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INTRODUCTION 

Air-conditioning requires apparatus for transferring 

heat to or from the air. A commonly used type of heat 

exchanger consists of rows of tubes carrying the refrigerant 

or heating agent. Air flowing perpendicular to the tubes 

is thus cooled or heated. Such units are referred to as 

cross-flow heat exchangers. 

The evaluation or prediction of the performance of 

these units is fundamentally a problem in heat transfer. 

For the case of heating air, heat must pass from the heat- 

ing agent through the metal pipe and to the air. It is 

known that most of the temperature drop between the steam 

and the pipe wall occurs across a thin film of the steam 

adjacent to the metal. Similarly, a thin air film is the 

controlling resistance to heat flow on the outside of the 

pipe. The conductivity of the air film is much less than 

that of the steam film, so that it is desirable to increase 

the heat flow area on the air side. For this purpose, metal 

fins are placed on the outside of the pipes. While the fins 

increase the capacity of the heat exchanger, they complicate 

the design of such units appreciably. 

The original purpose of this investigation was to set 
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up a rational design procedure for cross-flow heat ex- 

changers employing finned tubes with particular reference 

to that type of heat exchanger used in air-conditioning 

work. It was found advisable, however, to limit the inves- 

tigation to a study of the phenomenon of heat transfer 

from the fin surfaces to air being heated. 

In order to solve the problem of establishing a 

rational design procedure for cross flow heat exchangers 

it appeared advisable to proceed as follows: 

1. Obtain an expression for the temperature at any 

point on the fin, considering conduction of heat in the fin 

and energy transfer by convection to or from the fin surface. 

2. Obtain an expression for the temperature at any 

point on the surface of a circular pipe bearing fins, con- 

sidering conduction to or from the cooling or heating fluid 

inside the pipe, and through the fluid film, the pipe metal, 

and the outside fluid film; also convection in the outside 

fluid mass. 

3. Utilize the above expressions to obtain the rate 

of heat transfer to or from any fin-tube combination, for a 

given refrigerant at any initial temperature and for any 

flow conditions. 

4. Obtain an expression for the rate of heat transfer 

to or from the side walls or headers of the unit. 
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within the air for all rates of supply of heat at the 

boundary of the fin. Then those solutions would be selected 

for which the boundary conditions agree. This fully general 

problem has not been solved (Durand, 1936, p. 229). The 

main difficulty in obtaining an analytical solution lies in 

mathematically expressing the air condition for a given 

velocity of flow and with fixed boundary conditions. Before 

a solution is attempted, the basic flow phenomena should be 

understood. 

There exist in nature two radically different kinds of 

flow, laminar and turbulent. By laminar flow is meant a 

flow in which the fluid moves in laminar layers which do not 

mix. For such flow the path of a particle of fluid can be 

defined mathematically. In turbulent flow, on the other 

hand, there is turbulent mixing of the fluid, so that the 

particles move in random and unpredictable paths which can- 

not be defined mathematically. 

The criterion of transition from laminar to turbulent 

flow, for geometrically similar systems and for a given 

initial turbulence, is the Reynold's Number. Its value at 

the transition point is the critical Reynold's Number. 

The critical Reynold's Number is decreased if the initial 

turbulence is increased. In fact, there is a functional 

relation between the critical Reynold's Number and the 

initial turbulence. 
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Both types of flow may occur, and may exist simul- 

taneously in different parts of a given field of flow. This 

makes the problem of obtaining expressions for quantities 

such as the total heat transfer a complicated one. To 

avoid the complications that arise when an attempt is made 

to study heat transfer in the presence of both laminar and 

turbulent flow it is usual to treat the theory of heat 

transfer for turbulent flow apart from that for laminar 

flow. 

In commercial heat exchangers, the air is usually 

turbulent, and it is for this type of flow that an analyti- 

cal expression would be exceedingly useful. Attempts to 

establish such a formula have been made by Reynolds, 

Stanton, Boussinesq, G. I. Taylor, Prandtl, von Karman and 

others, but without satisfactory results. 

The flow of air over a finned tube is a three dimen- 

sional problem. It was, however, expected that the vari- 

ation in the local heat transfer coefficient on the fin 

would have the same pattern as the local heat transfer 

coefficient on a cylinder, particularly at points close to 

the cylinder. Accordingly, it was considered advisable to 

investigate the flow over a cylinder in some detail. 

The nature of the flow about a cylinder depends on the 

value of the Reynold's Number R = 0 where Vo = speed 
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of the fluid stream at a distance from the cylinder, D = 

the diameter and n) = the kinematic viscosity. The various 

types of flair may be tabulated as follows: 

R = 1 The fluid closes in completely behind the 
cylinder and flow is everywhere laminar. 

R = 3 Stationary eddies develop behind the 
cylinder. As R increases the eddies move 
away from the cylinder and become unstable, 

R = 100 Eddies form periodically in the wake, 
arranging themselves in the Kaman vortex 
street. Over the forward part of the 
cylinder, the flow is still laminar; it 
dOes not close in behind the cylinder, 
however, but separates from the surface. 
There is some evidence that the flaw re- 
mains of a laminar character for some 
distance beyond the separation point be- 
fore eddying motion develops. 

R = 30,000 Flow remains laminar up to the point of 
separation but becomes turbulent almost 
immediately afterward. 

R = 200,000 Flow becomes turbulent before separation 
and the process of separation is delayed, 
the drag coefficient falling rapidly. 
For 30,0004;114:200,000, the drag is con- 
stant; the speed just outside the boundary 
layer increases from zero at the upstream 
stagnation point to a maximum of about 
1.55 times the speed of the approaching 
stream, the boundary layer accordingly 
being subjected to a pressure gradient in 
the direction of flow. Dryden (Durand, 
1936, p. 277) mentions that the pressure 
drop reduces the thickness of the boundary 
layer very materially except near the 
stagnation point, and hence, as shown by 
experiment, increases the skin friction 
by a factor of two or more as compared 
with that on a thin flat plate set paral- 
lel to the flow. Evidently, the increased 
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velocity gradient gives a higher shearing 
stress, and thus a higher skin friction 
in the case of the tube. 

When the angle , as defined on Fig. 1, becomes about 

709, the flow separates from the surface. Immediately be- 

hind this point of separation the air near the surface is 

moving in a direction opposite to that of the main stream. 

The process of separation is described in the follow- 

ing way. The particles near the wall are dragged along by 

the friction of the neighboring faster moving particles but 

are retarded by the pressure. As the layer thickens, the 

retarding force predominates and this finally causes a 

reversal of the flow near the surface. The reversal of 

flow causes an amount of stagnant fluid to accumulate at 

the boundary with the result that the actual path of flow 

recedes from the surface. When the Reynold's Number is in- 

creased above about 200,000, the flow in the boundary layer 

is eddying before separation, and the point of separation 

advances to a larger CI) . In the eddying flow there is a 

more thorough mixing of the particles of air, and the driv- 

ing action of the outer air on the fluid near the surface 

is greater. Hence the fluid near the surface can proceed 

farther against the pressure gradient. Dryden (Durand, 

1936, p. 279) states that the exact mechanism of flow at 

separation is not known. Even in this case, then, the 
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condition of the air cannot be expressed mathematically. 

This general picture applies to a cylinder with its 

outer surface at constant temperature. Dryden (Durand, 

1936, p. 278) states that studies of the heat transfer from 

a heated strip on a cylinder as a function of are "of 

interest" -- but "they give no information on the local 

rate of transfer of heat from a cylinder whose entire outer 

surface is maintained at constant terperature". In view of 

other results this statement appears too strong. Elias 

(1931) found that the change in speed of air at any point 

in its passage over a skin friction plate did not exceed 

2 or 3% for a temperature rise of about 35° C and that the 

point of transition from laminar to turbulent flow was 

practically unaffected. It seems. reasonable, therefore, to 

expect that the flow characteristics would not be affected 

if the heated strip were not at too high a temperature 

relative to the air temperature. Although the variation in 

temperature over the cylinder undoubtedly has some effect 

on the flow, since a change of temperature causes a change 

in H , the results should closely approximate those for iso- 

thermal conditions, particularly if the temperature varia- 

tion is small (say less than 95° F, or 35° C) and the heated 

strip is thin. 
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The possibility of using the analogy between heat 

transfer and fluid friction (McAdams, 1933, p. 158) was con- 

sidered in attempting to obtain an analytical solution to 

the problem. The problem of heat transfer from surfaces is 

closely related to skin friction and boundary layer theory 

(Biermann and Pinkel, 1934). The same mechanism that trans- 

fers heat through a boundary layer also transfers momentum. 

Dryden (Durand, 1936, p. 259) showed, however, that the 

analogy was not universally applicable. He demonstrated 

that it was valid only for the case of flow near a skin 

friction plate of a fluid for which Prandtl's Number was 

equal to one. The analogy will not hold, therefore, when 

separation occurs, as in the case of flow at right angles 

to a circular cylinder. 

As is usual in engineering practice when theory is not 

sufficiently developed, it was found necessary to resort to 

dimensional analysis. Previous investigators have used 

this method of analysis to correlate experimental deter- 

minations of the average heat transfer coefficient for a fin 

as a function of air velocity. 

The general equation for the surface coefficient in 

forced convection, derived by dimensional analysis, is: 

hp n m 
(1) 

1-k K 

where h = film coefficient. 
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D = linear dimension 

V = velocity of flow 

00, cp, K refer to fluid properties - density, 
specific heat, absolute viscosity, and thermal 
conductivity. 

= proportionality constant 

n and m = experimentally determined constants. 

For the forced convection of air, with moderate ranges 

of temperature, Prandtl's Number 
C-P.4& 

and likewise AC- 
K t4 

may be considered constant (Tuve, 1934). Then 

BGn 
h 

where 

G = VA = mass velocity 

B = constant (experimental) 

n = constant (experimental) 

Numerous investigators have employed this formula in 

correlating experimental data. Some of the results are 

reproduced in Table 1, arranged by Tuve and McKeeman (1934). 

Similar data are shown by King and Knaus (1934). It 

will be noted that the only dimension included in these 

expressions is that of the tube diameter. It is obvious 

that other fin dimensions, such as spacing and thickness 

and ratio of air side to refrigerant side areas will affect 

the expression for h. The velocity distribution and the 
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Table 1. Showing empirical expressions for the heat 
transfer coefficient h in B.T.U./(hr)(ft)(°F) 

Heat Transfer 
Coefficient 
for Heating 

Air at 100° F 
with Pipe 
Diameter of 
1 inch and 
Velocities 
Indicated 

Investi- Appli- V = 500 V = 1500 
Formula gators cations f.P.M. f.P.M. 

0 8 
1. h = .0035 Nusselt, 

DC Josses 
Royds, 
Campbell 

G0.69 
2. h = .0183 Reiher, 

D0.31 Carrier 
and 
Busey, 
Rietschel 

3. h = .033 D0.56 0.44 

G 0 ' 51 
4. h = .061 

DO49 

Hughes, 
Reiher, 
Vornehm, 
Gibson 

T. E. 
Schmidt 

Flow 
inside 
3/4" 
to 1" 
smooth 
pipes 

Flow over 
several 
rows 5/8" 
to 1 1/4" 
smooth 
tubes, 
staggered 

Flow over 
single 
tubes or 
pipes, 
1/4" to 
2" 0.D. 

Flow over 
6 rows 7" 
0.D. fin 
tubes, 2" 
fins, 15 
per foot 

2.6 

7.8 

6.7 

6.4 

16.8 

13.3 

9.0 15.7 
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temperature gradients between tube surfaces and fin sections 

will change for different ratios of these significant dimen-i 

sions. 

Tuve.and McKeeman (1934) recommend the following 

approximate expressions: 

1. Large plain tubes, staggered 
arrangement or with flow 
disturbers 

G"7 h= .022 
DIN '3 

2. Common large fin tubes, 
staggered arrangement or with h = 
flow disturbers 

3. Small tubes with large fins, 
or small plain tubes widely 
spaced; smooth air flow 

G0.6 
.04 

Dv(11 

GO5 h = .05 

Due to the difficulty of obtaining the effect of such 

variables as fin dimensions, air velocity, turbulence, etc. 

on the air side, and the necessity for working with similar 

variables on the refrigerant side, it has been found more 

convenient to use overall coefficients based on air side 

surface area and a log mean temperature difference between 

air and refrigerant. A large amount of experimental data 

have been compiled on this basis (Tuve, 1934). The overall 

coefficient is plotted as a function of the velocity, viz. 

u = ov n (3) 

The only justification for this procedure is that it 

actually gives a straight line on log - log paper for most 

of the common cases of dry-coil heat transfer. 
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Much of the design work on finned tube heat-exchangers 

has been carried out by the use of the above formula. The 

desirability for experimental checks on the performance of 

any particular design employing this approximate relation- 

ship is apparent. 

The usual design procedure has been to employ values of 

h obtained experimentally on similar equipment, and to use 

some simple step-by-step integration to obtain the heat 

transfer in the fin (Swart, 1938). Mathematical expressions 

for the heat flow by conduction in the fin had been worked 

out using various approximations (Harper and Brown, 1923), 

but designers seemed reluctant to avail themselves of the 

rather involved solutions. Recently, a relatively exact 

solution was obtained by Murray (1938), the most serious 

assumption being that the heat transfer coefficient was con- 

stant over the fin., He also derived a dimensionless effec- 

tiveness factor, defined as the ratio of the heat trans- 

ferred by a given fin to the heat which would be transferred 

by the pipe area under the fin if the fin were removed. 

This factor could be obtained directly from a chart for 

given values of the heat transfer coefficient and for fixed 

fin dimensions. It enables one to determine the effect that 

adding a given size of fin has on the heat transfer from a 

fin-tube combination. As fins are added to a tube, however, 
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the fin spacing changes, and with it the value of the heat 

transfer coefficient. It is of importance, therefore, to 

determine if the coefficient is sufficiently constant to 

justify the use of the effectiveness factor'. 

The review of literature bearing on the problem con- 

vinced the writer that a satisfactory method of solution 

required a more accurate treatment of the heat flow in a 

fin than was at present available. This involved a know- 

ledge of the variation in the heat transfer coefficient 

over the fin surface at various temperatures and for differ- 

ent velocities of flow and fin spacings. Previous investi- 

gators (Blarmann and Finkel, 1934) concluded that the value 

of the local heat transfer coefficient varies mainly with 

the air velocity and fin spacing, the effect of the other 

fin dimensions being small. It was decided to investigate 

the variation in the local heat transfer coefficient with 

air velocity and fin spacing, and equipment was constructed 

for that purpose. 

Furthermore, the data obtained were used in an attempt 

to develop an expression for the heat transfer from a fin. 

The other parts of the original problem were not considered. 

1 Personal communication from R. H. Norris, General Electric 
Co., Schenectady, N. Y. 
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MATERIAL AND METHODS 

It was desired to obtain an experimental expression for 

the heat transfer coefficient, h, as a function of air 

velocity and fin spacing, with air conditions in the range 

encountered in air-conditioning practice. 

If the air velocity were constant over the surface of 

the fin, then the temperature A would be the same at every 

point on the fin which was at the same radius - i.e., cir- 

cular isothermals would be formed. In the actual case, how- 

ever, if two elements of surface at equal radii are con- 

sidered, the heat transfer coefficient h may not be the same 

for each element. For the element with the lower h, the 

surface temperature will be the higher, and the set of iso- 

thermals will be distorted from the circular pattern. But 

the radial heat flow rate will also change, due to the 

change in the temperature gradient between the element and 

the heat source at the base of the fin. It is not correct, 

therefore, to consider the deviation of the isothermals from 

the circular pattern as a measure of the change in h alone. 

If the temperature at the tube wall did not vary with 

angular position, it would be possible to determine the 

total heat flow rate from the fin. Then dividing this total 

heat rate by the total area, one would obtain an average 
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rate of heat flow per unit area. The fin could be divided 

up into a number of small areas, the average temperature 

for each area determined, and h thus computed for each area. 

In the actual case, however, the values of h thus found 

would be in error by an amount which depends on the varia- 

tion in the temperature at the tube wall. 

It was decided to construct a fin of a type of fiber 

board available in the Woodworking Laboratories. All fins 

used were 7 inches in diameter and approximately 0.3 inch 

thick, and were mounted on a 2.25-inch outside diameter 

iron pipe. A hollow copper disc was made by punching thin 

copper sheeting into the form of cups, 3/8 inch in outside 

diameter and about 0.15 inch deep. Two of these cups, when 

placed together, formed a hollow copper disc. One of these 

discs was placed in each fin at a certain radius, different 

for each fin. The disc faces were flush with the fin sides. 

Figure 1 shows the details of the experimental fin. A 

length of number 23 "Comet" (nickel alloy) resistance wire 

was coiled and placed between thin mica sheets inside the 

copper disc, to act as a heating element. Potential leads 

were soldered to the resistance wire, and all leads were 

brought out of the heating element through the inside of 

the fiber fin, into the pipe, and through the pipe to the 

outside. A Weston Ammeter, with a scale from 0 to 3 amperes 

and a least count of 0.05 ampere, and a Jewell voltmeter 
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with a scale from 0 to 3 volts and a least count of .05 

volts, were used to measure the power input to the heating 

element. The power input was varied from 0.24 to 0.73 

watts during the course of the tests. 

Number 28 gauge copper and constantan wires were 

peened into the copper as thermocouples and were insulated 

from the heating element circuit. A copper sheet was placed 

between the heating element and the thermocouple leads in 

order to avoid direct radiation on the hot junction. The 

calibration curve for the thermocouples is shown in Fig. 2. 

In all tests, the cold junction was kept at 32° F. The 

Leeds and Northrup potentiometer used to measure the thermal 

electromotive forces had a least count of .01 millivolt 

(corresponding to about 0.5° F temperature difference) in 

the range from 0 to 2 millivolts, and a least count of 

0.1 millivolt on the high scale reading from 0 to 20 milli- 

volts. Readings could be duplicated on the low scale to 

.002 millivolt. 

With all leads passing from the heating disc on the in- 

side of the fin and then through the inside of the pipe, no 

wires were left in the airstream. The faces of the heating 

disc were ground down flush with the fin faces, and all fins 

were given approximately the same surface finish. One fin 

containing a heating element was placed at the center of the 
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pipe, and a movable dummy fin with no heating element was 

placed on each side of this central fin. The spacing could 

thus be set at any desired value. It was realized that all 

of the energy released in the heater element would not pass 

to the air through the faces of the heater disc. There was 

radial heat flow into the fiber fins as well as radiation 

losses. Radial conduction introduced by far the larger 

error and was difficult to evaluate (Discussion, p. 47). 

The radiation losses were minimized by polishing the copper 

surfaces to give a high reflectivity. The upper limits to 

the radiation loss can be computed by considering the heat- 

ing disc as radiating to a black body. 

q =0(1 (Fs Al (T14 - T24) (4) 

where 

q = heat transfer rate (B.T.U./hr.) 

di = absorptivity of disc 

= 17.3 x 10 -10 
B.T.U. 

(ft2)(hr)(0F absolute) 

Al = disc surface area (ft2) 

Ti = disc temperature (°F absolute) 

T2 = temperature of surroundings (°F absolute) 

Assuming di = .03 (McAdams, 1933, p. 45), Ti = 620°F 
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absolute and T2 = 520° F absolute, the loss is .00175 watts, 

or about 0.4% of the input. This is, of course, negligible. 

The fin tube assembly was set at the throat of a small 

wind tunnel. The whole assembly could be rotated from 0 to 

180° (as defined on Fig. 1), the angle being set by means 

of a protractor and a pointer lined up with the heating disc 

on the fin. A traverse was made of only half of the fin 

because of the existence of a plane of symmetry passing 

through the 0 and 180 degree points (Biermann and Pinkel, 

1934). All leads were brought out to a small switchboard 

on the outside of the wind tunnel. 

The air speed was varied by means of rheostats in the 

armature and field circuits of the direct current motor 

which was belted to the propeller. A small dynamo with a 

linear voltage-speed characteristic was belted to the motor 

shaft, and leads were passed from its terminals to a volt- 

meter. By checking the voltmeter readings against the air 

velocities measured by a vane anemometer placed at the 

throat in the center of the wind tunnel cross-section, a 

calibration curve for the air speed as a function of the 

voltmeter reading was obtained and plotted on Fig. 3. The 

air velocity was varied from 150 to 1250 feet per minute. 

Figures 4, 5, 6, and 7 show the details of the experimental 

equipment. 
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It was desirable that the turbulence of the wind tunnel 

and the velocity distribution across the tunnel throat be 

known. The turbulence could be obtained from sphere tests 

(Durand, 1936, p. 263) except that the necessary scale 

balance was not available. The velocity distribution could 

be obtained by the use of an instrument measuring velocities 

at a point or over a small area, such as some form of hot 

wire anemometer. This latter instrument was not available, 

but a pitot tube was made according to N.A.C.A. specifica- 

tions and used in the tunnel. Unfortunately, a manometer 

with a least count of .01 inch of water was the only one 

available. This corresponded to a velocity of about 300 

feet per minute. The variations in velocity were less than 

300 feet per minute over the greater part of the cross sec- 

tion of the throat, as no movement of the manometer could 

be discerned. 

Three different fins, referred to in the following as 

Fin No. 1, Fin No. 2, and Fin No. 3, were used in the tests, 

with heating discs set at radii of 2.32, 1.44, and 3.50 

inches respectively, measured from the center of the pipe. 

With each fin tested, two spacings of 0.5 and 1.0 inch were 

used. The spacings were measured from center to center of 

the fins. 

Air temperature was measured by two thermometers, each 

with a least count of 0.10 F. One thermometer was placed 



EXPLANATION OF PLATE I 

Fig. 4. General arrangement of apparatus. 

Fig. 5. View showing the position of the fins 
in the wind tunnel. 
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EXPLANATION OF PLATE II 

Fig. 6. Close-up view of the fins in the 
wind tunnel. 

Fig. 7. View showing the position of the 
vane anemometer in the entrance 
section of the tunnel for air 
velocity measurements. 
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PLATE II 

Fig . 6 

Fig. 7 
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about 5 feet in front of the wind tunnel, the other directly 

in the outlet air stream. These thermometers checked with- 

in one degree at all times, the difference being ascribed to 

radiation from the room lights. The thermometer in the air- 

stream was shielded from radiation, and its reading was 

taken as the air temperature. 

Sample calculations for a typical run follow. 

(1) (2) (3) (4) (5) (6) 

134 1210 1.747 107.1 88.4 18.7 

(7) (8) (9) (10) (11) (12) 

97.8 .0364 0.497 1.695 46.6 60° 

(13) (14) (15) (16) (17) (18) 

0.50 750 70° 3.96 13.15 6.12 

(19) (20) (21) (22) (23) 

.0702 84.9 1.30 1.443 20.4 

Columns (1), (2), (3), (5), (9), (12), (13), (14) are 

experimental data. The column headings and units employed 

above are as follaffs: 

(1) Run number 

(2) Air flow (ft. per min.) 

(3) Average thermocouple reading (millivolts) 
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(4) Disc temperature (°F) 

(5) Air temperature (°F) 

(6) Temperature difference, air and disc (°F) 

(7) Mean temperature, air and disc (°F) 

(8) Heater area x temperature difference (ft2 x °F) 

(9) Watts input 

(10) Rate of heat transfer (B.T.U./hr.) 

(11) Heat transfer coefficient "h" 
((hr)(ft2)(0F) 

(12) Angle 4) (degrees) 

(13) Spacing S (inches) 

(14) Wet bulb air temperature (°F) 

(15) Dew point of air (°F) 

(B.T.U.)(ft) 
(16) Thermal conductivity of air "K" x 106 (- 

ft2 °F Sec 

Pipe Diameter ((hr)(ft2)(°F)) 

B.T.U. 

K B.T.U. 

(18) Nusselt's Number "hD" x 10-2 -- dimensionless 
K 

(19) Mass density of air "e" (lb. mass/ft5) 

(20) Air velocity x0 
(mlaftg5 
Vb. mass)) 

(21) Absolute air viscosity r x 105 
mass 

(22) D x 10-4 
ft2sec 

V 
# mass 

(23) Reynold's Number VD-e- x 10-3 -- dimensionless 
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Column (3) is referred to as an average thermocouple 

reading since the temperature was not exactly the same on 

each side of the heating element. The difference varied 

from zero to a maximum of 7° P. As can be seen from the 

sample tabulation of data, the watts input to the heater 

was converted to B.T.U. per hour and divided by the area of 

the heating element times the temperature difference between 

the heating disc and the air, to obtain the heat transfer 

coefficient h. The physical properties of air (density, 

thermal conductivity, absolute viscosity, and specific heat) 

were obtained from the sources and in the manner described 

in the Appendix. The density was evaluated at air tempera- 

ture, while the other properties were taken at a temperature 

defined as the mean of the heating disc and air tempera- 

tures. This procedure has been found to give the most satis- 

factory correlation of data (Grimison, 1937; Boelter, 1937). 

Since the data were found to be in error, none of the 

computations based on the experimental data were included 

in this thesis, but have been filed with the department of 

mechanical engineering, Kansas State College of Agriculture 

and Applied Science. 
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THEORY AND RESULTS 

Dimensional Analysis 

The use of h in convection problems arises from the 

concept of a thermally resistant film at the surface of the 

convecting material, across which the entire temperature 

drop between the surface and the air mass is assumed to 

occur. The heat transfer across the film is by conduction. 

Heat is removed at the air side of the film by a process of 

mass transfer. Air adjacent to the film absorbs the energy 

passing through the film. As a result the temperature of 

this air rises. This air, in turn, is supplanted by fresh 

air at the same original temperature, and the process is 

repeated. Comparison of the equations for conduction and 

convection shows that h may be defined as K /l, where K is 

the thermal conductivity of the air and 1 is the length (in 

the direction of heat floor) of the air film. h is therefore 

dependent upon the state of the air only. If it changes 

with a change in the rate of heat flow q, it does so only 

insofar as q affects the temperature, and hence the values 

of K and 1 of the air film. This is the fundamental assump- 

tion made in setting up h as a function of dimensionless 

criteria which do not include q or the temperature of the 
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convecting material. Thus, 

h = F (V, D, S, W, T, Cp, , K, O , r, rOp) 

where 

V = air velocity 

D = pipe diameter 

3 = distance between fins 

W = fin diameter 

T = fin thickness 

Cp = specific beat of air at constant pressure 

IA = absolute viscosity of air 

K = thermal conductivity of air 

= density of air 

= coordinates of a point on the fin surface (in 

consistent units) 

h = Va Db se wd Te cpf 4g ih ek pi (rqc 

Four units will be used: M, L, T, 

Where 

Mh= mass 

T = time 

L = distance 

0 = temperature difference 

M L a b c de ytmgm LtL k 
= 17) L L L L -2-I I i 

T 411/ kT-4 
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(1) a+b+c+d+e+2f-g+h-3i+j+k=0 
(2) g+h+i=1 
(3) a + 2f + g + 3h = 3 

(4) f + h = 1 

Solve for all exponents in terms of c, d, e, f, and i. 

h = 1 - f 

g=l-f+i=1 
f = f - i 

a = 3 - 3h - g - 2f = 3 - 3 + 3f - f + - 2f 
a = 

b=31-1+f+f-i-2f-e-d-c-i 
b=i-e-d-c-1-j-k 
h = Vi Sc Wd Te Cpf f-i Kl-f e ri (re 

4 (-1')M (,T),) ()'-) (] 

where(3 is an unknown function, the form of which must be 

determined by experiment. This is as far as dimensional 

reasoning takes us. However, in this type of problem it 

experimentally that Nus se lt s Number (hp ) 
Kh rn E 

expressed as a constant times Reynold's V.:1-X) 
t'k 

Numbers to some power. The expression 

be written in that way, pending experimental 

has been found 

may usually be 

and Prand tl s 

will therefore 

verification. 

where 

Nu = C (Re)a (Pr)b (00(0T5)e(W 

C, a, b, c, d, e, and f = constants. 

(5) 
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As expected, this analysis indicates that a correlation 

of experimental data can be obtained by use of Nusselt's, 

Reynold's, and Prandtl's Numbers, plus certain ratios of 

linear dimensions, as dimensionless criteria. 

There should also be some sort of a roughness factor 

included above, to allow evaluation of the effect of surface 

finish. As written, the effect of turbulence is not in- 

cluded. That is, if the above correlation is used on two 

different systems, the turbulence conditions must be assumed 

the same for each. 

In general, the accuracy of the relations obtained by 

dimensional analysis depends upon how correctly and how 

completely the pertinent variables have been set down. 

Thus, in writing h as a function of certain variables, we 

are tacitly assuming that these are the only variables 

which affect h. Dimensional analysis shows us how these 

variables must be related, but it says nothing as to how 

complete our assumptions are. 

It will be noted that, in this particular case, it has 

been assumed that free convection is negligible (hence Gras- 

hof's Number does not appear), and that the temperatures 

involved are such that radiation is not important (i.e., h 

is a function of (0 - 0a), and not of 0 and Oa separately). 
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Again, the validity of these assumptions must be determinee 

experimentally. 

The temperature at any point on the fin may similarly 

be expressed in terms of dimensionless numbers. 

where 

= f(A00 h, K, r, r ) 

= difference between fin surface temperature and 
air temperature at any point 

Go= difference between fin base temperature and air 
temperature at any point 

h = surface heat transfer coefficient 

K = thermal conductivity of fin material 

r,O= coordinates of any point on the fin surface 

Four units will be used: M (mass), T (time), L (distance), 

A (temperature difference). 

Let 

A = f (000 h, K, r, (r 4 )) 

= (g)a 
T-A 

)b(1411; (L) 
d(L)e MLA 

1.a-b-c= 1 
2. b + c = 0 

3. -3b - 3c = 0 

4. c+ d + e = 0 

Solving for all exponents in terms of b and e: 

a = 1 c = -b + d = -e 
d + -e -c = -e + b 



34 

Assuming, as before, that 9 is a power function of these 

groups: 

hr) (A = U -0 o K r 

= U (11r-) 

b e 

Go 

where 

(6) 

U, b, e = constants. 

This expression affords a mean of obtaining the 

temperature distribution in a fin if h is known at every 

point. With h known at any value of r and 4), 8 and Go 

could be measured experimentally, and the constants U, b, 

and e determined. The equation would be, in effect, an 

experimental solution of the equation developed later for 

heat transfer in a fin. It is of interest, since the exact 

solution of the mathematical equation has not been obtained. 

Equations of Heat Transfer in a Fin 

Consider a circular metal fin, which is thin enough so 

that the temperature gradient in the direction of the thick- 

ness can be neglected, and a two dimensional solution can be 

considered. The following assumptions are made: 

1. The fin material is homogeneous and isotropic. 
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2. There are no internal heat sources. 

3. There is no temperature gradient across the fin 

width (in the x direction). 

4. The rate of heat transfer from the metal surface to 

the air is proportional to the temperature difference be- 

tween the metal and the air and to h. 

5. The temperature distribution is symmetric with 

respect to the 0 - 1800 plane. 

6. The conductivity coefficient K is constant through- 

out the fin. 

7. The temperature at the fin base (where r = r0) is 

a function of the angle . 

8. The temperature at any point on the fin is indepen- 

dent of time. 

Assumption 5 has been verified experimentally (Schey 

and Rollin, 1934). The other assumptions appear reasonable 

from physical considerations. 

Let 

9 = temperature at any point on fin surface 

Oa = air temperature 

K = thermal conductivity of fin material 

h = convection transfer coefficient 

r and = polar coordinates of a point on the fin 

2x = fin thickness 
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Consider an element of fin volume, (Ar dr). The rate 

of heat flow to and from the element is as follows: 

Conduction into element: 

a 
ql = - K Ar 

(-07) r 

de q2 = Kdr 2x (77.-44T)4) 

Conduction out of element: 

q3 = " KA(r + dr) (r + dr) 

q4 = - K dr a g (a (0)44 

Convection from element: 

q5 = 2h (rdrd4 - Oa) 

Rate of heat flow in = rate of heat flow out (steady 
state) 

c)g a O) 
- K - K Ar f + K Aridr (Tr, dr 2 x 

r+dr 

+K dr 2x = 2h (rdndcp )(9 - Oa) 

+40 

K - dr r) 
(A 2 2 dr + K dr 2x 

2h (rdrd )(Q ea) 



37 

(k c)e dA de a 2G 

07-* r = 717 A d r2 

dA 
A = r d CI) 2x -3-7.= 2x dC) 

a2g 
K 2x d 4) -37:a dr + Krd() 2x TT dr + Kdr 2x 

a 29 d = 2h (rdrd4))(0 ga) d(p2 

+ r 249 1 d 28 hr -ea) 
0/ r2 r c) Kx 

29 a g 1 c) 2E) h (0 0a) (7) r2 c)42 Kx 

which is the desired relationship. 
The air becomes progressively warmer as it passes over 

an actual fin, so that the heat transfer from the trailing 
section should be poorer than for the front section. As an 

approximation, however, in the interests of a solution of 

the equation, the variation in the air temperature over the 

fin surface will be neglected. (ht may then be taken as 

zero, and 9 becomes the fin temperature measured above this 
arbitrary datum. 
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h is not a constant, and it evidently must be expressed 

as a function of the independent variables r and 4) if a 

solution is to be obtained. When air flows perpendicular 

to the tube, a vortical section is set up behind the pipe, 

in which region the heat transfer is less than for a sur- 

face over which a boundary layer exists. 

It would therefore be expected that h would be a mini 

mum near 180°. Reiher (1926) obtained data which would seem 

to favor this distribution. However, measurements made by 

Drew and Ryan (1931) of the average rates of heat transfer 

from longitudinal strips of a cylinder, the walls of which 

were maintained at a constant temperature, showed h to be a 

maximum for 4) = 0° and 180°, while it is a minimum at about 

4) = 90°. The surface from of = 180° to = 360° gave 

similar results. These data were checked by Lohrisch 

(McAdams, 1933, p. 214) with a different experimental tech- 

nique. The experiments made by the writer gave distribu- 

tions which conformed more closely with Reiherts results. 

The discrepancy has not been explained, although it was 

mentioned by Drew and Ryan. The results of the experimental 

work done in connection with this thesis will therefore be 

used, and the heat transfer coefficient will be written as 

h = Ar (1 - b sing 4) (8). 

where A and b = constants . 
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The solution of equation (7) with this value for h sub- 

stituted could not be obtained in the time available. It is 

doubtful that it can be obtained in terms of known func- 

tions2. A method of approximations was also attempted, and 

it failed in this case. 

The next possibility considered was to express h as a 

function of r only. This held with fair accuracy over 

small segments of the fin. The fin could be considered as 

split up into several segments, over each of which a differ- 

ent functional relationship between h and r might be assumed 

to hold. The heat transfer for each segment could be ob- 

tained, and the results added to give the total heat trans- 

fer. It was found experimentally (Fig. 8) that h could be 

expressed as a power function of r. 

With this assumption, the equation for heat transfer 

in the fin becomes 

a29 e 
a r2 r a r 

ern _ - 0 (9) 

The solution could not be obtained in terms of known 

functions, but a series expression was found. The details 

of the solution are shown in the Appendix. 

2 Personal communication from Professor C. H. Morrey, Mathe- 
matics Department, University of California, Berkeley. 
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MA ern+2 c2r2(n +2) c3r3(n +2) 
= 1+ 

MN - 0 (n +2)2 2 + 
(n+2)4 22.32(1+2)6 + 

91 2 r 2n+5 e 3 r 3n+7 
r+ + [ 

MN -0 (n +3)2(2n +5)2 (n+3)2(2n+5)2(3n+7)2 

Then 

and 

dQ = 2h A dA 

+ (10) 

( m r 
on+2 ran+2 o(r 2(n+2)_ri2(n+2) 

Q. = 204) Ai - J. + o 
MN-0 n+2 2(n+2)3 

02(r03(n+2) ri3(n+2) ron+3 - ri n+3 
+.. 

22 3(n+2)5 MN-0 n+3 

o3n+7 
ri3n+7) o2 (ro4n+9 ri4n+9) ..](11) 

(n+3)2(2n+5)2(3n+7) (n+3)2(2n+5)2(3n+7)2(4n+9) 

where 

ro = outer fin radius 
ri = inner fin radius 
M11,0 = constants defined as follows: 
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M= 

c 2 
r 

2(n+2) 
1 + 

o c 3 ro 3(n+2) 

(n+3)2(2n+5) (n+3)2(2n+5)2(3n+7) 

cro c 
n+1 2 ro c 2n+3 3 ro 3n+5 

n+2 2(n+2)3 22 .3(n+2)5 

+ 

crin+2 c2ri2(n+2) c3ri3(n+2) 
N = 1 + + 

(n+2)2 22(n+2)4 2232(n+2)6 

2 2n+5 3 3n+7 c ri c ri 0=ri+ 
(n+3)2(2n+5)2 (n+3)2(2n+5)2(3n+7)2 

+ 

If h is considered constant over the fin, the equation 

for heat transfer is simpler still. 
The general equation for heat transfer by conduction is 

(Boelter, 1937): 

V cp t - K A28 + W 

where 

= specific weight of conducting material 

cp = specific heat of conducting material 

t =time 

W = heat flow per unit volume due to an internal source 
or sink 

A2A = the Laplacian operator. 
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For steady state conditions, the equation as applied to 

a fin reduces to 

where 

K (329 1 ae) 1 h e =0 
ccp r rp X 

he x = w 
Clearing terms, we have 

c) 29 c) h 9 = 0 (13) 
T17 r cr; Kx 

Let B2 - 
- KX 

The solution of equation (13) is (Gray, Matthews, and 

MacRobert, 1931, p. 161) 

where 

= Al I0 (Br) + B1 Ko(Br) (14) 

/0 (Br) = modified Bessel function of the first kind 
and order zero. 

Ko (Br) = modified Bessel function of the second kind 
and order zero. 

Using the boundary conditions 

r = ri A =Ai 

r = ro = 0 

(15) 
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and evaluating the constants Ai and B1, the solution 

becomes 

[ 
0 = 0 

K1 (Bro)I0(Br)+I1(Bro)K0(Br) I 
1. (16) 

Ki(Bro)I0(Bri)+Ko(Bri)Ii(Bro) 

Then the rate of heat transfer is 

Q = 2 f h dA 
A 

and substituting for A from equation (16) we obtain 

411h Ai ri (17) 
Q = 

B Io(Bri)Ki(Bro)+Ko(Bri)Ii(Bro) j 

It will be noted that the expression in brackets is 

dimensionless. When the temperature Ai and coefficient of 

heat transfer h are assumed to be constant, Q becomes a 

function of r only. 

Murray (1938) obtained a solution assuming Ai to be a 

function of The expression was complicated, and he sub- 

stituted 01. = constant into his general expression and ob- 

tained equation (17). Re also pointed out the approximate 

boundary condition (15) abovel which simplifies the solution 

greatly. The actual boundary condition is that all heat 

taken up to the outer edge of the fin by conduction is 

carried away by convection, or mathematically 

K + he = 0 (18) 
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The error introduced by boundary condition (15) depends 

upon the magnitude of gradient at r = ro. If it is small, 

the error is not large. 

Numerical computations with equations (11) and (17) are 

shown in the Appendix. 

Murray also pointed out that a fin effectiveness factor 

may be defined as the ratio of the heat transferred by the 

fin to the heat which would be transferred by the pipe area 

under the fin if the fin were not present. Using equation 

(17) as the expression for the heat transferred by the fin, 

the fin effectiveness n becomes 

n = 
2 I1(Bro)K1(Bri) - 

Bx I1(Bro)K0(Bri) - Kl(Bro)Io(Bri) 

It will be noted that the expression is dimensionless 

and is independent of the temperature at the inner fin 

radius. Murray obtained a solution for the case where the 

temperature at the inner fin radius is not constant, but 

varies with angular position. The fin effectiveness reduced 

to equation (19) for that case also, and he concluded that 

the effectiveness was independent of the temperature distri- 

bution around the inner fin radius. 
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EXPERIMENTAL FINDINGS 

hD Figures 9 and 10 show Nusselt's Number plotted as a 

function of Reynold's Number ne for Fin No. 1. Figures 11 

and 12 are cross-plotted from these and from similar curves 

for the other fins. They show the variation in Nusselt's 

Number, and therefore the approximate variation in the heat 

transfer coefficient, with fin position and fin spacing. 

DISCUSSION 

Figures 9 and 10 indicate that a flow transition occurs 

between Reynold's Numbers of about 6000 and 9000. The 

nature of the transition is not clear. Similar experiments 

have never been attempted, to the writer's knowledge, and 

there is therefore no comment in the literature concerning 

the phenomenon. It is known that the flow over a cylinder 

changes in character at a Reynold's Number of about 30,000, 

while the flow over a skin friction plate changes at a 

Reynold's Number, based on the distance from the leading 

edge, of from 100,000 to 1,000,000 (depending on the initial 

turbulence of the air stream). The fin was not a skin fric- 

tion plate, due to its appreciable thickness. It is likely 

that the transition is more closely related to the thin 

plate phenomenon than to that of flow over a cylinder, 
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particularly since data obtained for the front half of the 

fin shows the save effect. This may be seen from a study 

of Fig. 9 and Fig. 10. 

Figure 12 indicates that the effect of fin spacing is 

negligible over the range of spacings encountered in com- 

mercial work. 

The average values of 
hD 
ir. for the 0.5-inch spacing may 

be expressed as a function of Reynold's Number as follows: 

hD 
Fin No. 1 = 270 (20) 

K 

unn 0.22 hD Fin No. 2 =318(r) (21) 

0.27 
Fin No. 3 hD = 230 (IA (22) 

K 

The effect of fin spacing was found to be small, and 

equations (20), (21), and (22) would be expected to hold 

for all spacings in the commercial range. 

A Reynold's Number greater than 7000 is seldom en- 

countered in air conditiong work (Tuve and Siegel, 1938). 

The values of h are not reported in the literature in terms 

of Nusselt's Number over this range, but are given in the 

form 

h = CVn 
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where C and n are constants. Equations (20), (21), and (22) 

therefore could not be checked directly. It was noted, how- 

ever, that the experimental values of h were from two to 

three times those given in the literature. Also, it was 

known that the slopes of the versus 21,1? lines should be 

approximately 0.55 (McAdams, 1933, p. 233). These facts 

indicated that the loss of heat by radial conduction from 

the heating disc into the fiber fin was far from negligible 

as had been supposed. The results as summarized by 

equations (20), (21), and (22), therefore, cannot be used 

for design purposes. 

The losses can be computed by means of equation (17). 

A sample computation will be shown using the data for run 

185. For an air velocity of 500 feet per minute, Kent 

(1936, p. 3:30) shows h = 6 for tubes and h = 3 for smooth 

plane surfaces. It would be expected, therefore, that h 

would be approximately 4 for Fin No. 1. Using this value, 

we have: 

0.35 ri = = 0.188 inches 
2 

ro = 0.661 inches 

B 

Kx . 

[ITV 2 
03 x 0.27 x 12 
x 4 = 9.07 inch-1 units 
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K = .03 
(B.T.U.) (ft) (McAdams, 1933, p. 316) 
(hr)(ft2)(°F) 

Bri = 1.71 

9i = 115° F 

4Trheiri 
Q. = 

Bro = 6.0 

Ii(Bro)Ki(Bri) - K1(Bro)I1(Bri) 

B Io(Bri)Ki(Bro) + Ko(Bri)Ii(Bro) 

471x 4 x 115 x 0.188 61.34 x 0.1853-.001340 x 1.208 

9.07 x 144 1.876 x .001340+0.1478 x 61.34 

= 0.832 x 1.255 = 1.05 B.T.U./hr. 

Similar computations were made for other values of ro, 

ani the results are shown on Fig. 13. It will be noted that 

the increase in the heat loss is small if ro is larger than 

0.45 inches. Therefore this value will be taken as defin- 

ing the area of fin around the heating element from which 

the heat loss is important. From run 185, we have 

Q = 1.757 B.T.U./hr. 

Aft = .0504 ft? °F. 

Then the actual heat transfer through the disc, assuming as 

a first approximation that h for the fiber is 4, is 

QD = 1.757 - 1.05 = 0.71 B.T.U./hr. 
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and 

QD 0.71 B.T.U. 
h = = = 14.1 - 

Abt .0504 (hr)(ft2)(°F) 

If we assume that the area from which the heat loss is 

important remains the same for different values of h over 

the range to be considered, other values of h may be used 

to obtain the heat loss. When the h computed as above 

checks the assumed h, we may assume the value used to be 

correct. Following this procedure, we have 

Assumed h Heat Loss Computed ...1 
8.0 1.40 7.1 
7.0 1.322 8.6 

Evidently the correct value of h under these conditions is 

between 7 and 8. 

It may be seen, therefore, that the losses into the 

fiber fin were of great importance, and the reason for the 

incorrectness of the data is apparent. Theoretically, all 

of the data could be corrected by the above procedure. 

Actually, the procedure is excessively complicated and 

tedious; also, the correction is only an approximation. 

The fact that the losses were large does not, however, 

nullify the value of Fig. 12 in showing the effect of fin 

spacing on h. For when it was found experimentally that at 

a given velocity and for a constant value of heat input to 
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the element the fin temperature remained constant with 

changes in fin spacing, then it was concluded that h 

actually was constant under these conditions. That is, 

while the data showing the variation in h was distorted 

due to losses, the data showing h to be constant meant that 

h actually was constant. Unfortunately, only two fin spac- 

ings were used. There is, however, no reason to expect 

that a maximum or minimum value of h will occur at inter- 

mediate spacings, and it is believed that the conclusions 

reached are valid. 

Figure 8, obtained by cross-plotting from Fig. 12, 

shows h plotted as a function of r at a given Reynold's 

Number. The fact that the graph is a straight line on log - 

log paper indicates that h can be represented by an equation 

of the form 

h= or 
at a given Reynold's Number and for a given angular position. 

For the particular conditions shown on Fig. 8, different 

constants could be used for the segments from 0° to 30°, 

from 30° to 90°, from 90° to 150°, and from 150° to 180° 

(and for the corresponding segments from 180° to 360°). 

It must be emphasized again that, although the data do show 

that h can be expressed as a function of r under these con- 

ditions, the constants obtained from these graphs are in 
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error and cannot be used in equation (11) directly. 

CONCLUSIONS 

The theoretical and experimental findings are summar- 

ized as follows. 
The heat transfer coefficient h for a fin may be cor- 

related in terms of dimensionless groupings including Nus- 

selt s Number, Reynold's Number, Prandtl's Number, and 

ratios of dimensions (p. 31) . 

The general solution of the equation for heat transfer 

c)2g .1 Jo+ 
dr2 d r r2 

whe re 
h = A(1 - b sin2 ) 

2 

with the boundary conditions 

r = ri 

r = ro 

= h 
11 

a., , 
Kx 

9 = f( 4)) 
de 

K +hA= 0 

is excessively complicated if not unattainable. Assuming 

the boundary conditions to be 

r = ri 

r = ro 
A =Bi 

aA = or 
and taking h = crn, the solution may be obtained (p 40). 
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With these approximate boundary conditions, and with 

the further assumption of h = constant, the resulting 

solution (p. 43) is relatively simple and convenient to use. 

The fin effectiveness factor (p. 44) may be used for 

design purposes. The experimental data indicated that the 

effect of fin spacing on the factor is negligible over the 

range of spacings used commercially. 

The experimental data show a flow transition occurring 

for values of Reynold's Number between 7000 and 9000. This 

is the upper limit of the range used commercially, but it 

indicates that the slope of the Nusselt's Number versus 

Reynold's Number curve must be changed for a Reynold's Num- 

ber above 9000. The thickness of the fin will doubtless 

have an effect on the air velocity at which the transition 

occurs. For true similarity, the model fin should perhaps 

have the same thickness as the prototype. It is probable 

that the transition range will be different for an actual 

fin. 

If further tests on the local heat transfer coefficients 

on fins are attempted, it is suggested that 

1. The whole fin be maintained at the same temperature 

as the test section. This procedure will obviate the losses 

which have been seen to exert a large influence on the data. 



53 

2. The model fin be made the same thickness as the 

prototype. 
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APPENDIX 

The Effect of Water Vapor in the Air 

Although this research was intended for applications 

in air-conditioning work, the method of attack used was per- 

fectly general and any results obtained could be used for 

all heat transfer problems involving finned surfaces. In 

considering air-conditioning work, however, the effect of 

the added variable of moisture in the air must be con- 

sidered. The problem will be discussed under two main head- 

ings: Case I -- No Dehumidification; Case II -- Dehumidifi- 

cation. 

Case I -- No Dehumidification. Any air stream contains 

a certain amount of moisture. For a given pressure and with 

a fixed weight of moisture in a sample of air, there is a 

definite temperature at which the air becomes saturated 

with water vapor, and further removal of heat at that 

temperature results in condensation of the moisture. In 

commercial coils used for comfort air-conditioning, at 

least a part of the coils are covered with moisture, this 

process of condensing water vapor being referred to as de- 

hinuidification of the air. Under Case I, it will be assumed 

that the initial air conditions and the fin temperatures 
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are such that there is no loss of water vapor -- i.e., de- 

huaddification does not occur. It then becomes important 

to determine if the presence of moisture in the air has any 

effect on the heat transfer coefficient under these 

conditions . 

The heat transfer coefficient has been set up as a 

function of certain variables. Of the groupings obtained 

by dimensional analysis, only two are a function of the air 

temperature; Reynold's and Prandtl's Numbers. These involve 

op, K, and F , the specific heat, viscosity, thermal 

conductivity, and density of the air, respectively. The 

variation in these quantities will fix the variation in h 

for differing air moisture contents. No additional vari- 

ables will be introduced, and it is therefore concluded 

that the dimensionless criteria already set up will ade- 

quately determine the behavior of h when no dehumidification 

occurs. It will, however, be necessary to consider the 

effect of water vapor upon the values of cp0tA K, and 

It is pointed out, also, that there should be some sort 

of roughness factor included to allow evaluation of the 

effect of different surface finishes. However, most of the 

coils used commercially have about the same surface rough- 

ness, and it is expected that the experimental results on 

one coil may be used for purposes of design, with the 
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introduction of only a small error. 

Case II -- Dehumidification. When dehumidification 

occurs, the cooling surface becomes covered with moisture, 

and h will obviously be changed from its value for a dry 

surface. The moisture may also condense so as to form a 

film (referred to in the literature as film condensation) 

or to leave irregularly sized drops (dropwise condensation). 

It is to be expected that the heat transfer coefficient will 

be different for each of these cases. 

Computation of the Properties of Humid Air 

It was necessary to determine cp,I.A,p,andRfor 

the air-water vapor mixtures which were eneountered. 

Specific Heat cp . Values for the humid specific heat 

op are tabulated by Goodman (1938). They have been calcu- 

lated for a saturated mixture at the dew point by means of 

the following formula: 

cp = 0.24 + 0.45w 

where 

op = B.T.U. per lb. dry air per0F. 

w = lbs. water vapor per lb. of dry air. 

The first term is recognized as the average value of 

the specific heat of dry air over the temperature range to 
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be used (McAdams 1933, p. 337). The coefficient of the 

second term is empirical, and is based upon.the Keenan and 

Keyes (1936) steam tables. It is evidently an average value 

of the specific heat of saturated vapor in the lower temper- 

ature range. Thus when the dew point is selected, the value 

of cp is fixed, and may be used over the dry bulb tempera- 

ture range as an average value. 

Density? . Values of the specific volume of dry air, 

based on the perfect gas laws, are tabulated by Goodman 

(1938). Also, values of a factor by which the specific 

of dry to be multiplied to obtain specific 

volumes of humid air are given for various dew point 

temperatures. These factors were computed by determining 

the partial pressures of air and water vapor for various 

mixtures and correcting the specific volume of the dry air 

according to the perfect gas laws. 

. 1 The density was computed as = 7 . 

Absolute Viscosity) . Values ofilA for dry air and for 

water vapor are given by McAdams (1933, p. 341) and by 

Keenan and Keyes (1936, p. 76). Humid air is a solution of 

water vapor in air, and its viscosity was computed on the 

assumption that it is an Ideal solution, and that viscosity 

is a property which depends only on the number of molecules 
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per unit volume of the solute and solvent. This may be 

subject to error, but the water vapor is only a small per- 

centage of the total weight of solution; furthermore, the 

viscosities of air and water vapor are of the same order of 

magnitude. Hence the following formula was used: 

ftmixture = (flair) (N air) + (pwater vapor) (N w.v.) 

where N is the mole fraction of the substance. 

Thermal Conductivity K. Data on the. thermal conducti- 

vity of gases and vapors is meager, and is probably accurate 

within only 7% (McAdams, 1933, p. 323; Keenan and Keyes, 

1936, p. 23). K for air is given by McAdams within the 

desired temperature limits as: 

where 

3 

492 + 225 ( T 
K = K32 T + 225 492 

(B.T.U.)(ft) K32 = .0129 
(ft2)(°F)(hr) 

T = temperature in 0F absolute 

Only two values of K for water vapor are given: 

K115 = 0.0104 

K212 = 0.0126 

Assuming that K for water vapor varies directly with 
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temperature (as is true for liquid water), the formula is: 

K.v. = At + B 

where A and B are determined from the known values of K115 

and K212, giving: 

Kw.v. = .0000227 t + .0078 

where t is temperature in °F. 

Making the same assumptions as to the nature of this 

property and of the solution as in determing , the 

equation becomes: 

K mixture = K air N air + Kw.v. Nw.v. 

General. In all cases, the total pressure was taken 

as 14.7 lbs. per sq. in.; all quantities were computed for 

dry bulb temperatures from 40° F to 100° F, and for a dew 

point range from 30° F to 80DF. 

The units used were as follows: 

V = ft 
sec 

=# mass 
ft3 

# mass 
(sec)(ft) 

(B.T.U.) 
op - 

(# mass)(°F) 

K (B.T.U.) (ft) 

(°F)(ft2)(sec) 
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Results of Calculations. Calculations for 4 showed 

that for low moisture contents (Dew Point = 30° F) the vis- 

cosity of the mixture was equal to that of the air, to the 

number of significant figures shown. Also, the variation 

in viscosity with moisture content over a range of dew 

points from 30° to 80° F was found to be less than 3%. 

Hence, the following values for IA taken for a mixture with 

a 50° F dew point were used over the entire experimental 

range. 

Dry Bulb (°F) 50 60 70 80 90 100 110 120 

IA 

x 105 1.22 1.24 1.26 1.28 1.29 1.30 1.31 1.32 

It was also found that K for the mixture differed from 

Kair by a maximum of less than 1%. Values of Kair were 

used over the entire range of dew-point temperatures. 

Calculations showed that the variation of 232-0 
K 

Prandtlts Number, is negligible for a large change in dry 

bulb temperatures. The following values were used for a 

dry bulb temperature range of 50 to 80° F. 

Dew Point (°F) 
Prandtl's Number 

For a dry bulb temperature 

Dew Point (°F) 
Prandtl's Number 

30 40 50 60 70 80 
0.80 0.80 0.81 0.81 0.82 0.83 

range of 80° to 100° F: 

30 40 50 60 70 80 
0.80 0.80 0.80 0.81 0.81 0.82 
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Values of the kinematic viscosity P are plotted 
on Fig. 14 for dry bulbs from 40° to 100° F and for dew 

points from 30° to SO° F, in 10° F intervals. 

In computing experimental data, however, it was found 

advisable to compute at the average air temperature, aryl 

Op) and K at the mean temperature of the air and the 

fin surface (Grimison, 1937). Accordingly, Fig. 14 was not 

used in the calculations. 

Let 

Then 

Solution of the Heat Transfer Equation 
with h = a Function of r 

d2e 
+ 

1 d 
Tx-x r dr 

= airs 

- crn = 0 

A" 0°.. ern g - ca irn+1 0 

an+i+2 

Take i = 0 

Cai 

(n+i+2)2 

a = Cao Can+2 C2a0 
n+2 -6-zrz a2n+4 = 

2(n+2)2 2-(n+2) 4 
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Take i = 1 

Cal Can+3 
an+3 = 0 ) a2n+5 

(n+3)" (2n +5)2 (n+3 )2 ( 2n+5 )2 

C2a1 

Orn+2 c2r2n+4 c3r3n+6 
= ao [1 + 

(n+2 )2 22 (n+2 )4 22 32 (n+2 )6 

c2r2n+5 c3r3n+7 
+ al [ r + + 

(n+3 )2 ( 2n+5 (n+3 )2 (2n+5 )2 (3n+7 )2 

Using boundary condit ions 

ao = -al 

11011. 
4100 

r = ri 

r = ro 

9 = 9 

= 0 

r- C 
2 ro2n+4 Car 3n+6 

o 
1 + 

(n+3 )2 (2n+5 ) ( n+3 )2 ( 2n+5 ) 2( 3n+7) 

- al ( M ) 

gi = -al M [ 1 + i + ....----, -- 
(n+2) 22(n+2)4 

C ron+1 C2r02n+3 

n+2 2 ( n+2 )3 

Cr n +2 C 
2 ri 2n+4 

MEM 
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,2 2n+5 3 3n+7 
ri C ri 

+ al [Ei + + 
(n+3 )2 (2n+5 )4 (n+3 )2(2n+5 )2(3n+7 )2 4. 

ai(0 - MN) 

- - 

M91. Crn+2 C 2 r2n+4 
9 = 1 + n 

I 
MN-0 (n+2 )4 22(n+2)4 

- 91. r + 
C 
2 r2n+5 C 3 r 3n+7 [ 

MN-0 ( n+3 )2 (2n+5 )9 
+ 

(n+3 )2 (2n+5 )2 (3n+7 )2 + 

Q = 2/i( 
A 

hi:0d A= 2 C rn+1 dr 

Q = 2C A i M 
re 

+ 

+2 rin+2 C(r02 (nO_ri2(n+Z 

MN-0 n+2 2(n+2)3 

da(r03(n+2) ri3(n+2)) 1 ron+3 - rin+3 
22 3 (n+2 )5 MN-0 n+3 

C 
2 (ro3n+7 ri 3n+2 ) c3 (ro4n+9 ri4n+9) 

(n+3 )2 (2n+5 )2(3n+7 ) (n+3 )2 (2n+5)2(3n+7 )2(4n+9 ) 
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Comparison of Heat Transfer Equations 

From Fig. 8, h = 17.0 (r)-0.2 for 1800 

1Kx 7.0 
225 
17.0 

x 
x 

.01 
12 -1 

C = = 90 feet units 

Cr" = 90r -0.2 

ro = .0625 feet ri = .0252 ft. 

8100 x 1 + .0000461 729,000 x .000000313 + 

M = 7.7 x 4.6 7.7 x 2.1 x 6.4 
90 x 0.109 8100 x .00074 + 729,000 x 0.953 x 10-7 

1.8 2 x 5.80 12 x 18.75 

1 + 0.00104 + .000219 1.0013 
- 6.05 + 0.517 + .00031 6.567 = 0.1523 

N = 1 + 0.0371 + 0.00035 = 1.037 

0 = 0.0252 + 0.00026 = 0.0255 

0 - MN = .0255 - (0.1523)(1.037) = - 0.1325 

x 9 Q = 2 x 90 x (1) 
0.1523 

( 00304 + .000618 +.0000113) i 0.13 5 

- 1 
0.1325 (.000134 + .000000008d 

= 2 x 90 x ()x Ai (.00321) 
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For the sake of comparison, let CI) = 211 and Ai = 200°F. 

It is only desired to demonstrate that the two equations 

give results of the same order of magnitude. 

Q = 2 x 90 x 27T x 200 [.00321] = 730 B.T.U./hr. 

Equation (17), with h equal to a constant which is the 

arithmetic mean of the maximum and minimum values of the 

variable h, yields 

Oh Al ri Il(Bro)Ki(Bri)-Kl(Bro)Ii(Bri) 
Q - 

B Io(Bri)Ki(Bro)+Ko(Bri)Ii(Bro) 

Let h = 22 

Then 

B 

Bro = 0.733 

22 x 12 = 10.85 feet-1 units 
225 x .01 

Bri = 0.296 

41T x 22 x 200 x .0252 (0.68) 
10.85 

= 870 B.T.U./hr. 
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