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INTRODUCTION

Alr-condltioning requires apparatus for transferring
heat to or from the air. A commonly used type of heat
exchanger consists of rows of tubes carrying the refrigerant
or heating agent. Air flowlng perpendlcular to the tubes
is thus cooled or heated. Such units are referred to as
cross~flow heat exchangers.

The evaluation or prediction of the performance of
these units 1s fundamentally a problem in heat transfer.

For the case of heatling air, heat must pass from the heat-
ing agent through the metal pipe and to the air. It is
known that most of the temperature drop between the steam
and the pipe wall occurs across a thin film of the steam
adjacent to the metal. Similarly, a thin air film is the
controlling resistance to heat flow on the outside of the
pipe. The conductivity of the air film is much less than
that of the steam film, so that it is desirable to increase
the heat flow area on the air side. For this purpose, metal
fins are placed on the outside of the pipes. While the fins
increase the capacity of the heat exchanger, they complicate
the design of such units apprecisbly.

The original purpose of thls ilnvestigation was to set




up & rational design procedure for cross-flow heat ex-
changers employing finned tubes with particular reference
to that type of heat exchanger used 1n'a1r-conditioning
work. It was found advisable, however, to limit the inves=-
tigation to a study of the phenomenon of heat transfer

from the fin surfaces to air being heated.

In order to solve the problem of establishing a
rational design procedure for cross flow heat exchangers
it appeared advisable to proceed as follows:

1. Obtain an expression for the temperature at any
point on the fin, consldering conduction of heat in the fin
and energy transfer by convection to or from the fin surface.

2. Obtain an expression for the temperature at any
point on the surface of a circular pipe bearing fins, con-
sidering conduction to or from the cooling or heating fluid
inside the pipe, and through the fluid film, the pipe metal,
and the outside fluid film; also convection in the outside
fluid mass.

3. TUtilize the above expressions to obtain the rate
of heat transfer to or from any fin-tube combination, for a
given refrigerant at any initial temperature and for any

flow conditions.
4., Obtain an expression for the rate of heat transfer

to or from the side walls or headers of the unit.




5. Extend (1) above, to include the effect of wet
fins and tubes (i1.e. moisture deposits due to dehumidifica-
tion of the air when the unit is used as a cooler).

6. Obtaln an expresslon for the condition of air pass=
ing over the finned tubes and along the walls or headers,
the expression to hold for any initial air conditions
(velocity, temperature, and moisture content).

7. Extend (6) to tube banks.

The first problem, then, was to obtain an expression
for the temperature at any point on a fin. In order to
avoild the complications introduced when dehumidification
occurs, the heating problem was considered. Heat passes
from the fluld in the pipe through the pipe and fin to the
alr. Under these conditions, the fins would at all times be
dry. It has been verified experimentally that the directicn
of heat flow does not affect the value of the air film heat
transfer coefficient for this case of no dehumidification
(Grimison, 1937). _

If in attempting to solve this problem, one considers
first the flow of heat in the fin and second the flow of
heat 1n the air, the‘result is a complicgtion. As Dryden
(Durand, 1936, p. 229) points out, one would have to know
the flow of heat within the fin for all possible rates of
heat loss at the boundary of the fin and the flow of heat




within the alr for all rates of supply of heat at tie
boundary of the fin. Then those solutions would be selected
for which the boundary conditions agree. This fully gereral
problem has not been solved (Durand, 1936, p. 229). The
main difficulty in obtaining an analytical solution lies in
mathematically expressing the air condition for a given
veloclity of flow and with fixed boundary cénditions. Before
a solution is attempted, the basic flow phenomena should be
understood.

There exist in nature two radically different kinds of
flow, laminar and turbulent. By laminar flow 1is meant a
flow in which the fluid moves in laminar layers which do not
mix. For such flow the path of a particle of fluid can be
defined mathematically. In turbulent flow, on the other
hand, there is turbulent mixing of the fluid, so that the
particles move in random and unpredictable paths which can-
not be defined mathematically.

The criterion of transition from laminar to turbulent
flow, for geometrically similar systems and for a given
initial turbulence, is the Reynold!'s Number. Its value at
the transition point is the critical Reynold's Number.

The critical Reynold's Number 1s decreased if the initial

turbulence is increased. In fact, there is a functional

relation between the critical Reynold's Number and the

initial turbulence.




Both types of flow may occur, and may exist simul-
taneously in different parts of a given field of flow. This
makes the problem of obtaining expressions for quantities
such as the total heat transfer a complicated one. To
avold the complications that arise when an attempt is made
to study heat transfer in the presence of both laminar and
turbulent flow it is usual to treat the theory of heat
transfer for turbulent flow apart from that for laminar
flow.

In commercial heat exchangers, the air is usually
turbulent, and 1t 1s for thils type of flow that an analyti-
cal expression would be exceedingly useful. Attempts to
establish such a formula have been made by Reynolds,
Stanton, Boussinesq, G. I. Taylor, Prandtl, von Karman and
others, but without satisfactory results.

The flow of air over a finned tube is a three dimen-
slonal problem. It was, however, expected that the vari-
ation in the local heat transfer coefficient on the fin
would have the same pattern as the local heat transfer
coefficient on a cylinder, particularly at points e¢lose to
the cylinder. Accordingly, it was considered advisable to
investigate the flow over a cylinder in some detall.

The nature of the flow about a cylinder depends on the
value of the Reynold's Number R = X%E, where Vo = speed




of the fluild stream at a distance from the cylinder, D =

the dlameter and -~/ = the kinematic viscosity. The various

types of
R =

R

flow may be tabulated as follows:

1l

100

30,000

= 200,000

The fluld closes in completely behind the
cylinder and flow is everywhere laminar.

Stationary eddies develop behind the
cylinder. As R increases the eddies move
away from the cylinder and become unstable

Eddles form periodically in the wake,
arranging themselves in the Karman vortex
street. Over the forward part of the
cylinder, the flow is still laminar; it
does not close in behind the cylinder,
however, but separatées from the surface.
There 1s some evidence that the flow re-
mains of a laminar character for some
distance beyond the separation point be-
fore eddying motion develops.

Flow remains laminar up to the point of
separastion but becomes turbulent almost
immediately afterward.

Flow becomes turbulent before separation
and the process of separation 1s delayed,
the drag coefficient falling rapidly.

For 30,000 <R< 200,000, the drag is con-
stant; the speed just outside the boundary
layer increases from zero at the upstream
stagnation point to a maximum of about
1.55 times the speed of the approaching
stream, the boundary layer accordingly
being subjected to a pressure gradient in
the direction of flow. Dryden (Durand,
1936, p. 277) mentions that the pressure
drop reduces the thickness of the boundary
layer very materially except near the
stagnation point, and hence, as shown by
experiment, increases the skin friction
by a factor of two or more as compared
with that on a thin flat plate set paral-
lel to the flow. Evidently, the increased




veloclty gradient gives a higher shearing
stress, and thus a higher skin friction
in the case of the tube.

When the angle q), as defined on Fig. 1, becomes about
70°, the flow separates from the surface. Immediately be-
hind this point of separation the air near the surface is
moving in a directlon opposite to that of the main stream.

The process of separation is described in the follow-
ing way. The particles near the wall are dragged along by
the friction of the nelghboring faster moving particles but
are retarded by the pressure. As the layer thickens, the
retarding force predominates ani this finally causes a
reversal of the flow near the surface. The reversal of
flow causes an amount of stagnant fluid to accumulate at
the boundary with the result that the actual path of flow
recedes from the surface. When the Reynold's Nurber is in-
creased above about 200,000, the flow in the boundary layer
is éddyiné before separation, and the point of separation
advances to a larger Q). In the eddying flow there is a
more thorough mixing of the particles of ailr, and the driv-
ing action of the outer air on the fluid near the surface
is greater. Hence the fluid near the surface can proceed
farther against the pressure gradient. Dryden (Durand,
1936, p. 279) states that the exact mechanism of flow at

separation 1s not known. Even in this case, then, the




condition of the air cannot be expressed mathematically.

This general picture applies to a cylinder with its
outer surface at constant temperature. Dryden (Durand,
1936, p. 278) states that studles of the heat transfer from
a heated strip on a cylinder as a function of ¢ are "of
interest" -« but "they give no information on the local
rate of transfer of heat from a cylinder whose entire outer
surface 1s maintalned at constant temperature". In view of
other results this statement appears too strong. Ellas
(1931) found that the change in speed of air at any point
in its passage over a skin friction plate did not exceed |
2 or 3% for a temperature rise of about 35° C and that the
point of transition from laminar to twbulent flow was
practically unaffected. It seems.reasonable, therefore, to
expect that the flow characteristics would not be affected
if the heated strip were not at too high a temperature
relative to the air temperature. Although the variation in
temperature over the cylinder undoubtedly has some effect
on the flow, since a change of temperature causes a changev
in H s the results‘should closely approximate those for 1iso-
thermal conditions, particularly if the temperature varia -
tion 1s small (say less than 95° F, or 35° C) and the heated
strip is thin. |
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The possibility of using the analogy between heat
transfer and‘fluid friction (McAdams, 1933, p. 158) was cone-
sidered in attempting to obtain an analytical solution to
the problem. The problem of heat transfer from surfaces is
closely related to skin friction and boundary layer theory
(Biermann and Pinkel, 1934). The same mechanism that trans-
fers heat through a boundary layer also transfers momentum.
Dryden (Durand, 1936, p. 259) showed, however, that the
analogy was not universally applicable. He demonstrated
that it was valld only for the case of flow near a skin
frietion plate of a fluid for which Prandtl's Number was
equal to one. The analogy will not hold, therefore, when
separation occurs, as in the case of flow at right angles
to a circular cylinder.

As 1s usual in engineering practice when theory is not
sufficliently developed, it was found necessary to resort to
dimensional analysis. Previous investigators have used
this method of analysis to correlate experimental deter-
minations of the average heat transfer coefficient for a fin
as a function of alr velocity.

The general equation for the surface coefficlent in
forced convection, derived by dimensional analysis, is:

B =e Q’—D-e)“(@#)’“ (1)
K M K

where h = film coefficient.
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linear dimension

w
]

V = veloclty of flow

Cps M » K refer to fluld propertlies - density,
specific heat, absolute viscosity,and thermal
conductivity.

=0

¢ = proportionality constant
n and m = experimentally determined constants.
For the forced convectlion of air, with moderate ranges

of temperature, Prandtl's Number 9245_ and likewise .K.

K
may be considered constant (Tuve, 1934). Then
__BaGh
h =—"T=m
where

G = VA = mass velocity

B = constant (experimental)

n = constant (experimental)

Numerous investigators have employed this formula in
correlating experimental data. Some of the results are
reproduced in Table 1, arranged by Tuve and McKeeman (1934).

Similaer data are shown by King and Knaus (1934). It
will be noted that the only dimension included in thesse
expressions 1s that of the tube diameter. It is obvlous
that other fin dimensions, such as spacing and thickness
and ratio of air side to refrigerant slde areas willl affect

the expression for h. The veloclty distributlion and the




12

Table 1. Showing empirical expreésions

for_the heat

transfer coefficient h in B.T.U./(hr)(£t?)(°F)

Heat Transfer

Coefficient
for Heating
Air at 100° F
wlth Pipe
Diameter of
1l inch and
Velocities
Indicated
Investi- Appli- V = 500 V = 1500
Formula gators cations f.P.M. f.P.M.
le h = 0035 g,.(?_._B_ Nusselt, Flow 2.6 6.4
pO+2  Josse, inside
Royds, 3/4"
Campbell to 1"
smooth
pipes
0«69
2. h = .,0183 Reiher, Flow over 7.8 16.8
p0+31 carrier several
: and rows 5/8"
Busey, to 1 1/4"
Rietschel smooth
tubes,
staggered
¢0.56
3. h = .033" Hughes, Flow over 6.7 133
pO0+44 Reiher, single
Vornehm, tubes or
Gibson pipes,
1/4" %o
2" 0.D.
g0-51
4., h = 061 T. Eo Flow over 9.0 15.7
pO0-49  gSchmidt 6 rows 7"
0D fin
tubes, 2"
fins, 15

per foot




13

temperature gradients between tube surfaces and fin sections

will change for different ratios of these significant dimen=~

sions.

Tuve .and McKeeman (1934) recommend the following

approximate expressions:

l. Large plain tubes, staggered g0.7
arrangement or with flow h = .022-7715
disturbers DY

2. Common large fin tubes, g0.6

staggered arrangement or with h = .04 P/
flow disturbers DO

3. Small tubes with large fins,
or small plain tubes widely h = .05 =%
spaced; smooth air flow D
Due to the difficulty of obtaining the effect of such
variables as fin dimensions, air velocity, turbulence, etec.
on the air side, and the necessity for working with similar
variables on the refrigerant side, it has been found more
convenlent to use overall coefficients based on alir slde
surface area and a log mean temperature difference between
alr and refrigerant. A large amount of experimental data
have been compiled on this basis (Tuve, 1934). The overall
coefficient 1s plotted as a function of the veloclty, viz.
u = cvd (3)
The only justification for thls procedure 1s that it
actually gives a straight 1line on log - log paper for most

of the common cases of dry=-coll heat transfer.
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Much of the design work on finned tube heat-exchangers
has been carried out by the use of the above formula. The
desirability for experimental checks on the performance of
any particular design employing this approximate relation-
ship 1s apparent.

The usual design procedure has been to employ valuss of
h obtained experimentally on similar equipment, and to use
some simple step-by=-step integration to obtaln the heat
transfer in the fin (Swart, 1938). Mathematical expressions
for the heat flow by conduction in the fin had been worked
out using various approximations (Harper and Brown, 1923),
but designers seemed reluctant to avail themselves of the
rather involved solutions. Recently, a relatively exact
solution was obtained by Murray (1938), the most serious
assumption being that the heat transfer coefficient was con-
atant over the fin.  He also derived a dimensionless effec~
tiveness factor, defined as the ratlo of the heat trans-
ferred by a given fin to the heat which would be transferred
by the pipe area under the fin if the fin were removed.

This factor could be obtained directly from a chart for

given values of the heat transfer coefficient and for fixed

fin dimenéions. It enables one to determine the effect that
adding a glven size of fin has on the heat transfer from a

fin-tube combination. As fins are added to a tube, however,
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the fin spdcing changes, and with it the value of the heat
transfer coefficient. It is of ilmportance, therefore, to
determine 1f the coefficlent 1s sufficiently constant to
justify the use of the effectiveness factorl.

The review of literature bearing on the problem con=-
vinced the writer that a satisfactory method of solution
required a more accurate treatment of the heat flow in a
fin than was at present available. This involved a know-
ledge of the variation iIn the heat transfer coefficilent
over the fin surface at various temperatures and for differ-
ent velocities of flow and fin spacings. Previous investi-
gators (Biermann and Pinkel, 1934) concluded that the value
of the local heat transfer coefficient varles mainly with
the alr velocity and fin spacing, the effect of the other
fin dimensions belng small. It was decided to lnvestigate
the variation in the local heat transfer coefficient with
alr velocity and fin spacing, and equipment was constructed
for that purpose.

Furthermore, the data obtalned were used in an attempt
to develop an expression for the heat transfer from a fin.

The other parts of the original problem were not considered.

1Personal communication from R. H. Norris, General Electric
Co., Schenectady, N. Y.
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MATERIAL AND METHODS

It was desired to obtain an experimental expression for
the heat transfer coefficlient, h, as a function of air
velocity and fin spacing, with air conditions in the range
encountered in air-conditioning practice.

If the air velocity were constant over the surface of
the fin, then the temperature © would be the same at every
point on the fin which was at the same radius - l.e., cir-
cular lsothermals would be formed. In the actual case, how-
ever, if two elements of surface at equal radii are con-
sidered, the heat transfer coefficient h may not be the same
for each element. For the element with the lower h, the
surface temperature will be the higher, and the set of iso-
thermals will be distorted from the circular pattern. But
the radial heat flow rate will also change, due to the
change in the temperature gradient between the element and
the heat source at the base of the fin. It 1s not correct,
therefore, to consider the deviation of the isothermals from
the c¢ircular pattern as a measure of the change in h alone.

If the temperature at the tube wall did not vary with
angular position, it would be possible to determine the
total heat flow rate from the fin. Then dividing this total

heat rate by the total area, one would obtaln an average
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rate of heat flow per unit area. The fin could be divided
up into a number of small areas, the average temperature
for each area determined, and h thus computed for each area.
In the actual case, however, the values of h thus fourd
would be in error by an amount which depends on the varia-
tion in the temperature at the tube wall. |

It was decided to construct a fin of a type of fiber
board available in the Woodworking Laboratories. All fins
used were 7 inches in dlameter and approximately 0.3 inch
thick, and were mounted on a 2.25~-inch outside dlameter
iron pipe. A hollow copper disc was made by punching thin
copper sheeting into the form of cups, 3/8 inch in outside
diameter and about 0.1l5 inch deep. Two of these cups, when
placed together, formed a hollow copper disc. One of these
discs was placed in each fin at a certain radius, different
for each fin. The disc faces were flush with the fin sides.
Figure 1 shows the detalls of the experimental fin. A
length of number 23 "Comet" (nickel alloy) resistance wire
was colled and placed between thin mica sheets inside the
copper disc, to act as a heating element. Potential leads
were soldered to the resistance wire, and all léads were
brought out of the heating element through the inside of
the fiber fin, into the pipe, and through the pipe to the
outslde. A Weston Ammeter, with a scale from O to 3 amperes

and a least count of 0.05 ampere, and a Jewell voltmeter
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with a scale from O to 3 volts and a least count of .05
volts, were used to measure the power input to the heating
element. The power input was varied from 0.24 to 0.73
watts during the course of the tests.

Number 28 gauge copper and constantan wires were
peened into the copper as thermocouples and were insulated
from the heating element circult. A copper sheet was placed
between the heating element and the thermocouple leads in
order to avold direct radiation on the hot junction. The
calibration curve for the thermocouples is shown in Fig. 2.
In all tests, the cold junction was kept at 32° F. The
Leeds and Northrup potentiometer used to measure the thermal
electromotive forces had a least count of .0l millivolt
(corresponding to about 0.5° F temperature difference) in
the range from O to 2 millivolts, and a least count of
O.1 mlllivolt on the high scale reading from O to 20 milli-
volts. Readings could be duplicated on the low scale to
.002 millivolt.

With all leads passing from the heating disc on the in-
slde of the fin and then through the inside of the pipe, no
wires were left in the airstream. The faces of the heating
disc were ground down flush with the fin faces, and all fins
were given approximately the same surface finish. One fin

containing a heating element was placed at the center of the
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pipe, and a movable dummy fin with no heating element was
placed on each side of this central fin. The spacing could
thus be set at any desired value. It was realized that all
of the energy released in the heater element would not pass
to the air through the faces of the heater disc. There was
radlal heat flow into the fiber fins as well as radiation
losses. Radilal conduction introduced by far the larger
error and was difficult to evaluate (Discussion, p. 47).
The radiation losses were minimized by poliéhing the copper
surfaces to give a high reflectivity. The upper 1imits to
the radiation loss can be computed by considering the heat-
ing disc as radiating to a black body.

q =K1 08 A1 (T1% - Tp#) (4)
where

q = heat transfer rate (B.T.U./hr.)

Q
-
U

= absorptivity of dise

-lo BOT .UO
(££2) (hr) (OF absolute)

17.3 x 10

o
]

Al = disc surface area (ft2)
T9 = disc temperature (OF absolute)

Tg = temperature of surroundings (°F absolute)

Assuming &) = .03 (McAdams, 1933, p. 45), Tq = 620°F
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absolute and To = 520° F absolute, the loss is .00175 watts,

or about 0.4% of the input. This is, of course, negligible.

The fin tube assembly was set at the throat of a small
wind tunnel. The whole assembly could be rotated from O to
180° (es defined on Fig. 1), the angle being set by means

of a protractor and a pointer lined up with the heating disec

on the fin. A traverse was made of only half of the fin
because of the existence of a plane of symmetry passing
through the 0 and 180 degree points (Biermann and Pinkel,
1934). All leads were brought out to a small switchboard
on the outside of the wind tunnel.

The air speed was varied by means of rheostats in the
armature and field circuilts of the direct current motor
which was belted to the propeller. A small dynamo with a
linear voltage-speed characteristic was belted to the motor
shaft, and leads were passed from its terminals to a volt-
meter. By checking the voltmeter readings against the air
velocitlies measured by a vane anemometer placed at the
throat in the center of the wind tunnel cross-section, a
calibration curve for the air speed as a function of the
voltmeter reading was obtained and plotted on Fig. 3. The
air velocity was varied from 150 to 1250 feet per minute.
Figures 4, 5, 6, and 7 show the detalls of the experimental

equipment.
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It was desirable that the turbulence of the wind tunnel
and the veloclty distribution across the tunnel throat be
known. The turbulence could be obtained from sphere tests
(Durand, 1936, p. 263) except that the necessary scale
balance was not avallable. The velocity distribution counld
be obtained by the use of an instrument measuring velocities
at a point or over a small area, such as some form of hot
wire anemometer. This latter instrument was not avallable,
but a pitot tube was made according to N.A.C.A. speclfica-
tions and used in the tunnel. Unfortunately, a manometer
with a least count of .01 inch of water was the only one
available. This corresponded to a velocity of about 300
feet per minute. The variations in velocity were less than
300 feet per minute over the greater part of the cross sec-
tion of the throat, as no movement of the manometer could
be discerned.

Three different fins, referred to in the following as
Fin No. 1, Fin No. 2, and Fin No. 3, were used in the tests,
with heating dises set at radii of 2.32, 1l.44, and 3.50
inches respectively, measured from the center of the pilpe.
With each fin tested, two spacings of 0.5 and 1.0 inch were
used. The spacings were measured from center to center of

the fins.

Alr temperature was measured by two thermometers, each

with a least count of 0.1° F. One thermometer was placed




EXPLANATION OF PLATE I

Fig. 4. General arrangement of apparatus.

Fig. 5. View showing the position of the fins
in the wind tunnel.



23




Fig. 6.

Fig. 7.

EXPLANATION OF PLATE II

Close-up view of the fins in the
wind tunnel.

View showing the position of the
vane anemometer in the entrance
section of the tunnel for air
velocity measurements.



PLATE II

Fig. 6

F_ig; 7
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about 5 feet in front of the wind tunnel, the other directly
in the outlet air stream. These thermometers checked with-
in one degree at all times, the difference being ascribed to
radiation from the room lights. The thermometer in the air-
streem was shielded from radiation, and its reading was
taken as the alr temperature. |

Sample calculations for a typlcal run follow.

(1) (2) (3) (4) (5) (6)

134 1210 1.747 107.1 88.4 18.7
(7) (8) (9) (10) (11) (12)
97.8 .0364 0.497 1.695 46.6 600°
(13) (14) (15) (16) (17) (18)
0.50 750 700 3.96 13.15 6.12
(19) (20) (21) (22) (23)

.0702 84 .9 1.30 1.443 20.4

Columns (1), (2), (3), (5), (9), (12), (13), (14) are
experimental data. The column headings and units employed

above are as follows:

(1) Run number

(2) Air flow (ft. per min.)
(3) Average thermmocouple reading (millivolts)




(4) Disc temperature (°F)

(5) Air temperature (°F)

(6) Temperature difference, air and disec (OF)

(7) Mean temperature, air and disc (°F)

(8) Heater area x temperature difference (ft2 x OF)
(9) Watts input

(10) Rate of heat transfer (B.T.U./hr.)

B.T.U.
11) Heat transfer coefficient "h" ( e )
- (hr) (£2) (OF)

(12) Angle ¢ (degrees)
(13) Spacing S (inches)
(14) Wet bulb air temperature (°OF)

(15) Dew point of air (°F)
(B.T.U.)(£t)
£t2 OF Sec

(16) Thermal conductivity of air "K" x 106 (

(17) Pipe Diameter ((hr) (££2) (°F))
K B.T.U.

"hD" _2
(18) Nusselt's Number e x 10 -~ dimensionless
(19) Mass density of air "p" (1b. mass/ft3)
{

f(1b. mass)\
(20) Air velocity x I,

5 mass
(21) Absolute air viscosity H x 10 sec

o
(22) 'D}I' x 10™4 (ft sec

# mass

(23) Reynold's Number YPL x 303 -- dimensionless
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Column (3) is referred to as an average thermocouple
reading since the temperature was not exactly the same on
each side of the heating element. The difference varied
from zero to a maximum of 7° F. As can be seen from the
sample tabulation of data, the watts input to the heater
was converted to B.T.U. per hour and divided by the area of
the heating element times the temperature difference between
the heating disc and the air, to obtain the heat transfer
coefficient h. The physical properties of ailr (density,
thermal conductivity, absolute viscosity, and specific heat)
were obtained from the sources and in the mamner described
in the Appendix. The density was evaluated at air tempera-
ture, while the other properties were taken at a temperature
defined as the mean of the heating disc and air tempera-
tures. Thils procedure has been found to give the most satis-
factory correlation of data (Grimison, 1937; Boelter, 1937).

Since the data were found to be in error, none of the
computatiops based on the experimental data were included
in this thesis, but have been filed with the department of
mechanlcal engineering, Kansas State College of Agriculture
and Applied Science.
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THEORY AND RESULTS
Dimensional Analysis

The use of h in convection problems arises from the
concept of a thermally resistant film at the surface of the
convecting material, across which the entire temperature
drop between the surface and the air mass is assumed to
occur. The heat transfer across the film is by conduction.
Heat 1s removed at the air side of the film by a process of
mass transfer. Air adjacent to the film absorbs the energy
passing through the film. As a result the temperature of
this air rises. This alr, in turn, is supplanted by fresh
air at the same original temperature, and the process is
repeated. Comparison of the equations for conduction and
convection shows that h may be defined as K/1, where K is
the thermal conductivity of the air and 1 1s the length (in
the direction of heat flow) of the air film. h 1s therefore
dependent upon the state of the air only. If it changes
with a change in the rate of heat flow q, 1t does so only
Insofar as q affects the temperature, and hence the values
of K and 1 of the air film. This ls the fundamental assump-
tion made in setting up h as a function of dimensionless

criteria which do not include q or the temperature of the
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convecting material. Thus,

h=F (V, D, S, W, T, cp:r'\:K:P:r,r¢)

where

air velocity

pipe diameter
distance between fins

= fin diameter

H =2 nh U <«
]

fin thickness

Cp = specific heat of alr at constant pressure
'A = absolute viscosity of air

K = thermal conductivity of ailr

Q = dens ity of air

r,$= coordinates of a point on the fin surface (in
consistent units)

h =v3: pb g¢ wd e cpf f*g Kb f;k rd (rc[))k

Four units will be used: M, L, T, ©
Whe re

mass
time

= distance

®© B 3 =
H

= temperature difference
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(1) 2+b+c+d+e+2f~g+h=-31+3+k=0
(2) g+h+1=1

(3) a+2f +g +3h =3

(4) £+h=1

Solve for all exponents in terms of ¢, 4, e, £, and 1.

h=1-=-7F¢f

g=1l-f+1=1

f=f=-1
a=3-3h=g=2f=3«3+3f-f+1-2fF

a=1

b=31«1+f+f=-1-2f=2gd=-c¢c=~1
b=z=ilee=d=c=1=3j=k

h=vli pl-e-d-c-1 gc yd 4o Cpf H f-1i Kl'feirj (rd;)k

2-g [2IE6) @ () 3 ¢]

where@ is an unknown function, the form of which must be
determined by experiment. This 1s as far as dimensional
reasoning takes us. However, in this type of problem it

has been found experimentally that Nusselt'!s Number (h_JZ)
may usuaelly be expressed as a constant times Reynold'sK (V_IE‘LE)
and Prandtl's (2%[;\) Numbers to some power. The expression
will therefore be written in that way, pending experimental
verification.

M= C (Re)® (Pr)P (%)e("sv)d(%)e’(%)f (5)

where

c, a, b, ¢, d, e, and £ = constants.
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As expected, thls analysis indicates that a correlation
of experimental data can be obtalned by use of Nusselt's,
Reynold's, and Prandtlt!s Numbers, plus certain ratios of
linear dimensions, as dimensionless criteria.

There should also be some sort of a roughness factor
included above, to allow evaluation of the effect of surface
finish. As written, the effect of turbulence 1s not in-
cluded. That 1s, if the above correlation is used on two
different systems, the turbulence conditions must be assumed
the same for each.

In general, the accuracy of the relations obtalned by
dimensional analysis depends upon how correctly and how
completely the pertinent variables have been set down.

Thus, in writing h as a function of certain variables, we
are tacitly assuming that these are the only variables
which affect h. Dimensional analysis shows us how these
variables must be related, but it says nothing as to how
complete our assumptions are.

It will be noted that, in this particular case, it has
been assumed that free convection is negligible (hence Gras-
hofts Number does not appear), and that the temperatures

involved are such that radiation is not importent (i.e., h

1s a function of (® - 84), and not of 6 and 64 separately).
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Again, the validity of these assumptions must be determinecd
experimentally.
The temperature at any point on the fin may similarly

be expressed in terms of dimensionless numbers.

©=f(6g, h, K, », » )
where

® = difference between fin surface temperature ami
alr temperature at any point

8o= difference between fin base temperature and air
temperature at any point

h = surface heat transfer coeffilcient

K = thermal conductivity of fin material

r,¢= coordimtes of any point on the fin surface
Four units will be used: M (mass), T (time), L (distance),
® (temperature difference).
Let

@=f (65, h, K, r, (r¢))

0= () (E%’I_g)b(ﬁ'g ° (wew)e

l.a-=b=-c=1

2eb+c =0

3¢ =3b = 3¢ = 0

4. c+d+e =0
Solving for all exponents in terms of b and e:

a=1 ¢c =«b c +d = -e
d + =8 =c == + D
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Assuming, as before, that 6 1s a power function of these

groups: b
o (2] (#)° .
S0 (5) @
‘where

U, b, e = constants.

This expression affords a mean of obtalning the
temperature distribution in a fin if h is known at every
point. With h known at any value of r and q) , © and @,
could be measured experimentally, and the constants U, b,
and e determined. The equation would be, in effect, an
experimental solutlion of the equation developed later for
heat transfer in a fin. It is of interest, since the exact

solution of the mathematical equation has not been obtained.
Equations of Heat Transfer in a Fin

Consider a circular metal fin, which is thin enough so
that the temperature gradient in the direction of the thick-
ness can be neglected, and a two dimensional solution can be
consldered. The following assumptions are made:

l. The fin material is homogeneous and isotropic.
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2. There are no internal heat sources.

3. There 1s no temperature gradient across the fin
width (in the x direction).

4. The rate of heat transfer from the metal surface to
the air is proportional to the temperature difference be-
tween the metal and the alr and to h.

5. The temperature distribution is symmetric with
respect to the 0 - 180° plane.

6. The conductivity coefficlent K 1s constant through-
out the fin.

7. The temperature at the fin base (where r = rgy) is
a function of the angle (t) .

8. The temperature at any point on the fin is indepen~
dent of time.

Assumption 5 has been verified experimentally (Schey
and Rollin, 1934). The other assumptions appear reasonable
from physical conslderations.

Let

@ = temperature at any point on fin surface

€a = air temperature

K = thermal conductivity of fin material

h convection transfer coefficient

r and ¢ = polar coordinates of a point on the fin

2x = fin thickness
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Consider an element of fin volume, (Ap dr). The rate
of heat flow to and from the element is as follows:

Conduction into element:

= K e (%%)r

do = - Kdr * 2x (%)4)

Conduction out of element:

q3=-K'A(I'+dI') (a-;_:%(r.l.dr)
= -Kadr + 2x 39)
4 o0ed) (¢ + ad)

q1

Convection from element:

g5 = 2h (rdrdd )(@ - 6g)

Rate of heat flow in = rate of heat flow out (steady
state)

" KA (’S‘%)r'* K Armr(g'%)er R #)(;‘%%

L] [ ae ) a— -
+K «dr * 2x 6—(1.—(5 4 +d4.)_ 2h (rdrd@ )(e - 6g)

K'_é-(A%£>dr+K‘dr-Zx-_L J (30)#4):

or r r 29
2h (rdrdd ) (6 = ©,)
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d_ n Q9. 9a , Jde J 26
gr Jr ' T ¢ "J¥ T J re
A=r *ad- 2x -5)-5—= ex * a¢

229 1

K*2x *a '?—agdr+Krd . 2x dr + Kdr » 2x &
r J;E r

azg -d¢ = 2n (rarad)(e - o)

ELY

2 2
d&: 39+_;_ J %e _ %(G'Qa)

which is the desired relationship.

The air becomes progressively warmer as it passes over
an actual fin, 80 that the heat transfer from the tralling
section should be poorer than for the front .section. As an
approximation, how'ever, in the interests of a solution of
the equation, the variation in the alr temperature over the
fin surface will be neglected. ©g may then be taken as
zero, and @ becomes the fin temperature measured above this

arbitrary datum.
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h i1s not a constant, and 1t evidently must be expressed
as a function of the independent variables r and d) if a
solution is to be obtained. When air flows perpendicular
to the tube, a vortical section 1s set up behind the pipe,
in which reglion the heat transfer is less than for a sur-
face over which a boundary layer exists.

It would therefore be expected that h would be a mini-
mum near 180°. Reilher (1926) obtained data which would seem
to favor this distribution. However, measurements made by
Drew and Ryan (1931) of the average rates of heat transfer
from longitudinal strips of a cylinder, the walls of which
were maintained at a constant temperature, showed h to be a
maximum for ¢ = 0° and 180°, while it is a minimum at about

= 90°. The surface from cl): 180° to ¢ = 360° gave
similar results. These data were checked by Lohrisch
(McAdams, 1933, p. 214) with a different experimental tech-
nique. The experiments made by the writer gave distribu-
tions which conformed more closely with Relher'!s results.
The discrepancy has not been explained, although it was
mentioned by Drew and Ryan. The results of the experimental
work done in connection with this thesls will therefore be
used, and the heat transfer coefficient will be written as
h=Ar (1 - b sin® %L) (8)

where A and b = constants.




The solution of equation (7) with this value for h sub-
stituted could not be obtained in the time avallable. It is
doubtful that it can be obtalned in terms of known func-
tions®. A method of approxim tions was also attempted, and
it failed in this case.

The next possibility considered was to express h as a
function of r only. This held with fair accuracy over
small segments of the fin. The fin could be considered as
split up into several segments, over each of which a dif fer-
ent functional relationship between h and r might be assumed
to hold. The heat transfer for each segment could be ob-
tained, and the results added to give the total heat trans-
fer. It was found experimentally (Fig. 8) that h could be
expressed as a power function of r.

With this assumption, the equation for heat transfer
in the fin becomes

= 1 28 .mng=o
=+ S er (9)

The solution could not be obtained in terms of known
functions, but a series expression was found. ‘he details

of the solution are shown in the Appendix.

“Personal communication from Professor C. He Morrey, Mathe-
matics Department, University of California, Berkeley.
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M6 cri+2 c2p2(n+2) c3p3 (n+2)
0= + + + —m———
MN - O (n+2)2 22(n+2)4 22432 (n4+2)6
61 c2r2n+5 03r3n+7
- |7+ + + +++(10)
MN-0 (n+3)2(2n+5)2  (n+3)2(2n+5)2(3n+7)2
Then
dQ = 2h © dA
and

Q = 204)91 ——

M [:r°n+2 - r1n+2+p(r°2(n+2)-r12(n+2)

MN-0 n+2 2(n+2)°

cz(ros(n+2) - ri5(n+2) . 1 roPte - pgI+3
0] n

+
22 «3(n+2)° MN=- +3

, ¢ (mg®n7 - £y 50+7) , 2 (p 209 _ py4nt9) . J }(113
(0+3)2(2n+5)2(3n+7)  (n+3)2(2n+5)%(3n+7)2 (4n+9)

where

ro = outer fin radius
ry = inmmer fin radius

M,N,0 = constants defined as follows:
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2. 2(n+2) 3., 3(n+2)
1 + C Yo + C " To 4 oo
(n+3)2(2n+5) (n+3)2(2n+5)2(3n+7)

n+l c2r°2n+5 c3r°3n+5

Cro

n+2 2(n+2)° 22 .3(n+2)°

+ o o0

cr
1 + L N ]

n+2 2.,2(n+2) 3ne3(n+2)
N=1+ + cri + cri
(n+2)2 22(n+2)4 22'-?>2(n+2)6

021. 12n+5 . 05r 1.?>n+‘7

(n+3)2(2n+5)2 (n+5)2(2n+5)2(5n+'7)2

O=ri+ + oo

If h is considered constant over the fin, the equation
for heat transfer is simpler still.
The gerneral equation for heat transfer by conduction 1s
(Boelter, 1937):
ch -g-g =K% +W
whe re

X: specific weight of conducting material

¢p = specific leat of conducting material
t = time
W = heat flow per unit volume due to an internal source

or sink
AR® = the Laplacian operator.
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For steady state conditions, the equation as applied to

a fin reduces to

K (529 L1 ae> A
ch oré r OJdr
where
- %§-= W

Clearing terms, we have

J% ,1 08 _
Jr2 v Odr
h

2—‘—-—
Let B° = 7

A Be _g
X
e = O (13)

The solution of equation (13) is (Gray, Matthews, amd

MacRobert, 1931, p. 161)

@ = A7 I, (Br) + By Ko(Br)

where

(14)

I, (Br) = mod1fied Bessel function of the first kind

and order zero.

Ko (Br) =
and order zero.
Using the boundary comditions
r=1ry
r:ro

mod ified Bessel function of the second kind

(15)
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and evaluating the constants Aj and By, the solution

becomes

6= & K1 (Brg)Io(Br)+I;(Bry)Ky(Br) (16)
IRG Kq (Bry)Iy(Bry)+K, (Bry)Iq (Bry)

Then the rate of heat transfer 1is

Q=2/h9dA
A

and substituting for © from equation (16) we obtain

Q= 4TTh 84 rg l:'Il(Bro)Kl(Bri)-Kl(BI'o)Il(BI'i) jl (17)
B Io(Bry)Kq (Bro)+Kq(Bry ) Iy (Bry)

It will be noted that the expression in brackets is
dimensionless. When the temperature 64 and coefficient of
heat transfer h are assumed to be constant, Q becomes a
function of r only.

Murray (1938) obtained a solution assuming 84 to be a
function of (P. The expression was complicated, and he sub-
stituted 84 = constant into his general expression and ob-
tained equation (17). He also pointed out the approxim te
boundary condition (15) above, which simplifies the solution
greatly. The actwl boundary condition is that all heat
taken up to the outer edge of the fin by conduction 1s

carried away by convection, or mathematically

Je _
K i +he =0 (18)
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The error introduced by boundary condition (15) deperds
upon the magnitude of gradient at r = rgo. If it is smll,
the error is not large.

Numerical computations with equations (11) and (17) are
shown in the Appendix.

Murray also pointed out that a fin effectiveness factor
may be defined as the ratio of the heat transferred by the
fin to the heat which would be transferred by the pipe area
under the fin if the fin were not present. Using equation
(17) as the expression for the heat tramsferred by the fin,

the fin effectiveness n becomes

0 = 2 I3 (Bry)K;y (Bry) - K3(Brg)Ij(Bry) (19)
Bx Il(Bro)Ko(Bri) - Kl(Bro)Io(Bri)

It will be noted that the expression 1s dimensionless
and is independent of the temperature at the inner fin
radius. Murray obtained a solution for the case where the
temperature at the inner fin radius 1s not constant, but
varies with angular position. The fin effectiveness reduced
to equation (19) for that case also, and he concluded that
the effectiveness was independent of the temperature distri-

bution around the inner fin radius.
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EXPERIMENTAL FINDINGS

Pigures 9 and 10 show Nusselt's Number > plotted as a
function of Reynold's Number V_'lif for Fin No. 1. Figures 11
and 12 are cross-plotted from these and from similar curves
for the other fins. They show the variation in Nusselt's
Number, and therefore the approximate wvariation in the heat

transfer coefficient, with fin position and fin spacing.
DISCUSSION

Figures 9 and 10 indicate that a flow transition occurs
between Reynold'!s Numbers of about 6000 and 9000. The
nature of the transition is not clear. Similar experiments
have never been attempted, to the writer's knowledge, and
there 1ls therefore no comment in the literature conceming
the phenomenon. It 1s known that the flow over a cylinder
changes in character at a Reynold's Number of about 30,000,
while the flow over a skin friction plate changes at a
Reynold's Number, based on the distance from the leading
edge, of from 100,000 to 1,000,000 (depending on the initial
turbulence of the air stream). The fin was not a skin fric=-
tion plate, due to its appreciable thickness. It is likely
that the transition 1s more closely related to the thin

plate phenomenon than to that of flow over a cylinder,
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particularly since data obtained for the front half of the
fin shows the same effect. This may be seen from a study
of Fig. 9 and Fig. 10.

Figure 12 indicates that the effeet of fin spacing 1is
negligible over the range of spacings encountered in com=-
mercial work. |

The average values of %?'for the 0.5-inch spacing may

be expressed as a function of Reynold's Number as follows:

0.21 '
Fin Yo. 1 D~ av0 <v_13€>_) (20)

x :

0.22

Fin No. 2 W _ 4ig (V-QQ) (21)
H

Fin No. 3 1;{_2 = 230 (.Vﬁﬁ)c"gv (22)

The effect of fin spacing was found to be small, and
equations (20), (21), am (22) would be expected to hold
for all spacings in the qommercial range.

A Reynold!s Number greater than 7000 is seldom en-
countered in air conditiong work (Tuve and Sisgel, 1938).
The values of h are not reported in the literature in terms
of Nusseltts Number over.this range, but are given in the

form
h = cvn
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where C and n are constants. Equations (20), (21), amd (22)

therefore could not be checked directly.

It was noted, how-

ever, that the experimental values of h were from two to

three times those given in the literature.

Also, 1t was

known that the slopes of the h_-% versus V_ﬁe lines should be
approximately 0.55 (McAdams, 1933, p. 233). These facts
indicated that the loss of heat by radial conduction from
the heating disc into the fiber fin was far from negligible
as had been supposed. The results as summarized by
equations (20), (21), and (22), therefore, cannot be used
for design purposes.

The losses can be computed by means of equation (17).
A sample computation will be shown using the data for run
185. For an air velocity of 500 feet per minute, Kent
(1936, p. 3:30) shows h = 6 for tubes and h = 3 for smooth
It would be expected, therefore, that h

plane surfaces.

would be approximately 4 for Fin No. 1. TUsing this value,

we have:

ry = 2370 = 0,188 inches ro = 0.661 inches

= 9.07 inch~%l units

B=\/12_=\/2x4
Kx 003x0027x12
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K = .03 (B'T'U°%(ft) (McAdams, 1933, p. 316)
(hr) (££°) (°F)

Bry = 1.71 Brg = 6.0

@3 = 115° F

4Tl he4rs Il(BI‘o )Kl(BI'i) - Kl(BI’o)Il(BI'i)

Q= :
B Io(Bry)Kq (Bry) + Ko(Bri)Iq(Bre)

= 4Tx 4 x 115 x 0.188 _61.34 x 0.1853-.001340 x 1.208
9.07 x 144 1.876 x .001340+0.1478 x 61.34

= 0.832 x 1.255 = 1.05 B.T.U./hr.

Similar computations were made for other values of r,,
and the results are shown on Fig. 13. It will be noted that
the increase in the heat loss is small if ro- is larger than
0.45 inches. Therefore this value will be taken as defin-
ing the area of fin around the heating element from which
the heat loss is important. From run 185, we have

Q = 1.757 B.T.U./nr.

AAt = .0504 ft2 OF.

Then the actual heat transfer through the disc, assuming as
8 first approximation that h for the fiber 1s 4, is
Qp = 1.757 = 1.05 = 0.71 B.T.U./hr.
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and
Lo _ 071 _ B.T.U.
AAt | .0504 ) (nr) (££%) (°F)

If we assume that the area from which the heat loss 1s
important remains the same for different values of h over
the range to be considered, other values of h may be used
to obtain the heat loss. When the h computed as above
checks the assumed h, we may assume the value used to be
correct. Following this procedure, we have

Assumed h Heat Loss Computed h

8.0 1.40 7.1
7.0 1.322 8.6

Evidently the correct value of h under these conditions is
between 7 and 8.

It may be seen, therefore, that the losses Into the
fiver fin were of great importance, and the reason for the
incorrectness of the data 1s apparent. Theoretically, all
of the data could be corrected by the above procedure.
Actually, the procedure is excessively complicated and
tedious; also, the correction is only an approximtion.

The fact that the losses were large does not,'hawevef,
nullify the value of Fig. 12 in showing the effect of fin
spacing on h. For when it was found experimentally that at

a given velocity and for a constant value of heat input to
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the element the fin temperature remained constant with
changes in fin spacing, then it was concluded that h
actually was constant under these conditions. That 1s,
while the data showing the variation in h was distorted

due to losses, the data showing h to be constant meant that
h actually was constant. Unfortumately, only two fin spac~
ings were used. There is, however, no reason to expect
that a maximum or minimum value of h will occur at inter-
medliate spacings, and it 1s belleved that the conclusions
reached are valid.

Figure 8, obtained by cross-plotting from Fig. 12,
shows h plotted as a function of r at a given Reynold's
Number. The fact that the graph is a straight line on log =~
log paper indicates that h can be represented by an equation
of the form

h = er?
at a given Reynold's Number ard for a given angular position.
For the particular conditions shown on Fig. 8, different
constants could be used for the segments from O° to 30°,
from 30° to 90°, from 90° to 150°, and from 150° to 180°
(and for the corresponding segments from 180° to 360°).
It must be emphasized again that, although the data do show
that h can be expressed as a function of r under these con-

ditions, the constants obtained from these graphs are in
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error and cammot be used in equation (11) directly.
CONCLUSIONS

The theoretical and experimental findings are summar-
ized as follows.

The heat transfer coefficient h for a fin may be cor-
related in terms of dimensionless groupings including Nus-
selt 's Number, Reynold's Number, Prandtlt!s Number, and
ratios of dimensions (p. 31).

The general solution of the edquation for heat transfer

2 2
d% ,1 de,1 g% _ n g
Jr? r Or 12 IPZ Kx
whe re
h=Aa(1-bsing D)
2
with +the boundary conditions
r=ry 0 =1r1(d)
r = ro K -3—-3 + he =0

i1s excessively complicated if not unattainable. Assuming
the boundary conditions to be

r =1rq = 91

© ©
i

d

r =ro =0

g

and teking h = cr®, the solution may be obtained (p. 40).
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With the se approximate boundary conditions, and with
the further assumption of h = constant, the resulting
golution (p. 43) 1is relatively simple and convenient to use.

The fin effectiveness factor (p. 44) may be used for
design purposes. The experimental data indicated that the
effect of fin spacing on the factor 1is negligible over the
range of spacings used commercially.

The experimental data show a flow transition occurring
for values of Reynold's Number between 7000 and 9000. This
is the upper limit of the range used commercially, but it
indicates that the slope of the Nusselt's Number versus
Reynold's Number curve must be changed for a Reynold's Num-
ber above 9000. The thlickness of the fin will doubtless
have an effect on the air velocity at which the transition
occurs. For true similarity, the model fin should perhaps
have the same thickness as the prototype. It 1is probable
that the transition range will be different for an actual

fin.

If further tests on the local heat transfer coefficients

on fins are attempted, it 1is suyggested that
l. The whole fin be maintalned at t he same temperature
as the test section. Thils procedure will obviate the losses

which have been seen to exert a large influence on the data.
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2. The model fin be made the same thickness as the

prototype .
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APPENDIX
The Effect of Water Vapor in the Alr

Although this research was intended for applications
in air-conditioning work, the method of attack used was per=-
feetly general and any results obtalned could be used for
all heat transfer problems involving finned surfaces. In
considering air-conditioning work, however, the effect of
the added variable of moisture in the air must be con-
sidered. ‘he problem will be discussed under two main head-
Ings: Case I -=- No Dehumidification; Case II -- Dehumidifi-
cation.

Case I -=- No Dehumidification. Any alr stream contains

a certain amount of molsture. For a given pressure and with
8 fixed welght of molsture in a samp.le of air, there 1s a
definite temperature at which the air becomes saturated

with water vapor, and further removal of heat at that
temperature results in condensation of the moisture. In
commercial colls used for comfort alr-conditioning, at

least a part of the colls are covered with moisture, this
process of condensing water vapor being referred to as de-
humidification of the air. Under Case I, 1t will be assumed
that the initial air conditions and the fin temperatures
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are such that there is no loss of water vapor -~ i.e., de=-
humddificatlion does not occur. It then becomes important
to determine if the presence of moisture in the air has any
effect on the heat transfer coefficient under these
conditions.

The heat transfer coefficient has been set up as a
function of certain variables. Of the groupings obtained
by dimensional analysis, only two are a function of the air
temperature; Reynold's and Prandtl's Numbers. These involve
Cp, H s K, andP s the specific heat, viscosity, thermal
conductivity, and density of the air, respectively. The
variatlon in these quantities will fix the variastion in h
for differing air moisture contents. No additional vari-
gbles will be introduced, and it 1s therefore concluded
that the dimensionless criterlsas already set up will ade-
quately determine the behavior of h when no dehumidification
occurs. It will, however, be necessary to _consider the
effect of water vaepor upon the values of cp, r,( s K, and P .

It is pointed out, also, that there should be some sort
of roughness factor included to allow evaluation of the
effect of different surface finishes. However, most of the
colls used commerciaslly have about the same surface rough-
ness, and it 1ls expected that the experimental results on

one coll may be used for purposes of design, with the




introduction of only a small error.

Case II «= Dehumidification. When dehumidification

occurs, the cooling surface becomes covered with moisture,
and h will obviously be changed from its value for a dry
surface. The moisture may also condense so as to form a
£ilm (referred to in the literature as film condensation)

or to leave irregularly sized drops (dropwise condensation).
It is to be expected that the heat transfer coefficient will

be different for each of these cases.
Computation of the Properties of Humid Ailr

It was necessary to determine cp,'x s P , and K for

the air-water vapor mixtures which were encountered.

Specific Heat cp, Values for the humid specific heat

¢p are tabulated by Goodman (1938). They have been calcu-
lated for a saturated mixture at the dew point by means of

the following formula:

Cp = 0.24 + 0,.45w

where

¢p = B.T.U. per 1b. dry air per©F.
w = lbs. water vapor per 1lb. of dry air.

The first term is recognized as the average value of

the specific heat of dry alr over the temperature range to
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be used (McAdams, 1933, p. 337). The coefficient of the
second term is empirical, and is based upon the Keenan and
Keyes (1936) steam tables. It 1s evidently an average value
of the specific heat of saturated vapor in the lower temper-
ature range. Thus when the dew polnt is selected, the value
of ¢p is fixed, and may be used over the dry bulb tempera-
ture range as an average value.

Densit o Values of the specific volume of dry air,
based on the perfect gas laws, are tabulated by Goodman
(1938). Also, values of a factor by which the specific
volumes of dry alr are to be multiplied to obtain specific
volumes of humid air are glven for various dew point
temperatures. These factors were computed by determining
the partial pressures of air and water vapor for various
mixtures and correcting the speciflc volume of the dry ailr
according to the perfect gas laws.

The density was computed as P = %. .

Absolute Viscositylu . Values of_f,( for dry alr and for
water vapor are given by McAdams (1933, p. 341) and by
Keenan and Keyes (1936, p. 76). ‘Humid air is a solution of
water vapor in air, and its viscosity was computéd on the
assumption that it is an ideal solution, and that viscosity

1s a property which depends only on the number of molecules
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per unit volume of the solute and solvent. This may be
subject to error, but the water vapor is only a small per-
centage of the total weight of solution; furthermore, the
viscosities of air and water vapor are of the same order of

magnitude. Hence the following formula was used:
'_,\mixture = (r./(air) (N air) + (f/\water vapor ) (N w.v.)

where N 1s the mole fraction of the substance.

Thermal Conductivity K. Data on the thermal conducti-

vity of gases and vapors 1s meager, and is probably accurate
within only 7% (McAdams, 1933, p. 323; Keenan and Keyes,
1936, p. 23). K for air is given by McAdams within the

desired temperature limits as:

3
492 + 225 (-T ) 2

K=ZKzo <5 3y225 \202

where

(B.T.U.) (£t)
(££<) (°F) (hr)

T = temperature in OF absolute

Kzz = «0129

Only two values of K for water vapor are given:

Ky15 = 0.0104

K212 = 0.0126

Assuming that K for water vapor varies directly with
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temperature (as is true for ligquid water), the formula is:
Ky.v. =At +B

where A and B are determined from the lkmown values of Kjis
and Koy0, giving:
Ky.,v. = 0000227 & + .0078

where t 1s temperature in OF.

Making the same assumptions as to the nature of this
property and of the solution as in determing r,{ , the
equation becomes:

K mixture = K air N air + Ky,y, Ny.v.

General. In all cases, the total pressure was taken
as 14.7 lbs. per sq. in.; all quantities were computed for
dry buld temperatures from 40° F to 100° F, and for a dew
point range from 30° F to 8CPF.

The unlts used were as follows:

_ £t

v =%es
=ﬁmass

Q ££5

- i _mass
tA (sec)(ft)
(B.T.U.)
(# mass) (°F)

= (B.T.U.)(ft)
(°F) (£62) (sec)

cp=
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Results of Calculations. GCalculations for ’.( showed

that for low moisture contents (Dew Point = 30° F) the vis-
cosity of the mixture was equal to that of the air, to the
number of significant figures shown. Also, the variation
in viscosity with moisture content over a range of dew
points from 30° to 80° F was found to be less than 3%.
Hence, the following values for’A taken for a mixture with
a 50° F dew point were used over the entire experimental
range .
Dry Bulb (°F) 50 60 70 80 90 100 110 120
tA x 109 1.22 1.24 1.26 1.28 1.29 1.30 1.31 1.32
It was also found that K for the mixture differed from
Kgip by & maximum of less than 1%. Values of K, were
used over the entire range of dew~-point temperatures.
Calculations showed that the variation of 9-19{# p
Prandtl's Number, is negligible for a large change in dry
bulb temperatures. The following values were used for a
dry bulb temperature range of 50 to 80° F.

Dew Point (°F) 30 40 50 60 70 80
Prandtl's Number 0.80 0.80 0.81 0.81 0.82 0.83

For a dry bulb temperature range of 80° to 100° F:

Dew Point (°F) 30 40 50 60 7O 80
Prandtl's Number 0.80 0.80 0.80 0.81 0.81 0.82
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Values of the kinematic viscosity 75L~ are plotted
on Fig. 14 for dry bulbs from 40° to 100° F and for dew
points from 30° to 80° F, in 10° F intervals.

In computing experimental data, however, it was found
advisable to compute ? at the average air temperature, and
cp,rA » and K at the mean temperature of the air and the
fin surface (Grimison, 1937). Accordingly, Fig. 14 was not
used in the calculations.

Solution of the Heat Transfer Equation
with h = a2 Function of r

d2 1 Jde
+= =S— =-crle=0

dr2 " r Jr
Let

e =Zair1
Then

n o1l g'l ap2 = 32pi=2 _ oq.pntl - o

" + =@ -cr® 6=Zay 1

Cajy
an+i+2 = (n+i+2)2
Teke 1 = 0O
Ca Ca c2a
a o n+2  _ o

n+2 = ) a = =
(n+3) R 2(n+232' 22(n+2)4
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Take 1 =1 o
Caj Canys C*aq
a B immitice. x B = ——to | -
S (n+5)2 ' "En+d (2n+5)2 (n+5)2(2n+5)2
Crn+2 02r2n+4 03r5n+6 e
@ = & |L # z 2 A 3
(n+2) 2°(n+2) 2° 3°(n+2)
cepln+d c3pdn+7 ..}
+a r + +
1 (n+3)2(2n+5)%° (n+3)2(2n+5)2(3n47)2
Using boundary conditions
=14 @ = 84
r = rg 20 -
gr = 0
2., 2n+4 3., ON+6 -—
r 1+ C ro + C o coo
(n+5)2(2n+5) (n+5)2(2n+5)2(3n+7)
&0 = -2l ntl 2. onts
Cro ~,Co + eee
- n+2 2(n+2)° .
= = a3 (M)
o n+2 2...2n+4
91 =-8.1M1+ .C—r.j:.__z__+ _C_zf_i_T 4 oo
(n+2)° . 2°(n+2)
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2 2n+b 3 3n+7 ]
Cry Cryg
+ aq|ry + + + o
1|: (n+3)2(2n+5)2 (n+5)2(2n+5)2(3n+'7)2
= al(o - MN)
a - _—QL__
1 O-MN
=) n+2 2,2n+4
e = Mo1 1+ el = + % r T +
MN=0O (n+2) 2 (n+2)
) o - C21,2n+5 s 05r5n+'7 "
MN=-O (n+3 )2 (2n+5 )2 (n+3 )2(2n+5 )Y(5n+'7 )—2

To
Q=2/ thA:ZCCB/ e r*l  gap
A 1

I'on+2 - in+2 c (roz (n+)_., 12 (n+2)
+ P
n+2 2(n+2)°

_ M
Q=20 Qo —

Og(ros(n+2) - I.15(n+2)) '] 1 PoDtS - py¥D
22 +3 (n+2)5 -0

C2(1,0:5n+'7 - r15n+2 ) 05(r°4n+9 - 1’14n+9)

(n+5)2(2n+5)2(3n+7) * (n+:5)2(2n+5)2(5n+'7)2(4n+9)
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Comparison of Heat Transfer Equations

From Fig. 8, h = 17.0 (r)~0:2 fop 4): 180°

_17.0 _ _17.0x 12 _ -1
C = = = 225 % .01 — 90 feet unlts
cr® = gop~9°?
1 + 8100 x ,0000461 . 729,000 x .000000315
M= ' 70‘714.6 '7.'7X 2.1X 6-4
90 x 0.109 . 8100 x .00074 . 729,000 x 0.953 x 107’
1.8 2 x 5.80 12 x 18.75
1 + 0.00104 + ,000219 _ 1.0015  _ o 1c0s
= 6.05 + 0.517 + 00031 _ 6.567 = °°
N =1+ 0.0371 + 0.00035 = 1,037
0 = 0.0252 + 0.00026 = 0.0255
0 - MN = .0255 - (0.1523)(1.037) = - 0.1325
_ 0.1523
Q=2x9 x x o [0.15 % (.00304 + .000618 +.0000113)

1
 —————— . 3 .00 00000
01335 (_0001 4 + 0 0 Bﬂ

2x90 x Px 05 (.00521)




70

For the sake of comparison, let Cp = 2T and 64 = 200°F,
It is only desired to demonstrate that the two equations

give results of the same order of magnitude.

Q=2x90x 27T x 200 [.00521] = 730 B.T.U./hr.
Equation (17), with h equal to a constant which 1s the
arithmetic mean of the maximum and minimum values of the

variable h, yields

_ 4TTh 64 ry |:11(BI'O)Kl(Bri)‘Kl(Bro)Il(Bri)

B I,(Brs)K;y (Brg)+Kq (Bra) Iy (Brg)
Let h = 22
Then
B J/ 22 x 12 _ 10.85 feet™l units
225 x Ol
Q 47T x 22 x 200 x 0252 (0.68)

10.85

870 B.T.U./hr.
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