sub>oo</sub>                | Heat generation rate in center of fuel at start of pulse, $btu/hrft^3$ .                                               |
| τ                              | Reciprocal period of power rise, sec <sup>-1</sup> .                                                                   |
| <sup>A</sup> j, <sup>λ</sup> j | Parameters for empirical fit of heat generation rate, $btu/hrft^3$ and sec <sup>-1</sup> respectively.                 |
| <sup>B</sup> i,βi              | Parameters for empirical fit of fuel plate surface boundary condition, $^{\rm OF}$ and sec <sup>-1</sup> respectively. |
| L,L <sub>1</sub>               | Thickness of fuel and moderator, respectively in slab geometry, cm.                                                    |
| R, R <sub>1</sub>              | Thickness of fuel and moderator, respectively in cylindrical geometry, cm.                                             |
| x                              | Distance in fuel from the center of unit cell, slab geometry, cm.                                                      |
| x,                             | Distance in moderator from outside of unit cell, slab geometry, cm.                                                    |
| r                              | Distance in fuel and moderator from center of unit cell, cylindrical geometry, cm.                                     |
| 1, j, n                        | Summation indices.                                                                                                     |

f,m Subscripts denoting fuel and moderator, respectively.
p,s No. of terms in heat generation rate and interface
boundary condition approximations.

#### 1.0 INTRODUCTION

The concept of reactor safety is extremely important in the engineering application of nuclear power systems. The United States Atomic Energy Commission has therefore authorized an extensive study in this area. This investigation uses experimental data resulting from that study to attempt to define the mechanisms of reactor shutdown.

The safety of a nuclear reactor system is usually considered in terms of its void and temperature coefficients of reactivity. If one designs a reactor in such a manner as to make both of these coefficients negative, the system will tend to stabilize itself if some external perturbation is placed on the system. This is due to the fact that when the excess reactivity,  $k_{eff}$ -1, of a system is increased, the power tends to rise, thereby increasing the temperature of the system, and this in turn causes a decrease in reactivity. In the case of a liquid moderated system, voids may be introduced which will further decrease the reactivity.

If one considers the bare reactor age-diffusion criticality equation,  $k_{eff} = \underbrace{epnf \ e^{-B^2 \mathbf{I}}}_{1 + L^2 B^2}$ , it is possible to see how these effects manifest themselves in the nuclear constants (22). In the case of the void coefficient, the significant effect is on the Fermi age,  $\underline{\mathbf{I}}$ . Since part of the moderator is removed, the age increases, thus decreasing the fast non-leakage factor,  $\underline{e^{-B^2 \mathbf{I}}}$ . In the case of the temperature coefficient there are several effects that must be considered. First, the moderator expands because of the positive coefficient of expansion of the liquid. This results in a decrease in the density of the moderator, and if the reactor is under-moderated the fast non-leakage factor and <u>p</u> will decrease. Thus it is evident that one safety criteria is that the core should always be slightly under-moderated even though this will increase the critical mass. Second, the fuel elements expand, expelling more of the moderator from the core causing  $\underline{k_{eff}}$  to decrease; however, simultaneously, the effective size of the core increases, causing a decrease in the buckling,  $\underline{B}^2$ , of the system. This decrease in buckling has both a positive and a negative effect upon reactivity or  $k_{eff}$ . The increase in size increases the non-leakage factor for both fast and thermal leakage,  $\underline{e}^{-\underline{B}^2 \underline{\chi}}$  and  $\underline{1/(1 + L^2\underline{B}^2)}$ , respectively. The removal of moderator increases  $\underline{\underline{\chi}}$  reducing reactivity as described in the void coefficient discussion. All of the effects described above with the exception of the buckling, must be considered to be of a delayed nature.

Another group of effects exists which affect the reactivity immediately and these effects are therefore classified as prompt (41). The first of these prompt effects is Doppler broadening (38). Because of the increased kinetic energy of  $U^{238}$  target nuclei with increased temperature, the width of resonance absorption is increased, but the height of the peak is decreased (22), because the total area beneath the resonance curve remains constant. If the resonance absorption cross sections are large, so that essentially all neutrons with energies in the resonance region are captured, the widening of the region will result in a decrease in the resonance escape probability, <u>p</u>, and thus the reactivity decreases as the temperature rises. A second prompt effect is caused by hardening of the thermal neutron spectrum as the moderator temperature rises. The result of this hardened spectrum is that the average thermalneutron velocity increases,  $\underline{L}^2$  increases and the thermal non-leakage factor,  $\frac{1}{1 + \underline{L}^2 \underline{B}^2}$ , decreases. One would expect that the neutrons per absorption would also be affected by this spectral change but assuming the normal 1/v dependence for all cross sections, this effect cancels since the terms comprising this effect are composed of the ratios of cross sections. One final effect which is neither part of the temperature coefficient nor the void coefficient must be considered. This is the formation of radiolytic gases.

The reasons that one is inclined to speak of prompt and delayed coefficients of reactivity is that for power bursts of low reactivity and correspondingly long periods, the delayed effects may play a great part in the shut-down mechanism. However, if one supposes a burst with a very short period then it is obvious that these delayed effects will not have had time to act. What constitutes a "short time" can be answered by determining the heat transfer time constant of the fuel elements. This, in part, is the subject of the proposed investigation. Iriarte (27) reported heat transfer time constants for infinitely long cylindrical UO<sub>2</sub> fuel elements surrounded by a helium film which served as a thermal hond and which were clad with zirconium, stainless steel or aluminum. While the data presented by Iriarte are not applicable to the SPERT-I or TRIGA Reactors, the techniques may be useful in determining the relative importance of the delayed effects.

Before considering further the scope of this project it is informative to investigate the prior work in the field. During the early summer of 1954 a series of experiments were made on the BORAX-I Reactor to investigate the ability of the reactor, when operated in the subcooled (non-boiling) condition, to protect itself against the results of sudden, artificially induced increases in reactivity. Inasmuch as this set of experiments completed the program for the BORAX-I Reactor, the final runaway experiment was intentionally made under conditions which led to destruction of the reactor. In the final experiment, a control rod worth four per cent  $k_{eff}$  was ejected from the reactor core, inducing an exponential power increase which had a period of 2.6 milliseconds. This final experiment resulted in a melting of most of the fuel plates and failure of the reactor tank. Fuel plate fragments were scattered for a distance of 200 to 300 feet (8). This set of experiments, along with the earlier operation of the BORAX-I, (7), established two important safety axioms for water moderated reactors. First, for any given system there is a reactivity insertion beyond which the reactor cannot react fast enough to shut itself down before damage is done, and second, water moderated reactors can be designed to have a high degree of inherent self-protection against the effects of sudden large reactivity increases. A less critical fact that resulted from these tests was that if the transients are started at boiling conditions (such as in a boiling water reactor), the maximum power and fuel-plate temperature reached are less than if the transient is started with the reactor in a subcooled condition. This is as would be expected if void formation due to boiling were the shut-down mechanism, since for the subcooled system the reactor could actually achieve a stable positive period before any negative reactivity would result. This, along with the observation of large quantities of steam and water being expelled from the system, led to the conclusion that it was the void formation which was shutting the reactor down. With this background in mind, the Atomic Energy Commission set out on an intensified program

to determine empirically the safe upper operating limits on each class of reactors including the pressurized and unpressurized, boiling and non-boiling thermal reactors, both heterogeneous and homogeneous, and fast-reactor systems (23). This program initiated the SPERT (Special Power Excursion Reactor Tests) and KEWB (Kinetic Experiments on Water Boilers) programs. SPERT is the heterogeneous reactor test facility and KEWB is the design for the same type of tests on a homogeneous reactor test facility. In 1956, W. B. Nyer, et. al. (39), reported the results of the initial transient test on the SPERT-I facility and concluded that the SPERT-I (43) reactor demonstrated qualitatively the results of the BORAX-I experiments although SPERT-I was more stable after the initial power burst. Factors which could contribute to this difference in behavior were the known differences in the fuel assembly construction, the possible differences in the effective void coefficients, and/or the differences in the reflector-tank environment. Another important point discovered at this time was that there was a unique relationship between the peak power and the transient period. The data were fitted rather well by two straight lines on a plot of log reciprocal period versus peak power. The slopes of these lines were approximately 0.8 and 1.7 for the lower and upper regions respectively. The point of intersection occurred at  $\triangle k = 0.74\%$ , or about prompt critical. In June of 1957, R. W. Miller reported on some interesting work in analyzing the reactivity behavior during SPERT-I transients (34). Miller pointed out that it was not necessary to memove all of the initially inserted reactivity to limit a power excursion. This is a result of the delayed neutrons, which for a very short period excursion, do not contribute to the flux during the rise in power. Thus, for short excursions the reactivity

compensation at maximum power need only be  $\Delta k(1-\beta)-\beta$ .  $\Delta k$  is the initial change in  $k_{\text{eff}}$  and  $\beta$  is the delayed neutron fraction. The total  $\Delta k$  must be accounted for in very long period transients. In the case of intermediate period transients the compensated reactivity was calculated as a function of the reciprocal period by numerical solution of the reactor kinetics equations using the experimentally determined power traces. Later in 1957, G. O. Bright, et. al., suggested a model for reactor burst behavior (2), based on the earlier work of Klaus Fuchs at Los Alamos (21). This model postulated a shutdown effect proportional to the energy release. However, the model provided no method for the shutdown energy to be removed and allowed for no time-delays between the energy release and the appearance of the shutdown effect. Much later this model was further modified by S. G. Forbes (13) who let the shutdown effect be proportional to the energy release raised to some power, n, and allowed for some arbitrary delay time. In this analysis the model was tested against some experimental transients from SPERT-I and values of n from 1.5 to 2 were successively used. The results also showed that the delay time was significant in matching the data; however no exact value of the delay time was determined. The overall effect of these works is to convince one that the primary shutdown mechanisms are intimately tied up with the energy release although no real information on the exact phenomena can be found. In 1958, Griffing and Deverall (10) coupled the energy shut-down model with the reactor kinetics equation including six delay groups and again showed that the energy model could describe qualitatively the power traces obtained in the SPERT-I transients even long after the initial burst. This work used a mathematical structure of the shut-down equation considered much earlier (1951)

by Chernick (4) for no delay groups and in 1956 by Margulies (31) with one delay group.

In December of 1958, Deverall and Griffing (9) reported the first attempts at trying to relate the shutdown reactivity with the thermodynamic characteristics of the SPERT-I system. In this report the change in reactivity for transients with long periods was related to the temperature rise in the moderator alone although the fact was recognized that the fuel element temperature vise should also be considered. Considering only the moderator temperature rise, they found reactivity compensations at peak power that were roughly one-half of those reported by Miller (34). Since they felt that the data with which they were working were only accurate to within a factor of  $t^{, 0}$ , they did not pursue the investigation further. In January of 1958, Horning of Ramo-Woolridge reported on a model for transients in SPERT-I (18). This report develops a general model, taking into account the void formation and the thermal expansion. However, no real attempt was made to interpret these constants in terms of the distribution of energy in the fuel and moderator or the nuclear and thermodynemic constants of the system. Another report, to ad under the same cover, by H. C. Corben (26) treats the problem of oscillations found after the burst as the power approaches some steady state level. Although the mechanism responsible for the oscillations need not be the same as the shut-down mechanism, there is certainly the possibility that they are one and the same. A third report by 3. Birkhoff (26) treats the problem of void formation from the point of view of the growth of bubbles. The "Bubble Void" is probably the dominant shutdown effect in a certain type of excursion such as in the initial BORAX-I experiments. The analytic representation of this effect is the least known and thus is being widely

sought. An extensive study of bubble formation including a critical review of the literature, an evaluation of the merits of purely theoretical approaches to the development of a void model, and an investigation of the possible formulation of the nucleate boiling void was reported by the Vitro Engineering Company in May of 1959 (28).

Although an exact definition of bubble formation may not be within the scope of this investigation, the determination of the heat flow into the moderator and the transient temperature distribution in the moderator should shed some light on even this difficult problem.

In July of 1958, J. C. Haire (25) reported the results of a great number of the SPERT-I transients. This report presented data on the reactor power, fuel plate surface temperatures and pressures as a function of time during the transients. These are the data that will be used extensively in the initial phases of the investigation proposed herein.

During late 1958 and 1959, several models were proposed to investigate and explain the inherent shutdown characteristics of the SPERT-I reactor. The "Conduction Boiling" model suggested by S. G. Forbes (14) is certainly credible in that it takes into account the flow of heat into the moderator in a much more exact manner than any of the earlier investigations. This model was quite successful in predicting the power, energy release and temperature at the time of peak power as a function of the reciprocal period. However the model still represents the shutdown mechanism in terms of empirical parameters. Also the non-boiling shutdown effects are not taken into account. The "Clipped Exponential" model suggested by R. W. Miller (35) made some very useful assumptions on the shape of the reactor power burst to ease the analytical solution of kinetics equations. While this model produced some useful criteria in the understanding of self-shutdown

it again made use of lumped parameters which were not easily interpreted in terms of the thermodynamic and nuclear characteristics of the system. E. T. Clark (5,6) as early as 1956 had postulated a prompt fission product having a large absorption cross section for thermal neutrons as an explanation of the self-shutdown of power excursions observed in the SPERT-I Reactor. Later evidence (42) seems to indicate that this model is less likely to be valid than the more conventional models.

Also in 1958, General Atomic introduced their TRIGA Reactor with zirconium hydride moderator which demonstrated a larger prompt shutdown mechanism than either the BORAX-I or the SPERT-I (41). In this case the reactor was designed to have a shutdown mechanism which would act by hardening the thermal neutron energy spectrum thus increasing the thermal leakage to cause shutdown. The reason for choosing this effect was that they felt that it would act more quickly and thus provide a safer reactor than the accepted moderator expansion and expulsion mechanisms. The spectrum effect, so important in the TRIGA Reactors must also act to some extent in SPERT-I. The amount of this effect has apparently never been determined.

P. French, in 1959, (18) reported an attempted solution of the transient heat conduction equation in the fuel and moderator to determine the temperature distribution. However, this work appears to be in error in that he forced a separation of variables solution on the equations whereas """ the spatial and time dependence cannot be expressed as a simple product except after sufficiently long times so that the transient term has disappeared. H. L. McMurry (32) reported the temperature distribution in a fuel plate, cladding and moderator with exponentially rising power for pure conduction. This is an excellent piece of work but the mathematical

model turns out to be more difficult than is either warranted or necessary for the analysis of the SPERT-I data. The McMurry report makes mention of earlier work by H. Greenspan (24) on the same problem with similar results. Several investigators, Kattwinkel (29), Kirchenmayer (30), Stein (40), Epel (11), Arpaci and Clark (1), Ermakov and Ivanov (12), report analytical solutions to the transient heat conduction equation. However, none of them were working on the problem with reference to the SPERT-I investigations and their results are not directly applicable to the use of the SPERT-I experimental measurements. As a result the temperature distribution in the fuel and moderator during a transient is not well known to date.

In July of 1959, Forbes, et. al. (16), summarized the work done up to that time. They showed that by fitting empirically the "Conduction Boiling" model to the SPERT-I data and including the effect of moderator and fuel element expansion they could fit the experimental compensated reactivity at peak power versus reciprocal period curves for values of the reciprocal period greater than 5 seconds<sup>-1</sup>. They also showed that for values of the reciprocal period greater than 20 seconds<sup>-1</sup>, the steam void contribution to reactivity was considerable. For the longer period region they postulated an additional shutdown effect from radiolytic gases.

This, of course, lends considerable credence to the "Boiling Conduction" model, however it does have one glaring shortcoming. To extend it to another reactor requires at least one transient burst experiment to determine the parameters. However, if the fundamental mechanism were understood exclusively in terms of the basic nuclear, thermodynamic and hydrodynamic characteristics of the system, one could confidently predict the limits of safe operations for different reactor systems.

The satisfactory application of the "Boiling Conduction" model led to two sets of experiments designed to test that model and the postulated radiolytic gas effect. The first set of experiments (20) showed with reasonable certainty that radiolytic gas formation was not a primary contributor to self-shutdown in the SPERT-I Reactor. The second set of experiments (19) consisted of coating all of the fuel plates with approximately five mils of insulation, Lithocote LC-34, and of performing transient tests on the reactor. Some of the tests were run with transients of such magnitude that boiling would occur in the bare core and not in the insulated core. The remaining tests involved transients in which there would be boiling in both cores, and the differences in heat transfer rates were expected to be reflected as changes in the reactor behavior. Power burst shapes for transients of the same period in both the bare and insulated cores were essentially the same. In view of the identical reactor behavior for the bare and insulated tests, it would appear that the core insulation produced no appreciable effects on the shutdown mechanism. Since it seems reasonable to assume that any shutdown effect due to boiling would be effected by the core insulation, boiling would not seem to play any part in the self-shutdown mechanism. However, if the heat transfer rate was small enough there would be negligible temperature drop across the insulation and thus the effect on boiling might be unchanged by the insulation. This experiment shows clearly the need for detailed calculation of the temperature distributions in the fuel and moderator during the transients. One final report should be cited in this summary. In April of 1960, Miller (36) reported on some photographic investigations of boiling during transients

in SPERT-I. These results clearly indicated that boiling, was an important agent in the initial reactor self-shutdown whenever the fuel plate temperature was sufficiently high.

### 2.0 THEORY

### 2.1 Derivation of Equations

The direct approach to determining the self-shutdown effects must include the determination of the temperature distributions in the fuel elements and moderator throughout the core during a transient. This problem can be accomplished by investigating the exact temperature distribution in a center element only and relating all effects to this center element. The exact solution of the multi-region, transient heat conduction equations even for a single fuel element, making use of only the power versus time data from the SPERT-I transients, is exceedingly difficult as pointed out in the work by McMurry (32). However, if use is made of the available fuel plate surface temperature data as well as the power data during a transient, the problem is reduced to two single region problems. Although the solutions are much simplified over the two region problem, they are still complicated and therefore have been programmed for the Kansas State University IEM 650 computer.

The methods for determining the steady state temperature distribution throughout a unit cell of thermal, heterogeneous liquid-moderated reactor are discussed in Nuclear Engineering (41) by C. F. Bonilla and in Nuclear Reactor Physics (37) by R. L. Murray. It will be considered sufficient for this work to outline the differences that must be accounted for in transient operation.

The partial differential equation for conductive heat transfer applicable in the fuel and moderator of a nuclear power reactor during

a transient but before boiling is established is

$$\nabla^{2}\theta(\mathbf{x},t) + \frac{q(\mathbf{x},t)}{k} = 1/\alpha \frac{\partial\theta(\mathbf{x},t)}{\partial t}$$
(1)

where  $\bigtriangledownegar{2}^2$  is the Laplacian operator (44),  $\underline{\theta}$  is the temperature rise above the initial temperature  $[T(\mathbf{x},t)-T_o]$ ,  $\underline{\mathbf{x}}$  is the position variable,  $\underline{\mathbf{k}}$  is the mean thermal conductivity,  $\underline{\alpha}$  is the mean thermal diffusivity,  $\underline{\mathbf{t}}$  is the time variable and  $\underline{\mathbf{g}}$  is the volumetric heat generation rate. This equation in slab and cylindrical geometries is directly applicable to the analysis of transient behavior in a reactor following a change in reactivity. The derivation of solutions to this equation in the fuel and moderator during power transients will be shown in detail for slab geometry (Appendix A) and the important elements of the solution in cylindrical geometry will be tabulated in Section 2.2.1.

In any nuclear reactor there are heating effects due directly to fission fragments and to the attenuation of other nuclear particles. Within the fuel element, fission heating far overrides the other attenuation effects. Therefore, the heat generation rate,  $q_f(x,t)$ , in the fuel elements is proportional to the thermal neutron flux. The neutron flux during a transient can be expressed as a simple product of the spatial and the time dependencies. Thus the heat generation rate is also separable in space and time as shown in equation (2).

$$q_f(x,t) = f_f(x) \quad g_f(t) \tag{2}$$

The spatial dependence,  $f_{f}(x)$ , can be obtained easily from the steady state analysis (40) and is given in equation (3).

$$f_f(x) = q_{00} \cosh \kappa x \tag{3}$$

Here  $\underline{q}_{00}$  is the heat generation rate at the center of the fuel,  $\underline{\kappa}$  is the inverse thermal neutron diffusion length and  $\underline{x}$  is the distance from the center of the fuel.

The time dependence,  $g_{f}(t)$ , of the neutron flux and thus the heat eneration rate is expressed as the sum of exponentials, thus

$$g_{f}(t) = \sum_{j=1}^{s} a_{j} e^{\lambda_{j} t}$$
(4)

Substituting equations (3) and (4) into equation (2), an expression for  $q_f(x,t)$  is obtained; that is

$$q_{f}(x,t) = \sum_{j=1}^{s} q_{00} \cosh(\kappa x) a_{j} e^{\lambda} j^{t}$$
(5)

Substituting equation (5) into equation (1) yields the differential equations which must be solved to obtain the temperature distribution in the fuel, that is

$$\nabla^{2}\theta_{f}(\mathbf{x},t) + \sum_{j=1}^{n} \frac{q_{oo}\cosh(\kappa \mathbf{x})a_{j}e^{\lambda_{j}t}}{k} = 1/\alpha \frac{\partial\theta_{f}(\mathbf{x},t)}{\partial t}$$
(6)

Now from investigation of the heat generation rate,  $\underline{q_m(k,t)}$  in the moderator, it is noted that there is no heating due to fission, but there is heating due to nuclear particles which stream out of the fuel and are attenuated in the moderator. The moderator heating is approximately 5 to 7% (3) of the recoverable energy from fission and is sufficiently uniform in space to be so considered. Therefore,  $\underline{q_m(x,t)}$  in the moderator is independent of the spatial variable but still is time dependent as shown in quation (7).

$$q_{m}(\mathbf{x},t) = \sum_{j=1}^{s} \mathbf{F} a_{j} e^{\lambda_{j} t}$$
(7)

The heating effects in the moderator are proportional to the neutron flux in the fuel; thus F is the fraction of the recoverable energy released in the fuel which is dissipated in the moderator.

Substitution of equation (7) into equation (1) yields the differential equation to be solved for the temperature distribution in the moderator, that is

$$\nabla^{2} \theta_{m}(\mathbf{x},t) + \sum_{j=1}^{s} \frac{F a_{j} e^{\lambda_{j} t}}{k} = 1/\alpha \frac{\partial \theta_{m}(\mathbf{x},t)}{\partial t}$$
(8)

Equations (6) and (8) form the general set which must be solved to obtain the temperature distribution in a unit cell of the reactor during a transient. The geometry of the unit cell in which these equations must be applied is shown in Figure 1. The simultaneous solution of these equations is extremely difficult. The availability of the fuel element surface temperature as a function of time during the transients greatly simplifies this situation. The problem is reduced to solving the equations independently in the fuel and moderator, using the experimentally measured temperatures at the interface as a boundary condition for both equations. The other boundary condition necessary in each case is a zero heat flow condition at the center of the unit cell for the fuel regions and at the boundary of the unit cell for the moderator.

### 2.2 Analytical Solutions

The stime dependent thermal diffusion equations in the fuel and moderator can be solved for the temperature distribution assuming that conduction is the primary mode of heat transfer. The equation will hold for all time in the fuel plate. In an attempt to represent as well as



CYLINDRICAL GEOMETRY



Figure I. Geometry and boundary conditions in the unit cell used to determine the temperature distributions.

possible the experimental data which is used as input to this problem and to allow some flexibility in the application of these equations, the differential equations were solved subject to several forms of representation of the boundary conditions and the forcing functions. In one case the problem was solved in cylindrical geometry.

In slab geometry the one-dimensional solutions to the transient heat transfer equation, in which the time dependence of heat generation rate and the fuel element surface temperature are represented empirically as  $\sum_{j=1}^{s} A_j e^{\lambda_j t}$  and  $\sum_{j=1}^{p} B_j e^{\beta_j t}$  respectively, are derived in Appendix A j=1

and are given here as

$$\theta_{f}(\mathbf{x},t) = \sum_{\mathbf{i}=1}^{p} \frac{B_{\mathbf{i}} \cosh(\sqrt{\frac{\beta_{\mathbf{i}}}{\alpha}} \mathbf{x}) e^{\beta_{\mathbf{i}}t}}{\cosh\sqrt{\frac{\beta_{\mathbf{i}}}{\alpha}} L} - \sum_{n=1,3,5,\cdots} \frac{\cos(\frac{n\pi \mathbf{x}}{2L}) e^{\frac{n^{2}\pi^{2}\alpha}{4L^{2}}t}}{(L^{2}/n\pi\alpha) \sin\frac{n\pi}{2}}$$

$$X \left\{ \sum_{i=1}^{p} \frac{B_{i}}{\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \beta_{i}} + \sum_{j=1}^{s} \frac{q_{co} \alpha A_{j} \cosh(\kappa L)}{\kappa (\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \lambda_{j})(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \alpha_{\kappa}^{2})} \right\} (9)$$

$$- \sum_{j=1}^{s} \frac{A_{j} q_{oo} \alpha e^{\lambda} j^{t}}{\kappa (\alpha_{\kappa}^{2} - \lambda_{j})} \left\{ \cosh_{\kappa} x - \frac{\cosh_{\kappa} L \cosh(\sqrt{\lambda_{j}} x)}{\cosh_{\kappa} \sqrt{\frac{\lambda_{j}}{\alpha} L}} \right\}$$

and

$$\theta_{m}(\mathbf{x},t) = \sum_{\mathbf{i}=1}^{p} \frac{B_{\mathbf{i}} \cosh(\sqrt{\frac{B_{\mathbf{i}}}{\alpha}} \mathbf{x}_{\mathbf{i}}) e^{\beta_{\mathbf{i}}t}}{\cosh(\sqrt{\frac{B_{\mathbf{i}}}{\alpha}} \mathbf{L}_{\mathbf{i}})} - \sum_{n=1,3,5,\dots,(L_{\mathbf{i}}^{2} / n\pi\alpha) \sin(\frac{n\pi}{2})}^{\infty} \frac{\cos \frac{n\pi \mathbf{x}}{L} e^{-\frac{n^{2}\pi^{2}\alpha}{4L^{2}}t}}{n\pi^{2}}$$

$$x \left\{ \sum_{i=1}^{p} \frac{\beta_{i}}{\frac{2\pi^{2}\alpha}{4L_{i}^{2}} + \beta_{i}} + \sum_{j=1}^{s} \frac{\alpha F A_{j}}{k \left(\frac{n^{2}\pi^{2}\alpha}{4L_{i}^{2}}\right) \left(\frac{n^{2}\pi^{2}\alpha}{4L_{i}^{2}} + \lambda_{j}\right)} \right\} (10)$$

$$+\sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j} t}}{k \lambda_{j}} \left\{1 - \frac{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} x_{j}}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} L_{j}}\right\}$$

in the fuel and moderator, respectively.

.

The equivalent solutions in cylindrical geometry are derived in Appendix A and are given here as

.....

$$\theta_{f}(\mathbf{x},t) = \sum_{i=1}^{p} \frac{B_{i} I_{o} (\sqrt{\frac{\beta_{i}}{\alpha}} r) e^{\beta_{i}t}}{I_{o} \sqrt{\frac{\beta_{i}}{\alpha}} R} + \sum_{n=1}^{\infty} \frac{J_{o} (\frac{u_{n}r}{R})}{\frac{R^{2}}{2\omega_{n}\alpha} J_{i} (\omega_{n})}$$

$$X\left\{\sum_{i=1}^{p} \frac{B_{i}}{\frac{2}{n} + \sum_{j=1}^{s} \frac{q_{oo} \alpha A_{j} I_{o} (\kappa R)}{2}}{k \left(\frac{\omega_{n} \alpha}{R^{2}} + \lambda_{j}\right) \left(\frac{\omega_{n} \alpha}{R^{2}} + \alpha \kappa^{2}\right)}\right\}$$
(11)  
$$-\sum_{k=1}^{s} \frac{A_{i} q_{oo} \alpha e^{\lambda_{j} t}}{k (\alpha \kappa^{2} - \lambda_{j})} \left\{ I_{o} (\kappa r) - \frac{I_{o} (\kappa R) I_{o} (\sqrt{\frac{\lambda_{j}}{\alpha} r)}}{I_{o} (\sqrt{\frac{\lambda_{j}}{\alpha} R)}}\right\}$$

and

$$\theta_{m}(\mathbf{x},t) = \sum_{i=1}^{p} B_{i} \left\{ \frac{K_{i}(\sqrt{\frac{\beta_{i}}{\alpha}} R_{i}) I_{o}(\sqrt{\frac{\beta_{i}}{\alpha}} r) + I_{i}(\sqrt{\frac{\beta_{i}}{\alpha}} R_{i}) K_{o}(\sqrt{\frac{\beta_{i}}{\alpha}} r)}{K_{i}(\sqrt{\frac{\beta_{i}}{\alpha}} R_{i}) I_{o}(\sqrt{\frac{\beta_{i}}{\alpha}} R) + I_{i}(\sqrt{\frac{\beta_{i}}{\alpha}} R_{i}) K_{o}(\sqrt{\frac{\beta_{i}}{\alpha}} R)} \right\} e^{\beta_{i}t}$$

$$+ \sum_{n=1}^{\infty} \frac{2\sqrt{\frac{\rho_n \alpha}{n}} \left[ K_1 \left(\sqrt{\frac{\rho_n}{\alpha}} R\right) I_0 \left(\sqrt{\frac{\rho_n}{\alpha}} r\right) + I_1 \left(\sqrt{\frac{\rho_n}{\alpha}} R\right) K_0 \left(\sqrt{\frac{\rho_n}{\alpha}} r\right) \right] e^{\rho_n t}}{R \left[ K_1 \sqrt{\frac{\rho_n}{\alpha}} R_1 I_1 \left(\sqrt{\frac{\rho_n}{\alpha}} R\right) - K_1 \sqrt{\frac{\rho_n}{\alpha}} R\right] I_1 \left(\sqrt{\frac{\rho_n}{\alpha}} R_1 - I_0 \left(\sqrt{\frac{\rho_n}{\alpha}} R_1 + I_0 \left(\sqrt{\frac{\rho_n}{\alpha}} R\right) K_0 \sqrt{\frac{\rho_n}{\alpha}} R\right) \right]}$$

$$X \sum_{i=1}^{p} \left\{ \frac{B_{i}}{\rho_{n} - \beta_{i}} - \sum_{j=1}^{s} \frac{\alpha F A_{j}}{k \rho_{n} (\rho_{n} - \lambda_{j})} \right\}$$
(12)

$$+ \sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j}t}}{k} \left\{ \frac{K_{i}\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i}I_{o}\sqrt{\frac{\lambda_{j}}{\alpha}} r + I_{i}\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i}K_{o}\sqrt{\frac{\lambda_{j}}{\alpha}} r}{K_{i}\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i} \right\} \left\{ \frac{K_{i}\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i}I_{o}\sqrt{\frac{\lambda_{j}}{\alpha}} r + I_{i}\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i}K_{o}\sqrt{\frac{\lambda_{j}}{\alpha}} r}{K_{i}\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i} \right\}$$

where  $\omega_n$ 's are the roots of the equation,  $J_o(x) = 0$ and  $\rho_n$ 's are the roots of the equation,

$$\left[K_{,}(\sqrt{\frac{s}{\alpha}}R_{,}) I_{0}(\sqrt{\frac{s}{\alpha}}R) + I_{,}(\sqrt{\frac{s}{\alpha}}R_{,}) K_{0}(\sqrt{\frac{s}{\alpha}}R)\right] = 0$$

The solutions to the transient heat transfer equations in slab geometry in which the time dependence of the heat generation rate and the first derivative of the surface temperature with respect to x are  $\sum_{j=1}^{s} A_j e^{\lambda_j t}$  and  $\sum_{i=1}^{p'} B_i e^{\beta_i t}$  respectively are derived in Appendix A i=1

and are given here as

$$\theta_{f}(\mathbf{x},t) = \sum_{j=1}^{p'} \frac{B_{i} \cosh\left(\sqrt{\frac{\beta_{i}}{\alpha}} \mathbf{x}\right) e^{\beta_{i}t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh\left(\sqrt{\frac{\beta_{i}}{\alpha}} \mathbf{L}\right)} - \frac{B_{i}\alpha}{B_{i}L} - \sum_{n=1}^{\infty} \frac{\frac{n\pi \mathbf{x}}{2L} e^{\frac{n\pi \mathbf{x}}{4L^{2}}}}{(L/\alpha) \cos n\pi}$$

$$X \left\{ \sum_{i=1}^{p'} \frac{B_i}{\frac{n\pi^2 \alpha}{4L^2} + \beta_i} + \sum_{j=1}^{s'} \frac{q_{oo} \alpha A_j \kappa \sinh \kappa L}{\kappa(\frac{n\pi^2 \alpha}{4L^2} + \lambda_j)(\frac{n\pi^2 \alpha}{4L^2} + \alpha \kappa^2)} \right\}$$
(13)

$$\frac{s'}{\sum_{j=1}^{s'} \frac{q_{oo} \alpha A_{j} e^{\lambda_{j} t}}{k(\alpha \kappa^{2} - \lambda_{j})}} \left\{ \cosh \kappa x - \frac{\kappa \sinh (\kappa L) \cosh (\sqrt{\frac{\lambda_{j}}{\alpha} x)}}{\sqrt{\frac{\lambda_{j}}{\alpha}} \sinh (\sqrt{\frac{\lambda_{j}}{\alpha} L)}} \right\} - \frac{q_{oo} \alpha A_{j} \sinh \kappa L}{k \lambda_{j} L \kappa}$$

12.70.1

and

$$\theta_{m}(s,t) = \sum_{i=1}^{p'} \frac{B_{i} \cosh(\sqrt{\frac{\beta_{i}}{\alpha}} x) e^{\beta_{i}t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh(\sqrt{\frac{\beta_{i}}{\alpha}} L)} - \frac{B_{i}\alpha}{\beta_{i}L}$$

$$\sum_{n=1}^{\infty} \frac{\frac{-\frac{n^{2}\pi^{2}\alpha}{4L^{2}}t}{(L_{1}/\alpha)\cos n\pi}}{(L_{1}/\alpha)\cos n\pi} \left\{ \sum_{i=1}^{p'} \frac{\frac{B_{i}\alpha}{\frac{n^{2}\pi^{2}\alpha}{4L^{2}}} + \beta_{i}}{\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \beta_{i}} \right\}$$
(14)

0 0

$$+ \sum_{j=1}^{s'} \frac{\alpha F A_j}{k (\lambda_j)} \qquad (e^{\lambda_j t} - 1)$$

in the fuel and moderator, respectively.

The solution to the transient heat transfer equation in slab geometry in which the time dependence of the heat generation rate and the surface temperature are represented by  $\sum_{j=1}^{s} A_j e^{\lambda_j t}$  and  $\sum_{i=1}^{p} B_i \cos \beta_i t$ 

respectively are derived in Appendix A and are given here as

$$\theta_{f}(\mathbf{x},t) = \sum_{i=1}^{p} B_{i} Z_{i}^{\frac{1}{2}} \cos \left(\beta_{i}t + \varphi_{i}\right) - \sum_{n=1,3,5,\cdots}^{\infty} \frac{\cos \frac{n_{\pi}x}{2L}}{(L^{2}/n_{\pi}\alpha) \sin \frac{n_{\pi}}{2}}$$

$$X \left\{ \sum_{i=1}^{p} \frac{B_{i} \left(\frac{n^{2} \pi^{2} \alpha}{4L^{2}}\right)}{\left(\frac{n \pi \alpha}{16L^{4}} + \beta_{\pm}^{2}\right)} + \sum_{j=1}^{s} \frac{q_{oo} \alpha A_{j} \cosh \kappa L}{\kappa \left(\frac{n \pi \alpha}{4L^{2}} + \alpha \kappa^{2}\right) \left(\frac{n^{2} \pi^{2} \alpha}{4L^{2}} + \lambda_{j}\right)} \right\}$$
(15)

$$-\sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} e^{\lambda_{j}t}}{k (\alpha \kappa^{2} - \lambda_{j})} \left\{ \cosh \kappa x - \frac{\cosh(\kappa L)\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} x)}{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} L)} \right\}$$

and

$$X \left\{ \sum_{i=1}^{p} \frac{B_{i} \frac{n \pi^{2} \pi^{2} \alpha}{4 L^{2}}}{\frac{n \pi \alpha}{16 L^{4}} + \beta_{i}^{2}} - \sum_{j=1}^{s} \frac{\alpha F A_{j}}{k \left(\frac{n \pi \alpha}{4 L^{2}} + \alpha \kappa^{2}\right) \left(\frac{n \pi \alpha}{4 L^{2}} + \lambda_{j}\right)} \right\} (16)$$

$$+ \sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j}t}}{k \lambda_{j}} \left\{ 1 - \frac{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} x_{j})}{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} L_{j})} \right\}$$

where

$$Z_{i} = \frac{\cos^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} \times) \cosh^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} \times) + \sin^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} \times) \sinh^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} \times)}{\cos^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L) \cosh^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L) + \sin^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L) \sinh^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L)}$$

and

$$\varphi_{\mathbf{i}} = \tan^{-1} \frac{\sin(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{x}) \sinh(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{x})}{\cos(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{L}) \cosh(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{L})} - \tan^{-1} \frac{\sin(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{L}) \sinh(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{L})}{\cos(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{L}) \cosh(\sqrt{\frac{\beta_{\mathbf{i}}}{2\alpha}} \mathbf{L})}$$

2.2.1 Temperature Distributions. Equations (15) and (16) of the previous section can be evaluated to obtain the temperature as a function of position and time in any unit cell of a reactor if the heat generation rate, q(x,t), and the fuel surface temperature,  $\theta_{f}(L,t)$ , are known and can be expressed in the appropriate analytical form. The experimental values of these variables during applicable transient tests on the SPERT-I reactor system were obtained in graphical form from "Sub-cooled Transient Tests in the SPERT-I-A Reactor - Experimental Data" by J. C. Haire (25). Numberical power and temperature data were obtained from the graphs. These numerical data were normalized to a zero initial temperature then fit empirically by an even trigonometric series,  $\sum A_i \cos \beta_i t$ , for the temperature traces. The power traces were reduced to give the heat generation rate in the center of a central fuel element and moderator region and then fit empirically by an exponential series  $\sum_{j} A_{j} e^{\lambda_{j} t}$  . The reduction of the power data to give the appropriate heat generation rate in the fuel region was accomplished in the following manner. The SFLRT-I core contained 28 assemblies, 51 plates per assembly and an active volume of 7.523 cm<sup>3</sup> per plate. Therefore,

$$\overline{H}_{plate}(t) = \left(\frac{P(t) \times 10^{6}}{28 \text{ assemblies}}\right) \left(\frac{1 \text{ assembly}}{51 \text{ plates}}\right) \left(\frac{1 \text{ plate}}{7.523 \text{ cm}^{3}}\right)$$

$$= 97.78 \text{ P(t) watts/cm}^{3}$$
(16)

was the average heat generation rate in an average fuel plate, where P(t) is the total power in megawatts. Converting this to the required dimensions of cal/sec-cm<sup>3</sup> yielded  $\overline{H}_{plate}(t) = 23.37$  P(t) cal/sec cm<sup>3</sup>. The heat generation rate in the center of the fuel plate is found in terms of the average heat generation rate since the heat generation rate is proportional to the neutron flux distribution.

$$\overline{H}_{plate}(t) = \frac{\int_{0}^{L} C \Phi(x) A dx}{\int_{0}^{L} A dx} = \frac{\int_{0}^{L} H_{0} \cosh \kappa x dx}{L} = \frac{H_{0} \sinh \kappa L}{\kappa L}$$
(17)

where L is half-thickness of plate, 0.0254 cm, and  $\overline{H}_{0}$  is heat generation rate at center of the average fuel plate.

 $_{K}$  was determined from the neutron transport theory relationship for heavy absorbers (44),

$$\frac{\kappa}{\Sigma_{\text{tot}}} = \tanh \frac{\kappa}{\Sigma_{\text{s}}}$$
(18)

to be  $0.7973 \text{ cm}^{-1}$  .

$$\kappa L/\sinh \kappa L = \frac{0.02025}{0.02025} = 1.0$$
 (19)

Therefore,

$$\overline{H}_{of}$$
 (t) =  $\overline{H}_{plate}$ (t) = 23.37 P(t) cal/sec cm<sup>3</sup>. (20)

The correction from the average fuel element to the one of interest, a central fuel element, required a maximum to average correction. Therefore,

$$H'_{of}(t) = \overline{H}_{of}(t) \ (\Phi_{max}/\overline{\Phi}) = 23.37 \ P(t) \ (1.9) = 44.38 \ P(t) \ cal/cm^3 sec.$$
 (21)

The final correction was to assume that approximately 5% of the power was generated in the moderator. Therefore,

$$H_{of}(t) = 0.95 H'_{of}(t) = 42.16 P(t) cal/cm3 sec.$$
 (22)

The relation used to calculate the heat generation rate in the moderator was

$$q_{m}(t) = 0.05 \ \overline{q}_{f}(t) \ \frac{V_{f}}{V_{m}} = 0.05 \ \overline{q}_{f}(t) \ \frac{L_{f}}{L_{m}} = 0.05 \ H_{of}(t) \ (\frac{0.0254}{0.071755}) = 0.017695 \ H_{of}(t)$$

where  $q_f$  is average heating rate in the fuel,

V<sub>f</sub> is volume of the fuel,

 $V_{m}$  is volume of the moderator,

 $L_{f}$  is half-thickness of the fuel,

 $\boldsymbol{L}_{_{\mathrm{m}}}$  is half-thickness of the moderator,

and  $q_m$  is the heat generation rate in the moderator.

The above equation assumes that there is a flat spatial distribution of the heating rate, that approximately 5% of the total heat generation takes place in the moderator and that the average heat generation rate in the fuel is well approximated by the heat generation rate in the center of the fuel.

As previously mentioned that data from the temperature traces were fit with a finite number of terms of a Fourier series of the form

$$\sum_{n=0}^{P} b_{n} \cos \frac{2\pi n t}{a}$$
(24)

where

and

$$b_{0} = \frac{2}{a} \int_{0}^{a} y(t) dt,$$
  

$$b_{n} = 1 a \int_{0}^{a} y(t) \cos \frac{2\pi n t}{a} dt,$$
  

$$y(t) = \text{experimental temperature trace data,}$$
  

$$a = \text{interval of periodicity.}$$

The data reduced from the power traces, actually  $H_{of}(t)$ , were fitted with a finite number of terms of an exponential function of the form,

$$\sum_{j=1}^{s} A_{j} e^{\lambda} j^{t}, \qquad (25)$$

where A, and  $\lambda$ , were parameters which were determined by trial and error to give the best fit. The best fit parameters were determined by means of an IBM-650 computer program described in Appendix B. This program resulted from a very minor modification of one written by  $\dot{L}$ . R. Foulke (17). The data for  $H_{of}(t)$  and the approximating equations are shown in Figures 8 through 11.

The thermal, nuclear and geometric constants used in determining the temperature distributions are given in Table 1.

ConstantFue1Moderator $\alpha$ , Thermal Diffusivity, cm²/sec0.820.001512 $\kappa$ , Inverse Diffusion Length, cm<sup>-1</sup>0.79730.0L, Half-thickness of Region, cm0.02540.071755k, Thermal Conductivity, cal/cm sec °C0.50020.001488

Table 1. Constants Used to Evaluate the Temperature Distributions

2.2.2 Surface Heat Flow. The heat flow rate out of the fuel and into the moderator as a function of time was evaluated by forming the partial derivative with respect to position evaluating it at the outside of the respective region and multiplying by the respective thermal conductivity. The heat flow out of the fuel and into the moderator are, respectively,

$$(q/A)_{f}(t) = -k_{f} \frac{\partial \theta_{f}(x,t)}{\partial x} \bigg|_{x=L}$$
(26)

and

$$(q/A)_{m}(t) = -k_{m} \frac{\partial \theta_{m}(x,t)}{\partial x} \Big|_{x=L_{1}}$$
(27)

Evaluating the above equations yields in the fuel

$$(q/A)_{f}(t) = -k_{f} \left\{ \sum_{i=1}^{p} (\sqrt{\frac{\beta_{i}}{2\alpha}}) B_{i} (D_{i} \cos \beta_{i} t + E_{i} \sin \beta_{i} t) \right\}$$

$$+ \sum_{n=1,3,5,\dots(L^{2}/n_{\pi}\dot{\alpha})}^{\infty} - \frac{n^{2}_{\pi} \frac{2}{\alpha}}{4L^{2}} t \left( \sum_{i=1}^{p} - \frac{B_{i} \frac{2}{4L^{2}}}{\frac{4}{4} \frac{2}{2}} + \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} \cosh \kappa L}{k_{f} (\frac{n^{2}_{\pi} \alpha}{4L^{2}} + \lambda_{j})(\frac{n^{2}_{\pi} \alpha}{4L^{2}} + \alpha \kappa^{2})} \right)$$

$$+ \sum_{j=1}^{s} \frac{q_{oo} \alpha A_{j} e^{\lambda_{j} t}}{k_{f} (\alpha \kappa^{2} - \lambda_{j})} \left[ \frac{\sqrt{\frac{1}{\alpha} \cosh(\kappa L) \sinh(\sqrt{\frac{\lambda_{j}}{\alpha} L)}}{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha} L)}} - \kappa \sinh \kappa L \right] \right\}$$

.

and in the moderator

.

.

$$(q/A)_{m}(t) = -k_{m} \left\{ \sum_{i=1}^{p} \left( \sqrt{\frac{\beta_{i}}{2\alpha}} \right)^{B_{i}} \left( D_{i} \cos \beta_{i} t + E_{i} \sin \beta_{i} t \right) \right\}$$

$$\sum_{n=1,3,5,\cdots}^{\infty} \frac{-\frac{n^{2}\pi^{2}\alpha}{4L^{2}}t}{\frac{4L^{2}}{2L} e} \left( \sum_{j=1}^{s} \frac{\alpha F A_{j}}{k_{m}(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \lambda_{j})(\frac{n^{2}\pi^{2}\alpha}{4L^{2}})} + \sum_{i=1}^{p} \frac{\frac{(n^{2}\pi^{2}\alpha}{4})}{\frac{1}{4}\frac{4}{4}\frac{4}{4}} + \beta_{i}^{2} \right)$$

$$-\sum_{j=1}^{s} \frac{\alpha F A_{j}}{k_{m} \lambda_{j}} \left( \frac{\sqrt{\sum_{i=1}^{j} \sinh(\sqrt{\sum_{i=1}^{j} L})}}{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha} L})} \right) \right\},$$

where 
$$D_{i} = \frac{\cosh(\sqrt{\frac{\beta_{i}}{2\alpha}} L) \sinh(\sqrt{\frac{\beta_{i}}{2\alpha}} L) - \cos(\sqrt{\frac{\beta_{i}}{2\alpha}} L) \sin(\sqrt{\frac{\beta_{i}}{2\alpha}} L)}{\cos^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L) \cosh^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L) + \sin^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L) \sinh^{2}(\sqrt{\frac{\beta_{i}}{2\alpha}} L)}$$

and 
$$E_{1} = \frac{\cosh(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \sinh(\sqrt{\frac{\beta_{1}}{2\alpha}} L) + \cos(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \sin(\sqrt{\frac{\beta_{1}}{2\alpha}} L)}{\cos^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \cosh^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L) + \sin^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \sinh^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L)}$$

# 2.3 Reactivity Effects Due to Temperature Coefficient and Fuel Expansion

It is pointed out by Deverall and Griffing (9) that the temperature rise in the moderator in the central unit cell cannot be used directly to determine reactivity changes. "Since the temperature coefficient of reactivity,  $\alpha$ , was determined under conditions of a uniform temperature throughout the core - a condition that does not exist in a transient it is necessary to define a properly weighted average temperature. This average temperature would then produce the same change in reactivity as if an actual uniform temperature change of this amount had been made. This average is defined by

$$\overline{\Delta T} = \frac{\int \mathbf{I} (\vec{\mathbf{x}}) \Delta T (\vec{\mathbf{x}}) d\vec{\mathbf{x}}}{\int \mathbf{I} (\vec{\mathbf{x}}) d\vec{\mathbf{x}}}$$
(30)

where

 $\Delta T(\vec{x})$  is the change of temperature at position  $\vec{x}$  ,

 $I(\vec{x})$  is the statistical importance at position  $\vec{x}$ , and the integration is carried out over the whole volume of the reactor."

The authors also show that for SPERT I-A (17/28) core, the system under consideration,

$$\frac{\overline{\Delta T}}{\Delta T_{\max}} = 0.65$$
(31)

Therefore,

$$\Delta \mathbf{k} = \mathbf{0.65} \ \alpha(\mathbf{T}) \ \Delta \mathbf{T}_{\max}.$$

A value for  $\alpha$  (t) of 0.9 x  $10^{-4}$  ( $\Delta k/C^{\circ}$ ) was used yielding

$$\Delta k = (-5.85 \times 10^{-5} / C^{\circ}) \Delta T_{max}.$$
 (33)

A similar problem was faced by Forbes (13). In determining the reactivity effect due to fuel plate expansion he stated,

"In order to obtain the reactivity change, the temperature distribution and void importance function in the core must be combined to obtain the dynamic reactivity coefficient as opposed to the static coefficient which applies only to uniform void distributions. Applying the observed distribution functions for temperature and void worth, it is found that the effective average temperature rise under dynamic conditions can be obtained from the temperature rise at the center of the core by the relation

$$\Delta \theta = 0.7 \ \Delta \theta \qquad \text{max}. \tag{34}$$

The reactivity change due to plate expansion,  ${\bigtriangleup k}_{l}$  , will be

$$\Delta k_1 = (\overline{\frac{\partial k}{\partial v}}) \quad 3 \quad a \quad v \quad (0.7 \quad \Delta \theta_{max}), \qquad (35)$$

where  $(\frac{\partial k}{\partial v})$  is the average void coefficient for the core,

a is the linear expansion coefficient of aluminum,

v is the volume of the aluminum which is heated (i.e., the volume of fuel plates proper),

 $\overline{\Delta \theta}^{\circ}$  is the average temperature rise of the aluminum and  $\Delta \theta_{max}$  is the temperature rise at center of the core.

For the SPERT I-A (17/28) core the appropriate constants are the following:

$$a = 2.5 \times 10^{-5} / ^{\circ}C$$

$$\mathbf{v} = 2.8 \times 10^4 \text{ cm}^3$$
$$(\frac{\overline{\partial k}}{\partial v}) = -3.5 \times 10^{-6} \text{ } \Delta \text{k/cm}^3$$

Therefore, the expression for the reactivity change becomes

$$\Delta k_1 = (-5 \times 10^{-6} \frac{\Delta k}{o_C}) (\Delta \theta_{max}).$$
 (36)

In order to avoid erroneously taking into account the void formation due to fuel element expansion in both the temperature coefficient and in the fuel element expansion calculation, the fuel element expansion was calculated only for the temperature rise in the fuel over the temperature rise in the moderator. Therefore, the reactivity effects due to the temperature coefficient,  $\Delta k_{\rm T}$ , and due to the fuel plate expansion,  $\Delta k_{\rm E}$ , are

$$\Delta k_{\rm T}(t) = -5.85 \times 10^{-5} (\Delta k/{}^{\rm o}{\rm C}) \overline{\theta}_{\rm mod} (t)$$
(37)

and

where

$$\Delta k_{E}(t) = -5 \times 10^{-6} (\Delta k/^{\circ}C) (\overline{\theta}_{fuel}(t) - \overline{\theta}_{mod}(t))$$
(38)

$$\theta_{mod}$$
 (t) is the average temperature rise in the moderator at time t

 $\overline{\theta}_{fuel}(t)$  is the average temperature rise in the fuel at time <u>t</u> as obtained from Tables 2 through 5.

### 2.4 Reactivity Effects Due to Steam Formation

The calculation of the steam production was based on the same assumptions as those used in the "Conduction Boiling Model for Reactor Self-Shutdown" suggested by S. G. Forbes (15). In Forbes' work the steam volume,  $\frac{V}{s}$ , was assumed to be proportional to a fraction,  $\frac{f}{as}$ , of the energy,  $\frac{E}{s}$ , transferred to the moderator after the time boiling first occurred in the core. The steam volume is given by

$$V_{s} = \frac{f_{as}E_{s}}{h_{s}}, \qquad (39)$$

where  $h_{\underline{8}}$  is the energy required to form a unit volume of steam from boiling water at standard pressure (1.35 watt-sec/cm<sup>3</sup> steam). The term  $f_{\underline{as}}$  was regarded as a combination of factors involving the fraction of the energy actually forming steam during nucleate boiling (about 1%) and the fraction of the core heat transfer area, <u>A</u>, which is involved in boiling heat transfer (about 10%) (15). The reactivity effect of the steam is

$$\Delta \mathbf{k}_{\mathbf{s}} = \mathbf{V}_{\mathbf{s}} \mathbf{C}_{\mathbf{v}} = \frac{\mathbf{f}_{\mathbf{as}} \mathbf{E}_{\mathbf{s}}}{\mathbf{h}_{\mathbf{s}}} \mathbf{C}_{\mathbf{v}} , \qquad (40)$$

where  $\underline{C}_{v}$  is the void coefficient in the center of the core, ( $\underline{C}_{v} = -7.2 \text{ x}$  $10^{-6} \Delta \text{k/cm}^{3}$  for Spert I-A). In this investigation the factor  $\underline{f}_{as}$  was divided into its two components, the fraction of the core involved in boiling,  $\underline{f}_{a}$ , and the fraction of the energy actually forming steam during nucleate boiling,  $\underline{f}_{s}$ . This was done since it was possible to approximate  $\underline{f}_{a}$  directly from the fuel surface temperature and the assumption that the gross temperature distribution over the core was proportional to the bare core power distribution. It is expected that the final factor,  $\underline{f}_{s}$ , will be independent of the pulse parameters for a particular system and that it will prove essentially independent of the reactor parameters in any heterogeneous water moderated system. In effect, the final parameter,  $\underline{f}_{s}$ , was left to be calibrated by any particular pulse. The test of this model was of course a constant  $\underline{f}_{s}$ . For the two boiling runs considered, the values of  $\underline{f}_{s}$  calculated were 3.7 x  $10^{-3}$  and 3.3 x  $10^{-3}$  which differ
by less than 2%. The 2% difference is less than would be expected for the accuracy of the input data. The reactivity effect of the steam is then

$$\Delta k_{g}(t) = \left(\frac{-7.28 \times 10^{-6}}{1.35 \times 10^{-6}} \Delta k / MW - sec\right) \left(f_{a}f_{s} E_{g}(t)\right)$$
(41)  
= -1.87 x 10<sup>-2</sup>  $f_{a}E_{s}(t)$ 

 $f_a$  is fraction of core heat transfer area involved in boiling,  $f_s$  is fraction of energy actually forming steam, and  $E_s(t)$  is total energy into core after initial boiling in MV-sec. The fraction  $f_a$  was calculated assuming the gross core temperature distribution had reached a dynamic equilibrium with the power and the power distribution could be approximated by that of an equivalent bare core with an effective height,  $2Z_e$ , and radius,  $R_e$ . The gross temperature distribution in the core is then

$$\theta$$
 (r,Z) =  $\theta_0 \cdot J_0(\frac{2.4048 \text{ r}}{R_e}) \cos \frac{\pi Z}{2Z_e}$  (42)

where  $\theta_0$  is the surface temperature at the time of interest on the axial center line of a central fuel element. The maximum value of Z,  $Z_{max}$ , for which boiling will occur on any plate can then be obtained knowing the boiling temperature,  $\theta_h$ , and the axial centerline surface temperature,

$$\theta_{o} J_{o}(\frac{2.4048r}{R_{e}})$$
.

That is

$$\cos \frac{\pi Z_{\text{max}}}{2 Z_{\text{e}}} = \frac{\theta_{\text{b}}}{\theta_{\text{o}} J_{\text{o}}(\frac{2.4048r}{R_{\text{e}}})}$$
(43)

so that

$$\frac{Z_{max}}{Z_{e}} = \frac{2}{\pi} \left[ \cos^{-1} \left( \frac{\theta_{b}}{\theta_{o} J_{o}(\frac{2.4048r}{R_{e}})} \right) \right]$$

The maximum value of  $\underline{r}$  for which boiling will occur,  $\underline{r}_{max}$ , on the core axial centerline can be obtained from

$$\theta_{\rm b} = \theta_{\rm o} \quad J_{\rm o} \left(\frac{2.4048r_{\rm max}}{R_{\rm e}}\right)$$

so that

$$\frac{r_{max}}{R_e} = \frac{1}{2.4048} \qquad J_o(\frac{\theta_b}{\theta_o})$$

where  $y = J_0^{-1}(x)$  is the inverse of  $x = J_0(y)$ .

The volume fraction of the core having a fuel surface temperature above the boiling temperature is

$$f_{v} = \frac{1}{\pi R_{e}^{2} (2Z_{e})} \int_{0}^{r_{max}} 2 Z_{max} 2\pi r dr$$
$$= \frac{2}{R_{e}^{2}} \int_{0}^{r_{max}} \frac{Z_{max}}{Z_{e}} r dr$$

Making the change in variable  $\eta = r/R_e$ , the integral becomes

$$E_{v} = 2 \int_{0}^{\eta_{max}} \frac{Z_{max}(\eta)}{Z_{e}} \eta d\eta . \qquad (46)$$

Substituting the value of  $Z_{max} / Z_e$  from equation (43) yields

$$f_{v} = 4/\pi \int_{0}^{\eta_{max}} \cos^{-1} \frac{\theta_{b}}{\theta_{\infty} J_{0}(2.4048_{\eta})} \eta d\eta . \qquad (47)$$

This integration was then carried out numerically using the value of  $n_{max} = r_m / R_e$  determined from equation (44). Since there is a

(44)

constant heat transfer area per unit volume in the core then  $\underline{f}_{\underline{v}} = \underline{f}_{\underline{a}}$ . For the two boiling runs  $\underline{\tau} = 15.8$  msec and 23 msec,  $\underline{f}_{\underline{a}}$  was equal to 0.116 and 0.084, respectively.

The total energy transferred to the moderator after the time of initial boiling was obtained by considering the moderator volume associated with unit surface area in the central fuel element. The heat content of the moderator at the time boiling temperatures were reached at the surface and at the time of peak power were calculated based on the conduction model. While this model gave a somewhat erroneous temperature distribution above boiling temperatures it accurately represented the heat flow into the moderator. The difference between the moderator heat content at the time of interest and at the time boiling temperatures were first reached was the energy available for boiling per unit fuel surface area. Plots of the central fuel surface temperature and the average moderator temperature in a central element used to calculate the moderator heat contents are shown in Figures 2 and 3. The total energy available for steam formation is obtained by multiplying by the total heat transfer surface area of the core. This somewhat overestimates the total energy but is probably the best estimate of the energy of interest since the boiling region is confined to a rather small central portion of the core. Therefore

$$E_{s}(t) = (\overline{\theta}_{m}(t) - \overline{\theta}_{m}(t_{b})) C_{p}M$$

where  $C_p$  is the heat capacity of the moderator

M is the mass of the moderator in the system  $\overline{\theta}_{m}(t)$  is the average moderator



Figure 2. Graph used to determine the moderator energy for boiling calculations during a transient with an initial period of 15.8 msec.



Figure 3. Graph used to determine the moderator energy content for boiling calculations during a transient with an initial period of 23 msec.

## 3.0 RESULTS AND DISCUSSION

## 3.1 Temperature Distribution and Surface Heat Flow

The temperature distributions as obtained from equations 15 and 16 are shown in Figures 4 through 7. These plots were obtained using experimental data from four transient tests on the SPERT I-A (17/28) reactor having initial periods,  $\underline{\tau}$ , of 15.8, 23, 120, and 150 msec, respectively. The transfent burst for  $\tau$  equal 15.8 and 23 msec show regions in the moderator which have temperatures above the boiling point at a pressure of one atmosphere. It is not believed that this superheating takes place. These temperature distributions are shown since such a small portion of the moderator is above the saturation point that it is not likely that it will materially affect the temperature in the remainder of the moderator or the average moderator temperature. One possibility which must be considered in calculating the reactivity effects if that pressure transients are developed which raise the boiling point above the temperatures observed in the core. This appears not to be the case for two reasons. First, experimental measurements of the pressures do not indicate sufficient rises in pressure and second, the total reactivity compensations at peak power indicate that boiling must have taken place.

The experimental surface temperature traces and the approximate analytical fits for the four transient tests are shown in Figures 8 through 11. The parameters for the analytical fits,  $\theta(L,t) = \sum_{i=1}^{p} B_{i} \cos \beta_{i} t$ , are shown in Table 2. The experimental power traces, actually  $H_{of}(t)$ ,

and the approximate analytical fits for the same four transient tests



Figure 4. Temperature distributions,  $\theta(x,t)$ , vs position in fuel and moderator based on pu + conduction during a transient with an initial period of 15.8 msec.

.



Figure 5. Temperature distributions,  $\theta(x,t)$ , vs position in fuel and moderator based on pure conduction during a transient with an initial period of 23 msec.



Figure 6. Temperature distributions,  $\theta(x,t)$ , vs position in fuel and moderator based on pure conduction during a transient with an initial period of i20 msec.



Figure 7. Temperature distributions,  $\theta$  (x,t), vs position in fuel and moderator based on pure conduction during a transient with an initial period of 150 msec.









transient with an initial period of 23 msec.

43.



Figure 10. Interface temperatures,  $\theta_s$ , vs arbitrary time during a transient with an initial period of 120 msec.





| τ,msec            | $\beta_1$ $\beta_1$ | <sup>B</sup> 2<br>β2 | <sup>B</sup> <sub>3</sub><br>β <sub>3</sub> | <sup>B</sup> <sub>4</sub><br>β <sub>4</sub> | <sup>B</sup> <sub>5</sub><br>β <sub>5</sub> | <sup>B</sup> <sub>6</sub><br>β <sub>6</sub> | <sup>B</sup> 7<br>.β <sub>7</sub> | <sup>B</sup> <sub>8</sub><br>β <sub>8</sub> |
|-------------------|---------------------|----------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------|---------------------------------------------|
| 150               | +14.593             | -20.958              | +9.474                                      | -3.763                                      | +1.313                                      | -0.871                                      | +0.582                            | -0.447<br>21.991                            |
| 120               | +12.033             | -15.831              | +5.875                                      | -2.067                                      | +6.817                                      | -0.829<br>23.800                            | +0.399                            | -0,100                                      |
| 23                | +35.752             | -54.937              | +26.246                                     | -7.248                                      | -2.118                                      | +4.476                                      | -3.802                            | +2.413                                      |
| ľ5.8 <sub>¢</sub> | 42.074              | -59.957<br>34.906    | +25.821                                     | -9.279                                      | +1.094                                      | 0.838                                       |                                   |                                             |

Table 2. Numerical Values of Parameters for Empirical Fits of  $\theta({\rm L},t)$  Used in Equations (15) and (16)

are shown in Figures 12 through 15. The parameters for the analytical fits,  $H_{of}(t) = \sum_{j=1}^{S} A_j e^{\lambda_j t}$  are shown in Table 3.

One physical check on the solutions not required by the mathematical formulation of the problem is that the heat flow out of the fuel must equal the heat flow into the moderator. The heat flow data are shown in Figures 16 through 19. It is obvious from inspection of these data that the equivalent heat flow condition is not well satisfied. There are several possible explanations for this discrepancy. First, the heat flow data is somewhat more sensitive to the analytical fits of the surface temperature and the heat generation rates than the average temperatures. Second, the cladding between the meat and the moderator was neglected in calculating the temperature distributions. Again, the average temperatures are far less sensitive to this approximation than the heat flow calculations. Finally, it can be seen by investigating the heat flow equations that the discrepancies could be decreased by introducing a positive phase angle to the surface temperature fits. This could be attributed to a delay time in the surface temperature measurements.

The average temperatures in the fuel and moderator as a function of time were calculated by means of a numerical integration of the calculated temperature distributions. These data are given in Tables 4 through 7.

# 3.2 Reactivity Effects

The reactivity compensations

 $\Delta k_{c}(t) = \Delta k(o) - \Delta k(t)$ 



transient with an initial period of 15.8 msec.





Figure 14. Internal plate heat generation rate, H<sub>of</sub>(t), vs arbitrary time during a transient with an initial period of 120 msec.



Figure 15. Internal plate heat generation rate, H<sub>Of</sub>(t), vs arbitrary time during a transient with an initial period of 150 msec.

fuel and into the moderator vs arbitrary time during a transient Figure 16. Comparison of, Q, heat flow rates per unit area out of the with an initial period of 15.8 msec.





Figure 17. Comparision of,Q, heat flow rates per unit area out of the fuel and into the moderator vs arbitrary time during a transient with an initial period of 23 msec.







into the moderator vs arbitrary time during a transient with an initial

period of 150 msec.

| τ,msec | Δ1 λ1.                          | Α2 λ2                             | A <sub>3</sub><br>λ <sub>3</sub>  | Α <sub>4</sub><br>λ <sub>4</sub>  | A <sub>5</sub><br>λ <sub>5</sub>   |
|--------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| 150    | +1.912 7.426                    | -2.097x10 <sup>-5</sup><br>21.090 | +6.062x10 <sup>-8</sup>           |                                   |                                    |
| 120    | 9.218                           | -6.486×10 <sup>-2</sup><br>20.233 | +3.564x10 <sup>-4</sup><br>30.093 | -1.855x10 <sup>-7</sup><br>42.208 | +3.019x10 <sup>-19</sup><br>85.147 |
| 23     | 2.414x10 <sup>1</sup><br>39.761 | -4.364x10 <sup>-5</sup><br>124.03 | 9.563x10 <sup>-10</sup><br>187.61 |                                   |                                    |
| 15.8   | 1.364×10 <sup>2</sup><br>64.573 | -2.993                            |                                   |                                   |                                    |

Table 3. Numerical Values of Parameters for Empirical Fits of  $H_{of}(t)$  Used in Equations (15) and (16)

| t,sec. | $\overline{\theta}_{fuel}(t)$ °C | $\overline{\theta}_{mod}(t),^{oC}$ | $(\overline{\theta}_{\text{fuel}}, \overline{\theta}_{\text{mod}}), C$ |
|--------|----------------------------------|------------------------------------|------------------------------------------------------------------------|
| .085   | 138.53                           | 16.732                             | 121.80                                                                 |
| ,080   | 127.34                           | 13.99                              | 113.35                                                                 |
| 0.075  | 110.34                           | 10.81                              | 99.53                                                                  |
| .070   | 89,99                            | 8,664                              | 81.33                                                                  |
| .060   | 50.12                            | 4,87                               | 45.25                                                                  |
| .050   | 24.58                            | 2.446                              | 22.13                                                                  |
| .040   | 13.91                            | 1.333                              | 12.58                                                                  |
| .030   | 8.51                             | 0.692                              | 7.82                                                                   |
| .020   | 3.52                             | . 271                              | 3.25                                                                   |
| .010   | 1.039                            | 0767                               | . 962                                                                  |

Table 4. Average Temperature Rise in the Fuel and Moderator for  $\tau$  = 15.8 msec.

Table 5. Average Temperature Rise in the Fuel and Moderator for  $\tau$  = 23 msec.

.

| t,sec. | $\overline{\theta}_{fuel}(t), ^{o}C$ | $\overline{\theta}_{mod}(t), ^{o}C$ | $(\overline{\theta}_{\texttt{fuel}} - \overline{\theta}_{\texttt{mod}}), ^{\circ}C$ |
|--------|--------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|
| . 16   | 117.76                               | 16.832                              | 100.93                                                                              |
| .15    | 108.71                               | 13.371                              | 95 <b>.3</b> 4                                                                      |
| .14    | 86.92                                | 9.764                               | 77.16                                                                               |
| .13    | 59.48                                | 6.459                               | 53.02                                                                               |
| .12    | 36.58                                | 4.218                               | 32.35                                                                               |
| .11    | 23.17                                | 2.759                               | 20.41                                                                               |
| .10    | 16.28                                | 1.869                               | 15.21                                                                               |
| .09    | 11.25                                | 1.231                               | 10.02                                                                               |
| .05    | 3.13                                 | .260                                | 2.87                                                                                |
|        |                                      |                                     |                                                                                     |

| t,sec. | $\overline{\theta}_{\texttt{fuel}}(\texttt{t}), ^{o}C$ | $\overline{\theta}_{mod}(t), ^{o}C$ | $(\overline{\theta}_{fuel} - \overline{\theta}_{mod}), ^{o}C$ |
|--------|--------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|
|        |                                                        |                                     |                                                               |
| .59    | 32.66                                                  | 8.572                               | 24.09                                                         |
| .57    | 29.95                                                  | 7.738                               | 22.21                                                         |
| .55    | 27.33                                                  | 6.935                               | 20.39                                                         |
| .50    | 21.15                                                  | 5.212                               | 15.94                                                         |
| .45    | 16.40                                                  | 3.834                               | 12.57                                                         |
| .40    | 11.98                                                  | 2.660                               | 9.32                                                          |
| .35    | 7.84                                                   | 1.744                               | 6.10                                                          |
| .30    | 4.89                                                   | 1.143                               | 3.75                                                          |
| . 20   | 2.59                                                   | .534                                | 2.06                                                          |
| .10    | 1.17                                                   | .164                                | 1.01                                                          |
|        |                                                        |                                     |                                                               |

| Table | 6. | Average  | Temper | atur | e R | ise | in   | the  | Fue1 |
|-------|----|----------|--------|------|-----|-----|------|------|------|
|       |    | and Mode | erator | for  | τ=  | 120 | ) ms | sec. |      |

| Table | 7. | Average Temperature Rise in the Fu   | ue1 |
|-------|----|--------------------------------------|-----|
|       |    | and Moderator for $\tau$ = 150 msec. |     |

| t,sec. | $\forall$ fue1(t), C | $\theta_{mod}(t), C$ | $(\theta_{fuel}^{-\theta_{mod}}), C$ |
|--------|----------------------|----------------------|--------------------------------------|
| . 90   | 44,46                | 12,994               | 31.47                                |
| .85    | 37.49                | 10.630               | 26.86                                |
| .80    | 30.87                | 8.510                | 22.36                                |
| .75    | 25.23                | 6.678                | 18.55                                |
| .70    | 20.31                | 5.111                | 15.20                                |
| .65    | 15.70                | 4.644                | 11.06                                |
| .60    | 11.48                | 2.750                | 8.73                                 |
| • 55   | 8.11                 | 1.989                | 6.12                                 |
| .50    | 4.86                 | 1.472                | 4.39                                 |
| .40    | 3.58                 | .834                 | 2.75                                 |
| .30    | 1.91                 | .431                 | 1.48                                 |
| .10    | .602                 | .0652                | . 537                                |
|        |                      |                      |                                      |

where  $\Delta k(o)$  is the initial reactivity insertion to start the transient and  $\Delta k(t)$  is the excess reactivity of the system at any time, <u>t</u>, are shown as a function of time in Tables 8 through 11. Tables 8 through 11 also show the components of the compensated reactivity due to the temperature coefficient  $\Delta k_T(t)$ , fuel plate expansion  $\Delta k_E(t)$  and steam formation,  $\Delta k_s(t)$ . The excess reactivity  $\Delta k(t)$  for two of the transients, <u>T</u> equals 120 and 150 msec respectively, is compared with equivalent data obtained from a kinetic analysis of the power burst shapes by Miller (34) in Figures 20 and 21. The reactivity compensation at peak power, is shown along with comparable data from the kinetic analysis in Figure 22. Figure 22 also includes the components of the reactivity compensations for a model suggested by S. G. Forbes (15) as well as for the model suggested in this report.

# 3.3 Conclusions

The forms of all of the solutions shown in equations (9) through (16) are such that three terms are developed. The first term represents the steady state solution resulting from the surface temperature boundary condition. The second term includes the transient portion of both the surface temperature boundary condition and the forcing function, the heat generation rate. The final term represents the steady state or equilibrium solution resulting from the forcing function. It has been common in several previous works (27,36) to assume that the temperature is separable in space and time. It can be seen from the derived solutions that this will be a good approximation of the temperature distribution only when the second term, the transient solution, has died out. The



Figure 20. Comparison of calculated percent excess reactivities,∆k, and those obtained by kinetic analysıs vs arbitrary time during a transient with an initial period of I20 msec.



Figure 21. Comparison of calculated percent excess reactivities,  $\Delta k$ , and those obtained by kinetic analysis vs arbitrary time during a transient with an initial period of 150 msec.



Figure 22. Peak power compensated reactivities ,  $\Delta k_c$ , vs reciprocal period,  $\alpha$ .

| t,sec                                                                                  | ∆k <sub>T</sub> (t)                                                                                                                                                                                                                                                                                 | ∆k <sub>E</sub> (t)                                                                                                                                                                                                                                                         | ∆k <sub>S</sub> (t)                                                                                                                                                    | ∆k <sub>C</sub> (t)                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.084<br>0.080<br>0.075<br>0.070<br>0.060<br>0.050<br>0.040<br>0.030<br>0.020<br>0.010 | $\begin{array}{c} 0.979 \times 10^{-3} \\ 0.818 \times 10^{-3} \\ 0.632 \times 10^{-3} \\ 0.632 \times 10^{-3} \\ 0.285 \times 10^{-3} \\ 0.285 \times 10^{-3} \\ 0.143 \times 10^{-3} \\ 0.078 \times 10^{-3} \\ 0.050 \times 10^{-3} \\ 0.016 \times 10^{-3} \\ 0.004 \times 10^{-3} \end{array}$ | $\begin{array}{c} 0.609 \times 10^{-3} \\ 0.546 \times 10^{-3} \\ 0.498 \times 10^{-3} \\ 0.407 \times 10^{-3} \\ 0.226 \times 10^{-3} \\ 0.111 \times 10^{-3} \\ 0.063 \times 10^{-3} \\ 0.039 \times 10^{-3} \\ 0.016 \times 10^{-3} \\ 0.005 \times 10^{-3} \end{array}$ | $1.86 \times 10^{-3}$<br>$1.21 \times 10^{-3}$<br>$0.46 \times 10^{-3}$<br>$0.13 \times 10^{-3}$<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | $3.45 \times 10^{-3}$ $2.60 \times 10^{-3}$ $1.59 \times 10^{-3}$ $1.22 \times 10^{-3}$ $0.51 \times 10^{-3}$ $0.25 \times 10^{-3}$ $0.14 \times 10^{-3}$ $0.08 \times 10^{-3}$ $0.03 \times 10^{-3}$ $0.01 \times 10^{-3}$ |

Table 8. Compensated Reactivities for  $\tau = 15.8 \text{ msec Run}$ 

Table 9. Compensated Reactivites for  $$\tau=23$$  msec Run

| t,sec                                                                  | ∆k <sub>T</sub> (t)                                                                                                                                                                                                                                 | ∆k <sub>E</sub> (t)                                                                                                                                                                                                                                 | ∆k <sub>S</sub> (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∆k <sub>C</sub> (t)                                                                                                                                                                                   |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.16<br>0.15<br>0.14<br>0.13<br>0.12<br>0.11<br>0.10<br>0.09 "<br>0.05 | $\begin{array}{c} 0.985 \times 10^{-3} \\ 0.782 \times 10^{-3} \\ 0.571 \times 10^{-3} \\ 0.378 \times 10^{-3} \\ 0.247 \times 10^{-3} \\ 0.161 \times 10^{-3} \\ 0.109 \times 10^{-3} \\ 0.072 \times 10^{-3} \\ 0.015 \times 10^{-3} \end{array}$ | $\begin{array}{c} 0.505 \times 10^{-3} \\ 0.468 \times 10^{-3} \\ 0.386 \times 10^{-3} \\ 0.265 \times 10^{-3} \\ 0.162 \times 10^{-3} \\ 0.102 \times 10^{-3} \\ 0.076 \times 10^{-3} \\ 0.050 \times 10^{-3} \\ 0.014 \times 10^{-3} \end{array}$ | $1.21 \times 10^{-3} \\ 0.54 \times 10^{-3} \\ 0.003 \times 10^{-3} \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ $ | $2.70 \times 10^{-3}$ $1.79 \times 10^{-3}$ $0.96 \times 10^{-3}$ $0.64 \times 10^{-3}$ $0.41 \times 10^{-3}$ $0.26 \times 10^{-3}$ $0.18 \times 10^{-3}$ $0.12 \times 10^{-3}$ $0.03 \times 10^{-3}$ |

| t,sec                                                                        | ∆k <sub>T</sub> (t)                                                                                                                                                                                                                                                         | $\Delta k_{E}(t)$                                                                                                                                                                                                                                                                                   | ∆k <sub>S</sub> (t)                                                | ∆k <sub>C</sub> (t)                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.59<br>0.57<br>0.55<br>0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.20<br>0.10 | $\begin{array}{c} 0.501 \times 10^{-3} \\ 0.453 \times 10^{-3} \\ 0.406 \times 10^{-3} \\ 0.305 \times 10^{-3} \\ 0.224 \times 10^{-3} \\ 0.156 \times 10^{-3} \\ 0.102 \times 10^{-3} \\ 0.067 \times 10^{-3} \\ 0.031 \times 10^{-3} \\ 0.010 \times 10^{-3} \end{array}$ | $\begin{array}{c} 0.120 \times 10^{-3} \\ 0.111 \times 10^{-3} \\ 0.100 \times 10^{-3} \\ 0.080 \times 10^{-3} \\ 0.063 \times 10^{-3} \\ 0.047 \times 10^{-3} \\ 0.047 \times 10^{-3} \\ 0.030 \times 10^{-3} \\ 0.019 \times 10^{-3} \\ 0.010 \times 10^{-3} \\ 0.005 \times 10^{-3} \end{array}$ | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | $\begin{array}{c} 0.621 \times 10^{-3} \\ 0.564 \times 10^{-3} \\ 0.506 \times 10^{-3} \\ 0.385 \times 10^{-3} \\ 0.287 \times 10^{-3} \\ 0.203 \times 10^{-3} \\ 0.132 \times 10^{-3} \\ 0.086 \times 10^{-3} \\ 0.041 \times 10^{-3} \\ 0.015 \times 10^{-3} \end{array}$ |

Table 10. Compensated Reactivities for  $\tau = 120$  msec Run

Table 11. Compensated Reactivities for  $\tau$  = 150 msec Run

| t,sec                                                                                        | ∆k <sub>T</sub> (t)                                                                                                                                                                                                                                                                                                         | ∆k <sub>E</sub> (t)                                                                                                                                                                                                                                                                                                                                 | ∆k <sub>S</sub> (t)                                                | ∆k <sub>C</sub> (t)                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.90<br>0.85<br>0.80<br>0.75<br>0.70<br>0.65<br>0.60<br>0.55<br>0.50<br>0.40<br>0.30<br>0.10 | $\begin{array}{c} 0.760 \times 10^{-3} \\ 0.622 \times 10^{-3} \\ 0.498 \times 10^{-3} \\ 0.391 \times 10^{-3} \\ 0.299 \times 10^{-3} \\ 0.272 \times 10^{-3} \\ 0.161 \times 10^{-3} \\ 0.116 \times 10^{-3} \\ 0.086 \times 10^{-3} \\ 0.049 \times 10^{-3} \\ 0.025 \times 10^{-3} \\ 0.004 \times 10^{-3} \end{array}$ | $\begin{array}{c} 0.157 \times 10^{-3} \\ 0.134 \times 10^{-3} \\ 0.112 \times 10^{-3} \\ 0.093 \times 10^{-3} \\ 0.076 \times 10^{-3} \\ 0.055 \times 10^{-3} \\ 0.055 \times 10^{-3} \\ 0.044 \times 10^{-3} \\ 0.031 \times 10^{-3} \\ 0.022 \times 10^{-3} \\ 0.014 \times 10^{-3} \\ 0.007 \times 10^{-3} \\ 0.003 \times 10^{-3} \end{array}$ | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | $\begin{array}{c} 0.915 \times 10^{-3} \\ 0.756 \times 10^{-3} \\ 0.610 \times 10^{-3} \\ 0.6484 \times 10^{-3} \\ 0.375 \times 10^{-3} \\ 0.327 \times 10^{-3} \\ 0.205 \times 10^{-3} \\ 0.147 \times 10^{-3} \\ 0.108 \times 10^{-3} \\ 0.063 \times 10^{-3} \\ 0.032 \times 10^{-3} \\ 0.007 \times 10^{-3} \end{array}$ |

numerical results obtained from evaluating the set of equations (9) and (10) and the set of equations (15) and (16) show that the transient term is negligible for all times of interest in the fuel region but it makes a significant contribution for all times of interest in the moderator.

In one sense it would be more informative to investigate the reactor burst behavior using the minimum of input data (i.e. the physical dimensions and the initial reactivity insertion) and test for corroboration of all of the experimentally measured variables. However, it seemed better in analyzing for the shutdown mechanisms to use as much of the data as possible' leaving only the compensated reactivities as a check on the validity of the model. The compensated reactivity was established as a criterion because of its extreme sensitivity to the state of the system and because of its direct influence on the safety of nuclear reactors.

The results of this work are two-fold. First, a more accurate view of distribution of the energy during a transient burst is presented and second, 'a model based on the energy distribution was shown to predict the reactivity effects as well as any of the existing models. The advantage of this model is that assuming the fractional energy associated with void formation can be determined as the mechanism of transient boiling becomes better understood, the final empiricism can be removed from the model.

# 3.4 Further Investigation

There are several avenues of attack for further work in determining the inherent shutdown mechanisms. First, additional data on Spert I-A should be tested on the model proposed in this report to make certain that it is as capable of determining reactivity effects as these preliminary runs indicate. Second, application of this model to any new system will mean that the surface temperatures and power traces would not be available. This problem can be circumvented by studying the two region conduction problem subject only to the heat generation rate forcing function. The heat generation rate can be calculated from the initial reactivity insertion, allowing a feedback from the induced negative reactivity to the heat generation rate through the reactor kinetics equations. This suggests an analog solution or possibly a digital analog combination. Third, application of the heat transfer equations developed in this report should be used to determine the mode of heat transfer during transient operation by investigating a single plate in as much detail as possible. The application of this study can probably be done more simply using electrical heating. Fourth, a detailed study of nucleate boiling at low heat fluxes is necessary before complete understanding of the mechanisms of shutdown can be obtained. This study should provide a direct measurement of the fraction of the energy used to produce steam, f. Fifth, work on this model should be extended to investigate further available evidence on other Spert reactors to see if it will account for changes in other parameters such as neutron lifetime, pressure and coolant flow. Finally, experimental and analytical work should be done on the zircomium hydride moderated Triga systems since qualitatively they show the greatest inherent safety that has been demonstrated to date.

#### ACKNOWLEDGEMENT

The author wishes to express his gratitude to Dr. W. R. Kimel and Dr. J. O. Mingle under whose direction this work has been done. In addition, I wish to extend sincerest thanks to Dr. C. A. Halijak and Professor R. C. Bailie for their efforts in the most difficult phases of this work. Sincere appreciation is given to the Kansas State University Engineering Experiment Station, the Department of Nuclear Engineering and the National Science Foundation for their financial support of this research.

- Arpaci, V. S. and Clark, J. A. Dynamic Response of Heat Exchangers Having Internal Heat Sources. J. Heat Transfer, <u>81</u>, 253-66 (1959).
- Bright, G. O. et. al. An Elementary Model for Reactor Burst Behavior.IDO-16393 (August 1957).
- Bonilla, C. F. Nuclear Engineering. McGraw-Hill (1957).
- Chernick, J. BNL-173 (T-30) (1951).
- Clark, E. T. Analysis of Initial Shutdown in SPERT-I. NYO-4726 (1956).
- Clark, E. T. Initial Shutoff in a SPERT Type Reactor Transient. Paper presented at the June 1957 meeting of the American Nuclear Society.
- Deitrich, J. R. and Layman, D. C. Transients and Steady State Characteristics of a Boiling Reactor The BORAX Experiments. AECD-3840 (1953).
- Deitrich, J. R. Experimental Investigations of the Self-limitation of Power During Reactivity Transients in a Subcooled, Water-moderated Reactor. AECD-3688 (1954).
- 9. Deverall, L. I. and Griffing, G. W. Kinetic Studies on the SPERT-I Reactor, II, On the Initial Shutdown of the SPERT-I Reactor for Periods Greater Than Fifty Milliseconds. IDO-16404 (December 1957).
- Deverall, L. I. and Griffing, G. W. Kinetic Studies on the SPERT-I Reactor, I, Initial Behavior by the Energy Model. IDO-16397 (April 1958).
- 11. Epel, L. G. Transient Temperatures in Infinite Plates, Infinite Cylinders and Spheres Following a Simultaneous Step Change in Internal Heat Generation Rate, Coolant Temperature and Heat Transfer Coefficient. ORNL-2597 (1958).
- 12. Ermakov, V. S. and Ivanov, V. Investigations of Non-Uniform Heat Transfer in Nuclear Reactor Heat Releasing Elements. Inzhener, Fiz. Zhur., Akad, Nauk Belorus. S.S.R., <u>1</u>, No. 12, 960112 (1958).
- 13. Forbes, S. G. Quarterly Progress Report. IDO-16452, p. 38 (September 1958).
- 14. Forbes, S. G. Conduction Boiling Model - Quarterly Progress Report. IDO-16489, pp. 71-88 (January 1959).
- 15. Forbes, S. G. Calculation of Thermal Shutdown Effects in SPERT I-A. Quarterly Progress Report. IDO-16512 (May 1959).
- 16. Forbes, S. G., et. al. Analysis of Self-Shutdown Behavior in the SPERT-I Reactor. IDO-16528 (July 1959).
- 17. Foulke, L. R. K.S.U. Pile Standardization and Study of Slowing Down and Diffusion Models. Kansas Engineering Experiment Station Special Report Number 8, (1961).
- 18. French, P. Analytical Treatment of Transient Heat Conduction During Reactor Power Excursions - Quarterl Progress Report. IDO-16512 (May 1959).
- 19. French, P. Insulated Core Experiment - Quarterly Progress Report. IDO-16539 (November 1959).
- 20. French, P. and Forbes, S. G. Preliminary Moderator Expulsion Experiments. IDO-16539 (November 1959).
- 21. Fuchs, Klaus Efficiency for Very Slow Assembly. LA-596 (August 1946).
- 22. Glasstone, S. and Edlund, M. C. Elements of Nuclear Reactor Theory. Van Nostrand (1952).
- 23. Graham, R. H. and Boyer, D. G. AEC Steps Up Reactor Safety Experiments. Nucleonics. Vol. 14, No. 3, (1956).
- 24. Greenspan, H. Argonne Quarterly Report for September - November 1952. ANL-4951 (1952).
- 25. Haire, J. C. Subcooled Transient Tests in the SPERT-I Reactor - Experimental Data. IDO-16343 (July 1958).

26. Horning, W. A. Theory of Power Transient in the SPERT-I Reactor. IDO-16434 (January 1958). 27. Iriarte, M., Jr. An Accurate Transfer Function for the Dynamic Analysis of Temperature and Heat Release in Cylindrical Fuel Elements. Nuclear Science and Engineering. 7 26-32 (1960). 28. Kaminsky, S. Study of Nucleation and Bubble Dynamics to Evaluate Void Shutdown Mechanism in a Heterogeneous Water Moderated Reactor. KLX-1809 (May 1959). Kattwinkel, Willy 29. The Question of the Temperature Distribution in a Bare Cylindrical Fuel Element of Great Length in the Non-steady State Heating Up. Atomkern-Energie, 3, 342-5 (1958). 30. Kirchenmayer, A. The Transient Behavior of the Heat Transfer from Fuel Elements to a Coolant of Constant (Boiling) Temperature in a One Dimensional Heat Flux. Atomkern-Energie, 3, 337-41 (1958). 31. Margulies, R. S. GNL-200 (T-47) (1954). 32. McMurray, W. L. Temperature Distribution in a Fuel Plate with Exponentially Rising Power. IDO-16214 (March 1955). 33. Mickley, H. S., Sherwood, T. K. and Reed, C. E. Applied Mathematics in Chemical Engineering. McGraw-Hill (1957). 34. Miller, R. W. Calculations of Reactivity Behavior During SPERT-I Transients. IDO-16317, (June 1957). 35. Miller, R. W. The "Clipped Exponential" Power Burst Model - Quarterly Progress Report. IDO-16489, pp. 88-96 (January 1959). 36. Miller, R. W. Photographic Investigations of Reactor Shutdown Mechanisms. IDO-16584 (April 1960). Murray, Raymond L. 37. Nuclear Reactor Physics. Prentice-Hall (1957). 38. Nicholson, R. B. The Doppler Effect in Fast Neutron Reactors. APDA-139 (1960).

- 39. Nyer, W. E. et. al. Experimental Investigations of Reactor Transients. IDO-16285 (1956).
- 40. Stein, R. P. Transient Heat Transfer in Reactor Coolant Channels. AECU-3600 (1957).
- 41. Technical Foundations of TRIGA. General Atomic, Division of General Dynamic GA-471 (1958).
- 42. Walker, R. An Investigation of the Poison Model for Reactor Self-Shutdown -Quarterly Progress Report. IDO-16489, p. 960110 (January 1959).
- 43. Wilson, T. R. An Engineering Description of the SPERT-I Reactor Facility. IDO-16318.
- 44. Wylie, C. R., Jr. Advanced Engineering Mathematics. McGraw-Hill (1960).

# APPENDICES

### APPENDIX A

Derivations of Solutions for the Temperature Distribution in the Fuel and Moderator of a Unit Cell

The differential equations governing the time dependent temperature distribution in the fuel and moderator are

$$\nabla^{2} \theta_{f}(\mathbf{x},t) + \sum_{j=1}^{s} \frac{q_{\infty} \cosh(\kappa \mathbf{x}) a_{j} e^{\lambda_{j} t}}{k} = \frac{1}{\alpha} \frac{\partial \theta(\mathbf{x},t)}{\partial t}$$
(A-1)

and

$$\nabla^{2} \theta_{m}(\mathbf{x},t) + \sum_{j=1}^{s} \frac{\mathbf{F} \mathbf{A}_{j} \mathbf{e}^{\lambda} \mathbf{j}^{t}}{\mathbf{k}} = \frac{1}{\alpha} \frac{\partial \theta_{m}(\mathbf{x},t)}{\partial t}$$
(A-2)

The differential equations, (A-1) and (A-2), are most easily solved by use of Laplace transforms. Considering the fuel region first and transforming the time variable in equation (1) yields

$$\nabla^2 \Phi_{\mathbf{f}}(\mathbf{x}, \mathbf{S}) + \sum_{j=1}^{\mathbf{S}} \frac{q_{\infty} \cosh(\kappa \mathbf{x}) A_j}{k (\mathbf{S} - \lambda_j)} = \frac{1}{\alpha} \left[ \mathbf{S} \varpi_{\mathbf{f}}(\mathbf{x}, \mathbf{S}) - \Theta(\mathbf{x}, \mathbf{o}) \right]. \quad (A-3)$$

 $\Phi(\mathbf{x}, \mathbf{S})$  is the transform of  $\overline{\theta}(\mathbf{x}, \mathbf{t})$ , and  $\overline{\theta}(\mathbf{x}, \mathbf{o})$  is the initial temperature distribution to be flat, distribution. Assuming the initial temperature distribution to be flat, the equation can be normalized by letting  $\overline{\theta}(\mathbf{x}, \mathbf{o})$  equal zero. Thus  $\overline{\theta}(\mathbf{x}, \mathbf{t})$  is the temperature excess in the fuel over the initial temperature. The initially flat temperature distribution in the fuel is unreal but it is a good approximation if the transients are started from low power levels.

Letting  $\underline{\theta(x,o)} = 0$  and rearranging the terms in equation (A-3) yields

$$\nabla^{2} \Phi_{\mathbf{f}}(\mathbf{x},\mathbf{S}) - \frac{\mathbf{S}}{\alpha} \Phi_{\mathbf{f}}(\mathbf{x},\mathbf{S}) = -\sum_{j=1}^{\mathbf{S}} \frac{q_{oo} \cosh(\kappa \mathbf{x}) A_{j}}{k (\mathbf{S} - \lambda_{j})}$$
(A-4)

The usual one-dimensional slab assumption is made and  $\bigtriangledown^2$  becomes  $\frac{\partial^2}{\partial x^2}$ . This assumption neglects the axial flow of heat in the fuel compared to the radial. While this might be the limiting assumption in the analysis, it is probably not seriously in error.

The homogeneous solution to the one dimensional form of equation (A-4) is well known and is derived in many standard texts. This solution is

$$\Phi_{\rm fh}$$
 (x,S) = A cosh  $\sqrt{\frac{\rm S}{\alpha}}$  x + B sinh  $\sqrt{\frac{\rm S}{\alpha}}$  x (A-5)

The particular solution is found by the method of undetermined coefficients and is

$$\Phi_{fp}(\mathbf{x},S) = \sum_{j=1}^{S} \frac{q_{oo} \alpha A_j \cosh \kappa \mathbf{x}}{k(S-\lambda_j)(S-\alpha\kappa^2)}$$
(A-6)

Therefore,

$$\Phi_{fp}(\mathbf{x},S) = A \cosh \sqrt{\frac{s}{\alpha}} \mathbf{x} + B \sinh \sqrt{\frac{s}{\alpha}} \mathbf{x} + \sum_{j=1}^{s} \frac{q_{oo} \alpha A_j \cosh(\kappa \mathbf{x})}{k(S-\lambda_j)(S-\alpha\kappa_2)}. \quad (A-7)$$

The boundary conditions used to determine the constants <u>A</u> and <u>B</u> are as follows First, the temperature gradient in the center of the region (x = 0) is zero for all time. Second, the surface temperature is matched with the experimental data. The surface temperature is expressed as a sum of exponentials,  $\sum_{p}^{p} B_{i} e^{\beta_{i}t}$  or a Fourier series,  $\sum_{p}^{p} B_{i} \cos \beta_{i}t$ . First consider the solution in which the exponential i=1

boundary condition is used.

The transformed boundary conditions are

$$\mathcal{L} \left\{ \frac{\partial \theta_{f}(\mathbf{x},t)}{\partial \mathbf{x}} \right\} = \mathcal{L} \left\{ 0 \right\} \text{ or } \frac{d\Phi_{f}(\mathbf{x},S)}{d\mathbf{x}} = 0 \qquad (A-8)$$

$$\mathbf{x}=0 \qquad \mathbf{x}=0$$

and

$$\mathcal{J}\left\{\theta_{f}(\mathbf{L},\mathbf{t})\right\} = \mathcal{J}\left\{\sum_{i=1}^{p} B_{i} e^{\beta_{i}t}\right\} \text{ or } \Phi_{f}(\mathbf{L},\mathbf{S}) = \sum_{i=1}^{p} \frac{B_{i}}{(\mathbf{S}-\beta_{i})} . \quad (A-9)$$

Applying equation (A-8) to equation (A-7) shows that <u>B</u> must equal zero. <u>A</u> is determined by evaluating equation (A-9). The solution in the transform domain is shown in equation (A-10).

$$\begin{split} \mathfrak{d}_{\mathbf{f}}(\mathbf{x},\mathbf{S}) &= \sum_{i=1}^{p} \frac{B_{i} \cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{x}}{(\mathbf{S}-\beta_{i}) \cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{L}} - \sum_{j=1}^{s} \frac{q_{oo} \alpha A_{j}}{k(\mathbf{S}-\lambda_{j})(\mathbf{S}-\alpha\kappa^{2})} \left\{ \cosh (\kappa \mathbf{x}) - \frac{\cosh (\kappa \mathbf{L}) \cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{x}}{\cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{L}} \right\} \end{split}$$

$$(A-10)$$

Transforming equation (A-10) back into the time domain is greatly simplified since no poles of order greater than one occur in the inversion integral. It is interesting to note that it is the occurence of higher order poles which complicates the solution to the multiple region problem. Equation (A-11), shown below, (33) can be used to invert transformed functions of the form  $\overline{f}(s) = j(s) / g(s)$  if the degree of g(s) is at least one greater than j(s) and only poles of order one occur,

$$\mathcal{J} \stackrel{-1}{=} \left\{ \overline{\mathbf{f}}(\mathbf{s}) \right\} = \sum_{n=1}^{m} \frac{\mathbf{j}(\rho_n)}{\mathbf{l}(\rho_n)} e^{\rho_n t}$$
(A-11)

 $\frac{\rho_n}{r}$  denotes the n simple poles of  $\overline{f(S)}$  and  $\underline{l(\rho_n)}$  denotes the value of  $\frac{d\underline{l(S)}}{dS}$  evaluated at  $S = \rho_n$ .

The inversion of equation (A-10) is shown in detail below. First consider the third term of equation (A-10).

$$\mathcal{L}^{-1}\left\{\sum_{j=1}^{s} \frac{q_{\infty} \alpha \cosh \kappa L A_{j} \cosh \sqrt{\frac{s}{\alpha} x}}{k(s-\lambda_{j})(s-\alpha\kappa^{2}) \cosh \sqrt{\frac{s}{\alpha} L}} = \sum_{j=1}^{s} \frac{q_{\infty} \alpha \cosh (\kappa L)A_{j}}{k} \mathcal{L}^{-1}\left\{I\right\} \quad (A-12)$$

The obvious poles of <u>I</u> are at  $\underline{S} = \frac{\lambda}{j}$  and  $S = \frac{\alpha \kappa^2}{\alpha}$ . Additional roots of the denominator exist for  $\cosh \sqrt{\frac{3}{\alpha}} L = 0$ . The roots of  $\cosh \sqrt{\frac{3}{\alpha}} L$  are obtained by making the transformation  $S = -\mathcal{A}$ . This is done since  $\cosh \sqrt{\frac{S}{\alpha}} L$  cannot equal zero for real values of the argument and  $\alpha$  and L are always positive, real constants.

$$\cosh \sqrt{\frac{\mathbf{s}}{\alpha}} \mathbf{L} = \cosh \mathbf{i} \sqrt{\frac{\mathbf{z}}{\alpha}} \mathbf{L} = \cos \sqrt{\frac{\mathbf{z}}{\alpha}} \mathbf{L} = 0$$
 (A-13)

therefore

$$\sqrt{\frac{-4}{\alpha}} R_{0} = \frac{n\pi}{2} + n \text{ odd}$$

$$\mathcal{A}_{n} = \frac{n^{2}\pi^{2}\alpha}{4L^{2}}$$

$$S_{n} = -\frac{n^{2}\pi^{2}\alpha}{4L^{2}}$$
(A-14)

Evaluating  $\chi^{-1}$  {I} by means of equation (A-11) at the poles  $\rho = \alpha \kappa^2$ ,  $\rho = \lambda_j$  and  $\rho = -\frac{n^2 \pi^2 \alpha}{4L^2}$  yields equation (A-15).

$$\mathcal{L}^{-1}\left\{I\right\} = \frac{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} \times)e^{-\lambda_{j}t}}{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} L)(\lambda_{j} - \alpha\kappa^{2})} + \frac{\cosh(\kappa x) e^{-\alpha\kappa^{2}t}}{\cosh(\kappa L) \alpha^{\kappa^{2}-\lambda_{j}}}$$

$$+ \sum_{n=1,3,5...}^{\infty} \frac{\cos\frac{n\pi x}{2L}}{(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \lambda_{j})(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \alpha\kappa^{2})(\frac{2L^{2}}{n\pi\alpha})\sin(\frac{n\pi}{2})}$$
(A-15)

Considering the second term in equation (A-10), the inversion as obtained through use of equation (A-11) is given in equation (A-16).

$$\mathcal{L}^{-1} \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j}}{k} \frac{1}{(s-\lambda_{j})(s-\alpha\kappa^{2})} = \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j}}{k} \left(\frac{e^{\lambda_{j}t}}{(\lambda_{j}-\alpha\kappa^{2})} + \frac{e^{\alpha\kappa^{2}t}}{(\alpha\kappa^{2}-\lambda_{j})}\right) (A-16)$$

In a similar manner the first term of equation (A-10), the inversion, again using equation (A-11), is given in equation (A-17).

$$\mathcal{A}^{-1} \left\{ \sum_{i=1}^{p} \frac{C_{i} \cosh \sqrt{\frac{s}{\alpha}} \mathbf{x}}{(s-\beta_{i}) \cosh \sqrt{\frac{s}{\alpha}} \mathbf{L}} \right\} = \sum_{i=1}^{p} \frac{B_{i} \cosh(\sqrt{\frac{\beta_{i}}{\alpha}} \mathbf{x}) e^{-\beta_{i}t}}{\cosh(\sqrt{\frac{\beta_{i}}{\alpha}} \mathbf{L})} + \sum_{i=1}^{p} \sum_{n=1,3,5,\cdots}^{\infty} \frac{B_{i} \cos \frac{n\pi \mathbf{x}}{2\mathbf{L}}}{(-\frac{n^{2}\pi^{2}\alpha}{4\mathbf{L}^{2}} - \beta_{i}) \frac{\mathbf{L}^{2}}{n\pi\alpha}} (\sin \frac{n\pi}{2})$$
(A-17)

The temperature distribution in the fuel plate,  $\frac{\theta_f(\mathbf{x},t)}{f}$  is obtained by substituting equation (A-15) in equation (A-12) and adding equations (A-12), (A-16) and (A-17). The result is

$$\theta_{f}(x,t) = \sum_{i=1}^{p} \frac{B_{i} \cosh \sqrt{\frac{\beta_{i}}{\alpha} x}}{\cosh \sqrt{\frac{\beta_{i}}{\alpha} L}} e^{\beta_{i}t} - \sum_{n=1,3,5,\cdots}^{\infty} \frac{\cos \frac{n\pi x}{2L} e^{-\frac{n-\pi-\alpha}{4L^{2}}t}}{4L^{2}}$$

$$X \left\{ \sum_{i=1}^{P} \frac{B_{i}}{\frac{n}{2} - \frac{\alpha}{4L^{2}}} + \beta_{i} + \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} \cosh \kappa L}{k(\frac{n}{2} - \frac{\alpha}{4L^{2}} + \lambda_{j})(\frac{n}{4L^{2}} - \alpha \kappa^{2})} \right\}$$
(A-18)

$$-\sum_{j=1}^{s} \frac{A_{j} q_{oo} \alpha e^{\lambda} j^{t}}{k(\alpha \kappa^{2} - \lambda_{j})} \left\{ \cosh(\kappa x) - \frac{\cosh(\kappa L) \cosh(\sqrt{\lambda_{j}} x)}{\cosh(\sqrt{\lambda_{j}} L)} \right\}$$

As seen by comparing (A-1) and (A-2) the differential equations to be solved in the fuel and moderator are almost the same, the only difference being in the heat generation term. Thus, the total differential equation for the moderator in the Laplace transform domain after having applied the zero initial temperature condition is given in equation (A-19)

$$\nabla^{2} \Phi_{m}(\mathbf{x},\mathbf{s}) - \frac{\mathbf{s}}{\alpha} \Phi_{m}(\mathbf{x},\mathbf{s}) = -\sum_{j=1}^{s} \frac{\mathbf{F} A_{j}}{\mathbf{k} (\mathbf{s}-\lambda_{j})}$$
(A-19)

The homogeneous solutions are the same as before and particular solutions are easily obtained, as before, from the method of undetermined coefficients. Therefore, the solutions to equation (A-19) in the transform domain are

$$\Phi_{m}(\mathbf{x},\mathbf{S}) = \mathbf{C} \cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{X}_{i} + \mathbf{D} \sinh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{X}_{i} + \sum_{j=1}^{\mathbf{S}} \frac{\mathbf{F} \alpha \mathbf{A}_{j}}{\mathbf{k} \mathbf{S}(\mathbf{S}-\lambda_{j})} \quad (A-20)$$

The transform boundary conditions for the moderator are same as those for the fuel if the origin in the moderator is taken at the outside of the unit cell, i.e.,

$$\Phi(\mathbf{L}, \mathbf{S}) = \sum_{i=1}^{p} \frac{\mathbf{B}_{i}}{\mathbf{S} - \beta_{i}} \quad \text{and} \quad \frac{d\Phi(\mathbf{x}, \mathbf{S})}{d \mathbf{x},} = 0 \quad (A-21)$$

Thus <u>D</u> equals zero and <u>A</u> takes the same form as for the solution in the fuel. The complete solution in the transform domain is given in equation (A-22).

$$\Phi_{m}(\mathbf{x}, \mathbf{S}) = \sum_{i=1}^{p} \frac{B_{i} \cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{x}_{i}}{(\mathbf{S} - \beta_{i}) \cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{L}_{i}} + \sum_{j=1}^{\mathbf{S}} \frac{\alpha \mathbf{F} \mathbf{A}_{j}}{\mathbf{k} \mathbf{S} (\mathbf{S} - \lambda_{j})}$$

$$\begin{bmatrix} 1 - \frac{\cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{x}_{i}}{\cosh \sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{L}_{i}} \end{bmatrix} . \qquad (A-22)$$

The inversion of this solution is easily accomplished by the same method used for the fuel region. The solution for the temperature is

$$\theta_{m}(\mathbf{x},t) = \sum_{i=1}^{p} \frac{B_{i} \cosh(\sqrt{\frac{\beta_{i}}{\alpha}} \mathbf{x}_{i})e^{\beta_{i}t}}{\cosh(\sqrt{\frac{\beta_{i}}{\alpha}} L_{i})} - \sum_{n=1,3,5,\cdots}^{\infty} \frac{\frac{n_{\Pi}\mathbf{x}_{i}}{\cos 2L_{i}}}{\frac{1}{n_{\Pi}\alpha}} \cdot \frac{\frac{n_{\Pi}^{2}}{\alpha}}{\frac{2}{2}}t$$

$$X \left\{ \sum_{i=1}^{p} \frac{B_{i}}{\frac{2}{2} \frac{2}{2}}{\frac{n}{\pi} \frac{\pi}{\alpha} \frac{2}{\alpha} + \beta_{i}} + \sum_{j=1}^{s} \frac{\alpha F A_{j}}{\frac{2}{4}L_{i}^{2}} \frac{n}{4} \frac{n}{4} \frac{2}{2} \frac{2}{\alpha} + \lambda_{j}} \right\}$$
(A-23)  
+ 
$$\sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j} t}}{k^{\lambda_{j}}} \left\{ 1 - \frac{\cosh \sqrt{\lambda_{j}} x}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} L_{i}} \right\} .$$

This solution could have been obtained from the solution in the fuel by setting  $\underline{\kappa} = 0$  and  $\underline{q}_{\underline{oo}} = \underline{F}$ .

The equivalent solution in cylindrical geometry (r dependence only) for the exponential boundary condition is obtained in the same general manner, however, several important differences do occur. The equations governing the temperature in the fuel and moderator are

$$\nabla^{2} \theta_{f}(\mathbf{r},t) + \sum_{j=1}^{s} \frac{q_{oo} \mathbf{I}_{o}(\kappa \mathbf{r}) \mathbf{A}_{j} \mathbf{e}^{\lambda} \mathbf{j}^{t}}{k} = \frac{1}{\alpha} \frac{\partial \theta_{f}(\mathbf{r},t)}{\partial t}$$
(A-24)

and

$$\nabla^{2} \theta_{m}(\mathbf{r},t) + \sum_{j=1}^{s} \frac{\mathbf{F} \mathbf{A}_{j} \mathbf{e}^{\lambda} \mathbf{j}^{t}}{\mathbf{k}} = \frac{1}{\alpha} \frac{\partial \theta_{m}(\mathbf{x},t)}{\partial t}$$
(A-25)

Considering the fuel region first, transforming with respect to time and applying the zero initial condition yields

$$\nabla^{2} \Phi(\mathbf{r}, \mathbf{S}) - \frac{\mathbf{S}}{\alpha} \Phi(\mathbf{r}, \mathbf{S}) = -\sum_{j=1}^{\mathbf{S}} \frac{\mathbf{q}_{\infty} \mathbf{A}_{j} \mathbf{I}_{o}(\mathbf{k}\mathbf{r})}{\mathbf{k} (\mathbf{S} - \lambda_{j})}$$
(A-26)

The spatial operator for this case is

$$\nabla = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$$
(A-27)

The particular solution, again by the method of undetermined coefficients, is

$$\Phi_{p}(\mathbf{r}, \mathbf{S}) = \frac{q_{\infty} \alpha A_{j} I_{0}(\kappa \mathbf{r})}{k(\mathbf{S}-\lambda_{j}) (\mathbf{S}-\alpha_{\kappa}^{2})}$$
(A-28)

The homogeneous solution, noting the fact that  $\Phi(o,S)$  if finite is

$$\Phi_{h}(\mathbf{r},\mathbf{s}) = A \mathbf{I}_{o} \sqrt{\frac{s}{\alpha}} \mathbf{r}$$
 (A-29)

The final constant  $\underline{A}$  is evaluated by use of the surface temperature boundary condition and the solution in the transform domain is

$$d_{\mathbf{f}}(\mathbf{r},\mathbf{s}) = \sum_{\mathbf{i}=1}^{\mathbf{p}} \frac{B_{\mathbf{i}}}{\mathbf{s} \cdot \beta_{\mathbf{i}}} - \frac{I_{\mathbf{o}}\sqrt{\frac{\mathbf{s}}{\alpha}} \mathbf{r}}{I_{\mathbf{o}}\sqrt{\frac{\mathbf{s}}{\alpha}} \mathbf{R}_{\mathbf{o}}} + \sum_{\mathbf{j}=1}^{\mathbf{s}} - \frac{q_{\mathbf{o}} - \alpha A_{\mathbf{j}}}{k(\mathbf{s} - \lambda_{\mathbf{j}})(\mathbf{s} - \alpha_{\mathbf{k}}^{2})} \left(I_{\mathbf{o}}(\mathbf{k}\mathbf{r}) - \frac{I_{\mathbf{o}}(\mathbf{k}\mathbf{R}_{\mathbf{o}})\sqrt{\frac{\mathbf{s}}{\alpha}} \mathbf{r}}{I_{\mathbf{o}}\sqrt{\frac{\mathbf{s}}{\alpha}} \mathbf{R}_{\mathbf{o}}}\right)$$

$$(A-30)$$

Inverting this expression is entirely analogous to the inversion of the equivalent expression, equation (A-9) of this appendix. The analogy carries even to the point that in determining the zeros of  $I_o \sqrt{\frac{S}{\alpha}} R_o$  as in determining the zeros of  $Cosh \sqrt{\frac{S}{\alpha}} L$  imaginary values of **S** yield an infinite set of zeros. In this case the zeros are

$$I_{o} \sqrt{\frac{s}{\alpha}} R_{o} = I_{o} \sqrt{\frac{-4}{\alpha}} R_{o} = I_{o} I \sqrt{\frac{4}{\alpha}} R_{o} = J_{o} \sqrt{\frac{4}{\alpha}} R_{o} = 0$$
 (A-31)

therefore,

 $\sqrt{\frac{4}{\alpha}} R_0 = \omega_n$ , where  $\omega_n = 2.4048$ , 5.5201, etc. (the zeros of  $J(\boldsymbol{\omega}_n) = 0$ )

$$\frac{\Delta}{\alpha} R_{o}^{2} = \omega_{n}^{2} ,$$

$$\mathcal{A}_{n} = \frac{\omega_{n}^{2} \alpha}{R_{o}^{2}}$$

$$S_{n} = \frac{\omega_{n}^{2} \alpha}{R_{o}^{2}}$$
(A-32)

and

• • • •

The details of the remainder of the inversion are not included. The result is

$$\theta_{f}(x,t) = \sum_{i=1}^{p} \frac{B_{i} I_{o}(\sqrt{\frac{\beta_{i}}{\alpha}} r)e^{\beta_{i}t}}{I_{o}(\sqrt{\frac{\beta_{i}}{\alpha}} R)} + \sum_{n=1,2,3,\cdots}^{\infty} \frac{J_{o}(\frac{\omega_{n}r}{R})e^{-\frac{\omega_{n}r}{R^{2}}t}}{\frac{1}{2\omega_{n}\alpha} J(\omega_{n})}$$

$$X\left\{\sum_{i=1}^{p} \frac{B_{i}}{\frac{\omega_{n}^{\alpha}}{R^{2}} + \beta_{i}} + \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} I_{o}(\kappa R_{o})}{k(\frac{\omega_{n}^{\alpha}}{R^{2}} + \lambda_{j})(\frac{\omega_{n}^{\alpha}}{R^{2}} + \alpha \kappa^{2})}\right\}$$
(A-33)

$$-\sum_{j=1}^{s} \frac{A_{j} q_{\infty} \alpha e^{\lambda_{j} t}}{k(\alpha_{\kappa}^{2} - \lambda_{j} t)} \left\{ \left[I_{0} (\kappa r)\right] - \frac{\left[I_{0}(\kappa R) I_{0} \sqrt{\frac{\lambda_{j}}{\alpha} r}\right]}{I_{0} \sqrt{\frac{\lambda_{j}}{\alpha} R}} \right\},$$

where the  $\omega_n$ 's are the roots of the equation,  $J_0(X) = 0$ .

The solution for the cylindrical geometry in the moderator is complicated only by the fact that the symmetry condition cannot be located at the coordinate r = 0. Thus both terms  $I_0 \sqrt{\frac{S}{\alpha}} r$  and  $K_0 \sqrt{\frac{S}{\alpha}} r$  of the homogeneous solution must be retained. The details of this solution are not included. The result is

$$\theta_{m}(\mathbf{x},t) = \sum_{i=1}^{p} B_{i} \left\{ \frac{K_{i} \sqrt{\frac{\beta_{i}}{\alpha}} R_{i} \Gamma_{0}(\sqrt{\frac{\beta_{i}}{\alpha}} r_{j}^{+} \Gamma_{0}(\sqrt{\frac{\beta_{i}}{\alpha}} R_{j}) K_{0}(\sqrt{\frac{\beta_{i}}{\alpha}} r_{j}^{+}) + \Gamma_{i}(\sqrt{\frac{\beta_{i}}{\alpha}} R_{j}) K_{0}(\sqrt{\frac{\beta_{i}}{\alpha}} R_{j}^{+}) \right\} e^{\beta_{i}t}$$

$$+\sum_{n=1}^{\infty} \frac{2\sqrt{\rho_{n}\alpha}}{R[K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)L_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)L_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}{\alpha}}R)-K_{i}(\sqrt{\frac{\rho_{n}}$$

$$x\left\{\sum_{i=1}^{p} \frac{B_{i}}{\rho_{n}-\beta_{i}} - \sum_{j=1}^{s} \frac{\alpha F A_{j}}{k \rho_{n}(\rho_{n}-\lambda_{j})}\right\} + \sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j}t}}{k}$$
(A-34)

$$X \left\{ \frac{K_{i}(\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i}) I_{o}(\sqrt{\frac{\lambda_{j}}{\alpha}} r) + I_{i}(\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i})K_{o}(\sqrt{\frac{\lambda_{j}}{\alpha}} r)}{K_{i}(\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i}) I_{o}(\sqrt{\frac{\lambda_{j}}{\alpha}} R) I_{i}(\sqrt{\frac{\lambda_{j}}{\alpha}} R_{i})K_{o}(\sqrt{\frac{\lambda_{j}}{\alpha}} R)} \right\}$$

where the  $\rho_n$ 's are the roots of the equation,

$$K_{i}(\sqrt{\frac{s}{\alpha}}R_{i})I_{o}(\sqrt{\frac{s}{\alpha}}R) + I(\sqrt{\frac{s}{\alpha}}R_{i})K_{o}(\sqrt{\frac{s}{\alpha}}R) = 0$$

The next solution considered again uses an exponential fit for the heat generation rate, however, the boundary condition was that the first derivative with respect to x evaluated at the outside of the plate or effectively the heat flow out of the plate could be expressed as a sum of exponentials. The general solution with the exception of the evaluation of the final constant  $\underline{A}$  is exactly the same as the first derivation in this appendix. Including the one undetermined coefficient the solution is

$$\Phi_{f}(\mathbf{x},S) = A \cosh \sqrt{\frac{S}{\alpha}} \mathbf{x} + \sum_{j=1}^{S} \frac{q_{oo} \alpha A_{j} \cosh \kappa \mathbf{x}}{\kappa(S-\lambda_{j}) (S-\alpha\kappa^{2})} .$$
 (A-35)

Evaluation of  $\underline{A}$  through use of the boundary condition leads to

$$\Phi_{f}(\mathbf{x}, \mathbf{S}) = \sum_{i=1}^{p'} \frac{B_{i} \cosh\left(\sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{x}\right)}{(\mathbf{S}-\beta_{i}) \sqrt{\frac{\mathbf{S}}{\alpha}} \sinh\left(\sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{L}\right)} + \sum_{j=1}^{\mathbf{S'}} \frac{q_{oo}\alpha A_{j}}{k(\mathbf{S}-\lambda_{j})(\mathbf{S}-\alpha_{k}^{2})}$$

$$\left( \cosh_{k}\mathbf{x} - \frac{\cosh(k\mathbf{L})\cosh(\sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{x})}{\cosh(\sqrt{\frac{\mathbf{S}}{\alpha}} \mathbf{L})} \right).$$
(A-36)

The details of this inversion are not included. The result is

$$\theta_{f}(\mathbf{x},t) = \sum_{i=1}^{p'} \left( \frac{B_{i} \cosh(\sqrt{\frac{\beta_{i}}{\alpha}} \mathbf{x}) e^{\beta_{i}t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh(\sqrt{\frac{\beta_{i}}{\alpha}} L)} - \frac{B_{i}\alpha}{\beta_{i}L} - \sum_{r=1}^{\infty} \frac{\cos(\frac{n\pi\mathbf{x}}{2L})}{\frac{L}{\alpha}\cos n\pi} \right)$$

$$X \left\{ \sum_{i=1}^{p'} \frac{B_{i}}{\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \beta_{i}} + \sum_{j=1}^{s'} \frac{q_{\infty} \alpha A_{j} \kappa \sinh \kappa L}{k(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \lambda_{j})(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \alpha_{\kappa}^{2})} \right\}$$
(A-37)

$$-\sum_{j=1}^{s'} \frac{q_{\infty} \alpha A_{j} e^{\lambda_{j}t}}{k(\alpha_{\kappa}^{2} - \lambda_{j})} \qquad \left[\cosh_{\kappa}x - \frac{\kappa \sinh(\lambda L)\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}}x)}{\sqrt{\frac{\lambda_{j}}{\alpha}}\sinh(\sqrt{\frac{\lambda_{j}}{\alpha}}L)}\right] - \frac{q_{\infty} \alpha A_{j} \sinh\kappa L}{k \lambda_{j} \kappa L}$$

The time dependent temperature distribution in the moderator for the comparable boundary conditions is obtained by setting  $_{\mathcal{K}}$  equal to zero and  $\underline{q}_{\infty}$  equal to  $\underline{F}$  in equation (A-37). The result is

$$\theta_{m}(\mathbf{x},t) = \sum_{i=1}^{p'} \left( \frac{B_{i} \cosh(\sqrt{\frac{\beta_{i}}{\alpha}} \mathbf{x}) e^{\beta_{i}t}}{\sqrt{\frac{\beta_{i}}{\alpha}} \sinh(\sqrt{\frac{\beta_{i}}{\alpha}} L_{i})} - \frac{B_{i}\alpha}{\beta_{i}L} \right)$$

$$-\frac{n^{2}\pi^{2}\alpha}{4L^{2}}t$$

$$-\sum_{n=1}^{\infty} \frac{\cos \frac{n\pi x}{2L}}{(\frac{L}{\alpha})\cos n\pi} \left\{\sum_{i=1}^{p'} \frac{B_{i}}{\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \beta_{i}}\right\}$$

(A-38)

$$+\sum_{j=1}^{s} \frac{\alpha F A_{j}}{k(\lambda_{j})} \quad (e^{\lambda_{j}t} - 1),$$

The final solution considered again used a sum of exponentials to represent the time dependence of the heat generation rate, however, the surface temperature boundary condition was approximated by an even Fourier series,  $\sum_{i=1}^{p} B_i \cos \beta_i t$ . With the exception of the steady state i=1

term resulting from the surface temperature boundary condition the derivation follows exactly the first derivation of this appendix. The steady state term is handled most easily in a slightly different manner as shown below. The general solution in the transform domain is

$$\Phi_{f}(\mathbf{x}, \mathbf{S}) = \sum_{i=1}^{p} \frac{B_{i} S \cosh(\sqrt{\frac{s}{\alpha} \mathbf{x}})}{(s^{2} + \beta_{i}^{2}) \cosh(\sqrt{\frac{s}{\alpha} L})} + \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j}}{k(s - \lambda_{j}) (s - \alpha \kappa^{2})}$$

$$[\cosh_{\kappa} \mathbf{x} - \frac{\cosh_{\kappa} (kL) \cosh(\sqrt{\frac{s}{\alpha} \mathbf{x}})}{\cosh(\sqrt{\frac{s}{\alpha} L})}] \qquad (A-39)$$

The first term presents the only change and there only for the poles at  $S = \pm j\beta_i$ . The terms generated from the inversion integral by these two poles are

$$\rho_{1} = \frac{B_{i} j \beta_{i} \cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} x)}{2 j \beta_{i} \cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} L)} e^{j\beta_{i}t}$$
(A-40)  
S=j\beta\_{i}

and

$$\left| \begin{array}{c} P_{\mathbf{2}} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{x})}}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})} \\ = \\ \frac{B_{\mathbf{i}} (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}{2 (-j\beta_{\mathbf{i}}) \cosh(\sqrt{\frac{-j\beta_{\mathbf{i}}}{\alpha} \mathbf{L}})}$$

These terms are most easily handled by recognizing the fact that the sum  $\rho_1 + \rho_2$  is the sum of a function and its conjugate. That is  $\rho_1 + \rho_2 = f(z) + f(\overline{z}) = f(z) + \overline{f(z)}$  since z is a pure imaginary number. Therefore

$$\rho_1 + \rho_2 = 2 \operatorname{Re} \left\{ f(z) \right\} = 2 \operatorname{Re} \left\{ \rho_1 \right\}$$

$$= 2 \operatorname{Re} \left\{ \frac{B_{i} \cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} \mathbf{x})}{2 \cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} \mathbf{L})} e^{j\beta_{i}t} \right\}$$
(A-42)

$$= B_{i} R_{e} \left\{ \frac{\cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} x)}{\cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} L)} e^{j\beta_{i}t} \right\}$$
$$= B_{i} R_{e} \left| \frac{\cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} x)}{\cosh(\sqrt{\frac{j\beta_{i}}{\alpha}} L)} e^{j(\beta_{i}t + \arg\left\{\frac{\cosh\sqrt{\frac{j\beta_{i}}{\alpha}} x}{\cosh\sqrt{\frac{j\beta_{i}}{\alpha}} L}\right\}} \right)$$

$$= B_{i} Z_{i}^{\frac{1}{2}} (\mathbf{x}) \cos \left[\beta_{i} t + \varphi_{i}(\mathbf{x})\right],$$

where

$$Z_{i}(x) = \left| \frac{\cosh \sqrt{\frac{j\beta_{i}}{\alpha}}}{\cosh \sqrt{\frac{j\beta_{i}}{\alpha}} L} \right|^{2} = \left| \frac{\cosh(\sqrt{\frac{\beta_{i}}{2\alpha}} x)\cos(\sqrt{\frac{\beta_{i}}{2\alpha}} x) + j \sin(\sqrt{\frac{\beta_{i}}{2\alpha}} x) \sinh(\sqrt{\frac{\beta_{i}}{2\alpha}} x)}{\cosh(\sqrt{\frac{\beta_{i}}{2\alpha}} L)\cos(\sqrt{\frac{\beta_{i}}{2\alpha}} L) + j \sin(\sqrt{\frac{\beta_{i}}{2\alpha}} L) \sinh(\sqrt{\frac{\beta_{i}}{2\alpha}} L)} \right|^{2}$$

$$= \left\{ \frac{\cos^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} \times) \cosh^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} \times)^{+} \sin^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} \times) \sinh^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} \times)}{\cos^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \cosh^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L)^{+} \sin^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \sinh^{2}(\sqrt{\frac{\beta_{1}}{2\alpha}} L)} \right\}$$
(A-43)

and

$$\varphi_{1}(\mathbf{x}) = \arg \left\{ \frac{\cosh \sqrt{\frac{j\beta_{1}}{\alpha}} \mathbf{x}}{\cosh \sqrt{\frac{j\beta_{1}}{\alpha}} \mathbf{L}} \right\} = \arg \left\{ \cosh \sqrt{\frac{j\beta_{1}}{\alpha}} \mathbf{x} \right\} - \left\{ \arg \cosh \sqrt{\frac{j\beta_{1}}{\alpha}} \mathbf{L} \right\}$$

$$= \tan^{-1} \left( \frac{\sin \sqrt{\frac{\beta_{1}}{2\alpha}} \times \sinh(\sqrt{\frac{\beta_{1}}{2\alpha}} \times)}{\cos \sqrt{\frac{\beta_{1}}{2\alpha}} \times \cosh(\sqrt{\frac{\beta_{1}}{2\alpha}} \times)} \right) - \tan^{-1} \left( \frac{\sin(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \sinh(\sqrt{\frac{\beta_{1}}{2\alpha}} L)}{\cos(\sqrt{\frac{\beta_{1}}{2\alpha}} L) \cosh(\sqrt{\frac{\beta_{1}}{2\alpha}} L)} \right) \cdot (A-44)$$

The resultant time dependent temperature distributions are

$$\theta_{f}(\mathbf{x},t) = \sum_{i=1}^{p} B_{i} Z_{i}^{\frac{1}{2}} \cos \left(\beta_{i}t + \varphi_{i}\right) - \sum_{n=1,3,5,\cdots}^{\infty} \frac{\cos \frac{n\pi \mathbf{x}}{2L} e}{(L^{2}/n\pi\alpha) \sin \frac{n\pi}{2}}$$

$$x \left\{ \sum_{i=1}^{p} \frac{B_{i} \frac{4L^{2}}{442}}{\left(\frac{n}{16L^{4}} + \beta_{i}^{2}\right)} + \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} \cosh \kappa L}{\kappa \left(\frac{n}{4L^{2}} + \alpha \kappa^{2}\right) \left(\frac{n}{4L^{2}} + \lambda_{j}\right)} \right\}$$
(A-45)

$$-\sum_{j=1}^{s} \frac{q_{oo}\alpha A_{j} e^{\lambda} j^{t}}{k(\alpha \kappa^{2} - \lambda_{j})} \left\{ \cosh \kappa x - \frac{\cosh (\kappa L) \cosh (\sqrt{\frac{\lambda_{j}}{\alpha}} x)}{\cosh (\sqrt{\frac{\lambda_{j}}{\alpha}} L)} \right\}$$

$$X\left\{\sum_{i=1}^{p} \frac{B_{i} \frac{(n^{2} \pi^{2} \alpha)}{4 4^{2}}}{\frac{n^{2} \pi^{2} \alpha}{16L^{4}} + \beta_{i}^{2}} - \sum_{j=1}^{p} \frac{\alpha F A_{j}}{k (\frac{n^{2} \pi^{2} \alpha}{4L^{2}} + \alpha \kappa^{2})(\frac{n^{2} \pi^{2} \alpha}{4L^{2}} + \lambda_{j})}\right\}$$
(A-46)

$$+\sum_{j=1}^{s} \frac{\alpha F A_{j} e^{\lambda_{j}t}}{k(\lambda_{j})} \left\{1 - \frac{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} x}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha}} L}\right\}$$

in the fuel and moderator, respectively.

#### APPENDIX B

Description and Explanation of the IBM-650 Computer Program Used for Fitting Empirically Experimental Data with the Sum of Several Terms of Exponential Form

The computer code was written to fit an analytical function of the form of the sum of exponentials to the experimentally determined power traces during a transient burst. The program was written in SOAP II and floating point form. The object program is listed and the logic diagram is shown in this appendix.

The criteria that the machine inspected was that the sum of the squares of the residuals between the experimental data and the calculated values should be made as small as possible. Each of the fitting parameters was varied in turn by a specified increment, holding all other parameters constant, until such a time that a specified increment could make no further reduction in the sum of the squares of the residuals. This parameter was then stored as the best available estimate of the particular empirical parameter. When none of the parameters could be varied by the specified increment to give a smaller sum of the squares of the residuals, the increments were refined and the trial and error process was repeated with the refined increments. This procedure continued until the increments were less than a specified precision.

The data were fit empirically with a function of the form

$$P_{i} = \sum_{j=1}^{S} A_{j} e^{\lambda} j^{t} i \qquad s \stackrel{\leq}{=} 10 \qquad (B-1)$$

As stated above, the best fit criterion was that

$$\operatorname{ERROR} = \sum_{i=1}^{c} \frac{1}{(\cdot)_{i}^{2}} \sum_{j=1}^{s} (A_{j} e^{\lambda_{j}t} - \Phi_{i})^{2}$$
(B-2)

be a minimum.

The program required, in addition to the experimental data and their respective times, initial estimates for a specific number of parameters. The program had a capacity for up to 20 data points and 10 terms in the summation of equation ( $\underline{B}-\underline{1}$ ). These input data were read into the machine along with the program deck on one-word load cards. Each one-word load card contained a particular constant or an initial value and its specified storage location. Table B-1 lists the various input data needed for this program.

> Table B-1. Input data required for use of the IBM-650 program which fit empirically experimental data with several terms of Exponential form.

| ZERD       0.00       0073         FPONE       1.00       0129         FOUR       4.00       0185         TEN       10.00       0158         HNDRD       100.00       0090         ONE       Ladow Number 1 (000000001)       02302                                                                                                                                                                                                                                           | on                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| ONEIndex Number 1 (000000000)0392EIGHTIndex Number 8 (000000008)0024INDXBNumber of Exponential Terms (00000000xx)0412INDXANumber of Data Points (00000000xx)0062ONEHDPrecision0168DELB jInitial increments of the Amplitude, B<br>Initial increments of R'j(1800 +DELR jInitial estimate of B<br>Initial estimate of B<br>Initial estimate of R<br>I(1300 +RINIT jInitial estimate of R<br>I(1310 +Z1Time of ith data point(1200 +FLUX iExperimental data at ith point(1200 + | + i)<br>+ j)<br>+ j)<br>+ j)<br>+ i)<br>+ i)<br>+ i) |

The machine yielded an answer card having a capacity of 8 words, a word being ten digit numbers and a sign. For the first answer the machine punched out the initial estimates of the fitting parameters on as many cards as was necessary to accommodate them. A and  $\lambda$  for the first term were stored in word locations 1 and 2, respectively. After a card was filled to its 8 word capacity, it was punched and a new card began to fill. This procedure continued until all of the fitting parameters had been punched out. Then a separate card was punched giving in the word 8 location, the value of the sum of the weighted of the residuals between the experimental data and the calculated values. The machine then punched out values of the time, residual and correct values at the last data point in word locations 1, 2 and 3, respectively and the next to last data point in word locations 5, 6 and 7, respectively. The same information for two previous data points was punched out on a second card in the same format and this procedure was continued until the position residual and correct value was punched out for each data point. Subsequent improvements in the parameters and the weighted sum of squares of the residuals were printed out after each cycle of trying to vary each parameter. The positions, residuals and correct values at each data point were obtained at this time if the console instruction was negative. When the fitting parameters could not be further improved with the most refined increment specified, the punching of the best fit parameters, the sum of the weighted square of the residuals, the position, residual and correct values took place according to the procedure described above.



LOGIC DIAGRAM-APPENDIX B

| PR<br>RE<br>ST | N<br>8 | 8 <b>8</b> | M<br>T<br>F | A 10 A 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C | 1977<br>81 A R<br>81 A R<br>7 FL U X<br>88 B E S T<br>8 B E S |   |            | 9988222223388357777 D . U | 8990846000000000000000000000000000000000 |        | 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 3 3 5 4 | 0000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000 | 00000000000000000000000000000000000000 |             |
|----------------|--------|------------|-------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|---------------------------|------------------------------------------|--------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------|
| PO             |        |            | I M<br>I G  | PCH                                        | 1977<br>8TUUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | E N<br>C A | XR                        | XTRO                                     |        | 36<br>37<br>38                                                                                    | 0056                                                       | 40<br>71<br>42                         | 197         |
| 0/             | R      |            | U I         | PCH                                        | 1977<br>RE88T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 | E O        | D                         | CL                                       |        | 39                                                                                                | 0059                                                       | 71                                     | 197         |
| . (            |        |            |             | STL                                        | A A A 14<br>A A A 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            |                           |                                          | 2      | 43                                                                                                | 0106                                                       | 20                                     | 001         |
|                |        |            |             | F A M<br>8 T U                             | A A A 1 4<br>A A A 3<br>A A A 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |            |                           |                                          | 0      | 4445                                                                                              | 0071<br>0037                                               | 37 31 69                               | 001 004 004 |
|                |        |            | ,           | STD                                        | A A A 4<br>A A A 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | A .        | A                         | 8                                        | č      | 47                                                                                                | 0001                                                       | 24                                     | 000         |
|                |        |            |             | F 8 8<br>8 4 1                             | A A A 5<br>A A A 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |            |                           |                                          | F      | 4950                                                                                              | 0047                                                       | 33                                     | 010         |
|                |        |            |             | RAU                                        | A A A 4<br>A A A 4<br>A A A 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |            |                           |                                          | ε      | 51<br>52<br>53                                                                                    | 0095                                                       | 60<br>39                               | 000         |
|                | . ,    |            | 5           | STURAU                                     | A A A 4<br>A A A 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | A .        |                           | 8                                        |        | 54<br>55                                                                                          | 0162                                                       | 21                                     | 000         |
|                |        |            |             | F 8 8<br>8 4 1                             | A A A 3<br>A A A 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            |                           |                                          | 0      | 56                                                                                                | 0025                                                       | 46                                     | 004         |
|                |        |            |             | ,8 T U<br>R A U                            | A A A 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |            |                           |                                          | F      | 59<br>60                                                                                          | 0145                                                       | 60                                     | 000         |
|                |        |            | 2.0         | 8 T U<br>9 A U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | A 1        | A                         | 6                                        |        | 61<br>62                                                                                          | 0262<br>0028                                               | 21<br>60                               | 000         |
|                |        |            |             | F 8 8                                      | A A A 10<br>A A A 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            |                           |                                          | P      | 63<br>64                                                                                          | 0147<br>0177<br>0081                                       | 33                                     | 015         |
|                |        |            |             | RAU<br>FMP                                 | A A A 4<br>A A A 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |            |                           |                                          | ε      | 66<br>67                                                                                          | 0195                                                       | 60                                     | 000         |
|                | A /    | A 1        | 1           | 8 T U<br>R A U                             | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | A          |                           | 17                                       |        | 68<br>69<br>70                                                                                    | 0080                                                       | 60<br>69                               | 0004        |
|                |        |            |             | F M P<br>8 T U                             | A A A 4<br>A A A 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            |                           | • '                                      |        | 7 1<br>7 2                                                                                        | 0200<br>0054                                               | 39 21                                  | 000         |
|                |        |            |             | RAU                                        | A A A 1 4<br>A A A 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |                           |                                          |        | 7374                                                                                              | 0061                                                       | 60<br>46<br>65                         | 001         |
|                | A .    | A 1        | L 5         | RAU                                        | A A A 3<br>A A A 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | ~ 1        | • •                       |                                          |        | 76                                                                                                | 0018                                                       | 60<br>34                               | 004         |
|                | A      | A :        | 17          | RAL                                        | 8003<br>A A A 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | A 1        | A                         | 1                                        | E      | 78                                                                                                | 0058                                                       | 65                                     | 800         |
|                |        |            |             | FAD                                        | A A A 3<br>A A A 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |            |                           |                                          | D      | , 80<br>81<br>82                                                                                  | 0253                                                       | 32                                     | 004         |
|                |        |            |             | 8 T U<br>8 T U                             | A A A 27<br>A A A 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            |                           |                                          | TN     | 83<br>84                                                                                          | 0227                                                       | 69                                     | 013         |
|                |        |            |             | STORAL                                     | A A A 21<br>A A A 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |            |                           |                                          | 0      | 85                                                                                                | 0089                                                       | 24                                     | 009         |
|                |        |            | 2 ^         | F M P<br>8 T U                             | A A A 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |            | A A                       | s 3                                      | N      | 88<br>88<br>89                                                                                    | 0142                                                       | 21                                     | 009         |
| A              | 4      | 4          | ರರ          | 8 T U<br>F A C                             | A A A 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |            |                           |                                          | N      | 90<br>91                                                                                          | 0192                                                       | 21                                     | 014         |
|                |        |            |             | 8 T L<br>R A L                             | A A A 19<br>A A A 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            |                           |                                          | Т      | 93                                                                                                | 0051                                                       | 81<br>60                               | 007         |
|                |        |            |             | FDV                                        | A A A 19<br>A A A 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            |                           | 2.6                                      | c      | 94<br>95<br>96                                                                                    | 0124                                                       | 33                                     | 032         |
| A              | A      | A :        | 36          | RAU                                        | A A A 19<br>A A A 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | Â.         | ÂÂ                        | ĨA                                       |        | 97<br>98                                                                                          | 0206                                                       | 60                                     | 007         |
|                |        | -          |             | FAC<br>STU                                 | A A A 3<br>A A A 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |            |                           |                                          | N      | 99<br>100                                                                                         | 0041 0075 0139                                             | 21                                     | 003         |
|                |        |            |             | F M F<br>8 T U                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |            |                           |                                          | N      | 102                                                                                               | 0242                                                       | 21<br>60                               | 009         |
|                |        |            |             | FMF                                        | A A A 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | A          | A A                       | 33                                       |        | 104                                                                                               | 0151<br>0292                                               | 39 21                                  | 004         |
| A              | A      | A .<br>A   | 3           | 10                                         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 1          | 00                        | 51                                       | 0<br>F | 106 107                                                                                           | 0100                                                       | 10<br>50<br>14                         | 000         |
| A              | AAA    | A          | 9           | 14                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | -          |                           | 51                                       | E      | 109                                                                                               | 0212<br>0150                                               | 27                                     | 183         |
| Ä              | Â      | AA         | 1316        | 12                                         | 2140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 1          | 000                       | 51                                       | EZ     | 111<br>112                                                                                        | 0312                                                       | 12                                     | 214         |
|                | - 10 M | -          |             | 70                                         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |            | 0.0                       | 47                                       | с      | 113                                                                                               | 0327                                                       | 70                                     | 0000        |

|           | L 0 0<br>8 T 0<br>8 T 0<br>3 T 0<br>3 T 0<br>8 T 0<br>8 T 0 | 2 2 2 10<br>1977<br>1978<br>1979<br>1980<br>1981<br>1983 |             |     |    |        |             |             |
|-----------|-------------------------------------------------------------|----------------------------------------------------------|-------------|-----|----|--------|-------------|-------------|
| 2210      | 8 T U<br>0 U                                                | 19R4<br>0000                                             |             | Z   | 20 | 20     | 10          | 0           |
|           | RAU<br>FMP<br>8TU                                           | Z<br>R<br>R Z F F                                        | A<br>B      |     |    |        |             |             |
| To        | F A D<br>8 M I                                              | HNDRD<br>STO                                             |             | G   | 0  |        |             |             |
| 0         | STORAL                                                      | TEMP                                                     | c           | E   | G  | 8      | I           | T           |
| URMM      | 8 T L<br>8 T D                                              | TEMP<br>EXXIT                                            | c           | E   | G  | 8      | E           | 1           |
|           | RAU<br>FMP<br>BTU                                           | TEMP<br>B<br>Term                                        | C<br>8<br>C | F   | ¥  | ¥      |             | ,           |
| RR        | STO                                                         | EXIT<br>ZERO                                             | ·           | -   | ^  | î      | •           | •           |
|           | 8 T O<br>L O O                                              | ERHOR                                                    |             |     |    |        | ~           |             |
| EADY      | ° L D D<br>A X C                                            | 8001<br>1N0XC<br>8001                                    |             | к   | Ŀ  | ^      | Ű           | Y           |
| DONE      | L D D<br>8 T D<br>R A U                                     | ZERD<br>ACCUM<br>TERM                                    | с           | 0   | 0  | 0      | N           | E           |
|           | F A D<br>8 T U                                              | A C C U M<br>A C C U M                                   |             |     |    |        |             |             |
|           | 8 X C<br>N Z C                                              | REPET                                                    |             | 0   | 1  | 0      |             | Ţ           |
| IUIT      | RAU<br>F98                                                  | A C C U M<br>F L U X                                     | A           | U   | 0  | 0      | 1           | Ł           |
|           | 8 T U<br>F M P<br>F D V                                     | G<br>G                                                   | AAA         |     |    |        |             |             |
|           | F A D<br>8 T U                                              | ERROR                                                    |             |     |    |        |             |             |
|           | 8 X A<br>N Z A                                              | OUO1<br>READY                                            |             | ε   | x  | 1      | T           |             |
| RINT      | 8 T 0<br>L 0 D<br>L 0 D                                     | EXET                                                     |             | E   | 0  | 0      | c           | L           |
| E 8 1 T   |                                                             | 8001<br>EIGHT<br>8001                                    |             | R   | E  | 8      | 1           | T           |
| ILL T     | L 0 0<br>8 T 0                                              | 8868T<br>1985                                            | B           | ·   |    |        | `           |             |
|           | 8 T O<br>8 X B                                              | 1986                                                     | Å           |     |    |        |             |             |
| F X T 8   |                                                             | 0002<br>NEXTR<br>FILL                                    |             |     | HA | D<br>R | P           | EZ          |
| ARDZ      | P.C.H<br>L 0 0                                              | 1977<br>RE81T                                            |             | ε   | 0  | 0      | c           | ι           |
| HUPE      |                                                             | ERMIN                                                    |             | E   | 0  | 0      | C           | L           |
| RIWE      | PCH<br>8TO                                                  | 1984<br>1977<br>TIXE                                     |             | Ε   | X  | £      | T           |             |
|           | L 0 0<br>8 T 0                                              | 8<br>88687                                               | 8           |     |    |        |             |             |
|           | 8 1 D<br>L D D                                              | R 8 E 8 T<br>E R R O R                                   | 8           |     |    |        | _           |             |
| TART      | STD<br>LDD<br>RAB                                           | ERMIN<br>INDXB<br>8001                                   |             | L   | 0  | ×      | E<br>O      | ۷           |
| . 0 4 0 ¥ | L D D<br>8 T D<br>8 T D                                     | 8 1 N I T<br>8<br>8 8 E 8 T                              | 88          |     |    |        |             |             |
|           | 8 T D<br>8 T D<br>8 T U                                     | RINIT<br>R<br>R B E 8 T                                  | 8<br>8<br>8 |     |    |        |             |             |
| 6 7 4 0   | 8 X 8<br>N 2 8                                              |                                                          |             | 8   | E  | T      | U           | μ           |
| LIUP      | RAA                                                         | 8001<br>INDX8                                            |             |     |    |        |             |             |
|           | R A 8<br>MP 7<br>8 T 1                                      | 8001<br>8001                                             |             |     |    |        |             |             |
| ALCA      | RAC                                                         | 8001                                                     |             | CTT | AE | LMP    | P           | A<br>P<br>M |
|           | 8 X C<br>8 X A                                              | 0001                                                     |             | 1   |    |        | -           |             |
| ALCO      | N Z A<br>L D D<br>R A A                                     | CALCA<br>INDXA<br>BOO1                                   |             | C   | A  | L      | C           | R           |
| 11110     | SXR<br>NZR                                                  | 0001<br>CALCA                                            |             | F   | IR | LR     | U           | ρ           |
| 1231      |                                                             |                                                          |             | PPP | R  | 1      | M<br>N<br>T | E<br>T<br>M |
|           | LOO                                                         | INDX8<br>8001                                            |             | ٣   | -  | -1     | 1           | -           |
| 0028      |                                                             | 8001<br>2ERD                                             |             | L   | 0  | 0      | P           | 8           |

Z

R

| 11111111111111111111111111111111111111 | R 4 0 1 2 3 4 5 6 1 0 6 5 0 7 7 0 6 1 9 2 0 6 5 5 0 6 6 6 2 8 5 1 7 3 6 2 5 5 2 5 1 4 5 3 7 3 0 0 1 1 4 0 0 6 9 5 1 7 3 3 8 3 9 5 1 4 8 7 5 7 0 6 7 0 6 3 3 3 3 3 8 9 5 1 3 3 3 3 3 3 3 7 0 5 1 0 5 3 7 0 0 0 1 2 3 4 5 6 1 0 1 0 1 0 0 0 1 2 3 4 5 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 944444444440409186945904091496E40008940N199D907194N1910409N010404N019191994414949494949494944NN000N154686N0008999109078999998 |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 227                                    | 0465                                                                                                                                                                                                                                                                                        | 82                                                                                                                            |
| 228                                    | 0521                                                                                                                                                                                                                                                                                        | 69                                                                                                                            |
| 229                                    | 0677                                                                                                                                                                                                                                                                                        | 8 R                                                                                                                           |
| 230                                    | 0533                                                                                                                                                                                                                                                                                        | 69                                                                                                                            |

|           | RAU                     | BBEST                          | 8<br>8 | 91881           |
|-----------|-------------------------|--------------------------------|--------|-----------------|
| 80861     | 6 T D<br>6 T D          | 8<br>8007<br>CTEMP             | в      |                 |
|           | 5 T D                   | 8006<br>BTENP                  |        |                 |
| 80882     | RAALDD                  | 8001                           |        | BUBB2<br>TURMM  |
|           | B X C<br>S X A<br>N 7 A | 0001                           |        |                 |
| S U B R 3 |                         | ERWIN                          |        | ERR             |
| GODDR     |                         | BADDB<br>BTEMP                 |        | GOODR           |
|           |                         | 8001<br>CTEMP<br>8001          |        |                 |
|           | R A U<br>F S R          | BBEST                          | 8      |                 |
| 8 P L U 8 |                         | FPONE                          |        | PRIME           |
|           | BTD<br>STD<br>RAU       | INDXF<br>INDXD<br>BBFBT        | 8      |                 |
|           | FAD                     | DELB                           | 8      | SUBB1<br>PRIME  |
| ·         | 6 T D<br>L D D          | INDXF<br>FPDNE                 |        |                 |
|           | BTD<br>RAU<br>F9B       | INDXO<br>BBEST<br>DELB         | 8      | 811881          |
| BADDB     |                         | 8 T E N P<br>8 0 0 1           | Ū      |                 |
| LETUP     | N Z U<br>L D D          | L D D P R<br>B T E M P         |        | LETUP           |
|           | R A B<br>R A U<br>F B B | 8001<br>88557<br>8             | 8      |                 |
| NDREB     | BMILDD                  | MDREB<br>BTEMP                 | Ū      | LODPR           |
|           | RAB<br>LDD<br>RAC       | 8001<br>CTEMP<br>8001          |        |                 |
|           | R A U<br>F S R          | 88 E 8 T<br>D E L 8<br>7 E 8 D | B<br>B | 80881           |
| CODEN     | 8 T D<br>L D D          | FDUR                           |        |                 |
|           | 8 T D<br>6 T D<br>8 T D | INDXZ<br>INDXD<br>INOXW        |        |                 |
|           | L D D<br>5 T D          | BBEST                          | R      |                 |
|           | R A U<br>F A D          | RBEST                          | 8      | 8U8R1           |
| 8 V 8 R 1 | B T U<br>L D D<br>R A C | R<br>C T E N P<br>8 0 0 1      | 8      |                 |
|           |                         | 8 T E M P<br>8 0 0 1           |        |                 |
| 8 U B R 2 | RAA                     | 8001                           |        | SUBR 2<br>TEMPP |
|           | L D D<br>B X C<br>B X A | 0001                           |        | TURMM           |
| RDUT      |                         | BUBR2<br>RREBT                 | 8      | RDUT            |
| 8 U 8 R 3 | NZU                     | SUBR3                          | U      | NEXT<br>ERR     |
|           | FSB                     | ERRDR                          |        | PLAY            |
| PLAY      | F B B<br>B T II         |                                |        |                 |
| BTAY      | NZU                     | STAY<br>BADDR                  |        | PLYMR<br>GODDR  |
| GOODR     | 8 T D<br>L D D          | INDXO                          |        | NEXT            |
|           | RAB                     | 8001<br>CTEMP                  |        |                 |
|           | R A U<br>F B B          | R 8 E 8 Î<br>R                 | 8<br>8 |                 |
| RPLUB     | 6 N I<br>L D D<br>L D D | RPLU8<br>FPONE                 |        | RMINS<br>PRIME  |
|           | B T D<br>B T D<br>R A O | INDXF<br>INDXD<br>RBEST        | 8      |                 |
| RMINB     | FAD                     | DELR                           | 8      | SUBR1<br>PRIME  |
|           | 8 T D<br>L D D          | FPDNE                          |        |                 |
|           | B T D<br>R A U<br>F B B | INDXD<br>RBEBT<br>DELR         | B      | 908R1           |
| BADDR     | L D D<br>8 T D          | FDUR                           |        |                 |
| TEBTR     | NZULDD                  | FIXUP                          |        | TEBTR           |
|           |                         |                                |        |                 |

| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                   | $\begin{array}{c} 0 & 1 & 7 & 6 \\ 0 & 2 & 2 & 7 & 5 \\ 0 & 7 & 1 & 6 & 2 \\ 0 & 2 & 7 & 5 & 7 \\ 0 & 0 & 1 & 1 & 2 & 5 \\ 0 & 0 & 1 & 1 & 2 & 5 \\ 0 & 0 & 1 & 1 & 2 & 5 \\ 0 & 0 & 1 & 1 & 2 & 5 \\ 0 & 0 & 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 3 & 3 & 7 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 3 & 3 & 7 & 0 \\ 0 & 2 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 5 & 3 & 0 & 0 \\ 0 & 5 & 3 & 0 & 0 \\ 0 & 5 & 5 & 7 & 7 \\ \end{array}$ |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 279<br>280<br>281<br>282<br>283<br>283<br>285<br>285<br>2867<br>2867                    | 0637<br>0593<br>0625<br>0331<br>0675<br>0487<br>0276<br>0382<br>0382<br>0438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 288<br>289<br>290<br>292<br>292<br>293<br>293<br>294<br>295<br>295<br>295<br>295<br>297 | 0194<br>0488<br>0244<br>0323<br>0213<br>0703<br>0445<br>0687<br>0683<br>0725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 298<br>299<br>300<br>301<br>302<br>303<br>304<br>305<br>305                             | 0381<br>0737<br>0643<br>0621<br>0374<br>0777<br>0683<br>0339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 307<br>308<br>309<br>310<br>311<br>312<br>313<br>314<br>315<br>316                      | 0 4 9 5<br>0 1 0 7<br>0 2 1 1<br>0 1 1 4<br>0 7 8 7<br>0 2 6 1<br>0 0 1 6<br>0 5 4 5<br>0 3 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 317<br>318<br>319<br>320<br>321<br>322<br>323<br>324<br>325                             | 0294<br>0665<br>0344<br>0169<br>0837<br>0743<br>0743<br>0743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3227<br>3227<br>3229<br>3333<br>3333<br>3333<br>3333<br>3333                            | 0595<br>0157<br>0060<br>0263<br>0299<br>0432<br>0538<br>0645<br>0311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 335<br>336<br>337<br>338<br>340<br>341<br>342<br>343<br>344                             | 0164<br>0326<br>0482<br>0349<br>0588<br>0695<br>0118<br>063R<br>0394<br>0733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

0 1 7 4

| 24             | 01, 527                                                                            |
|----------------|------------------------------------------------------------------------------------|
| 21             | 5260                                                                               |
| 69             | 8007                                                                               |
| 24             | 0022                                                                               |
| 69<br>24       | 8006<br>0184<br>0062                                                               |
| 80             | 0001                                                                               |
| 69             | 0324                                                                               |
| 51<br>40<br>69 | 0001                                                                               |
| 60             | 0333                                                                               |
| 33             | 0085                                                                               |
| 46             | 0064                                                                               |
| 69             | 0184                                                                               |
| 82             | 8001                                                                               |
| 69             | 0022                                                                               |
| 8 R            | 8001                                                                               |
| 6 O            | 5270                                                                               |
| 3 3            | 5260                                                                               |
| 46             | 0290                                                                               |
| 69             | 0443                                                                               |
| 69             | 0196                                                                               |
| 24<br>60<br>32 | 0135 5270 5800                                                                     |
| 69             | 0144                                                                               |
| 69             | 0073                                                                               |
| 24             | 0129                                                                               |
| 69<br>24<br>60 | $     \begin{array}{r}       0196 \\       0135 \\       5270 \\     \end{array} $ |
| 33             | 5800                                                                               |
| 69             | 01R4                                                                               |
| 82             | 8001                                                                               |
| 44<br>69<br>82 | 0129<br>0487<br>0184<br>8001                                                       |
| 60             | 5270                                                                               |
| 33             | 5260                                                                               |
| 46             | 0340                                                                               |
| 69             | 0184                                                                               |
| 82             | 8001                                                                               |
| 69             | 0022                                                                               |
| 88             | 8001                                                                               |
| 60             | 5270                                                                               |
| 33             | 5800                                                                               |
| 24<br>69<br>24 | 0129 0185 0141                                                                     |
| 69             | 0135                                                                               |
| 24             | 0191                                                                               |
| 69             | 5270                                                                               |
| 24             | 5260                                                                               |
| 24             | 5300                                                                               |
| 60             | 5290                                                                               |
| 21<br>69<br>88 | 5810<br>52R0<br>0022<br>8001                                                       |
| 69             | 0184                                                                               |
| 82             | 8001                                                                               |
| 69             | 0062                                                                               |
| 80<br>69<br>69 | $8001 \\ 0374 \\ 0777$                                                             |
| 59<br>51<br>40 | 0001 0621                                                                          |
| 33<br>44<br>69 | 5280<br>5280<br>0211<br>0114                                                       |
| 60             | 0333                                                                               |
| 33             | 00R5                                                                               |
| 44             | 0665                                                                               |
| 60             | 0141                                                                               |
| 33             | 0196                                                                               |
| 21             | 0141                                                                               |
| 46             | 0118                                                                               |
| 69             | 0191                                                                               |
| 24             | 0135                                                                               |
| 69             | 0184                                                                               |
| 82             | 8001                                                                               |
| 69             | 0022                                                                               |
| 88             | 8001                                                                               |
| 60             | 5290                                                                               |
| 33             | 52R0                                                                               |
| 46             | 0060                                                                               |
| 69             | 0263                                                                               |
| 69             | 0196                                                                               |
| 24             | 0135<br>5290<br>5810                                                               |
| 69             | 0164                                                                               |
| 69             | 0073                                                                               |
| 24             | 0129                                                                               |
| 69             | 0196                                                                               |
| 24             | 0135                                                                               |
| 60             | 5290                                                                               |
| 55             | 5810                                                                               |
| 69             | 01R5                                                                               |
| 24             | 0141                                                                               |
| 44             | 08R7<br>01R4                                                                       |

|                      | RAU            | RBEST         | 8 |     |       |          |
|----------------------|----------------|---------------|---|-----|-------|----------|
|                      | F 3 8<br>8 M 1 | NORER         |   | F I | χυ    | P        |
| HORER                | LDO            | STENP         |   |     |       |          |
|                      | LÕÕ            | CTEMP         |   |     |       |          |
|                      | RAC            | 8001<br>R8F8T |   |     |       |          |
|                      | F 8 8          | DELR          | 8 | 80  | BR    | 1        |
| F F X U P<br>N F X T | RAU            | RBEBT         | 0 | 6 U | BR    | 1        |
|                      | 8 T D          | RINIT         | 0 |     |       |          |
|                      | NZB            | AGAIN         |   | EN  | UF    | e .      |
| AGAEN                | RAU            | CTENP         |   |     |       |          |
|                      | 810            | CTEMP         |   |     |       |          |
|                      | RAU            | BTENP         |   |     |       |          |
|                      | 8 T U          | BTENP         |   |     |       |          |
|                      | LOO<br>RAC     | 6001          |   |     |       |          |
|                      | LOD            | BTENP         |   |     |       |          |
| ENUFF                | LOO            | 0001          |   | PR  |       | IT I     |
|                      | LOO            | 8000          |   |     |       |          |
|                      | 8 4 1          | OEVEA         |   | PL  |       | 8        |
| PLUSB                | RAU            | INDXO         |   |     |       | T        |
| TERED                | LÓÖ            | INDX8         |   |     |       |          |
|                      | , RAB          | 8001          |   |     |       |          |
|                      | RAC            | 0001          |   |     |       |          |
|                      | 100<br>810     | ZERO          |   | LO  | 00    |          |
| TIGHT                | LOD            | INOXE         |   |     |       |          |
| RETTN                | RAB            | OELB          | 8 | N E |       | <b>N</b> |
|                      | FOV            | TEN           |   |     |       |          |
|                      | RAU            | DELR          | ð |     |       |          |
|                      | FOV            | TEN<br>DELR   |   |     |       |          |
|                      | 8 X B          | 0001          |   |     |       |          |
| UAAU                 | RAB            | 0001          |   | 91  | JAA   | υ        |
|                      | RAU            | DELR          | B |     |       |          |
|                      | 8 M I          | OEVEA         |   | T   | RE    | 0        |
| DEVEA                | LOD            |               |   | E   | 000   | :L       |
|                      | RAA            | 8001          |   | R   | E 8 8 | т        |
| REBET                | LOD            | EIGHT         |   | 8   |       | F        |
| STUFF                | LOO            | 2             | A |     |       |          |
|                      | LOD            | 6 1985        | A |     |       |          |
|                      | \$ T D         | 1986          |   |     |       |          |
|                      | 810            | 1987          | 8 |     |       |          |
|                      | 8 X A          | 0001          |   |     |       |          |
|                      | NZA            | MORES         |   | F   | E N I | B        |
| MOREG                | NZB            | BTUFF         |   | C   | ARG   | 0.6      |
| CREUS.               | 100            | REBET         |   | E   | 00    | CL.      |
| FEWIB                | RAB            | 0001          | 8 |     |       |          |
|                      | FUB            | DNEHO         |   |     |       |          |
| -                    | PCH            | 1977          |   | P   |       | 88       |
| ENO                  | PCH            | 1977          |   | 1   | 80    | 00       |

N

FN

A

E

P t

T R

| 33333333333333333333333333333333333333 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ |
|----------------------------------------|--------------------------------------------------------------------|
|----------------------------------------|--------------------------------------------------------------------|

,

| 83                                     | 8001                                                         |
|----------------------------------------|--------------------------------------------------------------|
| 60                                     | 5790                                                         |
| 33                                     | 5280                                                         |
| 46                                     | 0110                                                         |
| 69                                     | 0184                                                         |
| 82                                     | 8001                                                         |
| 88<br>60<br>33<br>60<br>69<br>24<br>53 | 8001<br>5290<br>5290<br>5290<br>5310<br>0001                 |
| 60                                     | 0022                                                         |
| 11                                     | 0062                                                         |
| 21                                     | 0022                                                         |
| 60                                     | 0184                                                         |
| 11                                     | 0392                                                         |
| 21                                     | 0184                                                         |
| 69                                     | 0022                                                         |
| 88<br>69<br>69<br>69<br>60<br>46       | 8001<br>0184<br>8001<br>0376<br>8000<br>8001<br>0442<br>0135 |
| 44                                     | 0993                                                         |
| 69                                     | 0412                                                         |
| 82                                     | 8001                                                         |
| 69                                     | 0224                                                         |
| 88                                     | 8001                                                         |
| 69                                     | 0073                                                         |
| 24                                     | 0135                                                         |
| 82                                     | 8001                                                         |
| 60                                     | 5800                                                         |
| 34                                     | 0158                                                         |
| 21                                     | 5800                                                         |
| 60                                     | 5810                                                         |
| 34                                     | 0158                                                         |
| 21                                     | 5810                                                         |
| 42<br>80<br>33<br>46<br>69             | 0721<br>0001<br>5810<br>0168<br>0442<br>0895<br>0062         |
| 80                                     | 8001                                                         |
| 69                                     | 0024                                                         |
| 83                                     | 8001                                                         |
| 69                                     | 3200                                                         |
| 24                                     | 5985                                                         |
| 69                                     | 3240                                                         |
| 24                                     | 5986                                                         |
| 69                                     | 3220                                                         |
| 24<br>51<br>52<br>40<br>42<br>71<br>69 | 5987<br>0001<br>0004<br>0305<br>0833<br>1977<br>0771<br>0001 |
| 60                                     | 5810                                                         |
| 33                                     | 0168                                                         |
| 46                                     | 0148                                                         |
| 71                                     | 1977                                                         |
| 71                                     | 1977                                                         |
| 00                                     | 0000                                                         |
| 40<br>10<br>10<br>00                   | 0 0 0 0<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0          |

## APPENDIX C

# Description and Explanation of the IBM-650 Computer Program Used for Fitting Empirically Experimental Data with an Even Fourier Series

The computer code was written to fit an even Fourier series to the experimentally determined surface temperature traces during a transient burst. The program was written in SOAP II and floating point form. The object program is listed and the logic diagram is shown in this appendix.

The data were fit empirically by a finite number of terms of the even trigonometric series.

$$\theta(t) = \sum_{i=1}^{p} B_i \cos \frac{2\pi i t}{a},$$

where

 $B_0 = 2/a \int_0^a y(t) dt$ 

and

 $B_i = 1/a \int_0^a y(t) \cos \frac{2\pi i t}{a} dt$ .

The integrations were carried out numerically by means of Simpson's rule thus requiring an odd number of data points.

The program input consisted of the experimental data and their respective times, the period, the time increment between data points and a specification of the number of terms. These data were read into the machine on one-word load cards. Each one-word load card contained a particular constant or piece of data and its specific storage location. Table C-1 lists the input data needed for this program. Storage locations limit the product of the number of terms and the number of data points to

(C-1)

less than 550. The number of terms and the number of data points are each limited to less than 50.

Table C-1. Input data required for use of the IBM-650 program which fits empirically experimental data with a finite number of terms of an even Fourier series.

| Symbol  | Expanation                         | Storage Location |
|---------|------------------------------------|------------------|
| ZERO    | 0,00                               | 0083             |
| FPONE   | 1.00                               | 0034             |
| FPTWO   | 2.00                               | 0108             |
| FPTRE   | 3.00                               | 0207             |
| FPFOR   | 4.00                               | 0008             |
| PI      | 3.14159                            | 0261             |
| INDX2   | Index Number 2 (0000000002)        | 0160             |
| INDXJ   | Number of Terms (00000000xx)       | 1001             |
| INDXK - | Number of Data Points (00000000xx) | 1002             |
| Α       | Period of Cosine Terms             | 1003             |
| Н       | Time Increment Between Data Points | 1004             |
| Τi      | Time of ith data point             | (1100 + i)       |
| Yi      | Experimental data at ith point     | (1150 + i)       |

The machine punched out a card having an eight word capacity, each work consisting of 10 digits and a sign. The first output consisted of the time, the calculated value and the residual between the calculated values and the experimental data for the last data point in word locations 1, 2 and 3, respectively. The same information for the next to last data point was punched out in columns 5, 6 and 7 of the same card. The same information for the two previous data points was punched out on the next card. The above procedure was continued until the time, residuals and calculated values were punched for each data point. B<sub>1</sub> was then stored in word location 1, B<sub>2</sub> in word location two, etc. until all of the <u>B's</u>

had been stored and punched. If more than 8 <u>B's</u> were calculated the first 8 were stored and a card punched. Additional <u>B's</u> were punched in succeeding cards with the lower number <u>B's</u> starting on the left of each card. Finally the summation of the square of the residual at each data point was punched out in word location 8 of a final card.



LOGIC DIAGRAM-APPENDIX C

| DOCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 YN Y<br>S YN Y<br>8 YN 8 T Â<br>8 YN 8 T Â<br>8 YN 6 LUX<br>8 YN 6 LUX<br>8 YN 6 LUX<br>8 YN 6 LUX<br>8 YN 10 XK<br>8 YN 10 XK<br>8 YN 4<br>8 YN 4<br>8 YN 4<br>8 YN 4<br>8 YN 4<br>8 YN 4<br>8 YN 5<br>8 YN 5<br>8 YN 7<br>8 YN 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1100<br>1150<br>1300<br>1300<br>1300<br>1400<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T1 BMALL<br>Y1 WITH T1<br>NO TERMB<br>NO DATA PT           | $\begin{array}{c} 5 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 7 & 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 \\ 11 & 0 & 0 & 0 & 0 \\ 12 & 0 & 0 & 0 & 0 \\ 13 & 0 & 0 & 0 & 0 \\ 14 & 0 & 0 & 0 & 0 \\ 15 & 0 & 0 & 0 & 0 \\ 16 & 0 & 0 & 0 & 0 \\ 17 & 0 & 0 & 0 & 0 \end{array}$ | 00         00000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         0000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00           00         00000         00      < |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FAO TWOPI<br>BMI NEGAT<br>F88 ONEPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | 18 0009<br>19 0039<br>20 0043                                                                                                                                                                                                                                                                                    | 32 0012 00<br>46 0009 00<br>33 0046 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| : 0 U C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FSB TWOPI<br>BMI<br>FAD ONEPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REOUC<br>COBIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            | 21 0010<br>22 0089<br>23 0042                                                                                                                                                                                                                                                                                    | 33 0012 00<br>46 0042 00<br>32 0046 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RSU FPONE<br>STU TERVM<br>ATU FUNKT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 25 0031<br>26 0139<br>27 0047                                                                                                                                                                                                                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 0 8 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STL ENN<br>STO EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NEGST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            | 28 0005<br>29 0050                                                                                                                                                                                                                                                                                               | 20 0059 00<br>24 0003 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FAD TWOPI<br>BWI NEGAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 31 0109<br>38 0189                                                                                                                                                                                                                                                                                               | 32 0012 01<br>46 0109 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FSB TWOPI<br>BMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REDUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            | 33 0093<br>34 0060<br>35 0239                                                                                                                                                                                                                                                                                    | 33 0046 00<br>33 0012 02<br>46 0092 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FAO ONEPI<br>BTU THETA<br>RBU BOO3<br>BTU TERMM<br>STU FUNKY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BINET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            | 36 0092<br>37 0073<br>38 0081<br>39 0289                                                                                                                                                                                                                                                                         | 32 0046 00<br>21 0028 00<br>61 8003 02<br>21 0044 00<br>21 0044 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C 8 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOD FPONE<br>STO ENN<br>RAU ENN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEGOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            | 41 0055<br>42 0037                                                                                                                                                                                                                                                                                               | 69 0034 00<br>24 0059 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FAO FPONE<br>BTU NPONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 44 0013<br>45 0011                                                                                                                                                                                                                                                                                               | 32 0034 00<br>21 0016 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STU ENN<br>RSU TERMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 46 0019<br>47 0061<br>48 0112                                                                                                                                                                                                                                                                                    | 32 0034 00<br>21 0059 01<br>61 0044 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FWP THETA<br>FWP THETA<br>FOV NPONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 49 0049<br>50 0078<br>51 0128                                                                                                                                                                                                                                                                                    | 39 0028 00<br>39 0028 01<br>34 0016 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NUFF<br>1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .8 TÚ - TÉ CRUM<br>RAM FUNKT<br>RAM FURAG<br>RAM FURAG<br>FOV FMAG<br>FOV FMAG<br>BMI ENUFF<br>FAD TENKT<br>RAU FUNKT<br>RAU FUNKT<br>RAU FUNKT<br>10 0000<br>62 8318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NE G B T<br>E X I T<br>0043<br>2751<br>2751<br>0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NEPI<br>PONE<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 0000<br>STO EXITC<br>RAU STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | 71 0105                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OPI<br>NEPI<br>PONE<br>D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 0000<br>STO EXITC<br>RAU 8TA<br>FMP T<br>LDD<br>STU COSPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A<br>8<br>6 00CH<br>0 Exito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BUSLNBUP                                                   | 72 0150<br>73 0103                                                                                                                                                                                                                                                                                               | 39 5100 01<br>69 0103 00<br>21 7400 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I G F I<br>D B<br>I T G T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 0000<br>STO EXITC<br>RAU 8TA<br>FMP T<br>LOD<br>STU COSET<br>STD EGSIT<br>RAE 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>8<br>0 E 0 0 C H<br>0 E X I T C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 U S L D 8 U P                                            | 72 0150<br>73 0103<br>74 0200<br>75 0156<br>76 0152                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ICPI<br>NEPI<br>PONE<br>D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 0000<br>ST0 EXITC<br>RAU BTA<br>FMP T<br>LDD<br>STU C0SET<br>STU C0SET<br>RAE 0001<br>RAU PHI<br>STU ACCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A<br>B<br>E E O O C H<br>C E X I T C<br>B<br>L O P 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 U S L N 8 U P                                            | 72 0150<br>73 0103<br>74 0200<br>75 0156<br>76 0162<br>77 0155<br>78 0063                                                                                                                                                                                                                                        | 39         5100         01           69         0103         00           21         7400         00           24         0153         01           60         5300         01           21         0110         00           52         0001         01           52         0001         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OPI<br>ONE<br>ONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 0000<br>STO EXITC<br>RAU 8TA<br>FWP T<br>LDD<br>STU C0S8T<br>STD EGSIT<br>RAU PHI<br>STU ACCUM<br>AX8 0001<br>RAU PHI<br>FWP FPFDR<br>FAO ACCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A<br>8<br>0 E 0 0 C H<br>0 E X I T C<br>8<br>L 0 P 3 3<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 U S L N 8 U P<br>I N P V T                               | 72       0150         73       0103         74       0200         75       0156         76       0162         77       0155         78       0063         79       0063         80       0205         81       0058                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NOPI<br>NEPI<br>PONE<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 0000<br>STO EXITC<br>RAU 8TA<br>FMP T<br>LOD<br>STU C088T<br>STU C088T<br>STU C088T<br>RAU PHI<br>STU ACCUM<br>AX8 0001<br>RAU PHI<br>FA0 ACCUM<br>AX8 0001<br>RAU PHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A<br>B<br>C E 0 0 C H<br>C E X H T C<br>B<br>L 0 P 3 3<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 U S L N 8 U P<br>I N P V T                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NOPI<br>NEPI<br>DONE<br>NTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 0000<br>STO EXITC<br>RAU 8TA<br>FWP T<br>LDD<br>STU C0S8T<br>STD EGSIT<br>RAU PHI<br>STU ACCUM<br>AX8 0001<br>FMP FPFDR<br>FA0 ACCUM<br>STU ACCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>B<br>E E O O C H<br>E X I T C<br>B<br>L O P 3 3<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8USLD8UP<br>INPUT<br>INPUT                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NEPI<br>NEPI<br>DONE<br>DONE<br>DONE<br>DONE<br>DONE<br>DONE<br>DONE<br>DONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10         00000           STO         EXITC           RAU         BTA           JUD         T           LOD         T           STU         COSET           STU         COSET           RAU         PHI           STU         ACCUM           AXB         OOO1           RAU         PHI           STU         ACCUM           AXB         OOO1           FMP         FPF PF R           FAO         ACCUM           AXB         OOO1           FMU         POID           FU         ACCUM           AXB         OOO1           FAU         POID           FAU         ACCUM           RAU         POID           FAU         ACCUM           RAU         BOU           SUP         INDXK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A<br>8<br>2 E00CH<br>Exit<br>6<br>Lop33<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8USL NBUP<br>INPUT<br>INPUT                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N P I<br>N P I<br>N P I<br>N T G T<br>D P 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 0000<br>810 EXITC<br>RAU 8TA<br>5TU COS8T<br>5TU COS8T<br>STU COS8T<br>STU COS8T<br>RAU PHI<br>STU ACCUM<br>RAU PHI<br>STU ACCUM<br>AX8 0001<br>RAU PHI<br>STU ACCUM<br>AX8 0001<br>FMP FPFDR<br>STU ACCUM<br>8TU ACCUM<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>B<br>C E O O C H<br>E X I T C<br>B<br>L O P 3 3<br>B<br>B<br>G O 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BUSLDBUP<br>INPUT<br>INPUT<br>INPUT                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N F F F F F F F F F F F F F F F F F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10         00000           STO         EXITC           RAU         BTA           LOO         T           STU         COSBT           STU         COSBT           STU         COSBT           RAU         PHI           STU         ACCUM           AXB         OOO1           RAU         PHI           STU         ACCUM           AXB         OOO1           FMP         FPFDR           FAO         ACCUM           AXB         OOO1           FAU         PHI           FAU         FOTOA           FUD         ACCUM           RAU         POO3           AXB         OOO1           FMP         FND           FWD         FNP           FWD         ACUM           STU         ACUM           GUD         ACUM           SUP         INOXX           AXB         OOC1           FMP         FPO           FMD         FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A<br>B<br>C E X I TC<br>B<br>L O P 3 3<br>B<br>B<br>G 0 1 1 1<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8USL D8UP<br>INPUT<br>INPUT<br>INPUT                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 P I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 0000<br>810 EXITC<br>RAU 8TA<br>5TU COS 8T<br>5TU COS 8T<br>5TU COS 8T<br>5TU COS 8T<br>STU COS 8T<br>STU COS 8T<br>STU A CCUM<br>AX8 0001<br>RAU PHI<br>5TU A CCUM<br>8TU ACCUM<br>8TU ACCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A<br>B<br>C E O O C H<br>E X I T C<br>B<br>L O P 3 3<br>B<br>G O 1 1 1<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8USLD8UP<br>INPUT<br>INPUT<br>INPUT                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 P I<br>9 O N E<br>9 O N E | 10         00000           8T0         EXITC           RAU         BTA           LOO         STU           STU         C081           STU         C081           STU         C081           RAU         PHI           STU         ACCUM           AX8         0001           RAU         PHI           FAP         FFDR           FAD         ACCUM           AX8         OO           FAD         ACCUM           RAU         PHI           FAD         ACCUM           RAU         PHI           FMP         FPTOR           FAD         ACCUM           RAU         PHI           FMP         FND           FUD         ACCUM           RAU         PHI           FMP         FPFOR           SUP         INOXX           AU         OO01           FAO         ACCUM           RAU         PHI           FMP         FPFOR           STU         ACCUM           STU         ACUM           STU         ACUM <td>A<br/>B<br/>C E C O C H<br/>E X I T C<br/>B<br/>L O P 3 3<br/>B<br/>G O 1 1 1<br/>B<br/>B</td> <td>OUSLDOUP<br/>INPUT<br/>INPUT<br/>INPUT</td> <td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td> <td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A<br>B<br>C E C O C H<br>E X I T C<br>B<br>L O P 3 3<br>B<br>G O 1 1 1<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OUSLDOUP<br>INPUT<br>INPUT<br>INPUT                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 0000<br>810 EXITC<br>RAU 8TA<br>500 T<br>510 EGSIT<br>810 C08 T<br>510 EGSIT<br>840 0001<br>810 ACCUM<br>840 0001<br>RAU PHI<br>510 ACCUM<br>810 ACCUM<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>B<br>LOP33<br>B<br>G0111<br>B<br>EGBIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BUSLDBUP<br>INPUT<br>INPUT<br>INPUT<br>INPUT<br>EXIT INSTR | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ) 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10         00000           8T0         8TA           8T0         8TA           FMP         T           LDD         T           STU         C088           STU         C088           STU         C088           STU         C088           STU         C088           STU         C088           STU         ACCUM           RAU         PH1           FMP         FFDF           FA0         ACCUM           AX8         OO01           FMP         FPT           FMP         FPT           FMP         FPT           FA0         ACCUM           RAU         PH1           FMP         FPT           FA0         ACCUM           RAU         PH1           FMP         FP           FA0         ACCUM           AX8         OO01           FA0         ACCUM           AX8         OO01           FA0         ACCUM           FA0         ACCUM           FA0         ACCUM           FA0         ACCUM      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>B<br>C E C O C H<br>E X I T C<br>B<br>L O P 3 3<br>B<br>G O 1 1 1<br>B<br>E C B I T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BUSLDBUP<br>INPUT<br>INPUT<br>INPUT<br>EXIT INSTR          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10         00000           8T0         EXITC           RAU         8TA           FMP         T           LOD         T           STU         C0817           STU         C0817           RAU         PHI           STU         ACCUM           AX8         0001           RAU         PHI           STU         ACCUM           AX8         0001           FMP         FPF DR           FMD         FPT TNO           STU         ACCUM           AX8         0001           FMD         FP TNO           GRUP         INDXK           AUU         BO001           FMD         FP TNO           FMD         FP TNO           FMD         FP TNO           STU         ACCUM           BUD         INDXK           AUU         BO001           FAU         ACCUM           STU         ACCUM           STU         ACCUM           SUP         INDXK           AUU         BO001           RAU         PHI           FMO <t< td=""><td>A<br/>B<br/>C E X I TC<br/>C<br/>C E X I TC<br/>C<br/>E X I TC<br/>E X</td><td>OUSLDOUP<br/>INPUT<br/>INPUT<br/>INPUT<br/>INPUT<br/>EXIT INSTR</td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td></t<> | A<br>B<br>C E X I TC<br>C<br>C E X I TC<br>C<br>E X I TC<br>E X | OUSLDOUP<br>INPUT<br>INPUT<br>INPUT<br>INPUT<br>EXIT INSTR | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ) 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 0000<br>810 EXITC<br>RAU 8TA<br>510 EGSIT<br>810 C0807<br>810 EGSIT<br>810 C0807<br>810 C0807<br>810 ACCUM<br>810 PHI<br>810 ACCUM<br>810 PHI<br>810 ACCUM<br>810 ACCU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A<br>B<br>C E C D C H<br>E X I T C<br>B<br>C D P 3 3<br>B<br>G O 1 1 1<br>B<br>E C B I T<br>Z Z Z 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BUSLDBUP<br>INPUT<br>INPUT<br>INPUT<br>INPUT<br>EXIT INSTR | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### OBJECT PROGRAM-APPENDIX C

| L D D<br>R A A          | ZERO<br>8001         |        |            |            |          | t i | NP         | 0.1 | r      |   |     |     | $116 \\ 117$ | 008<br>008 | 0           | 69<br>80          | 0083                                                          | 0086                                                                      |
|-------------------------|----------------------|--------|------------|------------|----------|-----|------------|-----|--------|---|-----|-----|--------------|------------|-------------|-------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|
| STD<br>LDOP1 AXA        | N<br>0001            | 1      | L 0        | 0 P        | 1        |     |            |     |        |   |     |     | 11B<br>119   | 014        | 2           | 24                | 0095                                                          | 004 P                                                                     |
| R A U<br>F A D          | N<br>FPONE           |        |            |            |          |     | NP         | U 1 | r      |   |     |     | 120          | 005        | 4<br>9      | 5 C C C           | 0095                                                          | 0149<br>0211                                                              |
| 8 T U<br>F M P          | N<br>FP-TWO          |        |            |            |          | ī   | NP         | U 1 | r      |   |     |     | 122<br>123   | 021<br>009 | 1<br>B      | 21<br>39          | 0095<br>0108                                                  | 0098<br>0258                                                              |
| F M P<br>F D V          |                      |        |            |            |          |     | N P<br>N P | 01  | r<br>r |   |     |     | 124          | 025        | 8           | 39<br>34          | 0261                                                          | 0311<br>0253                                                              |
| STU<br>RAU<br>BUP       | 8005<br>ENDYJ        | •      |            |            |          |     |            |     |        |   |     |     | 126          | 025        | 3           | 21<br>60          | 3250                                                          | 0303                                                                      |
| CONT1 LDD               | LÖÖPI                | 1      | сo         | NT         | 1        |     |            |     |        |   |     |     | 129          | 040        | 5           | 44                | 004 B                                                         | 0210                                                                      |
|                         | 8001<br>INDXK        |        |            |            |          |     |            |     |        |   |     |     | 131          | 010        | ă<br>D      | 8 Ó<br>6 9        | 8001                                                          | 0260                                                                      |
|                         | B O O 1<br>I N D X C |        |            |            |          |     |            |     |        |   |     |     | 133<br>134   | 045<br>041 | 5<br>1      | 82                | 8001                                                          | 0411<br>0130                                                              |
| LOOPS LDO               | 8001                 |        | <b>c</b> 0 | O P<br>S   | я        | 8   | U B        | RC  | ) U    | T |     | • • | 135<br>E 136 | 013        | D<br>6      | 8 B<br>6 9        | $8001 \\ 0339$                                                | 0136<br>0100                                                              |
| 8 X C                   | 0001                 |        |            |            |          |     |            |     |        |   |     |     | 137<br>138   | 033        | 9<br>5      | 53                | 0001                                                          | 0145                                                                      |
| WORET BXA               | 0001                 |        | - D        | ч с<br>м т | 1        |     |            |     |        |   |     |     | 140          | 050        | 5           | 51                | 0136                                                          | 0461                                                                      |
| CONTA LOO               | INDXK<br>BOD1        |        | <b>.</b> 0 | 0.0        | 2        |     |            |     |        |   |     |     | 142          | 011        | 4           | 69                | 1002                                                          | 0555                                                                      |
| CONT3 RAA               | 0000                 |        |            | •••        | ~        |     |            |     |        |   |     |     | 144          | 006        | 5           | B 0<br>6 9        | 0000                                                          | 0121<br>0605                                                              |
| LDOP3 LOD               | 8001<br>Y            | в      | ιo         | DP         | 3        |     |            |     |        |   |     |     | 146          | 060        | 5           | 52<br>69          | $   8001 \\   5150 $                                          | $     \begin{array}{r}       0 5 1 1 \\       0 3 5 3     \end{array}   $ |
| 8 T D<br>8 x B          | PH1<br>0001          | 8      |            |            |          |     |            |     |        |   |     |     | 148<br>149   | 035<br>040 | 3           | 24<br>53          | $\begin{array}{c} 5 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1 \end{array}$ | 0403<br>0259                                                              |
| CONT4 LOD               | LOOP3                |        | CO         | N T<br>T G | 4<br>T   | 9   | 08         | нс  | ) U    | Ŧ | • • | • • | 150<br>E 151 | 025        | 3           | 42                | $   0511 \\   0116 $                                          | 0263                                                                      |
| FNP<br>FDV              |                      |        | ~ ~        |            |          |     |            |     |        |   |     |     | 152          | 011 030    | 5           | 39                | 0108                                                          | 0308                                                                      |
| CONTS RAA               | 0000                 |        |            |            | 5        |     |            |     |        |   |     |     | 154          | 045        | 5<br> <br>7 | # 1<br>B 0<br>B 2 | 00000                                                         | 0017                                                                      |
| CONSS LOD               | 0000                 |        | c o        | N 5        | 5        |     |            |     |        |   |     |     | 157<br>158   | 012        | 3           | 88                | 0000                                                          | 0029                                                                      |
| RAC                     | BOOI                 |        |            |            |          |     |            |     |        |   |     |     | 159          | 018        | 5           | 88                | 8001<br>1001                                                  | 0186<br>0154                                                              |
| LOPPP LOO               | 8001<br>INDXK        | 1      | LO         | PP         | P        |     |            |     |        |   |     |     | 161<br>162   | 015<br>031 | 4           | 80<br>69          | 8001<br>1002                                                  | 0310<br>0655                                                              |
| LDOP4 RAU               | 8001<br>Y            | B      | ιo         | 0 P        | 4        |     |            |     |        |   |     |     | 163          | 065        | 5           | 82<br>60          | B 0 0 1<br>5 1 5 0                                            | 0611<br>0705                                                              |
| 6 T U                   | PHI                  | R      |            |            |          |     |            |     |        |   |     |     | 165          | 070        | 5           | 21                | 7400                                                          | 0300                                                                      |
| 5 X B<br>5 X C          | 0001                 |        | <b>^</b> D |            |          |     |            |     |        |   |     |     | 168          | 030        |             | 55                | 0001                                                          | 0115                                                                      |
| CONTE LOD               | EPEOP                |        | ÎN         | TO         | 1        |     |            |     |        |   |     |     | 170          | 021        | 2           | 69                | 0072                                                          | 0200                                                                      |
| FDV                     | A                    |        |            |            |          |     |            |     |        |   |     |     | 172          | 040        | 9<br>1<br>1 | 34                | 1003                                                          | 0553                                                                      |
| ' SXA<br>NZA            | 0001<br>LOPPP        |        | сo         | N T        | 7        |     |            |     |        |   |     |     | 174          | 060        | 3           | 51<br>40          | 0001                                                          | 0359<br>0313                                                              |
| CONT7 RAA<br>RAB        | 0000                 |        |            |            |          |     |            |     |        |   |     |     | 176          | 031        | 3           | B 0<br>B 2        | 0000                                                          | 0269<br>0025                                                              |
| – LDO<br>A X B          | INDXK<br>8001        |        |            |            |          |     |            |     |        |   |     |     | 17B<br>179   | 002        | 5           | 69<br>52          | $\begin{array}{c}1002\\8001\end{array}$                       | 0755<br>0661                                                              |
|                         | 1 N D X J<br>8001    |        | • •        |            | -        |     |            |     |        |   |     |     | 180          | 066        | 4           | 69<br>50          | 1001<br>R001                                                  | 0204                                                                      |
| CON77 LDO               | INOXC .              |        | . 0        | <b>n</b> 7 | <b>'</b> |     |            |     |        |   |     |     | 182<br>183   | 016        | 5           | 69<br>58          | 0027                                                          | 0230                                                                      |
|                         | INDXJ<br>BOOI        |        |            |            |          |     |            |     |        |   |     |     | 185<br>186   | 023        | 5           | 69<br>80          | 1001                                                          | 0254                                                                      |
| L 0 0<br>8 T 0          | ZERO<br>HOLO         |        | LO         | 0 P        | 5        |     |            |     |        |   |     |     | 187          | 041        | 5           | 69<br>24          | 0083                                                          | 0286<br>0192                                                              |
| LOOP5 RAU<br>FMP        | B<br>COSBT           | A<br>C |            |            |          |     |            |     |        |   |     |     | 189<br>190   | 019        | 5           | 60<br>39          | 32007400                                                      | 0 A O 5<br>0 3 5 0                                                        |
| F A D<br>8 T U          | HOLD                 |        |            |            |          |     |            |     |        |   |     |     | 191          | 0350       | 5           | 21                | 0389                                                          | 0165                                                                      |
|                         | INDXK                |        |            |            |          |     |            |     |        |   |     |     | 194          | 014        | 3           | 69<br>60          | 1002                                                          | 0855                                                                      |
| NZC                     | CONT8                |        | C O        | NT         | 8        |     |            |     |        |   |     |     | 196          | 071        |             | 48                | 0164                                                          | 0215                                                                      |
| CONTO RAU<br>FAD        | HOLD                 |        |            | •••        | 5        |     |            |     |        |   |     |     | 198          | 021        | 5           | 60<br>32          | 0389                                                          | 0143 0085                                                                 |
| 8 T U<br>F 9 B          | FLUX<br>Y            | B<br>B |            |            |          |     |            |     |        |   |     |     | 200          | 008        | 5           | 21                | 5350<br>5150                                                  | 0653                                                                      |
| 8 T U<br>8 X B          | ERROR<br>0001        | 8      |            |            |          |     |            |     |        |   |     |     | 202          | 007        | 7<br>3      | 21<br>53          | 5050                                                          | 0409                                                                      |
| 8 x C<br>N Z B          | 0001<br>CON77        |        | PR         | I N        | T        |     |            |     |        |   |     |     | 204          | 026        | 5           | 42                | 0166                                                          | 0319                                                                      |
|                         | 8001                 |        |            | 0 P        | 7        | 8   |            | нс  |        | т | E N |     | 207<br>207   | 090        | 5           | 52                | 8001                                                          | 0761                                                                      |
|                         | 10008                | в      | ιŏ         | ÖP         | 6        |     |            |     |        |   |     |     | 209          | 021        | i<br>)      | 81<br>69          | 0008<br>5100                                                  | 00700753                                                                  |
| 8 T O<br>L D D          | 0985<br>FLUX         | Ă<br>B |            |            |          |     |            |     |        |   |     |     | 211<br>212   | 075        | 3           | 24<br>69          | 2985<br>5350                                                  | 0038                                                                      |
| 8 T D<br>L D D          | 09R6<br>ERROR        | B      |            |            |          |     |            |     |        |   |     |     | 213          | 080        | 2           | 69                | 2986                                                          | 0439                                                                      |
| 8 T D<br>A X A          | 0987                 | A      |            |            |          |     |            |     |        |   |     |     | 216          | 0040       | )           | 50                | 0004                                                          | 0096                                                                      |
| NZB                     | 10001                |        | FI         | NI         | 5        |     |            |     |        |   |     |     | 218          | 005        |             | 42                | 0955                                                          | 0256                                                                      |
| CONTO PCH               | 0977                 |        | ιŭ         | 0 P        | ŕ        |     |            |     |        |   |     |     | 220          | 0459       | 5           | 71<br>71          | 0977                                                          | 0761<br>0127                                                              |
| RSB<br>LDD              | 0007                 |        | ΕO         | 0 0        | L        |     |            |     |        |   |     |     | 222          | 012        | 7<br>3      | 83<br>69          | 0007                                                          | 0133                                                                      |
| L D D<br>8 T D          | 8 Z E R O<br>0 9 7 7 |        |            |            |          |     |            |     |        |   |     |     | 224          | 0330       | 5           | 69<br>24          | 0358                                                          | 0811<br>02R0                                                              |
| LOOPS LOD               | 0001<br>8            | A      | L 0        | 0 P        | 8        |     |            |     |        |   |     |     | 226          | 0280       | 5           | 69<br>24          | 3200                                                          | 0903                                                                      |
| 8 T D<br>A X A<br>A X B | 09R5<br>0001<br>0001 | 8      |            |            |          |     |            |     |        |   |     |     | 229          | 00B        |             | 50<br>52          | 0001                                                          | 0144<br>0400                                                              |

|       | RAU   | 8006     |   |       |
|-------|-------|----------|---|-------|
|       | 8 U 9 | LNDNJ    |   |       |
|       | NZU   |          |   | FINAL |
|       | NZB   | LOOPB    |   | NOBS  |
| NOST  | PCH   | 0977     |   |       |
|       | LOS   |          |   | £00CL |
|       | R 8 8 | 0007     |   | LDOPR |
| FENAL | LOD   | 8        | A |       |
|       | NTO   | 0985     | 8 |       |
|       | PCH   | 5977     |   |       |
|       | LDD   | INDXK    |   |       |
|       | 2.6.2 | 8001     |   |       |
|       | LOO   | ZERO     |   |       |
|       | 6 % D | 80 M N E |   | LOPPO |
| LOPPO | RAU   | ERROR    | 8 |       |
|       | 7 M P | ERROR    | 8 |       |
|       | AD    | BONME    |   |       |
|       | 810   | SOMME    |   |       |
|       | 8 X 9 | 0001     |   |       |
|       | NZB   | LOPPO    |   | NDONE |
| NOONE | LDD   |          |   | EOOCL |
|       | LDD   | SOMME    |   |       |
|       | STD   | 0984     |   | •     |
|       | PCH   | 0977     |   | 8000  |

# APPENDIX D

Description and Explanation of the IBM-650 Computer Program Used to Calculate Temperature Distributions.

The computer program was written to calculate the temperature distribution in a unit cell of a nuclear reactor system given the heat generation rate and fuel element surface temperature as a function of time. The temperature rise over the initial temperature is given by

$$\theta_{f}(\mathbf{x},t) = \sum_{i=1}^{p} B_{i} Z_{i}^{\frac{1}{2}} \cos \left(\beta_{i}t + \varphi_{i}\right) - \sum_{n=1,3,5,\cdots}^{\infty} \frac{\cos\left(\frac{n\pi\mathbf{x}}{2L}\right) e}{(L^{2}/n\pi\alpha) (\sin \frac{n\pi}{2})}$$

$$x \left\{ \sum_{i=1}^{p} \frac{B_{i} \frac{(\frac{n}{4L^{2}}\alpha}{4L^{2}})}{\frac{n}{4}\frac{4}{4}\frac{4}{2}}{16L^{2}} + \beta_{i}^{2} + \beta_{i}^{2} - j=1 - \frac{q_{oo}\alpha A_{j} \cosh \kappa L}{k (\frac{n}{4}\frac{2}{4}\alpha^{2}} + \lambda_{j}) (\frac{n}{4}\frac{2}{4}\alpha^{2} + \alpha\kappa^{2}) \right\}$$
 (D-1)

.

$$+ \sum_{j=1}^{s} \frac{q_{\infty} \alpha A_{j} e^{\lambda_{j}t}}{k(\alpha \kappa^{2} - \lambda_{j})} \left\{ \frac{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} x) \cosh \kappa x}{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} L)} - \cosh \kappa x \right\} .$$

in the fuel and by  

$$\theta_{m}(\mathbf{x},t) = \sum_{i=1}^{p} B_{i} Z_{i}^{\frac{1}{2}} \cos \left(\beta_{i}t + \varphi_{i}\right) + \sum_{n=1,3,5,\cdots}^{\infty} \frac{\cos\left(\frac{n\pi\mathbf{x}}{2L}\right) e}{(L^{2} / n\pi\alpha)(\sin\frac{n\pi}{2})}$$
$$x \left\{ \sum_{i=1}^{p} \frac{B_{i} \left(\frac{n - \frac{2}{n} - \frac{2}{\alpha}}{4 - \frac{4}{2} - \frac{2}{\alpha}}\right)}{16L^{4} + \beta_{i}} - \sum_{j=1}^{s} \frac{F \alpha A_{j}}{k \left(\frac{n - \frac{2}{\alpha} - \alpha}{4L^{2}} + \lambda_{j}\right)} \right\}$$

$$+ \sum_{j=1}^{s} \frac{F \alpha A_{j} e^{-\beta_{j}t}}{k \left(-\lambda_{j}\right)} - \left\{ \frac{\cosh \sqrt{\frac{\lambda_{j}}{\alpha} + \lambda_{j}}}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha} + \lambda_{j}}} - 1 \right\}$$

$$(D-2)$$

in the moderator. The moderator equation is obtained from the fuel temperature distribution by setting q equal to  $\underline{F}$  and  $\underline{\kappa}$  equal to zero.

The equivalence between elements of the algebraic equations and the symbolic logic of the computer program is shown in Table D-1.

> Table D-1. Definition of symbolic terms of the IBM-650 computer program for calculating temperature distributions.

$$A1_{i} = B_{i} Z_{i}(x) \cos \beta_{i} t$$

$$A3P_{j} = q_{\infty} \alpha A_{j} e^{\lambda_{j} t} / k (\alpha \kappa^{2} - \lambda_{j})$$

$$A3SUM_{j} = \frac{\cosh \kappa L \cosh \sqrt{\frac{\lambda_{j}}{\alpha} x}}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha} L}} - \cosh \kappa x$$

$$A3_{i} = (A3P_{i}) (A3SUM_{i})$$

$$\text{CSHLL}_{j} = \cosh \sqrt{\frac{\lambda_{j}}{\alpha}} L$$

$$CSHLX_{j} = \cosh \sqrt{\frac{\lambda}{\alpha}} x$$

$$COSLL_{j} = \cos \sqrt{\frac{\lambda_{j}}{\alpha}} L$$
$$COSLX_{j} = \cos \sqrt{\frac{\lambda_{j}}{\alpha}} x$$

 $\gamma \overline{\alpha}$ 

Table D-1 cont.

ARG  $l_n = n_{\pi} 2L$ ARG  $l_n = n_{\pi}^2 2 \Delta 4L^2$ A2ST  $l_i = B_i \left(\frac{n^2 \pi^2 \alpha}{4L^2}\right) / \left(\frac{n^4 \pi^4 \alpha^2}{16L^2} + \beta_i^2\right)$ A2ST  $l_j = q_{\infty} \alpha A_j \cosh \kappa L / k \left(\frac{n^2 \pi^2 \alpha}{4L^2} + \lambda_j\right) \left(\frac{n^2 \pi^2 \alpha}{4L^2} + \alpha \kappa^2\right)$   $- \frac{n^2 \pi^2 \alpha}{4L^2} t$ A2DD  $T_n = \frac{\cos \frac{n_{\pi} x}{2L}}{\left(\frac{L^2}{n_{\pi} \alpha}\right) \sin \frac{n_{\pi}}{2}}$ 

$$A2SUM_{n} = \left(\sum_{i=1}^{n} A2ST1_{i} + \sum_{j=1}^{n} A2ST1_{j}\right)_{n}$$

$$TERM_n = (A2DDT_n) (A2SUM_n)$$

Table D-2. Input Data Required for Use of the IBM-650 Computer Program Used to Calculate Temperature Distributions.

| Symbol |         | Explanation | Storage Location |
|--------|---------|-------------|------------------|
| ZERO   | 0.00    |             | 0264             |
| ONE    | 1.00    |             | 0662             |
| TWO    | 2.00    |             | 0520             |
| PI     | 3.14159 |             | 0018             |
| FIFTY  | 50.00   |             | 0361             |
| CRIT   | 0.0001  |             | 0788             |
| ALPHA  | Thermal | Diffusivity | 0278             |

Table D-2 cont.

| Symbol | Explanation St                                            | orage Location  |
|--------|-----------------------------------------------------------|-----------------|
| KAPPA  | Reciprocal of Thermal Neutron Diffusion<br>Length in Fuel | 0436            |
| Qoo    | Normalization Factor for Heat Generation                  | 0324            |
| KAY    | Thermal Conductivity                                      | 0581            |
| L      | Half-Thickness of Region                                  | 0186            |
| INDXM  | No. of Terms, Surface Temperature Fit (00000000           | <b>xx)</b> 0076 |
| NOLAM  | No. of Terms, Heat Generation Fit (0000000xx)             | 0456            |
| AYEJ   | Amplitude Parameter, Heat Generation Fit, Ai              | (0200 + j)      |
| LAMDA  | Exponential Parameter, Heat Generation Fit,               | (0220 + j)      |
| AMMM   | Amplitude Parameter, Surface Temperature Fit, B           | (0100 + i)      |
| BTAAi  | Period Parameter Surface Temperature Fit, B <sub>i</sub>  | (0120 + i)      |

The output from this program is punched out on one card having an eight word capacity, one word consisting of 10 digits and a sign. The form of the output is shown in Table D-3.

Table D-3. Output Form for IBM-650 Computer Program Used to Calculate Temperature Distribution

| WORD 1 | WORD 2                | WORD 3                                    | WORD 4                  | WORD 5 | WORD 6 WO | ORD 7 | WORD 8 |
|--------|-----------------------|-------------------------------------------|-------------------------|--------|-----------|-------|--------|
| θ(x,t) | $\sum_{i=1}^{p} A1_i$ | $\sum_{n=1,3,5}^{\infty} (\text{Term})_n$ | $\sum_{j=1}^{s} A3_{j}$ | x      | t         |       |        |



LOGIC DIAGRAM-APPENDIX D

| NEW         Observed         1         Observed         I         I         Observed         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th=""> <thi< th=""></thi<></thi<> | N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EU         OBOO         S         S         OBOO         S         OBOO         S         OBOO         S         S         S         OBOO         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S                                                                                         | U         O 200         S         O 000         O 000 </th |
| <pre>C C C C C C C C C C C C C C C C C C C</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2         0000         00         0000           3         0000         00         0000           4         0000         00         0000           5         00000         00         0000           6         0000         00         0000           7         0000         00         0000           10         0000         00         0000           11         0000         00         0000           12         0000         00         0000           13         0000         00         0000           14         0000         00         0000           15         00000         00         0000           14         00000         00         0000           16         00000         00         0000           21         00000         00         0000           21         00000         24         00000           21         00000         24         00000           22         00013         39         0014           23         00013         39         0014           24         000000         24         <                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 2 M X S H                                                         | S T U       A P C D 1         R A U       A R G G X         L D D       S T U         S T U       C H A A X         R A U       A R G G X         L D D       S T U         S T U       C S A A X         R A U       A R G G X         B T U       S H A A X         R A U       A R G G X         B T U       S H A A X         R A U       A R G G C         B T U       S H A A X         R A U       A R G G C         B T U       C S A A L         R A U       A R G G L         B T U       C S A A L         B T U       S H A A L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C U S H X<br>E O N C R<br>S I H H X<br>E O N S H<br>C O S H X<br>E O O C R<br>S I N H X | 116<br>117<br>118<br>119<br>120<br>121<br>122<br>123<br>123<br>124<br>125<br>126<br>127<br>126<br>129<br>120<br>131<br>132<br>133<br>134<br>135<br>137                                             | 0 4 5 0<br>0 4 0 6<br>0 3 1 3<br>0 3 1 6<br>0 3 7 3<br>0 3 6 6<br>0 3 7 3<br>0 4 1 6<br>0 3 6 3<br>0 4 6 6 6<br>0 3 7 3<br>0 2 8<br>0 4 6 6 6<br>0 3 7 3<br>0 3 8<br>4 6 7 3<br>0 3 8<br>4 6 6 6<br>0 3 7 3<br>0 3 8<br>4 6 7 3<br>0 3 8<br>4 7 3<br>0 3 8<br>0 3 8                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | RAU       AR GGL         UD0       BTU       SNAAL         RAU       SNAAL       FMP         GUO       CSAAL       STU       FMP         STU       FMP       CSAAL       STU         STU       FMP       CSAAL       STU         STU       SNAAL       SNAAL       STU         FMP       SNAAL       STU       FSL         FMP       SNAAL       STU       FAL         STU       SNAAL       STU       FAL         FMP       SNAAL       STU       FAL         FMP       SNAAL       FMP       SNAAL         FMP       CNAAL       STU       FMP         STU       DENNM       RAU       CHAAX         STU       DENNM       RAU       CHAAX         STU       FCSAAX       STU       SUA         STU       NUI       SUAX       SUU       SUAX         RAU       SNAAX       SUU       SUAX         STU       SUAX       SUAX       SUAX         SUU       SUAX       SUAX       SUAX         SUU       SUAX       SUAX       SUAX         SUU       SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £ 00 8 H                                                                                | 1 3 8<br>1 3 9<br>1 4 0<br>1 4 1<br>1 4 2<br>1 4 2<br>1 4 3<br>1 4 4<br>1 4 5<br>1 4 6<br>1 4 7<br>1 4 8<br>1 4 9<br>1 5 0<br>1 5 1<br>1 5 2<br>1 5 5<br>1 5 5<br>1 5 7<br>1 5 9<br>1 6 0<br>1 6 1 | 0 2 9 1<br>0 4 9 1<br>0 4 9 1<br>0 4 3 4<br>0 0 4 3<br>0 5 3<br>0 4 3<br>0 4 3<br>0 4 3<br>0 5 3<br>0 4 4 3<br>0 0 4 1 0<br>0 0 4 7 9<br>0 0 4 2 0<br>0 0 4 2 3<br>0 0 4 7 5<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 60         0.176           69         0.434           21         0.284           39         0.084           10004         21           10044         21           21         0.442           20         0.084           21         0.0442           20         0.284           39         0.184           39         0.184           39         0.184           39         0.184           39         0.184           39         0.184           39         0.184           39         0.184           39         0.184           30         0.284           39         0.184           30         0.184           30         0.284           30         0.270           21         0.016           39         8006           39         0.320           40074         0.370           39         0.320           30         0.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C D S H X<br>8 I N H X                                            | F M P         B A O 3           F A D         N U I I M           F D V         D E N N M           L D D         A 8 C D 1           S T D         N E X T C           B T U         A R G           L D D         A R G           L D D         F A R G P           F A D         F A D           B T U         E A R G P           F D V         T W O           S T U         A R G           S T U         A R G           S T U         A R G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E 0 0 A U<br>E 0 0 E A<br>E 0 0 E A<br>NE X T C                                         | 102<br>102<br>163<br>164<br>165<br>167<br>168<br>169<br>170<br>172<br>173<br>174<br>175                                                                                                            | 0 0 8 7<br>0 3 9 1<br>0 2 7 4<br>0 1 6 9<br>0 0 8 3<br>0 0 8 6<br>0 1 9 3<br>0 0 3 5<br>0 0 3 5<br>0 0 3 5<br>0 0 3 5<br>0 0 1 7<br>0 3 1 9<br>0 3 1 7<br>0 3 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39         8003           32         0074           34         0174           69         0502           24         00280           69         0086           21         0280           69         0682           69         06380           61         0280           62         0040           632         0040           34         0520           24         00272           24         007520           24         00722           24         00722           25         0280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E O D C R<br>N E G A T<br>R E D U G                               | R S U         A R G           B T U         E A R G M           R A U D D         F B 8           F B 8         E A R G M           F D V         T W 0           B T D         E X I T           8 M I         N E G A T           F A D         T W 0 P I           8 M I         N E G A T           F 8 0         N E P P I           F 8 8         O N E P I           F 8 8         T W 0 P I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Е ОО Е А<br>Е ОО Е А<br>МЕХТВ<br>МЕЛИС<br>СОВІО                                         | 176<br>177<br>178<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>186<br>187<br>188                                                                                                            | 0183<br>0088<br>0545<br>0188<br>0545<br>019<br>0519<br>0269<br>0269<br>0269<br>0478<br>0357<br>0357<br>0179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C D 8 1 0<br>E O D 8 R<br>N E G A V<br>R E D U 0                  | 8 1 1<br>8 1 0 0 N E P 1<br>8 1 0 0 N E P 1<br>8 1 0 1 Y E C N E<br>8 1 0 1 Y E C N E<br>8 1 0 1 F C N E<br>8 1 0 F C N E<br>8 1 0 F C N E<br>8 1 0 E X I<br>8 1 0 E X I<br>8 1 0 E X I<br>8 1 0 N E C A Y<br>8 8 0 N E P 1<br>8 8 0 N E P 1<br>8 8 0 T T D 1 0 T T D P 1<br>8 8 0 T T D 1<br>8 8 0 T | REDUC<br>CDSIO<br>NEGST<br>REDUU<br>SINET<br>REDUU                                      | 1 8 9<br>1 9 0<br>1 9 1<br>1 9 2<br>1 9 3<br>1 9 4<br>1 9 5<br>1 9 6<br>1 9 7<br>1 9 8<br>1 9 9<br>2 0 0<br>2 0 1                                                                                  | 0407<br>0441<br>01997<br>01657<br>0165<br>0473<br>0475<br>0328<br>0475<br>0328<br>0161<br>0257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 4 & 6 & 0 & 3 & 6 \\ 3 & 2 & 0 & 0 & 1 & 4 \\ 2 & 1 & 0 & 1 & 9 & 6 \\ 6 & 1 & 0 & 3 & 0 & 6 \\ 2 & 1 & 0 & 5 & 7 & 0 & 6 \\ 2 & 1 & 0 & 5 & 7 & 0 & 6 \\ 2 & 1 & 0 & 5 & 7 & 0 & 6 \\ 2 & 1 & 0 & 5 & 7 & 0 & 6 \\ 2 & 1 & 0 & 5 & 0 & 1 & 6 \\ 3 & 2 & 0 & 6 & 3 & 1 \\ 4 & 6 & 0 & 3 & 2 & 6 \\ 3 & 3 & 0 & 0 & 1 & 4 \\ 3 & 3 & 0 & 6 & 3 & 1 \\ 3 & 6 & 6 & 3 & 1 & 0 \\ 3 & 6 & 6 & 3 & 1 & 0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8 I N E T<br>N E G 8 T                                            | F A O         O N E P I           8 T U         T H E T A           8 T U         T H E T A           8 B O O N         B O O N           8 T U         T E R M M           8 T U         T E R M M           8 T U         F P O N E           8 T U         F P O N E           8 T U         F P O N E           8 T U         F P O N E           8 T U         F P O N E           9 T U         N P O N E           9 T U         F P O N E           9 T U         F P O N E           9 T U         T E R M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ð Í NET<br>NEG ST                                                                       | 203<br>204<br>205<br>206<br>207<br>208<br>209<br>210<br>211<br>213<br>213<br>214<br>215<br>216                                                                                                     | 0410<br>0491<br>0299<br>0607<br>0355<br>0355<br>0355<br>0381<br>0329<br>010329<br>0380<br>0380<br>03807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32 0014<br>21 0196<br>61 8003<br>21 0462<br>21 0570<br>60 0302<br>24 0427<br>60 0427<br>32 0302<br>21 0484<br>32 0302<br>21 0487<br>61 04627<br>61 046 |
| E N U F F<br>8 I Z E B<br>T W O P I<br>F D O N E P I<br>F D O A U | FMP         THETA           FMP         THETA           FMP         THETA           FDV         NPDN           BTU         TPUNK           BTU         TEUNK           BTAL         FMAG           RAU         F042           F088         81268           BMU         FUNKT           FAU         FUNKT           FAU         FUNKT           RAU         FUNKT           SAU         FUNKT           SAU         FUNKT           SAU         FUNKT           SAU         FUNKT           SAU         SAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NEG 8T<br>EXIT<br>0043<br>5351<br>2751<br>0051                                          | 217<br>218<br>219<br>220<br>221<br>2223<br>2223<br>2223<br>2223<br>2223<br>2223<br>2                                                                                                               | 0 2 9 6<br>0 3 4 3 4<br>0 3 4 3 4<br>0 3 4 3 4<br>0 5 2 3 2<br>0 1 6 7<br>0 5 2 3 2<br>0 0 1 6 7<br>0 5 2 3 2<br>0 0 1 6 7<br>0 5 0 3 1 3<br>0 0 0 8 2<br>0 0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3         0         1         8         4         7           3         4         0         4         7         7         6         7         0         4         7         7         6         7         0         4         7         7         6         7         0         4         7         7         6         7         0         4         7         7         6         7         0         6         7         0         4         2         1         0         7         0         4         2         2         0         5         7         0         6         0         5         7         0         6         0         5         0         5         7         0         6         0         5         7         0         6         0         5         7         0         5         0         5         7         0         6         0         5         7         0         6         0         5         7         0         6         0         5         7         0         6         8         3         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|             | B M F<br>N Z E          | SERR                   |   | 8 E X T      |
|-------------|-------------------------|------------------------|---|--------------|
|             | FAD                     | 810<br>5HAF            |   | 88           |
| 8<br>A B    | STURAU                  | SSAV<br>SA             |   | SAU          |
|             | FAU                     | 8 9 A V<br>9 H A F     |   |              |
|             | FSR<br>NZU              | SSAV                   |   | 8 R          |
|             | B M F<br>F A D          | 8 9 A V                |   | 5 R<br>8 A L |
| RERR        | RAU                     | 8 8 A V<br>0000        |   | SEXT<br>SEXT |
| H A F<br>10 | 50<br>10                | 0000                   |   | 0050<br>0051 |
| TART        |                         | 1951                   |   |              |
|             | L 0 0<br>8 1 0          | 1952<br>T              |   |              |
|             | L 0 0<br>8 T 0          | ZERD<br>HOLD           |   |              |
|             |                         | 8001<br>7FR0           |   |              |
| 0PP1        | BTD<br>RAU              | HOLD                   | 0 | LOPP1        |
|             | FOV                     | ALPHA<br>TWD           |   |              |
|             | 6 T U<br>6 T U          | BORRT                  |   | FOORD        |
|             | STU<br>RAU              | ARGGX<br>SQRRT         |   |              |
|             | F M P<br>S T U          | L<br>ARGGL             |   | *****        |
|             | 5 T U<br>L D D          | 2 M X                  |   | PH188        |
|             | RĂŬ<br>FMP              | HTAA<br>T              | 8 |              |
|             |                         | тнето<br>7 м х         |   | E 0 0 C R    |
|             | FMP<br>STU              | A M M M                | 8 |              |
|             | S X B<br>N Z S          | 0001<br>LOPP1          |   | C 0 N T 1    |
| . 0 0 P 9   | RAB                     | 8001<br>ALPHA          |   | L00P9        |
|             | F M P<br>F M P          | K A P P A<br>K A P P A |   |              |
|             | FSB                     |                        | B |              |
|             | RAU                     | LAWOA                  | B |              |
|             | L D O<br>B T U          | ELANT                  |   | E00EA        |
|             | FMP                     |                        | н |              |
|             | F N P<br>F O V          | ALPHA<br>KAY           | - |              |
|             | FOV<br>Stu              |                        |   |              |
|             | FMP                     | X                      |   | сивнх        |
|             | STURAU                  | C S H K X<br>K A P P A |   |              |
|             | L00                     |                        |   | COSHX        |
|             | RAU                     |                        | 8 | P 0 S        |
| NEG         | RSUFOV                  |                        | 8 |              |
|             | L D D<br>S T U<br>F M P | SORLA                  |   | EOOAU        |
|             | 5 T U                   | COSLX                  |   | EODCH        |
|             | FNP                     | L                      |   | EOOGR        |
|             | STURAU                  | COSLL                  |   |              |
|             | FNP                     | CBHKL                  |   |              |
|             | FMP                     | A 3 P<br>A 3           | 8 |              |
| 8.0.0       | B X S<br>H Z B          |                        |   | CONT3        |
| PUS         |                         | SORLA                  |   | E 0 0 A U    |
|             | FMP                     | X                      |   | COSHX        |
|             | RAU                     | SQRLA                  |   |              |
|             | LOOBTU                  | CSHLL                  |   | COSHX        |
|             | FDV                     | CSHLL                  |   |              |
|             | F S R<br>F M P          | C SHKX<br>A 3 P        |   |              |
|             | B T U<br>S X B<br>N Z S | 0001<br>L00P9          | 8 | CONTS        |
| CUNT3       | RAA                     | 0001<br>0NE            |   |              |
|             | RSL                     | N 8003                 |   |              |

| $\circ \circ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 651201042074621C1CCC0449494949494949494949494949494949494 | 50400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} A_{0} 7_{7} 7_{7} 7_{4} 1_{1} 1_{1} 1_{2} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2_{5} 2 2_{5} 2 2_{5} 2_{5} 2 2_{5} 2 $ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 6 8 8 1 9 7 0 7 1 6 9 7 0 0 0 6 3 8 7 9 8 0 0 0 9 7 5 1 7 1 6 9 7 0 7 5 6 9 4 4 1 6 0 0 9 7 5 6 6 3 9 4 4 1 6 6 9 4 4 0 3 0 0 0 6 5 4 5 3 9 0 0 0 6 5 4 5 4 5 3 9 0 0 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 7 5 | 191991099104939138006<br>2633921049339138006              | 0 R 8 6<br>0 0 6 3 6<br>0 0 7 6 0<br>0 4 1 4<br>0 0 1 8 6<br>0 0 7 6 0<br>0 4 1 4<br>0 0 1 8 6<br>0 0 3 4 4<br>0 0 3 4 4<br>0 0 1 5<br>0 6 0 2<br>0 0 6 0 1<br>0 0 5 5 6<br>0 0 6 0<br>0 5 5 6<br>0 0 0 6 0<br>0 0 6 0<br>0 0 7 6 0<br>0 0 4 1 4<br>0 0 1 4<br>0 0 1 4<br>0 0 1 4<br>0 0 0 5 5 6<br>0 0 0 6 0<br>0 0 7 6 0<br>0 0 4 1 4<br>0 0 5 5 6<br>0 0 0 4 1 4<br>0 0 0 5 5 6<br>0 0 0 4 1 4<br>0 0 0 1 4<br>0 0 0 5 5 6<br>0 0 0 4 1 4<br>0 0 0 5 5 6<br>0 0 0 4 1 4<br>0 0 0 5 5 6<br>0 0 0 5 7 6<br>0 0 0 0 4 1 4<br>0 0 0 5 5 6<br>0 0 0 0 5 7 6<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} c \ c \ c \ c \ c \ c \ c \ c \ c \ c$  | $\begin{array}{c} 4 & 6 \\ 5 & 5 \\ 1 & 6 \\ 0 & 5 \\ 5 & 5 \\ 1 & 6 \\ 0 & 5 \\ 5 & 5 \\ 1 & 6 \\ 0 & 5 \\ 5 & 5 \\ 1 & 6 \\ 0 & 5 \\ 5 & 5 \\ 1 & 7 \\ 0 & 5 \\ 5 & 5 \\ 1 & 7 \\ 1 & 7 \\ 1 & 5 \\ 1 & 6 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\ 1 & 7 \\$ | 0562         46         0345         0670           0516         45         0670         0           0516         45         0670         0           0516         45         0670         0           0516         45         0670         0           0510         21         00647         0           0527         32         0460         0           0527         32         0460         0           0527         32         0460         0           0527         32         0460         0           0529         34         00644         0           0595         46         00000         0           0595         46         00000         0           0595         46         07077         0           0401         69         1955         0         07077           06405         50         070707         0         0           07373         89         00747         0         0           07373         89         07727         0         0           07373         89         07727         0         0                                                                                                                                                                                                                                                                                                                                                                                              |

| на<br>9 ти<br>9 ти<br>5 ти<br>7 а 0<br>8 ти<br>7 м Р<br>7 0 ч<br>7 0 ч<br>7 0 ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΖΕΝΟ<br>Η Ο L Ο Ο Ρ 3<br>Ν<br>Τ Ϋ Ο<br>Ν<br>Ρ Ι<br>Τ Ϋ Ο<br>L                                                                                                                                                                                        | 359<br>361<br>362<br>363<br>364<br>364<br>365<br>366                                                                                                           | 0282 60<br>0719 21<br>0723 60<br>0383 32<br>0697 21<br>0332 39<br>0168 34<br>0770 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0264 0719<br>0670 0723<br>0729 0383<br>0520 0697<br>0729 0332<br>0018 0168<br>0520 0770<br>0186 0786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 T U<br>F W P<br>F W P<br>8 T U<br>R A U<br>R A U<br>L O P 5<br>R A U<br>S T U<br>F A U<br>F M O<br>F M O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A R G 1<br>A R G 1<br>A L P H A<br>A R G 2<br>Z E R O<br>A 2 4<br>N O L A M<br>B O O 1<br>L A M O A<br>H<br>A 2 8 4 1<br>A R G 2<br>A 2 8 4 2<br>C 8 H K L<br>A 2 9 H A<br>A 2 0 H A                                                                 | 367<br>369<br>370<br>371<br>373<br>373<br>374<br>3775<br>3775<br>3777<br>378<br>3777<br>378<br>3777<br>378<br>3779<br>380<br>380                               | 0786       21         040       39         0578       21         0578       21         0578       21         0577       69         0759       82         0759       82         0759       62         0759       62         0759       62         0759       62         0759       62         0759       62         0759       62         0745       60         0337       32         05057       32         06175       60         06175       39         0499       39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.2 \times 0 \\ 0.2 \times 0 \\$ |
| F M P<br>F M P<br>F O Y<br>F O Y<br>F O Y<br>F A D<br>S T U<br>S T U<br>S T U<br>S T O<br>S T O<br>S T O<br>L O P P 2<br>F M P<br>S T O<br>F M P<br>S T O<br>F M P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00     8       AYEJ     8       KAY     8       A2S     41       A2S     42       A24     8       0001     001       L0P5     CDNT9       ZERD     8       SETT     1       H 001     LUPP2       ARG2     ARG20       ARG20     8       H 7AA     8 | 383<br>384<br>385<br>386<br>387<br>388<br>389<br>391<br>392<br>392<br>392<br>392<br>393<br>395<br>397<br>397<br>397                                            | $\begin{array}{c} 0 & 728 \\ 0 & 728 \\ 3 & 9 \\ 0 & 60 \\ 0 & 931 \\ 34 \\ 0 & 931 \\ 34 \\ 0 & 502 \\ 34 \\ 0 & 502 \\ 34 \\ 0 & 451 \\ 21 \\ 0 & 627 \\ 34 \\ 21 \\ 0 & 433 \\ 42 \\ 0 & 433 \\ 42 \\ 0 & 437 \\ 60 \\ 0 & 819 \\ 24 \\ 1025 \\ 69 \\ 0 & 779 \\ 82 \\ 0 & 365 \\ 60 \\ 0 & 487 \\ 39 \\ 0 & 565 \\ 60 \\ 0 & 487 \\ 22 \\ 10 \\ 25 \\ 69 \\ 0 & 779 \\ 82 \\ 24 \\ 1025 \\ 69 \\ 27 \\ 53 \\ 60 \\ 1075 \\ 36 \\ 60 \\ 1075 \\ 36 \\ 60 \\ 1075 \\ 36 \\ 100 \\ 1075 \\ 30 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 10$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Γ Μ Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J A R G 80       O E N D M       A M G M       B A R G Z       O O O 1       L O P P Z       C O N T 4       A Z 8 U M       A R G Z       T       F I F T Y       C D       D D       D D       D D                                                 | 4 Q1<br>4 Q2<br>4 0 2<br>4 0 3<br>4 0 4<br>4 0 5<br>4 0 6<br>4 0 7<br>4 U 8<br>4 0 7<br>4 U 8<br>4 0 9<br>4 1 0<br>4 1 2<br>4 1 3<br>4 1 4<br>4 1 3<br>4 1 4   | 10720 32<br>0563 21<br>0171 60<br>0555 39<br>0482 34<br>0318 32<br>0961 42<br>0435 32<br>0961 42<br>0501 21<br>0809 60<br>0408 33<br>0408 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a         1         20         0.763           0         2.663         0.763         0.711           4         1.00         0.555         0.3782         0.482           0         0.772         0.545         0.3782         0.482           0.3772         0.545         0.3782         0.482         0.3782           0.3772         0.545         0.3782         0.482         0.3782           0.374         0.501         0.741         0.501         0.3782           0.376         0.480         0.503         0.408         0.0561         0.480           0.0555         0.474         0.501         0.0708         0.0408         0.0581         0.498         0.0380         0.498         0.0380         0.498         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348         0.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8 T 0 L 0 0<br>R A U<br>R A U | ZERO<br>TERM<br>TERM<br>HOLO<br>CONTS<br>HOLO<br>TERM MOREC<br>ARG2<br>T EAG2T<br>EAG2T                                                                                                                                                              | 4 1 7<br>4 1 7<br>4 1 9<br>4 2 1<br>4 2 3<br>4 2 3<br>4 2 3<br>4 2 3<br>4 2 2 5<br>4 2 5<br>4 2 5<br>4 2 7                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| R A M P<br>F D U<br>B T U<br>B T U<br>F T O V<br>F O V                                                                                                                                                                                              | A H G 1       X       E 0 0 C R       I       L       A L P H A       P I       J A 2 0 I V       J E A G 2 T       C 0 8 1 X       A 2 0 I V                                                                                                        | 4 2 0<br>4 3 0<br>4 3 1<br>4 3 2<br>4 3 3<br>4 3 3<br>4 3 3<br>4 3 4<br>4 3 3<br>4 3 4<br>4 3 5<br>4 3 5<br>4 3 6<br>4 3 7<br>4 3 6<br>4 3 9<br>4 4 0<br>4 4 0 | 0 6645 39<br>0 957 69<br>0 810 21<br>0 717 60<br>1 041 39<br>0 886 34<br>0 828 34<br>0 828 34<br>0 368 21<br>1 275 60<br>0 271 39<br>0 514 34<br>0 972 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0707 0957<br>0810 0269<br>0464 0717<br>0186 1041<br>0186 0886<br>0278 0829<br>0018 0368<br>0422 1275<br>0616 0271<br>0464 0514<br>0422 0472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8 T U<br>FM P<br>8 T U<br>8 U B<br>8 U B<br>F 3 R<br>8 T U<br>R 4 U<br>R 4 U<br>F 3 R<br>8 T U<br>R 4 N<br>F 3 R<br>8 T U<br>R 5 R<br>F 3 R<br>F 3 R<br>F 3 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J A 2007<br>A 22 UV<br>J TERM WDREC<br>SUB A 00<br>HOLO<br>TERM<br>J HOLO<br>J TERM<br>HOLO<br>B CO3<br>G CB T                                                                                                                                       | 4 4 4 3<br>4 4 4 3<br>4 4 4 5<br>4 4 4 5<br>4 4 4 5<br>4 4 7<br>4 4 4 9<br>4 4 5<br>5 1 1<br>4 5<br>5 1 3<br>4 5<br>5 3<br>3                                   | 0 87 3 50 67 0 87 3 50 67 0 87 3 50 67 0 87 3 50 6 0 0 1 3 2 5 3 3 0 0 87 3 5 40 0 1 3 9 2 0 7 6 5 3 3 0 0 7 8 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ADO RSI<br>RAL<br>FAC<br>BTL<br>FAC<br>FAC<br>FAC<br>FAC<br>FAC<br>FAC<br>FAC<br>FAC<br>FAC<br>FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONTS LOOP3<br>COO1<br>TERM<br>TERM<br>TERM<br>TERM<br>HOLO<br>TERM<br>HOLO<br>CONTS LDOP3<br>CRIT<br>CONTS LDOP3                                                                                                                                    | 4 5 4<br>4 5 5<br>4 5 5<br>4 5 6<br>4 5 7<br>4 5 8<br>4 5 9<br>4 6 0<br>4 6 1<br>4 6 3<br>4 6 3<br>4 6 3<br>4 6 3<br>4 6 3                                     | 05551 81<br>1007 60<br>1425 32<br>0947 21<br>0947 21<br>0947 60<br>1475 34<br>09777 60<br>0535 33<br>0565 46<br>0778 69<br>0929 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 4 \\ 0 & 7 \\ 0 & 7 \\ 0 & 7 \\ 0 & 7 \\ 0 & 7 \\ 0 & 7 \\ 0 & 7 \\ 0 & 0 \\ 0 & 2 \\ 0 & 7 \\ 0 \\ 0 & 2 \\ 0 & 7 \\ 0 \\ 0 & 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RAE<br>RAU<br>BTU<br>LOP RAU<br>FAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 8001<br>JZERO<br>JCELL LOP<br>JA1 8<br>DCELL<br>JCELL                                                                                                                                                                                              | 467<br>468<br>469<br>470<br>471                                                                                                                                | 0585 60<br>0919 21<br>0827 60<br>0695 32<br>0601 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0264 0919<br>0574 0827<br>4140 0695<br>0574 0601<br>0574 0877<br>0001 0483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 60001 LD<br>R A<br>R A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B 0001<br>B 00P G0DN1<br>D NDLAM<br>R 8001<br>U 2ER0<br>U 2ER0<br>U 2ER0                                                                                                                                                                             | 473<br>473<br>474<br>475<br>475<br>477                                                                                                                         | 0677 53<br>0483 42<br>0687 69<br>0859 82<br>0615 60<br>0969 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0827 0687<br>0456 0859<br>8001 0615<br>0264 0969<br>0624 0927<br>4240 0745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LOP2 RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U A 3 B<br>D CELL3                                                                                                                                                                                                                                   | 478<br>479                                                                                                                                                     | 0745 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0624 0651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                       |                                                               |                |                                                               |                      |                                                  |                          | ,                       | 1                       |                         | ,                                                                    |                                                | -                              |                      |                                           | 1                                | •                      |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|---------------------------------------------------------------|----------------------|--------------------------------------------------|--------------------------|-------------------------|-------------------------|-------------------------|----------------------------------------------------------------------|------------------------------------------------|--------------------------------|----------------------|-------------------------------------------|----------------------------------|------------------------|----------------|
| TMFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                     | с                                                             |                | P                                                             | 3                    |                                                  | NI                       | D                       | 5 1                     |                         | u                                                                    |                                                |                                |                      |                                           |                                  | G (                    |                |
| IU PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                     | 0                                                             |                | 0                                                             | -                    |                                                  | E                        |                         | U :                     |                         |                                                                      |                                                | N 1                            |                      |                                           |                                  | D                      |                |
| NL OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G                                                                                                                                                                                     | M                                                             |                | 9                                                             | A                    |                                                  | G                        | F                       | 8                       |                         | N                                                                    | FRIT                                           | E                              |                      |                                           | N                                | 0                      |                |
| EYTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UR                                                                                                                                                                                    | 81                                                            |                | ,<br>FŤ                                                       | ιι                   |                                                  | A T                      | FE                      | TR                      |                         | US                                                                   | T V<br>O<br>T<br>A N                           |                                |                      |                                           | 18                               | NS                     |                |
| R A W<br>R A U<br>F O V<br>F O V<br>F O V<br>F O V<br>R A U<br>R A U<br>F M P<br>1 O<br>3 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 T U U U U U U U U U U U U U U U U U U                                                                                                                                               | R S U<br>F D V<br>S T U<br>S T D<br>F M P                     | F 8 8<br>8 M I | F 38<br>8 M 1<br>8 A U<br>8 T L<br>8 T L<br>8 T D<br>8 T D    | FAD<br>SMI<br>RAU    | STD<br>RAU<br>FAD<br>STU<br>FSS<br>FD            | F 5 8<br>8 M I<br>1 D D  | 100<br>STD<br>SW1       | 8 T U<br>R A U<br>F 3 8 | 8 T L<br>R S U<br>S T B | 8 N I<br>8 T U<br>5 T U<br>5 T O<br>8 T O<br>8 T O<br>8 T O<br>8 T O | 31<br>50<br>00<br>10<br>870                    | 5 T D<br>9 T D<br>9 C H<br>1 O | L08<br>570           | L D 8<br>5 T 8<br>L D 8<br>5 T 0<br>L D 0 | F A D<br>5 T U<br>L D D          | NZ B<br>R S U<br>F A D | 8 T U<br>8 Y B |
| F M A G G<br>S I Z E B<br>W U L T A<br>A R T A O<br>A Y E<br>F U N G T<br>O B O O<br>O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A R G R M T<br>T F U N N N N N N N N N N N N N N N N N N                                                                                                                              | F P O N E<br>A R T A O<br>T U R R N<br>T U R R N<br>T U R R N | UPSHD          | L 0 8 N D<br>T I N E Y<br>A R T A O<br>F U N G T<br>F U N G T | ARTAO                | FUNGT<br>ARTAO<br>FPONE<br>TURR<br>FPTWG<br>TURH | FPONE<br>NEGAT<br>PI 8V4 | PIOVA<br>FUNGT<br>SMALL | AYE<br>ARTAO<br>FPONE   | ARTAO<br>FPONE<br>ENNNN | MINUS<br>ARTAO<br>FPONE<br>ENNIN<br>AYE<br>8003                      | 4159<br>0000<br>0000<br>EXIT                   | 1982<br>1977<br>0000           | 1980<br>X<br>1981    | CELL<br>1978<br>HOLD<br>1979<br>CELL3     | CELL3<br>ANS#R<br>ANS#R          |                        | CELL3          |
| FIGUH<br>MULTA<br>EXIT<br>0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | דו <b>מ</b> טא                                                                                                                                                                        | C 0 48 1                                                      | HULTA          | 0.0 M 8 1                                                     | NEGAT                | C 0 11 8 1                                       | PUSIT                    | MULTA                   | SUSTR                   |                         | SURTH                                                                | 2751<br>0052<br>0000<br>0047                   | 8 T A H T<br>00 5 1            |                      |                                           | FINIS                            | 60042                  |                |
| 6 1<br>6 2<br>6 3<br>6 4<br>6 5<br>6 6<br>6 7<br>6 8<br>6 9<br>7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47<br>43<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>58<br>56<br>58<br>59<br>60                                                                                                      | 42<br>43<br>44<br>45<br>46                                    | 4 O<br>4 1     | 34<br>35<br>36<br>37<br>38<br>39                              | 31<br>32<br>33       | 25<br>26<br>27<br>28<br>29<br>30                 | 2 2<br>2 3<br>2 4        | 19<br>20<br>21          | 15<br>16<br>17          | 1 2<br>1 3<br>1 4       | 5<br>6<br>7<br>8<br>9<br>10<br>11                                    | 5 U 2<br>5 U 2<br>5 U 3<br>5 U 4<br>5 U 5<br>4 | 497<br>498<br>499<br>500       | 494<br>495<br>496    | 489<br>490<br>491<br>492<br>493           | 4 8 5<br>4 8 6<br>4 8 7<br>4 9 9 | 482<br>483<br>484      | 480            |
| 1837<br>1831<br>1885<br>1885<br>1881<br>1859<br>1817<br>1891<br>1824<br>1812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1865<br>1875<br>1826<br>1841<br>1869<br>1835<br>1834<br>1866<br>1834<br>1866<br>1834<br>1866<br>1876<br>1820<br>1820<br>1878                                                          | 1852<br>1879<br>1857<br>1863<br>1819                          | 1868<br>1849   | 1874<br>1853<br>1860<br>1825<br>1855<br>1855                  | 1807 1845 1848       | 1861<br>1867<br>1873<br>1802<br>1809<br>1889     | 1858     1851     1854   | 1805<br>1811<br>1804    | 1883<br>1839<br>1823    | 1871<br>1822<br>1829    | 1806<br>1810<br>1814<br>1821<br>1827<br>1833<br>1813                 | 0018<br>0361<br>0264<br>0788<br>1800           | 0584<br>0461<br>0635<br>0662   | 1077 0583 0860       | 0480<br>1027<br>1031<br>0973<br>0532      | 0701<br>0751<br>0909             | 0533<br>0737           | 0651           |
| 60<br>34<br>33<br>46<br>60<br>39<br>10<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>602<br>21<br>602<br>21<br>602<br>21<br>34<br>267<br>21<br>24<br>267<br>20                                                                                                       | 61<br>34<br>21<br>24<br>39                                    | 33<br>46       | 46<br>60<br>20<br>69<br>24                                    | 46                   | 24<br>60<br>32<br>33<br>34                       | 33<br>46<br>69           | 69<br>24<br>46          | 21<br>60<br>33          | 20<br>61<br>24          | 45<br>46<br>21<br>69<br>24<br>24<br>66                               | 31<br>50<br>00<br>10<br>24                     | 69<br>24<br>71<br>10           | 24<br>69<br>24       | 69<br>24<br>69<br>24<br>69                | 32                               | 42                     | 21             |
| 1010<br>1002<br>1894<br>1038<br>1017<br>1017<br>1018<br>1017<br>1018<br>1017<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1010<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1 | 1820<br>18164<br>18664<br>1830<br>1812<br>1830<br>1850<br>1856<br>1830<br>1856<br>1830<br>1856<br>1836<br>1856<br>1836<br>1856<br>1856<br>1856<br>1856<br>1856<br>1856<br>1856<br>185 | 1824<br>1818<br>1856<br>1816<br>1856                          | 1872           | 1877<br>1859<br>1818<br>1864<br>1862<br>1864                  | 1818<br>1848<br>1818 | 1864<br>1818<br>1824<br>1856<br>1812<br>1856     | 1824<br>1854<br>1808     | 1808<br>1864<br>1807    | 1836<br>1818<br>1824    | 1818<br>1824<br>1830    | 1810<br>1813<br>1818<br>1824<br>1830<br>1836<br>8003                 | 4159<br>0000<br>0000<br>1803                   | 0058<br>1992<br>1977<br>0000   | 1990<br>0707<br>1981 | 0574<br>1978<br>0670<br>1979<br>0624      | 0624<br>0856<br>0856             | 0927                   | 0624           |
| 1830<br>1885<br>1885<br>1881<br>1875<br>1891<br>1891<br>1893<br>0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18756<br>18769<br>18841<br>18830<br>18830<br>18830<br>188760<br>188760<br>18828<br>188760<br>18828<br>188760<br>18827<br>188760                                                       | 1879<br>1857<br>1863<br>1819<br>1865                          | 1849<br>1817   | 1969<br>1960<br>1985<br>1957<br>1915<br>1969                  | 1845                 | 1867<br>1873<br>1802<br>1809<br>1889<br>1857     | 1851<br>1855<br>1861     | 1911<br>1817<br>1958    | 1939<br>1923<br>1801    | 1822<br>1829<br>1883    | 1803<br>1814<br>1821<br>1827<br>1833<br>1839<br>1871                 | 2751<br>0052<br>0000<br>0047<br>1806           | 0461<br>0635<br>1999<br>0051   | 0583<br>0860<br>0584 | 1027<br>1031<br>0273<br>0532<br>1077      | 0751                             | 0737                   | 0777           |

## APPENDIX E

Description and Explanation of the IBM-650 Computer Program Used to Calculate Surface Heat Flow.

The computer program was written to calculate the heat flow out of the fuel and into the moderator. The heat flow out of the fuel surface is given, by

$$(q/A)_{f}(t) = -k_{f} \left\{ \sum_{i=1}^{p} \sqrt{\frac{\beta_{i}}{2\alpha}} \quad B_{i} \left( D_{i} \cos \beta_{i} t + E_{i} \sin \beta_{i} t \right) + \sum_{i=1,3,5,\cdots}^{\infty} \frac{(\frac{n}{2L})_{e}}{\frac{L^{2}}{n\pi\alpha}} t \left( \sum_{i=1}^{p} \frac{B_{i} \frac{(n^{2}\pi^{2}\alpha)}{4L^{2}}}{\frac{n^{4}4^{2}}{16L^{4}}} + \beta_{i}^{2} \right)$$
(E-1)

$$+ \sum_{j=1}^{s} \frac{q_{oo} \alpha A_{j} \cosh \kappa L}{k_{m} (\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \lambda_{j})(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \alpha\kappa^{2})} \right)$$
$$+ \sum_{j=1}^{s} \frac{q_{oo} - A_{j} e^{\lambda_{j}t}}{k_{f} (\alpha\kappa^{2} - \lambda_{j})} \left[ \frac{\sqrt{\lambda_{j}}}{\alpha} \cosh (\kappa L) \sinh (\sqrt{\frac{\lambda_{j}}{\alpha}} L)}{\cosh(\sqrt{\frac{\lambda_{j}}{\alpha}} L)} - \kappa \sinh \kappa L \right] \right\}$$

and the heat flow into the moderator is given by

$$(q/A)_{m}(t) = \rho k_{m} \left\{ \sum_{i=1}^{p} \sqrt{\frac{\beta_{i}}{2\alpha}} B_{i}(D_{i} \cos \beta_{i}t + E_{i} \sin \beta_{i}t) \right\}$$

$$\begin{array}{c} -\frac{n^{2}\pi^{2}\alpha}{4L^{2}} t & \frac{n\pi}{4L^{2}} \\ +\sum & \frac{n\pi}{2L} \frac{e}{n=1,3,5,\cdots} \frac{L^{2}}{n\pi\alpha} & i=1 \\ \end{array} \begin{pmatrix} p & \frac{B_{i}}{4L^{2}} \frac{4L^{2}}{4L^{2}} \\ i=1 & \frac{n\pi\pi\alpha^{2}\alpha^{2}}{16L^{4}} + \beta_{i}^{2} \\ \frac{1}{16L^{4}} + \beta_{i}^{2} \\ \end{array} + \sum _{j=1}^{s} \frac{q_{oo}}{m_{m}} \frac{\alpha A_{j}}{4L^{2}} \frac{\cosh \kappa L}{4L^{2}} \\ \frac{1}{2} + \frac{1}{2} \frac{\alpha A_{j}}{4L^{2}} + \lambda_{j}^{2} \frac{\alpha A_{j}}{4L^{2}} \\ \frac{1}{2} + \frac{1}{2} \frac{1}{2$$

$$\sum_{j=1}^{s} \frac{\alpha \ F \ A_{j}}{k_{m}^{\lambda} j} \qquad \left( \begin{array}{c} \sqrt{\frac{\lambda}{\alpha}} \ \sin h \ \sqrt{\frac{\lambda}{\alpha}} \ L}{\cosh \sqrt{\frac{\lambda}{\alpha}} \ L} \right) , \qquad (E-2)$$
where  $D_{i} = \frac{\cosh \gamma_{iL} \ \sinh \gamma_{iL} - \cos \gamma_{iL} \ \sin \gamma_{iL}}{\cos^{2} \gamma_{iL} \ \cosh^{2} \gamma_{iL} + \sin^{2} \gamma_{iL} \ \sinh^{2} \gamma_{iL}} , \qquad (E-2)$ 

$$E_{i} = \frac{\cosh \gamma_{iL} \ \sinh \gamma_{iL} + \cos \gamma_{iL} \ \sinh^{2} \gamma_{iL}}{\cos^{2} \gamma_{iL} \ \cosh^{2} \gamma_{iL} + \sin^{2} \gamma_{iL} \ \sinh^{2} \gamma_{iL}}$$
and  $\gamma_{i} = \sqrt{\frac{\beta_{i}}{2\alpha}} . \qquad (E-2)$ 

The equivalence between elements of the algebraic equation and the symbolic logic of the computer program is shown in Table E-1.

Table E-1. Definition of symbolic terms of the IBM-650 computer program for calculating surface heat flow.

$$\gamma_{i} = \sqrt{\frac{\beta_{i}}{2\alpha}}$$

$$ZMX1_{i} = \frac{\cosh \dot{\gamma}_{i}L \sinh \dot{\gamma}_{i}L - \cos \dot{\gamma}_{i}L \sin \dot{\gamma}_{i}L}{\cos^{2} \dot{\gamma}_{i}L \cosh^{2} \dot{\gamma}_{i}L + \sin^{2} \dot{\gamma}_{i}L \sinh^{2} \dot{\gamma}_{i}L} = D_{i}$$

$$A1_{i} = \delta_{i}A_{i} (ZMX1_{i} \cos \beta_{i}t - ZMX2_{i} \sin \beta_{i}t)$$

$$A3P_{j} = \frac{q_{\infty} \alpha A_{j} e^{\lambda_{j}t}}{k(\alpha\kappa^{2} - \lambda_{j})}$$

$$A3SUM_{j} = \frac{\sqrt{\frac{\lambda_{j}}{\alpha} \cosh \kappa L} \sinh \sqrt{\frac{\lambda_{j}}{\alpha} L}}{\cosh \sqrt{\frac{\lambda_{j}}{\alpha} L}} - \kappa \sinh \kappa L$$

$$ZMX2_{i} = \frac{\cos \vartheta_{i}L \sin \vartheta_{i}L + \cosh \vartheta_{i}L \sinh \vartheta_{i}L}{\cos^{2} \vartheta_{i}L \cosh^{2} \vartheta_{i}L + \sin^{2} \vartheta_{i}L \sinh^{2} \vartheta_{i}L} = E_{i}$$

Table E-1 cont.

 $A3_{i} = (A3P_{i}) (A3SUM_{j})$  $CSHLL_{j} = \cosh \sqrt{\frac{\lambda_{j}}{2}} L$ .  $COSLL_{j} = cos \sqrt{\frac{\lambda_{j}}{2}} L$  $\operatorname{ARG1}_{n} = n_{\pi}/2L$  $\operatorname{ARG2}_{n} = n^{2} \pi^{2} \alpha / 4L^{2}$ A2ST1<sub>i</sub> =  $B_{i}(\frac{n \pi \alpha}{4 \pi^{2}}) / (\frac{n \pi \alpha}{4 \pi^{2}} + \beta_{i}^{2})$ A2ST1<sub>j</sub> =  $q_{\infty} \alpha A_{j} \cosh \kappa L / k \left(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \lambda_{j}\right) \left(\frac{n^{2}\pi^{2}\alpha}{4L^{2}} + \alpha \kappa^{2}\right)$  $A2DDT_{n} = \frac{\frac{n_{\Pi}}{2L} - \frac{n_{\Pi}^{2} \pi}{4L^{2}} t}{L^{2} / n_{\Pi} \alpha}$  $A2SUM_{n} = \sum_{i=1}^{p} A2ST1_{i} + \sum_{i=1}^{B} A2ST1_{j}$ 

 $TERM_n = (A2DDT_n) (A2SUM_n)$ 

The input data consists of the heat generation and surface temperature parameters, appropriate material constants, half-thickness of the region and numerical constants. Table E-2 lists input data required for the program.

| Symbol      | Explanation Stora                                         | ge Location   |
|-------------|-----------------------------------------------------------|---------------|
| ZERO        | · 0.00                                                    | 0164          |
| ONE         | 1.00                                                      | 0656          |
| TWO         | 2.00                                                      | 0820          |
| Pi          | 3.1415.9                                                  | 0779          |
| FIFTY       | 50.00                                                     | 0461          |
| CRIT        | 0.0001                                                    | 0 <b>3</b> 88 |
| ALPHA       | Thermal Diffusivity                                       | 0278          |
| KAPPA       | Reciprocal of Thermal Neutron Diffusion Length<br>in Fuel | 0436          |
| <b>Q</b> 00 | Normalization Factor for Heat Generation                  | 0324          |
| KAY         | Thermal Conductivity                                      | 0581          |
| L           | Half-thickness of Region                                  | 0186          |
| INDXM       | No. of Terms, Surface Temperature Fit (00000000xx         | ) 0076        |
| NOLAM       | No. of Terms, Heat Generation Fit (00000000xx)            | 0456          |
| AYEJj       | Amplitude Parameter, Heat Generation Fit                  | (0200 + j)    |
| LAMDÁ       | Exponential Parameter, Heat Generation Fit                | (0020 + j)    |
| AMMM 1      | Amplitude Parameter, Surface Temperature Fit              | (0100 + j)    |
| BTAAj       | Period Parameter, Surface Temperature Fit                 | (0120 + j)    |

Table E-2. Input Data Required for Use of the IBM-650 Computer Program Used to Calculate Surface Heat Flow Rates.

The output from this program is punched out on one card having an eight word capacity, one word consisting of 10 digits and a sign. The form of the output is shown in Table E-3.

Table E-3. Output form for IBM-650 Computer Program Used to Calculate Surface Heat Flow Rates.

| WORD 1 | WORE             | ) 2             | WORD 3                                      | WORD 4                  | WORD 5 | WORD 6 | WORD 7 | WORD 8 |  |
|--------|------------------|-----------------|---------------------------------------------|-------------------------|--------|--------|--------|--------|--|
| (q/A)  | $\sum_{i=1}^{p}$ | A1 <sub>1</sub> | $\sum_{n=1,3,5}^{\infty} (\text{Term})_{n}$ | $\sum_{j=1}^{s} A3_{j}$ |        | t      |        |        |  |



LOGIC DIAGRAM-APPENDIX E

## OBJECT PROGRAM-APPENDIX E

| SYN ARTAN         1800         30000         000           SYN START         1999         40000         000           SYN AYEJ         0200         50000         000           SYN AYEJ         0200         50000         000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000         0000           0000         0000           0000         0000           0000         0000           0000         0000           0000         0000           0000         0000           0000         0000           0000         0000 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BYN A3         0240         7         0000         000           HLR 1951         1960         8         0000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         0 | 0000 0000<br>0000 0000<br>0000 0000<br>0000 0000                                                                                                                                                                                                  |
| SYN KAPPA         0436         11         0000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000  | 0000         0000           0000         0000           0000         0000           0000         0000                                                                                                                                             |
| SYN         QOO         0324         16         0000         000           SYN         KAY         0581         17         0000         00         00           SYN         N NOXM         0076         18         0000         00         00           SYN         N OLAM         0456         18         0000         00         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000 0000<br>0000 0000<br>0000 0000                                                                                                                                                                                                               |
| BYN A1         0140         20         0000         00         00           EOOEA         STO AAA1         21         0000         24         0           STU AAA14         22         0006         21         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>0000 0000</td>                                                                 | 0000 0000                                                                                                                                                                                                                                         |
| FAM         AAA14         24         0021         37         0           9 TU         AAA2         25         0037         21         0           LOD         AAA3         26         0045         69         0           STD         AAA4         AAAH         27         0001         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 010 0037<br>042 0045<br>048 0001                                                                                                                                                                                                                  |
| AAAB         RAU         AAAB         28         0007         60         0           F88         AAA5         29         0047         33         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>042 0047<br/>050 0027<br/>030 0031<br/>042 0095</td>                             | 042 0047<br>050 0027<br>030 0031<br>042 0095                                                                                                                                                                                                      |
| HAU         AAAA         32         0095         60         0           FMP         AAA7         33         0009         39         0           STU         AAA4         AAA8         34         0062         21         0           AAA6         RAU         AAA2         35         0030         60         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                         | 004 0009<br>012 0062<br>004 0007<br>042 0097                                                                                                                                                                                                      |
| SMI         AAA28         37         0025         46         0           STU         AAA2         38         0029         21         0           RAU         AAA2         39         0195         60         0           FMP         AAA2         40         0059         39         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 028 0029<br>042 0195<br>004 0059                                                                                                                                                                                                                  |
| STU AAA4         AAA6         41         0262         21         0           AAA28         RAU AAA2         AAA6         42         0028         600         0         107         33         0         977         46         0         977         46         0         0         107         36         0         107         44         0077         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         46         0         0         107         10         0         10         0         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                  | 004 0030<br>042 0197<br>300 0077<br>080 0081                                                                                                                                                                                                      |
| RAU AAA4         45         0081         21         0           RAU AAA4         46         0295         60         0           FMP AAA12         47         0309         39         0           STU AAA4         AAA28         48         0362         21         0           AAA11         RAU AAA2         49         0040         60         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 042 0295<br>004 0309<br>312 0362<br>004 0028                                                                                                                                                                                                      |
| LDD AAA17 50 0207 69 0<br>FMP AAA4 51 0350 39 0<br>9 TU AAA13 52 0054 21 0<br>9 TU AAA14 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350 0053<br>004 0054<br>008 0011                                                                                                                                                                                                                  |
| BWI         AAA15         54         0015         46         0           RAU         AAA13         AAA1         55         0019         60         0           AAA15         RAU         AAA13         AAA1         56         0018         60         0           AAA15         FDV         AAA13         AAA1         57         0303         34         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 018 0019<br>008 0003<br>048 0303<br>008 0003                                                                                                                                                                                                      |
| AAA17         BTO         AAA18         58         0053         24         0           RAU         AAA3         59         0359         60         0           FAO         AAA3         60         0353         32         0           STU         AAA19         60         0353         32         0           STU         AAA2         60         0353         24         0           AAA2         60         0353         26         0         0         069         21         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 056 0359<br>048 0353<br>042 0069<br>024 0177                                                                                                                                                                                                      |
| (8T0 AAA20         63 0033 34 0           8T0 AAA21         64 0039 24 0           'RAU AAA2         65 0345 60 0           FMP AAA2         66 0347 39 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 036 0039<br>092 0345<br>042 0347<br>042 0192                                                                                                                                                                                                      |
| 8 TU         A A A 23         A A A 24         67         0 19 2         21         0           A A A 22         F D V         A A A 21         68         0 0 49         34         0           S TU         A A A 24         69         0 29 2         21         0           F A 0         A A A 19         70         0 0 99         32         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 046 0049<br>092 0292<br>096 0099<br>024 0051                                                                                                                                                                                                      |
| S TU & A & A 19     71     0051     210       R AU     A & A 24     72     0277     60       F0V     A & A 19     73     0301     34       F88     A A A 25     74     0074     33       SNL     A A 4 25     75     0403     46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 2 4 0 2 7 7<br>0 9 6 0 3 0 1<br>0 2 4 0 0 7 4<br>3 2 7 0 4 0 3<br>3 0 6 0 0 5 7                                                                                                                                                                 |
| RAU         AAA19         AAA10         76         0306         60         0           AAA26         RAU         AAA20         77         0057         60         0           FAD         AAA20         78         0041         32         0           STU         AAA20         79         0075         21         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 024 0056<br>036 0041<br>048 0075<br>036 0089                                                                                                                                                                                                      |
| FMP         AAA21         80         0089         390           8TU         AAA21         81         0342         210           RAU         AAA23         82         0395         600           FMP         AAA23         82         0395         600           FMP         AAA23         83         0351         390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 092 0342<br>092 0395<br>046 0351<br>042 0392                                                                                                                                                                                                      |
| AAA3         10         0000         0051         85         0048         10         0           AAA5         50         0000         0051         86         0050         50         0           AAA7         14         8410         0053         87         0012         14         8           AAA9         27         1830         0051         88         0162         27         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000 0051<br>000 0051<br>410 0053<br>830 0051                                                                                                                                                                                                      |
| AAA10         20         0000         0050         89         0300         200           AAA12         12         2140         0051         90         0312         122         2           AAA16         0000         0000         91         0016         00         0         0         327         700         00         200         00         200         00         200         00         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                              |
| Z W X SH         S TO         A B C O 1         94         O 4 0 0         24         O           R AU         A R G G L         95         0 35.6         60         O           L D O         C O S H X         96         0 0 6.3         69         O           S TU         C H A AL         97         0 0 6.6         21         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 453 0356<br>409 0063<br>066 0169<br>020 0023                                                                                                                                                                                                      |
| RAU         ARGGL         98         0023         60         0           LD0         E00CR         99         0163         69         0           STU         CSAAL         100         0166         21         0           RAU         ARGGL         101         0073         60         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 409 0163<br>166 0269<br>070 0073<br>409 0263                                                                                                                                                                                                      |
| LOO 8INHX 102 0263 69 0<br>8TU 8HAAL 103 0266 21 0<br>RAU ARGGL 104 0173 60 0<br>LDO E008R 105 0313 69 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 266       0319         170       0173         409       0313         316       0369                                                                                                                                                               |
| STU SNAL         106         0316         210           RAU CHAAL         107         0273         600           FMP CSAAL         108         0175         390           STU FCL         109         0320         210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270 0273<br>020 0175<br>070 0320<br>174 0377                                                                                                                                                                                                      |
| FMP         C8AAL         110         0377         39         0           BTU         DEFIN         111         0370         39         0           RAU         DEFIN         112         0420         210           RAU         SNAAL         113         0427         60           FMP         BHAAL         114         0275         39         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 070 0420<br>274 0427<br>270 0275<br>170 0470                                                                                                                                                                                                      |

|                                                                            | R AU         C 83 A A L           F MP         S H A A L           S TU         C 83 S H L           R AU         C 83 A A L           S TU         C 83 S H L           R AU         C 83 S H L           S TU         C 83 S H L           R AU         C 8 S N L           R AU         C 8 S N L           S TU         C 8 S N L           S TU         C 8 S N L           F MP         8 0 0 0 3           S TU         D 2           R AU         F C L           F MP         B 0 0 3           F AU         F C L           S TU         D 2           S TU         D 2           S TU         D 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | 1 1 6<br>11 7<br>1 1 B<br>1 2 9<br>1 2 0<br>1 2 1<br>1 2 2<br>1 2 3<br>1 2 4<br>1 2 5<br>1 2 6<br>1 2 7<br>1 2 8<br>1 2 9<br>1 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 4 7 7<br>0 3 2 5<br>0 5 2 7<br>0 3 7 5<br>0 5 7 7<br>0 5 7 7<br>0 6 2 7<br>0 0 7 9<br>0 0 8 3<br>0 0 9 1<br>0 1 7 9<br>0 1 8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| совнх                                                                      | R A U C H B H L<br>F 8 B C S S H L<br>F D Y D E N N 2<br>S T U Z M X 1<br>F A U C S S N L<br>F A O C H S H L<br>F D Y D E N N 2<br>S T U Z M X 2<br>S T U Z M X 2<br>S T U A R G<br>L D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A B C D 1<br>E O O E A                                    | 132<br>133<br>134<br>1356<br>1376<br>1379<br>140<br>140<br>141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0323<br>0279<br>0401<br>0720<br>0677<br>0329<br>0451<br>0770<br>0169<br>0283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BINHX                                                                      | 9 T U E A R G P<br>R 8 U A R G<br>L D O E A R G P<br>F D V T W O<br>8 T O N E X T 8<br>9 T U A R G<br>L O D<br>8 T U E A R G M<br>R A U A R G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E 00 E A<br>N E X T C<br>E 00 E A                         | 143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D086<br>0043<br>0035<br>0088<br>0087<br>0319<br>0525<br>0333<br>0085<br>0188<br>0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E O O C R<br>N E G A T<br>R E D U C                                        | LDD<br>FSB E ARGM<br>FDV TWO<br>STD EXIT<br>8MI NEGAT<br>FAO TWOPI<br>BMI NEGAT<br>FSB ONEPI<br>FSB TWOPI<br>BMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E 00 E 4<br>NE X T 8<br>RE D U C<br>C 0 8 I 0<br>HE D U C | 1556<br>1556<br>1578<br>1590<br>1590<br>1613<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0185<br>0288<br>0419<br>0269<br>0575<br>0078<br>0307<br>0061<br>0379<br>D357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| COSIO<br>EOOSR<br>NEGAV                                                    | F AU         O UNE           STU         T E PONE           STU         T E R NM           STU         F E NNK           STU         E SNI           SMI         N E GAV           FAN         O NE PI           FS8         O NE PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NEG 81<br>REDUO<br>SINET                                  | 164<br>165<br>1667<br>169<br>170<br>177<br>177<br>177<br>177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000<br>0191<br>0199<br>0407<br>0165<br>0373<br>0369<br>0625<br>0178<br>0457<br>0161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NEG BT                                                                     | P 3 P     I WOPT       S M I     F A D     O N E P I       F A D     O N E P I       S T U     T H E T A       R S U     8003       S T U     T E R MM       S T U     T U N K T       'L D O     F P O N E       'R A U     E N M       F A U     E N M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REDUD<br>SINET<br>NEGBT                                   | 175<br>177<br>177<br>179<br>180<br>181<br>182<br>182<br>183<br>184<br>185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 5 0 7<br>0 5 0 7<br>0 2 9 1<br>0 2 9 9<br>0 5 5 7<br>0 2 6 5<br>0 4 2 3<br>0 0 0 5<br>0 3 0 5<br>0 5 0 7<br>0 2 9 1<br>0 2 9 1<br>0 2 9 5<br>0 5 0 7<br>0 2 9 1<br>0 2 9 5<br>0 5 0 7<br>0 2 9 1<br>0 2 9 5<br>0 5 0 7<br>0 2 9 1<br>0 2 9 5<br>0 5 0 5<br>0 5<br>0 5 0 7<br>0 2 9 1<br>0 2 9 5<br>0 5 0 5<br>0 2 6 5<br>0 |
|                                                                            | P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P |                                                           | 1 A 6<br>1 A 8<br>1 B 9<br>1 9 0<br>1 9 0<br>2 0 0 1<br>2 0 0 0 0 0 0 0<br>2 0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E N U F F<br>8 I Z E 8<br>T W O P I<br>O N E P I<br>F P O M E<br>E O O A U | FAD TERMM<br>STU FUNKT<br>RAU FUNKT<br>1000000<br>628318<br>314159<br>100000<br>ST0 SEXT<br>BMI BERH<br>NZE BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NEGBT<br>EXIT<br>0043<br>5351<br>2751<br>0051<br>SEXT     | 204<br>205<br>206<br>207<br>207<br>207<br>209<br>210<br>211<br>212<br>213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0189<br>0462<br>0082<br>0181<br>0014<br>0002<br>0450<br>0406<br>0360<br>0064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 8<br>8 8 8                                                               | F A D S 1 0<br>F M P S H A F<br>F M P S H A F<br>R A U S A<br>F O V S S A V<br>F M P S H A F<br>F S B S A V<br>N Z U<br>S M I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 8<br>9 A P<br>9 R<br>9 R                                | 214<br>215<br>216<br>217<br>217<br>227<br>222<br>223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0 7 1<br>0 5 0 1<br>0 3 5 4<br>0 2 6 1<br>0 4 7 3<br>0 3 0 8<br>0 2 8 5<br>0 4 0 4<br>0 3 3 5<br>0 2 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8 R<br>8 E R R<br>8 H A F<br>8 1 0<br>8 T A H T                            | FAD         SSAV           8TU         8SAV           RAU         SSAV           RAU         SSAV           HLT         0000           50         0000           10         0000           RCU         1951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 A 8<br>8 E X T<br>8 E X T<br>0 0 5 0<br>0 0 5 1         | 224<br>225<br>226<br>227<br>228<br>229<br>230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0492<br>0385<br>0090<br>0509<br>0304<br>0674<br>1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 09109109109109210974107410741419119244110000744600535021111104626355502111119402109744170707045502104655129104<br>6126526526526525055265526555226555226655522655555555 | $0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 00000000000000000000000000000000000000  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|
| 239104293462100100<br>33934462100<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000                                                                              | 00060000000000000000000000000000000000              | 000000000000000000000000000000000000000 |

 $\begin{array}{c} \mathsf{sC7} \mathsf{sC7} \mathsf{sC7} \mathsf{sC7} \mathsf{sC7} \mathsf{sC7} \mathsf{sS1} \mathsf{sS2} \mathsf{sC4} \mathsf{sC7} \mathsf{sC3} \mathsf{sS6} \mathsf{sC6} \mathsf{sC5} \mathsf{sC4} \mathsf{sC5} \mathsf{sC6} \mathsf{sC5} \mathsf{sC5} \mathsf{s5} \mathsf{s$ 

|       | RAU ZER                            | 0<br>D      | L 0 0 P 3 |   | 337<br>338        | 0026                 | 60<br>21         | 0164                 | 0569                 |  |
|-------|------------------------------------|-------------|-----------|---|-------------------|----------------------|------------------|----------------------|----------------------|--|
| CONT3 | RAU UNE<br>REL BOO                 | 03          |           |   | 334<br>335<br>336 | 0603<br>0411<br>0519 | 80<br>80         | 0656<br>8003<br>0673 | 0411<br>0519<br>0026 |  |
|       | SXB DO                             | 01<br>P9    | CONTS     |   | 338               | 0393                 | 53               | 0001                 | 0549                 |  |
|       | FSB KSHI<br>FMP A3P<br>STU A3      | KL e        |           |   | 329<br>330<br>331 | 0936<br>0467<br>0606 | 33<br>39<br>21   | 0290<br>0506<br>4240 | 0467<br>0606<br>0393 |  |
|       | FMP C8HI                           | KL<br>LA    |           |   | 327<br>328        | 0544<br>0594         | 39<br>39         | 0094                 | 0594                 |  |
|       | RAU SNH                            |             |           |   | 325               | 0697                 | 60<br>34         | 0444                 | 0499                 |  |
|       | FWP L                              |             | C03HX     |   | 388               | 0491                 | 39               | 0186<br>0689         | 0169                 |  |
|       | STU SNHL                           | LL          | SINHX     |   | 320               | 0639                 | 21               | 0444                 | 0647                 |  |
|       | STU SORI                           | LA          |           |   | 317<br>318        | 0631                 | 21<br>39         | 0636                 | 0589<br>0836<br>0319 |  |
| P 0 8 | FOV ALPH                           | 1 Å         | EOOAU     |   | 315<br>316        | 0729                 | 34               | 0278                 | 0728<br>0450         |  |
|       | 8X8 000                            | 1           | CONT3     |   | 313               | 0343                 | 53               | 0001                 | 0449                 |  |
|       | FBB KSHK<br>FMP A3P<br>BTU A3      | L A         |           |   | 310<br>311<br>312 | 0417                 | 33<br>39<br>21   | 0290                 | 0417<br>0556<br>0343 |  |
|       | FOV COSL                           | L           |           |   | 30M<br>309        | 0786                 | 34               | 0294                 | 0344<br>0394         |  |
|       | ROU SINU                           | L           |           |   | 306               | 0597<br>0399         | 61<br>39         | 0194                 | 0399                 |  |
|       |                                    |             | EOOCR     |   | 304               | 0736                 | 69<br>21         | 0539                 | U269<br>0597         |  |
|       | STU SINL<br>RAU SORL               | . L<br>. A  |           |   | 301<br>302<br>303 | 0489<br>0547<br>0441 | 21<br>60<br>39   | 0194 0636 0186       | 0547<br>0441<br>0736 |  |
|       | FWP L                              |             | EDOSR     |   | 299<br>300        | 0439<br>0686         | 39               | 0186                 | 0686                 |  |
|       | LOD<br>STU SORL                    | . A         | EODAU     |   | 297               | 0678<br>0531         | 69<br>21         | 0531                 | 0450<br>0439         |  |
| NEG   | BMI NEG<br>RBU LAMD                | A B         | P 0 8     |   | 294 295 286       | 0975<br>0628         | 46               | 0628                 | 0729 1025 0674       |  |
|       | RAU LAND                           | CL<br>D,A B |           |   | 583               | 0389                 | 21<br>60         | 0094                 | 0497                 |  |
|       | FWP L                              |             | совнх     |   | 290               | 0391<br>0586         | 39<br>69         | 0186                 | U586<br>U169         |  |
|       | - FMP KAPP<br>810 K8HK<br>RAU KAPP |             |           |   | 287<br>288<br>289 | 0447<br>0536<br>0293 | 39<br>21<br>60   | 0436<br>0290<br>0436 | 0536<br>0293<br>0391 |  |
|       | LDD<br>STU SNHK                    | L           | SINHX     | · | 285               | 0486                 | 69<br>21         | 0339                 | 0319<br>0447         |  |
|       | RAU KAPP                           | A           |           |   | 283               | 0609                 | 60<br>39         | 0436<br>0186         | 0341<br>0486         |  |
|       | FDV KAY<br>FDV DIFF<br>8TU A3P     |             |           |   | 280 281 282       | 0578 0481 0302       | 34               | 0581                 | 0481<br>0302<br>0609 |  |
|       | FMP AYEJ                           | B 8         |           |   | 278               | 0824                 | 39<br>39         | 4200                 | 0550                 |  |
|       | RAU ELAN                           | Ť           |           |   | 276               | 0469                 | 60<br>39         | 0366                 | U171<br>0824         |  |
|       | ENP T<br>LOD<br>STU FLAM           | т           | EOOEA     |   | 273               | 0458                 | 39<br>69<br>21   | 0358<br>0361<br>0366 | 0458<br>0000<br>0469 |  |
|       | STU DIFF<br>RAU LAMO               | A B         |           |   | 271 272           | 0397<br>0355         | 21<br>60         | 0052                 | 0355                 |  |
|       | STU ALKA<br>F88 LAND               | P<br>A B    |           |   | 202               | 0386                 | 21<br>33         | 0190                 | 0193<br>0397         |  |
| CUURY | FWP KAPP                           | A           |           |   | 267               | 0433<br>0336         | <b>3</b> 9<br>39 | 0436                 | U336<br>U386         |  |
| LOOPS | RAS BOO<br>RAU ALPH                | 1           | L00P9     |   | 265               | 0553                 | 82<br>60         | 0456<br>8001<br>027H | 0559<br>0465<br>0433 |  |
| CONTI | 818 000<br>NZB LOPP                | 1           | C 0 N T 1 |   | 262               | 0093 0349 0553       | 53               | 0001                 | 0349                 |  |
|       | FMP SQRR<br>STU A1                 | T B         |           |   | 260               | 0500                 | 39               | 0378                 | 0528                 |  |
|       | FSB A15                            | в           |           |   | 258               | 0383                 | 33               | 0478<br>4100         | 0305                 |  |
|       | STU A12                            |             |           |   | 255               | 1020                 | 39               | 0624                 | 0774<br>0431         |  |
|       | RAU PHEE                           | E           | E008H     |   | 253               | 0381<br>0367         | 60               | 0562                 | 0367                 |  |
|       | FWP ZWX1<br>BTU A11                |             |           |   | 251               | 0168                 | 39<br>21         | 0574                 | 0724<br>0381         |  |
|       | STU PHEE                           | E           | ЕОДСК     |   | 249 250           | 0408                 | 21               | 0558                 | 0408<br>0415<br>0269 |  |
|       | LOD<br>RAU STAA                    | в           | 2 M X 8 B |   | 246               | 0512                 | 69               | 0365                 | 0400<br>0875         |  |
|       | FMP L<br>STU ARGG                  | Ĺ           |           |   | 244               | 0331                 | 39               | 0186                 | 0286                 |  |
|       |                                    | T           | E 0 0 A U |   | 242               | 0328                 | 34<br>69<br>21   | 0820                 | 0970                 |  |
| LOPP1 | RAU BTAA<br>FDV ALPH               | A B         |           |   | 239               | 0573                 | 60<br>34         | 4120                 | 0925                 |  |
|       | LOU ZERO<br>STO HOLD               | -           | LOPP1     |   | 237 238           | 0435<br>0317         | 69<br>24         | 0164                 | 0433<br>0317<br>0573 |  |
|       | LOD INDX<br>RAB 800                | M<br>1      |           |   | 234 235 236       | 0267<br>0523<br>0679 | 24<br>69<br>82   | 0920                 | 0523                 |  |
|       | STU T<br>LDD ZERO                  |             |           |   | 232               | 0055                 | 24<br>69         | 0358                 | 0311<br>0267         |  |
|       | L00 195                            | 2           |           |   | 231               | 0551                 | 6.9              | 1952                 | 0055                 |  |

| L | 0   | PS  | 5   |   | F M P<br>F M P<br>8 T U<br>8 T U<br>8 T U<br>L D D<br>R A 8<br>R A U | A H G 1<br>A L P H A<br>A R G 2<br>Z E R O<br>A 2 4<br>N O L A W<br>B O O 1<br>A R G 2         |        | LO         | P 5 |     | 346<br>347<br>348<br>359<br>350<br>351<br>352<br>353 | C 4 4 3<br>0 3 9 0<br>0 7 7 8<br>0 4 8 5<br>0 6 1 9<br>0 8 7 7<br>0 6 5 9<br>0 5 1 5 | 39<br>35<br>21<br>60<br>21<br>69<br>82<br>60 | 0340<br>0278<br>0182<br>0164<br>0374<br>0456<br>3001<br>0182                         | U 39(<br>U 77F<br>U 485<br>U 619<br>U 877<br>U 659<br>U 515<br>U 515 |
|---|-----|-----|-----|---|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------|------------|-----|-----|------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|   |     |     |     |   | Г А О<br>8 Т U<br>R А U<br>F А O<br>8 T U<br>R А U<br>F M P<br>F M P | L A M O A<br>A 2 8 4 1<br>A R G 2<br>A L K A P<br>A 2 8 4 2<br>C 8 H K L<br>A L P H A<br>O O O | н      |            |     |     | 354<br>355<br>356<br>357<br>358<br>359<br>360<br>361 | 0167<br>0797<br>0405<br>0287<br>0517<br>1075<br>0599<br>0626                         | 32<br>21<br>60<br>32<br>21<br>60<br>39<br>39 | 4 2 2 0<br>0 3 5 2<br>0 1 P 2<br>0 1 9 0<br>0 2 7 2<br>0 0 9 4<br>0 2 7 8<br>0 3 2 4 | 0797<br>0405<br>0287<br>0517<br>1075<br>0599<br>0828<br>0924         |
|   |     |     |     |   | F M P<br>F D V<br>F D V<br>F O V<br>F A D<br>8 T U<br>8 X 8<br>N 2 9 | A Y E J<br>K A Y<br>A 28 4 1<br>A 28 4 2<br>A 24<br>A 24<br>A 24<br>D 0 0 0 1<br>L 0 P 5       | B      | ¢ o        |     |     | 362<br>363<br>364<br>365<br>366<br>367<br>368        | 0 9 2 4<br>0 6 0 0<br>0 6 8 1<br>0 4 0 2<br>0 3 2 2<br>0 6 0 1<br>0 9 2 7<br>0 4 8 3 | 39<br>34<br>34<br>34<br>32<br>21<br>53       | 4200<br>0581<br>0352<br>0272<br>0874<br>0674<br>0674                                 | 060C<br>0681<br>0402<br>0501<br>0927<br>0483                         |
| C | 0   | N ' | 19  | • | RAU<br>STD<br>LOO                                                    | ZERO<br>BETT<br>TNDXM                                                                          |        |            | ~ • |     | 370<br>371<br>372                                    | 0337<br>0669<br>1125                                                                 | 60<br>24<br>69                               | 0164<br>0372<br>0076                                                                 | 0659<br>1125<br>0979                                                 |
| L | 0   | PI  | P 1 | 8 | RAU<br>FMP<br>8TU                                                    | ARG2<br>ARG2<br>ARG80                                                                          |        | ιU         |     | 4   | 373<br>374<br>375<br>376                             | 0535<br>0347<br>0282                                                                 | 60<br>39<br>21                               | 0182<br>0182<br>1036                                                                 | 0335<br>0387<br>0282<br>0739                                         |
|   |     |     |     |   | R A U<br>F M P<br>F A D<br>R T U                                     | BTAA<br>BTAA<br>ARGSQ                                                                          | 8<br>8 |            |     |     | 377<br>378<br>379                                    | 0739<br>1175<br>1120                                                                 | 60<br>39<br>32                               | 4120<br>4120<br>1036                                                                 | 1175<br>1120<br>0413                                                 |
|   |     |     |     |   | R A U<br>F M P<br>F D V                                              | ANNM<br>ARG2<br>DENOM                                                                          | 8      |            |     |     | 301<br>302<br>303                                    | 0271<br>0455<br>0332                                                                 | 60<br>39<br>34                               | 4100<br>0182<br>0268                                                                 | 0455<br>0332<br>031B                                                 |
|   |     |     |     |   | F A D<br>8 T U<br>8 X 8                                              | 8 E T T<br>8 E T T<br>0001                                                                     |        | <b>C</b> 0 |     |     | 384<br>385<br>386<br>387                             | 0318<br>0649<br>1225<br>0731                                                         | 32<br>21<br>53                               | 0372<br>0372<br>0001                                                                 | 0649<br>1225<br>0731<br>0585                                         |
| c | 0   | N   | Ţ   | 4 | F A D<br>8 T L<br>8 A L                                              | ) A24<br>J A28UM<br>J A28UM                                                                    |        | ¢υ         | -   |     | 388<br>389<br>390                                    | 0585<br>0651<br>0709                                                                 | 32<br>21<br>60                               | 0674<br>0706<br>0182                                                                 | 0651<br>0709<br>0437                                                 |
|   | Ŧ   | 0   |     |   | F M F<br>F 8 F<br>8 M (                                              | P T<br>3 FIFTY<br>1 GO<br>2 TERO                                                               |        | 5 T        | 0   |     | 391<br>392<br>393                                    | 0437<br>0508<br>0487<br>0541                                                         | 39<br>33<br>46<br>69                         | 0358<br>0461<br>0440<br>0164                                                         | 0508<br>0487<br>0541<br>0567                                         |
| Ŭ |     | Ŭ   |     |   | 8 T C<br>R A L<br>F A C                                              | J TERM<br>J TERM<br>D HOLD                                                                     |        |            |     |     | 395<br>396<br>397                                    | 0567<br>0773<br>1275                                                                 | 24<br>60<br>32                               | 1170<br>1170<br>0920                                                                 | 0773 1275 0947                                                       |
|   |     |     |     |   | 8 T U<br>N Z U<br>R A U<br>F R F                                     | J HOLD<br>J<br>J HOLD<br>3 TEHM                                                                |        | с с<br>А С |     | T 5 | 399<br>399<br>400<br>401                             | 0823<br>0977<br>1325                                                                 | <pre>21 44 60 33</pre>                       | 0920<br>0977<br>0920<br>1170                                                         | 0878<br>1325<br>0897                                                 |
| G | 0   |     |     | , | R B U<br>F M F<br>L D U                                              | U ARG2<br>T                                                                                    |        | EC         | 0   | E A | 402<br>403<br>404                                    | 0440<br>0537<br>0558                                                                 | 61<br>39<br>69                               | 0182<br>0358<br>0511                                                                 | 0537<br>0558<br>0000                                                 |
|   |     |     |     | • | 8 T (<br>R A (<br>F M F                                              | U EAG21<br>U L<br>P L<br>V ALPHA                                                               |        |            |     |     | 405 406 407 408                                      | 0719<br>0591<br>1086                                                                 | 60<br>39<br>34                               | 0196<br>0186<br>0278                                                                 | 0591<br>1086<br>0928                                                 |
|   |     |     |     |   | F 0<br>F 0<br>8 T                                                    | V N<br>V PI<br>U A2DIV                                                                         |        |            |     |     | 409<br>410<br>411                                    | 0928<br>0873<br>0929                                                                 | 34<br>34<br>21                               | 0673<br>0779<br>0184                                                                 | 0 R 7 3<br>0 9 2 9<br>0 5 8 7                                        |
|   |     |     |     |   | FMI<br>FD<br>BT                                                      | U EAG2I<br>P ARG1<br>V A2DIV<br>U A2DDT                                                        |        |            |     |     | 413<br>414<br>415                                    | 0321<br>0490<br>0284                                                                 | 39<br>34<br>21                               | 0340<br>0184<br>0338                                                                 | 0490<br>0284<br>0641                                                 |
|   |     | 0   | ,   |   | F M I<br>B T<br>R A                                                  | P A 28 UM<br>U TERM<br>U HOLD                                                                  |        | A (        | 0   |     | <pre>416 17 18 419</pre>                             | 0641<br>0756<br>0897                                                                 | 39<br>21<br>60                               | 0706<br>1170<br>0920                                                                 | 0756<br>0897<br>1375<br>0947                                         |
|   |     |     |     |   | 8 T<br>8 T<br>R A<br>F D                                             | U HOLD<br>U TERM<br>V HOLD                                                                     |        |            |     |     | 420<br>421<br>422                                    | 0947<br>0923<br>1425                                                                 | 21<br>60<br>34                               | 0920<br>1170<br>0920                                                                 | 0923<br>1425<br>1220                                                 |
|   |     |     |     |   | R A<br>R A<br>F S                                                    | M 8003<br>U 8002<br>8 CR17                                                                     |        |            |     | ρ.  | 423<br>424<br>425<br>426                             | 1220<br>1027<br>0635<br>0565                                                         | 67<br>60<br>33<br>46                         | 8003<br>8002<br>0388<br>0878                                                         | 1027<br>0635<br>0565<br>0723                                         |
| c | : ( | ) N | 18  | 5 | L D<br>R A<br>R A                                                    | D INDXM<br>B 8001<br>U ZERO                                                                    |        |            |     |     | 427<br>428<br>429                                    | 0878<br>0979<br>0685                                                                 | 69<br>62<br>69                               | 0076<br>8001<br>0164                                                                 | 0979<br>0685<br>0769                                                 |
| L | . ( | ) P | ,   |   | ST<br>RA<br>FA                                                       | U CELL<br>U A1<br>D CELL                                                                       | B      | L          | 90  |     | 430<br>431<br>432<br>433                             | 0769<br>1077<br>0495<br>0701                                                         | 21<br>60<br>32<br>21                         | 4140<br>0974<br>0974                                                                 | 1077<br>6495<br>0701<br>1127                                         |
| 0 |     | 0 0 | D N | 1 | 8 X<br>N Z<br>L D                                                    | B 0001<br>B LOP<br>D NOLAM                                                                     |        | Ģ          | 0 0 | N 1 | 434<br>435<br>436                                    | 1127<br>0533<br>0637                                                                 | 53<br>42<br>69                               | 0001<br>1077<br>0456                                                                 | 0533<br>0637<br>0759                                                 |
|   |     |     |     |   | R A<br>R A<br>8 T                                                    | B BOO1<br>U ZERO<br>U CELL3                                                                    |        | L          | O P | 8   | 437<br>438<br>439                                    | 0759<br>0615<br>0819                                                                 | 60<br>21<br>60                               | 0164<br>1024<br>4240                                                                 | 0919<br>1177<br>0545                                                 |
| l |     | η C | . 9 |   | н А<br>Г А<br>8 Т<br>8 Х                                             | 0 CELL3<br>U CELL3<br>B 0001                                                                   | n      |            |     |     | 441<br>442<br>443                                    | 0545<br>0751<br>1227                                                                 | 32<br>21<br>53                               | 1024<br>1024<br>0001                                                                 | 0751<br>1227<br>0583<br>0617                                         |
| ( | G ( | 0 0 | D N | 2 | N Z<br>R A<br>F A                                                    | B LOP2<br>U HOLD<br>D CELL                                                                     |        | G          | הנ  | ΝА  | 445446447                                            | 0687<br>1475<br>0801                                                                 | 60<br>32<br>32                               | 0 9 2 0<br>0 9 7 4<br>1 0 2 4                                                        | 1475<br>UR01<br>UR51                                                 |
|   |     |     |     |   | F A<br>F M<br>R 8<br>S T                                             | U CELL3<br>P KAY<br>L BOO3<br>L ANRWR                                                          |        | F          | IN  | 18  | 448<br>449<br>450                                    | 0851<br>0781<br>0789                                                                 | 39<br>66<br>20                               | 05 R 1<br>800 3<br>04 9 3                                                            | 0781<br>0789<br>0396<br>0446                                         |
| 1 | F   | 9 1 | NI  | 8 | L 0<br>8 T<br>L 0                                                    | O ANSWR<br>D 1977<br>D CELL                                                                    |        |            |     |     | 451<br>452<br>453<br>454                             | 0446<br>0430<br>1277                                                                 | 24                                           | 1977<br>0974<br>1978                                                                 | 0430<br>1277<br>0931                                                 |
|   |     |     |     |   | 8 T<br>L D<br>8 T<br>L D                                             | О НОЦО<br>D 1979<br>D CELL3                                                                    |        |            |     |     | 455<br>456<br>457                                    | 0 8 3 1<br>0 9 7 3<br>0 3 8 2                                                        | 69<br>24<br>69                               | 0920<br>1979<br>1024                                                                 | 0973<br>0382<br>1327                                                 |
|   |     |     |     |   | 8 T<br>L O                                                           | 0 1980<br>0 X<br>0 1981                                                                        |        |            |     |     | 458<br>459<br>460                                    | 0633                                                                                 | 69<br>24                                     | 1136                                                                                 | 0839                                                                 |

|     |          |     |     |          | 100          |       | 0    |       |             |     |     | 461   |     | 0334    | 69  | 0358 | 0561 |
|-----|----------|-----|-----|----------|--------------|-------|------|-------|-------------|-----|-----|-------|-----|---------|-----|------|------|
|     |          |     |     |          | PCH          | 1     | 6    | 17    | 8 T         | A.F | ŧΤ. | 463   |     | 0735    | 71  | 1982 | 1000 |
| p   | N        | E   |     |          | 10           | ō     | 0    | 0.0   | 0           | 0 1 | 51  | 464   | i i | 0656    | iô  | 0000 | 0051 |
| 1   |          | C   |     |          | <b>3</b> 0   | 0     | 0    | 00    | 0           | 0   | 5 1 | 465   |     | 0650    | 20  | 0000 | 0051 |
|     | 1        | _   |     |          | 31           | 4     | 1    | 59    | 3           | 7   | 51  | 466   |     | 0779    | 31  | 4159 | 2751 |
| - E | 1        | F   | 1   | Y        | 50           | 0     | 0    | 00    | 0           | 0   | 5.2 | 467   |     | 0461    | 50  | 0000 | 0052 |
|     | E        |     | 0   |          | 00           | . o   | 0    | 00    |             | 0   | 17  | 460   |     | 164     | 10  | 0000 | 0000 |
| 1   | R        | ł   |     | N        | sto          | FX    | ĭ    | Ť     |             |     | • * | 4 0 5 |     | 1 0 0 0 | 24  | 1803 | 1806 |
|     |          |     |     |          | NZE          |       |      |       | ΕX          | 11  | 1   | 5     |     | 006     | 4.5 | 1810 | 1803 |
|     |          |     |     |          | 8 N I        | - M 🕴 | N    | 08    |             |     |     | 6     | :   | 1810    | 4 6 | 1013 | 1814 |
|     |          |     |     |          | 810          | AB    | .Т.  | A O   |             |     |     | 7     |     | 1014    | 21  | 1018 | 1821 |
|     |          |     |     |          |              | - P P | O N  |       |             |     |     | 8     |     | 1921    | 24  | 1024 | 1827 |
|     |          |     |     |          | 810          | - A V | F    |       | A 11        |     |     | 10    |     |         | 24  | 1836 | 1839 |
|     | 1        | h   |     | 8        | RBL          |       | õ    | 03    | ••          |     |     | îĭ    |     | 1013    | 66  | 8003 | 1871 |
|     |          |     |     |          | 8 T L        | AR    | Т    | A O   |             |     |     | 12    |     | 1871    | 50  | 1010 | 1822 |
|     |          |     |     |          | RSU          | F P   | 0    | NE    |             |     |     | 13    |     | 1822    | 61  | 1824 | 1829 |
|     |          |     |     |          | 310          | EN    | N    | NN    | <b>a</b> 11 |     |     | 14    |     | 1829    | 24  | 1030 | 1003 |
|     | L II     |     |     | •        | BAU          |       | ÷.   |       | a u         |     |     | 15    |     | 1 8 1 0 | Å0  | 1010 | 1823 |
|     |          |     |     |          | FSB          | FP    | ò    | ŇĔ    |             |     |     | 17    |     | 1 8 2 3 | 33  | 1824 | 1801 |
|     |          |     |     |          | NZE          | 01    | Ē    | ΡĒ.   |             |     |     | Ĩė    | 3   | 001     | 45  | 1804 | 1805 |
|     |          |     |     |          | 100          | PI    | 0    | ٧4    |             |     |     | 19    | 1   | 605     | 69  | 1808 | 1011 |
| ,   |          |     |     |          | 810          | FU    | N    | G T   | MU          | L,  | r a | 20    |     | 1011    | 24  | 1864 | 1817 |
|     | ' '      |     |     | E.       | 6 4 1        | 8 14  |      |       |             |     |     | 21    | 3   | 1804    | 40  | 1007 | 1858 |
|     |          |     |     |          | 8 1 1        | NE    | č    | A T   | рn          |     | 1.1 | 21    |     | 1851    | 35  | 1854 | 1855 |
|     | I E      | G   | i A | T.       | ĽÖÓ          | ΡÌ    | ŏ    | Ŷ4    |             |     | · · | 24    |     | 1854    | 69  | 1000 | 1861 |
|     |          |     |     |          |              | FÚ    | N.   | ĠT    |             |     |     | 25    |     | 061     | 24  | 1864 | 1867 |
|     |          |     |     |          | RAU          | AR    | T    | à O   |             |     |     | 26    |     | 067     | 60  | 1010 | 1873 |
|     |          |     |     |          | FAO          | F P   | 0    | NE    |             |     |     | 27    | :   | 1873    | 32  | 1824 | 1802 |
|     |          |     |     |          | 810          | TU    | R    | RN    |             |     |     | 28    |     | 1803    | 21  | 1856 | 1809 |
|     |          |     |     |          | F 8 8        |       |      | N O   | • •         |     |     | 39    | 3   | 609     | 33  | 1012 | 1009 |
| ,   | 1.       | . / | 11  | 1        | FAD          | A R   | ÷.   | 10    |             |     |     | 11    |     | 1807    | 12  | 1818 | 1845 |
|     |          |     |     | <u> </u> | ลพ์เ         |       |      |       | NE          | G   | A T | 32    |     | 1045    | 46  | 1048 | 1854 |
|     |          |     |     |          | RAU          | A R   | T I  | A O   |             |     |     | 33    | 1   | L 8 4 8 | 60  | 1010 | 1874 |
|     |          |     |     |          | FBB          | ĽÖ    | 8    | NO    |             |     |     | 34    |     | 1874    | 33  | 1877 | 1853 |
|     |          |     |     |          | 8 4 1        |       | . N  | EY.   |             |     |     | 35    | 3   | 1853    | 46  | 1859 | 1860 |
|     |          |     |     |          | 871          | Ê     | E N  | ĉ T   | C n         |     | B 1 | 17    |     | 1 8 2 5 | 20  | 1010 | 1857 |
|     | <b>,</b> | 5 8 | 3.1 | т        | LÓÖ          | ΡĬ    | ö    | v ż   | ° u         |     |     | 38    | -   | 1 8 5 5 | 69  | 1862 | 1015 |
|     |          |     |     |          | 810          | FÜ    | FÑ.  | ĠŤ    |             |     |     | 39    |     | 1815    | 24  | 1864 | 1868 |
|     |          |     |     |          | F 8 8        | UP    | 8    | NO    |             |     |     | 4.0   | :   | 1868    | 33  | 1872 | 1849 |
|     |          |     |     |          | 8 4 1        |       |      |       | M U         | L.  | T A | 41    | -   | 1849    | 46  | 1052 | 1817 |
|     |          |     |     |          | 600          |       | ų.   | 10    | • •         |     |     | 42    |     | 1052    | 101 | 1024 | 1057 |
|     |          | . 1 | a B |          | 810          | - ŶŨ  | I R  | ÂŇ    |             |     | • • |       |     | 1857    | 21  | 1856 | 1863 |
|     |          |     |     | -        | STO          | ŤŪ    | R    | RM    |             |     |     | 4.5   | 3   | 663     | 24  | 1016 | 1819 |
|     |          |     |     |          | EMP          | TU    | I R  | RN    |             |     |     | 4 6   | 1   | 1819    | 39  | 1856 | 1865 |
|     |          |     |     | ~        | 810          | A R   | D I  | U E   | FI          | G   | U M | 47    |     | 1865    | 21  | 1820 | 1075 |
|     | 1        |     | i U | н        | H A U        |       | 1 14 | нж.   |             |     |     | 4 8   |     | 1075    | 10  | 1010 | 1041 |
|     |          |     |     |          | S Ť Ŭ        | Ē     | I N  | ăi    |             |     |     | 50    |     |         | źĩ  | 1864 | 1869 |
|     |          |     |     |          | RĂŬ          | ĒŇ    | I N  | ŇŇ.   |             |     |     | 51    |     | 1869    | 60  | 1830 | 1835 |
|     |          |     |     |          | FAO          | E P   | Т    | ¥ 0   |             |     |     | 5 2   | 1   | 1835    | 32  | 1012 | 1840 |
|     |          |     |     |          | 810          | EN    | I N  | NN    |             |     |     | 53    | 1   | 1840    | 31  | 1830 | 1834 |
|     |          |     |     |          | RSU          | TU    | JR   | RN    |             |     |     | 54    | 3   |         | 61  | 1856 | 1860 |
|     |          |     |     |          | 8 1 1        | - 2 0 | 10   | D D D |             |     |     | 55    | - 1 | 1 8 7 0 | 21  | 1856 | 1876 |
|     |          |     |     |          | FOV          | ĒŇ    | I N  | NN    |             |     |     | 57    |     | 876     | 34  | 1030 | IAAO |
|     |          |     |     |          | 8 T U        | ŤU    | J R  | RM    |             |     |     | 58    |     | 1000    | 21  | 1016 | 1828 |
|     |          |     |     |          | RAM          | F U   | J N  | GT    |             |     |     | 59    | 1   | 620     | 67  | 1864 | 1878 |
|     |          |     |     |          | 8 TL         | E N   |      | GG    |             |     |     | 60    |     | 1070    | 20  | 1884 | 1837 |
|     |          |     |     |          | P A M        |       | 1 8  | 0.2   |             |     |     | •1    |     |         | Ř.  | 1010 | 1001 |
|     |          |     |     |          | ÊÔŸ          | FN    |      | 55    |             |     |     | 4 Ĵ   |     | 690     | 34  | 1884 | 1865 |
|     |          |     |     |          | F88          | 81    | Z    | E B   |             |     |     | 6.4   |     | 1005    | 33  | 1030 | 1001 |
|     |          |     |     |          | <u>e</u> M I | MU    | 16   | TA    | F.I         | G   | U R | 6.5   |     | 1881    | 46  | 1817 | 1875 |
|     | T I      | 1   | NE  | Y        | RAU          | AR    | 17   | A O   | M U         | n.  | TA  | 66    |     | 1859    | 60  | 1010 | 1817 |
|     |          | U   | LT  | A        | RAU          | AY    | E.   |       | -           |     |     | 67    |     | 1017    | 60  | 1836 | 1891 |
|     |          |     |     |          | FNP          | FL    | J N  | 00    | 5 1         | 10  |     | 60    |     | 1824    | 10  | 0000 | 0051 |
|     |          |     | Ť   | 0        | 20           | 0     | 50   | õõ.   | 6           | 00  | 51  | 70    |     | 012     | 20  | 0000 | 0051 |
|     | 9        | 1   | ŻĒ  | 8        | 10           | õ     | 00   | 00    | Ċ           | 00  | 43  | 71    |     | 1838    | 10  | 0000 | 0043 |
| 1   | PI       | 1   | UV  | 8        | 15           | 7     | 0    | 79    | 6           | 3.  | 51  | 72    | :   | 1963    | 15  | 7079 | 6351 |
|     | P        |     | 0 1 | 4        | 78           | 5     | 53   | 98    | 1           | 6   | 50  | 73    |     | 1808    | 78  | 5398 | 1650 |
|     | U        | P   | BN  | 0        | 10           | 0     | 00   | 00    | 2           | 0   |     | 74    |     | 877     | 10  | 0000 | 0040 |
|     | L (      | 0   | 0 1 | 0        | 10           | C C   | .0   | 00    |             |     | - 0 | 15    |     |         | 10  | 0000 | 0040 |

## AN INVESTIGATION OF NUCLEAR EXCURSIONS TO DETERMINE THE SELF-SHUTDOWN EFFECTS IN THERMAL, HETEROGENEOUS, HIGHLY ENRICHED LIQUID-MODERATED REACTORS

by

JOHN ROBERT FAGAN

B.S., University of Nebraska, 1957

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

The safe operation of nuclear reactors is imperative if there is to be increased engineering application of these systems. Transient reactor experiments, such as the SPERT tests, have demonstrated that thermal, heterogeneous, liquid-moderated reactor systems will safely shut themselves down following step and ramp insertions of limited amounts of excess reactivity. It is important that a model based on the nuclear, thermodynamic and hydrodynamic properties of the reactor system be developed to explain this phenomena so that it can be used in the design of new systems.

Equations for the fine structure of the temperature distribution in a unit cell of a heterogeneous reactor during a transient burst were derived based on the known power and fuel surface temperature distributions. A model based on recognized shutdown effects was developed to calculate the excess reactivity during a transient using the temperature distributions to define the deposition of energy. The calculated excess reactivities show this model to be satisfactory. The effect on reactivity due to steam formation required one empirical parameter which can probably be removed when a greater knowledge of transient boiling is available.

| Date Due |   |  |  |  |  |  |  |  |  |  |
|----------|---|--|--|--|--|--|--|--|--|--|
|          | - |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |
|          |   |  |  |  |  |  |  |  |  |  |