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Abstract 

The exponential growth of variable renewable energy (VRE) such as wind and solar 

generation brings grand challenges to the operational planning of power systems. The 

instantaneous penetration of VRE reaches over 50% in certain balancing areas in the United States. 

The VRE generation is characterized by a large amount of uncertainties and variabilities. 

Consequently, power system operators, planners and researchers have made substantial efforts to 

manage VRE uncertainties in the power system scheduling, such as Network-Constrained Unit 

Commitment (NCUC). In order to account for the impact of VRE uncertainties, there are several 

noteworthy NCUC approaches in the literature, each with distinctive objectives, theories, 

computational requirements and economic outcomes. A common approach presented in the 

literature is the use of stochastic programming, namely Stochastic NCUC (S-NCUC), in which the 

expected system operating cost is minimized across a number of scenarios, each representing a 

possible realization of uncertainties. S-NCUC is typically a large-scale, non-convex, and mixed-

integer programming (MIP) problem. It is modeled as a two-stage stochastic problem where the 

first-stage unit commitment decisions are the same for all the scenarios. Generally, S-NCUC 

solutions can be categorized into two main approaches. First, the most straightforward approach 

is to use a commercially available off-the-shelf solver to solve an extensive form (EF) of S-NCUC. 

However, for any large-scale system with a reasonable number of scenarios, the resulting EF of S-

NCUC may become computationally intractable. To overcome this issue, the second approach is 

based on stage-wise or scenario-wise decomposition methods, which solve each individual 

scenario separately, usually in parallel, and a final solution is generated by coordinating all 

individual scenario solutions. Progressive Hedging Algorithm (PHA) is one of the main 

decomposition methods for solving the stochastic MIP. However, PHA is originally devised for a 

continuous convex program and is not provably convergent for the non-convex S-NCUC problem. 

The solution to the dual problem is generally primal infeasible and the once relaxed system-wide 

constraints may not be satisfied. An additional effort is required to restore the primal feasibility 

from a Lagrangian dual solution. Therefore, it is desirable to directly obtain a primally feasible 

solution from the Lagrangian dual iterations. This gives rise to exact augmented Lagrangian, a 

class of exact penalty methods whose objective is to solve a constrained optimization (primal) 

problem through an unconstrained optimization problem that has the same local (global) solutions 



  

as the primal problem. Nevertheless, the following two critical research questions remain 

unresolved: 

1)  How can we devise an effective penalty function such that an exact solution can be 

obtained with a zero-duality gap? 

2)  If an exact solution is attained, how can we find a robust yet tight lower bound that is 

capable of measuring the quality of the exact solution accurately? 

This dissertation addresses the aforementioned first question by applying a novel Penalty-

Based Gauss-Seidel (PBGS) algorithm with an exact augmented Lagrangian representation to 

solve S-NCUC within a scenario-based decomposition framework. To improve the computational 

efficiency of PBGS, an accelerating technique that skips solving scenarios meeting certain 

conditions has been proposed. The proposed algorithm is named “Fast PBGS.” A proof of the Fast 

PBGS method is given, along with the proof of convergence of PBGS. Numerical validation of 

these algorithms on the IEEE 118-bus and Electric Reliability Council of Texas (ERCOT)-like 

large-scale systems has been carried out. Fast PBGS saves computational time by an average 35% 

for ERCOT-like Large System and 50% for IEEE 118-bus System with 50 scenarios compared 

with PBGS. Numerical results demonstrate the high quality of the PBGS solution and the efficacy 

of the proposed algorithms. Additionally, comparing the proposed algorithms with other prevailing 

S-NCUC methods such as PHA and extensive-form-based MIP solutions has been completed. The 

comparison of Fast PBGS shows the results are closer to EF (average difference 0.92%) than the 

PHA solution with EF (average difference 2.18%). When it came to the computational time, the 

Fast PBGS outperformed both EF and PHA. An average Fast PBGS took 48% less time than EF 

to obtain a solution. Compared with PHA, Fast PBGS was 142% faster. 

The second question is addressed by applying the combined Frank Wolfe with PHA 

algorithm (FW-PHA). Our research shows that FW-PHA obtains superior lower bounds, i.e., up 

to 6% better than the PHA does on the IEEE 118-bus system. We further improve the 

computational efficiency of FW-PHA with a warm start technique that initializes the algorithm 

with a Fast PBGS solution. An out-of-sample analysis including a large number of samples is 

conducted to demonstrate the efficacy of the Fast PBGS. 
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Abstract 

The exponential growth of variable renewable energy (VRE) such as wind and solar 

generation brings grand challenges to the operational planning of power systems. The 

instantaneous penetration of VRE reaches over 50% in certain balancing areas in the United States. 

The VRE generation is characterized by a large amount of uncertainties and variabilities. 

Consequently, power system operators, planners and researchers have made substantial efforts to 

manage VRE uncertainties in the power system scheduling, such as Network-Constrained Unit 

Commitment (NCUC). In order to account for the impact of VRE uncertainties, there are several 

noteworthy NCUC approaches in the literature, each with distinctive objectives, theories, 

computational requirements and economic outcomes. A common approach presented in the 

literature is the use of stochastic programming, namely Stochastic NCUC (S-NCUC), in which the 

expected system operating cost is minimized across a number of scenarios, each representing a 

possible realization of uncertainties. S-NCUC is typically a large-scale, non-convex, and mixed-

integer programming (MIP) problem. It is modeled as a two-stage stochastic problem where the 

first-stage unit commitment decisions are the same for all the scenarios. Generally, S-NCUC 

solutions can be categorized into two main approaches. First, the most straightforward approach 

is to use a commercially available off-the-shelf solver to solve an extensive form (EF) of S-NCUC. 

However, for any large-scale system with a reasonable number of scenarios, the resulting EF of S-

NCUC may become computationally intractable. To overcome this issue, the second approach is 

based on stage-wise or scenario-wise decomposition methods, which solve each individual 

scenario separately, usually in parallel, and a final solution is generated by coordinating all 

individual scenario solutions. Progressive Hedging Algorithm (PHA) is one of the main 

decomposition methods for solving the stochastic MIP. However, PHA is originally devised for a 

continuous convex program and is not provably convergent for the non-convex S-NCUC problem. 

The solution to the dual problem is generally primal infeasible and the once relaxed system-wide 

constraints may not be satisfied. An additional effort is required to restore the primal feasibility 

from a Lagrangian dual solution. Therefore, it is desirable to directly obtain a primally feasible 

solution from the Lagrangian dual iterations. This gives rise to exact augmented Lagrangian, a 

class of exact penalty methods whose objective is to solve a constrained optimization (primal) 

problem through an unconstrained optimization problem that has the same local (global) solutions 



  

as the primal problem. Nevertheless, the following two critical research questions remain 

unresolved: 

1)  How can we devise an effective penalty function such that an exact solution can be 

obtained with a zero-duality gap? 

2)  If an exact solution is attained, how can we find a robust yet tight lower bound that is 

capable of measuring the quality of the exact solution accurately? 

This dissertation addresses the aforementioned first question by applying a novel Penalty-

Based Gauss-Seidel (PBGS) algorithm with an exact augmented Lagrangian representation to 

solve S-NCUC within a scenario-based decomposition framework. To improve the computational 

efficiency of PBGS, an accelerating technique that skips solving scenarios meeting certain 

conditions has been proposed. The proposed algorithm is named “Fast PBGS.” A proof of the Fast 

PBGS method is given, along with the proof of convergence of PBGS. Numerical validation of 

these algorithms on the IEEE 118-bus and Electric Reliability Council of Texas (ERCOT)-like 

large-scale systems has been carried out. Fast PBGS saves computational time by an average 35% 

for ERCOT-like Large System and 50% for IEEE 118-bus System with 50 scenarios compared 

with PBGS. Numerical results demonstrate the high quality of the PBGS solution and the efficacy 

of the proposed algorithms. Additionally, comparing the proposed algorithms with other prevailing 

S-NCUC methods such as PHA and extensive-form-based MIP solutions has been completed. The 

comparison of Fast PBGS shows the results are closer to EF (average difference 0.92%) than the 

PHA solution with EF (average difference 2.18%). When it came to the computational time, the 

Fast PBGS outperformed both EF and PHA. An average Fast PBGS took 48% less time than EF 

to obtain a solution. Compared with PHA, Fast PBGS was 142% faster. 

The second question is addressed by applying the combined Frank Wolfe with PHA 

algorithm (FW-PHA). Our research shows that FW-PHA obtains superior lower bounds, i.e., up 

to 6% better than the PHA does on the IEEE 118-bus system. We further improve the 

computational efficiency of FW-PHA with a warm start technique that initializes the algorithm 

with a Fast PBGS solution. An out-of-sample analysis including a large number of samples is 

conducted to demonstrate the efficacy of the Fast PBGS. 
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1. Introduction 

This chapter introduces the contents of the dissertation. Section 1.1 briefly describes the 

Power System Operational Planning (PSOP). The research is conducted in the context of PSOP. 

In section 1.2, challenges faced in PSOP due to the changing generation landscape are presented. 

This challenge is the reason for the motivation of this research. Finally, in section 1.3, the 

contribution made is given. 

1.1. Power System Operational Planning 

The PSOP goal is to fundamentally supply electric energy to the customers in the most 

economically and reliably fashion. This planning endeavor by the utility/Independent System 

Operators (ISO) usually starts a week before the operating day and continues through the hour 

ahead of the real-time operations. It is well known that the demand for electrical energy must be 

met with supply in real-time, unlike other commodities. This requirement is complicated because 

the resources that supply reliable energy have temporal constraints such as minimum generator 

start time. These constraints force a decision to be made well in advance of real-time by looking 

at the forecasted demand. Actual energy demand varies by time of the day and season of the year. 

Figures 1.1 and 1.2 show these wide variations for the Electric Reliability Council of Texas 

(ERCOT) ISO. The forecast of demand itself is a challenge for an extensive geographically-

spanning system with varying weather across the geography. Economic decision-making on 

scheduling generators to meet the demand is exponentially complex for increasing the number of 

generators, each with a dozen constraints. The reliability of the system requires respecting the 

transmission network constraints, which further exacerbates the complexity. 
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Figure 1.1 ERCOT recorded system demand on a summer day (07/18/2018) 

 

 

Figure 1.2 ERCOT recorded system demand on a winter day (01/15/2018) 
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1.2. Optimization in Power System Operational Planning 

The earliest literature references the economic operation of power system operations date 

back to the early 1940s [1]. PSOP uses an application called Security Constrained Unit 

Commitment (SCUC). The SCUC is an optimization problem to minimize the cost of generation 

unit commitment and schedule needed to meet the forecasted demand subject to a host of 

constraints. A detailed formulation of this optimization problem is given in Chapter 3. Mixed 

Integer Linear Programming (MILP) application in scheduling thermal generating systems dates 

back to 1968 [2]. Until now, this SCUC has been working well for the entities in PSOP. The only 

unknown is electricity demand, and utilities have successfully been forecasting this within 2 to 3% 

error. 

1.2.1. Changes in the Generation Landscape 

Wind energy started making into utility-scale generation at the beginning of the 

millennium. As shown in Figure 1.3, wind energy in the year 2000 was just over 100 MW grew 

into about 21000 MW in 2017. This wind capacity was projected to be close to 30,000 MW by 

year 2020 in the report released by ERCOT in 2017 [3]. Figure 1.4 shows this exponential growth. 

The wind has taken over the place of the coal units as the second most generation type based on 

the fuel. It has replaced a small share of the combined cycle (CC) generation too. Similar 

exponential growth has started showing up in solar power generation. Today the ERCOT region 

has 1,900 MW of solar power generation, and nearly 60,000 MW of solar power generation is 

under study. 

 

Figure 1.3 ERCOT wind generation growth 2000 – 2020 [3] 
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Figure 1.4 Change of ERCOT generation fuel mix from 2002 to 2020 [3] 

Southwest Power Pool (SPP) region has seen similar wind generation growth over the same 

period. Figure 1.5 shows wind capacity and generation growth over 12 years, along with the 

generation fuel mix at the end of 2018 [4], with the wind at 23%. In California ISO (CAISO), 

about 27% of its demand is supplied by renewables [5]. This renewable growth is not unique to 

ERCOT, SPP, and CAISO. It is seen in other regions in the US and around the world. Figure 1.6 

shows installed the wind capacity in 1999 vs. 2019 [6]. 

 

Figure 1.5 SPP wind capacity and generation in SPP (left) fuel mix 2018 (right) [3] 
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Figure 1.6 US state wide installed wind capacity 1999 vs 2019 [6] 

1.2.2. Uncertainties and Variabilities 

It is beneficial that this environmentally friendly, zero fuel-cost generation is replacing high 

emission, $20-$30/MWh fuel cost, thermal (mostly coal) units. On the negative side, the renewable 

generation outputs are not fixed like thermal generation capacity. The actual generation depends 

on wind speed or solar irradiation, which are not easy to predict, especially wind speed. The 

generation output cannot be kept at a constant value. In other words, they have variability and 

uncertainty, and they are not as reliable as thermal generation.  

 

Figure 1.7 Variability of renewable generation1 

                                                 

1 www.ercot.com 
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Figure 1.8 Uncertainty of renewable generation1 

 

Figures 1.7 and 1.8 show ERCOT forecast in day-ahead for September 4, 2018, and even 

the hour-ahead forecast predicted was 2500 MW higher than what actual production turned out to 

be for the early morning hours. While Figure 1.8 shows the over-forecast, Figure 1.9 shows under-

forecast. On August 31, 2016, the actual generation came out to be as high as 3000 MW more than 

both the day-ahead and hour-ahead forecasts. These two plots underscore the uncertainty in 

forecasting wind generation. They also show the variability as the wind generation varies between 

the hours. The variability is much more drastic on March 19, 2020, as shown in Figure 1.10. One 

can observe the variability and uncertainty for the ERCOT by visiting www.ercot.com.  

http://www.ercot.com/
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Figure 1.9 ERCOT total forecasted wind vs actual wind generation (under-forecast)1 

 

 

Figure 1.10 ERCOT wind showing variability and uncertainty1 
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1.3. Research  

1.3.1. Motivation 

This changing generation mix creates a challenge in PSOP. It is not just that the VRE 

creates uncertainties; the demand side management participation in the organized markets is 

causing additional uncertainties. The current SCUC optimization application is not designed to 

handle parameters that are not deterministic. A new algorithm that can optimize under uncertainty 

must be applied in solving SCUC. The research is motivated by the challenge brought in by the 

exponential growth of VRE and the necessity to find a solution. Penalty-Based Gauss-Seidel 

algorithm (PBGS), which solves stochastic SCUC and yields a primal feasible solution when it 

converges, has been found in this research. An efficient way of speeding up the solution and 

measuring such a solution's efficacy has been developed.  

1.3.2. Contributions 

Here are the contributions to this PSOP through the research. 

(1) The PBGS algorithm is applied for the first time, including a positive-basis exact penalty 

representation and an implementable binary calculation, to produce an exact solution to S-

NCUC. The exactness guarantees the primal feasibility of a Lagrangian dual solution and 

thus eliminates the need for extra algorithms to restore the primal feasibility at the cost of 

optimality. 

(2) Fast PBGS algorithm has been developed by improvising PBGS that reduces the solution 

time by 15-40% compared with the PBGS algorithm. A mathematical proof of Fast PBGS 

has been included. 

(3) The use of a PBGS solution is proposed to initialize the FW-PHA algorithm over traditional 

initialization. The proposed initialization yields an improved lower bound that allows for 

measuring the quality of an exact solution more precisely and efficiently. 

(4) The proposed methodology is validated and compared with other algorithms, especially on 

an ERCOT-like, large-scale system. The system consists of 7226 buses, 8853 branches, 

and 725 generators, including 178 wind generators. This system represents the most 



9 

extensive realistic system in S-NCUC studies. This is the first time S-NCUC is solved for 

such a sizeable real-world system. 

Contributions (1), (2) and (4) are discussed in Chapter 4 and in the following article: 

A. M. Palani, H. Wu and M. M. Morcos, "A fast penalty-based Gauss-Seidel method for stochastic 

unit commitment with uncertain load and wind generation," in IEEE Open Access Journal of 

Power and Energy, vol. 8, pp. 211-222, 2021. 

Contribution (3) is discussed in Chapter 5 and in the following article: 

A. M. Palani, H. Wu, and M. M. Morcos, “A Frank–Wolfe progressive hedging algorithm for 

improved lower bounds in stochastic SCUC,” IEEE Access, vol. 7, pp. 99398–99406, 2019. 

1.3.3. Organization of the Dissertation 

A literature review of research and development in stochastic programming applied in 

solving S-NCUC is discussed in Chapter 2. Chapter 3 presents the development of S-NCUC using 

EF, where it is shown that the computational time of EF increases exponentially with an increased 

number of scenarios. In Chapter 4, scenarios-wise decomposition algorithm, PBGS is applied to 

solve S-NCUC. In the same chapter, an essential contribution by the research, the Fast PBGS, is 

devised, and the computational comparison is made between PBGS and the Fast PBGS. In Chapter 

5, a lower bound method, with an improvised FW-PHA, is applied to obtain a solution to assess 

the Fast PBGS solution. Finally, in Chapter 6 conclusion remark is made along with future research 

opportunities is discussed. 

1.4. Nomenclature 

1.4.1. Operators/functions 

𝛹𝜌(∙) 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑢𝑠𝑒𝑑 𝑖𝑛 𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 

⌊ ∙ ⌉ 𝑅𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟. 

[ ∙ ]− −𝑚𝑖𝑛{0, ∙ } 

𝐿𝑅 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 

𝐿𝑅 + 𝐿𝑅 +  𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 
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1.4.2. Parameters 

𝑁𝑇 Number of time periods 

𝑁 Number of load buses 

𝑁𝐼 Number of generation units 

𝑆 Number of scenarios 

𝑁𝐺 Number of segments in production cost curve 

𝐿 Number of transmission branches 

𝑡 Index for time periods 

𝑖 Index for units: 1,2,⋯ , NI 

𝑠 Index for scenarios: 1,2,⋯ , S 

𝑑 Index for cost curve segments: 1,2,⋯ , NG 

𝑃𝑟𝑠 Probability of scenario s 

𝑁𝐿𝑖 No load cost of unit i [$ h⁄ ] 

𝐼𝐶𝑑,𝑖 Incremental cost of unit I, seg d [$/MW] 

𝛽 PBGS convergence acceleration parameters 

𝜸 PBGS Step size 

𝝆, 𝝆, 𝝆 Penalty factors, initially 𝛒 = 𝛒 = 𝛒 

𝜖 PBGS tolerance limit for ∆ϕ 

𝜉 Probabily − used in Chance Constrained Optimization 

𝑃𝑔
𝑖 
/𝑃𝑔𝑖 Max/min power output of unit i [MW] 

𝑅𝑈𝑖/𝑅𝐷𝑖 Unit i ramp up/down limit [MW h⁄ ] 

𝑆𝑈𝑖,𝑡 Startup cost of unit 𝑖 at time 𝑡 in scenario 𝑠 [$] 

𝐷𝑛,𝑡
𝑠  Demand at bus 𝑛 at time 𝑡 scenario 𝑠 [MW] 

𝑇𝑈𝑖/𝑇𝐷𝑖 Unit i min. up/down time [h] 

𝐿𝐹/𝐿𝐹 Branch flow limit [MW] 

𝑉𝑂𝐿𝐿 Value of lost load [$ MWh⁄ ] 

𝑉𝑂𝑂𝐵 Value of overloaded branch [$ MWh⁄ ] 



11 

1.4.3. Variables 

𝐼𝑖,𝑡
𝑠  State of unit 𝑖 at time 𝑡 in scenario 𝑠, 1 for 𝑂𝑁 and 0 for 𝑂𝐹𝐹 

𝐼𝑈𝑖,𝑡
𝑠  Startup indicator of unit 𝑖 at time 𝑡 in scenario 𝑠 

𝐼𝐷𝑖,𝑡
𝑠  Shutdown indicator of unit 𝑖 at time 𝑡 in scenario 𝑠 

𝑃𝑑,𝑖,𝑡
𝑠  Dispatch of unit 𝑖 at segement 𝑑 at time 𝑡  in scenario 𝑠 [𝑀𝑊] 

𝑃𝑔𝑖,𝑡
𝑠  Dispatch of unit 𝑖 at time 𝑡 in scenario 𝑠 [𝑀𝑊]  

𝛷 Lower bound 

𝜙 Lower bound 

𝐷𝑛,𝑡
𝑠  Demand at bus 𝑛 at time 𝑡 scenario 𝑠 [𝑀𝑊] 

𝐿𝐿𝑡
𝑠  Loss of load at time 𝑡 in scenario 𝑠 [𝑀𝑊] 

𝐴𝐿𝑡
𝑠  Additional load at time 𝑡 in scenario 𝑠 [𝑀𝑊] 

𝑍𝑖,𝑡 Implementable state of unit 𝑖 at time 𝑡 

𝐿𝐹𝑙,𝑡
𝑠  Line flow at time in 𝑡 in scenario 𝑠 [𝑀𝑊] 

𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠  Branch Slack1 at time 𝑡 in scenario 𝑠 [𝑀𝑊] 

𝐵𝑟𝑆𝑙2𝑙,𝑡
𝑠  Branch Slack2 at time 𝑡 in scenario 𝑠 [𝑀𝑊] 

𝜔𝑖,𝑡
𝑠  Lagrangian multiplier (scaled by scenario probability) 

𝝀 Lagrangian multiplier 

Λ𝑠 Feasible region for NCUC for a scenario 𝑠 

𝑽𝑠 Convex hull of feasible region of NCUC for a scenario  𝑠 =  𝐶𝑜𝑛𝑣(Λ𝑠) 

1.4.4. Abbreviations & Acronyms 

ALD Augmented Lagrangian Dual 

AS Ancillary Services 

CAISO California ISO 

ED Economic Dispatch 

ERCOT Electric Reliability Council of Texas 

F-PBGS Fast PBGS 

FW Frank-Wolfe Algorithm 

ISO Independent System Operator 

LB Lower Bound 

LD Lagrangian Dual 
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LP Linear Programming 

LR Lagrangian Relaxation 

MILP Mixed-Integer Linear Programming 

MIP Mixed-Integer Programming 

NAC Non-anticipativity Constraint 

NCED Network Constrained Economic Dispatch 

NCUC Network Constrained Unit Commitment 

PBGS Penalty-Based Gauss-Seidel 

PHA Progressive Hedging Algorithm 

PSOP Power System Operation and Planning 

QSG Quick Start Generation 

RO Robust Optimization 

RTC Real-time commitment 

RTO Reginal Transmission Organization 

RUC Reliability Unit Commitment 

SCED Security Constrained Economic Dispatch 

SCUC Security Constrained Unit Commitment 

SO Stochastic Optimization 

SPP Southwest Power Pool 

TSO Transmission System Operators 

UC Unit Commitment 

VRE Variable Renewable Energy 
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2. Undertaking of VRE Challenges 

System operators such as ISOs and regulated utilities use a critical application called Unit 

Commitment (UC) in power system operations. UC is an optimization problem which is typically 

run in Day-Ahead (DA) to plan the following day operation (the operating day). The objective of 

UC is to minimize the cost of generation commitment and production while enforcing the demand 

requirements (load balancing) and host of other constraints such as transmission limits. A detailed 

formulation of UC is presented in Chapter 3. 

Parameters used in solving UC problems have been deterministic until recently. The 

growth of VRE has brought uncertainties to these parameters used in UC problems. Several 

noteworthy UC approaches can be found in the literature [7]-[8], each with different objectives, 

mechanisms, computational requirements, and economic outcomes that account for the 

uncertainties in the UC parameters. The solutions in the current research that tackle the VRE 

challenges are discussed here. 

2.1. Dynamic Operating Reserve 

System operators have historically maintained system reserves such as online (spinning) 

and offline (non-spinning) reserves to meet unexpected generation or load deviation from the plan 

or forecast due to the forecast's error. In general, reserves are maintained to meet any unforeseen 

situation that requires additional generation. The development of markets created more categories 

of these reserves and are often called ancillary services. There are different types of ancillary 

services often referred to as commodities with varying requirements for specific needs. For 

example, regulation reserves procurement to keep the frequency close to the scheduled value is 

different from a reserve used when a forced outage of a generation unit occurs. In any case, some 

types of reserves based on loss of the largest generation unit have a fixed value for all the operating 

hours, and the other reserves amount procured are based on statistical and probability analysis. 

One of the earliest applications of such analysis dates back to the early 1960s [9]. Even today, 

ERCOT ancillary services are determined based on the statistical analysis of the historical 

information and the probability of future system conditions [10].  
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In this approach, the operating reserve capacity is determined on an hourly basis, or block 

of hours, based on expected renewable production and the historical impact of wind forecast errors. 

Matos and Bessa [11] proposed a new reserve management tool based on probabilistic wind power 

forecasts to determine operating reserve needs. Holttinen et al.  compared methods used in wind 

integration analyses and operating practice [12]. Through the research of different operational 

practice methods due to wind integration, the authors found that wind variability is not a 

contingency event. Instead, the impact of wind generation on the reserves was a nonevent 

operation. Also, the authors determined that some events of more considerable variability and more 

significant forecast errors could be categorized as slow events. Therefore, the level of operating 

reserve needed for wind is not constant during all hours of the day, and the dynamic allocation of 

reserves would be more efficient. Computation of dynamic operating balancing reserve for wind 

power integration for hours 1 to 48 of operation was presented by Menemenlis et al. in [13]. De 

Vos has conducted research on sizing and allocating operating reserves due to wind power 

integration [14], [15]. A comprehensive review of strategies and studies on this topic can also 

found in the NREL report [16]. 

The easiest and fastest way to handle the integration of VREs that bring uncertainties and 

variabilities is to use the reserves. Using reserves does not require any additional tools than what 

the system operators already have. However, the use of reserves for VRE integration is inefficient 

and can only be used for a small percentage of VRE penetrations. Also, the energy commodity is 

different from the reserves in terms of price, trading, and hedging mechanisms that are in practice 

in the established markets today. Therefore, the reserves' use to fill in for the energy gap created 

by the VREs would create problems in the markets. 

2.2. Chance-Constrained Programming 

In optimization under uncertainty, one makes a decision using unknown parameters. It is 

possible that the realized scenario was not even considered when the decision was made and, 

therefore, could result in an unexpected situation. In most problems, there is a recourse one can 

follow to mitigate this unexpected situation. However, if one optimizes a problem where there are 

no recourses available, the decision-maker can guarantee feasibility as much as possible. The 

decision made guarantees the realization of an unexpected situation at a very low percentage. This 
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is to say that one or more constraints are enforced most of the time and are allowed to violate a 

diminutive percent of the time. Any constraint that contains a random variable or even a function 

of a random variable becomes a probabilistic constraint. The probability of a level at which the 

constraint enforced becomes a parameter. This level is known as reliability level; hence the 

Reliability Constrained Programming and Probabilistic Constrained Programming name used for 

Chance-Constrained Programming (CCP). The CCP uses the cumulative distribution function to 

transform probabilistic constraint into the deterministic equivalent of the optimization problem. 

The earliest paper on CCP by Charnes and Cooper dates back to 1958 [17]. The application 

of CCP in UC was studied in [18]-[20]. Ozturk has carried out a research of CCP approach to 

stochastic UC in [21].  

Chance-Constrained Formulation 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝒄𝑇𝒙    (2.1) 

 𝑠. 𝑡.   ℙ[𝑨𝒙 ≥ 𝒃] ≥  𝜉,         𝜉 ∈ [0,1]  (2.2) 

Typical values for 𝜉 would be 0.95, 0.99 etc. 

 

2.3. Interval Optimization 

The second approach is the application of Interval Optimization (IO), which uses 

confidence intervals in upper and lower bounds to represent the uncertainty. Unlike scenario-based 

optimization, which is discussed in the following section, IO does not hold any presumptions on 

probability distributions. The objective here is to achieve upper and lower bound feasibility rather 

than minimizing the cost. 

 One of the first applications of IO in UC was studied by Wang et al. in [22] for volatile 

node injections. In [23], Zhou et al. used IO in solving Stochastic-SCUC. Yu et al.  applied IO to 

solve SCUC with high penetration of renewables [24]. In addition to using interval values for 

demand at each node, transmission contingencies are modeled as interval values with upper and 
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lower values. Essentially this reduces n constraints (for n - contingencies) to just one constraint. 

This guarantees that all n contingencies are feasible while significantly reducing the complexity 

of the problem. Also, UC with wind power integration using IO was studied in [25]. Comparison 

between IO and scenario-based optimization, which is discussed in the later part of this 

dissertation, was carried out by Wu et al. in [26]. 

Interval Optimization Formulation 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) ∶= [𝑓𝐿(𝑥), 𝑓𝑈(𝑥)] (2.3) 

 𝑠. 𝑡. 𝑥 ∈ 𝐶  (2.4) 

 

𝑤ℎ𝑒𝑟𝑒 𝐶 ⊂ ℝ𝑛𝑖𝑠 𝑎 𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 

𝑓𝐿 , 𝑓𝑈: ℝ𝑛 → ℝ 

𝑓𝐿(𝑥) ≤ 𝑓𝑈(𝑥), ∀𝑥 ∈ 𝐶 

 

 

 

2.4. Robust Optimization 

Robust Optimization (RO) is one of the two approaches to deal with uncertain data used in 

optimization (the other being stochastic optimization). Though roots of RO go to the 1970s, it has 

gained attention in the early 2000s. Ben-Tal and Nemirovski have authored several papers on this 

[27]-[29]. Gorissen et al. have published a practical guide to RO [30]. Theory and applications of 

Robust Optimization are given in [31] by Bertsimas et al. Unlike stochastic optimization, RO does 

not assume that probability distributions of data are known. For data, RO depends on the 

uncertainty set. RO assumes hard constraints for any realization of data in the uncertainty set. 

This uncertainty set is an essential part of RO. The method has gained popularity as it is 

computationally tractable and robust against all possible realizations of the modeled uncertainty. 

Application of RO in UC is given in [32]-[35]. However, the drawback is that RO optimizes for 

the worst-case scenario which is not realized often.  
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Adaptive Robust Optimization (ARO) remedies this drawback to an extent. Bertsimas et 

al. [36] and Ning and You [37] have applied ARO in solving UC problems. Other variants of RO 

are discussed in [38]. Zhao and Guan have applied a combined RO with stochastic optimization in 

solving the UC problem [39]. 

Robust Formulation 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝒄𝑇𝒙 (2.5) 

 𝑠. 𝑡. 𝑨𝒊𝒙 ≥ 𝒃𝒊,   ∀𝑨𝒊 ∈ 𝑈𝑨𝑖 , ∀𝒃𝒊 ∈ 𝑈𝒃𝑖 , 𝑖 = 1,… ,𝑚  (2.6) 

𝑊ℎ𝑒𝑟𝑒 𝑈𝑎 𝑎𝑛𝑑 𝑈𝑏 𝑎𝑟𝑒 𝑔𝑖𝑣𝑒𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑠𝑒𝑡𝑠 

 

2.5. Stochastic Optimization 

Finally, a common approach presented in the literature is the use of stochastic optimization 

(SO), namely stochastic NCUC (S-NCUC), in which the operating cost of the expected system is 

minimized across several scenarios, each representing a possible realization of uncertainties. S-

NCUC is typically a large-scale, non-convex, mixed-integer problem. The problem is formulated 

in two or more stages, and either stage-wise or scenario-wise decomposition technique is used in 

solving the problem. Benders decomposition is a stage-wise (cut-based) method, while Progressive 

Hedging Algorithm (PHA) and Dual decomposition (Lagrangian relaxation based) are scenario-

wise examples.  

2.5.1. Stage-Wise Decomposition 

The S-NCUC is often modeled as a two-stage stochastic problem where the first-stage unit 

commitment decisions (here and now decision) are the same for all scenarios. The second stage 

depends on the realization of any scenario. J. F. Benders proposed partitioning procedures for 

solving mixed variable programming problems in 1961 [40]. Van Slyke and Wets applied Benders 

Decomposition (BD) to stochastic programming in 1969 [41]. BD involves creating a master 

problem (MP) and sub-problem (SP). The MP makes first-stage decisions (unit commitment) and 
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passes them on to SP. With fixed first stage decisions, SP solves scenarios, generates new cuts 

(constraints), and passes the further cuts to MP.  This interaction between MP and SP continues 

until convergence. 

 

Figure 2.1 Bender Decomposition showing interaction between Master and Subproblems. 

Baptistella and Geromel proposed one of the early applications of BD to solve UC [42]. A 

tutorial on BD in restructured power systems [43] is the right place for beginners. One advantage 

of BD is that both the lower and the upper bound are obtained as part of the solution. The 

disadvantage is the difficulty involved in solving large problems. As the iteration progresses, the 

MP gets increasingly difficult to solve, especially for a massive problem like the one used in the 

study cases in this research. The other issue with BD is parallelization. Though BD lends itself to 

parallel computation, the MP growth makes parallelization an unbalanced one.  There have been 

several enhancements in the literature on improving BD-based methods when applied to S-NCUC 

problems [44], [45]. To solve multi-stage problems, one can use nested BD [46], [47]. 

2.5.2. Scenario-wise decomposition 

In this decomposition method, the scenarios are solved individually by applying 

Lagrangian to decouple the linkage between scenarios. Carøe and Schultz have applied the dual 

decomposition method to solve stochastic integer programming in [48]. Takriti et al. have used 

Lagrangian decomposition to solve the Stochastic UC problem [49]. If one has to decide at each 
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stage, often called here-and-now decisions, it must consider all the possible scenarios that are 

considered. In the PSOP problem, this is a unit commitment decision. The other name for such a 

decision is “Implementable Solution.” Wu et al. applied the same Lagrangian method used to 

solve S-NCUC in [50]. 

The penalty function added to the Lagrangian method (augmented Lagrangian) is used in 

Progressive Hedging Algorithm (PHA). Initially proposed by Rockafellar and Wets [51], PHA to 

solve stochastic problems involving continuous variables has been applied to solve a problem 

involving integers along with continuous variables. Løkketangen and Woodruff first used the PHA 

to solve mixed-integer multistage stochastic programs [52]. Fan and Liu applied PHA to solve the 

stochastic transportation network problem [53]. Nevertheless, PHA is initially devised for the 

continuous convex program and is not provably convergent for non-convex problems such as UC. 

Watson and Woodruff made heuristic-based novelties to mitigate or solve issues related to PHA 

application to MIP [54]. This PHA will be discussed in the Chapter 4 of this report. 

Like stage-wise decomposition, scenario-wise decomposition methods can also be solved 

in parallel. The advantage of the scenario-wise decomposition method compared to the stage-wise 

decomposition method is the uniform distribution of sub-problem difficulty. The computational 

difficulty of MP in the stage-wise method can grow significantly as the iteration progresses. It has 

been observed that the time taken to solve each scenario problem takes less time as the iteration 

progresses in scenario-wise decomposition. Also, scenario-wise problems can be implemented as 

a wrapper over an existing NCUC algorithm in use. This wrapper implementation is an attractive 

one as it does not take much time and cost to implement, especially if one desires to have proof-

of-concept. However, the major drawback of scenario-wise decomposition is that obtaining a 

lower bound to measure the solution quality requires solving a particular problem. To get a lower 

bound for PHA, Gade et al. [55] have proposed a method that uses dual prices from PHA. Lower 

bound can be obtained in any iteration of PHA by solving a different problem simultaneously. 

However, such a lower bound obtained is sensitive to the penalty factor chosen. This drawback is 

mitigated by Boland et al. by combining PHA with the Frank-Wolfe method. This method is not 

sensitive to the penalty factor [56]. An application of the Frank-Wolfe method to obtain a lower 

bound for the S-NCUC problem is carried out in [57]. 
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Two-stage Stochastic Programming Formulation 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝒄𝑇𝒙 +  𝔼[𝒒𝑻𝒚] (2.7) 

 𝑠. 𝑡. 𝑨𝒙 = 𝒃,      𝒙 ≥ 0     (2.8) 

 𝑇𝒙 +𝑾𝒚 = 𝒉,     𝒚 ≥ 0     (2.9) 

 

 

 

 

Figure 2.2 Reliability vs computation efforts for different methods 
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2.6. Hybrid Solutions 

Figure 2.2 depicts the reliability improvement versus the computational time of the 

different methods considered so far. Researchers have combined two or more different methods 

discussed earlier and applied them in solving S-UC problems. Such approaches bring the best of 

those methods. Colonetti and Finardi combined Lagrangian relaxation and Benders decomposition 

in [58] to solve the stochastic hydrothermal UC problem. In [59], Zhao and Guan applied unified 

stochastic and robust optimization techniques in solving the UC problem. 

2.7. Scope of The Research 

Motivated by the challenge posed by the VRE as explained in Chapter 1 and given different 

ways of taking up this change as described in this chapter, the scope of this research is defined 

with the following three conditions to make the research applicable for the real-world situations: 

1. The solution should not be an exogenous one. 

2. The solution should be economically optimal and still keeps the reliability of the power 

system intact. 

3. The solution should be easy to implement with the least cost, time and resources. 

Applying these conditions to the different methods discussed earlier, condition 1 eliminates 

dynamic reserve-based approaches discussed in 2.1 while condition 2 eliminates all other methods 

discussed in 2.2 through 2.4. The last condition eliminates stage-wise decomposition methods such 

as BD. This leaves us with scenario-wise decomposition methods. 
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3. Stochastic-Network Constrained Unit Commitment 

This chapter starts with a brief introduction to Unit Commitment (UC), followed by 

formulating the Stochastic-Network Constrained Unit Commitment (S-NCUC) problem. Section 

3.3 is dedicated to the computational environment used in the simulation, followed by Section 3.4 

in which three different systems used in the simulation are discussed. Scenario generation is a 

crucial part of any stochastic programming; therefore, Section 3.5 is dedicated to this topic. 

Finally, Extensive Formulation results are presented. 

3.1. Unit Commitment (UC) 

It is well known that the electricity demand must be met with supply in real-time. Since 

the thermal generators have a long lead-time between the time the decision is made to bring the 

unit online and synchronizing the unit to the grid, the operational planning occurs well in advance 

of real-time operations. During this operational planning, a generation commitment decision must 

be made to meet the forecasted demand by committing enough generators. This commitment 

decision is an economical one. The total cost of serving the demand is minimized while subject to 

individual unit constraints and system-wide power balance, and other constraints. Near the real-

time operation, another decision is made to commit, or de-commit quick-start generation units 

(QSG) called real-time commitment (RTC). During the real-time operation, the final decision is 

made by dispatching the committed units to meet the actual demand and is called economic 

dispatch (ED). Like UC, both RTC and ED are based on an objective where a low-cost solution is 

sought after. Wood and Wollenberg's text [60] gives an excellent introduction to UC and ED. Unit 

Commitment problem is a scheduling problem.  

Network Constrained UC (NCUC) and Network Constrained Economic Dispatch (NCED) 

are UC and ED with additional constraints stemming from the thermal and dynamic limits of 

transmission lines. It is crucial to control the transmission grid's flows that do not push the actual 

flows beyond thermal or dynamic limits, thereby causing system security problems. Nowadays 

such violations are avoided not only on the base case but also under n-k contingencies. When such 

contingencies are considered, the UC problem is called Security Constrained UC (SCUC). Though 

the stochastic problem formulated and solved is for NCUC, the formulation can also be applied to 

SCUC without any changes. 
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3.2. S-NCUC Formulation 

Since a plethora of papers, books and dissertations are available on the deterministic 

version of UC [61]-[66] and the focus is on stochastic formulation, the discussion starts 

straightaway into the stochastic version. An S-NCUC formulation that originated from the Flexible 

Energy Scheduling Tool for Integrating Variable Generation (FESTIV) [67], [68] is used in the 

research. The objective of the two-stage S-NCUC is to minimize the expected system operating 

cost across the different scenarios as follows: 

Objective function: 

 

𝜁 =  minimize
𝐼,𝐼𝑈,𝑝

∑[∑(𝑁𝐿𝑖 ∙ 𝐼𝑖,𝑡 + 𝑆𝑈𝑖,𝑡 ∙ 𝐼𝑈𝑖,𝑡 +∑𝑃𝑟𝑠∑(𝑝𝑑,𝑖,𝑡
𝑠 ∙ 𝐼𝐶𝑑,𝑖)

𝑁𝐺

𝑑=1

𝑆

𝑠=1

)

𝑁𝐼

𝑖=1

𝑁𝑇

𝑡=1

+∑𝑃𝑟𝑠((𝐴𝐿𝑡
𝑠 + 𝐿𝐿𝑡

𝑠) ∙ 𝑉𝑂𝐿𝐿)

𝑆

𝑠=1

+∑𝑃𝑟𝑠 (∑(𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )

𝑙∈𝐿

∙ 𝑉𝑂𝑂𝐵)

𝑆

𝑠=1

]    

(3.1) 

 

𝑤ℎ𝑒𝑟𝑒  

              𝑰 ∈ {0,1}𝑁𝐼×𝑁𝑇×𝑆  

             𝒑 ∈ ℝ𝑁𝐺×𝑁𝐼×𝑁𝑇×𝑆 

 

 

The objective function in (3.1) has commitments (𝐼𝑖,𝑡), startups (𝐼𝑈𝑖,𝑡) and dispatch (𝑝𝑑,𝑖,𝑡
𝑠 )  

decisions that use corresponding no-load cost (𝑁𝐿𝑖), startup cost (𝑆𝑈𝑖,𝑡) and dispatch cost based 

on offer curve (𝐼𝐶𝑑,𝑖). The startup decision is independent of scenarios as it is a here and now 

decision; it is summed up over generators and intervals. However, the dispatch decision depends 

on the scenarios considered. Therefore, it is summed up over all the generators, intervals, and 

scenarios.   
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The second part of the objective function (3.1) includes two types of penalty. One (VOLL) 

arises from the violation of the power balance constraint (loss-of-load (𝐿𝐿𝑡
𝑠) or additional-load 

slack (𝐴𝐿𝑡
𝑠)). The other (VOOB) is transmission violation constraint (branch slack in either 

direction (𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 , 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )). These are used to obtain a solution; otherwise they would result in 

infeasibility. 

 It should be noted that the probability of realization of each scenario is multiplied by the 

cost of that scenario. The probability of all the scenarios should add up to one. 

Subject to the following constraints: 

Power balance constraint 

 ∑𝑃𝑔,𝑖,𝑡
𝑠

𝑁𝐼

𝑖=1

= [∑𝐷𝑛,𝑡
𝑠

𝑁

𝑛=1

− 𝐿𝐿𝑡
𝑠 + 𝐴𝐿𝑡

𝑠]  ∀𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆 (3.2) 

 This power balance constraint is a system-wide constraint, meaning any sum of all the 

generation in the system must be equal to the sum of the system's demand. This constraint forces 

the supply to meet the demand for each interval. As discussed earlier, loss-of-load and additional-

load slack variables are there to obtain a feasible solution by applying a penalty.   

Power flow constraints 

 
𝐿𝐹𝑙,𝑡

𝑠 ≤ 𝐿𝐹𝑙̅̅ ̅̅ + 𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠  

𝐿𝐹𝑙,𝑡
𝑠 ≥ −𝐿𝐹𝑙 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠  
}  ∀ 𝑙 ∈ 𝐿, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆 (3.3) 

 The transmission lines must not be loaded above its thermal or stability limit in either 

direction. Such an overload can cause permanent sag of the line violating the sag limit. This 

constraint enforces such restriction for each transmission line in the system.  

Power flow equation 

       𝐿𝐹𝑙,𝑡
𝑠 = ∑ 𝑆𝐹𝑙,𝑛 ∙

𝑁

𝑛=1

(∑𝑃𝑔𝑖,𝑡,𝑛
𝑠

𝑁𝐼

𝑖=1

− 𝐷𝑛,𝑡
𝑠 + 𝐿𝐿𝑡

𝑠 − 𝐴𝐿𝑡
𝑠) ∀ 𝑙 ∈ 𝐿, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆 (3.4) 
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Generator minimum and maximum output constraints 

 𝐼𝑖,𝑡
𝑠 ∙ 𝑃𝑔𝑖   ≤ 𝑃𝑔𝑖,𝑡

𝑠 ≤ 𝑃𝑔𝑖 ∙ 𝐼𝑖,𝑡
𝑠   ∀ 𝑖 ∈ 𝑁𝐼, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆 (3.5) 

 Constraint (3.5) enforces that the generators are not dispatched below the low limit or 

above the high limit. Typically, large fossil fuel generators have a low limit needed to make sure 

a minimum amount of generation to supply auxiliary load such as boiler water feed pump, draft 

fan, etc. 

Generator ramp up and ramp down constraints 

 

 
𝑃𝑔𝑖,𝑡

𝑠 − 𝑃𝑔𝑖,𝑡−1
𝑠 ≤ 𝑅𝑈𝑖

𝑃𝑔𝑖,𝑡−1
𝑠 − 𝑃𝑔𝑖,𝑡

𝑠 ≤ 𝑅𝐷𝑖 
} ∀ 𝑖 ∈ 𝑁𝐼, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆   (3.6) 

Ramp up (𝑅𝑈𝑖) and ramp down (𝑅𝐷𝑖 ) constraints ensure that the generator can meet the 

demand from one interval to the next by increasing/decreasing a certain amount of output in a 

specific time. These ramp-up/down rates could be different from startup and shutdown rates. 

Generator minimum up time and minimum down time constraints 

 

∑ 𝐼𝑖,𝑡
𝑠 ≥ 𝑇𝑈𝑖

𝑇+𝑇𝑈𝑖−1

𝑡=𝑇

           

 

∑ (1 − 𝐼𝑖,𝑡
𝑠 ) ≥ 𝑇𝐷𝑖

𝑇+𝑇𝐷𝑖−1

𝑡=𝑇 }
  
 

  
 

            ∀ 𝑖 ∈ 𝑁𝐼, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆 (3.7) 

A typical fossil-fuel generator has a constraint where it will have to be online for a 

minimum number of hours once it comes online (𝑇𝑈𝑖). When offline, the generator will have to 

remain offline for a minimum number of hours before it comes online again (𝑇𝐷𝑖). Enforcement 

of these minimum up and downtime constraints is accomplished in constraint (3.7).  

In the S-NCUC formulation, shift factors are used to calculate the line power flow. The 

shift factor and power flow calculations can be found in [68]. Other prevailing constraints such as 
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spinning and non-spinning reserve constraints, segment generation limits are also considered. In 

addition, contingency constraints can be taken into consideration in the S-NCUC formulation. The 

feasible region of decision variables is given as: 

 {𝐼𝑖,𝑡, 𝑝𝑑,𝑖,𝑡
𝑠 } ∈ Λ𝑠, ∀ 𝑖 ∈ 𝑁𝐼, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑑 ∈ 𝑁𝐺 (3.8) 

where Λ𝑠 is determined by all the above constraints. Problem (3.1), constraints (3.2) - (3.7) are 

also known as the Extensive Form (EF) of the two-stage S-NCUC, in which even a moderate 

number of scenarios can result in a computational burden that quickly exceeds the capability of 

any state-of-the-art MIP solver. Besides, the computational burden increases exponentially with 

the size of the problem using the branch-and-cut method [69]. This increased computational 

burden is why scenario-based decomposition frameworks such as Lagrangian relaxation are used 

to solve a large-scale S-NCUC problem iteratively [70].  

3.3. Computational Environment 

The proposed algorithms are implemented in MATLAB within the National Renewable 

Energy Laboratory (NREL)’s Flexible Energy Scheduling Tool for Integrating Variable generation 

(FESTIV) framework. The S-SCUC is modeled in General Algebraic Modeling System (GAMS) 

[71] and all the problems were solved using CPLEX [72]. Figure 3.1 shows data flow between 

MATLAB where iterations takes place and GAMS which does optimization. Figure 3.2 depicts 

the FSTIV graphical user interface. The computing platform has 256 GB RAM, Intel Xeon CPU 

E5-2640 with dual processors.
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Figure 3.1 NREL's FESTIV Framework 
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Figure 3.2 FESTIV - user interface2  

  

                                                 

2 Flexible Energy Scheduling Tool for Integrating Variable Generation | Grid Modernization | 

NREL 

https://www.nrel.gov/grid/festiv-model.html
https://www.nrel.gov/grid/festiv-model.html
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3.4. Systems Modeled/Used in Simulations 

Three systems differing in size are used in the research. The system chosen various in size 

and are discussed in detail in this section. 

▪ RTS-96 System 

▪ IEEE 118-bus System 

▪ ERCOT-Like System  

3.4.1. RTS-96 System 

The IEEE Reliability Test System (RTS-96) was developed [73], [74] by modifying and 

updating the original IEEE RTS (RTS-79). This system is widely used in experiments for all kinds 

of bulk power-system related studies. The current research uses the modified single-area that has 

24 buses, 38 branches and 26 generators. The average load is around 1200 MW and the peak load 

is nearly 2500 MW. A wind turbine generator (WTG) is connected to Bus 23 with an installed 

capacity of 130 MW, which is about 4% of the total capacity in the system. One-line diagram of 

the RTS-96 System is provided in Figure 3.3. 
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Figure 3.3 The IEEE Reliability Test System (RTS-96) diagram [74] 

To get an understanding of the problem size of RTS-96 mathematical model is done by 

looking at the GAMS statistics in terms of number of equations, discrete variables, etc. Statistics 

for RTS-96 is shown in Figure 3.4. There are 2,232 first stage decisions over a 24-hour period for 

this system. 

 

Figure 3.4 GAMS model statistics for the RTS-96 System 
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The research uses the RTS-96 and IEEE 118-bus system to establish unique features of FW-PHA 

and PBGS through results and arrive at a conclusion that will be used to interpret the large system 

result as big as Electric Reliability Council of Texas (ERCOT). 

3.4.2. The IEEE 118-bus System 

A modified IEEE 118-bus System [75], [76] has 118 buses, 186 branches and 54 generators 

that includes 10 WTGs. These WTGs are located at buses 4, 26, 27, 40, 49, 62, 89, 100, 107 and 

112. The installed capacity is 376 MW (8% of the total capacity). The network diagram of this 

system is shown in Figure 3.5. GAMS statistics is given in Figure 3.6. 

 

Figure 3.5 The IEEE 118-bus one-line diagram3 

                                                 

3 Visio-IEEE_118bus_54T.vsd (iit.edu) 

http://motor.ece.iit.edu/data/IEEE118bus_inf/IEEE118bus_figure.pdf
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Figure 3.6 GAMS model statistics for the IEEE 118-bus System 

 

3.4.3. The ERCOT-like Large System 

This system is a redacted version of the ERCOT system with 7226 buses, 8853 branches 

and 725 generators that includes 178 wind farms. The names of buses, loads, generators along with 

generation costs are redacted in the system modeled. In fact, it is so much redacted and modified 

that it resembles the ERCOT system from the network and size point-of-view only. The installed 

capacity is over 80,000 MW of which 21,582 MW is from wind. An overview of the transmission 

network of the system is shown in Figure 3.7. The transmission system has three different levels 

of voltages. At the highest level is 345 KV (red) followed by 138 KV (blue) and 69 KV (green).  



33 

 

Figure 3.7 Bird’s-eye View of the transmission system of ERCOT4 

 

This large system is too big to be solved even deterministically as the number of variables 

and number of equations are close to 2 million each, and the total non-zero elements are over a 

billion. Figure 3.8 shows the model statistics. 

 

                                                 

4 https://mis.ercot.com 
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Figure 3.8 GAMS model statistics for the ERCOT-Like System 

 

 

In order to solve such a large system, it is necessary to eliminate the constraints that will 

not be active for a given network topology, load and generation. Over 95% of the 8853 branches 

are inactive for the scenarios generated and studied in this research. For each scenario, the active 

constraints were identified by first solving the NCUC problem without network constraints, and 

from the result a list of branches that violated its limit as active constraints is compiled. The NCUC 

problem is solved again with network constraints using these active constraints and screened for 

additional branch violations. This process was repeated until violations were eliminated or no new 

violations were found. Flow chart of this process is depicted in Figure 3.9.  
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Figure 3.9 Line screening for the transmission constraints 

 

An efficient method of identifying inactive constraints is given in [77]. Once all the active 

transmission constraints are identified for each scenario, combined active constraints would be 

used as the only transmission constraints in further simulations. 
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3.5. Scenario Generation 

The modeling of uncertainty is crucial in stochastic programming. There are many 

techniques available, and depending on the technique used, the modeling of the uncertainties could 

be different. The goal of scenario generation is modeling of the uncertainties that represent a 

possible outcome. In a two-stage problem, the scenarios are for the second stage where any of 

those scenarios could be realized. In a multi-stage problem, a scenario tree is needed and each 

stage could have its own set of scenarios. For the S-SCUC problem, scenario generation should be 

related to the forecasted value of variables. This is particularly important for wind generation 

forecast as it is based on the wind speed forecast. Wind speed is based on the location and time, 

which must be included in the scenario generation. The impact of location and time on the 

generation output is not only applicable for wind generation but also for solar generation. Scenarios 

must be generated for each wind/solar farm. This is especially true for a system that geographically 

spans hundreds of miles.  

The performance of S-SCUC is driven by how well the selected scenarios represent the 

stochastic nature. Too many scenarios would be time consuming to solve, and too few may not 

represent the uncertainties well. Naturally, one can think that a large number of scenarios would 

yield higher quality of solution. This may be true up to a point after which the quality of solution 

might not improve for the increased number of scenarios.  This is where scenario reduction 

techniques come into help. Scenario reduction technique [78] can be applied to bundle two or more 

similar scenarios based on certain probabilistic metrics to reduce the number of scenarios to be 

considered in the problem. Comparison of different techniques are presented in [79]. Several 

papers are devoted to the scenario generation topic [80]-[83] and research is actively conducted in 

this area. 

Since the research focus is not about scenario generation or reduction, there will not be any 

discussion on the methods used other than the one employed in generating scenarios for the 

simulations in this research. The scenario generation technique with autoregressive moving 

average, i.e., ARMA (1, 1), is used to generate scenarios [84], each representing the possible 

realization of load and wind condition for all the three systems considered. The ARMA (1, 1) used 

is 
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 𝑒𝑡 = 𝛼 ∙ 𝑒𝑡−1 + 𝛽 ∙ 𝐿𝑡−1 + 𝐿𝑡   (3.9) 

where e is the forecast error of wind generation or load at time t, and 𝐿𝑡  is a normal-distribution 

function with a varying standard deviation of the load forecast and the wind generation forecasts. 

𝛼 and 𝛽 are ARMA parameters determining the degree to which the previous value influences the 

current value. One set of 10 scenarios for RTS-96 was generated. For the IEEE 118-bus System, a 

total of 27 sets were generated. One set of 10 scenarios and 26 sets with 50 scenarios. For the 

ERCOT-like System, one set of 30 scenarios were generated. This limitation of 30 scenarios was 

due to the computational constraints. However, larger deviations in both load and wind generations 

were used in scenario creation. Table 3.1 shows each scenario set with the standard deviation 

(STD) used for load forecast and wind generations. 

Table 3.1 List of scenarios sets with scenario generation statistics 

Scenario Sets 

Load Forecast 

Deviation 

Wind Forecast 

Deviation Number of 

Scenarios 
STD % Dev STD %Dev 

RTS96-10-S1 3% 23.58 6% 45.16 10 

IEEE118-10-S1 3% 23.58 6% 45.16 10 

IEEE118-50-S0 3% 23.58 6% 45.16 50 

IEEE118-50-S1 4% 31.08 8% 57.62 50 

… … … … … … 

IEEE118-50-S25 4% 31.08 8% 57.62 50 

ERCOT-30-S1 6% 45.16 10% 68.26 30 

 

Figures 3.10 through 3.24 show the load, wind and selected individual wind generation scenarios 

for each of the three systems. 
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Figure 3.10 The IEEE 118-bus System set 1 - load and 

wind, 50 Scenarios 

 

 

  

Figure 3.11 The IEEE 118-bus System set 1 – WTG 2 and 

4, 50 scenarios 
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Figure 3.12 The IEEE 118-bus System set 6 - load and 

wind, 50 scenarios 

  

Figure 3.13 The IEEE 118-bus System set 25 – WTG 5 and 

7, 50 scenarios 
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Figure 3.14 The IEEE 118-bus System set 14 - load and 

wind, 50 scenarios  

  

Figure 3.15 The IEEE 118-bus System set 14 – WTG 3 and 

10, 50 scenarios  
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Figure 3.16 The IEEE 118-bus System set 18 – load and 

wind, 50 scenarios 

 

  

Figure 3.17 The IEEE 118-bus System set 18 – WTG 1 and 

8, 50 scenarios  
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Figure 3.18 The IEEE 118-bus System set 25 - load and 

wind, 50 scenarios 

 

  

Figure 3.19 The IEEE 118-bus System set 25 – WTG 6 and 

9, 50 scenarios  
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Figure 3.20 The ERCOT-like System – load and wind, 30 

scenarios  

 

  

Figure 3.21 The ERCOT-like System – wind, 30 scenarios 
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Figure 3.22 The ERCOT-like System – WTG 15 and 25, 30 

scenarios  

 

 

Figure 3.23 The ERCOT-like System – WTG 63 and 108, 

30 scenarios 

 

 



45 

 

 

 
Figure 3.24 The ERCOT-like System total load variation across scenarios for each hour



46 

The quality of the scenarios generated using ARMA seems to be adequate for the case 

studies in this research. It is apparent from the 25 sets of 50 scenarios that were generated for the 

IEEE 118 bus System results. Also, the variation used in the ARMA model to generate load 

scenarios is far higher than the accuracy of the load forecasts in the real world. For example, the 

generated load forecast error of the ERCOT-like System varies to as high as 45%, while the real-

world forecast errors are 2 to 5%. This high variation demonstrates the quality of the solution. 

3.6. Extensive Formulation Results 

In this section results obtained by solving S-NCUC problem using EF is discussed. EF 

yielded results for two of the three systems modelled in this research. EF is implemented within 

the FESTIV environment. 

3.6.1. RTS-96 System 

The only scenario created for this system, RTS96-10-S1, is solved using EF in the FESTIV 

environment. The optimization engine used was CPLEX, and the partial output from the CPLEX 

is shown in Figure 3.25. As shown, the CPLEX took 14 minutes to arrive at a solution. Figure 3.26 

shows the FESTIV output where the first stage CPLEX solution is validated for all the ten 

scenarios. This result shows that all the ten scenarios had neither loss-of-load nor additional load 

slack, validating the feasibility of the solution obtained. 
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Figure 3.25 Partial output of EF CPLEX solution for RTS96-10-S1 
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Figure 3.26 FESTIV output of EF solution for scenario RTS96-10-S1 

 

This result will be used in subsequent chapters for comparison with proposed algorithm. 

3.6.2. The IEEE 118-bus 

For this system, EF solutions of two of the 27 sets of scenarios created are presented. 

Results for other sets will be presented in Chapter 5 when Out-of-Sample scenarios are discussed. 

The scenario sets presented here are: 

• IEEE118-10-S1 

• IEEE118-50-S0 

Figures 3.27 and 3.28 show EF results for 10 scenarios of the IEEE 118-bus System while 

figures 3.29 and 3.30 show the EF results for the 50 scenarios.  
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Figure 3.27 Partial output of EF CPLEX solution for IEEE118-10-S1 
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Figure 3.28 FESTIV output of EF solution for scenario IEEE118-10-S1 
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Figure 3.29 Partial output of EF CPLEX solution for IEEE118-50-S0 
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Figure 3.30 FESTIV output of EF solution for scenario IEEE118-50-S0 



53 

 Comparing the time taken to obtain EF solution for ten scenarios with 50 scenarios shows 

how the time taken increases exponentially with the increased scenarios. The time taken for ten 

scenarios is 11 minutes, while the time taken for 50 scenarios is 303 minutes. Also, note that the 

EF solution obtained for each set is feasible for every scenario within the respective set. 

3.6.3. The ERCOT-like Large System 

Unable to obtain a solution within the computational constraints for this extensive system 

using EF. This is why the scenario-wise decomposition method is needed, and a discussion of such 

a method will be discussed in the next chapter. 

3.7. Summary 

This chapter started with a brief description of Unit Commitment followed by the 

formulation of Stochastic Network Constrained Unit Commitment. The computational 

environment, along with systems employed in the simulations, were discussed. The systems on 

which simulations conducted are small, medium, and large real-world-like systems. These systems 

vary in size from 10s of nodes to 1000s of nodes. An integral part of stochastic programming – 

scenario generation – was discussed, and several scenarios generated using ARMA were depicted. 

Finally, the deterministic version of S-NCUC solved using EF was presented for two of the three 

systems considered. EF was not tractable for the extensive ERCOT-like system. Obtaining result 

for such a large system is the discussion of the next chapter. 
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4. Fast Penalty-Based Gauss-Seidel Algorithm 

The computational complexity of the Extensive Formulation (EF) used in Chapter 3 to 

solve the S-NCUC problem grows exponentially with the size of the system and the number of 

scenarios. This deterministic formulation leads to computationally intractable situations even for 

a medium system with a reasonable number of scenarios. This is why a decomposition-based 

algorithm is used in solving S-NCUC. This chapter starts with a discussion on the decomposition 

using augmented Lagrangian, followed by the formulation of the S-NCUC problem for the 

application of the Penalty-Based Gauss-Seidel (PBGS) algorithm. Presentation of S-NCUC results 

obtained using PBGS is presented. Innovation to PBGS algorithm called Fast PBGS is developed, 

and the time saved by Fast PBGS is compared with PBGS at the end of this chapter. 

4.1. Augmented Lagrangian 

The scenario-based decomposition framework separates the first-stage S-NCUC into each 

individual scenario (i.e., 𝐼𝑖,𝑡
𝑠 ) and introduces a coupling constraint that enforces the first-stage S-

NCUC decisions of non-quick-start generators (NQGs) to be the same across all scenarios. This 

constraint for NQGs, termed as a non-anticipativity constraint (NAC), is given below.  

 𝐼𝑖,𝑡 = 𝐼𝑖,𝑡
𝑠 = 𝑍𝑖,𝑡, ∀ 𝑖 ∈ 𝑁𝐼, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆  (4.1) 

As UCs of quick-start generators (QSGs) can vary across the scenarios considered, constraint (4.1) 

is not imposed on quick-start units. By relaxing constraint (4.1), the augmented Lagrangian 

function is defined as  
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𝜑+(𝑰, 𝒑,𝝎, 𝝆) = 

minimize
𝐼,𝐼𝑈,𝑝

∑𝑃𝑟𝑠  

(

 ∑

[
 
 
 

∑

(

 
𝑁𝐿𝑖 ∙ 𝐼𝑖,𝑡

𝑠 + 𝑆𝑈𝑖,𝑡 ∙ 𝐼𝑈𝑖,𝑡
𝑠 +∑(𝑝𝑑,𝑖,𝑡

𝑠 ∙ 𝐼𝐶𝑑,𝑖)

𝑁𝐺

𝑑=1

+

𝜔𝑖,𝑡
𝑠 ∙ (𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡) + 𝛼 ∙ 𝜓𝜌
𝑠(𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡) )

 

𝑁𝐼

𝑖=1

𝑁𝑇

𝑡=1

𝑆

𝑠=1

+ (𝐴𝐿𝑡
𝑠 + 𝐿𝐿𝑡

𝑠) ∙ 𝑉𝑂𝐿𝐿        + ∑(𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )

𝑙∈𝐿

∙ 𝑉𝑂𝑂𝐵

]
 
 
 

)

  

(4.2) 

 

𝑤ℎ𝑒𝑟𝑒, 

                   𝝎, 𝝆 ∈ ℝ𝑁𝐼×𝑁𝑇×𝑆  

𝜓𝜌
𝑠(𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡), denoted as 𝜓𝜌
𝑠(∙), is an augmenting function associated with NAC in (4.1) 

and a penalty factor ρ; 𝛼 is a scalar. 

Enforcing the probability-weighted sum of the dual variable (∑ 𝑃𝑟𝑠𝝎𝑠
𝑠∈𝑆 = 0) is a 

necessary condition for the augmented Lagrangian function (4.2) to be bounded from below. The 

NAC defines a subspace 𝒩 and the optimality conditions require that the dual variable (𝝎) lie in 

the subspace of 𝒩⊥[51]. This requirement, ∑ 𝑃𝑟𝑠𝝎𝑠
𝑠∈𝑆 = 0 is enforced by the updating of the 𝝎 

in every iteration of PHA algorithm. Proof of this condition is given in [85].  

Under this imposed condition, 𝑍𝑖,𝑡 associated with 𝜔𝑖,𝑡
𝑠 in (4.2) vanishes. Also, 𝑍𝑖,𝑡 ∙ 𝜔𝑖,𝑡

𝑠  is 

a constant added to the objective function and does not need to be in the objective function. The 

augmented Lagrangian function (4.2) is decomposed into S subproblems, each representing an 

individual-scenario NCUC problem to be solved. Two algorithms are considered in this research, 

namely PBGS and FW-PHA, which solve the augmented Lagrangian function (4.2) using different 

augmenting functions 𝜓𝜌(∙). 
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4.2. Strong Duality with Augmented Lagrangian 

Achieving strong duality (zero duality gap) helps imply convergence, and more 

importantly the solution obtained is a primal solution. The convergence is defined as when all the 

individual scenarios first stage decision 𝐼𝑖,𝑡 agrees with implementable 𝑍𝑖,𝑡, i.e., equation (4.1) is 

satisfied. Only then a solution - that does not require any further processing before it is 

implemented - is found. The presence of integers makes UC problem non-convex. This non-

convexity is the cause of non-zero duality gap when Lagrangian relaxation is used. Augmented 

Lagrangian is a modification of classical Lagrangian with an augmenting function with two parts; 

it is a function multiplied by a coefficient. Both the augmenting function for 𝜓𝜌(∙) and the 

coefficient called penalty factor 𝝆 will be discussed later in the chapter.  

4.2.1. Affine Functions 

An Affine Function is a linear function that has non-zero constant (𝑨𝒙 + 𝒃). In the non-

convex problems like UC, use of affine function as 𝜓𝜌(∙) might not close the gap (the supporting 

epigraph of the primal function using hyperplanes does not work [86]). This is explained in detail 

in Chapter 11, section K of [87]. This is apparent in Figure 3.1 which is reproduced from [87]. In 

this figure the affine augmenting function 𝜓 is prevented from getting to the value of the objective 

function 𝜑. It is to be noted that strong duality occurs at inf 𝜑(∙) = sup𝜓 (∙). In Figure 4.1, there 

is a gap between these two functions. 

 

 

Figure 4.1 Duality gap in minimization problems lacking adequate convexity [87] 
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4.2.2. Non-linear Functions 

Figure 4.1 suggests that perhaps a function such as quadratic function can penetrate such 

‘dents’ of 𝜑 (epigraph of the primal function can be supported by non-linear surfaces). This is 

shown in Figure 4.2 which is also reproduced from [87]. Wang et.al., showed, under certain 

conditions, that the strong duality can be achieved asymptotically by using non-linear augmented 

Lagrangian function and increasing the associated penalty factor 𝜌 to infinity [88].  

 

Figure 4.2 Duality gap removed by an augmenting function [87] 

 

Even the non-linear augmented Lagrangian cannot yield strong duality for some class of 

non-linear optimization problems. This has been proven mathematically by Feizollahi et.al. 

through an example [89]. Feizollahi showed that only augmented Lagrangian using sharp functions 

can penetrate certain ‘dents’ in certain types of non-convex problems [89], [90]. This is shown in 
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Figure 4.3 where only 𝜓3(𝑢) can peneratrate and reach 𝑝(𝑢) to achieve strong duality while the 

other two functions 𝜓1(𝑢) 𝑎𝑛𝑑 𝜓2(𝑢) are unable to do so. 

 

 

 

Figure 4.3 Value function and some augmenting functions [90] 

4.3. Exact Augmented Lagrangian 

The function that achieves a strong duality gap with a finite value of penalty factor is known 

as ‘Exact Penalization’ or ‘Exact’. Burke, in the abstract of [91], mentions that Eremin (in 1966) 

and Zangwill (in 1967) introduced a notion of exact penalization for use in the development of 

algorithms for constrained optimization. Later, there have been several publications in this area in 

general [92]-[98], and to MIP in particular [89], [99] and [100].  

An Exact augmented Lagrangian is a class of exact penalty methods whose objective is to 

solve a constrained optimization (primal) problem through an unconstrained optimization problem 

that has the same local (global) solutions as the primal problem. Often, in a non-convex problem 

like S-NCUC, only the local minimum is found. This local minimum is an exact augmented 

Lagrangian solution and is referred to as an exact solution hereinafter. 
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Definition 1 (Exact penalty representation [89]): A given augmenting function 𝜓𝜌(∙) in 𝜑+(∙) 

is an exact penalty representation, if there exists a dual vector ω, for all ρ sufficiently large, such 

that: 

 𝜁 =  𝜑+  (4.3) 

and, 

 argmin
𝐼,𝑝

𝜁 =  argmin
𝐼,𝑝

𝜑+(𝑰, 𝒑, 𝝎, 𝝆) (4.4) 

Definition 1 indicates that, with an exact augmenting function 𝜓𝜌(∙), an optimal solution to the 

augmented Lagrangian 𝜑+(∙) is also a (local) optimal solution to the extensive form 𝜁 (3.1) of S-

NCUC. The exactness implies that the optimal Lagrangian dual solution to 𝜑+(∙) is directly primal 

feasible with all the relaxed NAC constraints being satisfied. Hence, no additional algorithm is 

required to restore the primal feasibility from a Lagrangian dual solution. This constitutes one 

salient merit of using an exact augmenting function, which will be demonstrated in comparison 

with PHA in Chapter 6. It is worth mentioning that Definition 1 emphasizes the feasibility rather 

than the optimality of a solution to augmented Lagrangian 𝜑+(∙). Specifically, an optimal solution 

to 𝜑+(∙) is a local minimum to the extensive form 𝜁 due to the non-convexity of S-NCUC [97]. 

Therefore, a quantitative assessment of the quality of a solution to 𝜑+(∙) is needed. Discussion on 

such an assessment is presented in Chapter 5. 

4.4. Penalty-Based Gauss-Seidel Algorithm 

An important question is how to construct an exact augmenting function 𝜓𝜌
𝑠 . The 

discussion and work here is based on the findings of Oliveira et.al., in [101]. An 𝑙1 norm-like 

function based on a semi-Lagrangian approach is employed.  Unlike the semi-Lagrangian approach 

- wherein an equality constraint is reformulated as a pair of inequality constraints and the 

Lagrangian relaxation - is applied to either of the pair [102], the NAC (4.1) here is reformulated 

as two inequality constraints and then relax both constraints using two penalty factors (𝜌, 𝜌) as 

follows:   

 𝜓𝜌
𝑠(𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡) ∶= 𝜌𝑖,𝑡
𝑠 ∙ [𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡]
−
+ 𝜌

𝑖,𝑡

𝑠
∙ [𝑍𝑖,𝑡 − 𝐼𝑖,𝑡

𝑠 ]
−

 (4.5) 

where [ ⋅ ]− represents the positive basis, which is defined as −min{0,   ⋅  };  
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 Equation (4.5) can be implemented as follows: 

 𝜓𝜌
𝑠(𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡) ∶= 𝜌𝑖,𝑡
𝑠 ∙ 𝑢 + 𝜌

𝑖,𝑡

𝑠
∙ 𝑢 (4.6) 

 Such that:  𝑢 ≥ 0, 𝑢 ≥ (𝑍𝑖,𝑡 − 𝐼𝑖,𝑡
𝑠 )  

                  𝑢 ≥ 0, 𝑢 ≥ (𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡)  

 

The augmenting function (4.5) is an exact penalty representation since it meets the following three 

criteria: 

▪ 𝜓𝜌
𝑠(0) = 0 

▪ 𝜓𝜌
𝑠(𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡)  ≥ 𝛿 > 0, ∀(𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡) ∉ 𝑉 

▪ 𝜓𝜌
𝑠(𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡) ≥ 𝜈‖𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡‖∞, ∀(𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡) ∈ 𝑉 

for some open neighborhood 𝑉 𝑜𝑓 0 and positive scalars 𝛿, 𝜈 > 0. The exactness proof of 

augmenting function (4.5) is given in Theorem 5 of [89]. 

It is worthwhile noting that a common choice for the augmenting function 𝜓𝜌(∙) in the literature 

is the use of norms. For example, the PHA algorithm uses the square of 𝑙2 norm, 

i.e., 
𝜌

2
‖𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡‖2

2
 as the augmenting function (proximal Lagrangian) [51]. As indicated in the 

third criterion above, the value of the augmenting function must be greater than or equal to an 

infinity norm in the neighborhood of zero. The PHA algorithm does not satisfy this criterion and 

therefore is not an exact penalty representation for MIP problem like S-NCUC. This is depicted in 

Figure 4.3. The augmenting function in (4.5) is a sharp Lagrangian and under any one of the 

following conditions, 𝝎 can be set to 0.  

Condition 1: Proposition 8 in [89] states that the augmenting function using any norm, for any 

𝜔 ∈ ℝ𝑵𝑰×𝑵𝑻×𝑺 there exists a finite 𝜌 such that the augmented Lagrangian solution is the same as 

the primal MIP solution. 

Condition 2: Definition 8 in [89] and 11.60-11.62 in [87] states that in the sharp Lagrangian, 

suppose that 𝜑+(𝟎) >  −∞ for some ρ ∈ (0,∞). Then, a necessary and sufficient condition for 

the vector 𝛚 = 𝟎 to support an exact penalty representation is that the value function p(u) is calm 

from below at 𝒖 = 𝟎. 
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Therefore, setting ω = 0 and omitting ω from subsequent discussions is done for the simplicity 

of representation. 

The second important consideration is in the calculation of implementable 𝑍𝑖,𝑡. Since UC takes 

a binary value, it is imperative to maintain 𝑍𝑖,𝑡 binary. Calculation of 𝑍𝑖,𝑡  can be accomplished by 

minimizing (4.6) with respect to 𝑍𝑖,𝑡 using fixed 𝐼𝑖,𝑡
𝑠  over all the scenarios.  

 

 Z ∶= argmin
𝒁

∑ (𝜌𝑖,𝑡
𝑠 ∙ 𝑢 + 𝜌

𝑖,𝑡

𝑠
∙ 𝑢)𝑠∈𝑆  (4.7) 

 Such that:  𝑢 ≥ 0, 𝑢 ≥ (𝑍𝑖,𝑡 − 𝐼𝑖,𝑡
𝑠 )  

                  𝑢 ≥ 0, 𝑢 ≥ (𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡)  

 

However, if the problem is restricted to take only binary values, the 𝑍𝑖,𝑡 can be calculated as 

follows at every iteration [101]: 

 𝑍𝑖,𝑡 ∶=  

{
 
 

 
 1, 𝑖𝑓 ∑(1 − 𝐼𝑖,𝑡

𝑠 ) ∙ 𝜌𝑖,𝑡
𝑠

𝑠∈𝑆

<∑𝐼𝑖,𝑡
𝑠 ∙ 𝜌

𝑖,𝑡

𝑠

𝑠∈𝑆

0, 𝑖𝑓 ∑(1 − 𝐼𝑖,𝑡
𝑠 ) ∙ 𝜌𝑖,𝑡

𝑠

𝑠∈𝑆

>∑𝐼𝑖,𝑡
𝑠 ∙ 𝜌

𝑖,𝑡

𝑠

𝑠∈𝑆

0 𝑜𝑟 1,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

      (4.8) 

As shown, the implementable takes a UC consensus on the majority of scenarios weighted by 

the penalty factors, leading to a binary value. In contrast, the PHA algorithm calculates the 

implementable via a weighted average of UC, resulting in a fractional value that requires further 

conversion to a binary value.  

After 𝑍𝑖,𝑡 is obtained, ρ at the kth iteration is updated as: 

 
𝜌𝑖,𝑡,𝑘
𝑠 ∶=  𝜌𝑖,𝑡,𝑘−1

𝑠 + 𝛾 ∙ [𝐼𝑖,𝑡,𝑘
𝑠 − 𝑍𝑖,𝑡,𝑘]

−
   ∀𝑠 ∈ 𝑆

𝜌
𝑖,𝑡,𝑘

𝑠
∶=  𝜌

𝑖,𝑡,𝑘−1

𝑠
+ 𝛾 ∙ [𝑍𝑖,𝑡,𝑘 − 𝐼𝑖,𝑡,𝑘

𝑠 ]
−
   ∀𝑠 ∈ 𝑆

 (4.9) 

In (4.9), the two penalty factors are updated separately based on the direction of the NAC 

(4.1) violation. Unlike the PHA algorithm, which uses the square of l-2 norm as the augmenting 

function to penalize NAC violations uniformly, the penalty factor updated in (4.9) offers more 

granular modifications to satisfy the NAC constraints.   
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Proposition 14 [101] states the following:  

Suppose a set of scenario-dependent solutions (𝐼𝑠)𝑠∈𝑆, where 𝐼𝑠 = (𝐼𝑖
𝑠)𝑖=1,..,𝑛, are given and 𝑍 =

(𝑍𝑖)𝑖=1,…,𝑛. For each 𝑖 ∈ {1,… , 𝑛} define 

𝐼+(𝑍𝑖) ∶= {𝑠 ∈ 𝑆 | 𝐼𝑖
𝑠 > 𝑍𝑖} 

𝐼−(𝑍𝑖) ∶= {𝑠 ∈ 𝑆 | 𝐼𝑖
𝑠 < 𝑍𝑖} 

𝐼0(𝑍𝑖) ∶= {𝑠 ∈ 𝑆 | 𝐼𝑖
𝑠 = 𝑍𝑖} 

Then 𝑍𝑖 solves problem (14) given fixed (𝐼𝑠)𝑠∈𝑆 if and only if 

 

 ∑ 𝜌̅𝑖
𝑠

𝑠∈𝐼+(𝑍𝑖)

− ∑ 𝜌𝑖
𝑠

𝑠∈𝐼−(𝑍𝑖)

 ∈ [− ∑ 𝜌̅𝑖
𝑠

𝑠∈𝐼0(𝑍𝑖)

, ∑ 𝜌𝑖
𝑠

𝑠∈𝐼0(𝑍𝑖)

]    (4.10) 

Proof of this proposition is given in [101]. 

Now, consider the penalty updated in (4.9). Using (4.9) The difference of differences of 𝜌̅𝑖
𝑠, 𝜌𝑖

𝑠 

between successive iterations can be written as follows: 

 ∆𝑖
𝑘+1=  𝛾 [ ∑ [𝐼𝑖,𝑡,𝑘

𝑠 − 𝑍𝑖,𝑡,𝑘]
−

𝑠∈𝐼+(𝑍𝑖)

− ∑ [𝐼𝑖,𝑡,𝑘
𝑠 − 𝑍𝑖,𝑡,𝑘]

−
 

𝑠∈𝐼−(𝑍𝑖)

] (4.11) 

 

The optimality condition of (4.10) is improved for large 𝜌̅𝑖
𝑠 and 𝜌𝑖

𝑠 as this makes the target interval 

on the right-hand side of (4.10) larger. The exponential multiplying factor 𝛼 accomplishes the 

gradual increase in the terms ∆𝑖
𝑘+1in an attempt to improve the convergence. It should be noted 

that, in order to improve the convergence, scalar 𝛼 is increased exponentially over iterations and 

defined as follows: 

 𝛼 ∶= 𝛽𝑘−1 − 1 (4.12) 

where 𝛽 ∈ (1,2]. The PBGS algorithm is shown in Algorithm 1, in which the indices i and t are 

omitted for brevity.  
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4.4.1. PBGS Algorithm 
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4.4.2. Proof of convergence of PBGS 

Augmented Lagrangian (4.2) in abbreviated form is given as follows. All the constraints (3.2) -

(3.7) are applicable. 

 𝜑+(𝑰, 𝒑, 𝝆) = 𝐶(𝑰, 𝒑) + 𝝆𝜓(𝑰 − 𝒁)  (4.13) 

where 𝐶(𝑰, 𝒑,𝝆) is the scenario-wise decomposed NCUC objective function and 𝝆𝜓(𝑰 − 𝒁) is the 

augmented Lagrangian term. 

Proof 1: The PBGS algorithm uses an exact augmenting Lagrangian. According to Theorem 5 in 

[89], there exists a finite 𝝆∗ > 𝟎 such that for any 𝝆 ∈ [𝝆∗,∞), the following equation holds 

regarding (A1). 

 𝜑+(𝑰, 𝒑, 𝝆) = 𝐶(𝑰, 𝒑) + 𝝆𝜓(𝑰 − 𝒁) = 𝐶(𝑰, 𝒑)  (4.14) 

Equation (3.18) can be only possible if and only if 

 𝝆𝜓(𝑰 − 𝒁) = 0   (4.15) 

Equation (4.15) implies that 𝑰 = 𝒁, fulfilling the termination criteria in Line 21 of the PBGS 

algorithm. Due to monotonically increasing 𝝆, 𝝆 ∈ [𝝆∗,∞) is satisfied within a finite number of 

iterations.  ∎ 

4.4.3. PBGS Results 

In this subsection, the quality of the proposed Fast PBGS solutions is evaluated by 

comparing with the EF solutions obtained in Chapter 3. Like in the Chapter 3 only a small subset 

of the scenarios is compared here. In Chapter 5 all scenarios will be presented. 

 All gap and difference calculations are based on the following equation, where φx 

represents other methods with which the PBGS is compared against, such as EF, FW-PHA, or 

PHA [103]. The parameter φ+ is the objective value of the augmented Lagrangian. 

 % Objective Value difference =  
φ+ − φx
φx

∗ 100   (4.16) 
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4.4.3.1. RTS-96 System 

The objective value of the RTS-96 System is show in Table 4.1. In this table the PBGS 

results for various penalty factor ρ are compared with objective values obtained using EF method 

in Chapter 3. The simulation was carried out for four different values of penalty factors. In general, 

higher the penalty factor is larger the objective difference with EF solution. 

Table 4.1 Comparison of PBGS with EF - set RTS96-10-S1 

γ=1.0, β=1.1  EF = $333,733 EF = 14 min 

𝜌, 𝜌 
PBGS 

operating cost  

PBGS solution 

time in minutes 

Objective diff. 

w.r.t. EF 

Time diff. w.r.t. 

EF 

100 $333,990 38 0.08% 171% 

500 $334,313 25 0.17% 79% 

1,000 $334,362 17 0.19% 21% 

5,000 $337,156 19 1.03% 36% 

 

 As shown in the above table, the PBGS objective solution is very close to the EF objective 

value, conveying that the PBGS solution will be good. This will be further confirmed in the 

application of PBGS on the two other systems. However, the time taken by the PBGS is much 

longer than EF. 

4.4.3.2. The IEEE 118-bus System 

The operating cost by PBGS under different values of the penalty factor ρ, and that of EF 

for IEEE 118-bus System, set IEEE118-10-S1 are listed in Table 4.2. Also shown in the table is 

the time taken to obtain PBGS solution and the comparison with the time taken to obtain EF 

solution. 
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Table 4.2 Comparison of PBGS with EF - set IEEE118-10-S1 

γ=1.0, β=1.1  EF = $851,152 EF = 15 min 

𝜌, 𝜌 
PBGS 

operating cost 

PBGS solution 

time in minutes 

Objective diff. 

w.r.t. EF 

Time diff. w.r.t. 

EF 

500 $851,149 149 0.00% 893% 

1,000 $851,097 106 -0.01% 607% 

5,000 $851,366 53 0.03% 253% 

10,000 $854,284 49 0.37% 227% 

 

The PBGS solution under all ρ values, except for ρ =10000, is very close to the EF solution 

with the gap calculated to be less than 0.05%. When ρ=1000, the PBGS difference with respect to 

EF is -0.01%, signifying that its operating cost is slightly less (better) than EF. The negative gap 

can be attributed to the MIP optimality gap of 0.1% that was set in CPLEX. For all ρ, the PBGS 

gap with respect to EF is less than 0.4%. The EF solution, based on the state-of-the-art commercial 

MIP solver, is one of the most successful approaches in solving small- to medium-scale S-NCUC 

problems. Here, the EF solution is used to benchmark the PBGS solution. It is observed that the 

difference in the operating cost between the PBGS method and EF is very small for the IEEE-118 

bus system. The results demonstrate the effectiveness of the PBGS solution on the medium-scale 

S-NCUC problem.  

However, the time taken by the PBGS to obtain solution is far longer than the time taken 

by the EF. This is shown in the last column of the Table 4.2. This indicates that the PBGS solution 

does not have any advantage over the EF solution for small number of scenarios. Table 4.3 shows 

results for the same system with 50 scenarios. The PBGS objective values are very close to the EF 

solution (all are less than 1%). The time taken to obtain the PBGS solution is getting closer to the 

EF solution time compared with Table 4.1. This indicates that as the scenario increases time taken 

by the EF is increasing as mentioned earlier. 
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Table 4.3 Comparison of PBGS with EF - set IEEE118-50-S0 

γ=1.0, β=1.1  EF = $886,970 EF = 304 min 

𝜌, 𝜌 
PBGS 

operating cost 

PBGS solution 

time in minutes 

Objective diff. 

w.r.t. EF 

Time diff. w.r.t. 

EF 

5,000 $895,015 703 0.91% 131% 

10,000 $889,651 593 0.30% 95% 

25,000 $889,371 493 0.27% 62% 

50,000 $888,161 539 0.13% 77% 

 In the next section of this chapter, the modification to the PBGS will be discussed to 

improve computational efficiency.  

4.4.3.3. The ERCOT-Like System 

Three simulations are carried out with different penalty factors ρ for the ERCOT-like 

System ERCOT-30-S1 Table 4.4 shows the PBGS operating cost along with the time taken to 

obtain the solution. It is important to note that the EF is not implemented in the ERCOT-like 

System due to the enormous computational burden of EF (computationally infeasible). Therefore, 

no comparison can be made in this section to evaluate the PBGS solution for ERCOT-30-S1. The 

result for the ERCOT-like System will be evaluated in Chapter 5. 

Table 4.4 PBGS solution for the ERCOT-Like System, set ERCOT-30-S1 

γ=1.0, β=1.1 PBGS solution 

time in sequence 

(min) 

Estimated PBGS 

solution time in 

parallel (min) 𝜌, 𝜌 
Operating cost 

by PBGS 

5,000 $35,444,677 5955 267 

10,000 $35,480,631 5584 244 

50,000 $35,880,952 3251 137 

 

It is fascinating to discuss the computational performance of PBGS as this is a common 

concern in large-scale applications. In Table 4.4, the column labeled “PBGS solution time in 

sequence” shows the solution time of S-NCUC on the ERCOT-like System with 30 scenarios, 
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where each scenario was solved sequentially without parallelization. Suppose one were to 

implement the proposed algorithm in the day-ahead operation. In that case, the time taken for 

sequentially solving each scenario of the ERCOT-like System is far from practical. The solution 

time can be drastically shortened using parallel computing, as shown in the column labeled 

“Estimated PBGS solution time in parallel” in Table 4.4. The time estimation is based on the 

longest time taken by a scenario in each iteration plus the time between MATLAB and GAMS 

interaction through the file I/O activities. The FESTIV environment used is in an academic setting 

and currently does not support the parallel execution. It is understood that the parallel computing 

environment is not a standard in ISOs or utilities, which may need hardware upgrades and 

adjustments to the existing day-ahead market timeline if the stochastic method is implemented. 

PBGS can still be used for short-term such as week-ahead stochastic planning studies and in day-

ahead S-NCUC for systems smaller than ERCOT. The Fast PBGS algorithm discussed in the next 

section shortens the time considerably, making it attractive, especially for small and medium-sized 

systems. 

4.5. Fast Penalty-Based Gauss-Seidel (Fast PBGS) 

During the analysis of PBGS results for large-scale S-NCUC, it was observed that the 

computational efficiency of the PBGS could be improved by skipping scenarios that meet specific 

conditions from solving every iteration. This change resulted in an improved PBGS algorithm 

called "Fast PBGS" [104]. 

The key idea in Fast PBGS is explained using mathematical proposition followed by the 

proof. This idea is possible because both 𝑰 𝑎𝑛𝑑 𝒁 always being binary values. This would not be 

possible in other scenario-based algorithms where calculation of 𝒁 is calculated as real numbers. 

For example, in PHA the calculation of 𝒁 at an iteration k is accomplished as probability (𝑷𝒓) 

weighted average of scenario decisions 𝑰 as shown in (1). Also, 𝑰 is solved as integer value (MIP). 

 𝒁𝒌 ∶= ∑𝑃𝑟𝑠 ∙ 𝑰𝑘
𝑠

𝑠∈𝑆

   (4.17) 
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This calculation is compared to the one done in PBGS in (4.8), which is shown below in (4.18). 

The implementable 𝒁 is a binary value whose range is the same as that of 𝑰 making the comparison 

possible. 

 𝑍𝑖,𝑡 ∶=  

{
 
 

 
 1, 𝑖𝑓 ∑(1 − 𝐼𝑖,𝑡

𝑠 ) ∙ 𝜌𝑖,𝑡
𝑠

𝑠∈𝑆

<∑𝐼𝑖,𝑡
𝑠 ∙ 𝜌

𝑖,𝑡

𝑠

𝑠∈𝑆

0, 𝑖𝑓 ∑(1 − 𝐼𝑖,𝑡
𝑠 ) ∙ 𝜌𝑖,𝑡

𝑠

𝑠∈𝑆

>∑𝐼𝑖,𝑡
𝑠 ∙ 𝜌

𝑖,𝑡

𝑠

𝑠∈𝑆

0 𝑜𝑟 1,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

      (4.18) 

 

Corollary 1: For scenario s in PBGS,  (𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) is also the optimal solution at the k+1th iteration 

if the following two conditions are satisfied at the kth iteration: 

(1) The optimal commitment decisions obtained are the same as the pre-update 

implementable, i.e.,  

 
𝑰𝑘
𝑠∗ = 𝒁𝑘−1     

 
(4.19) 

 

(2) The post-update implementable remains unchanged, i.e., 

 
𝒁𝑘 = 𝒁𝑘−1     

 
(4.20) 

 

Proof 2: The objective function of the PBGS in an abbreviated form is given as follows, where all 

the constraints (3.2) – (3.7) are applicable. 

 𝜑+(𝑰, 𝒑, 𝝆) = 𝐶(𝑰, 𝒑) + 𝝆𝜓(𝑰 − 𝒁)  (4.21) 

 

where 𝐶(𝑰, 𝒑) is a scenario-wise objective function and 𝝆𝜓(𝑰 − 𝒁) is the augmented Lagrangian 

term. 

 

Proof by contradiction is used here. Let (𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) denote the optimal solution obtained in scenario 

s at the kth iteration of PBGS, i.e., 

 (𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑰,𝒑

[𝐶(𝑰𝑘
𝑠 , 𝒑𝑘

𝑠 ) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘
𝑠 − 𝒁𝑘−1)] (4.22) 
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Similarly, let (𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) be the optimal solution in scenario s at the k+1th iteration of the PBGS. 

It is to be noted that  𝝆𝑘+1 ≥ 𝝆𝑘 ≥ 0 in PBGS. It is apparent that the optimal solution obtained in 

kth iteration is a feasible solution to the k+1th iteration since the solution is from the feasible region 

Λ𝑠 defined in (3.8). Feasible values (𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) is defined as follows: 

 
(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑰,𝒑

[𝐶(𝑰𝑘+1
𝑠 , 𝒑𝑘+1

𝑠 ) + 𝝆𝑘+1 ∙ 𝜓(𝑰𝑘+1
𝑠 − 𝒁𝑘)] 

(4.23) 

Assume (𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) in (4.22) is not equal to (𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) in (4.23). Under this assumption, in view 

of its feasibility, we have 

 𝜑+(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ , 𝝆𝒌+𝟏) < 𝜑+(𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗, 𝝆𝒌) (4.24) 

Substituting (4.21) into (4.24), we get 

 𝐶(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) + 𝝆𝑘+1 ∙ 𝜓(𝑰𝑘+1
𝑠∗ − 𝒁𝑘) < 𝐶(𝑰𝑘

𝑠∗, 𝒑𝑘
𝑠∗) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘

𝑠∗ − 𝒁𝑘) (4.25) 

Applying conditions (4.19) and (4.20) in Corollary 1 to (4.25), we get: 

 𝐶(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) + 𝝆𝑘+1 ∙ 𝜓(𝑰𝑘+1
𝑠∗ − 𝒁𝑘−1) < 𝐶(𝑰𝑘

𝑠∗, 𝒑𝑘
𝑠∗) (4.26) 

For any given solution (𝑰̃𝒌
𝒔 , 𝒑̃𝒌

𝒔), a higher 𝝆 leads to a higher objective function value in terms of a 

higher penalty term due to the structure of 𝜑+. Hence, 

 

𝐶(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘+1
𝑠∗ − 𝒁𝑘−1)

≤ 𝐶(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) + 𝝆𝑘+1 ∙ 𝜓(𝑰𝑘+1
𝑠∗ − 𝒁𝑘−1)  

(4.27) 

Combining (4.26) and (4.27) results in the following condition 

 𝐶(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘+1
𝑠∗ − 𝒁𝑘−1)  < 𝐶(𝑰𝑘

𝑠∗, 𝒑𝑘
𝑠∗) (4.28) 

The left-hand side of (4.28) is exactly the objective function (4.21) in the kth iteration of PBGS. Its 

value cannot be better than that of the optimal solution (𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗), which is written as:  
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 𝐶(𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘
𝑠∗ − 𝒁𝑘−1)  ≤ 𝐶(𝑰𝑘+1

𝑠∗ , 𝒑𝑘+1
𝑠∗ ) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘+1

𝑠∗ − 𝒁𝑘−1)  (4.29) 

According to (4.19) in Corollary 1, we have 

 𝐶(𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗)  = 𝐶(𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘
𝑠∗ − 𝒁𝑘−1)  (4.30) 

Combining (4.28) – (4.30), we get 

 𝐶(𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗)    = 𝐶(𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘
𝑠∗ − 𝒁𝑘−1)  

                                   ≤ 𝐶(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) + 𝝆𝑘 ∙ 𝜓(𝑰𝑘+1
𝑠∗ − 𝒁𝑘−1)  

                                       ≤ 𝐶(𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) + 𝝆𝑘+1 ∙ 𝜓(𝑰𝑘+1
𝑠∗ − 𝒁𝑘−1)  

                                                     < 𝐶(𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗)     (4.31) 

Apparently, (4.31) does not hold. This indicates the assumption that (𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗) made in (4.22) is 

not equal to (𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) in (4.23) cannot hold. Therefore, (𝑰𝑘+1
𝑠∗ , 𝒑𝑘+1

𝑠∗ ) must be equal to (𝑰𝑘
𝑠∗, 𝒑𝑘

𝑠∗).   

∎ 

Proposition 1: Scenario s does not need be solved as long as equations (4.19) and (4.20) hold in 

successive iterations.  

At iteration 𝑘, let us assume that both conditions 1 and 2 of the Corollary are met by scenario 

𝑠. Let us also assume that 𝑍 has not changed in the 𝑘 + 1𝑡ℎ iteration, following Proof 2, and solving 

scenario 𝑠 in the 𝑘 + 1𝑡ℎ iteration can be skipped. If 𝑍 continues to remain the same in subsequent 

iterations, one can prove (by induction), using Proof 2 that scenario 𝑠 can be skipped in the 

subsequent iterations as well. ∎ 

Based on the above discussion, the proposed Fast PBGS algorithm is shown below in 

Algorithm 2, in which indices i and t are omitted for brevity. 
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4.5.1. Fast PBGS Algorithm 
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4.5.2. Initialization of Implementable Z 

The implementable 𝒁 should be initialized for all the scenarios. There are many ways to 

initialize 𝒁, and the PBGS algorithm developed in [101] discusses the first two methods. The 

third method proposed here is used in this research yielding faster solution. 

Method 1: This method is straightforward and does not require any additional efforts. The 

disadvantage of the method is longer solution time. 

 𝒁 ∶= 𝟎 (4.32) 

Method 2: This method is shown in Algorithm 2, lines 2-5. After solving all the scenarios without 

augmenting function, the rounded-up sum of the weighted average of the individual scenario status 

for the given unit at a given interval is assigned to 𝒁. The method requires an additional step of 

running all the scenarios in the beginning. This may seem time consuming but it helps improve 

overall computation time. 

 𝑍𝑖,𝑡 ∶= ⌈∑𝑃𝑟𝑠 ∙ 𝐼𝑖,𝑡
𝑠

𝑠∈𝑆

⌋,    ∀𝑡 ∈ 𝑁𝑇, ∀𝑖 ∈ 𝑁𝐼 (4.33) 

 

Method 3: This is the method devised and used in the simulations conducted as part of this 

research. The initial implementable can be set to one of the scenarios' commitment decisions from 

the set of scenarios that are being evaluated. The scenario chosen to be the initial implementable 

is a scenario with the maximum number of online statuses of all the units among all the scenarios. 

If more than one scenario has the same number of the online status of all the units, choose the 

scenario with the lowest production cost. 

 𝒁 ∶= {𝒙 ∈ 𝑋 | ∀𝒚 ∈ 𝑋, 𝑓(𝒙) > 𝑓(𝒚)} (4.34) 

 

𝑤ℎ𝑒𝑟𝑒 𝑋 = {𝑰 | 𝑠 ∈ 𝑆} 

𝑓: 𝑆 → ℝ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠: 

𝑓(𝑠) ∶=∑∑𝐼𝑖,𝑡
𝑠

𝑁𝑇

𝑡=1

𝑁𝐼

𝑖=1

 

 

A comparison of the three methods are presented in Chapter 6 to further explain the importance of 

the initialization. 
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4.5.3. Comparison of PBGS vs Fast PBGS 

This section compares the results obtained through PBGS and Fast PBGS using Algorithm 1 

and Algorithm 2, respectively. Through proof two, it is established that the objective value 

obtained using Fast PBGS is the same as PBGS. Therefore, only the computation time taken to 

obtain the solution is compared.  

Plots showing the number of scenarios solved as the iteration progresses towards 

convergence are presented in this section to demonstrate how Fast PBGS saves computational 

time. It should be noted that in the PBGS algorithm, all scenarios are solved in every iteration.  

Overall, one can observe that after a few initial iterations, the number of scenarios solved is 

decreasing as the iteration progresses.  

 

4.5.3.1. RTS-96 System 

The scenario set RTS96-10-S1, discussed in section 4.4.3.1, is used in the comparison here. 

The comparison is shown in Table 4.5. While the final result and number of iterations to reach the 

convergence are the same for both PBGS and the Fast PBGS, the time taken to achieve the result 

for the latter is an average of 30% faster. 

Table 4.5 Comparison of PBGS with Fast PBGS - set RTS96-10-S1 

ρ  
Time in min 

% time gain 
PBGS Fast PBGS 

500 38 27 28% 

1,000 25 16 35% 

5,000 17 12 27% 

10,000 19 13 31% 
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Figure 4.4 shows the number of scenarios solved in each iteration for the RTS-96 System 

for various penalty factor. For the penalty factor 10000, in the first seven iterations all 10 scenarios 

are solved. In the next four iterations, 2 to 3 scenarios agree with the implementable and therefore 

these scenarios are skipped from solving. In the 12th iteration, all 10 scenarios are solved as the 

implementable changes.  Starting at the 15th iteration through the 27th, most of the scenarios are 

not solved. In the 28th iteration, 9 scenarios are solved. The implementable agrees with one 

scenario holding out from the 24th iteration and giving up in the 28th while forcing 9 scenarios 

agreeing with the implementable before. Figure 4.4 also shows the Fast PBGS results for other 

penalty factors. As was discussed in earlier, the higher the penalty factor the faster is the reduction 

in the number of scenarios solved per iteration. 
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Figure 4.4 Number of scenarios solved in each iteration for the RTS-96 System using Fast 

PBGS 
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4.5.3.2. The IEEE 118-bus System 

Like in section 4.4.3.2, the computational time between PBGS and Fast PBGS for both ten 

scenarios and 50 scenario sets is used. Table 4.6 shows the results for the IEEE 118-bus System, 

set IEEE118-10-S1. For this set, the time taken for Fast PBGS to obtain a solution is an average 

of about 19% less than PBGS for the IEEE 118-bus System. 

Table 4.6 Comparison of PBGS with Fast PBGS - set IEEE118-10-S1 

ρ 
Time in min 

% time gain 
PBGS Fast PBGS 

500 149 120 19% 

1,000 106 89 16% 

5,000 53 45 15% 

10,000 49 37 25% 

Computation comparison for set IEEE118-50-S0 is shown in Table 4.7. The computational 

time saved by Fast PBGS over PBGS is an average of 50%. The computational time saving is 

about 30% more than for the ten-scenario set. It appears that the more the scenarios, the more time 

saved. 

Table 4.7 Comparison of PBGS with Fast PBGS - set IEEE118-50-S0 

ρ 
Time in min 

% time gain 
PBGS Fast PBGS 

5,000 703 299 57% 

10,000 593 282 52% 

25,000 493 291 41% 

50,000 539 271 50% 

In Figure 4.5, for penalty factor 500 of the IEEE 118-bus, all scenarios are solved for the 

first 23 iterations, then the number of scenarios solved starts decreasing. Starting at the 39th 

iteration, only one iteration is solved except at the 43rd iteration where all ten scenarios are solved. 

Note that in the last iteration only one scenario is not solved. This tells that the implementable 

which was agreeing with nine scenarios has changed to agree with one which was not forcing all 

nine previously agreed scenarios to solve earlier. 
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Figure 4.5 Number of scenarios solved in each iteration for the IEEE 118-bus System using 

Fast PBGS 
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Figure 4.6 Number of scenarios solved in each iteration for the IEEE 118-bus System with 

50 Scenarios 
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Figure 4.6 shows the actual number of scenarios solved at each iteration for the IEEE 118-

bus System with 50 scenarios. With only a few first iterations, savings in time are observed, 

especially for the higher penalty factors.  

4.5.3.3. ERCOT-like Large System 

Finally, Table 4.8 shows the results for the sizeable ERCOT-like System. The set, for this 

large system, the computational time saved by Fast PBGS over the PBGS is from 34% to 39%, 

with an average of around 36%. In section 4.4.3.3, there was a discussion on the practical 

implementation of PBGS in the real world for large systems. The research made significant 

improvements in reducing the computational time through Fast PBGS. Even if it is not practical 

for the real-world application due to market timeline constraints, Fast PBGS is attractive to 

evaluate the benefits of S-NCUC over NCUC. 

Table 4.8 Comparison of PBGS with the Fast PBGS - set ERCOT-30-S1 

ρ  
Time in min 

% time gain 
PBGS Fast PBGS 

5,000 5955 3921 34% 

10,000 5584 3444 38% 

50,000 3251 1981 39% 

 

 

In Figure 4.6, the number of scenarios solved over iterations are shown for the ERCOT-

like large system. This system uses 30 scenarios. Compared to the other two systems, significant 

time is saved here, which could be attributed to the larger number of scenarios than that has been 

used in the other two systems. 
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Figure 4.7 Number of scenarios solved in each iteration for the ERCOT-like large System 

using Fast PBGS 

 

 Comparing Figures 4.6 and 4.7 with Figures 4.4 and 4.5 (a smaller number of scenarios), 

one can observe that the higher the number of scenarios, the more time saved. It is evident from 

the above figures how the Fast PBGS saves time. This saving in computational time is a significant 

improvement over PBGS. 
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4.6. Summary 

This chapter started with a discussion on the decomposition of the S-NCUC problem is 

discussed. The application of augmented Lagrangian in decomposing and solving individual 

problems is presented. In doing so, the difference between proximal Lagrangian and sharp 

Lagrangian was explained. It has been shown that sharp Lagrangian could reach the ‘dents’ where 

proximal Lagrangian is unable to do so. Reaching the ‘dent’ could achieve the zero-duality gap. 

The PBGS is applied to solve the S-NCUC problem through a detailed discussion of the different 

components of the algorithm. The discussion emphasized obtaining a primal solution that 

eliminates other processes that would have been needed to recover an implementable solution. A 

proof of convergence of the PBGS algorithm was given as well. Results for all three systems were 

presented. The system that was not solvable using EF in Chapter 3 was solved using the 

decomposition technique. However, the solution obtained for the ERCOT-like Large System is yet 

to be evaluated and will be discussed in the next chapter. To gain the computational efficiency of 

the PBGS algorithm, certain scenarios that meet specific criteria are not solved in any given 

iteration. Mathematical proof of this improvement of PBGS, which is called Fast PBGS, is 

provided. This chapter compared Fast PBGS solution with PBGS solution showing average time 

saving of 35% for ERCOT-like Large System and 50% for IEEE 118-bus System with 50 scenarios 

demonstrating advantages of the former.   
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5. Assessing S-NCUC Solution Quality 

As discussed in detail in the previous chapter, the PBGS algorithm used in solving S-

NCUC employs exact augmented Lagrangian. Since the S-NCUC is a non-convex problem due to 

binary values in the objective function, the solution obtained often is a local minimum. There could 

be more than one such local minima, and it is essential to evaluate the quality of the solution 

obtained using one of the lower-bound methods. Furthermore, it is vital to keep the computational 

cost of the lower-bound methods to a minimum while still thriving for the best lower-bound one 

can get. The Fast PBGS solution will be compared with one of the widely used scenario-wise 

decomposition methods, the PHA. This chapter includes a section for Out-of-Sample testing and 

parameter discussion each. 

5.1. Lower Bound and Other Methods 

Unlike other solution methods such as Benders decomposition method, the PBGS method 

does not rely on the bounds on the optimal production cost to form termination criteria. This lack 

of bounds makes us look into a method that needs to be solved separately in order to obtain a lower 

bound to assess the PBGS solution quality. Both lower-bound methods and primal methods are 

discussed here. The primal method is used for benchmarking the obtained PBGS solutions. 

5.2. Extensive Formulation (EF) 

This is a primal method discussed in detail in Chapter 3, the deterministic equivalent of the 

stochastic formulation. Extensive Formulation (EF) solves the stochastic problem with scenarios 

as one big single deterministic problem as formulated in (3.1) with constraints (3.2) – (3.7). Of 

course, if one can solve EF, there is no need for other algorithms such as PHA and PBGS. Since 

the computational time for EF formulation grows exponentially as the problem size increases, 

current off-the-shelf optimization applications cannot solve the S-NCUC, requiring decomposition 

techniques. As mentioned in Chapter 3, the large ERCOT-like System was not solvable by EF 

algorithm.  
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5.3. Relaxed Extensive Formulation (Re-EF) 

In this method the integrality constraint in S-NCUC is relaxed and solved to obtain lower 

bound. This is the same EF formulation except that linear programming (LP) is applied. The only 

difference is in (3.1)  

𝑰 ∈ {0,1}𝑁𝐼×𝑁𝑇×𝑆 will relax to 𝑰 ∈ {ℝ}𝑁𝐼×𝑁𝑇×𝑆 

    This Re-EF could work for an extensive system where EF formulation might fail. However, 

the lower bound obtained is not as good as, the lower bound obtained from other methods. This is 

expected behavior for such formulations that relaxes integrality constraints. This research 

formulated Re-EF for one system where simulation has been conducted. In Table 5.1, the 

difference calculated using Re-EF is shown. As can be seen, the difference is above 10%. This 

poor gap is not due to the sub-optimality of the PBGS. Instead, due to the poor lower bound of Re-

EF. This is evident from the fact that the difference calculated using EF is very little. 

Table 5.1 Comparison of Fast PBGS with Re-EF 

γ=1.0, β=1.1 
EF = $333,733 

EF Relaxed = $298,994 

𝜌, 𝜌 
Operating cost by 

Fast PBGS 
Diff. w.r.t. EF 

Diff. w.r.t. 

EF-Relaxed 

100 $333,990 0.08% 11.70% 

500 $334,313 0.17% 11.81% 

1,000 $334,362 0.19% 11.83% 

5,000 $337,156 1.03% 12.76% 

 

5.4. Progressive Hedging Algorithm (PHA) 

The PHA algorithm was briefly discussed in Chapter 2. First proposed by Rockafeller and 

Wets [51] to solve stochastic optimization problems involving continuous variables has been 

applied with limited success in problems involving integer variables. Gade et.al. have used this 

algorithm to obtain lower bounds in [55]. PHA is similar to PBGS except for the augmenting 
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function used in (4.2). PHA uses square of 𝑙2 norm as augmenting function. With this augmenting 

function and setting 𝛼 = 1 in (4.2), the PHA objective function is given as: 

 

Θ+(𝑰, 𝒑,𝝎, 𝝆) = 

𝑚𝑖𝑛∑𝑃𝑟𝑠

(

 
 
∑

[
 
 
 
 

∑

(

 
 𝑁𝐿𝑖 ∙ 𝐼𝑖,𝑡

𝑠 + 𝑆𝑈𝑖,𝑡 ∙ 𝐼𝑈𝑖,𝑡
𝑠 +∑(𝑝𝑑,𝑖,𝑡

𝑠 ∙ 𝐼𝐶𝑑,𝑖)

𝑁𝐺

𝑑=1

+

𝜔𝑖,𝑡
𝑠 ∙ (𝐼𝑖,𝑡

𝑠 − 𝑍𝑖,𝑡) +
𝜌

2
‖𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡‖2

2
 

)

 
 

𝑁𝐼

𝑖=1

𝑁𝑇

𝑡=1

𝑆

𝑠=1

+ (𝐴𝐿𝑡
𝑠 + 𝐿𝐿𝑡

𝑠) ∙ 𝑉𝑂𝐿𝐿 +∑(𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )

𝑙∈𝐿

∙ 𝑉𝑂𝑂𝐵

]
 
 
 
 

)

 
 

 

(5.1) 

 

As mentioned in Chapter 3, ∑ 𝑃𝑟𝑠𝝎𝑠
𝑠∈𝑆 = 0 is enforced for the augmented Lagrangian 

function (4.1) to be bounded from below. The NAC defines a subspace 𝒩 and the optimality 

conditions require that the dual variable (𝝎) lie in the subspace of 𝒩⊥[51]. This requirement, 

∑ 𝑷𝒓𝑠𝝎𝑠
𝑠∈𝑆 = 0 is enforced by updating 𝝎 in every iteration of the PHA algorithm. This makes 

𝜔𝑖,𝑡
𝑠 ∙ 𝑍𝑖,𝑡 term in (5.1) vanish. Accounting this change, (5.1) is rewritten as (5.2). 

 

Θ+(𝑰, 𝒑,𝝎, 𝝆) = 

𝑚𝑖𝑛∑𝑃𝑟𝑠

(

 
 
∑

[
 
 
 
 

∑

(

 
 (𝑁𝐿𝑖 + 𝜔𝑖,𝑡

𝑠 ) ∙ 𝐼𝑖,𝑡
𝑠 + 𝑆𝑈𝑖,𝑡 ∙ 𝐼𝑈𝑖,𝑡

𝑠 +∑(𝑝𝑑,𝑖,𝑡
𝑠 ∙ 𝐼𝐶𝑑,𝑖)

𝑁𝐺

𝑑=1

+
𝜌

2
‖𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡‖2

2
 

)

 
 

𝑁𝐼

𝑖=1

𝑁𝑇

𝑡=1

𝑆

𝑠=1

+ (𝐴𝐿𝑡
𝑠 + 𝐿𝐿𝑡

𝑠) ∙ 𝑉𝑂𝐿𝐿 +∑(𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )

𝑙∈𝐿

∙ 𝑉𝑂𝑂𝐵

]
 
 
 
 

)

 
 
  

(5.2) 
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Writing (5.2) for each scenario: 

 

Θ+𝑠(𝑰𝒔, 𝒑𝒔, 𝝎𝒔, 𝝆𝒔) = 

𝑚𝑖𝑛∑

[
 
 
 
 

∑

(

 
 (𝑁𝐿𝑖 + 𝜔𝑖,𝑡

𝑠 ) ∙ 𝐼𝑖,𝑡
𝑠 + 𝑆𝑈𝑖,𝑡 ∙ 𝐼𝑈𝑖,𝑡

𝑠 +∑(𝑝𝑑,𝑖,𝑡
𝑠 ∙ 𝐼𝐶𝑑,𝑖)

𝑁𝐺

𝑑=1

+
𝜌

2
‖𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡‖2

2
 

)

 
 

𝑁𝐼

𝑖=1

𝑁𝑇

𝑡=1

+ (𝐴𝐿𝑡
𝑠 + 𝐿𝐿𝑡

𝑠) ∙ 𝑉𝑂𝐿𝐿 +∑(𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )

𝑙∈𝐿

∙ 𝑉𝑂𝑂𝐵

]
 
 
 
 

  

(5.3) 

 

The implementable is updated as follows 

 𝑍𝑖,𝑡 ∶= ∑ 𝑃𝑟𝑠 ∙

∀𝑠∈𝑆

𝐼𝑖,𝑡
𝑠          ∀ 𝑖 ∈ 𝑁𝐼, ∀ 𝑡 ∈ 𝑁𝑇  (5.4) 

The dual variable 𝝎 is updated in the k+1th iteration as shown below. 

  𝝎𝑖,𝑡
𝑠,𝑘+1 ≔ 𝝎𝑖,𝑡

𝑠,𝑘 + 𝝆(𝑰𝑖,𝑡
𝑠,𝑘 − 𝒁𝑖,𝑡

𝑘 )             ∀ 𝑖 ∈ 𝑁𝐼, ∀ 𝑡 ∈ 𝑁𝑇, ∀𝑠 ∈ 𝑆  (5.5) 

The termination criteria is defined as 

  √∑𝑝𝑠‖𝐼𝑠
𝑘 − 𝒛𝑘‖

2

2

𝑠∈𝑆

 < 𝜖, 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒  (5.6) 

 

To calculate the lower bound, (5.3) is used without augmenting Lagrangian term (just 

Lagrangian) as shown below 
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Θ𝑠 = ∑[∑((𝑁𝐿𝑖 + 𝜔𝑖,𝑡
𝑠 ) ∙ 𝐼𝑖,𝑡

𝑠 + 𝑆𝑈𝑖,𝑡 ∙ 𝐼𝑈𝑖,𝑡
𝑠 +∑(𝑝𝑑,𝑖,𝑡

𝑠 ∙ 𝐼𝐶𝑑,𝑖)

𝑁𝐺

𝑑=1

)

𝑁𝐼

𝑖=1

𝑁𝑇

𝑡=1

+ (𝐴𝐿𝑡
𝑠 + 𝐿𝐿𝑡

𝑠) ∙ 𝑉𝑂𝐿𝐿 +∑(𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )

𝑙∈𝐿

∙ 𝑉𝑂𝑂𝐵]  

(5.7) 

 

The above problem can be solved for each scenario and the total cost is computed as follows: 

 𝜙 =  𝑚𝑖𝑛∑𝑃𝑟𝑠(Θ𝑠)

𝑆

𝑠=1

 (5.8) 

The complete algorithm used in calculating the lower bound using PHA is given in Algorithm 3 

below. 

Note that the 𝜙𝑘 calculated at each iteration 𝑘 in Step 14 of Algorithm 3 is a lower bound. So, one 

does not have to wait for convergence to occur in order to obtain the lower bound.  
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5.4.1. Comparison of Fast PBGS with PHA 

Since the scope of this research is restricted to the scenario-based decomposition methods, the 

comparison is also confined to the methods within this approach. In the literature, there exists a 

stage-wise decomposition approach, such as Benders decomposition. However, the stage-wise 

decomposition approach may eventually grow into a computationally intractable problem as the 

iteration progresses for the size of the problem considered in this dissertation. Therefore, the cross-

comparison between the scenario-based and stage-based decomposition methods is out of the 

scope of this research and can be systematically conducted in future work. 

5.4.2. The IEEE 118-bus System 

Figure 5.1 shows a comparison of the Fast PBGS with the PHA for the IEEE 118-bus System. 

The second y-axis is the percentage difference in the objective value per (5.1). A negative 

percentage difference indicates that the F-PBGS leads to a better solution in terms of the objective 

value, and vice versa. Table 5.2 shows the data values of Figure 5.1. 

The comparison between the Fast PBGS and PHA is carried out with five different ρ values 

ranging from 500 to 20,000. The Fast PBGS has one additional tuning parameter β that is used in 

the calculation of convergence accelerator α in (4.12). For each of these five ρ values, studies used 

two β values, i.e., 1.11 and 1.25. It is seen in Figure 6.1 when β is 1.25, the Fast PBGS solves 

faster than it does when β is set to 1.11, but with a slightly higher objective value. The difference 

in the solution time between the Fast PBGS and the PHA is much more apparent with a lower ρ. 

Overall, the Fast PBGS yields a much faster solution than the PHA. By using the Fast PBGS, an 

average of 42% and 61% saving in solution time with β values equal to 1.11 and 1.25, respectively, 

was recorded. 
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Figure 5.1 Comparison of Fast PBGS with PHA for the IEEE 118-bus System 

 

In Figure 5.1, all Fast PBGS simulations converge with zero violations. In contrast, none 

of the PHA solutions converges except for the case when ρ = 10000. The convergence tolerance ϵ 

for PHA is set to 0.01. At a lower ρ, a solution time limit of 180 minutes was set. At a higher ρ 

(i.e., 5000 and 20000), the PHA algorithm is terminated if no progress in violation is made for five 

consecutive iterations. Additionally, a terminated PHA algorithm requires rounding-off the 

fractional implementable values obtained, followed by Unit Commitment to ensure its primal 

feasibility. 

 

Table 5.2 Comparison of Fast PBGS with PHA for the IEEE 118-bus System 

 
EF Obj Value = $851,152 EF Time in min = 15 

 
ρ 500 1000 5000 10000 20000 

Objective 

Value 

PHA $884,333 $861,043 $852,711 $851,259 $854,895 

F-PBGS $851,149 $851,097 $851,366 $854,284 $854,284 

Time in min 
PHA 180 180 85 37 60 

F-PBGS 120 89 45 27 27 

 

In Figure 5.1, for a comparatively small ρ, i.e., when ρ=500 and 1000, the Fast PBGS 

outperforms the PHA by 2% to 4% in terms of the objective value, respectively. This difference is 
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attributed to the rounding of the PHA implementable values, resulting in overcommitment of 

generators. When ρ is increased, the difference in the objective values decreases. When ρ=10000, 

the PHA converges and no rounding is required. The PHA performs slightly, i.e., around 0.5%, 

better than the Fast PBGS. The above results in Figure 5.1 suggest that the significant improvement 

in computational efficiency makes the Fast PBGS a better choice than the PHA on the medium-

scale system.  

5.4.3. The ERCOT-Like System 

For the ERCOT-like large-scale system, the research set β = 1.11 and focus exclusively on the 

sensitivity studies with respect to ρ values. Comparative results between the Fast PBGS and the 

PHA are shown in Figure 5.2.  It is seen that the Fast PBGS outperformed the PHA in terms of the 

solution time, whereas the objective value of PHA is slightly better than that of the Fast PBGS in 

all three cases. The average execution time saved by the Fast PBGS is 50%, at an average cost 

increase of 0.48% in the objective value across the three cases. None of the PHA solutions 

converges. The closest is when ρ = 50000, the violation reaches 0.06 before it triggers the stopping 

criterion. Note that the convergence tolerance ϵ for PHA is set to 0.01. The PHA simulation is 

terminated if no progress in violation is made for five consecutive iterations. Additionally, a 

terminated PHA simulation requires rounding-off of the fractional implementable obtained, 

followed by UC to ensure its primal feasibility.  
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Figure 5.2 Comparison of Fast PBGS with PHA for the ERCOT-like System 

 

In contrast, these additional heuristics and steps are not needed at all for the Fast PBGS since 

its convergence is guaranteed and the solution obtained is directly feasible. It is worth mentioning 

that in the case study of this research no cyclic behaviors of the PHA were observed as reported in 

[105]. Therefore, the performance of the PHA may be illustrated on the high side if potential cyclic 

behaviors are considered. Furthermore, some heuristic enhancements, such as using a large MIP 

gap for initial iterations, initializing successive iterations from the previous solution, and using 

cost proportional penalty factors, can be applied to both the Fast PBGS and the PHA to further 

improve their computational efficiency [105]. The results in Figure 5.2 show that the significant 

improvement in computational efficiency also makes the Fast PBGS a better choice on the 

practically-sized large-scale system. 

5.5. Frank-Wolfe combined PHA (FW-PHA) 

5.5.1. FW-PHA Formulation 

If Step 10 step in Algorithm 3 can be modified to solve the problem over a convex hull 

𝐶𝑜𝑛𝑣(Λ𝑠) instead of Λ𝑠, then the PHA works for the SCUC problem and the dual solution 

converges to the optimal Lagrangian dual. However, the 𝐶𝑜𝑛𝑣(Λ𝑠) is not readily available. Boland 
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et.al. have used simplicial decomposition to create a convex hull which is used in finding the lower 

bound [56]. This FW-PHA was applied to find lower bound for S-NCUC in [57]. The simplicial 

decomposition [106] is a generalization of the Frank-Wolf algorithm [107] in higher dimensions. 

The convex hull created for each scenario (𝑽𝑠) consists of the decision variables of 

linearized problem Θ+𝑠. That is minimizing the gradient approximation to  Θ+𝑠 at the point 

(𝐼𝑖,𝑡
𝑠,𝑘−1, 𝑝𝑑,𝑖,𝑡

𝑠,𝑘−1, 𝐼𝑈𝑖,𝑡
𝑠 , 𝐼𝐷𝑖,𝑡

𝑠 ).  

 

∇Θ+𝑠(𝑰𝒔, 𝒑𝒔, 𝝎𝒔, 𝝆𝒔)|
(𝐼𝑖,𝑡, 𝑝𝑑.𝑖,𝑡,   𝐼𝑈𝑖,𝑡, 𝐼𝐷𝑖,𝑡)=(𝐼𝑖,𝑡

𝑠,𝑘−1,𝑝𝑑,𝑖,𝑡
𝑠,𝑘−1, 𝐼𝑈𝑖,𝑡

𝑠,𝑘−1, 𝐼𝐷𝑖,𝑡
𝑠,𝑘−1)

 

=

[
 
 
 
 
𝑁𝐿𝑖 + 𝜔𝑖,𝑡

𝑠 + 𝜌(𝐼𝑖,𝑡
𝑠 − 𝑍𝑖,𝑡)

𝐼𝐶𝑑,𝑖
𝑆𝑈𝑖,𝑡
𝑆𝐷𝑖,𝑡 ]

 
 
 
 

=

[
 
 
 
𝑁𝐿𝑖 + 𝜔̂𝑖,𝑡

𝑠

𝐼𝐶𝑑,𝑖
𝑆𝑈𝑖,𝑡
𝑆𝐷𝑖,𝑡 ]

 
 
 

          
(5.9) 

solved for ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑁𝑇, ∀𝑖 ∈ 𝑁𝐼 𝑎𝑛𝑑 ∀𝑑 ∈ 𝑁𝐺 . The resulting linearized problem is written 

as follows and solved as mixed integer linear program (MILP): 

 

Θ̂𝑠(𝑰̂𝑠, 𝒑̂𝑠, 𝑰𝑼̂𝑠, 𝑰𝑫̂𝑠)

=  ∑[∑((𝑁𝐿𝑖 + 𝜔̂𝑖,𝑡
𝑠 ) ∙ 𝐼𝑖,𝑡

𝑠 + 𝑆𝑈𝑖,𝑡 ∙ 𝐼𝑈𝑖,𝑡
𝑠 +∑(𝑝𝑑,𝑖,𝑡

𝑠 ∙ 𝐼𝐶𝑑,𝑖)

𝑁𝐺

𝑑=1

)

𝑁𝐼

𝑖=1

𝑁𝑇

𝑡=1

+ (𝐴𝐿𝑡
𝑠 + 𝐿𝐿𝑡

𝑠) ∙ 𝑉𝑂𝐿𝐿 +∑(𝐵𝑟𝑆𝑙1𝑙,𝑡
𝑠 + 𝐵𝑟𝑆𝑙2𝑙,𝑡

𝑠 )

𝑙∈𝐿

∙ 𝑉𝑂𝑂𝐵]  

(5.10) 
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Solution of this linearized problem Θ̂𝑠 is used in creating elements of set 𝑽𝑠  

▪ Unit Startup (𝑰𝑼̂𝑠) 

▪ Unit Shutdown (𝑰𝑫̂𝑠) 

▪ Unit Status (𝑰̂𝑠) 

▪ Block Dispatch (𝒑̂𝑠). 

 𝑽𝑠 = 𝑽𝑠 ∪ { (𝑰̂
𝑠, 𝒑̂𝑠, 𝑰𝑼̂𝑠, 𝑰𝑫̂𝑠)} (5.11) 

Solving the second problem as QP to obtain (𝑰𝒔, 𝒑𝒔, 𝑰𝑼𝑠, 𝑰𝑫𝑠) as follows: 

 {Θ+𝑠(𝑰𝒔, 𝒑𝒔, 𝝎𝒔, 𝝆𝒔) | (𝑰𝒔, 𝒑𝒔, 𝑰𝑼𝑠, 𝑰𝑫𝑠) ∈ 𝑐𝑜𝑛𝑣(𝑽𝑠)} (5.12) 

Note the constraint in the above problem. Instead of solving in the feasible region of Λ𝑠, this 

method solves in the convex hull of Λ𝑠. Problem (5.12) is accomplished by expressing 

(𝑰𝒔, 𝒑𝒔, 𝑰𝑼𝑠, 𝑰𝑫𝑠) as a convex combination of the finite set of points, 𝑽𝑠, where the weights 𝒂 ∈

ℝ|𝑽𝑠| in the convex combination are now decision variables too. In fact, it is the only decision 

variable. In practice this can be implemented as follows: 

 

(𝑰𝒔, 𝒑𝒔, 𝑰𝑼𝑠, 𝑰𝑫𝑠)

∈ argmin
𝐼,𝑝,𝑎

{
  
 

  
 

Θ+𝑠(𝑰𝒔, 𝒑𝒔, 𝝎𝒔, 𝝆𝒔) | 

(𝑰𝒔, 𝒑𝒔, 𝑰𝑼𝑠, 𝑰𝑫𝑠) = ∑ 𝑎(𝑰̂𝑠,𝑚, 𝒑̂𝑠,𝑚, 𝑰𝑼̂𝑠,𝑚, 𝑰𝑫̂𝑠,𝑚) 

(𝑰̂𝑠,𝑚,𝒑̂𝑠,𝑚,𝑰𝑼̂𝑠,𝑚,𝑰𝑫̂𝑠,𝑚)∈𝑽𝑠

,

∑ 𝑎𝑚 = 1

|𝑽𝑠|

𝑚=1

 𝑎𝑛𝑑 𝑎𝑚 ≥ 0, ∀𝑚
}
  
 

  
 

 
(5.13) 

Presenting all the discussions in this section on FW-PHA in a flowchart format would make things 

more transparent. The flowchart is shown below in Figure 5.3 
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Figure 5.3 Flowchart of combined Frank-Wolfe and PHA 
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5.5.2. FW-PHA Initialization 

Initialization of the convex set is important since the proposed FW-PHA method performs only 

one iteration of simplicial decomposition for each outer iteration. This requires that the initial 

scenario vertex sets share a common point. 

 

Figure 5.4 Initialization of convex hull for FW-PHA  

 

Figure 5.4 shows the initialization of the convex hull for the FW-PHA algorithm. First, 

problem (5.7) is solved (𝝎 = 𝟎) to obtain both first-stage and second-stage solutions for the first 

scenario. Then the rest of the scenarios are solved to get the second-stage decisions by fixing the 

first-stage unit commitment from the first scenario. The first-stage and second-stage solutions are 

used to initialize the inner approximation 𝑽𝑠, as shown in Figure 5.4. Both the implementable and 

the dual variables are calculated based on the above initialization. 
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5.5.3. FW-PHA with Warm Start  

In the discussion on FW-PHA initialization, it was mentioned that the initialization of all 

scenarios must share the same vertex to use one inner iteration only. This requirement can be 

fulfilled by using a converged PBGS solution. The converged PBGS solution is the one where the 

implementable is the same for all scenarios. This can save a significant amount of time and allows 

to obtain better lower bound within the first few iterations.  

 

 

Figure 5.5 Lower bound using normal start vs warm-start for the IEEE 118-bus System 

 

Figure 5.5 compares (normalized) FW-PHA lower bounds over iterations with normal and 

warm-starts on the IEEE-118 bus System. As seen, the normal-start lower bound improves as the 

iteration proceeds, whereas its warm-start counterpart is tighter and remain nearly unchanged over 

iterations. To save computational efforts, one can take the warm-start solution within the first few 

FW-PHA iterations as a lower bound on the PBGS solutions. 

5.5.4. Comparison FW-PHA with PHA Lower Bound 

FW-PHA was applied to determine lower bound for RTS-96 and the IEEE 118-bus 

Systems [57]. The results presented in this section are compared with lower bound obtained using 

PHA, which was explained in section 5.4 of this chapter. 

5.5.4.1. RTS-96 System 

The FW-PHA and PHA results for the set RTS96-10-S1 are show in the following figures. 

The major advantage of FW-PHA over PHA is sensitivity of the lower bound to the penalty factor 

𝜌. This is evident in the Figure 5.6, where the increased 𝜌 yields poor lower-bound. As the penalty 
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factor increases from 100 to 5,000, the lower bound obtained through the PHA dropped about 

16.6% from $331,350 to $276,336. For the same range of penalty factors, the lower bound in the 

FW-PHA remains approximately the same (only 0.84% change). 

 

 

Figure 5.6 Sensitivity of lower bound to ρ for RTS-96 System 

 

 

Figure 5.7 Lower bound over iterations for RTS-96 System 

 

Figure 5.7 shows the lower bound obtained over iteration using the PHA (dotted plot) and 

the FW-PHA (line plot). Dotted lines obtained from the PHA can be distinctively seen, while solid 

lines from the FW-PHA are close to each other at the top of this figure. The lower bound from the 

PHA tends to settle at different values depending on the chosen ρ whereas the lower bound from 
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the FW-PHA, regardless of ρ, settles near the same value. Note that Figure 4 shows the cyclic 

behavior for the PHA with ρ=1000 (red-dotted) and ρ=2000 (magenta-dotted), which is an inherent 

drawback of the PHA mentioned earlier. 

5.5.4.2. The IEEE 118-bus System 

Figure 5.8 compares the sensitivity of the lower bound to the penalty factors in both the 

PHA and the FW-PHA. The lower bound obtained in the IEEE 118-bus System demonstrates a 

similar sensitivity to that in the IEEE RTS-96 System. The percentage drop of lower bound for the 

penalty factor increasing from 100 to 5,000 is about 6.6% in the PHA, while it is negligibly small, 

i.e., 0.3% in the FW-PHA. 

 

 

Figure 5.8 Sensitivity of lower bound to ρ for RTS-96 System 

 

The lower bounds over iterations using the PHA (dotted plot) and the FW-PHA (line plot) 

are shown in Figure 5.9. This figure illustrates a similar trend to that in the modified IEEE RTS-

96 System. The lower bound from the FW-PHA converges to around the same value regardless of 

ρ, while the lower bound in the PHA tends to settle at different values depending on ρ. It is worth 

mentioning that for ρ=2,000 in the PHA, this is the only case when the solution met our strict 

termination criteria, i.e., 𝜖 = 0.001, while all other cases in Figure 5.9 were terminated at the 

maximum iterations. 
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Figure 5.9 Lower bound over iterations for the IEEE 118-bus System (IEEE118-10-S1) 

 

To illustrate the effectiveness of the proposed algorithm in a larger S-SCUC problem, a 

similar comparative case study is conducted on the IEEE 118-bus System with 50 scenarios under 

the same penalty factors as tested before. The lower bound versus iterations is shown in Figure 

5.10. The convergence characteristics are analogous to those observed with 10 scenarios.  

 

 

Figure 5.10 Lower bound over iterations for the IEEE 118-bus System (IEEE118-50-S0) 

 

 Through RTS-96 and the IEEE 118-bus Systems it has been demonstrated that FW-PHA 

lower bound is superior to that of PHA lower bound. 
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5.6. Evaluation of Fast PBGS results 

In this section, appraisal of the Fast PBGS result with the FW-PHA lower bound method 

is carried out. Like before, all three different systems are assessed in this section. 

5.6.1. RTS-96 System 

The Fast PBGS results of the set RTS96-10-S1 are shown in Table 5.3. The lower bound 

obtained using FW-PHA is used in assessing the Fast PBGS quality. As can be seen, the Gaps for 

the Fast PBGS results obtained are slightly more than 1% for all penalty factors except 10,000. 

The actual gap of Fast PBGS is no higher than the one calculated using FW-PHA. It could be less. 

 

Table 5.3 Assessment of Fast PBGS result using FW-PHA LB for RTS-96 System 

γ=1.0, β=1.1 FW-PHA= $330,598 

𝜌, 𝜌 
Operating cost by 

Fast PBGS 
Gap w.r.t. FW-PHA 

500 $330,990 1.03% 

1000 $334,313 1.12% 

5,000 $334,362 1.14% 

10,000 $337,156 1.98% 

 

5.6.2. The IEEE 118-bus System 

Table 5.4 shows the Fast PBGS results for the IEEE 118-bus System, set IEEE118-10-S1. 

Similar observation to RTS-96 in Table 5.3 can be made here. The calculated gap is around 1.5% 

and the actual gap could be less. Note that the FW-PHA lower bound result was obtained only few 

iterations into the solution. 
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Table 5.4 Assessment of Fast PBGS result using FW-PHA LB for the IEEE118-bus System 

γ=1.0, β=1.1 FW-PHA= $839,840 

𝜌, 𝜌 
Operating cost by 

Fast PBGS 
Gap w.r.t. FW-PHA 

500 $851,149 1.35% 

1000 $851,097 1.34% 

5,000 $851,366 1.37% 

10,000 $854,284 1.72% 

 

5.6.3. The ERCOT-Like System 

Table 5.5 shows the Fast PBGS results for the sizeable ERCOT-like System along with the 

gap calculated using FW-PHA lower bound. This gap calculated for the penalty factors 5,000 and 

10,000 show that the Fast PBGS solution obtained is close to perfect. 

  

Table 5.5 Assessment of Fast PBGS result using FW-PHA LB for the ERCOT-like System 

γ=1.0, β=1.1 FW-PHA = $35,356,211 

𝜌, 𝜌 
Operating cost by 

Fast PBGS 
Gap w.r.t. FW-PHA 

5,000 $35,444,677 0.25% 

10,000 $35,480,631 0.35% 

50,000 $35,880,952 1.48% 

 

Through three different systems, each with different penalty factors, it can be established 

that the FW-PHA can be used as an effective lower bound method to evaluate the Fast PBGS 

solution. 
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5.7. Out-of-Sample Testing  

For the current research, 25 sets (IEEE118-50-S1 through IEEE118-50-S25) of 50 

scenarios were created and solved by EF, Fast PBGS, and PHA. The ARMA was used with 4% 

STD for load and 8% STD for wind in creating these scenarios. The Fast PBGS simulations used 

an initialization method for the implementable is different from the previous simulations. This 

initialization method is discussed in section 4.5.2. For PHA, no heuristic-based improvements 

suggested in [105] were used. The Fast PBGS can use some of those techniques to improve 

computational performance as well. While all the Fast PBGS converged to zero violations, only 

10 out of 25 sets converged under PHA. The PHA termination criteria was set a little higher at 

𝜖 ≤ 0.1 or 60 iterations whichever comes first. Table 5.6 shows production cost obtained by the 

EF, PHA and Fast PBGS. The objective value differences between the PHA and Fast PBGS are 

calculated with respect to the EF. The table includes, statistical information at the bottom. 
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Table 5.6 Comparison of Fast PBGS objective value with EF and PHA for the IEEE 118-

bus System 
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Figure 5.11 Comparison of objective values for the IEEE 118-bus system 

 

Figure 5.11 shows the objective values of the three methods using the box-whiskers plot. As 

can be seen, the range of the objective values obtained by the Fast PBGS is almost the same as the 

range of the objective values obtained by the EF. There is an outlier that resulted in over 2% 

difference with EF. The mean difference is 0.92% with a standard deviation of 0.74% when 

compared with EF. The ‘x’ marker next to the median indicates the mean value. Both the median 

and mean difference of PHA are much higher than those of EF. The minimum value of PHA is 

almost at the 1st quartile of EF. Most of the 4th quartile of the PHA objective value is above the 

maximum value of the objective value obtained by EF. The average PHA difference with EF is 

2.18% with a standard deviation of 2.07%. Overall, the PHA objective values are higher than both 

EF and the Fast PBGS. Most of the higher objective values could be attributed to the non-



106 

convergence of PHA. Table 5.7 shows the computational time for EF, Fast PBGS and PHA. The 

comparison of the computational time for the Fast PBGS and PHA are made with EF. Statistical 

information is included at the bottom of the table. As can be seen the Fast PBGS outperforms both 

EF and the PHA. 

 

Table 5.7 Comparison of Fast PBGS computational time with EF and PHA for the IEEE 

118-bus System 
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Figure 5.12 Comparison of computational performance for the IEEE 118-bus system 

 

Figure 5.12 shows a comparison of the computational performance of the three methods. It is 

known that the computation time taken by the EF increases with an increased number of scenarios 

leading to the unsolvable situation. As shown in the figure, the Fast PBGS computational 

performance is far better than the PHA by several folds. The mean time taken to obtain the solution 

by the Fast PBGS is 135 minutes with a standard deviation of 58 minutes. Meanwhile, for the PHA 

algorithm, the mean is 661 minutes at a standard deviation of 123 minutes. Such a computational 

efficiency and comparable lower objective values shown here make the Fast PBGS a worthy 

alternative to the PHA. 
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5.8. Discussion on Parameters 

Fast PBGS uses the parameters 𝛽, 𝜌 and 𝛾. Though the research continues on the sensitivity of 

these parameters, the experience thus far is shared here. The parameter 𝛽 is used in (4.12) to 

accelerate the convergence. The research was experimented only with two values, 1.11 and 1.25. 

Results of the effect of 𝛽 is shown in Figure 5.1. Simulation results for the IEEE 118-bus System 

show a high value of 𝛽 makes the convergence faster at the cost of the solution quality. As the 

iteration number gets high, 𝛽 grows exponentially and makes the penalty function higher, which 

could result in loss of load or additional load slack. The situation is not actual and can be fixed by 

increasing the Value of Loss of Load (VOLL) to obtain a solution or increasing the value of 𝛼 

(4.12) only when needed instead of in every iteration. 

Simulations were carried out in the current research with a wide range of 𝜌 for both the IEEE 

118-bus System and the ERCOT-like System. Like 𝛽, a high value of 𝜌 makes the convergence 

faster at the cost of the solution quality. While 𝜌 is used in the initial penalty, the parameter 𝛾 (step 

size) is used in every iteration (4.9). Though the values assigned to both 𝜌 𝑎𝑛𝑑 𝛾 were the same 

for the results shown in this dissertation, few simulations were carried out with different 𝜌 𝑎𝑛𝑑 𝛾 

values. While large 𝜌 with smaller 𝛾 took more iterations to make any significant progress, smaller 

𝜌 value compared to 𝛾 did not make that much difference. The progress remained when setting 

both 𝜌 𝑎𝑛𝑑 𝛾 at the same value. More studies need to be conducted before any conclusive 

statements are made and will be taken up in the future. The suggested range for 𝜌 is 5,000 to 

50,000. For the step size 𝛾 is set equal to 𝜌. The acceleration factor 𝛽 can be set to 1.11 to 1.15.  

One other experiment was carried out in initializing the 𝒁 value. The algorithm in [101] 

suggests initializing 𝒁 = 𝟎 or using a rounded scenario weighted average of every status across 

the scenarios of the respective unit and hours. A new method as explained in Section 4.5.2 was 

used. This third method (4.34) initializes 𝒁 with the scenario containing a maximum number of 

online unit status. Thus far, with the experiments in the present research, it was observed that this 

method of initialization gives results faster than the first two methods. 
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5.9. Summary 

This chapter presents several methods that could be applied to measure the quality of the 

Fast PBGS solution. The methods included primal methods as well as lower-bound algorithms. 

The importance of measuring the solution quality of Fast PBGS was discussed as the algorithm 

does not use bounds to achieve convergence like Benders Decomposition, and applying the Fast 

PBGS to MIP such as S-NCUC often gives local minimums than the global one. Of those lower-

bound methods presented here, it was shown that the FW-PHA method is the one that gives the 

best lower bound for real-world applications. The FW-PHA solution time has been improved 

through warm starting with a converged Fast PBGS solution. Also, a comparison of Fast PBGS 

with PHA was made as PHA is one of the widely used scenario-wise decompositions. Finally, out-

of-sampling (OOS) tests were conducted on the IEEE 118-bus system. A total of 25 sets, each with 

50 scenarios, were used in the OOS tests.  Three different algorithms, EF, PHA, and Fast PBGS, 

were measured and compared. Comparisons on the quality of the objective value and the 

computational time were carried out and quantified. The comparative results with respect to EF 

(i.e., optimal solution) shows the Fast PBGS results are closer to that of the EF with an average 

difference of 0.92%, whereas the PHA solution with respect to the EF with an average difference 

of 2.18%. When it comes to the computational time, the Fast PBGS outperformed both EF and 

PHA. Specifically, the Fast PBGS took on average 48% of less time than EF to obtain a solution. 

Compared with PHA, the Fast PBGS was 142% faster. 
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6. Conclusions and Future Work 

The generation landscape of the utilities and the ISOs is changing in favor of VRE. This 

change brings uncertainties into the PSOP. One of the applications used in the PSOP is the UC 

(NCUC or SCUC). What used to be parameters have uncertainties in them now, therefore, needing 

changes to the application. After a brief discussion on a different solution to this problem, it was 

decided to research in the stochastic optimization area to make the research applicable to real-

world situations. First, we formulated the EF of the NCUC and conducted studies on three different 

systems with varying sizes. One of the systems included was the ERCOT-like Large System. We 

learned that we could not obtain a solution for this extensive complex system using EF. This 

prompted us to look into decomposition and found PHA and BD algorithms. Both these algorithms 

are already researched. BD algorithm would require significant effort to implement around an 

existing solution at the utilities and ISOs compared to the PHA. However, the PHA has drawbacks 

prompting the following question: 1) How can we devise an effective penalty function to obtain 

an exact solution with a zero-duality gap? and 2) If an exact solution is attained, how can we find 

a robust yet tight lower bound capable of measuring the quality of the exact solution accurately? 

An answer was found for the first question using the PBGS algorithm. Though a solution 

was obtained to the ERCOT-like Large System, the time taken to obtain such a solution prohibits 

from using it in the real world. This challenge steered the research to find a solution in Fast PBGS. 

The Fast PBGS is an improved version of the PBGS and saves an average of 35%–50% of the time 

compared to the PBGS. An answer to the second question was found in FW-PHA lower bound 

algorithm. The use of the warm-start technique improved the computation performance of FW-

PHA. 

To prove the reliability of the Fast PBGS algorithm, OOS was conducted on the IEEE 118-

bus system. A total of 25 sets, each with 50 scenarios, were generated and studied in the OOS 

using EF, PHA, and the Fast PBGS. A comparison of results obtained for these three algorithms 

shows that the Fast PBGS solution is very close to the EF than the PHA solution to the EF solution. 

In the performance comparison, the Fast PBGS outperforms both PHA and EF. 

Though goals set out was achieved, more improvements, especially in the computational 

performance area, are needed. Future research can be conducted in the following areas to improve 
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computational performance. 1) Improved UC formulation: Most time taken is in obtaining an 

NCUC solution. Time taken can be reduced by using improvements made in the problem 

formulation or other solution techniques in the research, such as the one in [77]; 2) PHA expediting 

techniques: Computation performance can be improved by using expediting techniques used in 

PHA [105]; 3) An optimal value for tunable parameters: More studies can be carried out with 

different tunable parameters to arrive at optimal values of these parameters that improve the 

performance; and 4) Parallel implementation of the Fast PBGS algorithm: The decomposition lets 

one solve the scenarios in parallel. Perhaps using the latest advancement in parallel implementation 

such as the one in [108]. In addition, machine learning can also be explored to obtain a solution 

without actually solving it. This remains an interesting topic deserving full investigation for other 

researchers in the future.   
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