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Abstract

In view of multivariate nature of general spatio-temporal data sets observed in various

disciplines such as meteorology, engineering and medical science, we are interested in gaining

some scientific insight into the underlying stochastic processes, which incorporate the com-

plex dependence structure among different variables at different locations over time. To this

end, this dissertation studies the methods and applications of the multivariate modelling,

simulation and missing value imputation of data sets in space and time under different

settings.

Chapter I, Space-time data sets are often multivariate and collected at monitored discrete

time lags, which are usually viewed as a component of time series in environmental science

and related areas. Valid and practical covariance models are needed to characterize geosta-

tistical formulations of these types of data sets in a wide range of applications. We propose

several classes of multivariate spatio-temporal functions to characterize underlying random

fields whose discrete temporal margins are some celebrated autoregressive and moving aver-

age (ARMA) models, and obtain sufficient and/or necessary conditions for them to be valid

covariance matrix functions. The possibility of taking advantage of well-established time

series and spatial statistics tools makes it relatively straightforward to identify and fit the

proposed models in practice. Finally, applications of the proposed multivariate covariance

matrix functions are illustrated on Kansas weather data in terms of co-kriging, compared

with some traditional space-time models for prediction.

Chapter II, We propose an efficient method for simulating multivariate spatio-temporal

data on a compact two-point homogeneous space with sphere as a special case. These large

scale global data sets are obtained based on truncating the series expansion of multivariate

spatio-temporal random fields on this space. The algorithm can be boiled down to sim-

ply simulate a uniformly distributed random vector on a sphere, on which the great circle



distance is defined. Multiple covariance models are compared to fit the simulated multivari-

ate space-time data including the model proposed in the Chapter I. The simulation studies

suggest some guideline for choosing appropriate models and parameterizations for different

multivariate data in space and time.

Chapter III, Motivated by dealing with incompleteness of energy data to study network

situational awareness, we proposed a spatial Gaussian process variational autoencoders (GP-

VAE) to impute the corrupted or missing information based on multivariate Gaussian pro-

cesses and Bayesian deep learning. The missing data is learned by projecting the multivariate

data space including both space and time into a lower dimensional latent space without miss-

ingness, where the low dimensional dynamics is modeled with vector Gaussian time series.

Model comparison has been made with traditional data imputation method in literature on

a simulated energy data set from smart meters, solar inverters, grid automation/SCADA

sensors and micro PMU on a geographical lattice over time.
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Chapter 1

Multivariate Modeling of Some

Datasets in Continuous Space and

Discrete time

1.1 Introduction

Studies in environmental science, meteorology, and geophysics and many other areas often

need to deal with multivariate type of data in space and time, such as studying the impact of

soil greenhouse gas fluxes on global warming potential, learning the temperature precipitation

relationships in climate change, etc. (see Gaspari and Cohn (1999), Sain et al. (2011),

Tebaldi and Lobell (2008), among others). Comparing with the irregular spatial locations

like whether stations, the temporal points are often collected in a much more evenly spaced

manner. It is of ever-increasing importance to efficiently model the complex dependence and

correlated structure exhibited in these datasets.

In this chapter, we focus on constructing valid covariance matrix structure that can inte-

grate marginal space and time information together for multivariate modeling of underlying

random fields. In spatial statistics literature, limited types of multivariate spatial models

incorporating time information can be found, while time plays an important role in most
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of environmental and geophysical processes. Reasonable geostatistical formulations captur-

ing the temporal information that fluctuates regularly over time can inevitably improve

understanding and analysis of these types of data. Traditionally, due to the computational

convenience and lacking of non-separable model, separable spatial-temporal model have been

popular by simply timing the purely spatial correlation function and purely temporal corre-

lation together to formulate the spatio-temporal covariance structure, in which space-time

interaction is ignored, even when space-time interaction plays an important role in most of

environmental and geophysical process. Until recently nonseparability of spatio-temporal

models have been emphasized and addressed. For example, Cressie and Huang (1999) pro-

vides a method to derive nonseparable, stationary univariate spatio-temporal covariance

functions, and other closely related generalizations for stationary or nonstationary cases are

developed by Ma (2003), Castruccio and Stein (2013), among others. Recently Wan et al.

(2021) and Xu et al. (2019) proposed several spatio-temporal model for particulate matter

and gaseous pollutants in Beijing, China. Medeiros et al. (2019) shows a novel way of mod-

eling the precipitation trend component by using an inflated gamma distribution of zeros.

However, most of these methods mainly focus on modelling in the continuous time scales.

In practice, most of the data are recorded in a discrete regular time lines, as opposed to

spatial domains distributed more randomly. In literature, there are some spatial models

with discrete temporal assumed, most of them are either based on spectrum for discrete-

time signals or stochastic differential equation (see, e.g. Ma (2003), Demel and Du (2015)).

There is no closed form for the covariance structure. In this work, we will give the explicit

expression for multivariate covariance matrix with discrete temporal domain. The discrete

temporal margins focused are some celebrated autoregressive and moving average (ARMA)

models, which are well-established and have been widely used for time series modeling. With

a wealth of knowledge in the data exploration of this ARMA processes, constructing a model

that takes advantage of this as well as well-studied spatial process is expected to enhance

analysis efficiently.

In addition, in modern scientific study, such as geosciences, environmental study, eco-

nomics, it is common to have a large number of variables observed simultaneously. They
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are often coherently related and it is believed that borrowing information from secondary

variables can improve the predication of primary variable, which shows scarceness in some

location. For simplicity, these spatial variables are often modelled separately, which means

cross correlations among variables are ignored. The critical step in this chapter is to con-

struct a multivariate spatial covariance structure which will not only capture the covariance

structure within each variable but also cross covariances between each variables to enhance

the prediction accuracy, so called co-kriging in spatial statistics. There have been effort

made towards multivariate spatial modeling, however, they are either in spatial only, con-

tinuous time or through Bayesian approach. Classical work includes Gneiting et al. (2010),

Sain and Cressie (2007). Recently Zhu et al. (2020) studies the application of multivariate

spatial autoregressive model on social network data. Multivariate Poisson lognormal spatial

model shows the improvement of model fits in predicting crash frequency for multi-vehicle

collision types Hosseinpour et al. (2018). Somayasa et al. (2021) established universal krig-

ing formula for multivariate spatial data observed over a second order stationary random

field. Krupskii and Genton (2019) proposed a new copula model for replicated multivari-

ate spatial data. Song et al. (2006) considered several Bayesian multivariate conditional

autoregressive spatial models for estimating the crash rates from different kinds of crashes.

Apanasovich et al. (2012) introduced a valid parametric family of cross-covariance functions

for multivariate spatial random fields where each component has a covariance function from

a well-celebrated Matérn class. We will try to make the marginal spatial modeling part

flexible to incorporate the interpretability of parameters of these existing spatial models in

the overall space-time models to ease model identification.

As we know, in global scale, large amount of data are always recorded in spherical co-

ordinates. The Euclidean distances and covariances can be easily distorted on the sphere

especially for large distances, hence the models that are dedicated to fit data on sphere can

critical in geophysical and atmospheric sciences. Recently, several spherical spatial models

have been developed. For instance, Gneiting (2013) reviews and develops characterizations

and constructions of isotropic positive definite functions on spheres, and they applied them

to provide rich parametric classes of such functions. Ma (2012) present the characterization

3



of the covariance matrix function of a Gaussian or second-order elliptically contoured vec-

tor random field on the sphere which is stationary, isotropic, and mean square continuous.

Du et al. (2013a) derive characterization of the continuous and isotropic variogram matrix

function on a sphere, in terms of an infinite sum of the products of positive definite matrices

and ultraspherical polynomials. Porcu et al. (2016) propose stationary covariance functions

for processes that evolve temporally over a sphere, as well as cross-covariance functions for

multivariate random fields defined over a sphere. Guella et al. (2018) study the strict pos-

itive definiteness of matrix-valued covariance functions associated to multivariate random

fields defined over dimensional spheres. Jeong et al. (2017) illustrate the realizations ob-

tained from Gaussian processes with different covariance structures and the use of isotropic

and nonstationary covariance models through deformations and geographical indicators for

global surface temperature data. Motivated by some techniques on models on spheres, we

will also extend our discrete multivariate spatial-temporal model into different spaces, en-

suring the validity of the covariance matrix functions on both Euclidean space and spherical

space.

We are aiming to build a type of multivariate spatio-temporal model that can combine

all the information of discrete time, Euclidean and/or Spherical space locations and other

highly correlated variables together. Now suppose we have an p-variate space-time random

field {Z(s, t) = (Z1(s, t), . . . .Zp(s, t))
′, s ∈ Sd or Rd, t ∈ Z}, Sd is the spherical shell of radius

1 and center at 0(d+1)×1 in Rd+1, with its covariance matrix function defined by:

C(s1, s2, t1, t2) =


C1,1(s1, s2, t1, t2) · · · C1,p(s1, s2, t1, t2)

...
. . .

...

Cp,1(s1, s2, t1, t2) · · · Cp,p(s1, s2, t1, t2)


where each

Ci,j(s1, s2, t1, t2) = Cov(Zi(s1, t1), Zj(s2, t2)),
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(i, j = 1, 2. . . p). Furthermore, Cov(Zi(s1, t), Zi(s2, t)) is the covariance function of {Zi(s, t), s ∈

Sd or Rd, t ∈ Z}, Cov(Zi(s1, t), Zj(s2, t)), i 6= j is the cross covariance function of {Zi(s, t), s ∈

Sd or Rd, t ∈ Z}, and {Zj(s, t), s ∈ Sd or Rd, t ∈ Z}. Stationary in both space and time if

E(Z(s; t)) is constant for all (s; t) and C(s0, s0 + s; t0, t0 + t) depends only on space lag s and

time lag t for all (s0; t0) ∈ S × T . We simply write C(s, t). Following Ma (2005), the spatial

margin of spatio-temporal covariance is defined as C(s1, s2, t, t) and the temporal margin in

a fixed location is given by C(s, s, t1, t2). In practical applications, analyzing multivariate

spatial temporal type of data often starts with marginal exploration, series and multivariate

spatial analysis. Time series models can reveal the characteristics of the data through time

and multivariate spatial data analysis is a good tool to utilizes information from correlated

variables in order to improve the estimation of all variables. Since there are lots of research

achievements in both topics, we can absorb those benefits of each method for conducting

model selection and fitting our own model.

The paper is organized as follows: In section 2 we proposed several classes of multivari-

ate spatial-temporal matrix functions whose discrete temporal margins are some celebrated

autoregressive and moving average (ARMA) models. We then generated necessary and suf-

ficient conditions for these matrix functions to be valid covariance functions which are more

convenient to utilize in the real data analysis. In section 3, the model will be extended to

include some autoregressive and moving average margins. Finally in section 4, we program

and fit proposed spatio-temporal model with moving average type of temporal margin to

the cleaned average weekly minimum and maximum temperature in Kansas to demonstrate

the application of the proposed model in terms of spatio-temporal prediction compared with

some classical spatio-temporal models.

1.2 Moving-average-type Temporal Margin

We start building the foundation of whole picture by exploring the covariance structure for

first order of moving average discrete temporal margin. It’s obvious that (1.1) is meets the

condition of MA(1) model at fixed location. This sturcture doesn’t require the stationary
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assumption. The difficulty of proving (1.1) is that it is a discrete space-time matrix function

varies in different time scale, comparing to simply proofing a matrix to be a valid covariance

matrix. Theorem 8 of Du and Ma (2011) provided some clues for the proof of theorem 1(See

Appendix A).

Theorem 1. Let G0(s1, s2) and G1(s1, s2), s1, s2 ∈ D, D ⊂ Rd or Sd, d ≥ 1 be p× p matrix

functions, and let G0(s1, s2) be symmetric, i.e., G0(s1, s2)′ = G0(s1, s2). Then the p × p

function

C(s1, s2; t) =



G0(s1, s2), t = 0,

G1(s1, s2), t = 1,

G1(s2, s1)′, t = −1,

0, t 6= 0,±1, t ∈ Z, s1, s2 ∈ D.

(1.1)

is a covariance matrix function on D × Z if and only if the following two conditions are

satisfied:

(i) G0(s1, s2) + G1(s1, s2) + G1(s2, s1)′ is a covariance matrix function on D,

(ii) G0(s1, s2)−G1(s1, s2)−G1(s2, s1)′ is a covariance matrix function on D.

Based on basic structure we built, now we are good to impose different kinds of spatial

covariance margin to expand the reasonable class of model. We merge the most commonly

used Matérn type of spatial margin into the model and then provide the full conditions

for the parameters. In the theorem 2, we will begin with the simple Matérn covariance

structure where all the α in M(h|v, α) are the same, i.e., (1.4) holds. By Cramér’s theorem,

a covariance matrix is valid for p = 2 if and only if f11(t) ≥ 0, f22(t) ≥ 0, |f12(t)|2 ≤

f11(t)f22(t), t = ||ω|| ≥ 0, where f11(t), f22(t), f12(t) = f21(t) are Fourier transforms of

C11, C22, C12 = C21, i.e., the four components in the 2 ∗ 2 matrix. Theorem 3 in Gneiting

et al. (2010) can provide us some conditions in different cases for (4) to be a valid covariance

matrix, which gives us the hint for proving the following theorem:

Theorem 2. Let v = (v1, v2, . . . , vp), α = (α1, α2), β = (β1, β2),be constant vectors. vk ≥

0, αk ≥ 0,−1/2 ≤ βk ≤ 1/2,and let vij = (vi + vj)/2, D ⊂ Rd. The sufficient condition for
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the p× p matrix function

C(h; t) =


cM(h|v, α1) + (1− c)M(h|v, α2), t = 0,

cM(h|v, α1)β1 + (1− c)M(h|v, α2)β2, t = ±1, h ∈ D

0, otherwise,

(1.2)

to be a correlation matrix function on D× Z is that the constant c satisfies

0 ≤ c ≤ 1. (1.3)

And if p ≤ 2, (1.3) is also necessary.

Where

M(h|v, α) = ((ρijm(h|vij, α))1≤i,j≤p, (1.4)

m(h|vij, α) = 21−vij

Γ(vij)
(αh)vijKvij(αh), i, j = 1, 2, ρij =

Γ(vi+
d
2

)
1
2

Γ(vi)
1
2

Γ(vj+
d
2

)
1
2

Γ(vj)
1
2

Γ(vij)

Γ(vij+
d
2

)
.

Where cv = π−d/2Γ(v+d/2)/Γ(v). The following theorem is under these two assumptions.

This theorem expands the simple Matérn covariance structure to a more complex one by

removing requirement of all α needs to be equal in M(h|v, α), i.e., (1.7).

Theorem 3. Let v = (v1, v2, v12),α = (α1, α2, α12), α′ = (α′1, α
′
2, α

′
12), β = (β1, β2) be

constant vectors. vk ≥ 0, αk ≥ 0, α′k ≥ 0,−1/2 ≤ βk ≤ 1/2, D ⊂ Rd or Sd. A sufficient and

necessary condition for the p× p matrix function, p ≤ 2

C(h; t) =


cM(h|v,α, ρ12) + (1− c)M(h|v,α′, ρ′12), t = 0,

cM(h|v,α, ρ12)β1 + (1− c)M(h|v,α′, ρ′12)β2, t = ±1, h ∈ D

0, otherwise,

(1.5)

to be a correlation matrix function on D× Z is that the constant c satisfies

inf
h≥0,D(h)>0

c2(1± 2β1)2H(h) + (1− c)2(1± 2β2)2H̃(h)

(1± 2β1)(1± 2β2)D(h)
≥ c(c− 1). (1.6)
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Where

M(h|v,α, ρ12) =

 m11(h|v1, α1) ρ12m12(h|v12, α12)

ρ12m12(h|v12, α12) m22(h|v2, α2)

 , (1.7)

mij(h|vk, αk) = 21−vk
Γ(vk)

(αkh)vkKvk(αkh), i, j = 1, 2, k = 1, 2, 12.

H(h) =
α2v1

1 α2v2
2 cv1cv2

(α2
1 + h2)v1+d/2(α2

2 + h2)v2+d/2
−

ρ2
12α

4v12
12 c2

v12

(α2
12 + h2)2v12+d

,

H̃(h) is defined like H(h) with αi replaced with α′i, i = 1, 2, 12 and

D(h) =
α2v1

1 α′2v22 cv1cv2
(α2

1 + h2)v1+d/2(α′22 + h2)v2+d/2
+

α′2v11 α2v2
2 cv1cv2

(α′21 + h2)v1+d/2(α2
2 + h2)v2+d/2

−
2ρ12ρ

′
12α

2v12
12 α′2v12

12 c2
v12

((α2
12 + h2)(α′212 + h2))v12+d/2

.

From Gneiting(2010), M(h|v, α, ρ12) is a valid covariance matrix if and only if

ρ2
12 ≤

cv1cv2

c2
v12

α2v1
1 α2v2

2

α2v1+2v2
12

inf
h≥0

(α2
12 + h2)v1+v2+d

(α2
1 + h2)v1+d/2(α2

2 + t2)v2+d/2
, (1.8)

ρ′212 ≤
cv1cv2

c2
v12

α′2v11 α′2v22

α′2v2+2v2
12

inf
h≥0

(α′212 + h2)v1+v2+d

(α′21 + h2)v1+d/2(α′22 + t2)v2+d/2
. (1.9)

We can show H(h) ≥ 0, H̃(h) ≥ 0, D(h) ≥ 0, when D(h) = 0, the inequality holed

automatically. The minimum of left hand side of inequality (1.8) can be equal to zero under

certain conditions, so the following corollary comes.

Corollary 3.1. The sufficient and necessary condition for (1.7) to be a correlation matrix

function can be reduced to 0 ≤ c ≤ 1 in the following cases:
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(a) When α12 ≤ min(α1, α2), α′12 ≤ min(α′1, α
′
2), v12 = v1+v2

2
,

ρ2
12 =

cv1cv2
c2
v12

(
α2

12

α1α2

)d, ρ′212 =
cv1cv2
c2
v12

(
α′212

α′1α
′
2

)d

(b) When α12 ≥ max(α1, α2), α′12 ≥ max(α′1, α
′
2), v12 = v1+v2

2
,

ρ2
12 =

cv1cv2
c2
v12

(
α1

α12

)2v1(
α2

α12

)2v2 , ρ′212 =
cv1cv2
c2
v12

(
α′1
α′12

)2v1(
α′2
α′12

)2v2

The proof of theorem 3 and Corollary 3.1 is deferred to the Appendix. As we know,

taking v = 1/2 in Matérn function can yield the exponential type of function, which can be

result in the following example:

Example 1. Let α, α′, ρ12, ρ′12 and βk(k = 1, 2) be assumed as in Theorem 3, and take

v1 = v2 = v12 = 1
2
, then the matrix function

C(h; t) =


cE(h|α, ρ12) + (1− c)E(h|α′, ρ′12), t = 0,

cE(h|α, ρ12)β1 + (1− c)E(h|α′, ρ′12)β2, t = ±1, h ∈ D

0, otherwise,

(1.10)

to be a stationary correlation matrix function on D × Z is that the constant c satisfies

inequality (1.6). Where

E(h|α, ρ12) =

 e11(h|α1) ρ12e12(h|α12)

ρ12e12(h|α12) e22(h|α2)

 .
eij(h|αk) = exp(−αkh), i, j = 1, 2, k = 1, 2, 12.
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1.3 ARMA type Temporal Margin

Last section we only consider spatial temporal covariance structure for MA(1) type of tempo-

ral margin. However, it’s not enough to catch up the complexity of real world environment in

this case, more complex temporal margin need to be taken into consider in the model. Thus,

in this section, we will extend our covariance matrix to more general cases: Autoregressive

and moving average temporal (ARMA) margin. The following model provides the sufficient

and necessary conditions for the valid spatial temporal covariance matrix with (ARMA) type

of temporal margins. Again, this theorem works for the uniform α in M(h|v, α).

Theorem 4. Let v = (v1, v2, v12), β = (β1, β2), be constant vectors. vk ≥ 0, αk ≥ 0,−1 ≤

βk ≤ 1, and let v12 = (v1 + v2)/2 , D ⊂ Rd or Sd. A sufficient condition for the p× p matrix

function

C(h; t) = cM(h|v, α1)β
|t|
1 + (1− c)M(h|v, α2)β

|t|
2 , t ∈ Z, h ∈ D (1.11)

to be a correlation matrix function on D× Z is that the constant c satisfies:

0 ≤ c ≤ 1. (1.12)

And if p ≤ 2, (1.12) is also necessary.

Where

M(h|v, α) = ((ρijm(h|vij, α))1≤i,j≤p, (1.13)

m(h|vk, α) = 21−vk
Γ(vk)

(αh)vkKvk(αh), i, j = 1, 2, k = 1, 2, 12, ρ12 =
Γ(v1+ d

2
)
1
2

Γ(v1)
1
2

Γ(v2+ d
2

)
1
2

Γ(v2)
1
2

Γ(v12)

Γ(v12+ d
2

)
.

Now, we can extend this theorem to various α in M(h|v, α):

Theorem 5. Let v = (v1, v2, v12),α = (α1, α2, α12), α′ = (α′1, α
′
2, α

′
12), β = (β1, β2) be

constant vectors. vk ≥ 0, αk ≥ 0, α′k ≥ 0,−1 ≤ βk ≤ 1, D ⊂ Rd or Sd. A sufficient and

necessary condition for p× p matrix function, p ≤ 2

C(h; t) = cM(h|v,α, ρ12)β
|t|
1 + (1− c)M(h|v,α′, ρ′12)β

|t|
2 , t ∈ Z, h ∈ D (1.14)
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to be a correlation matrix function on D× Z is that the constant c satisfies

inf
h≥0,D(h)>0

c2(β∗1)2H(h) + (1− c)2(β∗2)2H̃(h)

(β∗1)(β∗2)D(h)
≥ c(c− 1). (1.15)

Where

M(h|v,α, ρ12) =

 m11(h|v1, α1) ρ12m12(h|v12, α12)

ρ12m12(h|v12, α12) m22(h|v2, α2)

 ,
mij(h|vk, αk) = 21−vk

Γ(vk)
(αkh)vkKvk(αkh), β∗i =

1−β2
i

1+β2
i−2βicos(ω)

, i, j = 1, 2, k = 1, 2, 12

H(h) =
α2v1

1 α2v2
2 cv1cv2

(α2
1 + h2)v1+d/2(α2

2 + h2)v2+d/2
−

ρ2
12α

4v12
12 c2

v12

(α2
12 + h2)2v12+d

,

H̃(h) is defined like H(h), with αi replaced with α′i, i = 1, 2, 12.

D(h) =
α2v1

1 α′2v22 cv1cv2
(α2

1 + h2)v1+d/2(α′22 + h2)v2+d/2
+

α′2v11 α2v2
2 cv1cv2

(α′21 + h2)v1+d/2(α2
2 + h2)v2+d/2

−
2ρ12ρ

′
12α

2v12
12 α′2v12

12 c2
v12

((α2
12 + h2)(α′212 + h2))v12+d/2

.

Adding different αi in the model can provide us more specific spatial parameters to

capture the spatial trend preciously. Again, the condition of this theorem can be simplified

to several special cases:

Corollary 5.1. The sufficient and necessary condition of (1.14) to be a correlation matrix

function can be reduced to 0 ≤ c ≤ 1 in the following cases:

(a) When α12 ≤ min(α1, α2), α′12 ≤ min(α′1, α
′
2), v12 = v1+v2

2
,

ρ2
12 =

cv1cv2
c2
v12

(
α2

12

α1α2

)d, ρ′212 =
cv1cv2
c2
v12

(
α′212

α′1α
′
2

)d

11



(b) When α12 ≥ max(α1, α2), α′12 ≥ max(α′1, α
′
2), v12 = v1+v2

2
,

ρ2
12 =

cv1cv2
c2
v12

(
α1

α12

)2v1(
α2

α12

)2v2 , ρ′212 =
cv1cv2
c2
v12

(
α′1
α′12

)2v1(
α′2
α′12

)2v2

Proof of this Corollary is similar to Corollary 3.1. The temporal margin in both theorem

is C(0, t) = cI2,2β
|t|
1 + (1 − c)I2,2β

|t|
2 , t ∈ Z. This linear combination of correlation matrix

includes families of valid space-time correlation function with stationary AR(1), AR(2) and

ARMA(2,1) type of temporal margin. αk and νk , k = 1, 2, 12 can be viewed as the scaling

parameter and smoothness parameter for the spatial component. β1, β2 are the parameters

for time series component and c is balancing parameter in between space and time interaction.

When applying the proposed parametric models, we can use time series techniques to fit

time series for individual location developing ARMA order and starting values for β1, β2, and

c, so that the final parameter estimation can be achieved by maximum likelihood estimation,

or Cressie (2015) weighted least square estimation (see Eq. (22) of Gneiting (2002) and least

square estimation. For the spatial aspect we can use procedures in spatial statistics to

find starting values for αi and ρ, ρ′. For example, we can set the starting value as the fitted

parameters in the marginal spatial correlation and cross correlation at different time lag. We

can also take advantage of employing more commonly used time series knowledge, such as

ACF, PAC as well as likelihood-based criteria like AIC and BIC to determine the temporal

patterns and orders, since the temporal margin here can be first analyzed independently.

This step can provides an initial idea of what the marginal time series looks like for model

selection. However, the choice of appropriate models will eventually be justified by the

final space-time fitting criteria, which are often not quite sensitive to very mild difference of

marginal time series choices. The simplicity is also of concern in final model selection. Hence

the proposed models along with this stepwise estimation procedure is relatively convenient

for it’s convenience of splitting a complex problem into two simple steps. Our proposed

model presented can serve as an attempt in seeking of more straightforward approach to

studying multivariate spatial-temporal data where at each location the temporal process can

be modeled with some ARMA-type covariance structure. Also, The benefit of following these
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steps is that it can capture the whole multivariate MA(1) process by looking at marginally

trend. Since the spatial correlation structure is different for each variable at each time lag,

it’s better for us to fit the trend separately in different time lag in order to deterring the

more precise initial value. Then we can combine them together into the complete model and

fit the whole process again. Estimation for the data application in next section was done

using Cressie (2015) least squares and techniques introduced by Gneiting (2002). Expanding

these techniques to the general ARMA(p, q) would require careful expansion of the theorems

presented herein and the computation should still be manageable if Cressie weighted least

squares method is employed. We will consider more complex temporal margins in our future

work.

1.4 Data Example: Kansas Daily Temperature Data

This data set is sourced from National Oceanic and Atmospheric Administration(NOAA)

and 105 weather stations across Kansas. We pick up two highly correlated variables in our

real data application: The 8030 days of maximum temperature and minimum temperature

for 105 aggregated weather stations of the 105 counties in Kansas from January 1, 1990 to

December 31, 2011. We pre-process the data by taking weekly average for 8030 days and

results in 1144 weeks of average maximum temperature and minimum temperature then use

it as our raw dataset. The next step was model selection: We split the dataset into training

and testing data by using first 800 weeks in raw data, first fifteen years, of minimum and

maximum temperature as the training data and the 801 to 1144 weeks, last seven years, as

the testing data. We make data de-trending by computing mean of minimum and maximum

temperature for each week in training data and remove this weekly mean among all 1144

weeks. The ACF and CCF for de-trended minimum and maximum temperature for these

105 counties in first 800 weeks has been computed. Based on the time series plots of ACF

and CCF, we can see an approximately moving average one type of trend for both minimum

and maximum temperature, showing the reasonable use of space-time model with MA(1)

temporal margin. The figure 1.1 and 1.2 shows the ACF of four randomly selected stations
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for both maximum and minimum temperature.

Figure 1.1: ACFs of Maximum temperature in Kansas counties

Figure 1.2: ACFs of Minimum temperature in Kansas counties

Since the raw data including too many data points is too messy to display the spatial

trend in different time lag, we make data binning by using h = 4, δ = 2, which means we take
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the average of spatial correlation within each 4 kilometres of distance and then we remove all

the empty points. Based on the binned data, we use leas square method to fit the empirical

spacial correlation for minimum temperature, maximum temperature, cross correlation at

time lag 0 to find appropriate initial values for PMM and Separable model below.

Suggested by these exploratory analysis, an MA(1) type of temporal margin is reasonable

to choose. After incorporating the nugget effect in theorem 3, the proposed model is below,

which is called PMM model:(1− η1) 1

1 (1− η2)

 ◦ {cM(h|v,α, ρ12) + (1− c)M(h|v,α′, ρ′12)}

+

η11h=0 0

0 η21h=0

 , t = 0

(1− η1) 1

1 (1− η2)

 ◦ {cM(h|v,α, ρ12)β1 + (1− c)M(h|v,α′, ρ′12)β2}

+

η11h=0 0

0 η21h=0

 {cβ1 + (1− c)β2}, t = 1

0, otherwise.

Finally, the fitted and estimated parameter values are: η1 = 0.101395958, η2 = 0.128030019, α1 =

0.000025000, α′1 = 0.004088524, α2 = 0.003852290, α′2 = 0.000025000, α12 = 0.002867771, α′12 =

0.000100000, c = 0.525378193, β1 = 0.249596718β2 = 0.259122085, ρ12 = 0.696423223, ρ′12 =

0.652322061 and all of the vij are equal to 2.5.
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Next we use the traditional MA(1) space time separable model for comparison,

C(h; t) =


M(h|v,α), t = 0,

M(h|v,α)β, t = ±1, h ∈ D

0, otherwise,

(1.16)

M(h|v,α) =

 m11(h|v1, α1) ρ12m12(h|v12, α12)

ρ12m12(h|v12, α12) m22(h|v2, α2)

 ,
Where mij(h|vij, α) = 21−vij

Γ(vij)
(αh)vijKvij(αh), i = 1, 2; j = 1, 2.

After incorporating the nugget effect, the model comes to:

(1− η1) 1

1 (1− η2)

 ◦ {M(h|v,α)}

+

η11h=0 0

0 η21h=0

 , t = 0

(1− η1) 1

1 (1− η2)

 ◦ {cM(h|v,α)β}

+

η11h=0 0

0 η21h=0

 , t = 1

0, otherwise.

The fitted parameters upon least square method are: η1 = 0.135148323, η2 = 0.145652449, α1 =

0.002092260, α2 = 0.002293880, α12 = 0.001474033, β = 0.258625355, ρ12 = 0.649892569.

Also, we compared the performance of Cauchy’s separable model in continuous time from
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Gneiting et al. (2010) with nugget effect incorporated.

C(h; t) = {

(1− η1) 1

1 (1− η2)

 ◦M(h|v,α) +

η11h=0 0

0 η21h=0

} · {(1 + a|t|2α)−1}

Where t ∈ R, h ∈ D.

The figure 1.3 and 1.4 are the fitted PMM, separatable model and Cauchy’s separatable

model with time lag 0, 1, 2 for maximum, minimum temperature and cross space-time cor-

relation:

Figure 1.3: Empirical temperature space-time correlations and fitted models at time lag 0

in Kansas
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Figure 1.4: Empirical temperature space-time correlations and fitted models at time lag 1

in Kansas

Figure 1.5: Empirical temperature space-time correlations at time lag 2 in Kansas
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In addition, time series model is another commonly used traditional way to consider.

Since the traditional time series prediction in the R package cannot predict data with fixed

parameters, we built our own time series code by using the Innovations algorithm in Cressie

and Huang (1999) to perform the prediction. We fit the time series model in training data

for both maximum and minimum temperature at all 105 stations and made prediction in

testing data meaning that for each station, we fit the θ and σ for maximum temperature and

minimum temperature, which are the key parameters for moving average one type of time

series model.

Finally, the prediction has been performed in testing data and the root mean-square error

(RMSE) for each methods have been examined to evaluate the prediction performance of

the models. Table 1.1 and 1.2 gives the average RMSE, standard deviation over all counties

on maximum temperatures and minimum temperatures.

Measure PMM SEPARABLE CAUCHY TIME SERIES

AVG. RMSE 3.887092 3.901797 3.938303 3.914282

STD. DEV. 0.3810256 0.3795923 0.4256573 0.3911837

Low Count 100 1 0 4

Table 1.1: Kansas Maximum Temperature RMSE Statistics

Measure PMM SEPARABLE CAUCHY TIME SERIES

AVG. RMSE 2.944538 2.947995 2.982429 2.959063

STD. DEV. 0.5142587 0.507793 0.564688 0.5166872

Low Count 78 19 3 5

Table 1.2: Kansas Minimum Temperature RMSE Statistics

The Low Count gives the number of counties have the lowest average RMSE per model.

Although all the models have a similar average RMSE around 3.9 on maximum temperature

and 2.9 on minimum temperature, the proposed PMM model does have the lowest average
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RMSE, showing the best among all the models in prediction. The low count means the

number of counties with lowest RMSE per model. The PMM model has the largest number

of counties with the lowest RMSE. For maximum temperature, 100 out of 105 counties has

the smallest RMSE by using PMM model. About 80% of counties has the smallest RMSE by

using PMM model for minimum temperature. Based on this analysis, the proposed model

preforms much better than Gneiting’s models when the temporal margin of the space-time

process can be modeled with a MA(1) structure. It seems that incorporating the highly

correlated spatial correlation and discrete temporal margin does improve the predictability

of the model.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1. Under the assumptions (i) and (ii), we are going to verify that (1.1)

is a covariance matrix function on D × Z. Clearly, {C(s1, s2; t)}′ = C(s2, s1;−t), s1, s2 ∈

D, t ∈ Z. Thus, it suffices that the inequality

n∑
i=1

n∑
j=1

a′iC(si, sj; i− j)aj ≥ 0

or, equivalently,

n∑
i=1

a′iG0(si, si)ai +
n−1∑
i=1

{a′iG′1(si+1, si)ai+1 + a′i+1G1(si+1, si)ai} ≥ 0, (1.17)

holds for every positive integer n, any sk ∈ D, and any ak ∈ Rm.

Since G0(s1, s2)+G1(s1, s2)+G′1(s1, s2) is a covariance matrix function on D, its transpose

{G0(s1, s2)+G1(s1, s2)+G′1(s1, s2)}′ = G0(s1, s2)+G′1(s1, s2)+G1(s1, s2) equals G0(s2, s1)+

G1(s2, s1) + G′1(s2, s1), so that

G′1(s1, s2) + G1(s1, s2) = G1(s2, s1) + G′1(s2, s1), s1, s2 ∈ D.
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Notice that the matrix function 1
2
(C(s1, s2; t) + C′(s1, s2; t)) can be written as

1

2
(C(s1, s2; t) + C′(s1, s2; t))

=
G0(s1, s2) + G1(s1, s2) + G′1(s1, s2)

2
·



I, t = 0,

1
2
I, t = 1,

1
2
I, t = −1,

0, t = ±2,±3, . . . , s1, s2 ∈ D,

+
G0(s1, s2)−G1(s1, s2)−G′1(s1, s2)

2
·



I, t = 0,

−1
2
I, t = 1,

−1
2
I, t = −1,

0, t = ±2,±3, . . . , s1, s2 ∈ D.

This is a sum of two separable covariance matrix functions, and is thus a covariance matrix

function on D× Z. By Theorem 8 of Ma (2011), we obtain

0 ≤ 1

2

n∑
i=1

n∑
j=1

a′i{C(si, sj; i− j) + C′(si, sj; i− j)}aj

=
n∑
i=1

a′iG0(si, si)ai +
1

2

n−1∑
i=1

a′i{G′1(si+1, si) + G1(si+1, si)}ai+1

+
1

2

n−1∑
i=1

a′i+1{G1(si+1, si) + G′1(si+1, si)}ai

=
n∑
i=1

a′iG0(si, si)ai +
n−1∑
i=1

{a′iG′1(si+1, si)ai+1 + a′i+1G1(si+1, si)ai},

where the last equality follows from a′iG1(si+1, si)ai+1 = a′i+1G
′
1(si+1, si)}ai. Thus, inequality

(1.17) is derived. Conversely, suppose that (1.16) is a covariance matrix function on D× Z.

Then for arbitrary n locations and l integer time points at each location, we formulate nm

pairs si and tj = j, choose the corresponding vectors as the products aibj, i = 1, . . . , n, j =
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1, . . . , l, and obtain
n∑
i=1

n∑
i′=1

l∑
j=1

l∑
j′=1

bjbj′a
′
iC(si, si′ ; j − j′)ai′ ≥ 0,

or

n∑
i=1

n∑
i′=1

a′i

(
l∑

j=1

b2
jG0(si, si′) +

l−1∑
j=1

bjbj+1(G1(si, si′) + G′1(si′ , si))

)
ai′ ≥ 0. (1.18)

In particular, in (1.18) taking bj = 1, j = 1, . . . , l, and both sides dividing by l yields

n∑
i=1

n∑
i′=1

a′i

(
G0(si, si′) +

l − 1

l
(G1(si, si′) + G′1(si′ , si))

)
ai′ ≥ 0.

Letting l→∞ gives

n∑
i=1

n∑
i′=1

a′i(G0(si, si′) + G1(si, si′) + G′1(si′ , si))ai′ ≥ 0.

It implies that G0(s1, s2) + G1(s1, s2) + G′1(s2, s1) is a covariance matrix function on S, by

Theorem 8 of Ma (2011). Thus, condition (i) is confirmed.

Similarly, in order to confirm condition (ii), in (1.18) we take bj = (−1)j, j = 1, . . . , l,

divide both sides by l, and letting l→∞ gives

n∑
i=1

n∑
i′=1

a′iG0(si, si′)−G1(si, si′)−G′1(si′ , si))ai′ ≥ 0.

It implies that G0(s1, s2) −G1(s1, s2) −G′1(s2, s1) is a covariance matrix function on S, by

Theorem 8 of Ma (2011).

Appendix B: Proof of Theorem 2

Proof of Theorem 2. Following from Theorem 1, it is equivalent to show that the inequality

(1.3) is necessary and sufficient condition for G0(h)±G1(h)±G1(h)′ to be valid covariance
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matrix function on D with h = ||si − sj||. Under the scenario of this theorem,

G0(h)±G1(h)±G1(h)′ = cM(h|v, α1)(1±2β1)+(1−c)M(h|v, α2)(1±2β2), h ∈ D. (1.19)

For sufficiency, from the using the Theorem 2 in Ma (2012) , the sum of two positive defined

matrix is also a positive definable matrix. Since 0 ≤ c ≤ 1, −1
2
≤ βi ≤ 1

2
, i = 1, 2, (1.19) is a

positive definite matrix, thus, (1.1) is valid covariance matrix.

For necessity, consider the spectral density of Matérn class of function (see Eq.(32) of

stein(1999), the Fourier transforms of G0(h) + G1(h) + G1(h)′ and G0(h)−G1(h)−G1(h)′

are given by

F(h) =

 cν1f11(h) cν12ρ12f12(h)

cν12ρ12f21(h) cν2f22(h)

 ; G(h) =

 cν1g11(h) cν12ρ12g12(h)

cν12ρ12g21(h) cν2g22(h)


Where cν = π−d/2Γ(ν + d/2)/Γ(ν)

fij(h) = c(α1)vi+vj(h2 + α2
1)−

vi+vj
2
−d/2(1 + 2β1) + (1− c)αvi+vj2 (h2 + α2

2)−
vi+vj

2
−d/2(1 + 2β2)

and

gij(h) = c(α1)vi+vj(h2 + α2
1)−

vi+vj
2
−d/2(1− 2β1) + (1− c)αvi+vj2 (h2 + α2

2)−
vi+vj

2
−d/2(1− 2β2)

s ∈ D

respectively. Hence it is reduced to show that inequality (1.3) is necessary and sufficient

to F(h) and G(h) to be positive definite, which means f11(h) ≥ 0, f22(h) ≥ 0, g11(h) ≥ 0,

g22(h) ≥ 0 and

cv1cv2f11(h)f22(h)− c2
v12
ρ2

12f12(h)f21(h) ≥ 0 (1.20)

cv1cv2g11(h)g22(h)− c2
v12
ρ2

12g12(h)g21(h) ≥ 0 (1.21)
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by Cramér’s Theorem. From Theorem 2 in Demel and Juan (2012), we already know that

f11(h) ≥ 0 and, g11(h) ≥ 0 if and only if

{1− αd2(1− 2β1)

αd1(1− 2β2)
}−1 ≤ c ≤ {1− α2v1

2 (1 + 2β1)

α2v1
1 (1 + 2β2)

}−1. (1.22)

Also, f22(h) ≥ 0 and, g22(h) ≥ 0 if and only if

{1− αd2(1− 2β1)

αd1(1− 2β2)
}−1 ≤ c ≤ {1− α2v2

2 (1 + 2β1)

α2v2
1 (1 + 2β2)

}−1. (1.23)

Since 0 ≤ v1 ≤ v2, 0 ≤ α1 ≤ α2,−1/2 ≤ β1 ≤ β2 ≤ 1/2, fii ≥ 0 and gii ≥ 0, i = 1, 2, entail

{1− αd2(1− 2β1)

αd1(1− 2β2)
}−1 ≤ c ≤ {1− α2v2

2 (1 + 2β1)

α2v2
1 (1 + 2β2)

}−1. (1.24)

To evaluate (1.20) and (1.21), noting that cv1cv2 = c2
v12
ρ2

12 we expand the LHS of (1.20) and
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(1.21) with this positive factor removed.

cv1cv2(cα
2v1
1 (h2 + α2

1)−v1−d/2(1± 2β1) + (1− c)α2v1
2 (h2 + α2

2)−v1−d/2(1± 2β2))

· (cα2v2
1 (h2 + α2

1)−v2−d/2(1± 2β1) + (1− c)α2v2
2 (h2 + α2

2)−v2−d/2(1± 2β2))

− c2
v12
ρ2

12(cαv1+v2
1 (h2 + α2

1)−
v1+v2

2
−d/2(1± 2β1) + (1− c)αv1+v2

2 (h2 + α2
2)−

v1+v2
2
−d/2(1± 2β2))2

= c2α2v1+2v2
1 (h2 + α2

1)−v1−d/2(h2 + α2
1)−v2−d/2(1± 2β1)2

+ c(1− c)α2v2
1 α2v1

2 (h2 + α2
1)−v2−d/2(h2 + α2

2)−v1−d/2(1± 2β1)(1± 2β2)

+ c(1− c)α2v1
1 α2v2

2 (h2 + α2
1)−v1−d/2(h2 + α2

2)−v2−d/2(1± 2β1)(1± 2β2)

+ (1− c)2α2v1+2v2
2 (h2 + α2

2)−v1−d/2(h2 + α2
2)−v2−d/2(1± 2β2)2

− c2α2v1+2v2
1 (h2 + α2

1)−(v1+v2)−d(1± 2β1)2

− 2c(1− c)αv1+v2
1 αv1+v2

2 (h2 + α2
1)−(v1+v2)/2−d/2(h2 + α2

2)−(v1+v2)/2−d/2(1± 2β1)(1± 2β2)

− (1− c)2α2v1+2v2
2 (h2 + α2

2)−(v1+v2)−d(1± 2β2)2

= c(1− c){α2v2
1 α2v1

2 (h2 + α2
1)−v2−2/d(h2 + α2

2)−v1−2/d

+ α2v1
1 α2v2

2 (h2 + α2
1)−v1−2/d(h2 + α2

2)−v2−2/d

− 2αv1+v2
1 αv1+v2

2 (h2 + α2
2)−(v1+v2)/2−2/d(h2 + α2

2)−(v1+v2)/2−2/d}(1± 2β1)(1± 2β2)

= c(1− c){αv2−v11 αv1−v22 (h2 + α2
1)(v1−v2)/2(h2 + α2

2)(v2−v1)/2

+ αv1−v21 αv2−v12 (h2 + α2
1)(v2−v1)/2(h2 + α2

2)(v1−v2)/2 − 2}(1± 2β1)(1± 2β2)

= c(1− c){(α
2
1(h2 + α2

2)

α2
2(h2 + α2

1)
)(v2−v1)/2 + (

α2
2(h2 + α2

1)

α2
1(h2 + α2

2)
)(v2−v1)/2 − 2}(1± 2β1)(1± 2β2)

For the necessary part, with (1± 2β1)(1± 2β2) ≥ 0, letting h→ +∞ in (
α2
1(h2+α2

2)

α2
2(h2+α2

1)
)(v2−v1)/2 +

(
α2
2(h2+α2

1)

α2
1(h2+α2

2)
)(v2−v1)/2 − 2 yields (

α2
1

α2
2
)(v2−v1)/2 + (

α2
2

α2
1
)(v2−v1)/2 − 2, which is greater than zero, so

c ∈ (0, 1). Or if can be proved by summation of two positive definite matrix is also a positive
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definite matrix.

For the sufficient part, other than using the Theorem 2 in Ma (2012), we can work on

(
α2
1(h2+α2

2)

α2
2(h2+α2

1)
)(v2−v1)/2 + (

α2
2(h2+α2

1)

α2
1(h2+α2

2)
)(v2−v1)/2 ≥ 2, by using inequality a+ b ≥

√
2ab, so c ∈ (0, 1).

Because c ∈ (0, 1) is with in (3), finally, (1) is positive definite if and only if c ∈ (0, 1).

Appendix C: Proof of Theorem 3

Proof of Theorem 3.

If we let

G0(h) = cM(h|v,α, ρ12) + (1− c)M(h|v,α′, ρ′12)

G1(h) = cM(h|v,α, ρ12)β1 + (1− c)M(h|v,α′, ρ′12)β2

From Theorem 1, we only need to show G0(h)±2G1(h) is a valid covariance matrix function.

The Fourier transform of G0(h)± 2G1(h) is

f11(h) f12(h)

f21(h) f22(h)


Where

f11(h) = cσ2(h2 + α2
1)−v1−d/2 · Γ(v1 + d/2)α2v1

1

Γ(v1)πd/2
(1± 2β1)+

(1− c)σ2(h2 + α′21 )−v1−d/2 · Γ(v1 + d/2)α′2v11

Γ(v1)πd/2
(1± 2β2)
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f12(s) = cρ12σ
2(h2 + α2

12)−v12−d/2 · Γ(v12 + d/2)α2v12
12

Γ((v1 + v2)/2)πd/2
(1± 2β1)+

(1− c)ρ′12σ
2(h2 + α′212)−v12−d/2 · Γ((v1 + v2)/2 + d/2)α′2v1212

Γ((v1 + v2)/2)πd/2
(1± 2β2)

f21(h) = f12(h)

f22(h) = cσ2(h2 + α2
2)−v2−d/2 · Γ(v2 + d/2)α2v1

2

Γ(v2)πd/2
(1± 2β1)+

(1− c)σ2(h2 + α′22 )−v2−d/2 · Γ(v2 + d/2)α′2v12

Γ(v2)πd/2
(1± 2β2)

We need to show f11(h) ≥ 0, f22(h) ≥ 0,f11(h)f22(h)−f12(h)f21(h) ≥ 0, by Cramér’s theorem.

Let h1 = h2 + α2
1, h
′
1 = h2 + α′21 , h2 = h2 + α′22 , h

′
2 = h2 + α′22 , c(v) = π−d/2Γ(v + d/2)/Γ(v).
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Then

f11(h)f22(h)− f12(h)f21(h)

= c2h
−v1− d2
1 cv1α

2v1
1 (1± 2β1)h

−v2− d2
2 cv2α

2v2
2 (1± 2β1)

+ c(1− c)h−v1−
d
2

1 cv1α
2v1
1 (1± 2β1)h

′−v2− d2
2 cv2α

′2v2
2 (1± 2β2)

+ c(1− c)h′−v1−
d
2

1 cv1α
′2v1
1 (1± 2β2)h

−2v2− d2
2 cv2α

2v2
2 (1± 2β2)

+ (1− c)2h
′−v1−d/2
1 cv1α

′2v1
1 (1± 2β2)h

′−v2−d/2
2 cv2α

′2v2
2 (1± 2β2)

− c2ρ2
12h
−2v12−d
12 c2

v12
α4v12

12 (1± 2β1)2

− 2c(1− c)ρ12ρ
′
12h
−v12− d2
12 cv12α

2v12
12 (1± 2β1)h

′−v12− d2
12 cv12α

′2v12
12 (1± 2β2)

− (1− c)2ρ′212h
′−2v12−d
12 c2

v12
α′4v1212 (1± 2β2)2

= c2(1± 2β1)2(h
−v1− d2
1 h

−v2− d2
2 α2v1

1 α2v2
2 cv1cv2 − ρ2

12h
−2v12−d
12 α4v12

12 c2
v12

)

+ c(1− c)(1± 2β1)(1± 2β2)(h
−v1− d2
1 h

′−v2− d2
2 α2v1

1 α′2v22 cv1cv2 + h
′−v1−d/2
1 h

−v2−d/2
2 α′2v11 α2v2

2 cv1cv2

− 2ρ12ρ
′
12h
−v12− d2
12 h

′−v12− d2
12 α2v12

12 α′2v1212 c2
v12

)

+ (1− c)2(1± 2β2)2(h
′−v1−d/2
1 h

′−v2−d/2
2 α′2v11 α′2v22 cv1cv2 − ρ′212h

′−2v12−d
12 α′4v1212 c2

v12
) ≥ 0

Since

H(h) =
α2v1

1 α2v2
2 cv1cv2

(α2
1 + h2)v1+d/2(α2

2 + h2)v2+d/2
−

ρ2
12α

4v12
12 c2

v12

(α2
12 + h2)2v12+d

= h
−v1− d2
1 h

−v2− d2
2 α2v1

1 α2v2
2 cv1cv2 − ρ2

12h
−2v12−d
12 α4v12

12 c2
v12
.

H̃(h) is with order α replaced by α′, which is equal to

h
′−v1−d/2
1 h

′−v2−d/2
2 α′2v11 α′2v22 cv1cv2 − ρ′212h

′−2v12−d
12 α′4v1212 c2

v12
,
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D(h) =
α2v1

1 α′2v22 cv1cv2
(α2

1 + h2)v1+d/2(α′22 + h2)v2+d/2
+

α′2v11 α2v2
2 cv1cv2

(α′21 + h2)v1+d/2(α2
2 + h2)v2+d/2

−
2ρ12ρ

′
12α

2v12
12 α′2v12

12 c2
v12

((α2
12 + h2)(α′212 + h2))v12+d/2

.

= h
−v1− d2
1 h

′−v2− d2
2 α2v1

1 α′2v22 cv1cv2 + h
′−v1−d/2
1 h

−v2−d/2
2 α′2v11 α2v2

2 cv1cv2

− 2ρ12ρ
′
12h
−v12− d2
12 h

′−v12− d2
12 α2v12

12 α′2v1212 c2
v12
.

This inequality can be written as:

c2(1± 2β1)2H(h) + c(1− c)(1± 2β1)(1± 2β2)D(h) + (1− c)2(1± 2β2)2H̃(h) ≥ 0.

Where c satisfies inequality (14) to ensure f11(h) ≥ 0 and f22(h) ≥ 0, ρ12, ρ
′
12 satisfies

inequality (4) and (5) to ensure H(h) ≥ 0, H̃(h) ≥ 0.

To show D(h) ≥ 0: Since

H(h) =
α2v1

1 α2v2
2 cv1cv2

(α2
1 + h2)v1+d/2(α2

2 + h2)v2+d/2
−

ρ2
12α

4v12
12 c2

v12

(α2
12 + h2)2v12+d

≥ 0

H̃(h) =
α′2v11 α′2v22 cv1cv2

(α′21 + h2)v1+d/2(α′22 + h2)v2+d/2
−

ρ2
12α
′4v12
12 c2

v12

(α′212 + h2)2v12+d
≥ 0

By using a2 + b2 ≥ 2ab,

D(h) =
α2v1

1 α′2v22 cv1cv2
(α2

1 + h2)v1+d/2(α′22 + h2)v2+d/2
+

α′2v11 α2v2
2 cv1cv2

(α′21 + h2)v1+d/2(α2
2 + h2)v2+d/2

−
2ρ12ρ

′
12α

2v12
12 α′2v1212 c2

v12

((α2
12 + h2)(α′212 + h2))v12+d/2

≥ 2cv1cv2α
v1
1 α
′v1
1 αv22 α

′v2
2

(α2
1 + h2)v1/2+d/4(α′21 + h2)v1/2+d/4(α2

2 + h2)v2/2+d/4(α′22 + h2)v2/2+d/4

−
2ρ12ρ

′
12α

2v12
12 α′2v12

12 c2
v12

((α2
12 + h2)(α′212 + h2))v12+d/2

Since if a2 ≥ b2, a′2 ≥ b′2, then aa′ ≥ bb′, if a, a′, b, b′ are all greater than zero. Thus,

D(h) ≥ 0.
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D(h) = 0 when

(
1

α2
1 + h2

)v1+d/2(
1

α′22 + h2
)v2+d/2α2v1

1 α2v2
2 = (

1

α′21 + h2
)v1+d/2(

1

α2
2 + h2

)v2+d/2α′2v11 α2v2
2

When D(h) = 0, this inequality holds automatically, so the remaining part is to discuss the

case when D(h) > 0. We can conclude that

inf
h≥0,D(h)>0

c2(1± 2β1)2H(h) + (1− c)2(1± 2β2)2H̃(h)

(1± 2β1)(1± 2β2)D(h)
≥ c(c− 1) (1.25)

Appendix D: Proof of Corollary 3.1

Proof of Corollary 3.1.

For the necessary condition: The inequality (1.6) is:

inf
h≥0,D(h)>0

c2(1± 2β1)2H(h) + (1− c)2(1± 2β2)2H̃(h)

(1± 2β1)(1± 2β2)D(h)
≥ c(c− 1)

(a) When α12 ≤ min(α1, α2), α′12 ≤ min(α′1, α
′
2), v12 = v1+v2

2
, equality ρ2

12 =
cv1cv2
c2v12

(
α2
12

α1α2
)d,

ρ′212 =
cv1cv2
c2v12

(
α′212
α′1α

′
2
)dholds. The minimum zero of numerator will be attached when h = 0,

H(0) =
α2v1

1 α2v2
2 cv1cv2

(α2
1 + 02)v1+d/2(α2

2 + 02)v2+d/2
−

ρ2
12α

4v12
12 c2

v12

(α2
12 + 02)2v12+d

=
α2v1

1 α2v2
2 cv1cv2

(α2
1 + 02)v1+d/2(α2

2 + 02)v2+d/2
− cv1cv2

c2
v12

(
α′212

α′1α
′
2

)d
α4v12

12 c2
v12

(α2
12 + 02)2v12+d

= α−d1 α−d2 cv1cv2 − α−d1 α−d2 cv1cv2

= 0

Similarly, H̃(0) = 0. We can conclude LFS of inequality (1.6) is equal to zero, so 0 ≤ c ≤ 1.

(b) When α12 ≥ max(α1, α2), α′12 ≥ max(α′1, α
′
2),v12 = v1+v2

2
, equality ρ2

12 =
cv1cv2
c2v12

( α1

α12
)2v1( α2

α12
)2v2 ,

ρ′212 =
cv1cv2
c2v12

(
α′1
α′12

)2v1(
α′2
α′12

)2v2 holds, the minimum zero of numerator will be attached when
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h→∞,

H(∞)→ α2v1
1 α2v2

2 cv1cv2
(α2

1 + h2)v1+d/2(α2
2 + h2)v2+d/2

−
ρ2

12α
4v12
12 c2

v12

(α2
12 + h2)2v12+d

→ 0

Similarly, H̃(∞) = 0. We can conclude LFS of inequality (1.6) is equal to zero, so 0 ≤ c ≤ 1.

Appendix E: Proof of Theorem 4

The proof of sufficient is the same as Theorem 2. The necessary part is as follows. The

Fourier transform of (1.11) is equal to

F(h) =

 cν1f11(h) cν12ρ12f12(h)

cν12ρ12f21(h) cν2f22(h)


Where cν = π−d/2Γ(ν + d/2)/Γ(ν)

fij(h) = c(α1)vi+vj(h2 + α2
1)−

vi+vj
2
−d/2β∗1 + (1− c)αvi+vj2 (h2 + α2

2)−
vi+vj

2
−d/2β∗2

Hence it is reduced to show that 0 ≤ c ≤ 1 is necessary and sufficient to F(h) to be positive

definite, which means f11(h) ≥ 0, f22(h) ≥ 0, and

cv1cv2f11(h)f22(h)− c2
v12
ρ2

12f12(h)f21(h) ≥ 0 (1.26)

by Cramér’s Theorem. From Demel and Juan (2012), we already know that f11(h) ≥ 0 andif

and only if

{1− αd2(1− β1)(1 + β2)

αd1(1 + β1)(1− β2)
}−1 ≤ c ≤ {1− α2v1

2 (1 + β1)(1− β2)

α2v1
1 (1− β1)(1 + β2)

}−1. (1.27)
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Also, f22(h) ≥ 0 if and only if

{1− αd2(1− β1)(1 + β2)

αd1(1 + β1)(1− β2)
}−1 ≤ c ≤ {1− α2v2

2 (1 + β1)(1− β2)

α2v2
1 (1− β1)(1 + β2)

}−1. (1.28)

To evaluate (1.26), noting that cv1cv2 = c2
v12
ρ2

12 we expand the LHS of (1.26) with this positive

factor removed.

cv1cv2(cα
2v1
1 (h2 + α2

1)−v1−d/2β∗1 + (1− c)α2v1
2 (h2 + α2

2)−v1−d/2β∗2)

· (cα2v2
1 (h2 + α2

1)−v2−d/2β∗1 + (1− c)α2v2
2 (h2 + α2

2)−v2−d/2β∗2)

− c2
v12
ρ2

12(cαv1+v2
1 (h2 + α2

1)−
v1+v2

2
−d/2β∗1 + (1− c)αv1+v2

2 (h2 + α2
2)−

v1+v2
2
−d/2β∗2)2

Let fαv = (h2 + α2)−v−d/2α2v

= c2fα1v1fα1v2(β
∗
1)2 + c(1− c)fα1v2fα2v1β

∗
1β
∗
2 + c(1− c)fα1v1fα2v2β

∗
1β
∗
2 + (1− c)2fα2v1fα2v2(β

∗
2)2

− c2fα1v12fα1v12(β
∗
1)2 − 2c(1− c)fα1v12fα2v12β

∗
1β
∗
2 − (1− c)2fα2v12fα2v12(β

∗
2)2

= c(1− c){fα1v2fα2v1 + fα1v1fα2v2 − 2fα1v12fα2v12}β∗1β∗2

= c(1− c){αv2−v11 αv1−v22 (h2 + α2
1)(v1−v2)/2(h2 + α2

2)(v2−v1)/2

+ αv1−v21 αv2−v12 (h2 + α2
1)(v2−v1)/2(h2 + α2

2)(v1−v2)/2 − 2}β∗1β∗2

= c(1− c){(α
2
1(h2 + α2

2)

α2
2(h2 + α2

1)
)(v2−v1)/2 + (

α2
2(h2 + α2

1)

α2
1(h2 + α2

2)
)(v2−v1)/2 − 2}β∗1β∗2

For the necessary part, with β∗1β
∗
2 ≥ 0, fα1v12fα2v12 ≥ 0, letting h→ +∞ in (

α2
1(h2+α2

2)

α2
2(h2+α2

1)
)(v2−v1)/2+

(
α2
2(h2+α2

1)

α2
1(h2+α2

2)
)(v2−v1)/2 − 2 yields (

α2
1

α2
2
)(v2−v1)/2 + (

α2
2

α2
1
)(v2−v1)/2 − 2, which is greater than zero, so

c ∈ (0, 1). Or if can be proved by summation of two positive definite matrix is also a positive

definite matrix.
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For the sufficient part, other than using the Theorem 2 in Ma(2012), we can work on

(
α2
1(h2+α2

2)

α2
2(h2+α2

1)
)(v2−v1)/2 + (

α2
2(h2+α2

1)

α2
1(h2+α2

2)
)(v2−v1)/2 ≥ 2, by using inequality a+ b ≥

√
2ab, so c ∈ (0, 1).

Because c ∈ (0, 1) is with in (3), finally, (1) is positive definite if and only if c ∈ (0, 1).

Appendix F: Proof of Theorem 5

The Fourier transform of (1.14) is

f11(h) f12(h)

f21(h) f22(h)

 =

 cfα1v1β
∗
1 + (1− c)fα′1v1β

∗
2 cfα12v12β

∗
1ρ12 + (1− c)fα′12v12β

∗
2ρ
′
12

cfα12v12β
∗
1ρ12 + (1− c)fα′12v12β

∗
2ρ
′
12 cfα2v2β

∗
1 + (1− c)fα′2v2β

∗
2


Where

fαv = (h2 + α2)−v−d/2 · Γ(v + d/2)α2v

Γ(v)πd/2

We need to show f11(h) ≥ 0, f22(h) ≥ 0,f11(h)f22(h) − f12(h)f21(h) ≥ 0, by Cramér’s

theorem.
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Then

f11(h)f22(h)− f12(h)f21(h)

= c2fα1v1fα2v2(β
∗
1)2 + c(1− c)fα1v1fα′2v2β

∗
1β
∗
2 + c(1− c)fα′1v1fα2v2β

∗
1β
∗
2 + (1− c)2fα′1v1fα′2v2(β

∗
2)2

− c2ρ2
12f

2
α12v12

(β∗1)2 − 2c(1− c)ρ12ρ
′
12fα12v12fα′12v12β

∗
1β
∗
2 − (1− c)2ρ′212f

2
α′12v12

(β∗2)2

= c2(β∗1)2(fα1v1fα2v2 − f 2
α12v12

ρ2
12)

+ c(1− c)β∗1β∗2(fα1v1fα′2v2 + fα′1v1fα2v2 − 2ρ12ρ
′
12fα12v12fα′12v12)

+ (1− c)2(β∗2)2(fα′1v1fα′2v2 − f
2
α′12v12

ρ2
12) ≥ 0

This inequality can be written as:

c2(β∗1)2H(h) + c(1− c)β∗1β∗2D(h) + (1− c)2(β∗2)2H̃(h) ≥ 0.

Where c satisfies inequality (14) to ensure f11(h) ≥ 0 and f22(h) ≥ 0, ρ12, ρ
′
12 satisfies

inequality (4) and (5) to ensure H(h) ≥ 0, H̃(h) ≥ 0.

Since we already proved D(h) ≥ 0 and D(h) = 0 when

(
1

α2
1 + h2

)v1+d/2(
1

α′22 + h2
)v2+d/2α2v1

1 α2v2
2 = (

1

α′21 + h2
)v1+d/2(

1

α2
2 + h2

)v2+d/2α′2v11 α2v2
2

When D(h) = 0, this inequality holds automatically, so the remaining part is to discuss the

case when D(h) > 0. We can conclude that

inf
h≥0,D(h)>0

c2(β∗1)2H(h) + (1− c)2(β∗2)2H̃(h)

β∗1β
∗
2D(h)

≥ c(c− 1). (1.29)
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Chapter 2

Simulation of multivariate space-time

processes on a sphere

2.1 Introduction

With ever- growing collection of data in global scale in many fields, like geosciences, clima-

tology and oceanology, the statistical modeling and simulations of the underlying stochastic

processes on the surface of a sphere has drawn more and more attention. As noted in Jeong

and Jun (2015), the distortion using Euclidean distance in place of spherical distance is not

negligible when the spatial range of the data is large and the models originally defined on

Euclidean space are often not physically justifiable on spheres. To assess the performance of

certain inference or model on these types of data, simulation plays an important role in sta-

tistical analysis. This chapter will investigate an efficient method for simulation of isotropic

multivariate random fields in space and/or time on spheres.

There has been an abundant simulation algorithms for Gaussian random fields in Rd,

such as sequential Gaussian, Cholesky decomposition of the covariance matrix, Gibbs sam-

pling, autoregressive and moving average, circulant embedding, and discrete spectral meth-

ods (Chiles and Delfiner (2009)). However, to the best of our knowledge, there has limited

simulation method available for univariate or multivariate random fields on spheres or sphere
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and time. The method proposed in a recent paper by Lantuéjoul et al. (2019) only works

for the scalar case.

Covariance models on spheres has gain more and more interest to identify a suitable

spatial dependence structure for large scale data. Ma (2012) gives the characterization of

the covariance matrix function of a Gaussian or second-order elliptically contoured vector

random field on the sphere. Du et al. (2013a) derived characterization of the continuous and

isotropic variogram matrix function on a sphere, which is based on the infinite sum of the

products of positive definite matrices and ultra-spherical polynomials. Porcu et al. (2016)

proposed stationary covariance functions for processes that evolve temporally over a sphere,

as well as cross-covariance functions for multivariate random fields defined over a sphere.

This chapter we will mainly focus on proposing simulation methods of multivariate ran-

dom fields on a d-dimensional compact two-point homogeneous space Md, and Md×T. The

spatial domain Md is a compact Riemannian symmetric space of rank one and includes

sphere Sd, as a special case equipped with the geodesic distance θ(x1, x2). Then application

will be conducted on Sd,Sd × T and model comparison will be conducted among different

models on sphere via simulated data.

There is few investigation in the literature on isotropic vector random fields on Md or

time-varying isotropic vector random fields on Md×T, except for the particular case Md = Sd.

In the scalar case where m = 1, Gangolli (1967) extended Paul Lévy’s Brownian motion on Sd

to the Schoenberg-Lévy kernel on Md, and Askey and Bingham (1976) further studied some

isotropic Gaussian random fields on Md. See also Malyarenko (2004), Malyarenko (2012).

Studies on scalar and vector isotropic random fields on Sd may be found in Yadrenko and

Balakrishnan (1983), Yaglom (1987), Ma (2012, 2015b, 2016a-c, 2017a), Du et al. (2013b), Du

and Ma (2012), Cheng and Xiao (2016), Bingham and Symons (2019), Leonenko et al. (2018),

Lang and Schwab (2015), Creasey and Lang (2018) among others. Recently, Malyarenko

and Ma (2018) derive a general form of the covariance matrix function and present a series

representation for a vector random field that is isotropic and mean square continuous on Md

and stationary on T, and call for constructing parametric and semiparametric covariance

matrix models for theoretical developments and practical applications.
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In this chapter, we will use the following notations and definitions. Let’s consider the

m-variate spatio-temporal random field {Z(x, t),x ∈ Sd, t ∈ T}, where Sd is the spherical

shell of radius 1 and center at 0(d+1)×1 in Rd+1, i.e., Sd = {||x|| = 1,x ∈ Rd+1}, where ||x||

is the Euclidean norm of vector x ∈ Rd+1, T is either in R or Z is called a time varying

or time dependent random field on sphere. For any two points x1, x2 on Sd, their spherical

(angular, or geodesic) distance can be denoted by θ(x1, x2), while the Euclidean distance is

equal to ||x1 − x2||. Let x′1x2 be the inner product of x1, x2 then the spherical distance can

be represented by

θ(x1,x2) = arccos(x′1x2),x1,x2 ∈ Sd.

With this distance, any isometry between two pairs of points can be extended to an isometry

of Sd. A metric space with such a property is called two-point homogeneous. Besides

spheres, many projective spaces over different algebras can be concluded into such space

called manifold. We denote it by Md, where d is the topological dimension of the manifold.

When {Z(x, t),x ∈ Md, t ∈ T} has finite second-order moments, its mean function and

covariance matrix function are given by EZ(x, t) and

cov(Z(x1; t1),Z(x2; t2)) = E{(Z(x1; t1)− EZ(x2; t2))(Z(x2; t2)− EZ(x2; t2))′},x1,x2 ∈Md, t1, t2 ∈ T.

In the following sections, we will introduce an efficient method for simulation of isotropic

vector random fields on Md or Md×T to which the key theoretical background is supported

by the series representations of such random fields established by Malyarenko and Ma (2018),

Ma (2016a, 2016b, 2017), Li et al (2019).

2.2 Simulation of isotropic vector random fields on Md

Increasing number of models on Md requires efficient simulation methods on Md, as well as

Md×T. Just Md, As its remarkable feature, the series representation (1) in Malyarenko and
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Ma (2018) is an imitator of the covariance matrix function (2), and is useful for modelling and

simulation. Motivated by this feature, we propose a truncation simulation method, which

starts by choosing a relatively large n, and then approximates the random field by the mean

square error of this (n+ 1)-term truncation of the series representation (1) is closely related

to the decay of the series expansion (2) of the corresponding covariance matrix function

C(θ(x1,x2)). The value of n can be chosen by using cross validation in model prediction.

We will derive an upper bound of the mean square error.

As a comparison in the scalar case over Sd, our simulation method is simpler and more

efficient and straightforward than that proposed in Lang and Schwab (2015), which is based

on the series representation of an isotropic random field Z(x), x ∈ Sd in terms of spherical

harmonic. In this paper, simulation isotropic Gaussian random fields on the sphere are based

on the Karhunen–Loéve expansions with respect to the spherical harmonic functions and the

angular power spectrum.

This method is motivated by Malyarenko and Ma (2018), a method based on a series

representation of random fields on Md with d is assumed to be greater or equal than 1. In

other words, it can not only works for univariate random fields, but also multivariate one.

Suppose that {Vn : n ∈ N0} is a sequence of independent m-variate random vectors with

expectation equal to zero and covariance equal to a2
nIm. U is a random vector on Md which

is independent of Vn. {Bn : n ∈ N0} is a series of m ×m symmetric nonnegative definite

matrices and (B
1
2
n )2 = Bn. Im is a m×m identity matrix. P

(α,β)
n are the Jacobi polynomials

of degree n with a pair of parameters (α, β) and

an = (
Γ(β + 1)(2n+ α + β + 1)Γ(n+ α + β + 1)

Γ(α + β + 2)Γ(n+ β + 1)
)
1
2 , n ∈ N0.

If the series
∑∞

n=0 BnP
(α,β)
n (1) converges, a centred m-variate isotropic spatial random field

can be simulated under several conditions by using

Z(x) =
L∑
n=0

B
1
2
nVnP

(α,β)
n (cosρ(x,U)), x ∈Md, L ∈ L+. (2.1)
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with the covariance matrix function

cov(Z(x1),Z(x2)) =
∞∑
n=0

BnP
(α,β)
n (cosρ(x1,x2)), x1,x2 ∈Md. (2.2)

A key ingredient or building block is a random vector uniformly distributed on Md. Sim-

ulation of uniform distributions on other Md may be found in Kent et al. (2018). Another

important ingredient in (10) is a closed form of Bn. This can be derived from the series

expansion (2) of C(θ(x1,x2)), or, recursively from the cosine expansion of C(θ), with the

help of the recursive relationships among Jacobi polynomials Szeg (1939), Olver et al. (2010).

Bn as a sequence of m×m symmetric nonnegative definite matrices, will be the key to the

spatial correlation pattern of simulated data. Later, we will expand the ways of constructing

Bn to achieve more complicated data structures. Since Bn, Vn, Pn are now well defined and

feasible to realize, this theorem gives a key idea and general form of vector random field on

Md and Sd as well.

Unlike other simulation methods that can determine the spatial correlation of data struc-

ture before conducted, our series expansion method can easily avoid this defect. The sig-

nificance of our model lies in the fact that we can only get a slight hint about the spatial

correlation and cross correlation pattern between each simulated variables based on the

choice of parameters. This will be extremely meaningful in model comparison since if the

data structure has already been determined, the model with closet form will preform best so

that fair comparison will never achieve. Extensions will be made to more complicated cases

in the following section.

2.3 Simulation of Isotropic vector random fields on

Md × T with discrete ARMA margin

As spatial data always comes with temporal variation properties, especially in related studies

like astrophysics, geophysics, optics, etc. These studies shows the increasing demand of
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simulation focusing on time-varying isotropic vector random fields in Md × T especially on

Sd × T. Results on Md × T. Similarly, our simulation algorithm for an m-variate random

field on Sd × T is based on an (l + 1)-term truncation of its series representation, and an

upper bound of its mean square error will be derived based on Theorem 5 of Malyarenko

and Ma (2018), which expands the previous theorem onto Md × T.

Theorem 5 indicated that a m-variate random field

Z(x, t) =
∞∑
n=0

Vn(t)P (α,β)
n (cosρ(x,U)),x ∈Md, t ∈ T,

is isotropic and mean square continuous on Md, stationary on T with mean 0 and covariance

matrix function equal to

cov(ρ(x1,x2); t) =
∞∑
n=0

Bn(t)P (α,β)
n (cosρ(x1,x2)),x1,x2 ∈Md, t ∈ T. (2.3)

{Vn(t) : n ∈ N0} is a sequence of independent m-variate stationary stochastic process on T

with expectation equal to zero and covariance equal to a2
nB(t1− t2), n ∈ N0. Also, a random

vector U is uniformly distributed on Md and need to be independent with {Vn(t) : n ∈ N0}

and
∑∞

n=0 Bn(0)P
(α,β)
n (1) converges. The key difference here is Bn. Instead of simply defining

it as a m×m covariance matrix, temporal correlations can also be incorporated so that will

became a correlation matrix function. Multivariate spacial temporal correlated random field

could then be simulated. Variety types of structures can be flexibly taken by Bn, thereby,

this method can achieve the realisation of plenty types of spatial temporal correlated data.

Another difference is the covariance of Vn, instead of taking a2
nIm as the previous method,

it will also be controlled by Bn.

2.4 Proposition

Based on the theorem represented by Malyarenko and Ma (2018), we elaborate the series

representation of space-time process on spheres so in the following section, we will provide
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theorem at the special case with ARMA margins.

Theorem 6. Assume that Vn(t), t ∈ Z is a m-variate stationary stochastic process with

EVn = 0 and

cov(Vn(t1),Vn(t2)) =a2
nBn(t1 − t2).

Where

Bn(t1 − t2) =
1

n



(Σ + ΦΣΦ′)◦n, t1 − t2 = 0,

(ΦΣ)◦n, t1 − t2 = −1,

(ΣΦ′)◦n, t1 − t2 = 1,

0, t1 − t2 ± 2,±3, . . . ,

, n ∈ Z+. (2.4)

In particular, B0(t1 − t2) = B1(t1 − t2) for each fixed n = 1, 2... . The n-th Hadamard

power of a matrix B is denoted by B◦n. an = (2n+d−1
d−1

)
1
2 , n ∈ N0. Now suppose U is

a (d + 1) dimensional random vector uniformly distributed on Sd (d ≥ 2), and U and

Vn(t), t ∈ Z, n ∈ N0, are independent. P λ
n (x), n ∈ N0 are the Gegenbauer’s polynomials can

be defined through the recurrence formula:


P

(λ)
0 (x) ≡ 1,

P
(λ)
1 (x) = 2λx

P
(λ)
n (x) =

2(λ+n−1)xP
(λ)
n−1(x)−(2λ+n−1)P

(λ)
n−1(x)

n
, x ∈ R, n ≥ 2.

If
∑∞

n=0 Bn(0)P
( d−1

2
)

n (1) converges. then an m-variate random field

Z(x; t) =
L∑
n=0

Vn(t)P
( d−1

2
)

n (x′U), x ∈ Sd, t ∈ Z, L ∈ L+ (2.5)

is isotropic and mean square continuous on Sd , stationary on Z, and possesses mean and

covariance matrix function:
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C(θ; t) = B0(t) +
∞∑
n=1

Bn(t)P
( d−1

2
)

n (cosθ) θ ∈ [0, π], t ∈ Z, n ∈ Z+. (2.6)

The reason of n will goes from 0 to L, instead of infinity is that it is impossible for us to reach

infinity in the real world simulation. In this case, we propose a truncated simulation method

to utilize a finite, relatively large L such that
∑L

n=0 Bn(0)P
( d−1

2
)

n (1) almost converges.

In order to generate Z(x, t), the key part is to find appropriate Vn that meets all condi-

tions above. Bn then will be important to control the covariance structure of Vn(t). When

Bn equal to (2.9), it is just the covariance matrix function of an m-variate first order moving

average time series data with the structure: Z(t) = ε(t) + Φε(t − 1), where {ε(t), t ∈ Z} is

m-variate white noise with Eε(t) = 0 and var(ε(t)) = Σ. 1
n

in Bn(t1 − t2) structure is to

accelerate decay of Bn, so that converge speed will be increased.

This theorem gives a more concrete form to be easily utilize and interpret.

2.5 Simulation

Based on the previous theorem, we simulate m-variate random field on the unit sphere, which

allows a fair comparison on the performance of exiting space-time model and model proposed

by chapter 1. A bi-variate isotropic random field has been simulated for such comparison.

Thus, in this case, d = 2. Then

Bn(t1 − t2) =
1

n



([ σ1 σ12
σ21 σ2 ] + [ φ1 φ12

φ21 φ2
][ σ1 σ12
σ21 σ2 ][ φ1 φ21

φ12 φ2
])◦n, t1 − t2 = 0,

([ φ1 φ12
φ21 φ2

][ σ1 σ12
σ21 σ2 ])◦n, t1 − t2 = −1,

([ σ1 σ12
σ21 σ2 ][ φ1 φ21

φ12 φ2
])◦n, t1 − t2 = 1,

0, t1 − t2 = ±2,±3, . . . ,

(2.7)
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and the covariance matrix function then can be written as:

C(θ; t) = B0(t)+
∞∑
n=1

P
d−1
2

n (cosθ)
1

n



([ σ1 σ12
σ21 σ2 ] + [ φ1 φ12

φ21 φ2
][ σ1 σ12
σ21 σ2 ][ φ1 φ21

φ12 φ2
])◦n, t = 0,

([ φ1 φ12
φ21 φ2

][ σ1 σ12
σ21 σ2 ])◦n, t = −1,

([ σ1 σ12
σ21 σ2 ][ φ1 φ21

φ12 φ2
])◦n, t = 1,

0, t = ±2,±3, . . . ,

(2.8)

with B0(t) = B1(t). Σ is more related to the spatial marginal variability while Σ and φ

works together to affect the cross covariance between each variable. We randomly sample

200 locations on a unit sphere and compute corresponding two correlated variables in each

locations, denoted as y1, y2 through 200 time lags by using theorem 6. The training data set

is the two variables in first 160 time lags among all 200 locations and thus the testing data

set is the remaining last 40 time lags of data.

The same as data example in chapter 1, we first calculate and correlation and cross

correlation correlation of y1, y2 in the training data set with time lag 0 and 1 separately.

Then we bin the correlation and cross correlation by using h = 0.01, δ = 0.005. Since

simulation can just consider the ideal cases and avoid several disturbance, the nugget effect

doesn’t need to be take in to considered. We directly use theorem (3) and Separable model

in equation (15) to fit the correlation and cross correlation and perform Kriging. Moreover,

time series model also has been used for comparison. The average RMSE has been computed

in testing data for each locations through all methods.

As for the choice of L, as we know, the most suitable value range of n is depended on the

value of Bn(0) matrix and Bn(0) is depended on the choice of σ and φ. To achieve converge,

we need to make sure all the elements of B0(0) less than 1. The choice of L is depended on

the value of elements. When at least one elements is very close to 1, L need to be pretty

large, say, around 2000 is a good choice. When the elements are close to zero, L can be under

100. In most of cases, L could be between 80 and 200, varying from the value of elements.

From chapter 2 of Reinsel (2003), all eigenvalue of Φ, that is, all roots of λ from
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det{λI −Φ} = 0 need to be less than 1 in absolute value to meet the convertibility condi-

tion. Σ must be a positively defined matrix. Φ mainly controls the spatial and temporal

correlation between two variables. Therefore, the shape of correlation plot through distance

with different time lags will be mainly depended on the choose of Φ

Jeong and Jun (2015) indicated that the Matérn covariance model using the great circle

distance, which may not be positive definite on the surface of a sphere, unless the smoothness

parameter, ν, is ν ∈ (0, 0.5]. Thus, when ν in our fitted model is less than 0.5, we can directly

apply it on the sphere. But when ν > 0.5, a simple transaction between Euclidean distance

and spherical distance can be made to use the model on Euclidean space:

||x1 − x2|| = (2− 2x′1x2)
1
2 = (2− 2cosθ(x1,x2))

1
2 = 2sin(

θ(x1,x2)

2
),x1,x2 ∈ Sd.

In our simulation, most of the cases separable model and PMM model choose the smooth

parameter ν = 2.5, which is more suitable to fit the correlation patten of the simulated data,

so we reasonably made the distance transformation.

The following tables gives fitted results in different choose of n,Σ and Φ.
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2.5.1 Fix L ,Phi, change Sigma

Sigma Variable Criteria PMM SEP Time Series

σ1 = 0.6
y1

RMSE 1.6304 1.7206 1.7210

σ12 = 0.1 LOW COUNT 180 13 7

σ21 = 0.1
y2

RMSE 1.7985 1.8960 1.8873

σ2 = 0.6 LOW COUNT 193 7 0

σ1 = 0.6
y1

RMSE 1.4374 1.5535 1.5525

σ12 = 0.1 LOW COUNT 194 3 3

σ21 = 0.1
y2

RMSE 0.8568 0.8664 0.8647

σ2 = 0.2 LOW COUNT 81 56 63

σ1 = 0.2
y1

RMSE 0.8301 0.8365 0.8352

σ12 = 0.2 LOW COUNT 125 18 57

σ21 = 0.2
y2

RMSE 1.8374 1.9291 1.8405

σ2 = 0.6 LOW COUNT 87 19 94

σ1 = 0.5
y1

RMSE 1.4614 1.5470 1.5400

σ12 = 0.3 LOW COUNT 189 8 3

σ21 = 0.3
y2

RMSE 1.5797 1.6823 1.6657

σ2 = 0.5 LOW COUNT 200 0 0

σ1 = 0.2
y1

RMSE 0.6908 0.6908 0.6858

σ12 = 0.1 LOW COUNT 55 46 99

σ21 = 0.1
y2

RMSE 0.7718 0.7718 0.7630

σ2 = 0.2 LOW COUNT 49 25 126

Table 2.1: Simulation results for fixed L ,Phi, and changed Sigma
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This table 2.1 clearly shows a whole picture of simulation results for fixed L,Φ and different

value of Σ matrix with φ1 = φ2 = 0.6, φ12 = φ21 = 0.35, L = 120. When we change

σ1, σ2, σ12 or σ21 into a relevantly small number, PMM and SEP model will perform worse

than time series model. This is easy to understand since when we decrease these elements,

their summation and multiplication Bn(t) will also decrease, so that the spatial-temporal

correlation of y1, y2 and their cross correlation will be not so obvious. In this case, it’s

reasonable to understand why PMM and SEP model loose their advantage. The last line of

the table clearly confirmed our explanation. As is showed, all the elements in Σ matrix are

very small so that the result of PMM model becomes the worst one in the table.
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2.5.2 Fix Sigma, Phi, change L

L Variable Criteria PMM SEP Time Series

50

y1
RMSE 1.6285 1.6216 1.6116

LOW COUNT 2 74 124

y2
RMSE 1.4061 1.3929 1.3770

LOW COUNT 0 62 138

100

y1
RMSE 1.5744 1.5034 1.4906

LOW COUNT 43 53 104

y2
RMSE 1.6250 1.5839 1.5629

LOW COUNT 16 63 121

150

y1
RMSE 1.3706 1.3932 1.4006

LOW COUNT 157 15 28

y2
RMSE 1.4576 1.4823 1.4942

LOW COUNT 158 32 10

200

y1
RMSE 1.2650 1.2957 1.3135

LOW COUNT 151 32 17

y2
RMSE 1.2708 1.3167 1.3306

LOW COUNT 188 0 12

Table 2.2: Simulation results for fixed Sigma, Phi, and changed L

In this table we fix φ1 = φ2 = 0.4, φ12 = φ21 = 0.3, σ1 = σ2 = 0.4, σ12 = σ21 = 0.3 and

change the L. The result is pretty clear based on this table 2.2. The preform of models

goes better and better as L increases. When L is relevantly small, spatial-temporal mod-

els, especially PMM doesn’t works better than other time series model. That’s because∑L
n=0 Bn(0)P

( d−1
2

)
n (1) couldn’t be converged based on small L so that the spatial temporal
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pattern won’t be obvious too, which means PMM cannot take advantage of these two infor-

mation and get ideal results. Also, the performance of other two models can be explained

under this reason. Since time series model only based on temporal information, as spatial-

temporal structure become more and more clear, it will loose the advantage to beat PMM

model.

2.5.3 Fix Sigma, L, change Phi

Phi Variable Criteria PMM SEP Time Series

φ1 = 0.7
y1

RMSE 1.2216 1.2531 1.2495

φ12 = 0.1 LOW COUNT 167 0 33

φ21 = 0.1
y2

RMSE 1.4739 1.4939 1.5022

φ2 = 0.7 LOW COUNT 133 0 67

φ1 = 0.6
y1

RMSE 1.2653 1.3177 1.3182

φ12 = 0.35 LOW COUNT 200 0 0

φ21 = 0.35
y2

RMSE 1.5150 1.5456 1.5636

φ2 = 0.6 LOW COUNT 172 14 14

φ1 = 0.4
y1

RMSE 1.2624 1.3003 1.3061

φ12 = 0.5 LOW COUNT 200 0 0

φ21 = 0.5
y2

RMSE 1.5006 1.5218 1.5464

φ2 = 0.4 LOW COUNT 177 23 0

φ1 = 0.2
y1

RMSE 1.0240 1.0281 1.0361

φ12 = 0.1 LOW COUNT 145 42 13

φ21 = 0.1
y2

RMSE 1.2280 1.2272 1.2529

φ2 = 0.2 LOW COUNT 85 0 115

Table 2.3: Simulation results for fixed Sigma, L, and changed Phi
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In table 2.3, we fix σ1 = σ2 = 0.5, σ12 = σ21 = 0.1 and L = 160, change the value of Φ

matrix. This table shows that in most of cases, PMM model performs much better than

Separable and time series model. With increasing value of Φ, the PMM performance will

became better and better. Figure 2.1 and 2.2 are the fitted correlation plots for one typical

simulation for PMM:

Figure 2.1: Empirical space-time correlations and fitted models at time lag 0 for simulated

data
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Figure 2.2: Empirical space-time correlations and fitted models at time lag 1 for simulated

data

Figure 2.3: Empirical space-time correlations at time lag 2 for simulated data

The maximum distance equals to 2 is because we transformed the great arch distance
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into the Euclidean distance, so the distance range changed from (0,π) to (0,2). These figures

show that the model fits the correlation well in all types of correlation and different time

lag.
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2.6 Appendix: Proof of theorem 1

We use Cauchy’s convergence test to proof theorem 1. The key will be using the convergent

assumption
∑∞

n=0 Bn(0)P
( d−1

2
)

n (1) to proof the mean square converge of the series at the right

hand of (2.5). For n1, n2 ∈ N, we have

E(

n1+n2∑
i=n1

Vi(t)P
( d−1

2
)

i (x′U)− E(

n1+n2∑
i=n1

Vi(t)P
( d−1

2
)

i (x′U))(

n1+n2∑
j=n1

Vj(t)P
( d−1

2
)

j (x′U)−

E(

n1+n2∑
j=n1

Vj(t)P
( d−1

2
)

j (x′U)))′

=E(

n1+n2∑
i=n1

Vi(t)P
( d−1

2
)

i (x′U)− 0)(

n1+n2∑
j=n1

Vj(t)P
( d−1

2
)

j (x′U)− 0)′

=E(

n1+n2∑
i=n1

n1+n2∑
j=n1

Vi(t)V
′
j(t)P

( d−1
2

)

i (x′U)P
( d−1

2
)

j (x′U))′

=

n1+n2∑
i=n1

n1+n2∑
j=n1

E(Vi(t)V
′
j(t))E(P

( d−1
2

)

i (x′U)P
( d−1

2
)

j (x′U))

=

n1+n2∑
i=n1

n1+n2∑
j=n1

E(Vi(t)− 0)(Vj(t)
′ − 0)E(P

( d−1
2

)

i (x′U)P
( d−1

2
)

j (x′U))

=

n1+n2∑
i=n1

a2
iBi(0)E(P

( d−1
2

)

i (x′U)P
( d−1

2
)

i (x′U))

=

n1+n2∑
i=n1

Bi(0)cov(aiP
( d−1

2
)

i (x′U), aiP
( d−1

2
)

i (x′U))

=wd

n1+n2∑
i=n1

Bi(0)P
( d−1

2
)

i (1)

→ 0, as n1, n2 →∞

where the third equality follows from the independent assumption between U and {Vn(t), t ∈

Z}, and the fourth one follows from lemma 3 of Malyarenko and Ma (2018). Applying Lemma
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3 we obtain the mean and covariance matrix functions of {Z(x; t),x ∈ Sd,x ∈ Z} with

EZ(x; t) =
∞∑
n=0

EVn(t)EP
( d−1

2
)

n (x′U) = 0, x ∈ Sd, t ∈ Z,

and

cov(Z(x1; t1),Z(x2; t2))

=cov(
∞∑
i=0

Vi(t1)P
( d−1

2
)

i (x′1U),
∞∑
j=0

Vj(t2)P
( d−1

2
)

j (x′2U))

=
∞∑
i=0

∞∑
j=0

E(Vi(t1)P
( d−1

2
)

i (x′1U)V′j(t2)P
( d−1

2
)

j (x′2U))

=
∞∑
i=0

∞∑
j=0

E(Vi(t1)V′j(t2))E(P
( d−1

2
)

i (x′1U)P
( d−1

2
)

j (x′2U))

=
∞∑
i=0

Bn(t1 − t2)× cov(anP
( d−1

2
)

n (x′1U), anP
( d−1

2
)

n (x′2U))

=
∞∑
i=0

Bn(t1 − t2)P
( d−1

2
)

n (cosθ(x1,x2)), x1,x2 ∈ Sd, t1, t2 ∈ Z.

The latter is obviously isotropic and continuous on Sd and stationary on Z. In particular,

Bn(t1 − t2) =
1

n



(Σ + ΦΣΦ′)◦n, t1 − t2 = 0,

(ΦΣ)◦n, t1 − t2 = −1,

(ΣΦ′)◦n, t1 − t2 = 1,

0, t1 − t2 ± 2,±3, . . . ,

, n ∈ Z+ (2.9)

Again, B0(t1 − t2) = B1(t1 − t2)

54



Chapter 3

Deep Probabilistic Space and Time

Imputation

3.1 Introduction

In electronics engineering, distribution system state estimation (DSSE) techniques infer the

states of the system based on the network model and measurements taken from it. Never-

theless, the distribution system often has a restricted number of measurement equipment,

especially for the medium and low voltage feeders which hides the development and use of

DSSE. In the recent years, there has been an increase in installing different measurement

sensors to improve monitoring the distribution system. For example, smart meters have

been developed to measure the distribution systems on the secondary side and usually, mea-

surements are taken every 15 minutes for customer’s invoicing purposes. Also, the use of

PMU (Phasor Measurement units) and SCADA (supervisory control and data acquisition)

has increased significantly nowadays. Aggregating measurements from those smart meters

as well as PMU and SCADA can significantly increase the information for the distribution

system.

Despite the collecting multiple sources of data is critical for developing and use of DSSE,

the main challenge faced by many researchers is how to aggregate this information. Un-
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fortunately, this poses several significant challenges (Gómez-Expósito et al. (2014)): First,

measurements from different sources have different sampling rates and are rarely in sync with

each other. For example, typically the PMUs and SCADA systems are collecting data with

range from each milli-seconds to minutes, while slow rate measures, such as smart meters

from primary feeders, collect data over 15 minutes or an hour a time. Second, due to commu-

nication network impairments, some of this data could be missing or corrupted. While some

of this data might be available to the utility directly, some may have to be accessed via the

cloud leading to added latencies. Those issues indicate that the key challenges to maintain

a reliable DSSE is to properly aggregate and resolve noisy, corrupted, heterogeneous, and

insufficient time series data.

Similar problems can be also found in other types of multivariate spatio-temporal data

measured from different time scales, for instance, medical data like patients’ heart rate, blood

pressure, etc. at different hospital are monitored at different unit of time. In environmental

science and agricultural research, variables such as yield, precipitation, and temperature

are frequently monitored at separate times and places and are rarely synchronized. Again,

information can be intermittent with missing values due to malfunctioning measurement

devices, partially observed states, pricey measurement products, or communication network

impairments.

Multivariate spatial temporal correlated data with multiple time scales gives rise to three

different ways of imputing missing information: Firstly, by using temporal correlations be-

tween each measurement. Secondly, by using exploiting the cross correlation between vari-

ables. In environment research, for instance, if a station’s temperature for a specific time

period is unrecorded, it might be informative if the precipitation at the time is higher, indi-

cating that the temperature decreased. Finally, the spatial correlation between each location

is extremely beneficial. Stations close to each other will have higher correlation than those

with greater distances. Stations that are close to each other will have a higher correlation

than those that are further apart.
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3.2 Motivations and related work

There are many studies focused on data imputation, however, approaches fall short with

respect to at least one of these desiderata. For example, classical methods like reconciling two

time-scale measurements using linear interpolation/extrapolation based on weighted least

squares approach (Gómez-Expósito et al. (2015)), classical time series imputation methods

(Little and Rubin (2002), Pedersen et al. (2017)), but they do not take the potentially

spatial-temporal interactions into account. While many statistical methods for multivariate

time series analysis like Gaussian processes (Roberts et al. (2013)) works well with complete

data in forecasting, these methods are generally inapplicable when there are missing values.

Madbhavi et al. (2021) used tensor completion to fill the missing data in tensors by exploring

the spatio-temporal correlation of the measurements, however, it ignored multi-time-scale

measurements.

While several recent non-linear works like variational autoencoders (Ainsworth et al.

(2018), Ma et al. (2018), Nazabal et al. (2020)) have investigated in missing value imputa-

tions, they have not utilized the essential time series correlations. There are several deep

generative model for missing value imputation that does account for the time series dynamics

like the GRUI-GAN (Luo et al. (2018)) and BRITS (Cao et al. (2018)) that uses recurrent

neural networks (RNNs). Fortuin et al. (2020) used deep variational autoencoders(VAE)

to map the missing time series data into a low dimensional space without messiness for

data imputation. However, all of these methods fail to consider spatial correlations among

locations.

Traditional statistical multivariate spatial-temporal Co-kriging for missing values meth-

ods are time consuming and have costly computational complexity, when the number of

variables increase. It has been challenging to model multivariate spatio-temporal processes

directly using a global covariance structure with lattice layout, which needs to be non-

negative definite matrix function across different variables at different time and space. Also,

the dimension is too large to be tractable for a reasonable output using analytical method.

Models will get even harder to parameterize and justify if nonstationary is more preferred.
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The multi-task Gaussian process frame-work methods proposed by Balasbramaniam

Natarajan and Shweta Dahale (2022) provides one way to incorporate the spatio-temporal

correlation as well as multiple time scales, however, it relies on choice of stationary covariance

kernel ignoring the correlation among different variables (tasks). Other existing statistical

or machine learning approaches either ignore temporal or spatial dynamics, and fall short in

giving reliable uncertainty estimates with the imputations.

Along this line, the specific objective of this study is to utilize the information of spatial,

temporal and correlations between each variables for data imputation. We will combine the

non-linear dimensionality reduction with an expressive spatio-temporal model to achieve a

more differentiable, higher computational efficiency method than traditional statistical as

well as machine-learning models. We combined the idea from Fortuin et al. (2020) and

propose a method of using deep probabilistic variational auto-encoders (VAE) to impute

multivariate spatio-temporal data with multiple time scales. This can be done by learning the

missing data from projecting the data space into a low dimensional space, which called latent

space, without missingness, where we model the low dimensional dynamics with a Gaussian

Process(GP). We propose a prior model that efficiently capture the space-time dependence

structure at multiple time scales. Finally, our variational inference approach makes use of

efficient structured variational approximations, where we fit another multivariate Gaussian

process in order to approximate the intractable true posterior.

3.3 Methodology

3.3.1 Background

The goal is to study the data like network situational awareness, the energy data from

smart meters, solar inverts, grid automation/SCADA sensors and micro PMU along with

weather data that are collected in a geographical lattice over time. The complex correlation

between and within different variables in space and time will be modeled using a multivari-

ate spatio-temporal dynamic random filed x(s, t), t = 1, 2, ...T where t refers the the time
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lag. For missing data imputation and resolution alignment, a multivariate spatio-temporal

variational autoencoders (GP-VAE) will be used based on Gaussian processes and Bayesian

deep learning, which allows for uncertainty estimation. The main idea is to project high

dimensional random field x on a latent low-dimensional space with full determined spatial

temporal structure and then impute missing values using the posterior distribution of x(s, t)

given learned latent processes. The use of GP-VAE brings many benefits: Fist, the latent

space is able to utilize all the correlations among variables to reconstruct the missing val-

ues. Second, through the encoding process, the model is able to smooth the original time

series data to remove the noise and make the pattern more explainable. Third, since the

constructed variational distribution include the temporal information, the imputing process

can not only use other correlated variables’ information but also get benefit of the time series

association.

To summarize, this method comes from a combination of ideas from VAEs (Kingma

and Welling (2013)), GPs (Rasmussen (2003)), Cauchy kernels (Jähnichen et al. (2018)),

structured variational distributionswith efficient inference and a special ELBO for missing

data (Nazabal et al. (2020)).

Let’s suppose a multivariate spatial temporal data set X ∈ RS×T×d with S × T × d data

points: xt = [xᵀ
1,t,x

ᵀ
2,t, ...,x

ᵀ
s,t]

ᵀ ∈ Rd, where S ∈ R, T ∈ R, d ∈ R represents locations,

time lags, dimensions of X respectively. We assume that value from any place of X can be

missing. In this case, we split the data into two partitions: Observed and unobserved data.

The observed data at time t and location s can be denoted as xos,t = [xs,t,k|xs,t,k is observed]

and the missing data are xms,t = [xs,t,k|xs,t,k is missing], k = 1, 2, ...d. xos,t ∪ xms,t = xs,t. Now

we’re able to define our problem using the notations: Missing data imputation is to estimate

the true values of missing variables: Xm = [xms,t,k] given the observed variables: Xo = [xos,t,k],

where data are dependent on time, location and other variables.
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3.3.2 Generative model

It is common to model the original partial data directly with the Gaussian Process (Roberts

et al. (2013)), however it is not practical for some reasons: The cost of inverting the kernel

matrix is high with time complexity of O(n3). Another problem is that to assure the kernel

computable, the missing values are usually assigned to zeros, resulting in estimation bias.

Also, it’s hard to design a kernel function that can measure the complicated multivariate

spatial temporal correlations. Although it is possible to treat the entire dataset as a collection

of many single time series and use the GP to infer missing values separately, it will ignore

the well-structured relationship between variables and across space.

This GP-VAE method can overcome those problems by using the GP in the latent space

of a variational autoencoder where the encoded feature representations are complete. It

assign a latent variable zt ∈ Rl for every xt then use GP to model the temporal correlation

in that latent space, with the prior z(t) ∼ GP (mz(.), kz(., .)), z ∈ 1, 2, ..., l. This step can

not only avoid the missing values in the latent space but also capture the spatial correlation

and correlations between each variables (Fortuin et al. (2020)). As of the GP kernels, the

Cauchy kernel for each latent variable

kz(t, t
′) = σ2(1 +

(t− t′)2

l2
)−1 (3.1)

is well behaved for multi-scale time dynamics (Jähnichen et al. (2018)).

The likelihood given the latent variable zt can be written as

pθ(xt|zt) = N(gθ(zt), σ
2I) (3.2)

where gθ(zt) is a nonlinear function with the parameter vector θ. As one example, if we

consider zt as latent weather situations, then gθ would be the process to generate observable

measurements xt like the temperature, wind speed, rainfall, etc. The gθ function is estimated

by a deep learning neural network.
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3.3.3 Inference model

Now let’s discuss the posterior distribution p(z1:T |x1:T ). Since the exact posterior is in-

tractable, variational inference is utilized (Blei et al. (2017), Jordan et al. (1999)). This

method utilized a structured GP variational distribution with efficient inference to approx-

imate true posterial distribution. To make the variational distribution more expressive and

capture the temporal correlations of the data, we employ a structured variational distribu-

tion (Wainwright et al. (2008)) on Gaussian Process. The true posterior p(z1:T,j|x1:T ) can

be approximated by a multivariate Gaussian variational distribution:

q(z1:T,j|xo1:T ) = N(mj,Λ
−1
j ). (3.3)

Where Λj = Bᵀ
jBj and

Bj =



bj11 bj12 0 · · · 0

0 bj22 bj23 · · · 0

0 0 bj33 · · · ...

...
...

. . . . . . bjT−1T

0 · · · · · · · · · bjTT


(3.4)

j refers to the dimensions in the latent space. This approximation is to measure the tempo-

ral correlations in for each latent variable independently, which is commonly used in VAE

(Kingma and Welling (2013), Rezende et al. (2014)). btt′ , t ∈ 1, 2, ...T are the local varia-

tional parameters. The benefit of this matrix is that it comes to positive definite, symmetric

automatically. Samples from posterior distribution can be generated in linear time (Bamler

and Mandt (2017), Huang and McColl (1997), Mallik (2001)). While the precision matrix is

sparse, this covariance matrix can still be dense, allowing to reflect long-range dependencies

in time.

For the VAE approach, we uses an inference network to optimize the m and B at the
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same time. Let’s suppose qψ(·) as the the variational distribution, where ψ = {m,B}. As

mentioned before, the parameters for the generative model can be denoted as θ. θ and ψ

can be trained together by minimizing the KL distance (Kullback and Leibler (1951)) to

approximate p(z1:T |x1:T ) using qψ(z1:T |xo1:T ). Where

(θ∗, ψ∗) = argmin (DKL(qψ(z1:T |xo1:T )||p(z1:T |xo1:T ))), θ ∈ Θ, ψ ∈ Ψ

= argmin (Eqψ(z1:T |x1:T )[log qψ(z1:T |xo1:T )]− Eqψ(zt|x1:T )[log
pθ(x

o
1:T |z1:T )p(z1:T )

p(xo1:T )
])

= argmin (Eqψ(z1:T |x1:T )[log qψ(z1:T |xo1:T )]− Eqψ(zt|x1:T )[log pθ(x
o
1:T |z1:T )]− Eqψ(zt|x1:T )[log p(z1:T )]

+ Eqψ(zt|x1:T )[log p(xo1:T )])

= argmin (−Eqψ(z1:T |x1:T )[log pθ(x
o
1:T |z1:T )] +DKL(q(z1:T |xo1:T )||p(z1:T )) + log p(xo1:T ))

= argmin (−
T∑
t=1

Eqψ(zt|x1:T )[log pθ(x
o
t |zt)] +DKL(q(z1:T |xo1:T )||p(z1:T )) + log p(xo1:T )).

Since log p(xo1:T ) ≥ 0, minimizing KL distance is equivalent to optimize the evidence

lower bound (ELBO):

log p(Xo) ≥
T∑
t=1

Eqψ(zt|x1:T)[log pθ(x
o
t |zt)]− βDKL[qψ(z1:T |xo1:T )||p(z1:T ))] (3.5)

Now this optimizing problem is simplified to maximize the RHS of (3.5) that is only based

on the observed data with setting the missing values as zeros which is followed by Nazabal

et al. (2020). Given that the likelihood term is the sum of all observed data, its highly

related to the missing rate, so a trade-off parameter β is added to balance the influence of

likelihood and KL distance term (Higgins et al. (2016)).

3.4 Simulation study

We performed simulation study based on simulated data of three-phase unbalanced IEEE 37

bus test system from Balasbramaniam Natarajan and Shweta Dahale. The loads connected
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in this system are assumed to comprise of residential homes. In this paper, we simulate time

series AMI measurements with active power (P) and reactive power (Q) in two phases at

37 different nodes, which are used to perform state estimate task and measure customer’s

power consumption. There are totally 6 measurements in 24 hours at each nodes over 1-min

interval.

As is well known, missing AMI data from the real world can occur for a variety of

reasons, including the sensors in a practical network may not always transmit data to the

utility. Also, the measurements may be lost due to the communication network impairments.

Thus, data can be missed at random, or at particular time periods. In many occurrences,

AMI measurements are taken at 15-minute intervals, so we also include thinned data by

removing gaps between every 1 and 15-minute intervals. On the basis of these details, we

simulated different types of missing data: Missing at random, missing on the right, missing

in the middle for 1 and 15 min interval data. GP-VAE data imputation can be accomplished

in any of the time-scale.

There are a number of crucial tuning parameters, such as latent dimension, which denotes

the dimension of latent space. The selection of the latent dimension is primarily based on the

correlation between the various variables, the dimension of original data and the missing rate.

The higher the missing rate, the correlations, the lower latent dimension can be considered.

Another crucial tuning parameter that may affect the model’s performance is window size.

It’s the smoothness time series parameter when transmit original data into latent space.

GP-VAE favors a larger window size if the original data is smoother and more stable. In

contrast, if the data is highly volatile, a smaller window size is more effective. Window size is

between 1 and total dimension of time points. β is a trade-off parameter that to balance the

influence of likelihood and KL distance in the optimization process. β can be approximately

equal to 1 minus the missing rate. Another tuning parameter is the length scale that affects

the time series correlation between two distinct time lags for a latent variable. When the

length scale is decreased, the correlation approaches to zero more rapidly as the time gap

comes raises.

We compared the performance of spatial GP-VAE with Universal-Kriging(UK) (Wack-
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ernagel et al. (1997)), which is one of the most commonly used traditional data imputation

methods. The RMSE has been used for model evaluation. The following tables shows the

performance under different types of missing data settings.

Missing Rate Universial Kriging Spatial GP-VAE GP-VAE

10% 30.4549 17.2429 216.6744

20% 271.1314 21.9390 233.9716

30% 273.1933 25.2602 228.4552

40% 104.5111 25.5899 258.8100

50% 86.68882 28.4501 267.3308

Table 3.1: Missing on the right RMSE Statistics

Missing Rate Universial Kriging Spatial GP-VAE GP-VAE

10% 11.9339 19.6938 251.9476

20% 26.3303 25.3891 257.1676

30% 37.5289 27.7698 265.0235

40% 101.8372 28.1762 266.2166

50% 116.8307 30.2798 284.0116

Table 3.2: Missing in the middle RMSE Statistics

The missing rate represents the percent of missing data from the complete data set of a

chosen variable. In this example, we use reactive power(Q) at phase C as testing variable.

Missing on the right means we remove all the data after a specific time lag for imputation.

For example, as this 1-minutes interval data contains 1440 minutes of records, imputation

at 50% of missing rate means we use the 0 to 720 minutes of data to predict 720 to 1440

minutes data by different models. Missing in the middle means we removed the middle part

of data with certain missing rate. For instance, missing rate 50% means we use 0 to 360,

1080 to 1440 minutes of data to impute the resting part. The table (3.1), (3.2) gives the
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RMSE results for UK, spatial GP-VAE and VAE from this 1-minute interval data. From

table (3.1), the Spatial GP-VAE outperforms all of other models at all the missing rates.

Especially at missing rate 20% and 30%, spatial GP-VAE successfully decreased more than

93% of RMSE for both GP-VAE and UK. In table (3.2), although UK performs better on

missing rate 10%, it’s is getting worse when missing rate increase, while the performance

of spatial GP-VAE is smooth and significantly better than other models from missing rate

20%.

Missing Rate Universial Kriging Spatial GP-VAE GP-VAE

85% 42.7607 23.9191 160.0096

90% 68.6659 23.3511 163.1013

93% 66.7290 22.4084 161.0080

95% 68.4164 25.4699 164.4334

98% 269.511 22.8372 166.7708

Table 3.3: 15 minutes thinned data nested missing by random RMSE Statistics

Missing Rate Universial Kriging Spatial GP-VAE GP-VAE

10% 24.7876 20.9388 229.1943

20% 29.7614 18.4679 236.5785

30% 101.441 20.0650 234.8750

40% 215.1648 24.6416 265.6006

50% 73.8632 23.8794 270.7572

Table 3.4: 15 minutes thinned data missing on the right RMSE Statistics
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Missing Rate Universial Kriging Spatial GP-VAE GP-VAE

10% 9.1739 16.8369 242.2727

20% 15.5523 18.8003 255.2829

30% 22.1169 17.0495 263.8181

40% 96.5531 26.7188 253.9683

50% 101.8183 31.7313 277.5901

Table 3.5: 15 minutes thinned data missing in the middle RMSE Statistics

The table (3.3), (3.5) and (3.5) are the results from different missing rate for 15 minutes

thinned data. In this case, there are total 96 time lags. Nested missing by random data

are created starting from randomly removing 85% of data from 15 minutes thinned data,

then for the remaining part, we continually randomly remove data until it reaches 90% of

missing rate from whole 15 minutes thinned data. Then we repeat those steps until 98%

of missing rate. Missing on the right and missing in the middle data are created by the

similar technique as table (3.1) and (3.2). Again, for the nested missing by random and

missing on the right data, the spatial GP-VAE reduced RMSE at all missing rate with best

performance of reducing 90% and 92% of RMSE comparing to UK and GP-VAE. AS for

missing in the middle, the performance of spatial GP-VAE is very stable and reduced more

than 60% of RMSE at 40% and 50% of missing rate comparing to UK and GP-VAE. In

conclusion, the benefit of spatial GP-VAE lies in that it’s imputation result is smooth at

all the missing rates. Especially for the data includes high percent of missing values, the

traditional methods couldn’t work properly however the spatial GP-VAE is able to obtain

a relevantly high accuracy. Another advantage of spatial GP-VAE is its ability to impute

multiple time series data at the same time, which can save a significant amount of time

when compared to imputing each variable one at a time using the traditional UK method.

Also, it’s able to capture the spatial correlation between different locations to improve the

prediction accuracy.
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Figure 3.1: Data imputation for AMI time series missing on the right

Figure 3.2: Data imputation for AMI time series missing in the middle

Fig.3.1 and Fig.3.2 shows the results obtained from imputation performed for reactive

power (C-Phase) profiles with 40% missing on the right and 50% missing in the middle

measurements. Comparing to the results from UK method that is a far way from the ground

truth value, the trend could be accurately depicted by GP-VAE. This is due to the fact that

spatial-temporal and cross correlation between variables in this model are exploited.
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Figure 3.3: Data imputation for AMI time series 15 minutes thinned data missing on the

right

Figure 3.4: Data imputation for AMI time series 15 minutes thinned data missing in the

middle
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Figure 3.5: Data imputation for AMI time series 15 minutes thinned data missing at

random

As seen from the figures(3.3),(3.4),(3.5), the results for 15 minutes thinned data, our

approach provides accurate and smoother imputation than UK even only few available mea-

surements are applicable. Another advantage of spatial GP-VAE is that when multivariate

UK can only impute a small number of variables simultaneously, spatial GP-VAE can handle

a large number of variables and the performance could be even better since more information

is included.

3.5 Future work

In the first chapter, we will consider the more complex type of temporal pattern in the model

for theorems 2,3,4. Also, instead of using least square method for parameter estimation, we

can try to fit the correlation by using maximum likelihood method. Other types of spatial

covariance structure, instead of Matérn can also be considered in the model.

In the second chapter, referring to the question about the representation in Malyarenko

and Ma (2018), we conjecture that (2.8) might be a general form of C(θ(x1,x2); t). With the

assumptions on {Vn(t), n ∈ N0, t ∈ T} or U changed, the process Z therein could represent

69



a large class of vector random fields on Md × T. For example, it would be of interest to see

what Z produces, if U follows a distribution on Md rather than the uniform one, such as

angular central Gaussian, projected normal, Von Mises-Fisher, Bingham, Fisher-Bingham,

or Kent distribution (Mardia and Jupp (2009), Kent et al. (2018)). Also, temporal structure

can not be limited to first order of moving average one. Future simulation work may be

capable of generating more general type of temporal margin like autoregressive and moving

average(ARMA). This can be realized by changing the structure of Bn(t). In this chapter, (4)

is more like the covariance structure of the MA(1) model so if we change Bn(t) to a MA(2),

AR(1), or even ARMA type, the simulation may result in a spatial-temporal correlated data

with corresponding temporal margin.

In the third chapter, our efforts will be focus on better measure the spatial correlation

in between each channels. We’re planing to assign a reduced dimensional latent dynamic

random vector zt to x(., t) via Moran’s I (MI) basis functions (Bradley et al. (2016) ) for

each component variable. Consequently, the generative network can be modeled using the

vector autoregressive Gaussian process and the spectral representation of the MI operator.

Therefore, the spatial-temporal correlation can be captured.

To be more specific, the Gaussian random field x(s, t) representing smart meter data can

be characterized by the following spatio-temporal model:

x(s, t) = µ(s, t) + S(s, t)zt + ξ(s, t) (3.6)

The first term µx(s, t) is a fixed effect, which is unknown, and requires estimation. We

set µ(s, t) = y(s, t)β(t), where y(s, t) is a known p-dimensional vector of covariates and

β(t) ∈ Rp is an associated unknown parameter vector; t = 1, ...T . The second term on

the right-hand side of (1), i.e., S(s, t)zt represents multivariate spatio-temporal dependen-

cies. The r-dimensional vectors of multivariate spatio-temporal basis functions S(s, t) ≡

(S(s, t)1, S(s, t)2, ..., S(s, t)r)
′ are respecified for each locations and t = 1, ..., T . By a class

of basis functions, we mean a collection of functions that form a basis for a function space

(Franklin (2005), Chapter 5). A simple example of a class of basis functions would be
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the Fourier basis functions, which are comprised of sine and cosine curves (used, e.g., by

Royle and Wikle (2005)). Another popular choice are the bisquare spatial basis functions,

which have the ability to be multiresolu tional (Cressie and Johannesson (2008); Katzfuss

and Cressie (2011)). This multiresolutional property is a motivating factor for the use of

wavelets as well. W-wavelets (Kwong and Tang (1994)) were introduced into the spatio-

temporal literature by Nychka et al. (2002), and they have also been used to define Sr

in spatial and spatio-temporal mixed-effects models. The r-dimensional random vector zt,

r ≤ p is assumed to follow a spatio-temporal VAR(1) model (Cressie (2015), Chapter 7).

zt = Mtzt−1 + ut; t = 2, 3, 4.. (3.7)

Where for all t the r-dimensional random vector zt is Gaussian with mean µz(s, t) and has

an unknown r × r covariance matrix Kt; Mt is a r × r known propagator matrix and ut,

is an r-dimensional Gaussian random vector with mean zero and unknown r × r covariance

matrix Wt and is independent of zt−1. Finally, the third term on the right-hand side of

(1), i.e., ξ(s, t) represents fine-scale variability and is assumed to be Gaussian white noise

with mean zero and unknown variance {σ2
ξ,t}. On the other hand, following the similar

technique in Fortuin et al. (2020), we employ inference amortization for the inference model

that leads to an approximated posterior of z given x. Again, the covariance can be specified

based on reduced rank structure of the MI basis function and conditional autoregressive

model (CAR). In addition, computational efficiency can be also achieved by applying Sher-

man–Morrison–Woodbury formula. Third, VAE training gives the parameters in both the

generative model and inference network by optimizing the evidence lower bound.

3.6 Appendix

Attached is an example of the hyperparameters utilized in the spatial GP-VAE model for

the AMI measurements data set.
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Hyperparameter Value

Number of CNN layers in inference network 1

Number of filters per CNN layer 128

Filter size (i.e., time window size) 10

Number of feedforward layers in inference network 1

Width of feedforward layers 126

Dimensionality of latent space 3

Length scale of Cauchy kernel 7

Width of feedforward layers 256

Activation function of all layers RELU

Learning rate during training 0.001

Optimizer Adam

Number of training epochs 30

Train/val/test split of data set 3

Dimensionality of time points 720

Length of time series 720

Tradeoff parameter β 0.5

Table 3.6: Hyperparameters used in the spatial GP-VAE model.
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bastian Nowozin, and Cheng Zhang. Eddi: Efficient dynamic discovery of high-value

information with partial vae. arXiv preprint arXiv:1809.11142, 2018.

Chunsheng Ma. Families of spatio-temporal stationary covariance models. Journal of Sta-

tistical Planning and Inference, 116(2):489–501, 2003. ISSN 0378-3758. doi: https://doi.

org/10.1016/S0378-3758(02)00353-1. URL https://www.sciencedirect.com/science/

article/pii/S0378375802003531.

Chunsheng Ma. Spatio-temporal variograms and covariance models. Advances in Applied

Probability, 37(3):706–725, 2005.

Chunsheng Ma. Vector random fields with second-order moments or second-order increments.

Stochastic analysis and applications, 29(2):197–215, 2011.

Chunsheng Ma. Time varying isotropic vector random fields on spheres. Journal of Theo-

retical Probability, 30(4):1763–1785, 2017.

Rahul Madbhavi, Balasubramaniam Natarajan, and Babji Srinivasan. Enhanced tensor com-

pletion based approaches for state estimation in distribution systems. IEEE Transactions

on Industrial Informatics, 17(9):5938–5947, 2021. doi: 10.1109/TII.2020.3035449.

Ranjan K Mallik. The inverse of a tridiagonal matrix. Linear Algebra and its Applications,

325(1-3):109–139, 2001.

78

https://www.sciencedirect.com/science/article/pii/S0378375802003531
https://www.sciencedirect.com/science/article/pii/S0378375802003531


Anatoliy Malyarenko. Abelian and tauberian theorems for random fields on two-point ho-

mogeneous spaces. Theory of Probability and Mathematical Statistics, 69:115–127, 2004.

Anatoliy Malyarenko. Invariant random fields on spaces with a group action. Springer

Science & Business Media, 2012.

Anatoliy Malyarenko and Chunsheng Ma. Time-varying isotropic vector random fields on

compact two-point homogeneous spaces. 2018.

Kanti V Mardia and Peter E Jupp. Directional statistics, volume 494. John Wiley & Sons,

2009.

Elias Silva de Medeiros, Renato Ribeiro de Lima, Ricardo Alves de Olinda, Leydson G. Dan-

tas, and Carlos Antonio Costa dos Santos. Space–time kriging of precipitation: Modeling

the large-scale variation with model gamlss. Water, 11(11), 2019. ISSN 2073-4441. doi:

10.3390/w11112368. URL https://www.mdpi.com/2073-4441/11/11/2368.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incom-

plete heterogeneous data using vaes. Pattern Recognition, 107:107501, 2020.

Douglas Nychka, Christopher Wikle, and J Andrew Royle. Multiresolution models for non-

stationary spatial covariance functions. Statistical Modelling, 2(4):315–331, 2002.

Frank WJ Olver, Daniel W Lozier, Ronald F Boisvert, and Charles W Clark. NIST handbook

of mathematical functions hardback and CD-ROM. Cambridge university press, 2010.

Alma B Pedersen, Ellen M Mikkelsen, Deirdre Cronin-Fenton, Nickolaj R Kristensen, Tra My

Pham, Lars Pedersen, and Irene Petersen. Missing data and multiple imputation in clinical

epidemiological research. Clinical epidemiology, 9:157, 2017.

Emilio Porcu, Moreno Bevilacqua, and Marc G. Genton. Spatio-temporal covariance and

cross-covariance functions of the great circle distance on a sphere. Journal of the Ameri-

can Statistical Association, 111(514):888–898, 2016. doi: 10.1080/01621459.2015.1072541.

URL https://doi.org/10.1080/01621459.2015.1072541.

79

https://www.mdpi.com/2073-4441/11/11/2368
https://doi.org/10.1080/01621459.2015.1072541


Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on

machine learning, pages 63–71. Springer, 2003.

Gregory C Reinsel. Elements of multivariate time series analysis. Springer Science & Busi-

ness Media, 2003.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation

and approximate inference in deep generative models. In International conference on

machine learning, pages 1278–1286. PMLR, 2014.

Stephen Roberts, Michael Osborne, Mark Ebden, Steven Reece, Neale Gibson, and Suzanne

Aigrain. Gaussian processes for time-series modelling. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1984):20110550,

2013.

J Andrew Royle and Christopher K Wikle. Efficient statistical mapping of avian count data.

Environmental and Ecological Statistics, 12(2):225–243, 2005.

Stephan R. Sain and Noel Cressie. A spatial model for multivariate lattice data. Journal

of Econometrics, 140(1):226–259, 2007. ISSN 0304-4076. doi: https://doi.org/10.1016/

j.jeconom.2006.09.010. URL https://www.sciencedirect.com/science/article/pii/

S0304407606002302. Analysis of spatially dependent data.

Stephan R Sain, Reinhard Furrer, and Noel Cressie. A spatial analysis of multivariate output

from regional climate models. The Annals of Applied Statistics, pages 150–175, 2011.

Wayan Somayasa, Makulau, Yulius Bara Pasolon, and Desak Ketut Sutiari. Universal kriging

of multivariate spatial data under multivariate isotropic power type variogram model.

AIP Conference Proceedings, 2326(1):020035, 2021. doi: 10.1063/5.0039429. URL https:

//aip.scitation.org/doi/abs/10.1063/5.0039429.

J.J. Song, M. Ghosh, S. Miaou, and B. Mallick. Bayesian multivariate spatial models for

roadway traffic crash mapping. Journal of Multivariate Analysis, 97(1):246–273, 2006.

80

https://www.sciencedirect.com/science/article/pii/S0304407606002302
https://www.sciencedirect.com/science/article/pii/S0304407606002302
https://aip.scitation.org/doi/abs/10.1063/5.0039429
https://aip.scitation.org/doi/abs/10.1063/5.0039429


ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2005.03.007. URL https://www.

sciencedirect.com/science/article/pii/S0047259X05000308.

Gabor Szeg. Orthogonal polynomials, volume 23. American Mathematical Soc., 1939.

C Tebaldi and DB Lobell. Towards probabilistic projections of climate change impacts on

global crop yields. Geophysical Research Letters, 35(8), 2008.

Hans Wackernagel, Victor De Oliveira, and Benjamin Kedem. Multivariate geostatistics.

SIAM Review, 39(2):340–340, 1997.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and

variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Yating Wan, Minya Xu, Hui Huang, and Song Xi Chen. A spatio-temporal model for

the analysis and prediction of fine particulate matter concentration in beijing. En-

vironmetrics, 32(1):e2648, 2021. doi: https://doi.org/10.1002/env.2648. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/env.2648.

Jia Xu, Wen Yang, Bin Han, Meng Wang, Zhanshan Wang, Zhiping Zhao, Zhipeng Bai,

and Sverre Vedal. An advanced spatio-temporal model for particulate matter and

gaseous pollutants in beijing, china. Atmospheric Environment, 211:120–127, 2019.

ISSN 1352-2310. doi: https://doi.org/10.1016/j.atmosenv.2019.04.011. URL https:

//www.sciencedirect.com/science/article/pii/S1352231019302262.

Mihail Iosifovic Yadrenko and Alampallam Venkatachalaiyer Balakrishnan. Spectral The-

ory of Random Fields (Spektral’naja Teorija Sluchajnykh Polej). Optimization Software,

Publications Division, 1983.

Akira Moiseevich Yaglom. Correlation theory of stationary and related random functions.

Volume I: Basic Results., 526, 1987.

Xuening Zhu, Danyang Huang, Rui Pan, and Hansheng Wang. Multivariate spatial au-

toregressive model for large scale social networks. Journal of Econometrics, 215(2):591–

81

https://www.sciencedirect.com/science/article/pii/S0047259X05000308
https://www.sciencedirect.com/science/article/pii/S0047259X05000308
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2648
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2648
https://www.sciencedirect.com/science/article/pii/S1352231019302262
https://www.sciencedirect.com/science/article/pii/S1352231019302262


606, 2020. ISSN 0304-4076. doi: https://doi.org/10.1016/j.jeconom.2018.11.018. URL

https://www.sciencedirect.com/science/article/pii/S030440761930212X.

82

https://www.sciencedirect.com/science/article/pii/S030440761930212X

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Multivariate Modeling of Some Datasets in Continuous Space and Discrete time
	Introduction
	 Moving-average-type Temporal Margin
	 ARMA type Temporal Margin
	Data Example: Kansas Daily Temperature Data

	Simulation of multivariate space-time processes on a sphere
	Introduction
	Simulation of isotropic vector random fields on Md
	Simulation of Isotropic vector random fields on MdT with discrete ARMA margin
	Proposition
	Simulation
	Fix L ,Phi, change Sigma
	Fix Sigma, Phi, change L
	Fix Sigma, L, change Phi

	Appendix: Proof of theorem 1

	Deep Probabilistic Space and Time Imputation
	Introduction
	Motivations and related work
	Methodology
	Background
	Generative model
	Inference model

	Simulation study
	Future work
	Appendix

	Bibliography

