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ABSTRACT 

 

The anti-metabolic or insecticidal gene, arcelin (Arl) was isolated, cloned and sequenced 

using sequence specific degenerate primers from the seeds of Lablab purpureus collected 

from the Western Ghats, Tamil Nadu, India.  The L. purpureus arcelin nucleotide 

sequence was homologous to Arl-3 and Arl-4 alleles from Phaseolus spp. The protein it 

encodes has 70% amino acid identity with the amino acid sequences of Arl-3I, Arl-3III, 

Arl-4 precursor, Arl-4 and Arl-4I. The partially purified arcelin from the seeds of L. 

purpureus using artificial diet confirmed the complete retardation of development of the 

stored product pest Callosobruchus maculatus at 0.2% w/w arcelin-incorporated artificial 

seeds.  
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1. Introduction 

 

In a continuing search for new plant genes that confer insect resistance, some exciting 

molecules have been found in the gene family of lectin and lectin-like proteins in the 

common bean, Phaseolus vulgaris (Chrispeels, 1997). Different members of this family 

are thought to be toxic towards insects of stored product pests belonging to the 

coleopteran family of Bruchidae that commonly infest leguminous seeds and form the 

basis for post harvest losses. The lectin gene family in P. vulgaris consists of true lectin, 

phytohemagglutinins (PHA) (both E and L variants) and lectin-like proteins called alpha 

amylase inhibitors and arcelin (Goossens et al., 2000).  PHA was the first member of this 

family to which insecticidal properties were well demonstrated (Janzen, Juster, & Liener, 

1976). Later it was revealed that the deleterious effects on the cowpea weevil, 

Callosobruchus maculatus were shown to be not only due to PHA, but to a contamination 

with the bean alpha amylase inhibitor (α-AI) (Huesing, Shade, Chrispeels, & Murdock, 

1991). It was proved subsequently that the α-AI displayed relatively high toxicity levels, 

not only to some bruchid species, but also to members of other insect families (Ishimoto 

& Kitamura, 1989; Ishimoto, Sato, Chrispeels, & Kitamura, 1996; Schroeder et al., 

1995). Interestingly, novel α-AI variants with insecticidal effects were isolated from 

some P. vulgaris genotypes (Ishimoto & Chrispeels, 1996). Then, arcelin was identified 

being associated with the resistant phenotypes of P. vulgaris (Osborn, Alexander, Sun, 

Cardona, & Bliss, 1988).  

 

The insecticidal protein, arcelin(s) found in some wild accessions of the common 

bean, P. vulgaris, have been known to confer resistance against bruchid beetles. It was 

reported that the amino acid sequence of arcelins showed homology with two other 

phytohemagglutinin proteins (PHA-L and PHA-E) and α-amylase inhibitors (Chrispeels 

& Raikhel, 1991). It was then observed that the members of this protein family, though 

displaying similar tertiary structures, differ in their biochemical properties, glycosylation 

patterns, quaternary structures and sugar binding specificities (Fabre et al., 1998; Mourey 



3 
 

et al., 1998). Seven arcelin allelic variants (Arcelin 1-7) have been described with 

molecular weight in the range of 27-42 kDa (Acosta-Gallegos et al., 1998; Janarthanan, 

Suresh, Radke, Morgan, & Oppert, 2008; Osborn, Blake, Gepts, & Bliss, 1986; Santino, 

Valesina, Lioi, Vitale, & Bollini, 1991). Among these seven arcelin allelic variants, arc-1 

and arc-5 are reported to be conferring the highest resistance to the bruchid pests (Fory et 

al., 1996). Each arcelin variant is composed of several polypeptides presumably encoded 

by a family of different genes (Hartweck, Vogelzang, & Osborn, 1991). The importance 

of arcelin in the present perspective is its insecticidal property and in particular their 

inhibitory activity on larval development in stored product pests (Cardona, Kornegay, 

Posso, Morales, & Ramirez, 1990; Janarthanan & Suresh, 2003; Janarthanan et al., 2008). 

In this paper arcelin is isolated from the seeds of an Indian wild pulse variety, Lablab 

purpureus, a new source of this insecticidal gene, and its antibiotic efficacy on the stored 

product pest, C. maculates is verified. 

 

2. Material and Methods 

 

2.1 Isolation of RNA and cDNA synthesis  

 

Seeds of wild L. purpureus were soaked in water for 48 h and then placed on 

petriplates containing moistened cotton for a few days. The seed coat was removed, and 

embryos (including epi- and hypocotyls and cotyledons) were collected. The samples    

(50 mg) were immediately frozen with liquid nitrogen and ground in RNase free 

microcentrifuge tubes.  

Total RNA was isolated (RNeasy, Qiagen, USA) from frozen and ground tissue. 

450 L of RNeasy lysis buffer (RLT buffer) was added to the powdered tissue (50 mg) 

and vortexed vigorously, centrifuged for 3 min at 10,000 rpm and the supernatant was 

collected. The supernatant was added to 0.5 volumes (225 L) of 95% ethanol and mixed 

immediately by pipetting. Immediately, the sample was applied to an RNeasy mini 

column placed in a 2 mL collection tube and was centrifuged for 15 min at 10,000 rpm 

and the flow-through was discarded. To the column 700 L of RNeasy wash buffer 1 

(RW1 buffer) was added, the tube was closed gently and was centrifuged for 15 s at 
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10,000 rpm to wash the column. The column was transferred to a new 2 mL collection 

tube and 500 L of RNeasy wash buffer with ethanol (RPE buffer) was added. The tube 

was closed gently and centrifuged for 15 s at 10,000 rpm. The flow through was 

discarded and 500 L RNeasy wash buffer with ethanol (RPE buffer) was added again to 

the column, and it was centrifuged for 2 min at 10,000 rpm to dry the RNeasy silica gel 

membrane. The column was now transferred to a new 1.5 mL collection tube, and RNAse 

free water (30-50 L) was added directly to the silica gel membrane. The lid was closed 

gently, centrifuged for 1 min at 10,000 rpm to elute the RNA and stored at  

–80C.  

The Superscript III RT-Invitrogen kit was used for cDNA synthesis.  A 20L 

reaction volume (full scale) containing 1.0 L of Oligo dT (50 mol L-1), 8.0 l of RNA 

(5 g) and 1.0 L of dNTP (10 mmol L-1 each dNTP) was prepared. The mixture was 

incubated at 65 C for 5 min and then placed on ice for 2 min. It was briefly (20 s) 

centrifuged to collect the content of the tube. Then 2.0 L of 10 x RT buffer, 4.0 L of 

MgCl2 (25 mmol L-1), 2.0 L of DTT (0.1 mmol L-1) and 1.0 L of RNase out (RNase 

inhibitor) were added to the tube. The contents were preheated at 45 C for 2 min. Then 

the enzyme-Superscript III RT (1.0 L - 200 units/L) was added. The tube was 

incubated at 45 C for 50 min. The reaction was stopped by heat shock at 85 C for 5 

min. The tube was chilled on ice for approximately for 30 min. It was then briefly 

centrifuged to collect the contents. RNase H (1.0 L E. coli RNase H - 2 units) was added 

to the tube to remove RNA complementary to cDNA. It was incubated further at 37 C 

for 20 min and stored at - 20 C. 

 

2.2 Designing degenerate primers and amplification of L. purpureus arcelin gene 

 

The design of degenerate primers was based on regions specific for arcelin, as 

was determined by MALDI-TOF and N-terminal sequencing of arcelin purified from 

Lablab purpureus (Janarthanan et al., 2008).  Specific degenerate oligonucleotide primers 

designed were: LpArcF: 5’-GCC AGC GAA ACC TCC-3’; LpArcR: 5’-ACC AAG AGA 

GCA CGT C-3’. PCR reagents (Takara, USA) were added to the PCR reaction tube to a 
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final volume of 25L. The reaction mixture was heated (initial denaturation) for 2 min at 

94 C in a thermal cycler (Master Cycler, MJ Research, and USA.). PCR was performed 

for 30 cycles at a denaturation of 94 C for 2 min, annealing at 51 C for 1 min, and 

extension at 72 C for 1 min. Final extension was at 72 C for 10 min, and the product 

was stored at 4 C for 30 min. The amplified product was analyzed using 1% agarose gel. 

 

2.3 Cloning and sequencing of arcelin gene 

 

 30 L of water was added to 20 L of the PCR product, followed by addition of   

50 L of phenol-chloroform. The sample was vortexed gently. The tube was centrifuged 

at 10,000 rpm for 2 min. The aqueous supernatant was collected in a new tube and 10 L 

of 2 mmol L-1 ammonium acetate was added. 125 L of 100% ethanol was added to the 

tube, and the sample was stored overnight at - 20 C.  The tube was centrifuged at 13,000 

rpm for 12 min at 4 C, the supernatant was removed and the product was washed with 

70% ethanol by inverting the tubes three times, centrifuging each time 3 min at 4 C. The 

supernatant was removed and the tube was inverted onto a clean tissue to remove ethanol. 

The pellet was dissolved in 25 L of RNase free water and was briefly vortexed and 

centrifuged. The purified PCR product was analyzed on a 1% agarose gel. The product 

was cloned into pGEMT vector (Promega, Madison, WI) and subsequently four 

independent clones were sequenced in both directions. For each bacterial colony, PCR 

was performed for rapid detection of transformation success and determination of correct 

ligation products by size.  Primers for the specific sequence (pGEMT vector) were used 

for preparing the PCR reaction mix.  Colonies were selected and numbered on the bottom 

side of the plate. The PCR mix was added to the PCR tubes (10 L/reaction) kept on ice 

without adding the colony. Using a pipette tip, the selected colonies were touched on its 

side and the tip stirred in the PCR mix and amplified by PCR. Plasmid DNA was isolated 

(Plasmid Miniprep, Promega) and was used to transform JM109 high efficiency 

competent cells (Promega). The steps described in Wizard plus Plasmid Miniprep 

(Promega) using the Magic Minipreps (TM) system was used to isolate plasmid DNA 
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from the cultures of E. coli. The plasmid with arcelin insert was sequenced utilizing the 

gene sequencing facility of Kansas State University, USA. 

 

2.4 Insect bioassay 

 

Partially purified arcelin as described in our earlier paper (Janarthanan et al., 

2008) was incorporated into the artificial seeds using four different concentrations of 

arcelin (0.05%, 0.1%, 0.15% and 0.2%) by following the method of Shade et al. (1994). 

The susceptible cowpea seeds (Vigna unguiculata) were milled into a powder. The 

resulting flour was mixed with water in a 1:1 ratio and was stirred until a smooth paste 

was formed. The paste was then transferred to a 10 ml syringe and injected directly into 

the wells of a microtitre plates. These plates were frozen at –20 C for 1 h and lyophilized 

for 24 h. After lyophilization, the solid artificial seeds were removed from the wells of 

the microtitre plates by gentle pressure from the bottom side of the plates. The seeds were 

then placed in plastic Petri plates and maintained for hydration at a constant temperature 

(25 C) and relative humidity (60  5%) for 48 h. During hydration, the plates were 

closed with fine mesh to prevent accidental infestation. The artificial seeds  

(10 number of seeds/treatment) were placed in glass jars for C. maculatus infestation. 

Newly emerged adults (2 pairs of adult males and females) were introduced into the glass 

jars for oviposition. The insects were allowed to stay in the jars for 4 days. Effect of 

various doses of arcelin on oviposition, post-embryonic development period, adult 

emergence and percent infestation/seed damage were studied. 
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Fig. 1. A fragment amplified at 651 bp using the cDNA with arcelin specific 

degenerate primers at various annealing temperatures of 50 °C (lane 1), 50.9 °C (lane 2), 

52 °C (lane 3) and 53.2 °C (lane 4). Lane M: 100 bp DNA ladder. 

 

3. Results 

The partially purified arcelin was resolved in a tricine gel under reducing 

conditions of electrophoresis. The three visible arcelin sub-unit fractions were subjected 

to trypsin digestion and the peptides were identified by MALDI TOF-MS. The analyses 

revealed sequences of two internal peptides (for major fraction 2) and one of the 

sequences, D V L S W was aligned with the deduced amino acid sequences at the 

carboxyl terminus of arcelin genes of Phaseolus. Arcelin was again subjected to tricine 

gel electrophoresis and blotted onto membrane for N-terminal sequencing. The              

N-terminal sequence of the arcelin polypeptide fractions revealed the presence of one 

polypeptide sequence namely, A S E T S in arcelin 3, 4 and 5 of Phaseolus vulgaris.  

Based on the internal peptide sequences of arcelin obtained from MALDI  

TOF-MS and N-terminal sequencing, degenerate primers were designed. They were used 

to carry out reverse transcription PCR reaction on total RNA isolated from seeds of             

L. purpureus. An incomplete or a partial fragment of 651bp was amplified using these 

degenerate primers (Fig. 1). The fragment was then cloned in pGEMT vector and 

transformed using JM109 competent cells (Promega). A colony PCR was performed to 
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confirm the cloned fragment of arcelin gene in the vector (data not shown). Randomly 

selected clones were used to isolate plasmid DNA and sequenced. After sequencing, the 

cDNA sequences for 4 clones were obtained and they revealed their identity at the DNA 

level at 98% (Fig.2).   

The amino acid sequence was deduced using the partial nucleotide sequences of 

arcelin from L. purpureus seeds that were composed of 217 amino acids. The deduced 

peptide sequence of L. purpureus arcelin was matched exactly with amino acid sequences 

of arcelin 3 and 4 of Phaseolus (Figs. 3 and 4). They were then subjected to ExPASY 

proteomics tools to identify the nature of the protein. The analysis revealed that there 

were consensus sequences for legume lectins alpha, beta signatures and sequences for  

N-glycosylation sites in the deduced L. purpureus arcelin gene (Fig. 5).  

These partially purified arcelin was tested for their efficacy on the growth and 

development of the stored product pest, C. maculates, using artificial seeds. The adult 

emergence was significantly reduced in all the treatments and was absent in seeds 

containing 0.2% arcelin. The infestation potential was also drastically reduced in all the 

treatments when compared to control group (Table 1).  The bioassay results suggest the 

toxic nature of the arcelin isolated from the wild seeds of L. purpureus. 

 

4. Discussion 

Arcelins in wild common beans belong to the lectin-like family of seed storage 

proteins. They contain polypeptides closely related to phytoheamagglutinins (PHA) and 

alpha-amylase inhibitors (α-AIs). Arcelins like PHA demonstrate a weak carbohydrate-

binding activity and have a different intrinsic specificity for complex sugars, which leads 

to a mechanism of toxicity to bruchid beetles (Fabre et al., 1998). The toxic properties of 

arcelins were related to their recognition and interaction with various glycoproteins and 

other constituents of the digestive tract membranes, as well as direct binding to intestinal 

cells of the insects (Fabre et al., 1998; Minney et al., 1990; Paes et al., 2000).  

Arcelins were first reported in some wild common Phaseolus bean accessions 

from Mexico (Osborn, Alexander, et al., 1988; Osborn, Burow, & Bliss, 1988). Some 

tepary beans are also known to contain variants of arcelin proteins. This protein is absent 

in cultivated common Phaseolus beans (Chrispeels & Raikhel, 1991) most probably due 
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to domestication process. In a way similar that of PHA and α-AIs, arcelins also formed as 

a result of independent duplication events of lectins, which evolved into a number of 

variants. In the genotypes of bean with high arcelin levels, they normally replace a 

proportion of phaseolin (Hartweck & Osborn, 1997; Minney et al., 1990). Seeds that 

accumulate large quantities of arcelins or its variants are likely to be more resistant to 

bruchid infestation. In a preliminary study in the present investigation (data not shown) 

the insect bioassay was performed with whole seeds of L. purpureus, not infested by the 

stored product pest, C. maculatus. This prompted for the further work to identify, isolate 

and characterize the anti-metabolic or antibiosis compound arcelin from the wild seeds of 

L. purpureus. A partially purified arcelin and its characterization lead to the amplification 

of a gene encoding arcelin. 

Fig. 2. Partial L. purpureus arcelin cDNA sequence (651 bp). The degenerate primer 
sequences are indicated as red coloration at 3’ and 5’ regions. 
 
 
5’TACCAAGAGAGCACGTCGTGCGTTTCCTCGTATGCTGAGGTGGCAGAGAACCCAACGCTCA
CCCAGTCGTCAAGAACTTTCTCCAGCTCCACATTTGCAGAGACGTGGTATCTCTTTCTCGGAAT
AGGGTAAAACAGAGAAACCGCCAAGAACTTCGTGGAGGAGTCATAGGTGATCCGAACATCGG
CATTTTGTCCGATGTAGTGGCGGAAATTCCAAGGCACGCTTCCGATAGGCTGGATGGAGTTCA
CGTCGATGCCAATACGGTTGCTGAAGGTGTCGAACACCACAGCCACAGTATGGGCGTTTATAT
CGTTTTCGGATTTGTTGAAAAGACCTAGAAGACGGCCTTTTTTTTTGGGCTGAGAGTCGACGG
GGACGAGAGCAAAGGCAAGGCCATAGCCGGACATTAATTTGTTGGCAGGGAGGATATTGAAT
GTGAAGTTGGTGTCGAAGCTCGCGTTGCCGGTGCTGTCCCTCATTTGGATGGGGGCGGAGTAC
AAGGCGCGGCCCATAGAGTCCACACTGGGTTCTCCGTTGTGTGTAACATTGGTTAGTAGTAAG
TGGCCTTTGAATGAGACGGTGGCATTGCCTTGGAGGATAAGGTTGGTTTCGTTGAACCTATTG
ATTTCGAAGGAGGTTTCGCTGGCA3’ 

 

There are seven arcelin variants described so far from various wild accessions of 

the common bean Phaseolus based on their amino acid sequences. They are well-known 

by distinct electrophoretic polypeptide profiles that range from 31 to 40 kDa in size. The 

variants are genetically different alleles of the same locus revealed by various workers: 

Arl-1, Arl-2, Arl-3, and Arl-4 (Hartweck et al., 1991; Osborn, Alexander, et al., 1988; 

Osborn et al., 1986), Arl-5 (Goossens, Geremia, Bauw, Van Montagu, & Angenon, 

1994), Arl-6 (Santino et al., 1991) and Arl-7 (Acosta-Gallegos et al., 1998). Out of the 

seven arcelin variants, six are grouped into three clusters based on cDNA sequence 

homology (Sparvoli & Bollini, 1998; Sparvoli, Lanave, Santucci, Bollini, & Lioi, 2001). 

Arl-1, Arl-2 and Arl-6, contribute to the same cluster while a second group is composed 



10 
 

   

   

 

  

 

 

of Arl-3 and Arl-4, the most ancient variants. Arl-5 has isoforms 5a and 5b forms a 

separate branch. In the present investigation, an arcelin isoform identified in an Indian 

wild bean L. purpureus and its partial nucleotide sequence (651bp) was homologous to 

Arl-3 (801bp) and Arl-4 (801bp) alleles from Phaseolus spp. The protein it encodes had 

70% amino acid identity with the amino acid sequences of Arl-3I, Arl-3III, Arl-4 

precursor, Arl-4 and Arl-4I. This is the first report that the seed of Indian wild bean L. 

purpureus possesses antibiosis activity against the stored product insect pest, C. 

maculates. 

Fig. 3. Multiple sequence alignment of most similar amino acid sequences with the 
deduced amino acid sequence of L. purpureus. The most conserved regions are indicated 
in rectangular boxes. 
 
Arl-3I           MASSKLLSLALFLVLLTHANSASETSFNFTSFDTN--KLILQGDASVSSKGQLLLTKVRG 58 
Arl-4I           MASSKLLSLALFLVLLTHANSASETSFNFTSFDTN--KLILQGDASVSSKGQLLLTKVRG 58 
Arl-4pre         MGSSKLLSLALLLVLLTHANSASETSFNFTSFDTN--KLILQGDASVSSKGQLLLTKVRG 58 
Arl-4            MGSSKLLSLALLLVLLTHANSASETSFNFTSFDTN--KLILQGDASVSSKGQLLLTKVRG 58 
Arl-3III         MASSNLLSLALFLVLLTHANSASETSFNFTSFHQGDPKLILQADANVSSKGQLLLTKVRG 60 
L.purpureus      ---------------------ASETSFEINRFNET--NLILQGNATVSFKGHLLLTNVTH 37 
                                      ******::. *.    :****.:*.** **:****:*   
Arl-3I           NGDPTVDSMGRAFYYAPIQIRDSTTGKLASFDTNFTFSIRPYSNN-ENSAFGLAFALVPV 117 
Arl-4I           NGDPTVDSMGRAFYYAPIQIRDSTTGKLASFDTNFTFSIRPYSNN-ENSAFGLAFALVPV 117 
Arl-4pre         NGDPTVDSMGRAFYYAPIQIRDSTTGKLASFDTNFTFSIRPYSNN-ENSAFGLAFALVPV 117 
Arl-4            NGDPTVDSMGRAFYYAPIQIRDSTTGKLASFDTNFTFSIRPYSNN-ENSAFGLAFALVPV 117 
Arl-3III         NGDPTVDSMGRAFYYAPIQIKDSTTGKLASFDTNFTFSIRSRSNNNKNSAFGLAFALVPV 120 
L.purpureus      NGEPSVDSMGRALYSAPIQMRDSTGN--ASFDTNFTFNILPANKL--MSGYGLAFALVPV 93 
                 **:*:*******:* ****::*** .  *********.* . .:    *.:********* 
Arl-3I           DSEPKRKDYFLGLFNKPD-DPEAHIVAVVFDTSSNQIEIDMNSISPVARESCHFHKYNGE 176 
Arl-4I           DSEPKRKDYFLGLFNKPD-DPEAHIVAVVFDTSSNQIEIDMNSISPVARESCHFHKYNGE 176 
Arl-4pre         DSEPKRKDYFLGLFNKPD-DPEAHIVAVVFDTSSNQIEIDMNSISPVARESCHFHKYNGE 176 
Arl-4            DSEPKRKDYFLGLFNKPD-DPEAHIVAVVFDTSSNQIEIDMNSISPVARESCHFHKYNGE 176 
Arl-3III         ESQPKRKQEFLGIFNTTNYEPDARTVAVVFNTLRNRIDIDVNAIKPYANESCNFHKYNGQ 180 
L.purpureus      DSQPKKKGRLLGLFNKSENDINAHTVAVVFDTFSNRIGIDVNSIQPIGSVPWNFRHYIGQ 153 
                 :*:**:*  :**:**..: : :*: *****:*  *:* **:*:*.* .  . :*::* *: 
Arl-3I           KVEVRITYDSSKNNLRASLVYPSGTKCNFSTSSVHMEKVLNDWVSVGFSATSGLYDPTSE 236 
Arl-4I           KVEVRITYDSSKNNLRASLVYPSGTKCNFSTSSVHMEKVLNDWVSVGFSATSGLYDPTSE 236 
Arl-4pre         KVEVRITYDSSKKNLRASLVYLREQSATSSTSSVHMEKVLNDWVSVGFSATSGLYDPTSE 236 
Arl-4            KVEVRITYDSSKKNLRASLVYLREQSATSSTSSVHMEKVLNDWVSVGFSATSGLYDPTSE 236 
Arl-3III         KTDVQITYDSSKNDLRVFLHFTVSQVKCSVSATVQLEKEVNECVSVGFSATSGLTENTTE 240 
L.purpureus      NADVRITYDSSTKFLAVSLFYPIPRKRYHVSANVELEKVLDDWVSVGFSATS----AYEE 209 
                 :.:*:******.: * . * :         ::.*.:** ::: *********       * 
Arl-3I           THDVLSWSFSSKFSQHTTSERSNILLNKIL 266 
Arl-4I           THDVLSWSFSSKFSQHTTSERSNILLNKIL 266 
Arl-4pre         THDVLSWSFSSKFSQHTTSERSNFLLNMFL 266 
Arl-4            THDVLSWSFSSKFSQHTTSERSNFLLNMFL 266 
Arl-3III         THDVLSWSFSSKFRN----KLSNILLNKIL 266 
L.purpureus      THDVLSWX---------------------- 217 

                 *******                        

The seeds of Phaseolus containing diverse variants of arcelins demonstrate 

different levels of resistance to stored product insects which is illustrated by delay in 

adult emergence, reduced adult weight and reduction in number of adults emergence as 

demonstrated in bruchid infestation studies with different bean accessions (Acosta-
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Gallegos et al., 1998; Cardona et al., 1990; Kornegay & Cardona, 1991; Kornegay, 

Cardona, & Posso, 1993). These studies found that some arcelin variants are more 

effective than others against bruchids, where bean genotypes containing Arl-1, Arl-2, Arl-

3 and Arl-4 demonstrated variable antibiosis effects to Zabrotes subfasciatus. Different 

arcelin variants from wild common bean accessions have been backcrossed into 

cultivated lines to improve resistance to bruchids (Cardona et al., 1990; Hartweck, 

Cardona, & Osborn, 1997; Kornegay et al., 1993; Osborn, Alexander, et al., 1988). Of the 

seven arcelin variants, only lines containing Arl-1, Arl-2, Arl-4 and Arl-5 demonstrated 

resistance to Acanthoscelides obtectus while genotypes containing other arcelin variants 

conferred no resistance to A. obtectus (Fory et al., 1996; Kornegay & Cardona, 1991; 

Paes et al., 2000). The partially purified arcelin-incorporated artificial seeds through 

feeding bioassay studies in the present study were found to be resistant to C. maculatus 

infestation and at 0.2% (w/w) arcelin in the diet completely inhibited the development of 

insects.  The mechanism of toxicity of arcelin from P. vulgaris to the larvae of Zabrotes 

subfasciatus studied earlier (Minney et al., 1990) revealed the antimetabolic nature and 

also indigestibility of arcelin by gut proteases in the insect. Later, our investigation of 

arcelin with the storage pests Rhyzopertha dominica (internal feeder of grain) and 

Oryzaephilus surinamensis (external feeder of grain) demonstrated retarded development 

of these grain feeders at 2% in the diet and complete mortality of all larvae in both 

species at 5% dose (Janarthanan et al., 2008). Hence, the insecticidal gene-arcelin 

identified in the seeds of Indian wild pulse L. purpureus could be used as a tool for the 

development of transgenic plant in future. 

Fig. 4.   Boost trap Phylogram NJ Tree – Protein sequences of arcelin 3 and 4 with L. 
purpureus amino acid sequence. 
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Fig. 5. Deduced  L. purpureus amino acid sequence with consensus sequences for legume 
lectin alpha, beta chain signatures and N-glycosylation sites. 
 
 
ASETSFEINRFNETNLILQGNATVSFKGHLLLTNVTHNGEPSVDSMGRALYSAPIQ
MRDSTGNASFDTNFTFNILPANKLMSGYGLAFALVPVDSQPKKKGRLLGLFNKS
ENDINAHTVAVVFDTFSNRIGIDVNSIQPIGSVPWNFRHYIGQNADVRITYDSSTK
FLAVSLFYPIPRKRYHVSANVELEKVLDDWVSVGFSATSAYEETHDVLSWX  
   
LDDWVSVGFS: Consensus sequences for legume lectins alpha chain signatures 
 
VAVVFDT: Consensus sequences for legume lectins beta chain signatures 
 

 
 
NETN, NATV, NVTH, NASF, NFTF & NKSE: N-glycosylation sites 
 
ASETS: N-terminal peptide sequence of arcelin  
 
DVLSW: Internal peptide sequence of arcelin using MALDI-TOF  
 
 
 
 
Table 1 
 
Effect of partially purified arcelin on C. maculatus. 

 
Artificial seeds 

with arcelin 
(%w/w) 

Oviposition Adult 
emergence 

(%) 

Developmental 
period (days) 

Infestation 
(%) 

       0.00 
(Control) 

22 ± 03.6 100 26 ± 0.6            23 

0.05 24 ± 04.2 80 a 26 ± 0.4 11 a 
0.10 14 ± 02.8 28 a 29 ± 1.2 08 a 
0.15 18± 05.1 36 a 33 ± 0.8 04 a 
0.20 20 ± 04.2 Nil - - 

 
Data obtained were mean ± SD of three replications. 
a Significantly different from control at 0.05 level, according to the Fisher exact test. 
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