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I N T R O D U C T I O N 

The major mining districts of 'Colorado are in the Colorado Mineral Belt, a 

narrow, irregular strip that extends 250 miles southwestward across the 

mountain provinces from near Boulder to the San Juan Mountains (Fig. 1). The 

belt is characterized by the mineralized districts and by porphyritic igneous 

intrusive bodies of Late Cretaceous and Tertiary age. 

In northwest-central Colorado, the Leadville, Alma, Fairplay, Tennessee 

Pass, Oilman, Redcliff, and Aspen mining districts form a mineralized ring 

around the Sawatch Range (Fig. 2). Ore production has come primarily from the 

Leadville Limestone (Mississippian), which is upturned on the flanks of the 

range. In these economic areas, the major controls of mineralization seem to 

be the following: (1) karst solution features, (2) Tertiary igneous and hydro-

thermal activity, (3) sedimentological, stratigraphic, and diagenetic features 

of the Leadville Limestone, and (4) Laramide tectonic activity. The 

mineralization is fairly continuous along the east side of the range, but on 

the west side there are unmineralized gaps. 

The Fulford district, directly opposite the productive Oilman district 

(Fig. 2), is on the west flank of the Sawatch Range within a relatively 

unmineralized area just north and east of the edge of the mineral belt. 

Similarities between the Fulford and Oilman districts include simple homoclinal 

structure of the Paleozoic rocks, presence of Tertiary intrusive bodies, and 

evidence of prospecting and mining activity (economically productive at Oilman, 

minor at Fulford). 

PURPOSE 

These factors helped to identify the Fulford district as a target for a 

geological reconnaissance study of the Leadville Limestone. The goal of the 

study was to compare the Fulford district to areas where economic concentra-



Figure 1. Location of study area in relation to the Colorado Mineral Belt 
and exposed Precambrian basement (showm in red). 
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tions of ore minerals occur in the Leadville Limestone. Also, even though the 

mechanisms of mineralization did operate at least to some extent in the Fulford 

district, they were not effective in depositing economic concentrations of ore 

minerals. A comparison of the Fulford district to areas where economic 

concentrations of ore minerals occur in the Leadville Limestone, with emphasis 

on the previously mentioned ore controls, may provide some explanation for the 

resistance of the Leadville Limestone of the Fulford district to replacement 

mineralization. 

LOCATION AND DESCRIPTION OF STUDY AREA 

The Fulford district is 18 miles southeast of the city of Eagle, Eagle 

County, Colorado, on the northwestern slope of the Sawatch Range in the 

Southern Rocky Mountains physiographic province (Figs. 1 and 2). The area 

studied within the Fulford district is in sections 25, 35, and 36 in T. 6 S., 

R. 83 W., Eagle County, Colorado. 

The study area is between 9,400 feet and 11,000 feet above sea level and 

is beneath timberline. East of the area, in the Precambrian core of the range, 

the topography is characterized by sharp peaks, U-shaped valleys, hanging 

valleys, and cirques. Within the mapped area, which is underlain by Paleozoic 

sedimentary rocks and Pleistocene glacial till, the slopes are more gentle, and 

the valleys are V-shaped and narrower. Outcrops are found mostly on the steep 

sides of the valleys. Below 11,000 feet, the Fulford district is heavily 

forested. Most of the conifers are Engleman spruce (Picea engelmanni), alpine 

fir (Abies lasiocarpa), lodgepole pine (Pinus contorta), and Douglas fir 

(Pseudotsuga taxifolia). Deciduous varieties are aspen (Populus tremuloides) 

and willow (Salix). Areas devoid of timber are so conspicuous that they are 

called parks. 



M E T H O D S O F I N V E S T I G A T I O N 

FIELD METHODS 

Geologic mapping was at a scale of 1:6,000 on base maps prepared by 

enlargement of topographic quadrangle maps; the final map was prepared by 

further photographic enlargement of portions of the Fulford and Crooked Creek 

Pass 7-1/2 minute topographic quadrangle maps of the United States Geological 

Survey. Aerial photographs of approximately 1:21,000 scale were used for field 

location. Where possible, data points were plotted on the photographs and 

transferred by resection to the base map. Sections were measured to the 

nearest tenth of a foot and detailed descriptions (Appendix 1) noted in three 

separate areas. In each area, at least 75 percent of the total Leadville 

Limestone was exposed. Representative samples of each lithology were collect-

ed, and, where the rock contained no macroscopically visible (less than 1 

percent) allochemical component, the rock was classified according to Folk 

(1980, p. 169), otherwise the carbonate classification of Dunham (1962, p. 117) 

was used. Rock colors were taken from Goddard and others (1948) and bedding 

characteristics were described according to McKee and Weir (1953). Rock 

samples for geochemical assay were also collected in areas of mining or 

prospecting activity. 

LABORATORY METHODS 

Forty thin sections were prepared from field samples using standard 

techniques. Each thin section was examined microscopically to identify 

constituent grains (composition), texture, and mineralogy in order to determine 

the sedimentological history. Percentages of the constituents were determined 

by identifying the constituent of each 0.4 by 0.4 mm cell in an approximately 

20 by 20 mm grid drawn on each section. Twelve thin sections were stained 

using a solution of Alizarin Red-S and potassium ferricyanide, as described by 



Lindholm and Finkelman (1972). Staining was used: (1) to distinguish between 

and determine the relative abundance of calcite and dolomite, (2) to 

distinguish between cements where no textural change occurs, and (3) to reveal 

evidence indicative of the environment of precipitation of calcite cements. 

Brief descriptions of thin sections are in Appendix 2 and the data summarized 

in Tables 1, 2, and 3. 

Twenty-eight rock samples collected for geochemical assay were analyzed 

for copper, lead, zinc, silver, and gold by Cone Geochemical of Denver using 

atomic absorption techniques. The results of the analyses are in Table 4. 

R E G I O N A L G E O L O G I C S E T T I N G 

STRATIGRAPHY 

Precambrian Rocks 

The older Precambrian granitoid to gneissic rocks of the Fulford district 

are estimated to be approximately 1700 m.y. old (Gableman, 1949; Tweto and 

Lovering, 1977). These are intruded by granite pegmatite associated with a 

second intrusion of granitic rock 1350 to 1450 m.y. ago (Tweto and Lovering, 

1977; Tweto, 1980c). 

Paleozoic Rocks 

Pre-Pennsylvanian Paleozoic rocks are of special interest as they are the 

main host rocks of the ore deposits in the mining districts of the area. These 

rocks form a sequence approximately 500 feet thick that rests unconformably on 

Precambrian granitic rocks and is overlain by more than 6000 feet of 

Pennsylvanian rocks (Tweto and Lovering, 1977). The Paleozoic formations oc-

curring in the northern Sawatch Range (Fig. 3) are the Sawatch Quartzite and 

Peerless Formation (Cambrian), the Manitou Dolomite (Ordovician), the Chaffee 

Group (Devonian), the Leadville Limestone (Mississippian), the Belden and 

Minturn formations (Pennsylvanian), and the Maroon Formation (Permian). 
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Figure 3. Paleozoic stratigraphy of the northern Sawatch Range 
(After Leuck, 1970, p. 5). 



However, the Minturn and Maroon formations are not present in the study area. 

STRUCTURE 

The Sawatch Range consists largely of Precambrian rocks in the core of a 

huge north-trending anticline 90 miles wide (Fig. 2). On the west flank, the 

Paleozoic sedimentary rocks form dip slopes that dip westward and northwestward 

into a broad syncline (Tweto and Sims, 1963). 

Although the sedimentary rocks of the northern Sawatch Range are broken by 

few faults, the underlying Precambrian rocks are broken by numerous faults and 

shear zones. A major northeast-trending Precambrian shear zone - The Homestake 

Shear Zone - passes beneath the Aspen, Leadville and Oilman districts (Fig. 2) 

and to the southeast of the Fulford district (Tweto and Sims, 1963; Lovering 

and others, 1978). The Homestake Shear Zone and other shear zones of the 

Southern Rocky Mountains form the boundaries for a mosaic of fault blocks 

created by brittle deformation of the Precambrian basement rocks during 

orogenic periods in late Precambrian time. During the Paleozoic and again 

during Laramide orogeny, crustal stress was released by movement along the 

shear zones and faults. (See Weimer, 1980). Accompanying movement during 

Cambrian to Devonian time was the emergence of the Front Range Highland (Ross 

and Tweto, 1980); it and the Sawatch uplift were slightly positive during 

Mississippian time (DeVoto, 1980). 

The present Sawatch Range was created by Laramide orogeny in late 

Campanian time (approximately 72 m.y.b.p.). Also associated with Laramide 

orogeny was igneous activity that was almost entirely restricted to the area of 

the Colorado Mineral Belt. (See Tweto, 1980b). 



P R E - P E R M I A N R O C K S O F 
T H E F U L F O R D A R E A 

The bedrock geology of the Fulford district, the locations of the measured 

sections, and the areas where the rocks were mapped in detail are in Figure 4. 

Prospects, mines, sampling sites and detail of the Leadville Limestone and 

older Paleozoic rocks are in Figures 5 and 6. Detailed descriptions of the 

measured sections are in Appendix 1. 

CAMBRIAN SYSTEM 

The Sawatch Quartzite consists of uniform, medium- to thick-bedded, 

quartzite. The quartzite is very resistant and forms cliffs or ledges in 

stream valleys; however, on dip slopes it breaks down to angular blocks. The 

Sawatch Quartzite constitutes a significant ore zone in the Oilman district, 

though subordinate to the Leadville Limestone. Replacement and fracture or 

cavity-filling ore deposits in the Sawatch supplied most of the gold and a 

large part of the copper produced in the Oilman district (Lovering and others, 

1978). In the Fulford district, the Sawatch Quartzite is approximately 250 

feet thick (Leuck, 1970) and contains gold-copper-quartz veins that accounted 

for much of the early production from the district (Gableman, 1949). 

The Peerless Formation is a series of thin-bedded sandy dolomites, 

dolomitic sandstones, and dolomitic shales. The Peerless is commonly glaucon-

itic and locally ferruginous and chloritic (Tweto and Lovering, 1977). In the 

Fulford district, the Peerless is approximately 35 feet thick (Leuck, 1970) and 

does not contain any ore minerals. 

ORDOVICIAN SYSTEM 

In the Sawatch Range, the Ordovician System is represented by the Manitou 

Dolomite, Harding Sandstone and Fremont Limestone. Of these, the Manitou is 

the most extensive, is 40-60 feet thick, and consists of thin-bedded, sandy 
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dolomite with beds of sandstone and quartzite. Only the Manitou occurs in the 

Fulford district, where it crops out as a dolomite approximately 60 feet thick 

(Leuck, 1970). The Manitou is widespread in the mineral belt south of Oilman 

and is an important host rock for ore deposits at Leadville (Tweto, 1968). 

DEVONIAN SYSTEM 

The Chaffee Formation was first proposed by Kirk (1931) and divided into 

two members, the Parting Quartzite Member and the Dyer Dolomite Member. Later, 

Tweto and Lovering (1977) redefined the Chaffee Formation as the Chaffee Group 

and the Parting Quartzite Member and Dyer Dolomite Member became the Parting 

Formation and Dyer Dolomite, respectively. The Parting Formation consists of 

approximately 50 feet of quartzite and quartzite conglomerate. In the Fulford 

district, the Parting is exposed in the Jackpot Mine where it is approximately 

80 feet thick. The Dyer Dolomite, which is a minor ore host in the Oilman 

district and a major ore host in the Leadville district (Tweto, 1968), is well-

exposed in the three measured sections of the mapped area (Figs. 4, 5, 6, and 

Appendix 1). The rocks of the Dyer Dolomite are uniform throughout the study 

area and consist of thin-bedded, dark-gray to black (N3-N1), dense, brittle, 

micrite. The upper contact of the Dyer Dolomite is marked by the change from 

thin-bedded micrite to the sandstone and breccia of the Oilman Sandstone (Fig. 

7). The entire Dyer Dolomite is well-exposed in Nolan Canyon and is 

approximately 100 feet thick. 

MISSISSIPPIAN SYSTEM 

Emmons (1882) originally used the term "Leadville Limestone" synonymously 

with the term "Blue Limestone" for strata that lie between the Parting 

Quartzite and the Pennsylvanian of central Colorado (Fig. 8). Kirk (1931) 

suggested that the term "Leadville Limestone" be restricted to that portion of 

the original Blue Limestone above the Chaffee Group. The Leadville Limestone 





Figure 5. Outcrop geology of northern Fulford area. 
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Figure 6. Outcrop geology of southern Fulford area. 
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Figure 7. Contact between the thin-bedded micrites of the upper 
Dyer Dolomite "Dd" and the lowermost sandy micrite of the 
Gilman Sandstone Member "Mlg". View is of the south wall of the 
canyon in East Brush Creek. 
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Figure 8. Stratigraphic nomenclature of the Misslssippian Leadville Limestone 
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is of economic interest because it is the principal host rock of ore deposits 

at Oilman, Leadville, and Aspen, and many smaller mining districts in the 

Sawatch and Mosquito ranges. The strata of the Leadville Limestone, as defined 

by Nadeau (1971), may be divided into three members: a basal member consisting 

of quartz sandstone, micrite, dolomicrite, and dolomicrite breccia; a middle 

member consisting of cherty micrite and dolomite; and an upper member 

consisting of thick-bedded allochemical limestone. The three members of the 

Leadville Limestone are readily identified in the field; however, the 

correlation of individual units from one section to another within each member 

is difficult. 

Oilman Sandstone Member 

The basal member of the Leadville Limestone was designated the Oilman 

Sandstone Member by Tweto (1949), and is not an important host rock of ore 

deposits. Throughout the mapped area, the Oilman Sandstone consists of: (1) a 

basal quartz sandstone or sandy dolomicrite, (2) a medial sandy dolomicrite 

breccia, and (3) an upper quartz sandstone or sandy dolomicrite. The member 

contains intense dissolution features near ore bodies (Lovering and others, 

1978), features not observed in the Oilman Sandstone of the Fulford district. 

In all sections, the contact between the Oilman and Redcliff members is 

discordant as the uppermost Oilman units have sandstone-filled scour channels. 

In the mapped area, the Oilman is poorly exposed. The member generally 

weathers to a slope more stable than the other members and so is covered by 

more vegetation. The Oilman is best observed in the section exposed in the 

small canyon of East Brush Creek (Fig. 8). The member is exposed for 1000 feet 

along strike on either side of the creek before being covered by vegetation to 

the north and glacial ground moraine to the south (Fig. 5). In the canyon of 

Nolan Creek, the Oilman is well-exposed in the canyon walls but is less visible 
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on the canyon floor. To the south of Nolan Canyon, the Oilman is exposed only 

in small patches. However, north of the canyon, parts of the member are 

exposed for more than 1000 feet along strike from Nolan Canyon to the Jackpot 

Mine (Fig. 4). The Jackpot Mine exposure is on the hillside that is the north 

wall of a valley modified by a valley glacier that occupied the area of Nolan 

Creek. The south wall of this valley is the ridge that extends west from Craig 

Peak. Nolan Canyon is in the center of this valley (Fig. 4). The entire 

Oilman Member is well exposed in the outcrop above the Jackpot Mine but is 

concealed beneath the heavy forest cover north of the mine. 

East Brush Creek Section.-- In the East Brush Creek section (Table 1 and 

Appendix 1), the basal sandstone is absent and the lower Oilman consists of a 

dark gray (N4), sandy micrite that is 1-9 feet thick and weathers to a 

yellowish gray (5Y8/3). Above the basal unit is a thick-bedded, sandy 

dolomicrite breccia. In this section, the breccia is 5.3 to 8.5 feet thick and 

contains several 1- foot thick sandstone lenses (Fig. 9) that are white to very 

light gray (N9-N7) and laterally are less than 10 feet long. Toward the top of 

the breccia unit, sandstone becomes more abundant and occupies scour channels 

at the Gilman-Redcliff contact. Secondary dolomite also occurs in pods that 

are approximately 5 feet thick, are of different lengths, and are discordant to 

bedding. The pods are most visible in the lower part of the member. 

Nolan Canyon Section.-- In Nolan Canyon (Table 2 and Appendix 1), the 

basal Oilman consists of a 4- to 6- inch thick, dark gray to black (N1-N3), 

dense, calcareous, quartz sandstone. The sandstone was observed only in the 

canyon walls and could not be followed for any mappable distance; however, the 

unit is also exposed on the Craig Peak Ridge (Fig. 5, sample site 14). Above 

the sandstone is a medium-bedded unit composed of interbedded sandy dolomicrite 

and sandy dolomicrite breccia that is 18.4 feet thick and continues north from 

the canyon for approximately 600 feet along strike. On the north side of the 
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Figure 9. Sandstone lens'"ss" of the upper dolomicrite breccia "b" beneath 
the Waxy bed "wb" exposed in East Brush Creek, 
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Figure 10. Lithologic symbols used in Tables 1, 2, and 3. 
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Table 1. Petrographic composition of Leadville Limestone at East Brush Creek, Fulford district. 
Abundances of components reported as volume percent and sizes reported in millimeters. 
FeO determined by staining with potassium ferricyanide as described by Lindholm and 
Finkelman, 1972. 

NJ N) 



Table 2. Petrographic composition of Leadville Limestone at Nolan Canyon, Fulford district. 
Abundances of components reported as volume percent and sizes reported in 
millimeters. FeO determined by staining with potassium ferricyanide as described by 
Lindholm and Finkelman, 1972. 
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canyon, part of the interbedded unit is above a mineralized vein that occurs in 

the upper Dyer Dolomite. That part of the Oilman over the vein has been 

silicified and is a moderate to dark yellowish-brown (10YR6/6), jasperoid, 

chert breccia. The alteration can be followed along strike for approximately 

30 feet north from the canyon and is not more than 10 feet wide on the outcrop. 

Above the interbedded unit is a 4.6 to 6.9 feet thick, dolomitic sandstone that 

is lithologically similar to the sandstone lenses in the East Brush Creek 

section. This unit, on the Craig Peak Ridge south of Nolan Creek, is exposed 

along strike throughout the mapped area north of Nolan Creek. 

Jackpot Mine Section.-- The Oilman Sandstone exposed near the Jackpot Mine 

is similar to that exposed in the East Brush Creek section. In the Jackpot 

section (Table 3 and Appendix 1), the basal Gilman is a thin-bedded, light to 

medium gray (N6-N7), sandy dolomicrite that is 9.8 feet thick and contains 

small (2-5 inches thick) sand lenses. The sandy dolomicrite crops out in the 

hillside above the Jackpot Mine but is not exposed north or south of the area. 

Overlying the sandy dolomicrite is a 7.4 feet thick sandy, dolomicrite 

breccia similar to the breccia of the East Brush Creek section, but containing 

no sandstone lenses. Above the breccia is a sandy dolomicrite that is 9.8 to 

11.5 feet thick and contains small stringers of quartz-sand grains. The 

stringers become lenses at the upper contact of the unit and occupy scour 

channels on the upper Gilman surface. 

Redcliff Member 

The middle member of the Leadville Limestone, the Redcliff Member, named 

for exposures near Redcliff, Colorado, and defined by Nadeau (1971), is the 

most lithologically consistent of the three members, throughout the study area 

consisting almost entirely of micrite and dolomicrite. The basal unit of the 

Redcliff Member rests discordantly on the Gilman Sandstone and consists of a 



Table 3. Petrographic composition of Leadville Limestone at Jackpot Mine, Fulford district. 
Abundances of components reported as volume percent and sizes reported in 
millimeters. FeO determined by staining with potassium ferricyanide as described by 
Llndholm and Finkelman, 1972. 



26 

very fine-grained, dense dolomicrite that has been traced from the White River 

Plateau to the Sangre de Cristo Mountains (Engel and others, 1958; Banks, 19675 

Tweto and Lovering, 1977). This unit is dense even in larger mining districts 

where all associated rocks are altered or replaced due to secondary 

dolomitization. Because of its waxy luster, this unit is referred to as the 

"Waxy bed" (Engel and others, 1958; Banks, 1967; Nadeau, 1971). In the 

mineralized districts, the Redcliff above the Waxy bed consists of fine-grained 

secondary dolomite. However, in the Fulford district, the upper Redcliff is 

undolomitized and unaltered. 

The Redcliff is lithologically very consistent throughout the study area. 

The basal Waxy bed consists of a yellowish-gray (5Y8/1) to medium gray (N6) 

dolomicrite. Above the Waxy bed, the Redcliff is a thick-bedded, medium dark 

to medium light gray (N4-N6) micrite with pelmicrite overlying the micrite in 

one section. The Redcliff also contains abundant nodular and bedded black 

chert. In the mapped area, the Redcliff Member generally forms well-exposed 

cliff faces where it is cut by stream valleys. The lowermost unit of this 

member, the Waxy bed, forms a characteristic hackly, reentrant exposure at the 

base of these cliffs. The Redcliff also forms part of the dip slope on the 

flanks of New York Mountain and Craig Peak. 

In the southern part of the mapped area, the Redcliff is well-exposed 

(Fig. 6). South of East Brush Creek, the Redcliff forms part of the canyon 

wall. North of East Brush Creek, the Redcliff exposure is discontinuous for 

approximately 2300 feet along strike, after which it becomes covered completely 

by vegetation. 

In Nolan Canyon, the Redcliff forms cliff exposures in the canyon wall and 

south of the canyon, the Redcliff is exposed mainly as part of the dip slope 

(Fig. 5). This exposure continues south from the Nolan Canyon section for 

approximately 1500 feet to the Craig Peak Ridge, where the Redcliff forms 
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another cliff exposure. North of Nolan Canyon, the Redcliff is exposed 

discontinuous, as part of the dip slope, throughout most of the area between 

the Nolan Canyon section and the Jackpot Mine section. 

East Brush Creek Section.-- In the East Brush Creek section (Table 1 and 

Appendix 1), the basal Waxy bed is 4.4 to 5.1 feet thick owing to the 

discordant upper and lower contacts. The upper foot of the unit contains 1-

inch thick stringers of bedded chert that extend for approximately 3-4 feet 

laterally. Due to its characteristic reentrant exposure, the Waxy bed is not 

exposed on the surface north or south of the East Brush Creek section. Above 

the Waxy bed in this section, the Redcliff is a 33.4 feet thick, very thick-

bedded micrite. Nodular chert is scattered throughout the unit, the nodules 

resembling grapefruit in size and shape. Above the micrite is a 5.0 to 6.4 

feet thick pelmicrite. 

Nolan Canyon Section.-- In Nolan Canyon (Table 2 and Appendix 1), the Waxy 

bed is exposed only on the south wall of the canyon and is 2.6 to 4.6 feet 

thick. The upper Redcliff there is a 49.2 feet thick, very thick-bedded 

micrite that forms a cliff constituting most of the southern wall of the 

canyon. Unlike the Waxy bed, the upper Redcliff is exposed north and south of 

Nolan Canyon as part of the dip slope. This outcrop occurs at an elevation of 

approximately 10,250 feet on the flank of New York Mountain and is 

approximately 160 feet wide (Fig. 5). 

Jackpot Mine Section.-- At the Jackpot Mine section (Table 3, and Appendix 

1), the Redcliff Member is exposed above the mine on the hillside. There, the 

Waxy bed is 4.1 to 5.6 feet thick. Throughout the Waxy bed are broken layers 

of black chert that are laterally continuous for 3 to 5 feet. The upper 

surface of the Waxy bed exhibits 0.5 to 2 feet of relief. Above the Waxy bed, 

the Redcliff is 47.6 feet thick and consists of micrite. In the upper six 

feet, there are abundant black chert layers that are 3 to 4 inches thick and 
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laterally discontinuous. 

Castle Butte Member 

The uppermost member of the Leadville Limestone is named the Castle Butte 

Member for exposures at Castle Butte on Aspen Mountain (Nadeau, 1971). The 

Castle Butte Member is separated from the Redcliff Member by a brecciated and 

slightly sandy and shaly micrite. The term, "Pink breccia", is used at the 

Oilman Mine to identify this unit, which has been r ' . d e n t i f i e d in many areas of 

the northern Sawatch Range (Banks, 1967; Nadeau, 1971; Jarvis, 1972; DeVoto and 

Maslyn, 1977;), and in the Aspen district, the Pink breccia is the principal 

host rock of Pb-Ag-Zn deposits. In the mining districts on the eastern flank 

of the Sawatch Range, the Castle Butte consists of medium- to coarse-grained, 

re-crystallized dolomite and is the major host rock of the ore deposits. The 

ore deposits are related to solution features, breccia-filled caves, and soil 

zones related to karst topography that developed on top of the Castle Butte 

Member in Late Mississippian time (DeVoto and Maslyn, 1977). 

The Castle Butte Member is lithologically more varied than the Redcliff 

Member. The basic Castle Butte stratigraphy within the study area is as 

follows: (1) a basal, sandy micritic breccia (Pink breccia), (2) a skeletal-

pelletal packstone, (3) a skeletal-oolitic grainstone, and (4) an upper oolitic 

grainstone. Locally, an intraclastic-oolitic facies occurs in the upper Castle 

Butte. 

Near the Fulford Cave (Fig. 6), the Castle Butte (the only member exposed 

north of the cave) has been secondarily altered to a coarsely crystalline 

limestone (marble). This alteration occurs over an area of approximately 3.5 

acres that surrounds a small intrusion of igneous rock. The dike-like 

intrusion is approximately 800 feet long, 150 to 200 feet wide, and consists of 

hornblende latite porphyry (Fig. 6). Other secondary crystalline carbonates 
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occur in the Castle Butte as dolomite pods that replace the limestone. 

The Castle Butte Member is exposed throughout the mapped area in cliff 

exposures and dip slopes. The top of the Castle Butte Member marks a distinct 

change in slope along the western flank of New York Mountain as the overlying 

Pennsylvanian sedimentary rocks do not form the resistant dip slopes or cliff 

exposures. The Castle Butte Member forms dip slopes in the southern part of 

the mapped area (Fig. 11). South of East Brush Creek, the Castle Butte outcrop 

is about 250 feet wide and extends south from the creek for approximately 1300 

feet. North of East Brush Creek, on the west flank of Craig Peak, the Castle 

Butte Member outcrop is 250 to 1000 feet wide and extends north for approx-

imately 3000 feet (Fig. 6). The Castle Butte Member is also exposed in the 

canyon wall of East Brush Creek Canyon. 

In Nolan Canyon, the Castle Butte Member forms cliff exposures in the 

canyon wall. South of the canyon for 1000 feet, the member forms dip slopes 

approximately 250 feet wide (Fig. 5). From Nolan Canyon north to the Jackpot 

Mine section, a distance of approximately 1500 feet, the member is discont-

inuously exposed (Fig. 5). From the Jackpot section northward, the Castle 

Butte Member is not exposed due to the forest cover and only the lowermost part 

of the member is exposed in the Jackpot section. 

East Brush Creek Section.-- In the East Brush Creek section (Table 1 and 

Appendix 1), the basal Castle Butte Member, the Pink breccia, consists of 

angular and ellipsoidal clasts of upper Redcliff and lower Castle Butte rock in 

a matrix of sandy and clayey micrite. In the East Brush Creek section, the 

Pink breccia is 10.1-11.8 feet in thickness and is exposed only in the canyon 

wall; it could not be observed on the surface for any mappable distance. Above 

the Pink breccia is 15.3 feet of thick, skeletal-pelletal packstone. Overlying 

the packstone are a skeletal-oolitic grainstone that is 8.2 feet thick, and an 

oolitic grainstone, 21.0 to 22.5 feet thick. The oolitic grainstone forms the 



Figure 11. Oblique aerial view of the southern Fulford area. Shown is the East Brush 
Creek drainage (from upper left to lower center) and the dip slopes formed by 
the upper Leadville Limestone "Ml" and outcrop of the Belden Formation "TPb". 
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majority of the cliff exposure in East Brush Creek and the dip slope in the 

southern part of the mapped area (Figs. 6 and 11). Isolated syringoporid coral 

colonies were observed in each of the three uppermost Castle Butte units at 

East Brush Creek. Secondary dolomite is also in the upper Castle Butte in East 

Brush Creek where it replaces the limestone in pods that are discordant to 

bedding. The pods are approximately six feet wide with a thickness ranging 

from 2 feet to greater than 3 feet. 

Nolan Canyon Section.-- In this section (Table 2 and Appendix 1), the Pink 

breccia is 2.1 to 3.2 feet in thickness, is similar to the Pink breccia of East 

Brush Creek, and forms a small indentation near the top of the cliff exposure. 

Above the Pink breccia is a skeletal-pelletal packstone that is 16.4 feet thick 

in the cliff exposure. The packstone is similar to the paickstone of the East 

Brush Creek section. Overlying the packstone is a skeletal-oolitic grainstone. 

The grainstone ranges in exposed thickness due to the heavy forest cover, but 

is generally between 19.7 and 21.3 feet thick. South of Nolan Canyon the 

grainstone unit grades into an intraclastic-oolitic grainstone that is exposed 

over an area of approximately 1.5 acres between Nolan Canyon and the Craig Peak 

Ridge (Fig. 5). 

Jackpot Mine Section.-- At the Jackpot Mine (Table 3 and Appendix 1), the 

Pink breccia is absent and the Redcliff-Castle Butte contact is marked by an 

abrupt change from micrite to 4.9 feet of skeletal-pelletal packstone. This is 

the same facies as that above the Pink breccia in the Nolan Canyon and the East 

Brush Creek sections. 

MOLAS FORMATION 

The Leadville Limestone was eroded unevenly before deposition of the over-

lying Pennsylvanian sedimentary rocks. Chemical weathering of the limestone 

during this erosional period produced a karst surface and also produced a 

residuum of clay and silt. This layer of regolith, where recognizable as a 
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thin stratigraphic unit, is designated the Molas Formation (Powers, 1969). The 

Molas Formation is not recognizable in the Fulford district except in isolated 

occurrences where sandstone fills channels cut into the upper Castle Butte 

Member, as on the dip slope 250 feet south of East Brush Creek (Fig. 6). 

There, the Molas occurs as a fine-grained, conglomeratic sandstone lens 6.4 

feet thick and approximately 8 feet wide (Fig. 12). 

PENNSYLVANIAN SYSTEM 

Shale and limestone strata above the Leadville Limestone were originally 

called the Weber Shale by Emmons (1882). In 1942, Brill proposed the name. 

Battle Mountain Formation, for the Weber Shale and overlying Maroon Formation. 

He then distinguished the former Weber Shale as the Belden Shale Member of the 

Battle Mountain Formation. The Belden Shale was later designated the Belden 

Formation by Brill (1952). The Belden Formation is poorly exposed in the 

Fulford district. The Belden does not form part of the dip slopes in the area, 

so the lower contact of the formation occurs where the dip slopes of Leadville 

Limestone plunge beneath the surface. The Belden Formation is exposed in pros-

pect pits and in mine dumps in and around Adelaide Park, northwest of Nolan 

Canyon (Fig. 5). The formation is also exposed along East Brush Creek just 

below the beaver pond near Fulford Cave (Fig. 6). Throughout the mapped area, 

the Belden Formation consists of dark gray to black (N3-N1), carbonaceous shale 

in beds 2.5 feet thick, interbedded with 1-foot thick, dense, black (Nl), algal 

micrite, and is estimated to be 250 feet thick. 
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Figure 12. Conglomeratic sandstone of the Molas Formation exposed south 
of East Brush Creek. Fragments are of Leadville Limestone. 
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P E T R O G R A P H Y 
O F T H E 

L E A D V I L L E L I M E S T O N E 

OILMAN SANDSTONE MEMBER 

Basal Sandstone 

The basal sandstone in Nolan Canyon is composed mostly of fine to medium 

sand-sized quartz grains cemented by dolomite and quartz (Table 2 and Appendix 

2). The quartz grains are rounded to well-rounded; a few have been replaced by 

dolomite. Quartz cement occurs as indigenous overgrowths around the rounded 

nuclei, and was probably the early binding cement with dolomite later filling 

the pore spaces. The sandstone also contains less than 0.5 volume percent 

unweathered detrital microcline. 

Sandy Micrite and Sandy Dolomicrite 

The sandy carbonate units of the Oilman Member consist of quartz sand 

grains in fine-grained carbonate (dolomicrite or micrite) matrix. The Jackpot 

Mine and the Nolan Canyon sections of these units are similar petrographically 

(Tables 2 and 3, and Appendix 2), consisting of approximately 45 percent quartz 

sand grains in a dolomicrite matrix. The East Brush Creek section, however, is 

calcitic not dolomitic; the quartz sand grains occur in thin (1-5 ram) stringers 

oriented parallel to bedding. In addition, the East Brush Creek section 

contains approximately 7 percent unweathered, detrital microcline feldspar. A 

few ostracode caripaces were also observed in the units from all sections. 

Sandy Dolomicrite Breccia 

The breccia units are similar petrographically and consist of fragments of 

Dyer Dolomite, chert, dolomicrite, and quartz sand grains, all in a 

dolomicritic matrix (Tables 1, 2, and 3). The breccias also contain 

unweathered microcline feldspar grains that increase in abundance from the 
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Jackpot Mine section to the East Brush Creek section (north to south). The 

abundance of quartz sand grains also increases from north to south (Tables 1, 

2, and 3). 

In the Nolan Canyon Section, parts of the breccia unit have been 

silicified near a mineralized vein. Where silicified, all the fragments are 

composed of chert, but the matrix is coarser-grained chalcedonic quartz and is 

also heavily iron-stained. 

Interbedded Sandstone Lenses and Upper Sandstone 

The interbedded sandstone lenses in the East Brush Creek and Jackpot 

Mine sections and the upper sandstone unit at Nolan Canyon are similar, being 

composed of quartz sand grains, unweathered microcline feldspar, and traces of 

muscovite, cemented by microcrystalline dolomite. An increase in the amount of 

microcline also occurs from north to south as in the lower Oilman units (Tables 

1,2, and 3). 

REDCLIFF MEMBER 

Waxy bed 

The basal Redcliff, the Waxy bed, consists of dense, laminated 

microcrystalline dolomite grains that are approximately .003 mm in diameter. 

Laminae of coarse silt-sized quartz grains occur, although these are not 

abundant (Tables 1, 2, and 3). Although scattered bores occur, generally 

throughout the Fulford district the Waxy bed is a nonfossiliferous, monotonous 

dolomicrite. 

Upper Redcliff 

Above the Waxy bed, the upper Redcliff is composed mostly of 

microcrystalline calcite grains that are less than 0.01 mm with an average size 

of from 0.004 to 0.006 mm. The upper Redcliff is the same throughout the study 
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area except in the East Brush Creek section where the upper six feet are 

pelletal micrite that has been neomorphosed to peloid-bearing crystalline 

limestone (Table 1). This rock consists of densely packed, relict peloids 

composed of equidimensional calcite grains 0.02mm in diameter. Euhedral, 

authigenic quartz crystals also occur in this unit and range from 0.05 to 0.5 

mm in diameter. 

CASTLE BUTTE MEMBER 

Pink Breccia 

The lowermost Castle Butte, the Pink breccia, is composed of fragments of 

Redcliff and Castle Butte rock in a matrix of micrite, quartz-sand, silt, and 

organic matter. The breccia fragments are angular and ellipsoidal, range in 

size from 0.25 cm to more than 2.5 cm, and consist of skeletal-peloidal 

packstone from the overlying Castle Butte Member and micrite from the 

underlying Redcliff Member. The fragments are coated by dark organic material 

and surrounded by a matrix of fine sand- and silt-sized quartz grains. Some 

prismatic calcite cement occurs in voids between the fragments and matrix. 

Skeletal-Peloidal Packstone 

Above the Pink breccia, the Castle Butte Member is a packstone composed of 

pellets and skeletal debris in a micritic matrix. The packstone is similar in 

all three sections of the study area and consists of pellets with crinoid 

columnals, foraminiferal tests, and echinoid fragments as minor components 

(Tables 1, 2, and 3). Interparticle space is occupied by nonferroan micrite 

which has, in the East Brush Creek and Nolan Canyon sections, been partly 

recrystallized to sparry calcite (spar). No pore-filling calcite spar is 

observed in the packstone at the Jackpot Mine section. 
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Skeletal-Oolitic Grainstone 

Above the packstone, the Castle Butte Member is a grainstone containing 

oolites and skeletal debris. The petrographic composition of the grainstone is 

similar throughout the study area, with oolites and crinoid columnals as the 

major framework components, and echinoid fragments, foraminiferal tests, 

ostracode shell fragments, and other skeletal fragments as minor components 

(Tables 1, 2, and 3). 

The grainstone has three types of cement: sparry calcite mosaic, syntaxial 

overgrowths (rim cement) on echinoderm fragments, and drusy calcite crusts on 

particles. Sparry calcite is volumetrically the most abundant pore-filling 

cement, with syntaxial rim cement and drusy crusts the second and least 

abundant, respectively. The cements are similar in both sections where 

oolitic-grainstone occurs (Tables 2, and 3). 

Stained thin sections of the skeletal-oolitic grainstone reveal that all 

framework components and drusy calcite crusts are composed of nonferroan 

calcite. However, a darkening of the stain indicates that all pore-filling 

calcite mosaic cement is ferroan calcite, containing approximately 1.5-2.0 

percent FeO. Even the syntaxial rim cement is ferroan calcite, but the 

echinoderm fragments retain their original nonferroan composition. 

Upper Oolitic Grainstone and Intraclastic-Oolitic Grainstone 

The vertical transition from skeletal-oolitic grainstone to upper 

oolitic grainstone is marked by a decrease in skeletal debris and an associated 

increase in oolites (Tables 1, 2, and 3). The oolites range in size from 0.36 

to 0.80 mm, have nuclei of crinoid fragments, are encrusted by calcite, and 

show little development of radial fabric. The skeletal debris that does occur 

consists of crinoid columnals with syntaxial overgrowths; sparry calcite mosaic 

accounts for most of the pore-filling cement. Staining of thin sections 
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indicates that all framework constituents and drusy calcite crusts are composed 

of nonferroan calcite. However, all pore-filling cement, including syntaxial 

rim cement, is ferroan calcite containing approximately 2 percent FeO. 

The grainstone at Nolan Canyon is different from that at East Brush 

Creek in that at Nolan Canyon it contains intraclasts which compose more than 

half of the rock and range in size from 1.0 mm to more than 2.0 cm (Table 2). 

Within the intraclasts are oolites that are coated with an isopachous rim 

cement of acicular calcite crystals that are 0.065 mm long (Fig. 13). The 

remaining framework of the grainstone is compositionally similar to the oolitic 

grainstone at East Brush Creek, except for the pore-filling cements. In 

addition to sparry calcite mosaic, syntaxial rim cement, and drusy crusts, the 

Nolan Canyon unit contains a cement consisting of calcite crystals 

approximately 0.01 mm long (Fig. 14). The geopetal structure of this cement 

indicates that it is penecontemporaneous with precipitation of mosaic cement 

and postdates precipitation of the drusy crusts. 

Staining indicates that all framework constituents, including the 

intraclasts, are composed of nonferroan calcite. The mosaic of sparry calcite 

cement is mostly ferroan calcite with different percentages of FeO occurring in 

discrete zones. The change in FeO appears to be crystallographically 

controlled because the earliest mosaic cement is nonferroan and shows the 

characteristic dog-tooth shape against pore space (c-axis perpendicular to the 

wall of pore space). The next generation of cement, though optically 

continuous with the first, contains approximately 1.0 to 1.5 percent FeO. The 

FeO content increases, as seen by a darkening of the stain, in discrete zones 

within single crystals toward the center of the pore space, the maximum FeO 

content reaching approximately 2.5 to 3.0 percent (Fig. 15). 
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Figure 13. Photomicrograph of oolites in intraclasts of the intraclastic-
oolltic grainstone exposed at the Nolan Canyon section. Note the 
isopachous rim cement "rc", the drusy calcite crusts "cc", and the 
calcite mosaic cement "mc". Scale is 1 millimeter. 



40 

Figure 14. Photomicrograph of "crystal silt" (see "a" near center of view) 
and syntaxial rim cement "b" in the intraclastic-oolitic grain-
stone exposed at Nolan Canyon. Scale is 1 millimeter. 



Figure 15. Photomicrograph of stained cements in the intraclastic-oolitic 
grainstone exposed at Nolan Canyon. Heavy outline designates crystal 
boundaries. Allochems "a" and early pore-filling cement "b" are iron-free, 
but later generations of cement "c,d" contain progressively more ferroan iron, 
as shown by the darker stain. Scale is 1 millimeter. 
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E C O N O M I C G E O L O G Y 

INTRODUCTION 

The Fulford district was established by prospectors overflowing from the 

Leadville and Aspen districts and owed its short life to small gold-copper-

quartz veins in Precambrian igneous rocks and in overlying Cambrian rocks. 

Small amounts of gold, silver, and copper were also found in Ordovician and 

Devonian rocks and in the Mississippian Leadville Limestone. According to 

Wolle (1949, p. 257), prospectors mined substantial gold just east of the 

Fulford district as early as 1849. However, the first mine was located within 

the Fulford district in 1887. The first issue of the Fulford newspaper, the 

Fulford Signal, published April 14, 1893, gave glorified accounts of many 

discoveries of lead, gold, and silver ore. Several discoveries were in the 

"Blue Lime" (Leadville Limestone). That some production was realized from the 

mines of the district is evidenced by the remains of stamp mills that operated 

in the area. 

MINERALIZATION IN THE FULFORD DISTRICT 

The concentrations of copper, lead and zinc in the Leadville Limestone are 

relatively constant, except in actual ore. Engel and Engel (1957) reported 

concentrations of copper, lead and zinc to be 3, 3, and 10 ppm, respectively, 

and Banks (1967) reported similar values for both the Leadville Limestone and 

the limestone of the Dyer Dolomite. These values are the same for unaltered 

limestone, dolomitized limestone, and limestone near ore (Engel and Engel, 

1957, Banks, 1967). The concentration of these elements is also similar to the 

average concentrations of 4 ppm copper, 9 ppm lead and 20 ppm zinc stated by 

Turekian and Wedepohl (1961) as an average for carbonate rocks. 

The results of geochemical analyses of samples from the Fulford district 

are in Table 4. Samples were collected in and around areas of prospecting and 
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mining activity and visible secondary mineralization; therefore, samples are 

lacking from the middle member where no prospecting, mining activity, or 

secondary mineralization was located. 

In the Fulford district, unaltered, unmineralized Leadville contains 7 ppm 

copper, 1 ppm lead, and 11 ppm zinc (Table 4, sample 11). These values are 

taken as background concentrations in the Leadville Limestone of the Fulford 

area. In the unmineralized samples, the concentration of silver is 1.9 ppm and 

that of gold is less than 0.02 ppm. These values, therefore, are considered as 

background for silver and gold in Leadville Limestone of the Fulford district; 

concentrations significantly greater than background are considered anomalous. 

Several abandoned mine workings and prospect pits in the Belden Formation, 

Leadville Limestone, and Dyer Dolomite are scattered throughout the mapped 

area. The greatest density of prospecting evidence and mining activity occurs 

in the northern part of the map area (Fig. 5); much less activity occurred in 

the southern part of the map area. Only one prospect is within the 1/4-square 

mile southern area shown in Figure 6, whereas 13 prospects or mines are within 

the northern area shown in Figure 5, one-half the area of Figure 6. 

The largest mining operation in the study area was the Jackpot Mine (Fig. 

5, sample site 13). The mine tunnel, on the hill above Nolan Canyon, extends 

eastward into the hillside for approximately 250 feet. The tunnel entrance is 

in the lower Oilman Sandstone near the Mississippian and Devonian contact. The 

tunnel was driven to develop gold-copper ore that occurs in a northwest-

trending vein deposit (Gableman, 1949). The mineralized vein, as exposed in 

the tunnel, cuts through the sedimentary rocks from the Manitou Dolomite to the 

Dyer Dolomite but does not extend into the Leadville Limestone; however. Oilman 

Sandstone exposed near the mine portal contains anomalous quantities of copper 

(29 ppm), lead (28 ppm), and zinc (110 ppm) and slightly anomalous gold (0.26 

ppm). 



Table 4. Concentration of trace metals (in ppm ±10 percent) in samples collected in the Fulford 
district. Samples are located at their approximate stratigraphic position. Analyses 
were by Cone Geochemical of Denver, Colorado. For location of samples see Figures 5 and 6. 

•P-
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Another mine tunnel, approximately 200 feet vertically below the Jackpot 

Mine, was driven into the Castle Butte Member (Fig. 5, sample site 12). The 

tunnel is caved and probably is the Alabama Mine described by Gableman (1949, 

p. 163). He stated that the tunnel extends eastward for approximately 400 feet 

and was driven in an attempt to intersect the Jackpot vein at depth. 

Apparently only a small quantity of mineable ore was found, with the ore 

minerals being gold and chalcopyrite (Gableman, 1949, p. 163). Samples of 

quartzite from the dump contain visible chalcopyrite and malachite, contain 

near background amounts of lead, zinc, silver, and gold, but contain a highly 

anomalous amount of copper (1.3 percent. Table 4, sample 12). No Leadville 

Limestone was observed in the mine dump; however, Leadville Limestone around 

the tunnel portal is fresh and shows no traces of mineralization. 

The prospects in Adelaide Park (Fig. 5 sample sites 1, 2, and 4) are small 

pits approximately 7 feet in diameter, 3 to 4 feet deep, and dug into the algal 

limestone and shale of the Belden Formation. Sample site four contains 

oxidized copper minerals (malachite and azurite) and limonite pseudomorphs 

after chalcopyrite. Sample site three consists of a large prospect pit 

approximately 15 feet in diameter and 6 feet deep. Although located near the 

contact of the Pennsylvanian and Mississippian rocks, the pit contained only 

black shale and algal limestone of the Belden Formation; no traces of 

mineralization were observed. 

Prospects and mines become more concentrated southeast of Adelaide Park 

near Nolan Canyon; one of the few productive mines of the area is at the mouth 

of Nolan Canyon (Fig. 5, sample site 5). The mine consists of a collapsed 

tunnel that was driven northeast along strike of the Leadville Limestone, 

following a narrow, oxidized ore zone. Samples of oxidized, limonitic rock in 

the mine dump contain visible traces of oxidized copper minerals and 

chalcopyrite and contain extremely anomalous concentrations of all metals 
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assayed, especially gold and zinc at 1.20 and 600 ppm, respectively (Table 4, 

sample 5b). However, the Castle Butte Member in outcrop adjacent to the 

mineralized vein contains near background amounts of all metals, as does Castle 

Butte from outcrop above the mine (Table 4, samples 5a and 6). This mine was 

located and described by Gableman (1949) as the Adelaide Mine. The 

Fulford Signal, April 14, 1893, reported that shipments of ore from the 

Adelaide contained 15 oz/ton silver and 15 percent copper. The newspaper 

iTeport made no mention of gold; however, Gableman (1949, p. 162) mentioned gold 

and chalcopyrite as the most abundant ore minerals. 

Upstream from the Adelaide Mine a small wooden frame marks the entrance to 

another caved tunnel (Fig. 5 sample site 7). The tunnel apparently runs due 

east from its entrance which is in the Oilman Sandstone Member of the Leadville 

Limestone. Probably, the tunnel was driven to intersect any vein that might 

have been responsible for the silicified Gilman breccia, as the projection of 

the tunnel would pass directly beneath the outcrop of the silicified breccia. 

According to Gableman (1949), the tunnel is the Merry Widow Mine; no further 

information about the mine could be obtained. Samples of oxidized, limonitic 

rock from the dump at the mine portal do not contain any visible ore minerals; 

however, they are anomalously high in copper, lead and zinc (93, 47, and 84 ppm 

respectively) and slightly anomalous in gold (0.11 ppm. Table 4, sample 7). 

Farther upstream from the Merry Widow Mine, in the Dyer Dolomite, an area 

of oxidized rock occurs on the north wall of Nolan Canyon below the surface 

outcrop of the silicified Gilman breccia. Amid the oxidized rock on the canyon 

wall is a small prospect (Fig. 5 sample site 8) in the Dyer Dolomite just below 

the contact of the Dyer and Gilman. No visible traces of mineralization are 

present; however, samples of the oxidized outcrop contain values of copper, 

lead, zinc, silver, and gold similar to the anomalously high values of sample 

seven (Table 4, sample 8). 
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On the south wall of Nolan Canyon the rocks show no oxidation or 

alteration. Several small caves are in the cliff exposure of Leadville 

Limestone, and they were reported by the Fulford Signal to contain much sulfide 

mineralization. Examination of the caves, however, did not reveal any mineral-

ization or alteration. 

South of Nolan Canyon (Fig. 5 sample sites 9, 10), two small prospects 

expose limonitic jasperoid rock similar to that exposed in Nolan Canyon. The 

prospects are small pits in the lower Oilman Sandstone, are approximately 3.5 

feet in diameter, and are 2 feet in depth. The only trace of mineralization 

visible in the prospects is limonite pseudomorphs after chalcopyrite, but 

Oilman Sandstone from the prospects is anomalously high in copper, lead, and 

zinc (Table 4, samples 9 and 10). Sample 10 contains higher concentrations of 

these metals than sample 9 and also contains the highest concentration of gold 

(1.27 ppm) of any sample; the silver content of both prospects is near back-

ground . 

Farther south, approximately 500 feet along strike, another prospect in 

the form of a tunnel was driven into the upper Castle Butte Member (Fig. 5, 

sample site 11). The tunnel extends southward approximately 35 feet into the 

outcrop. No mineralization, alteration, or oxidation occurs throughout the 

tunnel, or in the surrounding outcrop. 

At the southern extent of the exposure of Leadville Limestone in the 

northern map area, there are two more small prospects (Fig. 5, sample sites 14a 

and 14b). The prospects are small pits 6 feet in diameter and 3 feet deep. 

The prospect pit at sample site 14a is in the lower Oilman Sandstone, and the 

prospect pit at sample site 14b is in the upper Dyer Dolomite. Neither 

prospect contains traces of mineralization or alteration, and samples of 

outcrop from the prospects contain only background concentrations of the assay 

metals (Table 4, samples 14a and 14b). 
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The single prospect in the southern map area is a tunnel driven into the 

upper Castle Butte Member, on the western flank of Craig Peak near the Fulford 

Cave (Fig. 6, sample site 15). The tunnel is caved and a small dump lies at 

the entrance. The Leadville Limestone around the portal and in the dump is 

unaltered and unmineralized and contains only background quantities of copper, 

lead, zinc, and silver with a slightly anomalous gold concentration of 0.14 ppm 

(Table 4, sample 15). South of the prospect, approximately 200 feet along 

strike, the Leadville Limestone has been contact metamorphosed to a medium- to 

coarse-grained marble by a dike of latite porphyry (Fig. 5, sample site 16). 

No prospects are in the marble or in the porphyry (Fig. 5, sample site 16), and 

no mineralization is visible. The concentration of metals in the metamorphosed 

Leadville Limestone near the igneous intrusion is near background except for a 

slightly anomalous concentration of lead (57 ppm) in the sample nearest the 

intrusion (Table 4, samples 16a, b, c, d). Although no other prospects are in 

the southern mapped area, sphalerite and galena occur in the dolomite pods of 

the Oilman Sandstone Member at East Brush Creek (Fig. 5, sample site 17). 

Also, unaltered micrite nearby contains small veinlets of calcite with visible 

sphalerite and galena. A sample of the mineralized Oilman Sandstone contains 

3700 ppm lead and 1340 ppm zinc (Table 4, sample 17), the highest concentration 

of lead and zinc of any sample. The sample also contains an anomalous amount 

of silver; copper is only slightly above background. 
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D I S C U S S I O N 

ENVIRONMENTS OF DEPOSITION 
AND 

EARLY DIAGENESIS 

Late Mississippian Paleogeography of Central Colorado 

The area roughly coincident with much of the Front Range and Wet 

Mountains was a major emergent area affecting sedimentation during 

Mississippian time (DeVoto, 1980). The Uncompahgre Uplift in southwest 

Colorado also affected sedimentation during parts of Mississippian time 

(Chronic, 1979). The approximate position of the Uncompahgre and Ancestral 

Front Range uplifts in relation to the Fulford, Aspen, Oilman, and Leadville 

districts is shown in Figure 16. 

During Early Mississippian (Kinderhookian) time the sea began 

transgressing from the west over all of Colorado west of the Front Range; the 

Uncompahgre uplift was not emergent until Late Mississippian (Chronic, 1979) 

and was probably covered by Mississippian strata that were eroded prior to 

Pennsylvanian sedimentation (DeVoto, 1980). Vertical uplift of the Uncompahgre 

and Front Range areas accelerated in Late Mississippian as "Colorado rose above 

the sea and became a lowland" on which a karst surface formed (Chronic, 1979, 

p. V6); however, DeVoto (1980, p. 57) pointed out that "local and regional 

tectonic activity" influenced the karst development. 

General Model of 
Deposition in Epeiric Seas 

The seas that spread over the interior of North America at one or more 

times in all of the Paleozoic periods were epeiric seas (seas that spread over 

the central part of continents), as distinguished from the Tertiary seas of the 

Atlantic, Gulf, and Pacific coasts, which were marginal seas (seas that lap up 

on continental margins). Shaw (1964) and Irwin (1965) explained in detail the 
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Figure 16. Sub-Pennsylvanian geology of Colorado. Patterned areas 
outline major uplifts at the end of Mississipplan sedimentation. 
Located are the Leadville "L", Aspen "A", Gilman "G", and 
Fulford "F" mining districts (After DeVoto, 1983). 
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type of sedimentary deposits that would form within a shallow epicontinental 

(epeiric) sea; they emphasized that such seas would have depositional slopes on 

the average of 0.1 to 0.3 feet per mile and would extend seaward for hundreds 

or even thousands of miles. Shaw and Irwin concluded that given such 

widespread, shallow seas with such low depositional slopes, a necessary 

consequence would be the development of different sedimentary environments 

oriented parallel to the strand line. These environments, or zones, of 

sedimentation and the relative energies of each are pictured in Figure 17. 

From the deduced environments, Shaw (1964, p. 30, 31) described the 

general rock types to be deposited laterally from the strand line seaward in an 

epeiric sea: 

1. Bittern salts of various types more 
soluble than sodium chloride. 2. Halite. 
3. Anhydrite or gypsum, or both. 4. Fine-
grained syngenetic dolomite [with or 
without the addition of terrigenous 
clastics]. 5. Fine-grained limestones 
6. Transitional limestones...pellet muds 
common locally. 7. Limestones indicative 
of ...mechanically active environments, 
such as oolitic and foss il- fragmental...rocks 

Because the rock types are deposited laterally to one another, they 

cannot occur in vertical succession without a migration of the depositional 

environments. Therefore, in a transgression the near-shore sediments (1 

through 4, above) will be overlain by offshore sediments and in regression, the 

opposite. 

Leadville Limestone of the Fulford Area 

The carbonate lithologies previously described for the Leadville 

Limestone of the Fulford district occur in a vertical sequence similar to units 

4 through 7 described by Shaw (1964, p. 30, 31). Therefore, the Mississippian 

sequence observed in the Fulford district is interpreted to be the result of 

clear-water (carbonate) deposition in the transgressing Mississippian epeiric 



52 

Figure 17. Theoretical energy zones that may develop in epeiric seas 
(From Matthews, 1974, p. 337). 
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sea. 

The clastic lithologies of the Oilman Member are not discussed 

specifically in the models of Shaw and Irwin; however Shaw (1964, p. 70, 44) 

concluded that an epeiric sea will constantly try to impose the characteristic 

lithologies upon the site of deposition regardless of the amount of terrigenous 

input, and further, that "it would be inevitable to find something [clastic] at 

the base of a [transgressive] section unless the old land had been swept 

completely bare ...". Based on this statement, and the distribution of quartz 

sand grains and microcline in the Oilman Sandstone Member of the Fulford 

district, the Precambrian core of the Sawatch Range must have been at least 

partly exposed during deposition of the Oilman Sandstone and is interpreted to 

be the source for unweathered feldspar. A similar interpretation is made by 

Nadeau (1971, p. 22) for feldspar grains in the Oilman Sandstone of other areas 

in the northern Sawatch Range. The lower Paleozoic quartzites exposed on the 

flanks of the emergent Sawatch Uplift are considered by Nadeau (1972) and 

others (Conley, 1964; Wittstrom, 1979) to have provided the majority of the 

quartz sand grains. In addition, in order to provide a nearby source for the 

increased abundance of unweathered microline in the southern part of the 

Fulford district, the most extensive emergence of the Sawatch area during 

Oilman deposition was probably located south of the Fulford district, toward 

Aspen (Fig. 2). 

The decrease in quartz sand and disappearance of microcline grains in the 

Redcliff Member indicates the complete submergence of the Sawatch Uplift at the 

end of Oilman deposition; the environment of deposition remained located in the 

same shoreward low-energy zone (Fig. 17), as indicated by the continued 

deposition of fine-grained dolomite (Waxy bed). The micrite of the Redcliff 

above the Waxy bed represents the eastward (shoreward) shifting of higher-

energy regimes as transgression continued. The vertical progression from 
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micrite to pelletal micrite to skeletal-pelletal packstone to skeletal-oolitic 

grainstone and finally to oolitic grainstone represents the continued increase 

in depositional energies as the energy zones illustrated in Figure 17 shifted 

eastward (shoreward) during the Mississippian trangression. 

Environments of Cementation 
and 

Stabilization 

The majority of pore-filling cement in the Castle Butte Member is sparry 

calcite mosaic cement with minor syntaxial rim cement and drusy calcite crusts. 

All three types of cement are indicative of precipitation in the freshwater 

zone, either phreatic or vadose (Land, 1970, p. 184; Folk and Land, 1975, p. 

66). In all units of the upper Castle Butte Member (Tables 1, 2, and 3), there 

is an increase in the FeO content of the cement from 0 percent in the early 

drusy and syntaxial cements to as much as 3 percent in the later calcite mosaic 

cement. Neal (1969) concluded that precipitation of ferroan calcite results 

from the influx of ground water when the sediment is in the vadose zone. 

Therefore, the pattern of nonferroan to ferroan calcite cement seen in the 

Castle Butte Member provides further evidence of cementation in the vadose and 

fresh-water phreatic zones. Also, according to Wagner and Matthews (1982) and 

Folk and Land (1975), the form of carbonate usually precipitated in these 

environments is low-Mg calcite, and according to Land (1970), the rate of 

stabilization to low-Mg calcite is extremely fast in these environments. 

Therefore, because the Castle Butte Member is shown to have been cemented in 

these environments, the components were probably stabilized to low-Mg calcite 

and the pore spaces cemented early in the rock's history. 
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KARST ACTIVITY 

The post-Leadville, pre-Belden solution activity was related to uplift of 

the northern Sawatch Range in the Mississippian, and the accompanying retreat 

of the sea across the area (DeVoto, 1980; Tweto, 1980a). Two types of karst 

features resulted from this solution activity: (1) breccia created by 

intrastratal karst solution within the upper Leadville Limestone at or near the 

Redcliff-Castle Butte contact (the Pink breccia), and (2) breccia-filled 

sinkholes, solution-collapse breccias, and other cross-cutting karst features 

extending downward from the upper Leadville surface. The cross-cutting 

features are abundant in some areas (as in the Aspen, Leadville, and Oilman 

districts), whereas in other areas none are observed (as in the Fulford 

district). The occurrence of the Pink breccia in the Fulford district probably 

resulted from bedding-plane solution along the unconformity suggested by Nadeau 

(1972) to exist between the Redcliff Member (Kinderhookian) and the Castle 

Butte Member (Osagean). The occurrence of intrastratal karst and small, 

sandstone-filled scour channels on the upper Castle Butte surface may indicate 

that the Fulford district is marginal to an area of more extensive karst 

activity. In areas of extensive karst activity, paleovalleys developed on the 

Mississippian landscape; DeVoto (1982, 1983) has shown a direct relationship 

between the paleovalleys and major ore districts. The lack of cross-cutting 

karst features in the Fulford district indicates that perhaps, locally, solution 

activity was not effective in solutioning the Leadville Limestone. 

One explanation for the ineffectiveness of solution activity in the 

Fulford area is the lack of permeability for circulation of ground water. As 

suggested earlier, the bulk of the porosity in the upper Leadville Limestone 

was occluded by cementation with low-Mg calcite very early in the rock's 

history. Therefore, the resistance of low-Mg calcite to dissolution (Matthews, 

1968, p. 1110; Bathurst, 1971, p. 425; Al-aasm and Veizer, 1982, p. 1101; and 
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Sibley, 1982, p. 1087) may have been an important factor in preserving the 

Leadville Limestone of the Fulford district. However, conclusive evidence of 

the original composition of the upper Leadville Limestone in the karst areas is 

not available. 

The permeability necessary for fluid circulation and subsequent 

dissolution of carbonate rocks can also be provided by fracture porosity 

(Posada, 1973, p. 60). Posada stated that "differential movement along 

fractures and joints," caused by tidal forces and seasonal and diurnal changes, 

"both inhibits cementation and increases the hydraulic [permeability] of the 

joints." There was no large-scale fracturing of the Leadville Limestone in the 

Fulford district, and, attendantly, cross-cutting solution features were not 

developed. However, in the areas where the development of karst features in 

the Leadville Limestone has been extensive (Leadville, Oilman, and Aspen 

districts), northeasterly-trending fractures and faults in the Leadville 

Limestone developed in response to the reactivation of Precambrian structures 

(Radabough and others, 1968). These fracture systems could have controlled the 

development of cross-cutting karst solution features in those areas. Such 

Precambrian structures are not present beneath the Fulford area (Tweto and 

Sims, 1963). 

Finally, the Front Range Highland was the major positive element 

influencing the northern Sawatch area in the Late Mississippian (Tweto, 1980a). 

The Leadville Limestone of the Leadville and Oilman areas was in close 

proximity to the Front Range Highland (Fig. 16) as the sea began to regress 

late in Mississippian time. The highlands could have acted as a recharge area 

where surface water was collected and directed through fracture porosity down 

the regional dip, with dissolution proceeding outward from the upland region 

and being greatest in and adjacent to the paleo-upland region and decreasing 

downdip. The Fulford district could have been too far from the upland recharge 
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area to have been affected by the solution activity, even if permeable rocks 

were available. Or, the slightly positive Sawatch Uplift may have acted as a 

barrier to the flow of water within the aquifer system from the highland to the 

Fulford district, while not being uplifted enough to act as a freshwater-

recharge area. 

From the preceding discussion it is concluded that karst activity and the 

development of cross-cutting karst features in the Leadville Limestone were 

probably controlled by paleotopography and by reactivation of Precambrian 

structures. Further, if the Fulford district is proximal to a paleovalley 

created by the karst activity, there is the possibility of major ore deposits 

in an area adjacent to the Fulford district. 

SECONDARY DOLOMITIZATION 

As previously noted, secondary dolomitization of the Leadville Limestone 

is rare in the Fulford district. On the eastern flank of the Sawatch Range, 

the Leadville above the Waxy bed has been secondarily dolomitized throughout 

the 40-mile width of the mineral belt (Lovering and others, 1978). According 

to Nadeau (1972) the upper micritic Redcliff Member has been altered to fine-

grained dolomite and the particulate Castle Butte Member altered to coarse-

grained dolomite. Thus, grain-size relations are maintained from primary to 

secondary textures suggesting an early diagenetic origin for the dolomite. The 

secondary dolomite in the Leadville of the Fulford district is all coarsely 

crystalline and occurs in small pods in all members. Since the secondary 

dolomite in the Fulford district does not reflect the grain size of the 

original rock, it formed differently from that of the Leadville-Gilman area. 

Pods of coarsely-crystalline dolomite, similar in size and distribution to 

those of the Fulford area, were reported by Conley (1964) in the Leadville of 

the White River Plateau and suggested by Engel and others (1958) to be of an 
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hydro thermal origin. Therefore, the dolomite pods of the Fulford district were 

probably the result of incipient hydro thermal activity. 

Engel and Engel (1957) and Lovering and others (1978) agreed that the 

secondary dolomite created by early diagenetic action resulted from causes and 

processes other than later mineralization, and that the two events were 

separated in time by at least several million years. Several authors (Posada, 

1973; DeVoto and Maslyn, 1977; DeVoto, 1982) suggested that the secondary 

dolomite was produced by the sujsurface mixing of marine and fresh water, which 

is the "dorag model" of Badiozamani (1973). 

The Leadville Limestone was subaerially exposed next to the Ancestral 

Front Range Highland at the beginning of regression of the Mississippian sea 

(Fig. 16); therefore, freshwater lenses must have developed beneath the exposed 

Leadville Limestone. Such an environment would have also provided a freshwater 

recharge for the karst activity that created the large cross-cutting solution 

features in the Leadville Limestone of the Leadville-Gilman area, and Posada 

(1973) and DeVoto (1982) suggested that the two processes (dolomitization and 

karsting) did occur somewhat concurrently. 

Regression during dorag dolomitization causes the zone of mixing to 

migrate downdip and effect dolomitization as long as regression is slow enough 

to allow sufficient time for dolomitization (Badiozamani, 1973; Sibley, 1980; 

Morrow, 1982a). The above environment of dolomitization would result in an 

increase in dolomitization of updip rocks, that is, as the paleohighland is 

approached (Schmidt, 1965; Sibley, 1980; Morrow, 1982b). The Fulford district 

was down-dip from the Ancestral Front Range Highland (Fig. 16) and may have 

been too distant from the paleohighland to have been affected by the proposed 

dolomitization model. 

From the above discussion, it is concluded that the major control of dorag 

dolomitization in the upper Leadville Limestone was paleotopography, the 



59 

Fulford area being too far downdip from the paleoshoreline to be affected. 

MINERALIZATION AND ECONOMIC GEOLOGY 

In those mining districts of Colorado in which ore production comes 

primarily from replacement deposits in pre-Pennsylvanian Paleozoic sedimentary 

rocks, the Misssissippian Leadville Limestone is the most important ore host. 

A comparison of these districts with the Fulford district should identify 

certain features that occur in the major mining districts, but not in the 

Fulford district, and thereby provide an indication of the controls of 

mineralization in the Leadville Limestone. A comparison among the mining 

districts and the Fulford area in terms of the presence or absence of features 

suggested to be related to replacement mineralization in the Leadville 

Limestone is in Table 5. 

In the Aspen district, ore has come principally from solution features in 

the upper Leadville Limestone, most notably from the Pink breccia and from 

cross-cutting karst features in the oolitic grainstone lithologies of the upper 

Castle Butte Member (Nadeau, 1971; Devoto, 1982). Although the Leadville 

Limestone at Aspen has been affected by Laramide faulting, folding, and 

intrusive activity, Nadeau (1971) suggested that these phenomena only provided 

pathways for mineralizing fluids that entered, and replaced with ore, the 

porous and permeable solution features and grainstone lithologies. Although 

dolomitization is associated with the mineralization at Aspen, an early 

diagenetic (dorag) dolomitization event is not recognized as on the eastern 

flank of the Sawatch Range. The differences and similarities between the Aspen 

and Fulford districts are outlined in Table 5. 

In the Leadville district, the control of ore is clearly related to the 

karst surface on top of the Leadville Limestone and to Tertiary intrusive 

activity (Tweto, 1968). The most extensive and productive ore bodies occur in 



Table 5. Comparison of features related to mineralization, Fulford and other mining 
districts (an "X" indicates presence of feature, data summarized from Tweto, 
1968; Nadeau, 1971; Lovering and others, 1978; and DeVoto, 1982). 
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the upper Leadville Limestone just beneath the Mississippian-Pennsylvanian 

unconformity in what Tweto (1968, p. 710) described as an "interval of porous 

and permeable Leadville". According to Nadeau (1971), although no relict 

textures could be observed, this interval corresponds stratigraphically to 

nearby horizons interpreted to be oolitic and crinoidal grainstone; however, 

there was also development of channelways and breccia zones related to 

limestone dissolution at this horizon (Devoto and Maslyn, 1977). The Leadville 

district has been greatly affected by Laramide or younger intrusive activity 

and by faulting, and although much faulting was post-ore, many faults were also 

active prior to mineralization. Again, as in the Aspen district, faulting and 

intrusive activity appear to have served only as mechanisms for the access of 

mineralizing fluids to porous and permeable horizons. Little similarity exists 

between the Leadville and Fulford districts, as shown by the comparison in 

Table 5. 

In the Oilman district, the long, irregular, pipe-like ore bodies occur in 

northeast-trending, breccia-filled solution features in the Castle Butte Member 

and were obviously controlled by paleokarst activity on the top of the 

Leadville (Lovering and others, 1978). In contrast to the Leadville district, 

the Oilman district contains only a few minor faults; the only intrusive rock 

is a porphyry sill, which is definitely pre-ore (Lovering and others, 1978), in 

the lower Belden Formation. Nadeau (1971) interpreted, from relict textures, 

that the upper Castle Butte near ore zones was composed predominantly of 

grainstone lithologies. As shown in Table 5, the Fulford and Oilman districts 

share many features; however, the most obvious difference is the Precambrian 

shear zone underlying the Oilman area. 

Certain features have been identified that occur in the major mining 

districts but not in the Fulford district (Table 5); these features are large 

cross-cutting karst breccias and Precambrian shear zones underlying the areas. 
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It is suggested that these features were among the major controls of 

replacement mineralization in the Leadville Limestone and that the absence of 

these features in the Fulford district resulted in greatly reduced ore 

mineralization there. 

C O N C L U S I O N S 

From geologic reconnaissance of the Fulford area and examination of the 

Mississsippian Leadville Limestone of the area, the following conclusions are 

reached: 

1. The vertical sequence of lithologies in the Leadville Limestone of the 

Fulford district correlates with the lateral sequence of units deposited in 

shallow, epeiric sea as described by Shaw (1964) and Irwin (1965) and so 

represents deposition by a transgressive, epeiric sea. 

2. The primary pore space in the Castle Butte Member was cemented largely 

with ferroan calcite spar (up to 3 percent FeO) which indicates the influence 

of meteoric water and suggests that cementation occurred in the fresh-water 

phreatic and vadose zones. 

3. The environment of stabilization and cementation of the Castle Butte 

Member suggests that the bulk of the pore-filling cement was deposited as 

ferroan low-Mg calcite. 

4. The Leadville Limestone of the Fulford district was resistant to karst-

solution activity owing to the lack of fracture porosity and permeability and 

to the isolation of the area from an area of fresh-water recharge. Also, the 

stability of the ferroan low-Mg calcite components may have aided in the 

resistance to dissolution. 

5. The upper Leadville Limestone of the Fulford district was not 

dlagenetically dolomitized, as on the eastern flank of the Sawatch Range, due 

to the Fulford area's greater distance from the Ancestral Front Range Highland. 
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6. Although metals were introduced to the Fulford area, and to a small 

degree to the Leadville Limestone, significant replacement mineralization did 

not occur as in the Aspen, Leadville, and Oilman districts. 

7. The lack of replacement mineralization in the Leadville Limestone of 

the Fulford area is related to certain features that occur in the major mining 

districts, but not in the Fulford area; these features are large cross-cutting 

karst features in the Leadville Limestone and shear zones in the Precambrian 

rocks. 

8. If, as suggested by the occurrence of the Pink breccia and sandstone of 

the Molas Formation, there exists an area of more extensive karst development 

near the Fulford district, major replacement mineralization could also exist in 

that area. 
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Section No. 1 
(East Brush Creek Section) 

(Location: Cliff exposures on East Brush Creek approximately 500 feet 
upstream from Fulford Cave campground, exposure on 
southwest side of creek; center of section line, 
sects. 35 and 36, T. 6 S., R. 83 W., Eagle County, Colorado. 
Attitude of beds: NIO E/36 NW.) 

Thickness 
feet meters 

Pennsylvanian Belden Formation: 
Black shale interbedded with one-foot thick, algal 
limestone. 

Mississippian Leadville Limestone: 
Castle Butte Member: 

9. Oolitic grainstone, light to medium light 
gray (N7-N6), thick-bedded; abundant oo-
lites; a few crinoid fragments; forms part 
of cliff exposure and dip slope 21.0-22.5 6.4-6.9 

8. Skeletal-oolitic grainstone, medium light 
gray (N6), thick-bedded; grains include 
crinoid and echinoid fragments, oolites and 
other skeletal debris; single colony of 
syringoporid coral; forms parts of 
cliff exposure and dip slope 8.2 2.5 

7. Skeletal-peloidal grainstone, medium gray 
(N5), thick-bedded; grains include crinoid 
fragments and echinoid spine fragments and 
peloids; single colony of syringoporid 
coral; forms parts of cliff expo-
sure and dip slope 15.3 4.7 

6. Breccia (Pink breccia), medium-bedded; 
angular fragments of units 5 and 7; sandy, 
shaly, micrite matrix; irregular relief on 
upper and lower contacts 10.1-11.8 3.1-3.6 

R e d d iff Member: 
5. Pelletal micrite, medium light gray (N6), 

medium-bedded, highly fractured; abundant 
layered and nodular chert; irregular relief 
on upper contact 5.0-6.4 1.5-2.0 

4. Micrite, medium light to medium dark gray 
(N6-N4), thick-bedded; abundant nodular 
black chert; forms cliff exposure 33.4 10.2 
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3. Dolomlcrite (Waxy bed), yellowish gray (5 Y 
8/11) to medium gray (N6), thick-bedded; 
fragmented layers of chert 1-inch thick 
in upper foot of unit; hackly reentrant 
exposure at base of cliff; upper contact 
has 0.5 to 2.0 feet of relief 4.4-5.1 1.3-1.6 

Oilman Sandstone Member: 
2. Breccia, light to medium light gray (N7-

N6), thick-bedded; angular fragments of 
Dyer Dolomite, Oilman Sandstone, and chert; 
sandy dolomicritic matrix; abundance of 
one-foot thick sandstone lenses, lenses 
more abundant toward upper contact; upper 
contact has relief 5.3-8.5 1.6-2.6 

1. Micrite, medium light gray (N6) fresh, 
yellowish gray (5Y8/3) weathered, medium-
bedded, sandy; fine-grained quartz sand 
occurs in stringers one to two inches thick 1.9 0.6 

Devonian Dyer Dolomite: 
Micrite, dark gray to black (N3-N1), thin-bedded, brittle. 

Section No. 2 
(Nolan Canyon Section) 

(Location: Cliff exposure in canyon of Nolan Creek, 0.4 mi. upstream 
from road at town of Fulford; cliff exposure on south side 
of creek; Nl/2, sect. 25, T. 6 S., R. 83 W., 
Eagle County, Colorado. Attitude of beds: N37 E/ 34 NW.) 

Thickness 
feet meters 

Mississippian Leadville Limestone: 
Castle Butte Member: 

Covered 

8. Skeletal-oolitic grainstone, medium gray 
(N5), thick-bedded; abundance of ooliths 
and crinoid fragments; forms upper part of 
cliff exposure and most of dip slope; upper 
contact covered by forest 19.7-21.3 6.0-6.5 
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7. Skeletal-pelletal packstone, medium light 
gray, (N6), thick-bedded; abundance of 
pellets and crinoid fragments, a few 
echinoid and other skeletal fragments; 
forms part of cliff exposure and dip slope 16.4 5.0 

6. Breccia (Pink breccia), medium-bedded, 
angular fragments of units 5 and 7; sandy 
shaly matrix; forms reentrant exposure in 
cliff; relief on lower contact 2.1-3.2 0.6-1.0 

Redcliff Member: 
5. Micrite, medium to medium dark gray (N5-

N4), thick- to very thick-bedded, nodular 
chert scattered throughout, layered chert 
abundant near top; forms part of cliff expo-
sure and dip slope; numerous caves in cliff 49.2 15.0 

4. Dolomicrite (Waxy bed), medium to medium 
dark gray (N5-N4), medium-to thick-bedded; 
abundance of layers of fragmented black 
chert 1-inch thick; hackly reentrant 
exposure at base of cliff; upper and lower 
contacts exhibit 0.5 to 2.5 feet of 
relief 2.6-4.6 0.8-1.4 

Gilman Sandstone Member: 
3. Sandstone, light to very light gray (N7-

N8), thick-bedded, fine- to medium-grained 
quartz sand grains; dolomitic; relief on 
upper contact 4.6-6.9 1.4-2.1 

2. Sandy dolomicrite, medium dark gray (N4), 
medium-bedded, abundance of sand grains; 
unit is interbedded with sandy dolomicrite 
breccia containing fragments of Dyer 
Dolomite, beds of each approximately 0.3 to 
1.0 feet thick 18.4 5.6 

1. Sandstone, dark gray to black (N3-N1), fine-
to medium-grained quartz sand grains; 
calcareous 0.3-0.5 0.1-0.2 

Devonian Dyer Dolomite: 
Micrite, dark gray (N3), thin-bedded, brittle. 
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Section No. 3 
(Jackpot Mine Section) 

(Location: Cliff exposure on hillside above the Jackpot Mine; 
NWl/4, NEl/4, NEl/4, sect. 25, T. 6 S., R. 83 W., 
Eagle County, Colorado. Attitude of beds; N30 E/42 NW.) 

Thickness 
feet meters 

Mississippian Leadville Limestone: 
Castle Butte Member: 

Covered 

6. Skeletal-pelletal packstone, medium to me-
dium light gray (N5-N6), thick-bedded; 
contains abundance of peloids and crinoid 
fragments with a few echinoid fragments; 
several horn corals weathered in positive 
relief; forms uppermost part of cliff 
exposure 16.4 5.0 

Redcliff Member: 
5. Micrite, light to medium dark gray (N7-N4), 

thick-bedded; abundance of nodular chert 
throughout unit; layered chert 1 to 2 
inches thick in upper 6 feet; forms prom-
inent cliff exposure and part of dip 
slope 47.6 14.5 

4. Dolomicrite (Waxy bed), medium to medium 
dark gray (N7-N4), medium-bedded; fragment-
ed layers of black chert; hackly reentrant 
exposure at base of cliff; varied relief 
on upper and lower contacts 4.1-5.6 1.3-1.7 

Oilman Sandstone Member: 
3. Dolomicrite, light to medium light gray 

(N7-N6), medium-bedded; fine- to medium-sand 
grains of quartz in lenses and stringers 4-
inches thick and up to 3 feet long; upper 
contact has relief with many sandstone 
lenses 9.8-11.5 3.0-3.5 

2. Breccia, light to medium light gray (N7-
N6), thick-bedded; angular fragments of 
Dyer Dolomite and lower Leadville 
Limestone, matrix dolomicrite 
to sandy dolomicrite 7.4 2.3 
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1. Dolomlcrite, light to medium gray (N7-N5), 
thin-bedded; sandy; fine- to medium-sand 
grains of quartz in lenses 2 to 5 inches thick...9.8 3.0 

Devonian Dyer Dolomite: 
Micrite, medium to dark gray (N5-N3), thin-bedded, brittle. 
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P E T R O G R A P H I C D E S C R I P T I O N S 
0 F 

T H I N S E C T I O N S O F 
L E A D V I L L E L I M E S T O N E 

OILMAN SANDSTONE MEMBER 
Sample No. 

Basal Sandstone 
MRX-lC The basal sandstone in Nolan Canyon is composed of fine to 

medium sand-sized quartz grains (0»18 to 0.30 mm) which make up 75 
percent of the rock by volume. The remainder of the rock consists 
of dolomite and quartz cement in a 4 to 1 ratio. The quartz grains 
are mostly single grains with slightly undulose extinction; 
approximately 2 percent of the grains are composite grains. All 
quartz grains are rounded to well-rounded. Dolomite cement replaces 
5 percent of the quartz grains; quartz cement occurs as indigenous 
overgrowths around rounded nuclei. Detrital microcline feldspar 
makes up less than 0.5 percent of the rock. 

Sandy Dolomicrite and Sandy Micrite 
MRX-lA The sandy micrite at East Brush Creek consists of quartz sand 

grains in thin (1 to 5 mm) stringers oriented parallel to bedding and 
separated by micrite. The quartz grains compose 65 percent of the 
rock, are medium sand-sized (0.2 to 0.3 mm), rounded to well-rounded, 
and have slightly undulose extinction. Detrital microcline feldspar 
makes up 7 percent by volume of the rock. Elongate, detrital flakes 
of muscovite mica, approximately 0.09 mm long, occur in the micrite in 
an abundance of 0.5 percent. 

MRX-4C The sandy dolomicrite at Nolan Canyon is composed of 44.7 
percent fine to coarse sand-sized quartz grains (0.18 to 0.60 mm) in a 
matrix of macrocrystalline dolomite (dolomicrite). The majority (73 
percent) of the quartz grains are sub angular to angular and the rest 
are sub rounded to rounded. 

MRX-3B At Jackpot Mine the sandy dolomicrite is composed of 46.9 
percent fine to coarse sand-sized quartz grains (0.15 to 0.70 mm) in a 
dolomicrite matrix. As in the Nolan Canyon unit, 75 percent of the 
quartz grains are angular to sub angular and the rest are sub rounded 
to rounded. 

Sandy Dolomicrite Breccia 
MRX-2A1 The breccia unit at East Brush Creek contains 51.4 percent 

fragments that range in size from less than 1 cm to 15 cm. The 
fragments consist of Dyer Dolomite, chert, and dolomicrite. The 
remainder of the rock consists of 15.4 percent silt- to coarse-
sand sized quartz grains (0.03 to 0.8 mm) and 28.7 percent 
dolomicrite. The quartz grains range from sub angular to well-rounded. 
Unweathered, detrital microcline feldspar makes up 3.9 percent and 
muscovite mica 0.6 percent of the rock. 
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MRX-2C The breccia unit at Nolan Canyon contains 62.1 percent 
fragments that range in size from 1 cm to 15 cm and consist of Dyer 
Dolomite, chert, and dolomicrite. The remainder of the rock 
consists of 11.2 percent silt to coarse sand-sized quartz grains and 
23.2 percent dolomicrite. The quartz grains are subangular to well-
rounded. Unweathered microcline feldspar comprises 3.2 percent and 
muscovite mica less than 0.5 percent of the rock. 

MRX-2B The breccia unit at Jackpot Mine contains 64.2 percent 
fragments that range in size from 1 cm to 15 cm. The remainder of 
the rock is 11.2 percent silt to coarse sand-sized quartz grains and 
21.3 percent dolomicrite. The quartz grains are subangular to well-
rounded. Unweathered microcline feldspar makes up 3.0 percent and 
muscovite mica less than 0.5 percent of the rock. 

Interbedded Sandstone Lenses and Upper Sandstone 
MRX-2A2 The sandstone lenses at East Brush Creek are composed of quartz 

sand grains and detrital feldspar cemented by dolomicrite. The 
quartz grains make up 66.2 percent of the rock, are fine to coarse 
sand-sized (0.18 to 0.65 mm), and subangular to well-rounded. 
Unweathered microcline feldspar is 15 percent of the rock, muscovite 
mica is less than 0.5 percent, and the remainder (18.6 percent) is 
dolomicrite cement. 

MRX-2C The upper sandstone unit at Nolan Canyon is composed of 68.4 
percent fine to coarse sand-sized quartz grains (0.18 to 0.65 mm) that 
are subrounded to well-rounded. Unweathered microcline feldspar is 
3.8 percent of the rock, muscovite mica is less than 0.5 percent, and 
the remainder (27.8 percent) is dolomicrite cement. 

MRX-4B The sandstone lenses at Jackpot Mine are composed of 69.8 
percent fine to coarse sand-sized quartz grains (0.18 to 0.65 mm) that 
are subrounded to well-rounded. Unweathered microcline feldspar is 
0.80 percent of the rock, muscovite mica is less than 0.5 percent, and 
the remainder (29.4 percent) is dolomicrite cement. 

REDCLIFF MEMBER 

Waxy Bed 
MRX-3A The Waxy bed at East Brush Creek consists of laminated 

dolomicrite approximately 0.003 mm in size. The dolomicrite makes up 
96 percent of the rock. The remainder of the rock consists of silt-
sized quartz grains (0.06 mm) in thin laminations. Some evidence of 
boring or bioturbation was observed. 

MRX-WC The Waxy bed at Nolan Canyon consists of laminated dolomicrite 
approximately 0.003 mm in s ize. The dolomicrite makes up 96.6 
percent of the rock. The remainder of the rock consists of silt-
sized quartz grains (0.06 mm) in thin laminations. 

MRX-WB The Waxy bed at Jackpot Mine consists of laminated dolomicrite 
approximately 0.003 mm in size. The dolomicrite makes up 97.6 
percent of the rock. The remainder of the rock consists of silt-
sized quartz grains (0.06 mm) in thin laminations. 
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Upper Redcliff Member 
MRX-4A The upper six feet of the Redcliff Member at East Brush 

Creek consists of densely packed, relict peloids composed of 
equidimensional calcite grains 0.02 mm in size. The peloids make up 
86 percent of the rock. The remainder of the rock consists of 5 
percent microcrystalline calcite (micrite) and 8 percent calcite 
spar. 

MRX-RC The upper Redcliff Member at Nolan Canyon is composed almost 
entirely of micrite. The calcite grains are all less than 0.01 mm 
and most are less than 0.006 mm in size. The micrite makes up 98.7 
percent of the rock with approximately 1 percent microspar. 

MRX-RB The upper Redcliff Member at Jackpot Mine is composed entirely 
of micrite. The calcite grains are all less than 0.01 mm and most 
are less than 0.006 mm in size. The micrite makes up 100 percent of 
the rock; no microspar was observed in thin seciton . 

CASTLE BUTTE MEMBER 

Pink breccia 
MRX-5A The Pink breccia at East Brush Creek is composed of fragments 

of micrite from the Redcliff Member and skeletal-peloidal packstone 
from the overlying Castle Butte Member. The fragments make up 77 
percent of the rock and range in size from 0.25 cm to more than 
2.0 cm. The rock also contains 12 percent coarse silt-sized (0.05 to 
0.08 mm) quartz grains that are angular to well-rounded. Calcite 
occurs as micrite between the fragments and makes up 5 percent of 
the rock. Approximately 5 percent of the rock consists of prismatic 
calcite crystals extending perpendicular to the walls of some of the 
fragments. 

PB-C The Pink breccia at Nolan Canyon is composed of fragments 
of micrite from the Redcliff Member and skeletal-peloidal packstone 
from the overlying Castle Butte Member. The fragments make up 75 
percent of the rock and range in size from 0.25 cm to more than 
2.5 cm. The rock also contains 18 percent coarse silt-sized (0.05 to 
0.08 mm) to very fine sand-sized quartz grains that are angular to 
well-rounded. Calcite occurs as micrite between the fragments and 
makes up 5 percent of the rock. Approximately 2 percent of the rock 
consists of prismatic calcite crystals extending perpendicular to 
the walls of some of the fragments. 

Skeletal-Peloidal Packstone 
MRX-6A At East Brush Creek the skeletal-peloidal packstone consists 

mostly of peloids that range in size from 0.15 to 0.30 mm and make up 
72.6 percent of the rock. Skeletal material consists mostly of 
crinoid columnals, echinoid fragments, and forminiferal tests. The 
crinoid columnals are 0.3 to 0.5 mm in size and make up 8.9 percent 
of the rock. The echinoid fragments constitute 1.1 percent of the 
rock and are approximately 0.5 mm in size. The foraminiferal tests 
are approximately 0.3 mm in size and are 1.4 percent of the rock. 
The remaining skeletal component (0.6 percent of the rock) is 
unidentifiable. The interparticle space is occupied by nonferroan 
micrite which is 13.8 percent of the rock. Approximately 1 percent 
of the rock is sparry calcite mosaic cement. 
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MRX-6C At Nolan Canyon the skeletal-peloidal packstone consists mostly 
of peloids that range in size from .15 to .40 mm and make up 74.1 
percent of the rock. Skeletal material consists mostly of crinoid 
columnals, echinoid fragments, and forminiferal tests. The crinoid 
columnals are 0.3 to 0.5 mm in size and make up 8.7 percent of the 
rock. The echinoid fragments constitute 1.6 percent of the rock and 
are approximately 0.5 mm in size. The foraminiferal tests are 
approximately 0.3 mm in size and are 1.0 percent of the rock. The 
remaining skeletal component (0.5 percent of the rock) is 
unidentifiable. The interparticle space is occupied by nonferroan 
micrite which is 12.0 percent of the rock. Approximately 2 percent 
of the rock is sparry calcite mosaic cement. 

MRX-6B At the Jackpot Mine the skeletal-peloidal packstone consists 
mostly of peloids that range in size from .15 to .40 mm and make up 
73.2 percent of the rock. Skeletal material consists mostly of 
crinoid columnals, echinoid fragments, and forminiferal tests. The 
crinoid columnals are 0.3 to 0.5 mm in size and make up 9.3 percent 
of the rock. The echinoid fragments constitute 1.2 percent of the 
rock and are approximately 0.5 mm in size. The foraminiferal tests 
are approximately 0.3 mm in size and are 1.2 percent of the rock. 
The remaining skeletal component (0.5 percent of the rock) is 
unidentifiable. The interparticle space is occupied by nonferroan 
micrite which is 14.4 percent of the rock. 

Skeletal-Oolitic Grainstone 
MRX-7A3 The skeletal-oolitic grainstone at East Brush Creek contains 

oolites which range in size from .18 to 1.0 mm and are 65.7 percent 
of the rock. The oolites have nuclei of skeletal fragments and 
concentric coatings with little development of radial texture. The 
skeletal component consists of crinoid columnals, echinoid 
fragments, foraminiferal tests, and ostracode shell fragments. The 
crinoid columnals make up 8.1 percent of the rock and range from 0.3 
to 1.0 mm in size. The echinoid fragments are 0.6 mm in size and 
make up 2.1 percent of the rock. The remaining skeletal components 
(foraminiferal tests, ostracode shell fragments, and unidentifiable 
fragments) make up 0.7 percent, 0.3 percent, and 0.3 percent of the 
rock respectively. Sparry calcite mosaic cement contains 1.5 to 2.0 
percent FeO and is 19.1 percent of the rock. Syntaxial overgrowths 
contain 1.5 to 2.0 percent FeO and are 1.7 percent of the rock. 
Drusy calcite crusts on framework components contain 0 percent FeO 
and are 0.4 percent of the rock. 

MRX-5-6 The skeletal-oolitic grainstone at Nolan Canyon contains 
oolites which range in size from .2 to 1.0 mm and are 64.9 percent 
of the rock. The oolites have nuclei of skeletal fragments and 
concentric coatings with little development of radial texture. The 
skeletal component consists of crinoid columnals, echinoid 
fragments, foraminiferal tests, and ostracode shell fragments. The 
crinoid columnals make up 7.7 percent of the rock and range from 0.3 
to 1.0 mm in size. The echinoid fragments are 0.6 mm in size and 
make up 1.8 percent of the rock. The remaining skeletal components 
(foraminiferal tests, ostracode shell fragments, and unidentifiable 
fragments) make up 0.6 percent, 0.2 percent, and 0.5 percent of the 
rock respectively. Sparry calcite mosaic cement contains 1.5 to 2.0 
percent FeO and is 21.6 percent of the rock. Syntaxial overgrowths 
contain 1.5 to 2.0 percent FeO and are 2.2 percent of the rock. 
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Drusy calcite crusts on framework components contain 0 percent FeO 
and are 0.5 percent of the rock. 

Upper Oolitic Grainstone 
BCSC The oolitic grainstone at East Brush Creek is composed of 76.3 

percent oolites, 2.1 percent crinoid columnals, 0.9 percent echinoid 
fragments, and 0.3 percent unidentifiable skeletal fragments. The 
oolites range in size from .36 to .80 mm, have nuclei of echinoderm 
fragments, and show little development of radial fabric. Sparry 
calcite mosaic cement is 19.4 percent of the rock and contains 1.5 
to 3.0 percent FeO. Syntaxial overgrowths on echinodeirm fragments 
range from 0.0 to 1.5 percent FeO and make up 0.6 percent of the 
rock. Drusy calcite crusts on many framework components are 0.4 
percent of the rock and contain no FeO. 

Intraclastic-Oolitic Grainstone 
RMX-23 The grainstone at Nolan Canyon is composed of intraclasts that 

range in size from 1.0 mm to more than 2.0 cm and make up 55 percent 
of the rock. The intraclasts are composed of 75 percent oolites, 23 
percent calcite cement, and 2 percent echinoderm fragments. The 
oolites, as well as the echinoderm fragments, have a coating of 
isopachus rim cement .065 mm thick. The remainder of the rock 
consists of oolites which range in size from 0.5 to 0.8 mm and are 
25 percent of the rock, crinoid columnals which are 2.6 percent of 
the rock, and echinoid fragments which are 0.9 percent of the rock. 
Sparry calcite mosaic cement is 14.9 percent of the rock and 
exhibits a zonal variation in FeO content. The variation appears to 
be crystallographically controlled with the earliest cement being 
nonferroan calcite and showing the characteristic dog-tooth shape 
against pore space. The next generation of mosaic cement, though 
opticaly continuous with the first, contains 1.0 to 1.5 percent FeO 
and the FeO content increases in discrete zones with the maximum 
content reaching 2.5 to 3.0 percent FeO. Syntaxial overgrowths on 
skeletal fragments are 0.5 percent of the rock and are mostly non-
ferroan calcite. Drusy calcite crusts on framework components are 
0.3 percent of the rock and are nonferroan calcite. Approximately 
0.7 percent of the rock is calcite crystals 0.01 iran in size that 
resemble silt resulting from internal sedimentation. Geopetal 
evidence shows this "crystal silt" to be penecontemporaneous with 
mosaic cement and to postdate drusy calcite crusts. 
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ABSTRACT 

The Mississippian Leadville Limestone is the major ore host for Cu-Pb-Zn-Ag 

mineralization in the Leadville, Aspen, and Gilman mining districts on the 

flanks of the Sawatch Range in northwest-central Colorado. The Fulford district 

is on the west flank of the Sawatch Range directly opposite the productive 

Gilman district and within a relatively unmineralized area. Although the 

mechanisms of mineralization did operate at least to some extent in the Fulford 

district, they were not effective in depositing economic concentrations of ore 

minerals. 

This reconnaissance geologic study compares the Fulford district to areas 

where economic concentrations of ore minerals occur in the Leadville Limestone 

with emphasis given to those features and processes that seemed to have been the 

major controls of mineralization in the major mining districts: (1) karst 

solution features, (2) Tertiary igneous and hydrothermal activity, (3) 

sedimentological, stratigraphic, and diagenetic features of the Leadville 

Limestone, and (4) Laramide tectonic activity. 

The Paleozoic rocks of the Fulford district were mapped in general, and the 

Leadville Limestone was mapped in detail. Three measured sections within the 

mapped area include the three defined members of the Leadville Limestone. The 

lowermost member, the Gilman Sandstone Member, consists of a basal sandstone or 

basal sandy dolomicrite, a medial sandy dolomicrite breccia, and an upper 

sandstone or sandy dolomicrite with sandstone lenses occupying scour channels on 

the uppermost surface. The middle member, the Redcliff Member, is a cherty 

micrite with a basal unit composed of dense dolomicrite. The uppermost member, 

the Castle Butte Member (the most important member as an ore host in mining 

areas), consists of skeletal-pelletal packstone which is overlain by an oolitic 

grainstone or an intraclastic-oolitic grainstone. In two of the measured 

sections the lowermost Castle Butte unit consists of a sandy and clayey micrite 

breccia (termed the "Pink breccia"). 

The Leadville Limestone of the Fulford district was not subjected to 



dolomitization, intrusion and karst solution on as large a scale as in other 

mining districts and so retains most of its primary sedimentological features. 

Secondary dolomite created by early, diagenetic dolomitization does occur as on 

the east flank of the Sawatch Range; however, secondary dolomitization in the 

Fulford district is restricted to small pods of coarsely crystalline dolomite 

created by incipient hydrothermal activity. Intrusive activity in the study 

area was restricted to the emplacement of a small dike of latite porphyry around 

which the Leadville Limestone has been recrystallized, but not otherwise altered 

or mineralized. Karst activity in the district was not successful in creating 

large, cross-cutting dissolution features; however, an intraformational karst 

horizon (the "Pink breccia" of mining areas) was recognized within the Leadville 

Limestone. Also, conglomeratic sandstone of the Molas Formation occurs on the 

exposed uppermost surface of the limestone. 

Petrographic examination revealed that the uppermost member of the 

Leadville Limestone in the study area was stabilized and cemented in the fresh-

water phreatic and vadose zones and that the bulk of pore-filling cement was 

deposited as ferroan (up to 3 percent FeO) low-Mg calcite spar. The stability 

of the ferroan low-Mg calcite constituents may have inhibited karst dissolution 

of the limestone as well as diagenetic dolomitization. 

Features that occur in the major mining districts but not in the Fulford 

district are large, cross-cutting karst features in the Leadville Limestone and 

shear zones in the underlying Precambrian rocks. The absence of these features 

is considered to be the major factor controlling the lack of replacement 

mineralization in the Fulford district. However, the occurrence of the Pink 

breccia and Molas Formation indicates the possibility of replacement 

mineralization nearby. 




