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Abstract

The exponential growth of variable renewable energy (VRE) such as wind and solar
generation brings grand challenges to the operational planning of power systems. The
instantaneous penetration of VRE reaches over 50% in certain balancing areas in the United States.
The VRE generation is characterized by a large amount of uncertainties and variabilities.
Consequently, power system operators, planners and researchers have made substantial efforts to
manage VRE uncertainties in the power system scheduling, such as Network-Constrained Unit
Commitment (NCUC). In order to account for the impact of VRE uncertainties, there are several
noteworthy NCUC approaches in the literature, each with distinctive objectives, theories,
computational requirements and economic outcomes. A common approach presented in the
literature is the use of stochastic programming, namely Stochastic NCUC (S-NCUC), in which the
expected system operating cost is minimized across a number of scenarios, each representing a
possible realization of uncertainties. S-NCUC is typically a large-scale, non-convex, and mixed-
integer programming (MIP) problem. It is modeled as a two-stage stochastic problem where the
first-stage unit commitment decisions are the same for all the scenarios. Generally, S-NCUC
solutions can be categorized into two main approaches. First, the most straightforward approach
is to use a commercially available off-the-shelf solver to solve an extensive form (EF) of S-NCUC.
However, for any large-scale system with a reasonable number of scenarios, the resulting EF of S-
NCUC may become computationally intractable. To overcome this issue, the second approach is
based on stage-wise or scenario-wise decomposition methods, which solve each individual
scenario separately, usually in parallel, and a final solution is generated by coordinating all
individual scenario solutions. Progressive Hedging Algorithm (PHA) is one of the main
decomposition methods for solving the stochastic MIP. However, PHA is originally devised for a
continuous convex program and is not provably convergent for the non-convex S-NCUC problem.
The solution to the dual problem is generally primal infeasible and the once relaxed system-wide
constraints may not be satisfied. An additional effort is required to restore the primal feasibility
from a Lagrangian dual solution. Therefore, it is desirable to directly obtain a primally feasible
solution from the Lagrangian dual iterations. This gives rise to exact augmented Lagrangian, a
class of exact penalty methods whose objective is to solve a constrained optimization (primal)

problem through an unconstrained optimization problem that has the same local (global) solutions



as the primal problem. Nevertheless, the following two critical research questions remain
unresolved:

1) How can we devise an effective penalty function such that an exact solution can be
obtained with a zero-duality gap?

2) If an exact solution is attained, how can we find a robust yet tight lower bound that is
capable of measuring the quality of the exact solution accurately?

This dissertation addresses the aforementioned first question by applying a novel Penalty-
Based Gauss-Seidel (PBGS) algorithm with an exact augmented Lagrangian representation to
solve S-NCUC within a scenario-based decomposition framework. To improve the computational
efficiency of PBGS, an accelerating technique that skips solving scenarios meeting certain
conditions has been proposed. The proposed algorithm is named “Fast PBGS.” A proof of the Fast
PBGS method is given, along with the proof of convergence of PBGS. Numerical validation of
these algorithms on the IEEE 118-bus and Electric Reliability Council of Texas (ERCOT)-like
large-scale systems has been carried out. Fast PBGS saves computational time by an average 35%
for ERCOT-like Large System and 50% for IEEE 118-bus System with 50 scenarios compared
with PBGS. Numerical results demonstrate the high quality of the PBGS solution and the efficacy
of the proposed algorithms. Additionally, comparing the proposed algorithms with other prevailing
S-NCUC methods such as PHA and extensive-form-based MIP solutions has been completed. The
comparison of Fast PBGS shows the results are closer to EF (average difference 0.92%) than the
PHA solution with EF (average difference 2.18%). When it came to the computational time, the
Fast PBGS outperformed both EF and PHA. An average Fast PBGS took 48% less time than EF
to obtain a solution. Compared with PHA, Fast PBGS was 142% faster.

The second question is addressed by applying the combined Frank Wolfe with PHA
algorithm (FW-PHA). Our research shows that FW-PHA obtains superior lower bounds, i.e., up
to 6% better than the PHA does on the IEEE 118-bus system. We further improve the
computational efficiency of FW-PHA with a warm start technique that initializes the algorithm
with a Fast PBGS solution. An out-of-sample analysis including a large number of samples is
conducted to demonstrate the efficacy of the Fast PBGS.
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Abstract

The exponential growth of variable renewable energy (VRE) such as wind and solar
generation brings grand challenges to the operational planning of power systems. The
instantaneous penetration of VRE reaches over 50% in certain balancing areas in the United States.
The VRE generation is characterized by a large amount of uncertainties and variabilities.
Consequently, power system operators, planners and researchers have made substantial efforts to
manage VRE uncertainties in the power system scheduling, such as Network-Constrained Unit
Commitment (NCUC). In order to account for the impact of VRE uncertainties, there are several
noteworthy NCUC approaches in the literature, each with distinctive objectives, theories,
computational requirements and economic outcomes. A common approach presented in the
literature is the use of stochastic programming, namely Stochastic NCUC (S-NCUC), in which the
expected system operating cost is minimized across a number of scenarios, each representing a
possible realization of uncertainties. S-NCUC is typically a large-scale, non-convex, and mixed-
integer programming (MIP) problem. It is modeled as a two-stage stochastic problem where the
first-stage unit commitment decisions are the same for all the scenarios. Generally, S-NCUC
solutions can be categorized into two main approaches. First, the most straightforward approach
is to use a commercially available off-the-shelf solver to solve an extensive form (EF) of S-NCUC.
However, for any large-scale system with a reasonable number of scenarios, the resulting EF of S-
NCUC may become computationally intractable. To overcome this issue, the second approach is
based on stage-wise or scenario-wise decomposition methods, which solve each individual
scenario separately, usually in parallel, and a final solution is generated by coordinating all
individual scenario solutions. Progressive Hedging Algorithm (PHA) is one of the main
decomposition methods for solving the stochastic MIP. However, PHA is originally devised for a
continuous convex program and is not provably convergent for the non-convex S-NCUC problem.
The solution to the dual problem is generally primal infeasible and the once relaxed system-wide
constraints may not be satisfied. An additional effort is required to restore the primal feasibility
from a Lagrangian dual solution. Therefore, it is desirable to directly obtain a primally feasible
solution from the Lagrangian dual iterations. This gives rise to exact augmented Lagrangian, a
class of exact penalty methods whose objective is to solve a constrained optimization (primal)

problem through an unconstrained optimization problem that has the same local (global) solutions



as the primal problem. Nevertheless, the following two critical research questions remain
unresolved:

1) How can we devise an effective penalty function such that an exact solution can be
obtained with a zero-duality gap?

2) If an exact solution is attained, how can we find a robust yet tight lower bound that is
capable of measuring the quality of the exact solution accurately?

This dissertation addresses the aforementioned first question by applying a novel Penalty-
Based Gauss-Seidel (PBGS) algorithm with an exact augmented Lagrangian representation to
solve S-NCUC within a scenario-based decomposition framework. To improve the computational
efficiency of PBGS, an accelerating technique that skips solving scenarios meeting certain
conditions has been proposed. The proposed algorithm is named “Fast PBGS.” A proof of the Fast
PBGS method is given, along with the proof of convergence of PBGS. Numerical validation of
these algorithms on the IEEE 118-bus and Electric Reliability Council of Texas (ERCOT)-like
large-scale systems has been carried out. Fast PBGS saves computational time by an average 35%
for ERCOT-like Large System and 50% for IEEE 118-bus System with 50 scenarios compared
with PBGS. Numerical results demonstrate the high quality of the PBGS solution and the efficacy
of the proposed algorithms. Additionally, comparing the proposed algorithms with other prevailing
S-NCUC methods such as PHA and extensive-form-based MIP solutions has been completed. The
comparison of Fast PBGS shows the results are closer to EF (average difference 0.92%) than the
PHA solution with EF (average difference 2.18%). When it came to the computational time, the
Fast PBGS outperformed both EF and PHA. An average Fast PBGS took 48% less time than EF
to obtain a solution. Compared with PHA, Fast PBGS was 142% faster.

The second question is addressed by applying the combined Frank Wolfe with PHA
algorithm (FW-PHA). Our research shows that FW-PHA obtains superior lower bounds, i.e., up
to 6% better than the PHA does on the IEEE 118-bus system. We further improve the
computational efficiency of FW-PHA with a warm start technique that initializes the algorithm
with a Fast PBGS solution. An out-of-sample analysis including a large number of samples is
conducted to demonstrate the efficacy of the Fast PBGS.
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1. Introduction

This chapter introduces the contents of the dissertation. Section 1.1 briefly describes the
Power System Operational Planning (PSOP). The research is conducted in the context of PSOP.
In section 1.2, challenges faced in PSOP due to the changing generation landscape are presented.
This challenge is the reason for the motivation of this research. Finally, in section 1.3, the

contribution made is given.
1.1. Power System Operational Planning

The PSOP goal is to fundamentally supply electric energy to the customers in the most
economically and reliably fashion. This planning endeavor by the utility/Independent System
Operators (I1SO) usually starts a week before the operating day and continues through the hour
ahead of the real-time operations. It is well known that the demand for electrical energy must be
met with supply in real-time, unlike other commaodities. This requirement is complicated because
the resources that supply reliable energy have temporal constraints such as minimum generator
start time. These constraints force a decision to be made well in advance of real-time by looking
at the forecasted demand. Actual energy demand varies by time of the day and season of the year.
Figures 1.1 and 1.2 show these wide variations for the Electric Reliability Council of Texas
(ERCQOT) ISO. The forecast of demand itself is a challenge for an extensive geographically-
spanning system with varying weather across the geography. Economic decision-making on
scheduling generators to meet the demand is exponentially complex for increasing the number of
generators, each with a dozen constraints. The reliability of the system requires respecting the

transmission network constraints, which further exacerbates the complexity.
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Figure 1.1 ERCOT recorded system demand on a summer day (07/18/2018)
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Figure 1.2 ERCOT recorded system demand on a winter day (01/15/2018)




1.2. Optimization in Power System Operational Planning

The earliest literature references the economic operation of power system operations date
back to the early 1940s [1]. PSOP uses an application called Security Constrained Unit
Commitment (SCUC). The SCUC is an optimization problem to minimize the cost of generation
unit commitment and schedule needed to meet the forecasted demand subject to a host of
constraints. A detailed formulation of this optimization problem is given in Chapter 3. Mixed
Integer Linear Programming (MILP) application in scheduling thermal generating systems dates
back to 1968 [2]. Until now, this SCUC has been working well for the entities in PSOP. The only
unknown is electricity demand, and utilities have successfully been forecasting this within 2 to 3%

error.
1.2.1. Changes in the Generation Landscape

Wind energy started making into utility-scale generation at the beginning of the
millennium. As shown in Figure 1.3, wind energy in the year 2000 was just over 100 MW grew
into about 21000 MW in 2017. This wind capacity was projected to be close to 30,000 MW by
year 2020 in the report released by ERCOT in 2017 [3]. Figure 1.4 shows this exponential growth.
The wind has taken over the place of the coal units as the second most generation type based on
the fuel. It has replaced a small share of the combined cycle (CC) generation too. Similar
exponential growth has started showing up in solar power generation. Today the ERCOT region
has 1,900 MW of solar power generation, and nearly 60,000 MW of solar power generation is

under study.

ERCOT Wind Additons by Year (as of 12/31/2017)
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Figure 1.3 ERCOT wind generation growth 2000 — 2020 [3]
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Figure 1.4 Change of ERCOT generation fuel mix from 2002 to 2020 [3]

Southwest Power Pool (SPP) region has seen similar wind generation growth over the same
period. Figure 1.5 shows wind capacity and generation growth over 12 years, along with the
generation fuel mix at the end of 2018 [4], with the wind at 23%. In California ISO (CAISO),
about 27% of its demand is supplied by renewables [5]. This renewable growth is not unique to
ERCOT, SPP, and CAISO. It is seen in other regions in the US and around the world. Figure 1.6
shows installed the wind capacity in 1999 vs. 2019 [6].
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Figure 1.5 SPP wind capacity and generation in SPP (left) fuel mix 2018 (right) [3]
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Figure 1.6 US state wide installed wind capacity 1999 vs 2019 [6]

1.2.2. Uncertainties and Variabilities

It is beneficial that this environmentally friendly, zero fuel-cost generation is replacing high
emission, $20-$30/MWh fuel cost, thermal (mostly coal) units. On the negative side, the renewable
generation outputs are not fixed like thermal generation capacity. The actual generation depends
on wind speed or solar irradiation, which are not easy to predict, especially wind speed. The
generation output cannot be kept at a constant value. In other words, they have variability and

uncertainty, and they are not as reliable as thermal generation.
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Figure 1.7 Variability of renewable generation?
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Figure 1.8 Uncertainty of renewable generation?

Figures 1.7 and 1.8 show ERCOT forecast in day-ahead for September 4, 2018, and even
the hour-ahead forecast predicted was 2500 MW higher than what actual production turned out to
be for the early morning hours. While Figure 1.8 shows the over-forecast, Figure 1.9 shows under-
forecast. On August 31, 2016, the actual generation came out to be as high as 3000 MW more than
both the day-ahead and hour-ahead forecasts. These two plots underscore the uncertainty in
forecasting wind generation. They also show the variability as the wind generation varies between
the hours. The variability is much more drastic on March 19, 2020, as shown in Figure 1.10. One

can observe the variability and uncertainty for the ERCOT by visiting www.ercot.com.
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Figure 1.9 ERCOT total forecasted wind vs actual wind generation (under-forecast)!
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1.3. Research

1.3.1. Motivation

This changing generation mix creates a challenge in PSOP. It is not just that the VRE
creates uncertainties; the demand side management participation in the organized markets is
causing additional uncertainties. The current SCUC optimization application is not designed to
handle parameters that are not deterministic. A new algorithm that can optimize under uncertainty
must be applied in solving SCUC. The research is motivated by the challenge brought in by the
exponential growth of VRE and the necessity to find a solution. Penalty-Based Gauss-Seidel
algorithm (PBGS), which solves stochastic SCUC and yields a primal feasible solution when it
converges, has been found in this research. An efficient way of speeding up the solution and

measuring such a solution’s efficacy has been developed.
1.3.2. Contributions

Here are the contributions to this PSOP through the research.

(1) The PBGS algorithm is applied for the first time, including a positive-basis exact penalty
representation and an implementable binary calculation, to produce an exact solution to S-
NCUC. The exactness guarantees the primal feasibility of a Lagrangian dual solution and
thus eliminates the need for extra algorithms to restore the primal feasibility at the cost of

optimality.

(2) Fast PBGS algorithm has been developed by improvising PBGS that reduces the solution
time by 15-40% compared with the PBGS algorithm. A mathematical proof of Fast PBGS
has been included.

(3) The use of a PBGS solution is proposed to initialize the FW-PHA algorithm over traditional
initialization. The proposed initialization yields an improved lower bound that allows for

measuring the quality of an exact solution more precisely and efficiently.

(4) The proposed methodology is validated and compared with other algorithms, especially on
an ERCOT-like, large-scale system. The system consists of 7226 buses, 8853 branches,

and 725 generators, including 178 wind generators. This system represents the most



extensive realistic system in S-NCUC studies. This is the first time S-NCUC is solved for

such a sizeable real-world system.
Contributions (1), (2) and (4) are discussed in Chapter 4 and in the following article:

A. M. Palani, H. Wu and M. M. Morcos, "A fast penalty-based Gauss-Seidel method for stochastic
unit commitment with uncertain load and wind generation,” in IEEE Open Access Journal of
Power and Energy, vol. 8, pp. 211-222, 2021.

Contribution (3) is discussed in Chapter 5 and in the following article:

A. M. Palani, H. Wu, and M. M. Morcos, “A Frank—Wolfe progressive hedging algorithm for
improved lower bounds in stochastic SCUC,” IEEE Access, vol. 7, pp. 99398-99406, 2019.

1.3.3. Organization of the Dissertation

A literature review of research and development in stochastic programming applied in
solving S-NCUC is discussed in Chapter 2. Chapter 3 presents the development of S-NCUC using
EF, where it is shown that the computational time of EF increases exponentially with an increased
number of scenarios. In Chapter 4, scenarios-wise decomposition algorithm, PBGS is applied to
solve S-NCUC. In the same chapter, an essential contribution by the research, the Fast PBGS, is
devised, and the computational comparison is made between PBGS and the Fast PBGS. In Chapter
5, a lower bound method, with an improvised FW-PHA, is applied to obtain a solution to assess
the Fast PBGS solution. Finally, in Chapter 6 conclusion remark is made along with future research

opportunities is discussed.
1.4. Nomenclature

1.4.1. Operators/functions

() Penalty function used in Augmented Lagrangian
[ -] Rounding Operator.

17 —min{0, -}

LR Lagrangian relaxation

LR + Augmented Lagrangian




1.4.2. Parameters

NT Number of time periods

N Number of load buses

NI Number of generation units

S Number of scenarios

NG Number of segments in production cost curve
L Number of transmission branches

t Index for time periods

i Index for units: 1,2, ---, NI

S Index for scenarios: 1,2,---, S

d Index for cost curve segments: 1,2, -+, NG

Prs Probability of scenario s

NL; No load cost of uniti [$/h]

ICy; Incremental cost of unit [, seg d [$/MW]

B PBGS convergence acceleration parameters

Y PBGS Step size

p.p,p Penalty factors, initially p= p=p

€ PBGS tolerance limit for Ap

& Probabily — used in Chance Constrained Optimization
ﬁi /Pgi | Max/ min power output of unit i [MW]
RU;/RD; | Unitiramp up/down limit [MW /h]

SU; ¢ Startup cost of unit i at time t in scenario s [$]
Dy Demand at bus n at time t scenario s [MW]
TU;/TD; | Unitimin.up/down time [h]

LF/LF | Branch flow limit [MW]

VOLL Value of lost load [$/MWHh]

VOOB Value of overloaded branch [$/MWh]
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1.4.3. Variables

Ift State of unit i at time t in scenario s, 1 for ON and 0 for OFF
107, Startup indicator of unit i at time t in scenario s
ID}, Shutdown indicator of unit i at time t in scenario s
Pji¢ Dispatch of unit i at segement d at time t in scenario s [MW]
Pg;, Dispatch of unit i at time t in scenario s [MW]
b Lower bound
) Lower bound
e Demand at bus n at time t scenario s [MWV]
LL} Loss of load at time t in scenario s [MW]
AL% Additional load at time t in scenario s [MW]
Zit Implementable state of unit i at time t
LF}: Line flow at time in t in scenario s [MW]
BrSl13, | Branch Slack1 at time ¢ in scenario s [MW]
BrSi27, | Branch Slack? at time t in scenario s [MW]
w3y Lagrangian multiplier (scaled by scenario probability)
A Lagrangian multiplier
N Feasible region for NCUC for a scenario s
V Convex hull of feasible region of NCUC for a scenario s = Conv(A®)

1.4.4. Abbreviations & Acronyms

ALD Augmented Lagrangian Dual
AS Ancillary Services

CAISO California ISO

ED Economic Dispatch

ERCOT Electric Reliability Council of Texas
F-PBGS Fast PBGS

FW Frank-Wolfe Algorithm

ISO Independent System Operator
LB Lower Bound

LD Lagrangian Dual
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LP Linear Programming

LR Lagrangian Relaxation

MILP Mixed-Integer Linear Programming

MIP Mixed-Integer Programming

NAC Non-anticipativity Constraint

NCED Network Constrained Economic Dispatch
NCUC Network Constrained Unit Commitment
PBGS Penalty-Based Gauss-Seidel

PHA Progressive Hedging Algorithm

PSOP Power System Operation and Planning
QSG Quick Start Generation

RO Robust Optimization

RTC Real-time commitment

RTO Reginal Transmission Organization

RUC Reliability Unit Commitment

SCED Security Constrained Economic Dispatch
SCUC Security Constrained Unit Commitment
SO Stochastic Optimization

SPP Southwest Power Pool

TSO Transmission System Operators

ucC Unit Commitment

VRE Variable Renewable Energy
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2. Undertaking of VRE Challenges

System operators such as ISOs and regulated utilities use a critical application called Unit
Commitment (UC) in power system operations. UC is an optimization problem which is typically
run in Day-Ahead (DA) to plan the following day operation (the operating day). The objective of
UC is to minimize the cost of generation commitment and production while enforcing the demand
requirements (load balancing) and host of other constraints such as transmission limits. A detailed

formulation of UC is presented in Chapter 3.

Parameters used in solving UC problems have been deterministic until recently. The
growth of VRE has brought uncertainties to these parameters used in UC problems. Several
noteworthy UC approaches can be found in the literature [7]-[8], each with different objectives,
mechanisms, computational requirements, and economic outcomes that account for the
uncertainties in the UC parameters. The solutions in the current research that tackle the VRE

challenges are discussed here.
2.1. Dynamic Operating Reserve

System operators have historically maintained system reserves such as online (spinning)
and offline (non-spinning) reserves to meet unexpected generation or load deviation from the plan
or forecast due to the forecast's error. In general, reserves are maintained to meet any unforeseen
situation that requires additional generation. The development of markets created more categories
of these reserves and are often called ancillary services. There are different types of ancillary
services often referred to as commodities with varying requirements for specific needs. For
example, regulation reserves procurement to keep the frequency close to the scheduled value is
different from a reserve used when a forced outage of a generation unit occurs. In any case, some
types of reserves based on loss of the largest generation unit have a fixed value for all the operating
hours, and the other reserves amount procured are based on statistical and probability analysis.
One of the earliest applications of such analysis dates back to the early 1960s [9]. Even today,
ERCOT ancillary services are determined based on the statistical analysis of the historical

information and the probability of future system conditions [10].
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In this approach, the operating reserve capacity is determined on an hourly basis, or block
of hours, based on expected renewable production and the historical impact of wind forecast errors.
Matos and Bessa [11] proposed a new reserve management tool based on probabilistic wind power
forecasts to determine operating reserve needs. Holttinen et al. compared methods used in wind
integration analyses and operating practice [12]. Through the research of different operational
practice methods due to wind integration, the authors found that wind variability is not a
contingency event. Instead, the impact of wind generation on the reserves was a nonevent
operation. Also, the authors determined that some events of more considerable variability and more
significant forecast errors could be categorized as slow events. Therefore, the level of operating
reserve needed for wind is not constant during all hours of the day, and the dynamic allocation of
reserves would be more efficient. Computation of dynamic operating balancing reserve for wind
power integration for hours 1 to 48 of operation was presented by Menemenlis et al. in [13]. De
Vos has conducted research on sizing and allocating operating reserves due to wind power
integration [14], [15]. A comprehensive review of strategies and studies on this topic can also
found in the NREL report [16].

The easiest and fastest way to handle the integration of VRES that bring uncertainties and
variabilities is to use the reserves. Using reserves does not require any additional tools than what
the system operators already have. However, the use of reserves for VRE integration is inefficient
and can only be used for a small percentage of VRE penetrations. Also, the energy commodity is
different from the reserves in terms of price, trading, and hedging mechanisms that are in practice
in the established markets today. Therefore, the reserves' use to fill in for the energy gap created

by the VRESs would create problems in the markets.
2.2.  Chance-Constrained Programming

In optimization under uncertainty, one makes a decision using unknown parameters. It is
possible that the realized scenario was not even considered when the decision was made and,
therefore, could result in an unexpected situation. In most problems, there is a recourse one can
follow to mitigate this unexpected situation. However, if one optimizes a problem where there are
no recourses available, the decision-maker can guarantee feasibility as much as possible. The

decision made guarantees the realization of an unexpected situation at a very low percentage. This
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is to say that one or more constraints are enforced most of the time and are allowed to violate a
diminutive percent of the time. Any constraint that contains a random variable or even a function
of a random variable becomes a probabilistic constraint. The probability of a level at which the
constraint enforced becomes a parameter. This level is known as reliability level; hence the
Reliability Constrained Programming and Probabilistic Constrained Programming name used for
Chance-Constrained Programming (CCP). The CCP uses the cumulative distribution function to

transform probabilistic constraint into the deterministic equivalent of the optimization problem.

The earliest paper on CCP by Charnes and Cooper dates back to 1958 [17]. The application
of CCP in UC was studied in [18]-[20]. Ozturk has carried out a research of CCP approach to
stochastic UC in [21].

Chance-Constrained Formulation

minimize ¢’ x (2.1)
s.t. P[Ax>b] > &, £€[01] (2.2)

Typical values for ¢ would be 0.95, 0.99 etc.

2.3. Interval Optimization

The second approach is the application of Interval Optimization (10), which uses
confidence intervals in upper and lower bounds to represent the uncertainty. Unlike scenario-based
optimization, which is discussed in the following section, 10 does not hold any presumptions on
probability distributions. The objective here is to achieve upper and lower bound feasibility rather

than minimizing the cost.

One of the first applications of 10 in UC was studied by Wang et al. in [22] for volatile
node injections. In [23], Zhou et al. used 10 in solving Stochastic-SCUC. Yu et al. applied 10 to
solve SCUC with high penetration of renewables [24]. In addition to using interval values for

demand at each node, transmission contingencies are modeled as interval values with upper and
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lower values. Essentially this reduces n constraints (for n - contingencies) to just one constraint.
This guarantees that all n contingencies are feasible while significantly reducing the complexity
of the problem. Also, UC with wind power integration using 10 was studied in [25]. Comparison
between 10 and scenario-based optimization, which is discussed in the later part of this

dissertation, was carried out by Wu et al. in [26].

Interval Optimization Formulation

minimize f(x) := [f*(x), U] (2.3)
s.t.x€C (2.4)

where C c R"is a nonempty set
fLU:R" > R
frx) < fU(x),vxecC

2.4. Robust Optimization

Robust Optimization (RO) is one of the two approaches to deal with uncertain data used in
optimization (the other being stochastic optimization). Though roots of RO go to the 1970s, it has
gained attention in the early 2000s. Ben-Tal and Nemirovski have authored several papers on this
[27]-[29]. Gorissen et al. have published a practical guide to RO [30]. Theory and applications of
Robust Optimization are given in [31] by Bertsimas et al. Unlike stochastic optimization, RO does
not assume that probability distributions of data are known. For data, RO depends on the
uncertainty set. RO assumes hard constraints for any realization of data in the uncertainty set.
This uncertainty setis an essential part of RO. The method has gained popularity as it is
computationally tractable and robust against all possible realizations of the modeled uncertainty.
Application of RO in UC is given in [32]-[35]. However, the drawback is that RO optimizes for

the worst-case scenario which is not realized often.
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Adaptive Robust Optimization (ARO) remedies this drawback to an extent. Bertsimas et
al. [36] and Ning and You [37] have applied ARO in solving UC problems. Other variants of RO
are discussed in [38]. Zhao and Guan have applied a combined RO with stochastic optimization in
solving the UC problem [39].

Robust Formulation

minimize cTx (2.5)
S. t.Aix = bi' VA,_ € UAL" Vbl € Ubi'i = 1, e, M (26)

Where U, and Uy, are given uncertainty sets

2.5. Stochastic Optimization

Finally, a common approach presented in the literature is the use of stochastic optimization
(SO), namely stochastic NCUC (S-NCUC), in which the operating cost of the expected system is
minimized across several scenarios, each representing a possible realization of uncertainties. S-
NCUC is typically a large-scale, non-convex, mixed-integer problem. The problem is formulated
in two or more stages, and either stage-wise or scenario-wise decomposition technique is used in
solving the problem. Benders decomposition is a stage-wise (cut-based) method, while Progressive
Hedging Algorithm (PHA) and Dual decomposition (Lagrangian relaxation based) are scenario-

wise examples.
2.5.1. Stage-Wise Decomposition

The S-NCUC is often modeled as a two-stage stochastic problem where the first-stage unit
commitment decisions (here and now decision) are the same for all scenarios. The second stage
depends on the realization of any scenario. J. F. Benders proposed partitioning procedures for
solving mixed variable programming problems in 1961 [40]. Van Slyke and Wets applied Benders
Decomposition (BD) to stochastic programming in 1969 [41]. BD involves creating a master
problem (MP) and sub-problem (SP). The MP makes first-stage decisions (unit commitment) and
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passes them on to SP. With fixed first stage decisions, SP solves scenarios, generates new cuts
(constraints), and passes the further cuts to MP. This interaction between MP and SP continues

until convergence.

s Master Problem e
/f'::f--'—— Solve for Unit Commitment \,——x\\
/ N
&";First—stage Cuts \
\ decisions /‘
N\ 4
\— N Subproblem B */

/] Solve scenarios -

Figure 2.1 Bender Decomposition showing interaction between Master and Subproblems.

Baptistella and Geromel proposed one of the early applications of BD to solve UC [42]. A
tutorial on BD in restructured power systems [43] is the right place for beginners. One advantage
of BD is that both the lower and the upper bound are obtained as part of the solution. The
disadvantage is the difficulty involved in solving large problems. As the iteration progresses, the
MP gets increasingly difficult to solve, especially for a massive problem like the one used in the
study cases in this research. The other issue with BD is parallelization. Though BD lends itself to
parallel computation, the MP growth makes parallelization an unbalanced one. There have been
several enhancements in the literature on improving BD-based methods when applied to S-NCUC

problems [44], [45]. To solve multi-stage problems, one can use nested BD [46], [47].
2.5.2. Scenario-wise decomposition

In this decomposition method, the scenarios are solved individually by applying
Lagrangian to decouple the linkage between scenarios. Carge and Schultz have applied the dual
decomposition method to solve stochastic integer programming in [48]. Takriti et al. have used

Lagrangian decomposition to solve the Stochastic UC problem [49]. If one has to decide at each
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stage, often called here-and-now decisions, it must consider all the possible scenarios that are
considered. In the PSOP problem, this is a unit commitment decision. The other name for such a
decision is “Implementable Solution.” Wu et al. applied the same Lagrangian method used to
solve S-NCUC in [50].

The penalty function added to the Lagrangian method (augmented Lagrangian) is used in
Progressive Hedging Algorithm (PHA). Initially proposed by Rockafellar and Wets [51], PHA to
solve stochastic problems involving continuous variables has been applied to solve a problem
involving integers along with continuous variables. Lakketangen and Woodruff first used the PHA
to solve mixed-integer multistage stochastic programs [52]. Fan and Liu applied PHA to solve the
stochastic transportation network problem [53]. Nevertheless, PHA is initially devised for the
continuous convex program and is not provably convergent for non-convex problems such as UC.
Watson and Woodruff made heuristic-based novelties to mitigate or solve issues related to PHA
application to MIP [54]. This PHA will be discussed in the Chapter 4 of this report.

Like stage-wise decomposition, scenario-wise decomposition methods can also be solved
in parallel. The advantage of the scenario-wise decomposition method compared to the stage-wise
decomposition method is the uniform distribution of sub-problem difficulty. The computational
difficulty of MP in the stage-wise method can grow significantly as the iteration progresses. It has
been observed that the time taken to solve each scenario problem takes less time as the iteration
progresses in scenario-wise decomposition. Also, scenario-wise problems can be implemented as
a wrapper over an existing NCUC algorithm in use. This wrapper implementation is an attractive
one as it does not take much time and cost to implement, especially if one desires to have proof-
of-concept. However, the major drawback of scenario-wise decomposition is that obtaining a
lower bound to measure the solution quality requires solving a particular problem. To get a lower
bound for PHA, Gade et al. [55] have proposed a method that uses dual prices from PHA. Lower
bound can be obtained in any iteration of PHA by solving a different problem simultaneously.
However, such a lower bound obtained is sensitive to the penalty factor chosen. This drawback is
mitigated by Boland et al. by combining PHA with the Frank-Wolfe method. This method is not
sensitive to the penalty factor [56]. An application of the Frank-Wolfe method to obtain a lower
bound for the S-NCUC problem is carried out in [57].
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Two-stage Stochastic Programming Formulation

Computation Time or Data Requirements

minimize c"x + E[q"y] (2.7)

s.t.Ax=b, x>0 (2.8)

Tx+Wy=h y=>0 (2.9)
Stochastic

ucC

Robust
uc

Dynamic

Static
Reserve

Reserve

No

Reserve

Reliability Improvement or Efficiency Improvement

Figure 2.2 Reliability vs computation efforts for different methods
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2.6. Hybrid Solutions

Figure 2.2 depicts the reliability improvement versus the computational time of the
different methods considered so far. Researchers have combined two or more different methods
discussed earlier and applied them in solving S-UC problems. Such approaches bring the best of
those methods. Colonetti and Finardi combined Lagrangian relaxation and Benders decomposition
in [58] to solve the stochastic hydrothermal UC problem. In [59], Zhao and Guan applied unified

stochastic and robust optimization techniques in solving the UC problem.
2.7. Scope of The Research

Motivated by the challenge posed by the VRE as explained in Chapter 1 and given different
ways of taking up this change as described in this chapter, the scope of this research is defined

with the following three conditions to make the research applicable for the real-world situations:

1. The solution should not be an exogenous one.
2. The solution should be economically optimal and still keeps the reliability of the power
system intact.

3. The solution should be easy to implement with the least cost, time and resources.

Applying these conditions to the different methods discussed earlier, condition 1 eliminates
dynamic reserve-based approaches discussed in 2.1 while condition 2 eliminates all other methods
discussed in 2.2 through 2.4. The last condition eliminates stage-wise decomposition methods such

as BD. This leaves us with scenario-wise decomposition methods.
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3. Stochastic-Network Constrained Unit Commitment

This chapter starts with a brief introduction to Unit Commitment (UC), followed by
formulating the Stochastic-Network Constrained Unit Commitment (S-NCUC) problem. Section
3.3 is dedicated to the computational environment used in the simulation, followed by Section 3.4
in which three different systems used in the simulation are discussed. Scenario generation is a
crucial part of any stochastic programming; therefore, Section 3.5 is dedicated to this topic.

Finally, Extensive Formulation results are presented.
3.1.  Unit Commitment (UC)

It is well known that the electricity demand must be met with supply in real-time. Since
the thermal generators have a long lead-time between the time the decision is made to bring the
unit online and synchronizing the unit to the grid, the operational planning occurs well in advance
of real-time operations. During this operational planning, a generation commitment decision must
be made to meet the forecasted demand by committing enough generators. This commitment
decision is an economical one. The total cost of serving the demand is minimized while subject to
individual unit constraints and system-wide power balance, and other constraints. Near the real-
time operation, another decision is made to commit, or de-commit quick-start generation units
(QSG) called real-time commitment (RTC). During the real-time operation, the final decision is
made by dispatching the committed units to meet the actual demand and is called economic
dispatch (ED). Like UC, both RTC and ED are based on an objective where a low-cost solution is
sought after. Wood and Wollenberg's text [60] gives an excellent introduction to UC and ED. Unit

Commitment problem is a scheduling problem.

Network Constrained UC (NCUC) and Network Constrained Economic Dispatch (NCED)
are UC and ED with additional constraints stemming from the thermal and dynamic limits of
transmission lines. It is crucial to control the transmission grid's flows that do not push the actual
flows beyond thermal or dynamic limits, thereby causing system security problems. Nowadays
such violations are avoided not only on the base case but also under n-k contingencies. When such
contingencies are considered, the UC problem is called Security Constrained UC (SCUC). Though
the stochastic problem formulated and solved is for NCUC, the formulation can also be applied to

SCUC without any changes.
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3.2. S-NCUC Formulation

Since a plethora of papers, books and dissertations are available on the deterministic
version of UC [61]-[66] and the focus is on stochastic formulation, the discussion starts
straightaway into the stochastic version. An S-NCUC formulation that originated from the Flexible
Energy Scheduling Tool for Integrating Variable Generation (FESTIV) [67], [68] is used in the
research. The objective of the two-stage S-NCUC is to minimize the expected system operating

cost across the different scenarios as follows:

Objective function:

NT NI S NG
{ = minimize Z z (NLi lie + SUy - 1U; e + z Pr? Z(pgl’i,t : ICd’L-))
SR s=1 d=1
S
+ Z Prs((ALS + LLS) - VOLL) (3.1)
s=1

S
+ Z Prs <Z(Br511ft + BrSi2§,) - VOOB)

where
Ie€ {O 1}NI><NT><S

RNGXNIXNTXS

pP €

The objective function in (3.1) has commitments (/; ), startups (1U; ) and dispatch (pg ; ;)
decisions that use corresponding no-load cost (NL;), startup cost (SU; ) and dispatch cost based
on offer curve (ICy;). The startup decision is independent of scenarios as it is a here and now
decision; it is summed up over generators and intervals. However, the dispatch decision depends
on the scenarios considered. Therefore, it is summed up over all the generators, intervals, and

scenarios.
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The second part of the objective function (3.1) includes two types of penalty. One (VOLL)
arises from the violation of the power balance constraint (loss-of-load (LLj) or additional-load
slack (AL3)). The other (VOOB) is transmission violation constraint (branch slack in either
direction (BrSI1;,, BrSI25,)). These are used to obtain a solution; otherwise they would result in

infeasibility.

It should be noted that the probability of realization of each scenario is multiplied by the

cost of that scenario. The probability of all the scenarios should add up to one.
Subject to the following constraints:

Power balance constraint

NI

s __
E Pgi: =
i=1

This power balance constraint is a system-wide constraint, meaning any sum of all the

Vt € NT,Vs €S (3.2)

N
z DS, — LLS + AL
n=1

generation in the system must be equal to the sum of the system's demand. This constraint forces
the supply to meet the demand for each interval. As discussed earlier, loss-of-load and additional-
load slack variables are there to obtain a feasible solution by applying a penalty.

Power flow constraints

LF}; < LF, + BrSl1;,

LFftZ—LFl+BrSlzit} VIELVtENT,VSES (3.3)

The transmission lines must not be loaded above its thermal or stability limit in either
direction. Such an overload can cause permanent sag of the line violating the sag limit. This

constraint enforces such restriction for each transmission line in the system.

Power flow equation

N NI
LS, = Z SFin- (Z PgSin— DS, + LLS — AL§> VIELVLENT,VSES (34)

n=1 =1
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Generator minimum and maximum output constraints

IS, Pg; <Pgi,<Pg;" I}, ViENLVtENT,VSES (3.5)

Constraint (3.5) enforces that the generators are not dispatched below the low limit or
above the high limit. Typically, large fossil fuel generators have a low limit needed to make sure
a minimum amount of generation to supply auxiliary load such as boiler water feed pump, draft

fan, etc.

Generator ramp up and ramp down constraints

Pgis,t - Pgis,t—l < RU;

5 . }ViENI,VtENT,VSES (3.6)
Pgit—1—Pgi: < RD;

Ramp up (RU;) and ramp down (RD;) constraints ensure that the generator can meet the
demand from one interval to the next by increasing/decreasing a certain amount of output in a

specific time. These ramp-up/down rates could be different from startup and shutdown rates.

Generator minimum up time and minimum down time constraints

T+TU;—

1
t=T

T+TD;—1

Z (1-1,) =TD;

t=T %

s VieNLVtENT,Vs€S (3.7)

A typical fossil-fuel generator has a constraint where it will have to be online for a
minimum number of hours once it comes online (TU;). When offline, the generator will have to
remain offline for a minimum number of hours before it comes online again (TD;). Enforcement

of these minimum up and downtime constraints is accomplished in constraint (3.7).

In the S-NCUC formulation, shift factors are used to calculate the line power flow. The

shift factor and power flow calculations can be found in [68]. Other prevailing constraints such as
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spinning and non-spinning reserve constraints, segment generation limits are also considered. In
addition, contingency constraints can be taken into consideration in the S-NCUC formulation. The

feasible region of decision variables is given as:

{3} €N, ViENLYLENT VA ENG (3.8)

where A® is determined by all the above constraints. Problem (3.1), constraints (3.2) - (3.7) are
also known as the Extensive Form (EF) of the two-stage S-NCUC, in which even a moderate
number of scenarios can result in a computational burden that quickly exceeds the capability of
any state-of-the-art MIP solver. Besides, the computational burden increases exponentially with
the size of the problem using the branch-and-cut method [69]. This increased computational
burden is why scenario-based decomposition frameworks such as Lagrangian relaxation are used

to solve a large-scale S-NCUC problem iteratively [70].
3.3.  Computational Environment

The proposed algorithms are implemented in MATLAB within the National Renewable
Energy Laboratory (NREL)’s Flexible Energy Scheduling Tool for Integrating Variable generation
(FESTIV) framework. The S-SCUC is modeled in General Algebraic Modeling System (GAMS)
[71] and all the problems were solved using CPLEX [72]. Figure 3.1 shows data flow between
MATLAB where iterations takes place and GAMS which does optimization. Figure 3.2 depicts
the FSTIV graphical user interface. The computing platform has 256 GB RAM, Intel Xeon CPU
E5-2640 with dual processors.
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Figure 3.1 NREL's FESTIV Framework
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4] FESTIV -[alx]]
Flexible Energy Scheduling Tool for Integrating Variable generation
1 1 T
_|
] i
Input File: IIT_118bus_CAISO_basecase_er00_Jan.h5 Browse | [J ::i?e
DASCUC RTSCUC RTSCED
1 _DAC: 24 |_DAC: 1 t RTC: 15 |_RTC: 15 t_ RTD: 5 |_RTD: 5
H_DAC: | 24 P_DAC: 1 H_RTC: | 12 P_RTC: | 15 H_RTD: | & P_RTD: 5
G_DAC: | 12 | H_Type: Type1 w t RTCSTART 1 |_RTD_ADY. | 15
Load Forecast ' Load Forecast Load Forecast
2 - Perfect Forecast W 2 - Perfect Forecast W 2 - Perfect Forecast W
VG Forecast VG Forecast VG Forecast
1 - From Data File v 1 - From Data File v 1 - From Data File W
Reserve Levels Reserve Levels Reserve Levels
1- Mo reserve v 1 - From Day Ahead v 1 - From Day Ahead W
DASCUC Rules RTSCUC Rules RTSCED Rules
AGC Simulation Time {D:H:M:5]} MNatwark Chack CTGC Check
AGC Param AGC Rules 1 |20 |20 [ 0 ® Yes O No ) Yes ® No
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Multiple CTGC Other Save Load I
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Figure 3.2 FESTIV - user interface?

2 Flexible Energy Scheduling Tool for Integrating Variable Generation | Grid Modernization |

NREL
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3.4. Systems Modeled/Used in Simulations

Three systems differing in size are used in the research. The system chosen various in size

and are discussed in detail in this section.
= RTS-96 System
= |EEE 118-bus System
= ERCOT-Like System
3.4.1. RTS-96 System

The IEEE Reliability Test System (RTS-96) was developed [73], [74] by modifying and
updating the original IEEE RTS (RTS-79). This system is widely used in experiments for all kinds
of bulk power-system related studies. The current research uses the modified single-area that has
24 buses, 38 branches and 26 generators. The average load is around 1200 MW and the peak load
is nearly 2500 MW. A wind turbine generator (WTG) is connected to Bus 23 with an installed
capacity of 130 MW, which is about 4% of the total capacity in the system. One-line diagram of
the RTS-96 System is provided in Figure 3.3.
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Figure 3.3 The IEEE Reliability Test System (RTS-96) diagram [74]

To get an understanding of the problem size of RTS-96 mathematical model is done by
looking at the GAMS statistics in terms of number of equations, discrete variables, etc. Statistics

for RTS-96 is shown in Figure 3.4. There are 2,232 first stage decisions over a 24-hour period for
this system.

GAMS 28.1.0 r5b48834 Releagsed Zug 2, 201% WEE-WEI x8¢ &€4bit/M5 Windows
Feneral Algebkbraic Modeling S ystem
Model Statistics SQ0LVE 5CUC Using MIP From line 1895

MODEL STRTISTICS

BLOCES OF EQUATICONS 108 SINGLE EQUATIONS 151,065
BLOCES OF VARIREBLES 25 SINGLE VRRIRBLES 1e0, 729
NON ZERO ELEMENTS B804, 7598 DISCRETE VARIRELES 2,232

Figure 3.4 GAMS model statistics for the RTS-96 System
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The research uses the RTS-96 and IEEE 118-bus system to establish unique features of FW-PHA

and PBGS through results and arrive at a conclusion that will be used to interpret the large system

result as big as Electric Reliability Council of Texas (ERCOT).

3.4.2. The IEEE 118-bus System

A modified IEEE 118-bus System [75], [76] has 118 buses, 186 branches and 54 generators
that includes 10 WTGs. These WTGs are located at buses 4, 26, 27, 40, 49, 62, 89, 100, 107 and
112. The installed capacity is 376 MW (8% of the total capacity). The network diagram of this

system is shown in Figure 3.5. GAMS statistics is given in Figure 3.6.

e

System Description:

118 buses

186 branches

91 load sides

H4 thermal units

One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003
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Figure 3.5 The IEEE 118-bus one-line diagram?

3Visio-IEEE 118bus 54T.vsd (iit.edu)
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GAMS 28.1.0 r5b48834 Released Rug 2, 2015 WEE-WEI =8¢ €4bit/M5 Windows

Eenersal Ll gebkbraidc Modeling Sy 3 tem
Model Statistics S0LVE 5CUC Using MIP From line 1&35

MODEL STRTISTICS

BLOCES OF EQUATIONS 108 SINGLE EQUATIONS 463, 344
BLOCES OF VARIRBLES 28 SINGLE VARIRBLES 448 369
NON ZERO ELEMENTS 5,410,128 DISCRETE VARIRELES 4,032

Figure 3.6 GAMS model statistics for the IEEE 118-bus System

3.4.3. The ERCOT-like Large System

This system is a redacted version of the ERCOT system with 7226 buses, 8853 branches
and 725 generators that includes 178 wind farms. The names of buses, loads, generators along with
generation costs are redacted in the system modeled. In fact, it is so much redacted and modified
that it resembles the ERCOT system from the network and size point-of-view only. The installed
capacity is over 80,000 MW of which 21,582 MW is from wind. An overview of the transmission
network of the system is shown in Figure 3.7. The transmission system has three different levels
of voltages. At the highest level is 345 KV (red) followed by 138 KV (blue) and 69 KV (green).
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Figure 3.7 Bird’s-eye View of the transmission system of ERCOT*

This large system is too big to be solved even deterministically as the number of variables
and number of equations are close to 2 million each, and the total non-zero elements are over a

billion. Figure 3.8 shows the model statistics.

4 https://mis.ercot.com
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F2MS 24 _.7.4 r58773 Beleased Sep 1%, 2016 WEE-WEI =86 €4bit/M5 Windows
Eenersasl Algebraic MHModeling Sy s tem
Model Statistics SC0LVE S5CUC Using MIP From lime 1135352

MODEL STATISTICS

BLOCES OF EQUATIONS 122 SINGLE EQUATIONS 1,254, 327
BLOCES OF WARIABLES 25 SINGLE VARTABLES 1,835,137
NOM ZERO ELEMENTS 1,155, 236,700

Figure 3.8 GAMS model statistics for the ERCOT-Like System

In order to solve such a large system, it is necessary to eliminate the constraints that will
not be active for a given network topology, load and generation. Over 95% of the 8853 branches
are inactive for the scenarios generated and studied in this research. For each scenario, the active
constraints were identified by first solving the NCUC problem without network constraints, and
from the result a list of branches that violated its limit as active constraints is compiled. The NCUC
problem is solved again with network constraints using these active constraints and screened for
additional branch violations. This process was repeated until violations were eliminated or no new

violations were found. Flow chart of this process is depicted in Figure 3.9.
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Figure 3.9 Line screening for the transmission constraints

An efficient method of identifying inactive constraints is given in [77]. Once all the active
transmission constraints are identified for each scenario, combined active constraints would be

used as the only transmission constraints in further simulations.
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3.5. Scenario Generation

The modeling of uncertainty is crucial in stochastic programming. There are many
techniques available, and depending on the technique used, the modeling of the uncertainties could
be different. The goal of scenario generation is modeling of the uncertainties that represent a
possible outcome. In a two-stage problem, the scenarios are for the second stage where any of
those scenarios could be realized. In a multi-stage problem, a scenario tree is needed and each
stage could have its own set of scenarios. For the S-SCUC problem, scenario generation should be
related to the forecasted value of variables. This is particularly important for wind generation
forecast as it is based on the wind speed forecast. Wind speed is based on the location and time,
which must be included in the scenario generation. The impact of location and time on the
generation output is not only applicable for wind generation but also for solar generation. Scenarios
must be generated for each wind/solar farm. This is especially true for a system that geographically

spans hundreds of miles.

The performance of S-SCUC is driven by how well the selected scenarios represent the
stochastic nature. Too many scenarios would be time consuming to solve, and too few may not
represent the uncertainties well. Naturally, one can think that a large number of scenarios would
yield higher quality of solution. This may be true up to a point after which the quality of solution
might not improve for the increased number of scenarios. This is where scenario reduction
techniques come into help. Scenario reduction technique [78] can be applied to bundle two or more
similar scenarios based on certain probabilistic metrics to reduce the number of scenarios to be
considered in the problem. Comparison of different techniques are presented in [79]. Several
papers are devoted to the scenario generation topic [80]-[83] and research is actively conducted in
this area.

Since the research focus is not about scenario generation or reduction, there will not be any
discussion on the methods used other than the one employed in generating scenarios for the
simulations in this research. The scenario generation technique with autoregressive moving
average, i.e., ARMA (1, 1), is used to generate scenarios [84], each representing the possible
realization of load and wind condition for all the three systems considered. The ARMA (1, 1) used

is
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ee=ae_1+pf Liq+L (3.9)

where e is the forecast error of wind generation or load at time t, and L, is a normal-distribution
function with a varying standard deviation of the load forecast and the wind generation forecasts.
a and  are ARMA parameters determining the degree to which the previous value influences the
current value. One set of 10 scenarios for RTS-96 was generated. For the IEEE 118-bus System, a
total of 27 sets were generated. One set of 10 scenarios and 26 sets with 50 scenarios. For the
ERCOT-like System, one set of 30 scenarios were generated. This limitation of 30 scenarios was
due to the computational constraints. However, larger deviations in both load and wind generations
were used in scenario creation. Table 3.1 shows each scenario set with the standard deviation

(STD) used for load forecast and wind generations.

Table 3.1 List of scenarios sets with scenario generation statistics

Load Forecast Wind Forecast
) Deviation Deviation Number of
Scenario Sets Scenarios
STD % Dev STD %Dev

RTS96-10-S1 3% 23.58 6% 45.16 10
IEEE118-10-S1 3% 23.58 6% 45.16 10
IEEE118-50-S0 3% 23.58 6% 45.16 50
IEEE118-50-S1 4% 31.08 8% 57.62 50
IEEE118-50-S25 4% 31.08 8% 57.62 50
ERCOT-30-S1 6% 45.16 10% 68.26 30

Figures 3.10 through 3.24 show the load, wind and selected individual wind generation scenarios

for each of the three systems.
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wind, 50 scenarios
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The quality of the scenarios generated using ARMA seems to be adequate for the case
studies in this research. It is apparent from the 25 sets of 50 scenarios that were generated for the
IEEE 118 bus System results. Also, the variation used in the ARMA model to generate load
scenarios is far higher than the accuracy of the load forecasts in the real world. For example, the
generated load forecast error of the ERCOT-like System varies to as high as 45%, while the real-

world forecast errors are 2 to 5%. This high variation demonstrates the quality of the solution.
3.6. Extensive Formulation Results

In this section results obtained by solving S-NCUC problem using EF is discussed. EF
yielded results for two of the three systems modelled in this research. EF is implemented within
the FESTIV environment.

3.6.1. RTS-96 System

The only scenario created for this system, RTS96-10-S1, is solved using EF in the FESTIV
environment. The optimization engine used was CPLEX, and the partial output from the CPLEX
is shown in Figure 3.25. As shown, the CPLEX took 14 minutes to arrive at a solution. Figure 3.26
shows the FESTIV output where the first stage CPLEX solution is validated for all the ten
scenarios. This result shows that all the ten scenarios had neither loss-of-load nor additional load

slack, validating the feasibility of the solution obtained.
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MIP Soclution: 333732.8B35728 (465363 iterations, 4100 node
Final Sclwve: 333732.8B35728 {758 iterations)

Best possible: 333399.337717

Lbsclute gap: 333.458011

Belative gap: 0.000959%

Solution {uality Statisticsa:

unscaled 3caled

max sum max
primal infeasikility 4.615%=-14 1.634e-13 2.887e-15 2
dual infeasikility 0.000e+00 0.000e+00 0.000e+00 ]
primal residual 7.550e-15 5.0682e-12 7.550e-15 5
dual residual 1.421e-14 2.274de-12 1.421e-14 2
primal scluticn wector 1.01%e+03 2.773e+04 4.000e+00 2
dual scluticn wector 2.917e+02 1.290e+08 1.024e+03 1
slacks 2.400e+01 1.397e4+05 2.400e+01 1
reduced costs 1.002e+05 2.706=+0%9 1.002e+05 2
Condition number of the scaled basis matrix = 7.6857e+02
MIP Kappa distributicn Report:
Percentage of atable bases (kappa<le+7): 99.88
Percentage of suspiciocus bases (le+7<kappa<le+l0): 0.12%
Percentage of unstable bases (le+ll<kappa<le+ld): 0.00%
Percentage of illposed bases (le+ld<kappa): 0.00%
Max condition number: 2.68459=+07
Attention index (if >0.03 caution iz advised) 0.00

Beading soclution for model 3CUC

EF.gms{1695) 78 Mb E58 secs

Executing after solwve: elapsed 0:14:21.862

EF.gms {1728) 78 Mb

GDX File D:WE5OC\APalani\FESTIV_EF\TOTAL DASCUCCUIFUI_EF.gdx
Status: Normal completicon

Job EF.gms Stop 12/29/19 17:32:24 elapsed 0:14:21.958

Figure 3.25 Partial output of EF CPLEX solution for RTS96-10-S1
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Scenaric 9, PFRODCOST 333360.172644, loss_load 0.000000, add load slack 0.000000, startup cost 64597.000000
Scenaric 10, PRODCOST 338682.448077, loss_load 0.000000, add load slack 0.000000, startup coat 6497.000000

Gap = 0.000000, Percentage Gap = 0.000000241 fprintf (™\mi**ssshddss™)
e

Figure 3.26 FESTIV output of EF solution for scenario RTS96-10-S1

This result will be used in subsequent chapters for comparison with proposed algorithm.
3.6.2. The IEEE 118-bus

For this system, EF solutions of two of the 27 sets of scenarios created are presented.
Results for other sets will be presented in Chapter 5 when Out-of-Sample scenarios are discussed.
The scenario sets presented here are:

e |EEE118-10-S1

o |EEE118-50-S0

Figures 3.27 and 3.28 show EF results for 10 scenarios of the IEEE 118-bus System while
figures 3.29 and 3.30 show the EF results for the 50 scenarios.
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MIP Solution: 851152.261098 {44409 iteraticns, 172 nodes)

Final Solwve: 851152.260974 {933 iterations)
Best possible: 850355.36220%9
Ebsclute gap: 796.89888
Belatiwve gap: 0.000836

Soclution Quality Statistics:

unscaled scaled

max aum max aum
primal infeasikbility 3.638e-12 3.638e-12 3.638e-12 3.638e-12
dual infeasikility 0.000e+00 0.000e+00 0.000e+00 0.000e+00
primal residual 5.678e-13 2.6%4e-11 5.5%68e-14 2.6%4e-11
dual residual 2.274e-13 1.243e-11 2.274e-13 1.243e-11
primal scluticn wector 1.040=+04 T.232e+04 2.000e+00 4.795%e+04
dual scluticn wector 1.552e+03 B.266e+06 2.719%=+08 1.142e+08
slacks 6.001e+03 3.436e+07 9.980e+02 7.814e+05
reduced costs 3.983e+07 1.051e+10 3.983=+07 1.052e+10
Condition number of the scaled basis matrix = 2.357e+05
MIP Kappa distribution Beport:
Percentage of atable bases (kappa<le+7): 100.00%
Percentage of suspicious bases (le+7<kappa<le+l10): 0.00%
Percentage of unstable basez (le+ll<kappa<le+ld): 0.00%
Percentage of illposed bases (le+ld<kappa): 0.00%
Max condition number: 7.8511e+06
Attenticon index (if >0.03 caution is advised) 0.00

—-—— Beading scluticon for model 3SCUC

——— EF.gms(1724) 5%2 Mb

-—— GDX File D:\BE50C\APalani‘\FESTIV _EFWTEMPA\TOTAL DASCUCOUTIFUI_EF.gdx
**% Status: Normal completicon

——— Job EF.gms Stop 12/20/19 13:446:23 elapsed 0:11:33.465

Figure 3.27 Partial output of EF CPLEX solution for IEEE118-10-S1
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>» FESTIV

s

* Flexible Energy Scheduling Toocl for Integrating Variabkle generation *
R R R R R R e e R

** FFFFEF EEEEEE 555555 ITITTITI IIIIII v VW ke
*F FF EE 35 1T II WV b
** FFFFFF EEEEEE 5355555 1T II VWV b
Lo FF EE 35 1T II W bl
*F FF EEEEEE 535555 1T IIIIII v b

EEEE L EL L R R A R R E e R e e e e s e )

ddkkkkkukkwkisss National Renewable Energy Laboratory *wsskkksddakddss
EEE R S L R R e R e e

Input File: IIT_118bus_CRAIS0 basecase_err00_Jan.hS
Reading Input Files...Complete! (00 min, 11.24 s3)
Modeling Initial Day-RAhead Unit Commitment...
Computation Start Time 2019-09-22 22:27:51.4

Production Cost 851152.260974

Computation Stop Time 2019-09-22 22:42:31.7

Scenario 1, PRODCOST B58742.951559, loss_load 0.000000, add load slack 0.000000, startup cost 24337.200000
Scenaric 2, PRODCOST E899517.065818, loss_load 0.000000, add load slack 0.000000, startup cost 24337.200000
Scenaric 3, FRODCOST 879967.170613, loss_load 0.000000, add lcad slack 0.000000, startup cost 24337.200000
Scenario 4, PRODCOST 913539.710144, loss load 0.000000, add load slack 0.000000, startup cost 24337.200000
Jcenaric 5, PRODCOST 933002.900434, loss load 0.000000, add load slack 0.000000, startup cost 24337.200000
Scenaric &, PFRODCOST 2822549.270427, loss_load 0.000000, add lcad slack 0.000000, startup cost 24337.200000
Scenario 7, PRODCOST B11774.894402, loss_load 0.000000, add load slack 0.000000, startup cost 24337.200000
Scenario &, PRODCOST 736196.6460%1, loss load 0.000000, add load slack 0.000000, startup cost 24337.200000
Scenaric 9, FRODCOST 754780.653647, loss_load 0.000000, add lcad slack 0.000000, startup cost 24337.200000

Scenario 10, PRODCOST 901451.347839, loss_load 0.000000, add load slack 0.000000, startup cost 24337.200000
Gap = 0.000124, Percentage Gap = 0.00000024]1 fprintf("\n¥skskdeddirn) -
K>>

Figure 3.28 FESTIV output of EF solution for scenario IEEE118-10-S1
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MIP Sclution:
Final Solwve:

Best possible:
Lbsclute gap:
Belative gap:

.4839593
.483872

285635.24598593
1335.214100
0.001505

Solution {uality Statisticsa:

primal infeasikility
dual infeasikility
primal residual

dual residual

primal scluticn wector

dual sclution
slacks
reduced costs

(317863 iterations,

{6325 iterations)

unscaled
max sum
3.638e-12 3.638e-12
9.142e-07 1.429e-05
6.085e-13 1.356e-10
2.674e-13 1.858e-11
3.390e+03 2.573e4+05
vector 1.410e+03 2.351e+08
6.001e+03 1.688e+08
3.983e+07 1.051e+10

MIF Kappa distribution Report:

Percentage of
Percentage of
Percentage of
Percentage of
Max conditicon

atakble bases (kappa<le+7):

suspicicus bases (le+7<kappa<le+l0):

unstakle basezs (le+li<kappa<le+ld):
illposed bases (le+ld<kappa):

numkber:

scaled

max
.638e-12
.142e-07
.598e-14
.674e-13
.604e+00
.438e+035
.9&0e+02
.983e+07

L T R Y % T N Y .

100.00%
0.00%
0.00%
0.00%

2.409%e+08

Attention index (if >0.03 caution is advised)

-—— Beading sclution for model SCUC
-—— EF.gms({1728) 23972

--- GDX File D:\P530CWAPalani‘FESTIV_EFWTEMPA\TOTAL DASCUCOUIFUI_EF.gdx
**% Status: MNormal completion
-—— Job EF.gms Stop 07/720/20 20:51:146 elapsed 5:03:56.063

0.o0

oL R s

260 nodes)

Sum

.638e-12
.428e-05
.358e-10
.858e-11
.373e+05
L142e+08
.856e+06
.052e+10

Figure 3.29 Partial output of EF CPLEX solution for IEEE118-50-S0
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»» FESTIV

AAAAAR AR AR AR AR AR A AR A AR A AR AR AR AR AR AR AR AR AR AR AR A AR AR AR AR
* Flexible Energy Jcheduling Tool for Inbegrating Variable generation *
AAAAAR AR AR AR AR AR A AR A AR A AR AR AR AR AR AR AR AR AR AR AR A AR AR AR AR
#*  FEEEEE EEEEEE 333533 TITTITIT IIIIII L T A
*+ FF EE 22 T II VWOV e

bl EEEEEE EEEEEE F33333 T II W bl
bl EF EE 28 T II Vi b
a4 EE EEEEEE 382382 T IIIIII v hh

AR AR A A AR A AR A A A A A A AR A A AR A A A AR A A AR A AR A A AR A A A AR AR AR AR AR AL A AR

Ahhdbbbdbbbdbddd Hational Benewable Energy Laboratory ddbdddbddiddddds
L LI LT Lr T

Input File: IIT_l1l8bus CRAIS0 basecase ercll_Jdan.hS
Beading Input Files...Complete! (00 min, 05.48 =)
Mpdeling Initial Day-ihead Unit Cosmitment. ..
Computation Jtart Time Z0Z0-07-20 15:47:17.Z2

Eroduction Cost BBEST0.46387Z
Computation Ftop Time Z0Z0-07-20 20:51:17.2

Zcenaric 1, PRODDOST 776EED.BE54%Z, los= lcad
Zeenario 2, FRODDOST BB3371.565515, loss load
Zcenaric 3, PRODDOST 546136.805107, los=_lecad 0.000000, add locad =lack O.000000. =tartup co=t 1BE51.Z00000
Zcenaric 4, FRODOOST 552832.3342%3, loss load 0.000000, add load =lack O0.000000, starcup cost 15851200000

0. 000000, add load =lack 0
o o
o o
o o
Zeenaric 5, PRODDOST B4DE3Z. 672270, lo=s load 0.000000, add_load =lack O0.000000, startup cost 15051200000
o o
o o
o o
o o

000000, add lead_slack

L0o0000, startup cost 15851, 200000
000000, startup cost 15851200000

Zcenario &, FRODOOST BB1175.10138€, loss load 0000000, add load =lack O.000000, startup cost 15851200000
Zcenaric 7, PRODDOST BGT7764.58045%5, loss load 0.000000, add_load =lack O.000000, startup cost 15051 200000
Zcenaric 8, PRODDOST B01537.461417, lo== lecad 0.000000, add locad =lack O.000000, =tartup co=t 1BE51.Z00000
Zcenario %, FRODDOST 532687.165653, loss load 0.000000, add_load =lack O.000000, startup cost 15851200000
Zcenaric 10, FBODDOST B5273Z.053%04, lo==_load 0.000000, add_load =lack 0.000000, =startup co=t 1BE51.200000
Zcenario 11, EBODCOST 1055224.26%4343, lo=s load 0.000000, add lead slack 0.000000, startup cost 15551, 200000
Zrenario 12, PRODDOST BEEC01_ 140118, loss=_load 0000000, add load =lack 0000000, startwp cost 10051 _Z00000
Zcenario 13, FBODOOST 510213.384257, loss_load 0000000, add load slack O.000000, startup cost 15551.Z00000
Zeenaric 14, PRODOOST 762023 .BE515E, loss_load 0000000, add load =lack O.000000, =tartup cost 10051 Z00000
Zpenaric 15, FBODDOST B75641.452410, lo==_load 0.000000, add load =lack 0.000000, =tartup co=t 1BE51.200000
Zcenario 16, FBODDOST 546380.56478%, loss_load 0000000, add load slack O.000000, startup cost 15E851.Z00000
Zcenaric 17, FBODDOST B87475.822744, lo==_load 0.000000, add_load =lack 0.000000, =tartup co=t 1BE51.Z200000
Zcenarico 18, FBODCOST 1005116.177746, lo=s load 0.000000, add load slack 0.000000, startup cost 15551200000
Zrenario 18, PRODOOST 1038437 780354, lo=s load O_000000, add load =slack 0_000000, startup cost 10051 200000
Zcenario Z0, EBODOOST T796511.402668, loss_load 0000000, add load slack O.000000, startup cost 15551.Z00000
Zeenaric Z1, PRODOOST BETERT.E200E83, loss_load O.000000, add load =lack O.000000, =startup cost 1GL0S1.Z00000
Zpenaric 22, FBODDOST B12555.715244, lo==_load 0.000000, add load =lack 0.000000, =tartup co=t 1BE51.200000
Zcenaric 23, PRODDOST BOSOZE.BEZEIZ, loss_load 0000000, add load =lack 0.000000, startup cost 1GGE1. 200000
Zcenaric 24, FBODDOST S53843.B76EE7, lo==_load 0.000000, add_load =lack 0.000000, =tartup co=t 1BE51.Z200000
Zcenario 25, FBODDOST SEG0BE.G8Z1EZ, loss_load 0000000, add load slack O.000000, startup cost 15E851.Z00000
Zrenarie 26, PRODDOST B31507_ 250084, loss=_load 0000000, add load =lack 0000000, startuwp cost 10051 _Z00000
Zcenario 7, FBODOOST BB185Z.Z56517, loss_load O.000000, add load =lack O.000000, startup cost 15551.Z00000
Zcenaric 28, PRODDOST B47445.476245, loss load 0000000, add load =lack O.000000, =startup cost 10051 Z00000
Zpenaric 2B, FBODOOST S00734.108811, lo==_load 0.000000, add load =lack 0.000000, =tartup co=t 1BE51.Z200000
Zcenaric 30, PRODDOST BL1E57.355855, loss_load 0000000, add load =lack 0.000000, startup cost 1GGE1.Z00000
Zpenaric 31, FBODDOST B4€633.065210, lo==_load 0.000000, add_load =lack 0.000000, =tartup co=t 1BE51.Z200000
Zcenario 32, FBODDOST B47384.857147, loss_load 0.000000, add load slack O.000000, startup cost 15E851.Z00000
Zrenario 33, PRODDOST 785546 Z7ZTE€0, loss=_load 0000000, add load =lack O.000000, startwp cost 10051 _Z00000
Zcenario 34, FBODCOST BEZB48.Z56783, loss_load 0000000, add load slack 0.000000, startup cost 15551.Z00000
Zeenaric 315, ERODOOST lo==_load 0.000000, add load =lack 0.000000, =startup cost 1GE051.Z00000

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

o o

Scenaric 36, PRODCOST S75055.681516, loss_load 0.000000, add load_slack 0.000000, =startup cost 18851200000
Scenaric 37, PRODCOST S55C8Z.TEE013, lom=_locad 0.000000, add_lead_slack 0.000000, =tartup cost 15851 200000
Scenaric 38, PRODCOST SBSZ8E.TZ0076, loss_load 0.000000, add_load_slack 0.000000, =startup cost 18851200000
Scenaric 38, PRODCOST 812077.655228, loss_load 0.000000, add_load_slack 0.000000, startup cost 15851200000
Seenaric 40, PAODCOST 84241% 587004, los==_load 0000000, add_load_slack 0.000000, =startup cost 1GC51_Z00000
Scenaric 41, PRODCOST B92486.843422, loss_load 0.000000, add_load_slack 0.000000, =startup cost 15851200000
Scenaric 42, PRODCOST T8158L.725264, lom=_load 0.000000, add_lcad_slack 0.000000, =tartup cost 1GC51.Z00000
Scenaric 43, PRODCOST SO0BTSS. 325001, loss_load 0.000000, add load_slack 0.000000, =startup cost 18851200000
Scenaric 44, PRODCOST S01533.180087, lom=_lcad 0.000000, add_lead_slack 0.000000, =tartup cost 15851 200000
Scenaric 45, PRODCOST 871262 BZBEZZT, loss_load 0.000000, add_load_slack 0.000000, =startup cost 18851 Z00000
Scenaric 46, PRODCOST B56284.788721, loss_load 0.000000, add_load_slack 0.000000, startup cost 15851200000
Seenaric 47, PAODCOST BLEATT. 138234, los=s=_load 0000000, add_load_slack 0.000000, =startup cost 1GC51_Z00000
Scenaric 48, PRODCOST 844228.716716, loss_load 0.000000, add_load_slack 0.000000, =tartup cost 15851200000
Scenaric 48, PRODCOST 802047.556003, lom=_load 0.000000, add_lead_slack 0.000000, =tartup cost 1GC51.Z00000
Scenaric 50, PRODCOST 991784665652, loss load 0.000000, add load_slack 0.000000, =startup cost 18851200000
Gap = 0.00011E, Bercemtage Sap = 0000000

Figure 3.30 FESTIV output of EF solution for scenario IEEE118-50-S0
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Comparing the time taken to obtain EF solution for ten scenarios with 50 scenarios shows
how the time taken increases exponentially with the increased scenarios. The time taken for ten
scenarios is 11 minutes, while the time taken for 50 scenarios is 303 minutes. Also, note that the

EF solution obtained for each set is feasible for every scenario within the respective set.
3.6.3. The ERCOT-like Large System

Unable to obtain a solution within the computational constraints for this extensive system
using EF. This is why the scenario-wise decomposition method is needed, and a discussion of such

a method will be discussed in the next chapter.
3.7. Summary

This chapter started with a brief description of Unit Commitment followed by the
formulation of Stochastic Network Constrained Unit Commitment. The computational
environment, along with systems employed in the simulations, were discussed. The systems on
which simulations conducted are small, medium, and large real-world-like systems. These systems
vary in size from 10s of nodes to 1000s of nodes. An integral part of stochastic programming —
scenario generation — was discussed, and several scenarios generated using ARMA were depicted.
Finally, the deterministic version of S-NCUC solved using EF was presented for two of the three
systems considered. EF was not tractable for the extensive ERCOT-like system. Obtaining result

for such a large system is the discussion of the next chapter.
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4. Fast Penalty-Based Gauss-Seidel Algorithm

The computational complexity of the Extensive Formulation (EF) used in Chapter 3 to
solve the S-NCUC problem grows exponentially with the size of the system and the number of
scenarios. This deterministic formulation leads to computationally intractable situations even for
a medium system with a reasonable number of scenarios. This is why a decomposition-based
algorithm is used in solving S-NCUC. This chapter starts with a discussion on the decomposition
using augmented Lagrangian, followed by the formulation of the S-NCUC problem for the
application of the Penalty-Based Gauss-Seidel (PBGS) algorithm. Presentation of S-NCUC results
obtained using PBGS is presented. Innovation to PBGS algorithm called Fast PBGS is developed,
and the time saved by Fast PBGS is compared with PBGS at the end of this chapter.

4.1. Augmented Lagrangian

The scenario-based decomposition framework separates the first-stage S-NCUC into each

individual scenario (i.e., I7,) and introduces a coupling constraint that enforces the first-stage S-

NCUC decisions of non-quick-start generators (NQGSs) to be the same across all scenarios. This

constraint for NQGs, termed as a non-anticipativity constraint (NAC), is given below.

Ly=I;=Zy; VieENLVteNTVseS (4.1)

As UCs of quick-start generators (QSGs) can vary across the scenarios considered, constraint (4.1)
is not imposed on quick-start units. By relaxing constraint (4.1), the augmented Lagrangian

function is defined as
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where,

w,p € IRNIXNTXS

Y515, — Z;i,), denoted as 13 (+), is an augmenting function associated with NAC in (4.1)

and a penalty factor p; a is a scalar.

Enforcing the probability-weighted sum of the dual variable (3 ¢csPriw® =10) is a
necessary condition for the augmented Lagrangian function (4.2) to be bounded from below. The
NAC defines a subspace V" and the optimality conditions require that the dual variable (w) lie in
the subspace of V' 1[51]. This requirement, Y .cs PrSw® = 0 is enforced by the updating of the w

in every iteration of PHA algorithm. Proof of this condition is given in [85].

Under this imposed condition, Z; . associated with w;in (4.2) vanishes. Also, Z; ; - w}, is
a constant added to the objective function and does not need to be in the objective function. The
augmented Lagrangian function (4.2) is decomposed into S subproblems, each representing an
individual-scenario NCUC problem to be solved. Two algorithms are considered in this research,
namely PBGS and FW-PHA, which solve the augmented Lagrangian function (4.2) using different

augmenting functions ¥, (-).

55



4.2. Strong Duality with Augmented Lagrangian

Achieving strong duality (zero duality gap) helps imply convergence, and more
importantly the solution obtained is a primal solution. The convergence is defined as when all the
individual scenarios first stage decision I; . agrees with implementable Z; ;, i.e., equation (4.1) is
satisfied. Only then a solution - that does not require any further processing before it is
implemented - is found. The presence of integers makes UC problem non-convex. This non-
convexity is the cause of non-zero duality gap when Lagrangian relaxation is used. Augmented
Lagrangian is a modification of classical Lagrangian with an augmenting function with two parts;

it is a function multiplied by a coefficient. Both the augmenting function for 1,(-) and the

coefficient called penalty factor p will be discussed later in the chapter.
4.2.1. Affine Functions

An Affine Function is a linear function that has non-zero constant (Ax + b). In the non-
convex problems like UC, use of affine function as 1, (-) might not close the gap (the supporting
epigraph of the primal function using hyperplanes does not work [86]). This is explained in detail
in Chapter 11, section K of [87]. This is apparent in Figure 3.1 which is reproduced from [87]. In
this figure the affine augmenting function 1 is prevented from getting to the value of the objective
function ¢. It is to be noted that strong duality occurs at inf ¢ () = sup ¥ (+). In Figure 4.1, there

is a gap between these two functions.

Figure 4.1 Duality gap in minimization problems lacking adequate convexity [87]
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4.2.2. Non-linear Functions

Figure 4.1 suggests that perhaps a function such as quadratic function can penetrate such
‘dents” of ¢ (epigraph of the primal function can be supported by non-linear surfaces). This is
shown in Figure 4.2 which is also reproduced from [87]. Wang et.al., showed, under certain
conditions, that the strong duality can be achieved asymptotically by using non-linear augmented

Lagrangian function and increasing the associated penalty factor p to infinity [88].

Figure 4.2 Duality gap removed by an augmenting function [87]

Even the non-linear augmented Lagrangian cannot yield strong duality for some class of
non-linear optimization problems. This has been proven mathematically by Feizollahi et.al.
through an example [89]. Feizollahi showed that only augmented Lagrangian using sharp functions

can penetrate certain ‘dents’ in certain types of non-convex problems [89], [90]. This is shown in
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Figure 4.3 where only 15 (u) can peneratrate and reach p(u) to achieve strong duality while the

other two functions ¥, (u) and ¥, (u) are unable to do so.

Figure 4.3 Value function and some augmenting functions [90]

4.3. Exact Augmented Lagrangian

The function that achieves a strong duality gap with a finite value of penalty factor is known
as ‘Exact Penalization’ or ‘Exact’. Burke, in the abstract of [91], mentions that Eremin (in 1966)
and Zangwill (in 1967) introduced a notion of exact penalization for use in the development of
algorithms for constrained optimization. Later, there have been several publications in this area in
general [92]-[98], and to MIP in particular [89], [99] and [100].

An Exact augmented Lagrangian is a class of exact penalty methods whose objective is to
solve a constrained optimization (primal) problem through an unconstrained optimization problem
that has the same local (global) solutions as the primal problem. Often, in a non-convex problem
like S-NCUC, only the local minimum is found. This local minimum is an exact augmented

Lagrangian solution and is referred to as an exact solution hereinafter.
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Definition 1 (Exact penalty representation [89]): A given augmenting function 1, (-) in 9™ ()
IS an exact penalty representation, if there exists a dual vector e, for all p sufficiently large, such
that:

{=¢* (4.3)
and,

argmin { = argmin ¢* (I, p, w, p) (4.4)
Lp Lp '

Definition 1 indicates that, with an exact augmenting function v, (-), an optimal solution to the
augmented Lagrangian ¢ () is also a (local) optimal solution to the extensive form ¢ (3.1) of S-
NCUC. The exactness implies that the optimal Lagrangian dual solution to ¢* (*) is directly primal
feasible with all the relaxed NAC constraints being satisfied. Hence, no additional algorithm is
required to restore the primal feasibility from a Lagrangian dual solution. This constitutes one
salient merit of using an exact augmenting function, which will be demonstrated in comparison
with PHA in Chapter 6. It is worth mentioning that Definition 1 emphasizes the feasibility rather
than the optimality of a solution to augmented Lagrangian ¢* (). Specifically, an optimal solution
to ¢* () is a local minimum to the extensive form ¢ due to the non-convexity of S-NCUC [97].
Therefore, a quantitative assessment of the quality of a solution to ¢ *(-) is needed. Discussion on

such an assessment is presented in Chapter 5.
4.4. Penalty-Based Gauss-Seidel Algorithm

An important question is how to construct an exact augmenting function ;. The

discussion and work here is based on the findings of Oliveira et.al., in [101]. An [; norm-like
function based on a semi-Lagrangian approach is employed. Unlike the semi-Lagrangian approach
- wherein an equality constraint is reformulated as a pair of inequality constraints and the
Lagrangian relaxation - is applied to either of the pair [102], the NAC (4.1) here is reformulated

as two inequality constraints and then relax both constraints using two penalty factors (p, p) as

follows:

W3 (Ise = Zie) 5= pie - (150 = Ziel + Py, [Zie = 15] (4.5)

where [ - |~ represents the positive basis, which is defined as —min{0, - };
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Equation (4.5) can be implemented as follows:
Yol = Zie) s=pi - u+p;, - (4.6)
Suchthat: u>0,u=>(Z;,,—I[{,)

u=0u= (I, —Zy)

The augmenting function (4.5) is an exact penalty representation since it meets the following three
criteria:

= P(0)=0

w Ys5(I5, —Zi) 26>0,V(f,—Z,) &V

= Yl = Zie) 2|l = Zuell , V(e = Zie) €V
for some open neighborhood vof 0 and positive scalars §,v > 0. The exactness proof of

augmenting function (4.5) is given in Theorem 5 of [89].

It is worthwhile noting that a common choice for the augmenting function v, (-) in the literature
is the use of norms. For example, the PHA algorithm uses the square of [, norm,
ie. g 15, — Zi,t||§ as the augmenting function (proximal Lagrangian) [51]. As indicated in the
third criterion above, the value of the augmenting function must be greater than or equal to an
infinity norm in the neighborhood of zero. The PHA algorithm does not satisfy this criterion and
therefore is not an exact penalty representation for MIP problem like S-NCUC. This is depicted in
Figure 4.3. The augmenting function in (4.5) is a sharp Lagrangian and under any one of the

following conditions, w can be set to 0.

Condition 1: Proposition 8 in [89] states that the augmenting function using any norm, for any
w € RNIXNTXS there exists a finite p such that the augmented Lagrangian solution is the same as

the primal MIP solution.

Condition 2: Definition 8 in [89] and 11.60-11.62 in [87] states that in the sharp Lagrangian,
suppose that ¢*(0) > —oo for some p € (0, ). Then, a necessary and sufficient condition for
the vector w = 0 to support an exact penalty representation is that the value function p(u) is calm

from below at u = 0.
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Therefore, setting @ = 0 and omitting e from subsequent discussions is done for the simplicity
of representation.

The second important consideration is in the calculation of implementable Z; ;. Since UC takes
a binary value, it is imperative to maintain Z; , binary. Calculation of Z; , can be accomplished by

minimizing (4.6) with respect to Z; . using fixed I;’, over all the scenarios.

Z:= arg;nin Yses (Blst "u+ Eft ' ﬁ) (4.7)
Suchthat: u>0,u=>(Z;,,—I[{,)

u=0u> (I}, —Zy)

However, if the problem is restricted to take only binary values, the Z; . can be calculated as
follows at every iteration [101]:

(L i Y1) ple< ) 157,
Zip = 40

SES SES
. — 4.8
if Z(l_lis,t)'ﬁis,t>zlis,t'l7it (48)
SES SES
k Oor1l, otherwise

As shown, the implementable takes a UC consensus on the majority of scenarios weighted by
the penalty factors, leading to a binary value. In contrast, the PHA algorithm calculates the

implementable via a weighted average of UC, resulting in a fractional value that requires further
conversion to a binary value.

After Z; , is obtained, p at the k™ iteration is updated as:

Bis,t,k = Bis,t,k—l +v- [Iis,t,k - Zi,t,k] Vs€S
—s

Z - (4.9)
Pitk = Pf,t,k-l +y- [Zi,t,k - Iié:t,k] Vs€S

In (4.9), the two penalty factors are updated separately based on the direction of the NAC
(4.1) violation. Unlike the PHA algorithm, which uses the square of 1-2 norm as the augmenting

function to penalize NAC violations uniformly, the penalty factor updated in (4.9) offers more
granular modifications to satisfy the NAC constraints.
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Proposition 14 [101] states the following:
Suppose a set of scenario-dependent solutions (I5)ses, where IS = (I);=1,_,, are given and Z =
(Z;)i=1,.n-Foreachi € {1, ...,n} define
1*(Z):={seS|I]>Z}
I7(Z):={seS|I} <Z}
1°Z)={seS|Ij =7}
Then Z; solves problem (14) given fixed (I%)scs if and only if

Yom- ) pel- > Y (4.20)

SeIt(Z;) sel=(Z;) seI%(z;) seI®(z;)

Proof of this proposition is given in [101].

Now, consider the penalty updated in (4.9). Using (4.9) The difference of differences of p?, p;
between successive iterations can be written as follows:
Aftl=y Z [Fere = Zies] — Z e = Ziex] (4.11)
selt(z;) sel=(Z;y)
The optimality condition of (4.10) is improved for large g7 and p;’ as this makes the target interval

on the right-hand side of (4.10) larger. The exponential multiplying factor a accomplishes the
gradual increase in the terms A¥*in an attempt to improve the convergence. It should be noted
that, in order to improve the convergence, scalar « is increased exponentially over iterations and
defined as follows:

a:=pF1-1 (4.12)
where B € (1,2]. The PBGS algorithm is shown in Algorithm 1, in which the indices i and t are

omitted for brevity.
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4.4.1. PBGS Algorithm

Algorithm 1: Penalty-Based Gauss-Seidel Algorithm

1 Initialization p, v, 5, €l, €2, [0, w
2 foreach s = S5 do

3| (I, p°) + argmin{p™ (I°, p*,w®, p* = 0) | (I*, p°) € A%}
I‘:p"

4 end

s Calculate Z° < round(Y. Pr® - I¥)

eS8

¢ while (3 _ || I* — Z [|}> €1 ) do

7 fori=1,...1,,. do

8 foreach s € 5 do

9 (I°, p*, ™) + ﬂ-rf@?ﬂ-’f‘?‘t{aﬁ(I":P"‘: w*, p%) [ (I*, p%) € A7}
s ps

10 end

i1 Calculate Z'  using(4.8)

12 [ ¢! —o'!

13 if ((|[I'] < €2) or (I = lnar)) then

14 Z+ 7

15 break

16 end

17 [+—1+1

18 end

19 Update p* and p* using (4.9)

20 Update o using (4.12)

21 end

2 return Z
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4.4.2. Proof of convergence of PBGS

Augmented Lagrangian (4.2) in abbreviated form is given as follows. All the constraints (3.2) -
(3.7) are applicable.

o*(L,p,p) =CU,p) +pYp(I-1Z) (4.13)

where C(I, p, p) is the scenario-wise decomposed NCUC objective function and py (I — Z) is the

augmented Lagrangian term.

Proof 1: The PBGS algorithm uses an exact augmenting Lagrangian. According to Theorem 5 in
[89], there exists a finite p* > 0 such that for any p € [p*, <), the following equation holds
regarding (Al).

o (I,p,p)=CU,p)+pYpI—2Z)=C,p) (4.14)

Equation (3.18) can be only possible if and only if
pY(I—2Z) =0 (4.15)

Equation (4.15) implies that I = Z, fulfilling the termination criteria in Line 21 of the PBGS
algorithm. Due to monotonically increasing p, p € [p*, eo) is satisfied within a finite number of

iterations. m
4.4.3. PBGS Results

In this subsection, the quality of the proposed Fast PBGS solutions is evaluated by
comparing with the EF solutions obtained in Chapter 3. Like in the Chapter 3 only a small subset

of the scenarios is compared here. In Chapter 5 all scenarios will be presented.

All gap and difference calculations are based on the following equation, where @4
represents other methods with which the PBGS is compared against, such as EF, FW-PHA, or
PHA [103]. The parameter ™ is the objective value of the augmented Lagrangian.
¢~ Px

Px

% Objective Value difference = 100 (4.16)
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4.43.1. RTS-96 System

The objective value of the RTS-96 System is show in Table 4.1. In this table the PBGS
results for various penalty factor p are compared with objective values obtained using EF method
in Chapter 3. The simulation was carried out for four different values of penalty factors. In general,
higher the penalty factor is larger the objective difference with EF solution.

Table 4.1 Comparison of PBGS with EF - set RTS96-10-S1

v=1.0, p=1.1 EF = $333,733 | EF = 14 min
_ PBGS PBGS solution | Objective diff. | Time diff. w.r.t.
£p operating cost| time in minutes w.r.t. EF EF
100 $333,990 38 0.08% 171%
500 | $334,313 25 0.17% 79%
1,000 | $334,362 17 0.19% 21%
5,000 | $337,156 19 1.03% 36%

As shown in the above table, the PBGS objective solution is very close to the EF objective
value, conveying that the PBGS solution will be good. This will be further confirmed in the
application of PBGS on the two other systems. However, the time taken by the PBGS is much

longer than EF.
4.4.3.2. The IEEE 118-bus System

The operating cost by PBGS under different values of the penalty factor p, and that of EF
for IEEE 118-bus System, set IEEE118-10-S1 are listed in Table 4.2. Also shown in the table is
the time taken to obtain PBGS solution and the comparison with the time taken to obtain EF

solution.
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Table 4.2 Comparison of PBGS with EF - set IEEE118-10-S1

v=1.0, p=1.1 EF = $851,152 [ EF = 15 min
_ PBGS PBGS solution | Objective diff. | Time diff. w.r.t.
£p operating cost| time in minutes w.r.t. EF EF
500 $851,149 149 0.00% 893%
1,000 | $851,097 106 -0.01% 607%
5,000 | $851,366 53 0.03% 253%
10,000| $854,284 49 0.37% 227%

The PBGS solution under all p values, except for p =10000, is very close to the EF solution
with the gap calculated to be less than 0.05%. When p=1000, the PBGS difference with respect to
EF is -0.01%, signifying that its operating cost is slightly less (better) than EF. The negative gap
can be attributed to the MIP optimality gap of 0.1% that was set in CPLEX. For all p, the PBGS
gap with respect to EF is less than 0.4%. The EF solution, based on the state-of-the-art commercial
MIP solver, is one of the most successful approaches in solving small- to medium-scale S-NCUC
problems. Here, the EF solution is used to benchmark the PBGS solution. It is observed that the
difference in the operating cost between the PBGS method and EF is very small for the IEEE-118
bus system. The results demonstrate the effectiveness of the PBGS solution on the medium-scale
S-NCUC problem.

However, the time taken by the PBGS to obtain solution is far longer than the time taken
by the EF. This is shown in the last column of the Table 4.2. This indicates that the PBGS solution
does not have any advantage over the EF solution for small number of scenarios. Table 4.3 shows
results for the same system with 50 scenarios. The PBGS objective values are very close to the EF
solution (all are less than 1%). The time taken to obtain the PBGS solution is getting closer to the
EF solution time compared with Table 4.1. This indicates that as the scenario increases time taken

by the EF is increasing as mentioned earlier.
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Table 4.3 Comparison of PBGS with EF - set IEEE118-50-S0

v=1.0, p=1.1 EF = $886,970] EF =304 min
_ PBGS PBGS solution |Objective diff.| Time diff. w.r.t.
£p operating cost| time in minutes w.r.t. EF EF
5,000 $895,015 703 0.91% 131%
10,000 $889,651 593 0.30% 95%
25,000 $889,371 493 0.27% 62%
50,000 | $888,161 539 0.13% 77%

In the next section of this chapter, the modification to the PBGS will be discussed to

improve computational efficiency.
4.4.3.3. The ERCOT-Like System

Three simulations are carried out with different penalty factors p for the ERCOT-like
System ERCOT-30-S1 Table 4.4 shows the PBGS operating cost along with the time taken to
obtain the solution. It is important to note that the EF is not implemented in the ERCOT-like
System due to the enormous computational burden of EF (computationally infeasible). Therefore,
no comparison can be made in this section to evaluate the PBGS solution for ERCOT-30-S1. The
result for the ERCOT-like System will be evaluated in Chapter 5.

Table 4.4 PBGS solution for the ERCOT-Like System, set ERCOT-30-S1

v=1.0, B=1.1 PBGS solution Estimated PBGS
- Operating cost | 1ime in sequence solution time in
p.pP by PBGS (min) parallel (min)
5,000 $35,444,677 5955 267
10,000 $35,480,631 5584 244
50,000 $35,880,952 3251 137

It is fascinating to discuss the computational performance of PBGS as this is a common
concern in large-scale applications. In Table 4.4, the column labeled “PBGS solution time in
sequence” shows the solution time of S-NCUC on the ERCOT-like System with 30 scenarios,
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where each scenario was solved sequentially without parallelization. Suppose one were to
implement the proposed algorithm in the day-ahead operation. In that case, the time taken for
sequentially solving each scenario of the ERCOT-like System is far from practical. The solution
time can be drastically shortened using parallel computing, as shown in the column labeled
“Estimated PBGS solution time in parallel” in Table 4.4. The time estimation is based on the
longest time taken by a scenario in each iteration plus the time between MATLAB and GAMS
interaction through the file 1/0 activities. The FESTIV environment used is in an academic setting
and currently does not support the parallel execution. It is understood that the parallel computing
environment is not a standard in ISOs or utilities, which may need hardware upgrades and
adjustments to the existing day-ahead market timeline if the stochastic method is implemented.
PBGS can still be used for short-term such as week-ahead stochastic planning studies and in day-
ahead S-NCUC for systems smaller than ERCOT. The Fast PBGS algorithm discussed in the next
section shortens the time considerably, making it attractive, especially for small and medium-sized

systems.
4.5. Fast Penalty-Based Gauss-Seidel (Fast PBGS)

During the analysis of PBGS results for large-scale S-NCUC, it was observed that the
computational efficiency of the PBGS could be improved by skipping scenarios that meet specific
conditions from solving every iteration. This change resulted in an improved PBGS algorithm
called "Fast PBGS" [104].

The key idea in Fast PBGS is explained using mathematical proposition followed by the
proof. This idea is possible because both I and Z always being binary values. This would not be
possible in other scenario-based algorithms where calculation of Z is calculated as real numbers.
For example, in PHA the calculation of Z at an iteration k is accomplished as probability (Pr)

weighted average of scenario decisions I as shown in (1). Also, I is solved as integer value (MIP).

Zy = ZPrS I, (4.17)

SES
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This calculation is compared to the one done in PBGS in (4.8), which is shown below in (4.18).
The implementable Z is a binary value whose range is the same as that of I making the comparison

possible.

(1; if Z(l — 1) Pir < 2 I5e '5;t

SES SES
L, = { . — 4.18
Le | 0, if Z(l - Iis,t) Blst > 2 e P;t (419
SES SES
k Oor1, otherwise

Corollary 1: For scenario s in PBGS, (I3, p3") is also the optimal solution at the k+1th iteration
if the following two conditions are satisfied at the kth iteration:

(1) The optimal commitment decisions obtained are the same as the pre-update
implementable, i.e.,

S*x _
e =2y (4.19)
(2) The post-update implementable remains unchanged, i.e.,
Zy =12y, (4.20)

Proof 2: The objective function of the PBGS in an abbreviated form is given as follows, where all

the constraints (3.2) — (3.7) are applicable.

e*(,p,p)=CU,p)+pypU—Z) (4.21)

where C (I, p) is a scenario-wise objective function and py (I — Z) is the augmented Lagrangian
term.

Proof by contradiction is used here. Let (I}", p3”) denote the optimal solution obtained in scenario
s at the k" iteration of PBGS, i.e.,

I, py) = argmin[c(li,Pi) +pr YUy — Zy_1)] (4.22)
P
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Similarly, let (IS ,, p3* ;) be the optimal solution in scenario s at the k+1" iteration of the PBGS.
It is to be noted that py.; = pr = 0in PBGS. It is apparent that the optimal solution obtained in
k™" iteration is a feasible solution to the k+1" iteration since the solution is from the feasible region

AS defined in (3.8). Feasible values (I3 1, p71) is defined as follows:

(I35 1, Piv1) = argmin[C(I311, Pis1) + Prvr YU ps1 — Zy)]
1Lp (4.23)

Assume (I3, py’) in (4.22) is not equal to (I}, Priq) in (4.23). Under this assumption, in view

of its feasibility, we have

¢ (I 1, Prys Prrr) < @7 U, DX Pr) (4.24)
Substituting (4.21) into (4.24), we get
CUiv1 Pr1) + Prvr YUy — Zi) < CUR PR + o YU — Zy) (4.25)
Applying conditions (4.19) and (4.20) in Corollary 1 to (4.25), we get:
CIR 1, Pr1) + Prevr " WUy — Zy—y) < CULS, PR (4.26)

For any given solution ( 1 D1 ), @ higher p leads to a higher objective function value in terms of a

higher penalty term due to the structure of ¢ *. Hence,

CUR 1, PR + Pr WU — Zy—q)

. 4.27
< CUR 1 Prs1) + Prsr " YU — Zi—q) (4.27)
Combining (4.26) and (4.27) results in the following condition

CUR41,Prs1) + P YUy — Zi—) < CUE, Py (4.28)

The left-hand side of (4.28) is exactly the objective function (4.21) in the k" iteration of PBGS. Its

value cannot be better than that of the optimal solution (I3*, pi*), which is written as:
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CURpi) + pic WU = Zy—1) < CUTR5,Picv) + P YUiha — Zi-)  (4.29)
According to (4.19) in Corollary 1, we have
CUy,pi) = CUR,pi) + pic YUy — Zye—r) (4.30)
Combining (4.28) — (4.30), we get
CUy,pY) = CUL,pY) + pi- WU = Ziy)
< CUG 1 Pre) + Pic VU — Zy—1)
< CURs1 Piv1) + Prrr Y Uier — Zi—1)
< c(y,py (4.31)

Apparently, (4.31) does not hold. This indicates the assumption that (I3*, p;*) made in (4.22) is
not equal to (I3 1, Prs1) in (4.23) cannot hold. Therefore, (I3, 1, py1) must be equal to (I3, py").

Proposition 1: Scenario s does not need be solved as long as equations (4.19) and (4.20) hold in

successive iterations.

At iteration k, let us assume that both conditions 1 and 2 of the Corollary are met by scenario
s. Letus also assume that Z has not changed in the k + 1" iteration, following Proof 2, and solving
scenario s in the k + 1" iteration can be skipped. If Z continues to remain the same in subsequent
iterations, one can prove (by induction), using Proof 2 that scenario s can be skipped in the

subsequent iterations as well. m

Based on the above discussion, the proposed Fast PBGS algorithm is shown below in
Algorithm 2, in which indices i and t are omitted for brevity.
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4.5.1. Fast PBGS Algorithm

Algorithm 2: Fast Penalty-Based Gauss-Seidel Algorithm

1 Initialization p, v, 7, €, [0 w0

2 foreach s € S do

s | (Ip°) < argmin{e™ (I, p*, W%, p* = 0) | (I°, p) € A%}
s ps
4 end
s Claleulate Z" + mumfl[zg Pr®-I%)
sES

6 while (Z | I — Z |3 Tf_{}) do

sES
7 for{=1...1,,. do
8 foreach s € S do
9 if ((I*# Z" ') or (Z"' # Z')) then
10 (I, p*. ™) u:;,rnu’n{cpﬂf“,p“,u.:"'_.p“) | (I*,p*) € A%}

s ps

11 end
12 end
13 Caleulate Z' using(4.8)
14 [ gl — !
15 if ((|I'] <€) or (I = l,0.)) then
16 Z+— Z
17 break
18 end
19 le—1+1
20 end
21 Update p* and p* using (4.9)
2 Update o using (4.12)

23 end

24 return Z
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4.5.2. Initialization of Implementable Z

The implementable Z should be initialized for all the scenarios. There are many ways to
initialize Z, and the PBGS algorithm developed in [101] discusses the first two methods. The

third method proposed here is used in this research yielding faster solution.

Method 1: This method is straightforward and does not require any additional efforts. The

disadvantage of the method is longer solution time.

Z:=0 (4.32)

Method 2: This method is shown in Algorithm 2, lines 2-5. After solving all the scenarios without
augmenting function, the rounded-up sum of the weighted average of the individual scenario status
for the given unit at a given interval is assigned to Z. The method requires an additional step of

running all the scenarios in the beginning. This may seem time consuming but it helps improve

Zip = [Z Prs- I,

SES

overall computation time.

, Vt€eNT,Vi€eNI (4.33)

Method 3: This is the method devised and used in the simulations conducted as part of this
research. The initial implementable can be set to one of the scenarios' commitment decisions from
the set of scenarios that are being evaluated. The scenario chosen to be the initial implementable
is a scenario with the maximum number of online statuses of all the units among all the scenarios.
If more than one scenario has the same number of the online status of all the units, choose the

scenario with the lowest production cost.

Z:={xeX|vyeX f(x)>f)} (4.34)

where X ={I | s € S}
f:S - Rdefined as:

NI NT

HOEIPW A

i=1t=1
A comparison of the three methods are presented in Chapter 6 to further explain the importance of

the initialization.

73



4.5.3. Comparison of PBGS vs Fast PBGS

This section compares the results obtained through PBGS and Fast PBGS using Algorithm 1
and Algorithm 2, respectively. Through proof two, it is established that the objective value

obtained using Fast PBGS is the same as PBGS. Therefore, only the computation time taken to

obtain the solution is compared.

Plots showing the number of scenarios solved as the iteration progresses towards
convergence are presented in this section to demonstrate how Fast PBGS saves computational
time. It should be noted that in the PBGS algorithm, all scenarios are solved in every iteration.

Overall, one can observe that after a few initial iterations, the number of scenarios solved is

decreasing as the iteration progresses.

45.3.1. RTS-96 System

The scenario set RTS96-10-S1, discussed in section 4.4.3.1, is used in the comparison here.
The comparison is shown in Table 4.5. While the final result and number of iterations to reach the

convergence are the same for both PBGS and the Fast PBGS, the time taken to achieve the result

for the latter is an average of 30% faster.

Table 4.5 Comparison of PBGS with Fast PBGS - set RTS96-10-S1

0 Time in min % time gain
PBGS Fast PBGS
500 38 27 28%
1,000 25 16 35%
5,000 17 12 27%
10,000 19 13 31%
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Figure 4.4 shows the number of scenarios solved in each iteration for the RTS-96 System
for various penalty factor. For the penalty factor 10000, in the first seven iterations all 10 scenarios
are solved. In the next four iterations, 2 to 3 scenarios agree with the implementable and therefore
these scenarios are skipped from solving. In the 12" iteration, all 10 scenarios are solved as the
implementable changes. Starting at the 15" iteration through the 27", most of the scenarios are
not solved. In the 28" iteration, 9 scenarios are solved. The implementable agrees with one
scenario holding out from the 24th iteration and giving up in the 28" while forcing 9 scenarios
agreeing with the implementable before. Figure 4.4 also shows the Fast PBGS results for other
penalty factors. As was discussed in earlier, the higher the penalty factor the faster is the reduction

in the number of scenarios solved per iteration.
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Figure 4.4 Number of scenarios solved in each iteration for the RTS-96 System using Fast
PBGS
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4.5.3.2. The IEEE 118-bus System

Like in section 4.4.3.2, the computational time between PBGS and Fast PBGS for both ten
scenarios and 50 scenario sets is used. Table 4.6 shows the results for the IEEE 118-bus System,
set IEEE118-10-S1. For this set, the time taken for Fast PBGS to obtain a solution is an average
of about 19% less than PBGS for the IEEE 118-bus System.

Table 4.6 Comparison of PBGS with Fast PBGS - set IEEE118-10-S1

0 Time in min % time gain
PBGS Fast PBGS
500 149 120 19%
1,000 106 89 16%
5,000 53 45 15%
10,000 49 37 25%

Computation comparison for set IEEE118-50-S0 is shown in Table 4.7. The computational
time saved by Fast PBGS over PBGS is an average of 50%. The computational time saving is
about 30% more than for the ten-scenario set. It appears that the more the scenarios, the more time

saved.

Table 4.7 Comparison of PBGS with Fast PBGS - set IEEE118-50-S0

0 Time in min % time gain
PBGS Fast PBGS
5,000 703 299 57%
10,000 593 282 52%
25,000 493 291 41%
50,000 539 271 50%

In Figure 4.5, for penalty factor 500 of the IEEE 118-bus, all scenarios are solved for the
first 23 iterations, then the number of scenarios solved starts decreasing. Starting at the 39™"
iteration, only one iteration is solved except at the 43" iteration where all ten scenarios are solved.
Note that in the last iteration only one scenario is not solved. This tells that the implementable
which was agreeing with nine scenarios has changed to agree with one which was not forcing all

nine previously agreed scenarios to solve earlier.

77



Scenarios Solved

] 5 10 15 20 25 a0 35 40 45 50
Iterations

p=10000

=
o
=
=]
75
u -
=]
=
=
T ]
]
75
| 1 1
] 5 10 15 20 25 a0 35 40 45 50
Iterations
p = 25000
I ] | | I |
)
w
=
=]
75}
uy -
a=!
=
=
]
o
75
1 1 1 Il 1 L
25 a0 35 40 45 50
Iterations
p = 50000
I ] | | I |
=
w
-
Q
75}
u =
]
g=
e |
=
u
A
1 L | | 1 1
25 a0 35 40 45 50
Iterations

Figure 4.5 Number of scenarios solved in each iteration for the IEEE 118-bus System using
Fast PBGS
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Figure 4.6 Number of scenarios solved in each iteration for the IEEE 118-bus System with
50 Scenarios
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Figure 4.6 shows the actual number of scenarios solved at each iteration for the IEEE 118-
bus System with 50 scenarios. With only a few first iterations, savings in time are observed,

especially for the higher penalty factors.
4.5.3.3. ERCOT-like Large System

Finally, Table 4.8 shows the results for the sizeable ERCOT-like System. The set, for this
large system, the computational time saved by Fast PBGS over the PBGS is from 34% to 39%,
with an average of around 36%. In section 4.4.3.3, there was a discussion on the practical
implementation of PBGS in the real world for large systems. The research made significant
improvements in reducing the computational time through Fast PBGS. Even if it is not practical
for the real-world application due to market timeline constraints, Fast PBGS is attractive to
evaluate the benefits of S-NCUC over NCUC.

Table 4.8 Comparison of PBGS with the Fast PBGS - set ERCOT-30-S1

0 Time in min % time gain
PBGS Fast PBGS
5,000 5955 3921 34%
10,000 5584 3444 38%
50,000 3251 1981 39%

In Figure 4.6, the number of scenarios solved over iterations are shown for the ERCOT-
like large system. This system uses 30 scenarios. Compared to the other two systems, significant
time is saved here, which could be attributed to the larger number of scenarios than that has been
used in the other two systems.
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Figure 4.7 Number of scenarios solved in each iteration for the ERCOT-like large System
using Fast PBGS

Comparing Figures 4.6 and 4.7 with Figures 4.4 and 4.5 (a smaller number of scenarios),
one can observe that the higher the number of scenarios, the more time saved. It is evident from
the above figures how the Fast PBGS saves time. This saving in computational time is a significant

improvement over PBGS.
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4.6. Summary

This chapter started with a discussion on the decomposition of the S-NCUC problem is
discussed. The application of augmented Lagrangian in decomposing and solving individual
problems is presented. In doing so, the difference between proximal Lagrangian and sharp
Lagrangian was explained. It has been shown that sharp Lagrangian could reach the ‘dents’ where
proximal Lagrangian is unable to do so. Reaching the ‘dent’ could achieve the zero-duality gap.
The PBGS is applied to solve the S-NCUC problem through a detailed discussion of the different
components of the algorithm. The discussion emphasized obtaining a primal solution that
eliminates other processes that would have been needed to recover an implementable solution. A
proof of convergence of the PBGS algorithm was given as well. Results for all three systems were
presented. The system that was not solvable using EF in Chapter 3 was solved using the
decomposition technique. However, the solution obtained for the ERCOT-like Large System is yet
to be evaluated and will be discussed in the next chapter. To gain the computational efficiency of
the PBGS algorithm, certain scenarios that meet specific criteria are not solved in any given
iteration. Mathematical proof of this improvement of PBGS, which is called Fast PBGS, is
provided. This chapter compared Fast PBGS solution with PBGS solution showing average time
saving of 35% for ERCOT-like Large System and 50% for IEEE 118-bus System with 50 scenarios

demonstrating advantages of the former.
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5. Assessing S-NCUC Solution Quality

As discussed in detail in the previous chapter, the PBGS algorithm used in solving S-
NCUC employs exact augmented Lagrangian. Since the S-NCUC is a non-convex problem due to
binary values in the objective function, the solution obtained often is a local minimum. There could
be more than one such local minima, and it is essential to evaluate the quality of the solution
obtained using one of the lower-bound methods. Furthermore, it is vital to keep the computational
cost of the lower-bound methods to a minimum while still thriving for the best lower-bound one
can get. The Fast PBGS solution will be compared with one of the widely used scenario-wise
decomposition methods, the PHA. This chapter includes a section for Out-of-Sample testing and

parameter discussion each.
5.1. Lower Bound and Other Methods

Unlike other solution methods such as Benders decomposition method, the PBGS method
does not rely on the bounds on the optimal production cost to form termination criteria. This lack
of bounds makes us look into a method that needs to be solved separately in order to obtain a lower
bound to assess the PBGS solution quality. Both lower-bound methods and primal methods are

discussed here. The primal method is used for benchmarking the obtained PBGS solutions.
5.2. Extensive Formulation (EF)

This is a primal method discussed in detail in Chapter 3, the deterministic equivalent of the
stochastic formulation. Extensive Formulation (EF) solves the stochastic problem with scenarios
as one big single deterministic problem as formulated in (3.1) with constraints (3.2) — (3.7). Of
course, if one can solve EF, there is no need for other algorithms such as PHA and PBGS. Since
the computational time for EF formulation grows exponentially as the problem size increases,
current off-the-shelf optimization applications cannot solve the S-NCUC, requiring decomposition
techniques. As mentioned in Chapter 3, the large ERCOT-like System was not solvable by EF

algorithm.
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5.3. Relaxed Extensive Formulation (Re-EF)

In this method the integrality constraint in S-NCUC is relaxed and solved to obtain lower
bound. This is the same EF formulation except that linear programming (LP) is applied. The only
difference isin (3.1)

I € {0,1}VXNT*S wiill relax to I € {R}VIXNT*S

This Re-EF could work for an extensive system where EF formulation might fail. However,
the lower bound obtained is not as good as, the lower bound obtained from other methods. This is
expected behavior for such formulations that relaxes integrality constraints. This research
formulated Re-EF for one system where simulation has been conducted. In Table 5.1, the
difference calculated using Re-EF is shown. As can be seen, the difference is above 10%. This
poor gap is not due to the sub-optimality of the PBGS. Instead, due to the poor lower bound of Re-

EF. This is evident from the fact that the difference calculated using EF is very little.

Table 5.1 Comparison of Fast PBGS with Re-EF

EF = $333,733
y=1.0, p=1.1
EF Relaxed = $298,994
_ | Operatingcostby | Diff. w.r.t.
p,p Diff. w.r.t. EF
- Fast PBGS EF-Relaxed
100 $333,990 0.08% 11.70%
500 $334,313 0.17% 11.81%
1,000 $334,362 0.19% 11.83%
5,000 $337,156 1.03% 12.76%

5.4. Progressive Hedging Algorithm (PHA)

The PHA algorithm was briefly discussed in Chapter 2. First proposed by Rockafeller and
Wets [51] to solve stochastic optimization problems involving continuous variables has been
applied with limited success in problems involving integer variables. Gade et.al. have used this

algorithm to obtain lower bounds in [55]. PHA is similar to PBGS except for the augmenting
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function used in (4.2). PHA uses square of [, norm as augmenting function. With this augmenting

function and setting @ = 1 in (4.2), the PHA objective function is given as:

0 (L,p,w,p) =
5 NT[NI L Ilst+SUlt IUlt+Z(pdlt ICdl)+\
mmZPr Z|z
s=1 t=1ll=1 l’t (1‘ lt)+ ”1 lt” / (5.1

leL

1|
+ (AL + LI -VOLL + ) (BrSUi}, + Brsi2;,) - VOOB |

N~

As mentioned in Chapter 3, Y;cs Prfw® = 0 is enforced for the augmented Lagrangian
function (4.1) to be bounded from below. The NAC defines a subspace V' and the optimality
conditions require that the dual variable () lie in the subspace of N*[51]. This requirement,
Y.es Priw’ = 0 is enforced by updating w in every iteration of the PHA algorithm. This makes

wi¢ * Z; termin (5.1) vanish. Accounting this change, (5.1) is rewritten as (5.2).

o' (l,p,wp) =
NG
J o [ M (NL; + wfy) - 15 + SUy - 1US, + z(pg,i,t : ch,i)\
minz prs z |Z d=1
s=1 t=1 [i=1 +§ ”I{C:t _ Zi,t”z / (5.2)

+ (AL + LLS) - VOLL + Z(BrSll + BrSi2;,)-VOOB I\\

leL
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Writing (5.2) for each scenario:
O™ (I°, p*, @%, p*) =
[ /’ NG ‘\
U & [ (VL + w5e) - B+ SUse - 1USe+ ) (g~ 1Ca)
d=1

minz ZI

= |4 p
t=1]1 1\ +§||Iis,t_Zi,t”§ (5.3)

4 (ALS + LLS) - VOLL + Z(Brﬂlit + Brsi25,) - VOOB|
o Jl

The implementable is updated as follows

Z;p = Z Prs-IS, Yi€NLVYteNT (5.4)

VS€ES

The dual variable w is updated in the k+1" iteration as shown below.

i = Wl + p(I5f - ZF,) ViENLVtENT,VsES (5.5)

The termination criteria is defined as

SES

\/Z pS”IsI‘( - Zk”z < €, terminate (56)

To calculate the lower bound, (5.3) is used without augmenting Lagrangian term (just

Lagrangian) as shown below
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NT NI NG
d=1

t=1Li=1

(5.7)
+ (AL§ + LLY) - VOLL + Z(Brsuit + BrSi2;,)-VOOB

leL

The above problem can be solved for each scenario and the total cost is computed as follows:
S
¢ = min ) Pre(@*) (5.8)
s=1

The complete algorithm used in calculating the lower bound using PHA is given in Algorithm 3
below.

Note that the ¢* calculated at each iteration k in Step 14 of Algorithm 3 is a lower bound. So, one

does not have to wait for convergence to occur in order to obtain the lower bound.
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Algorithm 3: Progressive Hedging Algorithm - Includes Lower-Bound Computation

1

2

=]

10

11

12

13

14

15

16

17

15

19

21

foreach s € 5 do
(I*,p*) + argmin{®t(I*, p*,w* = 0,p* = 0) | (I".p*) € A*}

Iip;

end

Z0— 3 Pre. I’
e

foreach s € 5 do

| w1 - 20)

end

while (3", s | I' — Z |3 > ¢ ) do

fori=1,...1,, do

foreach s £ S do
(I'.p") = argmin{®* (I'. p'. ", p) | (I'.p) € A"}
5 (@8I p,w) | (I.p*) € A%}

end

Z'« Y Pr. I

sES
foreach s € S do
wil —wstl L p. (I5 — ZY)
end

¢ . Pre - I¢

sES

[—1+1

end

end

return {::'!
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5.4.1. Comparison of Fast PBGS with PHA

Since the scope of this research is restricted to the scenario-based decomposition methods, the
comparison is also confined to the methods within this approach. In the literature, there exists a
stage-wise decomposition approach, such as Benders decomposition. However, the stage-wise
decomposition approach may eventually grow into a computationally intractable problem as the
iteration progresses for the size of the problem considered in this dissertation. Therefore, the cross-
comparison between the scenario-based and stage-based decomposition methods is out of the

scope of this research and can be systematically conducted in future work.
5.4.2. The IEEE 118-bus System

Figure 5.1 shows a comparison of the Fast PBGS with the PHA for the IEEE 118-bus System.
The second y-axis is the percentage difference in the objective value per (5.1). A negative
percentage difference indicates that the F-PBGS leads to a better solution in terms of the objective

value, and vice versa. Table 5.2 shows the data values of Figure 5.1.

The comparison between the Fast PBGS and PHA is carried out with five different p values
ranging from 500 to 20,000. The Fast PBGS has one additional tuning parameter £ that is used in
the calculation of convergence accelerator o in (4.12). For each of these five p values, studies used
two £ values, i.e., 1.11 and 1.25. It is seen in Figure 6.1 when p is 1.25, the Fast PBGS solves
faster than it does when £ is set to 1.11, but with a slightly higher objective value. The difference
in the solution time between the Fast PBGS and the PHA is much more apparent with a lower p.
Overall, the Fast PBGS vyields a much faster solution than the PHA. By using the Fast PBGS, an
average of 42% and 61% saving in solution time with 3 values equal to 1.11 and 1.25, respectively,

was recorded.
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Figure 5.1 Comparison of Fast PBGS with PHA for the IEEE 118-bus System

In Figure 5.1, all Fast PBGS simulations converge with zero violations. In contrast, none
of the PHA solutions converges except for the case when p = 10000. The convergence tolerance ¢
for PHA is set to 0.01. At a lower p, a solution time limit of 180 minutes was set. At a higher p
(i.e., 5000 and 20000), the PHA algorithm is terminated if no progress in violation is made for five
consecutive iterations. Additionally, a terminated PHA algorithm requires rounding-off the
fractional implementable values obtained, followed by Unit Commitment to ensure its primal

feasibility.

Table 5.2 Comparison of Fast PBGS with PHA for the IEEE 118-bus System
EF Obj Value = $851,152 EF Time in min = 15
p 500 1000 5000 10000 20000
Objective PHA $884,333 |$861,043| $852,711 | $851,259 | $854,895
Value F-PBGS | $851,149 |$851,097|$851,366 | $854,284 | $854,284
PHA 180 180 85 37 60
F-PBGS 120 89 45 27 27

Time in min

In Figure 5.1, for a comparatively small p, i.e., when p=500 and 1000, the Fast PBGS
outperforms the PHA by 2% to 4% in terms of the objective value, respectively. This difference is
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attributed to the rounding of the PHA implementable values, resulting in overcommitment of
generators. When p is increased, the difference in the objective values decreases. When p=10000,
the PHA converges and no rounding is required. The PHA performs slightly, i.e., around 0.5%,
better than the Fast PBGS. The above results in Figure 5.1 suggest that the significant improvement
in computational efficiency makes the Fast PBGS a better choice than the PHA on the medium-

scale system.
5.4.3. The ERCOT-Like System

For the ERCOT-like large-scale system, the research set # = 1.11 and focus exclusively on the
sensitivity studies with respect to p values. Comparative results between the Fast PBGS and the
PHA are shown in Figure 5.2. It is seen that the Fast PBGS outperformed the PHA in terms of the
solution time, whereas the objective value of PHA is slightly better than that of the Fast PBGS in
all three cases. The average execution time saved by the Fast PBGS is 50%, at an average cost
increase of 0.48% in the objective value across the three cases. None of the PHA solutions
converges. The closest is when p = 50000, the violation reaches 0.06 before it triggers the stopping
criterion. Note that the convergence tolerance € for PHA is set to 0.01. The PHA simulation is
terminated if no progress in violation is made for five consecutive iterations. Additionally, a
terminated PHA simulation requires rounding-off of the fractional implementable obtained,

followed by UC to ensure its primal feasibility.
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Figure 5.2 Comparison of Fast PBGS with PHA for the ERCOT-like System

In contrast, these additional heuristics and steps are not needed at all for the Fast PBGS since
its convergence is guaranteed and the solution obtained is directly feasible. It is worth mentioning
that in the case study of this research no cyclic behaviors of the PHA were observed as reported in
[105]. Therefore, the performance of the PHA may be illustrated on the high side if potential cyclic
behaviors are considered. Furthermore, some heuristic enhancements, such as using a large MIP
gap for initial iterations, initializing successive iterations from the previous solution, and using
cost proportional penalty factors, can be applied to both the Fast PBGS and the PHA to further
improve their computational efficiency [105]. The results in Figure 5.2 show that the significant
improvement in computational efficiency also makes the Fast PBGS a better choice on the

practically-sized large-scale system.
5.5. Frank-Wolfe combined PHA (FW-PHA)

5.5.1. FW-PHA Formulation

If Step 10 step in Algorithm 3 can be modified to solve the problem over a convex hull
Conv(A®) instead of A’, then the PHA works for the SCUC problem and the dual solution

converges to the optimal Lagrangian dual. However, the Conv(A®) is not readily available. Boland
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et.al. have used simplicial decomposition to create a convex hull which is used in finding the lower
bound [56]. This FW-PHA was applied to find lower bound for S-NCUC in [57]. The simplicial
decomposition [106] is a generalization of the Frank-Wolf algorithm [107] in higher dimensions.

The convex hull created for each scenario (V) consists of the decision variables of
linearized problem @*5. That is minimizing the gradient approximation to ©* at the point

s,k—1 _ s k-1 s s
(5 Y pgie W 1UELIDE,).

+
VoTs(I°, p*, w*, p°) I(Ii,tr paie Ui IDi.t)=(Iz’tk_1’pfi’,liC,;1’ sk, IDiS,'tk_l)
[NLi + i + p(I5 = Zit)]  [NLi + @] 9
= I ICd'i I = | ICd'i | .
| Uy | [ Uy J
I SD; | SD;;

solved for Vs € S,Vt € NT,Vi € NI and Vd € NG . The resulting linearized problem is written
as follows and solved as mixed integer linear program (MILP):

—~ — - ==

Os(1,ps, IUS, IDY)
NT NI NG
=) [Z <(NLi F @) I+ SUs TUS + ) (P ch,i)>
t=1Li=1 a=1

+ (ALS + LLS) - VOLL + Z(Brsnlﬁt + BrSI2§,) - VOOB

leL

(5.10)
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Solution of this linearized problem ©° is used in creating elements of set V4
= Unit Startup (IT*)
= Unit Shutdown (ID¥)
= Unit Status (1°)
= Block Dispatch (p®).

Vs =V, u{ (I°,p°,IU°,ID%)} (5.11)

Solving the second problem as QP to obtain (I¢, p®, IU®, ID?) as follows:

{0% (%, p°, @*, p*) | (¥, p*, 1U*, ID?) € conv(V;)} (5.12)

Note the constraint in the above problem. Instead of solving in the feasible region of A®, this
method solves in the convex hull of A®. Problem (5.12) is accomplished by expressing
(I%, p*, 1U%, ID%) as a convex combination of the finite set of points, V, where the weights a €
RI!s! in the convex combination are now decision variables too. In fact, it is the only decision

variable. In practice this can be implemented as follows:

(I°,p*,1U%, ID®)

( @+S(1s,ps, ws' ps) | \
(I%,p*,1US,ID?) = z a(iS,m, psm [Us™, I’Ds,m) ,
€ argmin { (1sm psm, [US™ [DSM)eV s [ (5.13)
Ipa Vsl
z aym =1and a,, = 0,Vm
\ m=1 Y,

Presenting all the discussions in this section on FW-PHA in a flowchart format would make things

more transparent. The flowchart is shown below in Figure 5.3
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Figure 5.3 Flowchart of combined Frank-Wolfe and PHA
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5.5.2. FW-PHA Initialization

Initialization of the convex set is important since the proposed FW-PHA method performs only
one iteration of simplicial decomposition for each outer iteration. This requires that the initial

scenario vertex sets share a common point.

Solve MILP (5.7 with @=(0)

Sawve UC for rest of the

First Scenario? i
SCEnAarios

Create Convex Hull
Vs

More Scenario?

Figure 5.4 Initialization of convex hull for FW-PHA

Figure 5.4 shows the initialization of the convex hull for the FW-PHA algorithm. First,
problem (5.7) is solved (w = 0) to obtain both first-stage and second-stage solutions for the first
scenario. Then the rest of the scenarios are solved to get the second-stage decisions by fixing the
first-stage unit commitment from the first scenario. The first-stage and second-stage solutions are
used to initialize the inner approximation V, as shown in Figure 5.4. Both the implementable and

the dual variables are calculated based on the above initialization.
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5.5.3. FW-PHA with Warm Start

In the discussion on FW-PHA initialization, it was mentioned that the initialization of all
scenarios must share the same vertex to use one inner iteration only. This requirement can be
fulfilled by using a converged PBGS solution. The converged PBGS solution is the one where the
implementable is the same for all scenarios. This can save a significant amount of time and allows

to obtain better lower bound within the first few iterations.

| —e—Normal Start —=— Warm Start]

5 4] 7 8 0
Iterations

[
Lad -
4

Figure 5.5 Lower bound using normal start vs warm-start for the IEEE 118-bus System

Figure 5.5 compares (normalized) FW-PHA lower bounds over iterations with normal and
warm-starts on the IEEE-118 bus System. As seen, the normal-start lower bound improves as the
iteration proceeds, whereas its warm-start counterpart is tighter and remain nearly unchanged over
iterations. To save computational efforts, one can take the warm-start solution within the first few
FW-PHA iterations as a lower bound on the PBGS solutions.

5.5.4. Comparison FW-PHA with PHA Lower Bound

FW-PHA was applied to determine lower bound for RTS-96 and the IEEE 118-bus
Systems [57]. The results presented in this section are compared with lower bound obtained using

PHA, which was explained in section 5.4 of this chapter.
5.5.4.1. RTS-96 System

The FW-PHA and PHA results for the set RTS96-10-S1 are show in the following figures.
The major advantage of FW-PHA over PHA is sensitivity of the lower bound to the penalty factor

p. This is evident in the Figure 5.6, where the increased p yields poor lower-bound. As the penalty
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factor increases from 100 to 5,000, the lower bound obtained through the PHA dropped about
16.6% from $331,350 to $276,336. For the same range of penalty factors, the lower bound in the
FW-PHA remains approximately the same (only 0.84% change).
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Figure 5.6 Sensitivity of lower bound to p for RTS-96 System
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Figure 5.7 Lower bound over iterations for RTS-96 System

Figure 5.7 shows the lower bound obtained over iteration using the PHA (dotted plot) and
the FW-PHA (line plot). Dotted lines obtained from the PHA can be distinctively seen, while solid
lines from the FW-PHA are close to each other at the top of this figure. The lower bound from the

PHA tends to settle at different values depending on the chosen p whereas the lower bound from
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the FW-PHA, regardless of p, settles near the same value. Note that Figure 4 shows the cyclic
behavior for the PHA with p=1000 (red-dotted) and p=2000 (magenta-dotted), which is an inherent
drawback of the PHA mentioned earlier.

5.5.4.2. The IEEE 118-bus System

Figure 5.8 compares the sensitivity of the lower bound to the penalty factors in both the
PHA and the FW-PHA. The lower bound obtained in the IEEE 118-bus System demonstrates a
similar sensitivity to that in the IEEE RTS-96 System. The percentage drop of lower bound for the
penalty factor increasing from 100 to 5,000 is about 6.6% in the PHA, while it is negligibly small,
i.e., 0.3% in the FW-PHA.
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Figure 5.8 Sensitivity of lower bound to p for RTS-96 System

The lower bounds over iterations using the PHA (dotted plot) and the FW-PHA (line plot)
are shown in Figure 5.9. This figure illustrates a similar trend to that in the modified IEEE RTS-
96 System. The lower bound from the FW-PHA converges to around the same value regardless of
p, while the lower bound in the PHA tends to settle at different values depending on p. It is worth
mentioning that for p=2,000 in the PHA, this is the only case when the solution met our strict
termination criteria, i.e., € = 0.001, while all other cases in Figure 5.9 were terminated at the

maximum iterations.

99



e e e e R e

PHA p 100

PHA p 500

PHA p 1000

PHA p 2000

FW-PHA p 100

FW—PHA p 500
FW—-PHA p 1000

2851 FW-PHA p 2000 [|

T

1 | 1 L 1 1 1 T
0 10 20 30 40 50 60 70 80 90 100
Iterations

Figure 5.9 Lower bound over iterations for the IEEE 118-bus System (IEEE118-10-S1)

To illustrate the effectiveness of the proposed algorithm in a larger S-SCUC problem, a
similar comparative case study is conducted on the IEEE 118-bus System with 50 scenarios under
the same penalty factors as tested before. The lower bound versus iterations is shown in Figure

5.10. The convergence characteristics are analogous to those observed with 10 scenarios.
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Figure 5.10 Lower bound over iterations for the IEEE 118-bus System (IEEE118-50-S0)

Through RTS-96 and the IEEE 118-bus Systems it has been demonstrated that FW-PHA
lower bound is superior to that of PHA lower bound.
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5.6. Evaluation of Fast PBGS results

In this section, appraisal of the Fast PBGS result with the FW-PHA lower bound method

is carried out. Like before, all three different systems are assessed in this section.
5.6.1. RTS-96 System

The Fast PBGS results of the set RTS96-10-S1 are shown in Table 5.3. The lower bound
obtained using FW-PHA is used in assessing the Fast PBGS quality. As can be seen, the Gaps for
the Fast PBGS results obtained are slightly more than 1% for all penalty factors except 10,000.
The actual gap of Fast PBGS is no higher than the one calculated using FW-PHA. It could be less.

Table 5.3 Assessment of Fast PBGS result using FW-PHA LB for RTS-96 System

v=1.0, B=1.1 FW-PHA= $330,598
_ Operating cost by
PP Gap w.r.t. FW-PHA
- Fast PBGS
500 $330,990 1.03%
1000 $334,313 1.12%
5,000 $334,362 1.14%
10,000 $337,156 1.98%

5.6.2. The IEEE 118-bus System

Table 5.4 shows the Fast PBGS results for the IEEE 118-bus System, set IEEE118-10-S1.
Similar observation to RTS-96 in Table 5.3 can be made here. The calculated gap is around 1.5%
and the actual gap could be less. Note that the FW-PHA lower bound result was obtained only few

iterations into the solution.
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Table 5.4 Assessment of Fast PBGS result using FW-PHA LB for the IEEE118-bus System

v=1.0, p=1.1 FW-PHA= $839,840
— Operating cost by
P, p Gap w.r.t. FW-PHA
- Fast PBGS
500 $851,149 1.35%
1000 $851,097 1.34%
5,000 $851,366 1.37%
10,000 $854,284 1.72%

5.6.3. The ERCOT-Like System

Table 5.5 shows the Fast PBGS results for the sizeable ERCOT-like System along with the
gap calculated using FW-PHA lower bound. This gap calculated for the penalty factors 5,000 and
10,000 show that the Fast PBGS solution obtained is close to perfect.

Table 5.5 Assessment of Fast PBGS result using FW-PHA LB for the ERCOT-like System

v=1.0, p=1.1 FW-PHA = $35,356,211
_ Operating cost by
P, P Gap w.r.t. FW-PHA
- Fast PBGS
5,000 $35,444,677 0.25%
10,000 $35,480,631 0.35%
50,000 $35,880,952 1.48%

Through three different systems, each with different penalty factors, it can be established
that the FW-PHA can be used as an effective lower bound method to evaluate the Fast PBGS

solution.
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5.7. Out-of-Sample Testing

For the current research, 25 sets (IEEE118-50-S1 through IEEE118-50-S25) of 50
scenarios were created and solved by EF, Fast PBGS, and PHA. The ARMA was used with 4%
STD for load and 8% STD for wind in creating these scenarios. The Fast PBGS simulations used
an initialization method for the implementable is different from the previous simulations. This
initialization method is discussed in section 4.5.2. For PHA, no heuristic-based improvements
suggested in [105] were used. The Fast PBGS can use some of those techniques to improve
computational performance as well. While all the Fast PBGS converged to zero violations, only
10 out of 25 sets converged under PHA. The PHA termination criteria was set a little higher at
e < 0.1 or 60 iterations whichever comes first. Table 5.6 shows production cost obtained by the
EF, PHA and Fast PBGS. The objective value differences between the PHA and Fast PBGS are
calculated with respect to the EF. The table includes, statistical information at the bottom.
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Table 5.6 Comparison of Fast PBGS objective value with EF and PHA for the IEEE 118-

bus System
Ohjective Value
Scenario EF Fast PBGS PHA
Sets % diff % diff

Prod. Cost Prod. Cost| w.rt EF (Prod. Cost| w.rt EF

Set 1 % 905,258 | 5908,365 0.34%( 5912276 0.78%
Set 2 % 898,905 | 5905,710 0.76%| 5921,790 2.55%
Set 3 % B78,844 | 5885622 0.77%| 883,152 0.49%
Set 4 % B60,010 | $863,561 0.41%| 862,267 0.26%
Set 5 % BBGR,673 | 5893280 0.75%| 926,017 4.44%
Set b % B75,683 | 5881,781 0.70%| 5 889,085 153%
Set 7 $904,196 | 5912 470 0.91%| 929,102 2.75%
Set 8 % BB8,268 | 5894368 0.69%| 967,259 8.89%
Set S B70,647 | 873,525 0.33%| 875,809 0.59%
Set 10 $B861,534 | 5863,873 0.27%| $861,999 0.05%
Set 11 933,354 | 5958,349 2.68%| 967,790 3.69%
Set 12 % BB5,667 | 5 888,968 0.37%| 917,521 3.60%
Set 13 % B856,417 | 5861,333 0.57%| 5864,391 0.93%
Set 14 $ 871,254 | 5884058 1.47%| 873,579 0.27%
Set 15 % 908,052 | 5911 445 0.37%( 5930,438 2.47%
Set 16 % 892,006 | 5 895,469 0.38%(| 5 893,505 0.16%
Set 17 $872,411 | 5895985 2.70%| 5921,647 5.64%
Set 18 % B883,369 | 5883321 0.56%| $906,165 2.58%
Set 19 % 903,864 | 5906,125 0.25%| 5906,628 0.31%
Set 20 $928,003 | 5936,288 0.89%| 935,542 0.81%
Set 21 S B78,289 | 5885,465 0.82%| 5907,617 3.34%
Set 22 % B65,604 | 5874310 1.01%| 5 887,009 2.47%
Set 23 $911,826 | 5936,660 2.72%| 5943783 3.50%
Set 24 891,609 | 5900,391 0.98%| 5901,054 1.06%
Set 25 S 874,521 | 5 885,005 1.20%| 5 885,554 1.26%

5TD S 20,339 |5 23367 0.74%| 5 29,836 2.07%
Min $ 856,417 | 5861,333 0.25%| 5 861,999 0.05%
Max $933,354 | 5958,349 2.72%| 5967,790 8.89%
Mean 5887,454 | 5895629 0.92%| 5906,839 2.18%
Median | 5 885,667 | 5593,280 0.75%| 5906,628 1.53%
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Figure 5.11 Comparison of objective values for the IEEE 118-bus system

Figure 5.11 shows the objective values of the three methods using the box-whiskers plot. As
can be seen, the range of the objective values obtained by the Fast PBGS is almost the same as the
range of the objective values obtained by the EF. There is an outlier that resulted in over 2%
difference with EF. The mean difference is 0.92% with a standard deviation of 0.74% when
compared with EF. The ‘x’ marker next to the median indicates the mean value. Both the median
and mean difference of PHA are much higher than those of EF. The minimum value of PHA is
almost at the 1st quartile of EF. Most of the 4th quartile of the PHA objective value is above the
maximum value of the objective value obtained by EF. The average PHA difference with EF is
2.18% with a standard deviation of 2.07%. Overall, the PHA objective values are higher than both
EF and the Fast PBGS. Most of the higher objective values could be attributed to the non-
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convergence of PHA. Table 5.7 shows the computational time for EF, Fast PBGS and PHA. The
comparison of the computational time for the Fast PBGS and PHA are made with EF. Statistical
information is included at the bottom of the table. As can be seen the Fast PBGS outperforms both
EF and the PHA.

Table 5.7 Comparison of Fast PBGS computational time with EF and PHA for the IEEE
118-bus System

Compuational Time
Scenario EF Fast PBGS PHA
3ets Time in Time in % diff | Timein % diff

min min we.r.t. EF min w.r.t. EF

Setl 277 67 -76% 672 142%
Set 2 2949 1339 -54% 649 117%
Set3 372 139 -63% 689 85%
Setd 439 157 -54% 703 60%
5et 5 264 33 -B6% 757 187%
S5et 6 222 103 -53% 674 204%
Set?7 183 24 -54% 204 339%
Set 8 296 134 -55% 747 152%
S5et 9 459 32 -82% 493 7%
Set 10 135 146 -21% 313 T0%
Set 11 204 208 -209% 776 164%
Set 12 156 163 4% 711 355%
Set 13 192 144 -25% 612 219%
Set 14 175 286 63% 412 136%
Set 15 247 98 -50% 721 193%
Set 16 247 61 -75% 707 186%
Set 17 377 209 -45% 743 Q7%
Set 18 428 79 -82% 669 56%
Set 19 188 154 -18% 464 147%
Set 20 341 67 -80% 632 85%
Set 21 332 161 -51% 685 106%
Set 22 506 167 -57% 825 63%
Set 23 287 228 -21% 778 171%
Set 24 4491 146 -70% 631 20%
Set 25 225 123 -45% 6E0 193%
STD 104 58| 33.13% 123| B2454%
Min 156 38| -85.52% 313 7.48%
Max 506 286| B3.47% 825| 355.01%
Mean 2949 135| -4B3.32% 661| 142.55%
Median 287 139 -53497% 685| 142.25%
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Figure 5.12 Comparison of computational performance for the IEEE 118-bus system

Figure 5.12 shows a comparison of the computational performance of the three methods. It is
known that the computation time taken by the EF increases with an increased number of scenarios
leading to the unsolvable situation. As shown in the figure, the Fast PBGS computational
performance is far better than the PHA by several folds. The mean time taken to obtain the solution
by the Fast PBGS is 135 minutes with a standard deviation of 58 minutes. Meanwhile, for the PHA
algorithm, the mean is 661 minutes at a standard deviation of 123 minutes. Such a computational
efficiency and comparable lower objective values shown here make the Fast PBGS a worthy
alternative to the PHA.
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5.8. Discussion on Parameters

Fast PBGS uses the parameters 3, p and y. Though the research continues on the sensitivity of
these parameters, the experience thus far is shared here. The parameter S is used in (4.12) to
accelerate the convergence. The research was experimented only with two values, 1.11 and 1.25.
Results of the effect of 8 is shown in Figure 5.1. Simulation results for the IEEE 118-bus System
show a high value of f makes the convergence faster at the cost of the solution quality. As the
iteration number gets high, g grows exponentially and makes the penalty function higher, which
could result in loss of load or additional load slack. The situation is not actual and can be fixed by
increasing the Value of Loss of Load (VOLL) to obtain a solution or increasing the value of «

(4.12) only when needed instead of in every iteration.

Simulations were carried out in the current research with a wide range of p for both the IEEE
118-bus System and the ERCOT-like System. Like 8, a high value of p makes the convergence
faster at the cost of the solution quality. While p is used in the initial penalty, the parameter y (step
size) is used in every iteration (4.9). Though the values assigned to both p and y were the same
for the results shown in this dissertation, few simulations were carried out with different p and y
values. While large p with smaller y took more iterations to make any significant progress, smaller
p value compared to y did not make that much difference. The progress remained when setting
both p and y at the same value. More studies need to be conducted before any conclusive
statements are made and will be taken up in the future. The suggested range for p is 5,000 to

50,000. For the step size y is set equal to p. The acceleration factor £ can be set to 1.11 to 1.15.

One other experiment was carried out in initializing the Z value. The algorithm in [101]
suggests initializing Z = 0 or using a rounded scenario weighted average of every status across
the scenarios of the respective unit and hours. A new method as explained in Section 4.5.2 was
used. This third method (4.34) initializes Z with the scenario containing a maximum number of
online unit status. Thus far, with the experiments in the present research, it was observed that this

method of initialization gives results faster than the first two methods.
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5.9. Summary

This chapter presents several methods that could be applied to measure the quality of the
Fast PBGS solution. The methods included primal methods as well as lower-bound algorithms.
The importance of measuring the solution quality of Fast PBGS was discussed as the algorithm
does not use bounds to achieve convergence like Benders Decomposition, and applying the Fast
PBGS to MIP such as S-NCUC often gives local minimums than the global one. Of those lower-
bound methods presented here, it was shown that the FW-PHA method is the one that gives the
best lower bound for real-world applications. The FW-PHA solution time has been improved
through warm starting with a converged Fast PBGS solution. Also, a comparison of Fast PBGS
with PHA was made as PHA is one of the widely used scenario-wise decompositions. Finally, out-
of-sampling (OOS) tests were conducted on the IEEE 118-bus system. A total of 25 sets, each with
50 scenarios, were used in the OOS tests. Three different algorithms, EF, PHA, and Fast PBGS,
were measured and compared. Comparisons on the quality of the objective value and the
computational time were carried out and quantified. The comparative results with respect to EF
(i.e., optimal solution) shows the Fast PBGS results are closer to that of the EF with an average
difference of 0.92%, whereas the PHA solution with respect to the EF with an average difference
of 2.18%. When it comes to the computational time, the Fast PBGS outperformed both EF and
PHA. Specifically, the Fast PBGS took on average 48% of less time than EF to obtain a solution.
Compared with PHA, the Fast PBGS was 142% faster.
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6. Conclusions and Future Work

The generation landscape of the utilities and the 1SOs is changing in favor of VRE. This
change brings uncertainties into the PSOP. One of the applications used in the PSOP is the UC
(NCUC or SCUC). What used to be parameters have uncertainties in them now, therefore, needing
changes to the application. After a brief discussion on a different solution to this problem, it was
decided to research in the stochastic optimization area to make the research applicable to real-
world situations. First, we formulated the EF of the NCUC and conducted studies on three different
systems with varying sizes. One of the systems included was the ERCOT-like Large System. We
learned that we could not obtain a solution for this extensive complex system using EF. This
prompted us to look into decomposition and found PHA and BD algorithms. Both these algorithms
are already researched. BD algorithm would require significant effort to implement around an
existing solution at the utilities and ISOs compared to the PHA. However, the PHA has drawbacks
prompting the following question: 1) How can we devise an effective penalty function to obtain
an exact solution with a zero-duality gap? and 2) If an exact solution is attained, how can we find
a robust yet tight lower bound capable of measuring the quality of the exact solution accurately?

An answer was found for the first question using the PBGS algorithm. Though a solution
was obtained to the ERCOT-like Large System, the time taken to obtain such a solution prohibits
from using it in the real world. This challenge steered the research to find a solution in Fast PBGS.
The Fast PBGS is an improved version of the PBGS and saves an average of 35%-50% of the time
compared to the PBGS. An answer to the second question was found in FW-PHA lower bound
algorithm. The use of the warm-start technique improved the computation performance of FW-
PHA.

To prove the reliability of the Fast PBGS algorithm, OOS was conducted on the IEEE 118-
bus system. A total of 25 sets, each with 50 scenarios, were generated and studied in the OOS
using EF, PHA, and the Fast PBGS. A comparison of results obtained for these three algorithms
shows that the Fast PBGS solution is very close to the EF than the PHA solution to the EF solution.
In the performance comparison, the Fast PBGS outperforms both PHA and EF.

Though goals set out was achieved, more improvements, especially in the computational

performance area, are needed. Future research can be conducted in the following areas to improve
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computational performance. 1) Improved UC formulation: Most time taken is in obtaining an
NCUC solution. Time taken can be reduced by using improvements made in the problem
formulation or other solution techniques in the research, such as the one in [77]; 2) PHA expediting
techniques: Computation performance can be improved by using expediting techniques used in
PHA [105]; 3) An optimal value for tunable parameters: More studies can be carried out with
different tunable parameters to arrive at optimal values of these parameters that improve the
performance; and 4) Parallel implementation of the Fast PBGS algorithm: The decomposition lets
one solve the scenarios in parallel. Perhaps using the latest advancement in parallel implementation
such as the one in [108]. In addition, machine learning can also be explored to obtain a solution
without actually solving it. This remains an interesting topic deserving full investigation for other

researchers in the future.

111



References

[1] Leon K. Kirchmayer. Economic Operation of Power Systems. John Wiley & Sons, New York,
1958.

[2] J.A. Muckstadt, R.C. Wilson, “An Application of Mixed-Integer Programming Duality to
Scheduling Thermal Generating Systems”, IEEE Trans. Power Apparatus Syst., vol. 87, issue 12,
pp. 1958-1978, 1968.

[3] ERCOT, “Generator interconnection status report”

(http://www.ercot.com/gridinfo/resource/2017) last accessed 07/15/2020.

[4] Southwest Power Pool, “State of the market 2018,

https://spp.org/documents/59861/2018%20annual%20state%200f%20the%20market%20report.p
df, last accessed 07/17/2020.

[5] California ISO, “2019 annual report on market issues & performances”,
http://www.caiso.com/Documents/2019AnnualReportonMarketlssuesandPerformance.pdf#searc
h=generation%20fuel%20mix, last accessed 07/17/2020.

[6] Energy.Gov, “U.S. installed and potential wind power capacity and generation”,

https://windexchange.enerqgy.gov/maps-data/321, last accessed 07/17/2020.

[7] W. van Ackooij et al., “Large-scale unit commitment under uncertainty: An updated literature

survey,” Annals of Operations Research., vol. 271, no. 1, pp. 11-85, 2018.

[8] Q. P. Zheng, J. Wang, and A. L. Liu, “Stochastic optimization for unit commitment—A
review,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1913-1924, 2015.

[9] L. T. Anstine, et.al., “Application of probability methods to the determination of spinning
reserve requirements for the Pennsylvania-New Jersey-Maryland Interconnection,” IEEE Trans.
Power Apparatus Syst., vol. 82, no. 68, pp. 726-735, 1963.

[10] ERCOT, “Methodology for determining ancillary service requirements”,
http://www.ercot.com/mktinfo/dam/index.html, last accessed 07/18/2020.

112


http://www.ercot.com/gridinfo/resource/2017
https://spp.org/documents/59861/2018%20annual%20state%20of%20the%20market%20report.pdf
https://spp.org/documents/59861/2018%20annual%20state%20of%20the%20market%20report.pdf
http://www.caiso.com/Documents/2019AnnualReportonMarketIssuesandPerformance.pdf#search=generation%20fuel%20mix
http://www.caiso.com/Documents/2019AnnualReportonMarketIssuesandPerformance.pdf#search=generation%20fuel%20mix
https://windexchange.energy.gov/maps-data/321
http://www.ercot.com/mktinfo/dam/index.html

[11] M. A. Matos and R. J. Bessa, “Setting the operating reserve using probabilistic wind power
forecasts,” IEEE Trans. Power Syst., vol. 26, no. 2, pp. 594-603, 2011.

[12] H. Holttinen et al., “Methodologies to determine operating reserves due to increased wind
power,” IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 713-723, 2012.

[13] N. Menemenlis, M. Huneault, and A. Robitaille, “Computation of dynamic operating
balancing reserve for wind power integration for the time-horizon 1-48 Hours,” IEEE Trans.
Sustain. Energy, vol. 3, no. 4, pp. 692-702, 2012.

[14] K. De Vos, “Sizing and allocation of operating reserves following wind power integration,”

Ph.D. dissertation, KU Leuven, Belgium, April 2013.

[15] K. D. Vos and J. Driesen, “Dynamic operating reserve strategies for wind power integration,”

IET Renewable Power Generation, vol. 8, no. 6, pp. 598-610, 2014.

[16] E. Ela, M. Milligan, and B. Kirby, “Operating reserves and variable generation,” NREL/TP-
5500-51978, 1023095, Aug. 2011.

[17] A. Charnes and W. W. Cooper, “Chance-constrained programming,” Management Science,
vol. 6, no. 1, pp. 73-79, 1959.

[18] U. A. Ozturk, M. Mazumdar, and B. A. Norman, “A solution to the stochastic unit
commitment problem using chance constrained programming,” IEEE Trans. Power Syst., vol. 19,
no. 3, pp. 1589-1598, 2004.

[19] J. J. Peralta, J. Pérez-Ruiz, and S. de la Torre, “Unit commitment with load uncertainty by
joint chance-constrained programming,” in 2013 IEEE Grenoble Conference, pp. 1-6. 2013.

[20] H. Wu, M. Shahidehpour, Z. Li, and W. Tian, “Chance-constrained day-ahead scheduling in
stochastic power system operation,” IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1583-1591, 2014.

[21] U. A. Ozturk, “The stochastic unit commitment problem: a chance constrained programming
approach considering extreme multivariate tail probabilities.” Ph.D. Thesis, University of

Pittsburgh, PA, 2003.

113



[22] Y. Wang, Q. Xia, and C. Kang, “Unit commitment with volatile node injections by using
interval optimization,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1705-1713, 2011.

[23] M. Zhou, S. Xia, G. Li, and X. Han, “Interval optimization combined with point estimate
method for stochastic security-constrained unit commitment,” International Journal of Electrical
Power & Energy Systems, vol. 63, pp. 276-284, 2014.

[24] Y. Yu et al., “Transmission contingency-constrained unit commitment with high penetration
of renewables via interval optimization,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1410-1421,
2017.

[25] D. You et al., “An interval unit commitment with wind power integrated using interval
optimization,” in 2019 IEEE PES GTD Grand International Conference and Exposition Asia
(GTD Asia), pp. 701-705, 2019.

[26] L. Wu, M. Shahidehpour, and Z. Li, “Comparison of scenario-based and interval optimization
approaches to stochastic SCUC,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 913-921, 2012.

[27] A. Ben-Tal and A. Nemirovski, “Robust solutions of uncertain linear programs,” Operations

Research Letters, vol. 25, no. 1, pp. 1-13, 1999.

[28] A. Ben-Tal and A. Nemirovski, “Robust optimization — methodology and applications,” Math.
Program., vol. 92, no. 3, pp. 453-480, 2002.

[29] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable robust solutions of
uncertain linear programs,” Math. Program.; vol. 99, no. 2, pp. 351-376, 2004.

[30] B. L. Gorissen, I. Yanikoglu, and D. den Hertog, “A Practical guide to robust optimization,”
Omega, vol. 53, pp. 124-137, 2015.

[31] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications of robust
optimization,” SIAM Review, vol. 53, no. 3, pp. 464-501, 2011.

114



[32] A. Street, F. Oliveira, and J. M. Arroyo, “Contingency-constrained unit commitment with n-
K security criterion: A robust optimization approach,” IEEE Trans. Power Syst., vol. 26, no. 3, pp.
1581-1590, 2011.

[33] R. Jiang, J. Wang, and Y. Guan, “Robust unit commitment with wind power and pumped

storage hydro,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 800-810, 2012.

[34] C. Zhao, J. Wang, J.-P. Watson, and Y. Guan, “Multi-stage robust unit commitment
considering wind and demand response uncertainties,” IEEE Trans. Power Syst., vol. 28, no. 3,
pp. 2708-2717, 2013.

[35] Q. Wang, J.-P. Watson, and Y. Guan, “Two-stage robust optimization for N-k contingency-
constrained unit commitment,” |IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2366-2375, 2013.

[36] D. Bertsimas et.al., “Adaptive robust optimization for the security constrained unit
commitment problem,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 52-63, 2013.

[37] C. Ning and F. You, “Data-driven adaptive robust unit commitment under wind power
uncertainty: A Bayesian nonparametric approach,” IEEE Trans. Power Syst., vol. 34, no. 3, pp.
2409-2418, 2019.

[38] Y. An and B. Zeng, “Exploring the modeling capacity of two-stage robust optimization:
variants of robust unit commitment model,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 109-122,
2015.

[39] C. Zhao and Y. Guan, “Unified stochastic and robust unit commitment,” |[EEE Trans. Power
Syst., vol. 28, no. 3, pp. 3353-3361, 2013.

b

[40] J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems,’

Computational Management Science; Dordrecht, vol. 2, no. 1, pp. 3-19, 2005.

[41]1R. M. Van Slyke and R. Wets, “L-Shaped linear programs with applications to optimal control
and stochastic programming,” SIAM Journal on Applied Mathematics, vol. 17, no. 4, pp. 638-663,
1969.

115



[42] L. F. B. Baptistella and J. C. Geromel, “Decomposition approach to problem of unit
commitment schedule for hydrothermal systems,” IEE Proceedings D - Control Theory and
Applications, vol. 127, no. 6, pp. 250258, 1980.

[43] M. Shahidehpour and Y. Fu, “Tutorial Benders decomposition in restructured power

systems,” http://motor.ece.iit.edu/ms/benders.pdf (last accessed 09/30/2020)

[44] C. Liu, M. Shahidehpour, and L. Wu, “Extended Benders decomposition for two-stage
SCUC,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 1192-1194, 2010

[45] L. Wu and M. Shahidehpour, “Accelerating the Benders decomposition for network-
constrained unit commitment problems,” Energy Systems; Gainesville, vol. 1, no. 3, pp. 339-376,
2010.

[46] B. Vandenbussche, S. Delikaraoglou, 1. Blanco, and G. Hug, “Data-driven adaptive Benders
decomposition for the stochastic unit commitment problem,” Dec. 2019,

http://arxiv.org/abs/1912.01039 (last accessed 09/18/2020)

[47] J. Murphy, “Benders, nested Benders and stochastic programming, ” Cambridge University
Engineering Department Technical Report, Dec 2013.

[48] C. C. Carge and R. Schultz, “Dual decomposition in stochastic integer programming,”

Operations Research Letters, vol. 24, no. 1-2, pp. 37-45, 1999.

[49] S. Takriti, J. R. Birge, and E. Long, “A stochastic model for the unit commitment problem,”
IEEE Trans. Power Syst., vol. 11, no. 3, pp. 1497-1508, 1996.

[50] L. Wu, M. Shahidehpour, and T. Li, “Stochastic security-constrained unit commitment,” |IEEE
Trans. Power Syst., vol. 22, no. 2, pp. 800-811, 2007.

[51] R. T. Rockafellar and R. J.-B. Wets, “Scenarios and policy aggregation in optimization under
uncertainty,” Mathematics of Operations Research, vol. 16, no. 1, pp. 119-147, 1991.

[52] Lekketangen, A., Woodruff, D.L. “Progressive hedging and tabu search applied to mixed
integer (0,1) multistage stochastic programming,” J Heuristics 2, pp. 111-128, 1996.

116


http://motor.ece.iit.edu/ms/benders.pdf
http://arxiv.org/abs/1912.01039

[53] Y. Fan and C. Liu, “Solving stochastic transportation network protection problems using the

progressive hedging-based method,” Netw Spat Econ, vol. 10, no. 2, pp. 193-208, 2010.

[54] J.-P. Watson and D. L. Woodruff, “Progressive hedging innovations for a class of stochastic
mixed-integer resource allocation problems,” Computational Management Science, vol. 8, no. 4,
pp. 355-370, 2011.

[55] D. Gade et.al., “Obtaining lower bounds from the progressive hedging algorithm for
stochastic mixed-integer programs,” Math. Program., vol. 157, no. 1, pp. 4767, 2016.

[56] N. Boland et al., “Combining progressive hedging with a Frank-Wolfe method to compute
Lagrangian dual bounds in stochastic mixed-integer programming,” SIAM J. Optim., vol. 28, no.
2, pp. 1312-1336, 2018.

[57] A. M. Palani, H. Wu, and M. M. Morcos, “A Frank—Wolfe progressive hedging algorithm for
improved lower bounds in stochastic SCUC,” IEEE Access, vol. 7, pp. 99398-99406, 2019.

[58] B. Colonetti and E. C. Finardi, “Combining Lagrangian relaxation, benders decomposition,
and the level bundle method in the stochastic hydrothermal unit-commitment problem,”

International Transactions on Electrical Energy Systems, vol. 30, issue 9, 2020.

[59] C. Zhao and Y. Guan, “Unified stochastic and robust unit commitment,” |IEEE Trans. Power
Syst., vol. 28, no. 3, pp. 3353-3361, 2013.

[60] Wood, A. J., and Wollenberg, B. F. Power Generation, Operation, and Control. John Wiley
and Sons, New York, NY, 1984,

[61] M. Carrion and J. M. Arroyo, “A computationally efficient mixed-integer linear formulation
for the thermal unit commitment problem,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1371-
1378, 2016.

[62] H. Ma and S. M. Shahidehpour, “Unit commitment with transmission security and voltage

constraints,” IEEE Trans. Power Syst., vol. 14, no. 2, pp. 757-764, 1999.

117



[63] V. Trovato, A. Bialecki, and A. Dallagi, “Unit commitment with inertia-dependent and
multispeed allocation of frequency response services,” IEEE Trans. Power Syst., vol. 34, no. 2,
pp. 1537-1548, 20109.

[64] D. A. Tejada-Arango, S. Lumbreras, P. Sdnchez-Martin, and A. Ramos, “Which unit-
commitment formulation is best? A comparison framework,” IEEE Trans. Power Syst., vol. 35,
no. 4, pp. 2926-2936, 2020.

[65] N. P. Padhy, “Unit commitment-a bibliographical survey,” IEEE Trans. Power Syst., vol. 19,
no. 2, pp. 1196-1205, 2004.

[66] B. Knueven, J. Ostrowski, and J.-P. Watson, “On mixed-integer programming formulations

for the unit commitment problem,” INFORMS Journal on Computing, p. ijoc.2019.0944, 2020.

[67] E. Ela and M. O’Malley, “Studying the variability and uncertainty impacts of variable
generation at multiple timescales,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1324-1333, 2012.

[68] E. Ela, “Scheduling and pricing of power systems with increased variable, uncertain, and

nonsynchronous resources,” Ph.D. dissertation, Univ. College Dublin, Dublin, Ireland, 2014.

[69] T. Ibaraki, “On the computational efficiency of branch-and-bound algorithms,” JORSJ, vol.
20, no. 1, pp. 16-35, 1977.

[70] A. J. Conejo, Ed., Decomposition technigues in mathematical programming: engineering and

science applications. Berlin ; New York: Springer, 2006.

[71]] GAMS Documentation. [Online]. Available: https://www.gams.com/latest/docs/ (last
accessed 06/18/2021).

[72] IBM ILOG CPLEX. [Online]. Available: https://www.ibm.com/products/ilog-cplex-

optimization-studio/resources (last accessed 06/18/2021).

[73] C. Grigg et al., “The IEEE Reliability Test System-1996. A report prepared by the reliability
test system task force of the application of probability methods subcommittee,” IEEE Trans.
Power Syst., vol. 14, no. 3, pp. 1010-1020, 1999.

118


https://www.gams.com/latest/docs/
https://www.ibm.com/products/ilog-cplex-optimization-studio/resources
https://www.ibm.com/products/ilog-cplex-optimization-studio/resources

[74] “IEEE 96-RTS Test System - Illinois Center for a Smarter Electric Grid (ICSEG).”

https://icseq.iti.illinois.edu/power-cases/ieee-96-rts-test-system/ (last accessed 11/ 02/2019).

[75] IEEE118bus_Data_Figure.xls. [Online]. Available: http://motor.ece.iit.edu/Data/ (last
accessed 01/03/2019.)

[76] Q. Wang et.al., “Quantifying the economic and grid reliability impacts of improved wind
power forecasting,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1525-1537, 2016.

[77] X. Li, Q. Zhai, J. Zhou, and X. Guan, “A variable reduction method for large-scale unit
commitment,” IEEE Trans. Power Syst., pp. 1-1, 2019.

[78]J. M. Morales, S. Pineda, A. J. Conejo, and M. Carrion, “scenario reduction for futures market

trading in electricity markets,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 878-888, 20009.

[79] Y. Dvorkin, Y. Wang, H. Pandzic, and D. Kirschen, “Comparison of scenario reduction
techniques for the stochastic unit commitment,” in 2014 IEEE PES General Meeting Conference
Exposition, pp. 1-5, 2014.

[80] P. Pinson, G. Papaefthymiou, B. Klockl, and H. A. Nielsen, “Generation of statistical
scenarios of short-term wind power production,” Lausanne Power Tech, Switzerland, pp. 491-
496, 2007.

[81] D. Lee and R. Baldick, “Load and wind power scenario generation through the generalized
dynamic factor model,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 400-410, 2017.

[82] Y. Chen, Y. Wang, D. Kirschen, and B. Zhang, “Model-free renewable scenario generation
using generative adversarial networks,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3265-3275,
2018.

[83] R. Henrion, W. Romisch, “Problem-based optimal scenario generation and reduction in

stochastic programming,” Math. Program., pp. 1-23, 2018.

[84] A. Boone, “Simulation of short-term wind speed forecast errors using a multi-variate ARMA
(1,1) Time-series Model,” p. 95.

119


https://icseg.iti.illinois.edu/power-cases/ieee-96-rts-test-system/
http://motor.ece.iit.edu/Data/

[85] Y. Liu, R. Sioshansi, and A. J. Conejo, “Multistage stochastic investment planning with
multiscale representation of uncertainties and decisions,” IEEE Trans. Power Syst., vol. 33, no. 1,
pp. 781-791, 2018.

[86] A. Nedich and A. Ozdaglar, “A geometric framework for nonconvex optimization duality

using augmented Lagrangian functions,” J Glob Optim, vol. 40, no. 4, pp. 545-573, 2008.

[87] R.T. Rockafellar, R.J.B Wets. Variational Analysis. 3" printing 2009. Available at
http://sites.math.washington.edu/~rtr/papers/rtr169-VarAnalysis-RockWets.pdf

[88] C.Y. Wang, X.Q. Yang, X.M. Yang, “Nonlinear augmented Lagrangian and duality theory,”
Mathematics of Operations Research 38(4), 740-760, 2013.

[89] M. J. Feizollahi, S. Ahmed, and A. Sun, “Exact augmented Lagrangian duality for mixed
integer linear programming,” Math. Program., vol. 161, no. 1-2, pp. 365-387, 2017.

[90] M. J. Feizollahi, “Large-scale unit commitment: Decentralized mixed integer programming

approaches”, Ph.D. dissertation, Georgia Institute of Technology, Dec 2015.

[91] J. V. Burke, “An exact penalization viewpoint of constrained optimization,” SIAM Journal

on Control and Optimization, vol. 29, no. 4, pp. 968-998, 1991.

[92] G. Di Pillo and L. Grippo, “Exact penalty functions in constrained optimization,” SIAM
Journal on Control and Optimization; Philadelphia, vol. 27, no. 6, p. 28, 1989.

[93] J. V. Burke, “An exact penalization viewpoint of constrained optimization,” SIAM Journal

on Control and Optimization; Philadelphia, vol. 29, no. 4, p. 31, 1991.

[94] 1. D. Coope and C. J. Price, “A two-parameter exact penalty function for nonlinear

programming,” J Optim Theory Appl, vol. 83, no. 1, pp. 49-61, 1994.

[95] R. S. Burachik, A. N. Iusem, and J. G. Melo, “Duality and exact penalization for general
augmented Lagrangians,” J Optim Theory Appl, vol. 147, no. 1, pp. 125-140, 2010.

[96] X. X. Huang and X. Q. Yang, “A unified augmented Lagrangian approach to duality and exact
penalization,” Mathematics of Operations Research., 28, 533-552, 2003,

120


http://sites.math.washington.edu/~rtr/papers/rtr169-VarAnalysis-RockWets.pdf.(last

[97]1 M. V. Dolgopolik, “A Unifying theory of exactness of linear penalty functions,” Optimization,
vol. 65, no. 6, pp. 1167-1202, 2016.

[98] M. V. Dolgopolik, “Existence of augmented Lagrange multipliers: reduction to exact penalty
functions and localization principle,” Math. Program., vol. 166, no. 1-2, pp. 297-326, 2017.

[99] S. Lucidi and F. Rinaldi, “Exact penalty functions for nonlinear integer programming
problems,” J Optim Theory Appl, vol. 145, no. 3, pp. 479-488, 2010.

[100] N. L. Boland and A. C. Eberhard, “On the augmented Lagrangian dual for integer
programming,” Math. Program., vol. 150, no. 2, pp. 491-509, 2015.

[1L01] F. Oliveira, J. Christiansen, B. Dandurand, and A. Eberhard, “Combining penalty-based and
Gauss-Seidel methods for solving stochastic mixed-integer problems,” Jan. 2017
http://arxiv.org/abs/1702.00074 (last accessed 03/13/2019)

[102] C. Beltran, C. Tadonki and J.-Ph. Vial, “Semi-Lagrangian relaxation,” September 14, 2004.
(http://www.optimizationonline.org/DB_FILE/2004/09/959.pdf). Last accessed 7/14/20109.

[103] X. Guan, Q. Zhai, and A. Papalexopoulos, “Optimization based methods for unit
commitment: Lagrangian relaxation versus general mixed integer programming,” in Proc. IEEE

Power Eng. Soc. Gen. Meeting, Jul. 2003, pp. 1095-1100.

[104] A. M. Palani, H. Wu and M. M. Morcos, "A fast penalty-based Gauss-Seidel method for
stochastic unit commitment with uncertain load and wind generation,” in IEEE Open Access

Journal of Power and Energy, vol. 8, pp. 211-222, 2021.

[105] K. Cheung et al., “Toward scalable stochastic unit commitment: Part 2: solver configuration

and performance assessment,” Energy Syst, vol. 6, no. 3, pp. 417-438, 2015.

[106] M. Frank, P. Wolfe, “An algorithm for quadratic programming,” Naval Res Logist Quart 3,
95-110, 1956.

[107] B. Von Hohenbalken, “Simplicial decomposition in nonlinear programming algorithms,”

Math. Program. 13, 49 - 68, 1977.

121


http://arxiv.org/abs/1702.00074
http://www.optimizationonline/

[108] Y. Song, C. Meng, R. Liao, and S. Ermon, “Accelerating Feedforward Computation via
Parallel Nonlinear Equation Solving,” Jun. 2021, http://arxiv.org/abs/2002.03629 (last accessed
07/27/ 2021)

122


http://arxiv.org/abs/2002.03629

	Abstract
	Copyright
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	1. Introduction
	1.1. Power System Operational Planning
	1.2. Optimization in Power System Operational Planning
	1.2.1. Changes in the Generation Landscape
	1.2.2. Uncertainties and Variabilities

	1.3. Research
	1.3.1. Motivation
	1.3.2. Contributions
	1.3.3. Organization of the Dissertation

	1.4. Nomenclature
	1.4.1. Operators/functions
	1.4.2. Parameters
	1.4.3. Variables
	1.4.4. Abbreviations & Acronyms


	2. Undertaking of VRE Challenges
	2.1. Dynamic Operating Reserve
	2.2. Chance-Constrained Programming
	2.3. Interval Optimization
	2.4. Robust Optimization
	2.5. Stochastic Optimization
	2.5.1. Stage-Wise Decomposition
	2.5.2. Scenario-wise decomposition

	2.6.  Hybrid Solutions
	2.7. Scope of The Research

	3. Stochastic-Network Constrained Unit Commitment
	3.1. Unit Commitment (UC)
	3.2. S-NCUC Formulation
	3.3. Computational Environment
	3.4. Systems Modeled/Used in Simulations
	3.4.1. RTS-96 System
	3.4.2. The IEEE 118-bus System
	3.4.3. The ERCOT-like Large System

	3.5. Scenario Generation
	3.6. Extensive Formulation Results
	3.6.1. RTS-96 System
	3.6.2. The IEEE 118-bus
	3.6.3. The ERCOT-like Large System

	3.7. Summary

	4. Fast Penalty-Based Gauss-Seidel Algorithm
	4.1. Augmented Lagrangian
	4.2. Strong Duality with Augmented Lagrangian
	4.2.1. Affine Functions
	4.2.2. Non-linear Functions

	4.3. Exact Augmented Lagrangian
	4.4. Penalty-Based Gauss-Seidel Algorithm
	4.4.1. PBGS Algorithm
	4.4.2. Proof of convergence of PBGS
	4.4.3. PBGS Results
	4.4.3.1. RTS-96 System
	4.4.3.2. The IEEE 118-bus System
	4.4.3.3. The ERCOT-Like System

	4.5. Fast Penalty-Based Gauss-Seidel (Fast PBGS)
	4.5.1. Fast PBGS Algorithm
	4.5.2. Initialization of Implementable Z
	4.5.3. Comparison of PBGS vs Fast PBGS
	4.5.3.1. RTS-96 System
	4.5.3.2. The IEEE 118-bus System
	4.5.3.3. ERCOT-like Large System

	4.6. Summary

	5. Assessing S-NCUC Solution Quality
	5.1. Lower Bound and Other Methods
	5.2. Extensive Formulation (EF)
	5.3. Relaxed Extensive Formulation (Re-EF)
	5.4. Progressive Hedging Algorithm (PHA)
	5.4.1. Comparison of Fast PBGS with PHA
	5.4.2. The IEEE 118-bus System
	5.4.3. The ERCOT-Like System

	5.5. Frank-Wolfe combined PHA (FW-PHA)
	5.5.1. FW-PHA Formulation
	5.5.2. FW-PHA Initialization
	5.5.3. FW-PHA with Warm Start
	5.5.4. Comparison FW-PHA with PHA Lower Bound
	5.5.4.1. RTS-96 System
	5.5.4.2. The IEEE 118-bus System

	5.6. Evaluation of Fast PBGS results
	5.6.1. RTS-96 System
	5.6.2. The IEEE 118-bus System
	5.6.3. The ERCOT-Like System

	5.7. Out-of-Sample Testing
	5.8. Discussion on Parameters
	5.9. Summary

	6. Conclusions and Future Work
	References

