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Abstract

The reactivity method is an indirect nondestructive technique to estimate integral

burnup in fuel elements. In this method, the assumption is made that reactivity

worth of a fuel element is a known function of burnup, often a linear relationship.

When a fuel element burns, reactivity is reduced due to depletion of fissile actinides

and generation of neutron-absorbing fission products. Currently, there is a lack of

experimental data to verify the current composition of the KSU TRIGA (Training

Research Isotopes General Atomics) fuel. Moreover, the KSU TRIGA Mark II

staff method of estimating burnup is admittedly inaccurate due to its simple

approximations. This work presents the positive period technique as convenient

method use only the excess reactivity of the KSU core to compute reactivity via

the inhour equation. Period measurements are determined via extraction and

manipulation of the time dependent power data in the measurements. MCNP and

Serpent modeling codes are both used extract the neutron kinetics parameters

necessary in the inhour equation. Seven axial discretization of the KSU fuel was

modeled, which minimizes the reactivity biases as function of burnup. Moreover,

two unit cell models of the KSU TRIGA fuel were investigated. Modeled reactivity

worths were computed using the KCODE in MCNP for comparative analysis. The

burnup steps using two power peaking factor methods were developed to account

for the biases introduced initial burnup of fuel prior to installation at KSU. By

using the error distribution given by the two method to generate 200 test cases

of the burnup steps can yield to reactivity worths as a function of burnup with

quantifiable uncertainties. Finally, the results suggest that validation from another

nondestructive technique such as gamma spectroscopy is necessary to asses the

reactivity biases observed for higher burnup fuel elements due to unknown radial

orientations. This work ultimately supports the production of a high-fidelity model

of the KSU reactor.
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Chapter 1

Introduction

1.1 Overview

Initial efforts have been made at Kansas State University (KSU) to produce

a high-fidelity computer-based model of the KSU TRIGA (Training Research

Isotopes General Atomics) Mark II reactor. Developing such a model requires a

combination of theoretical analysis, reactor operational history, and experimental

data. Moreover, a detailed model of the KSU reactor requires that the present core

composition be precisely defined with well-understood uncertainties. The KSU

TRIGA reactor is fueled with TRIGA MARK III fuel designed by General Atomics

(GA) to have a very small critical mass of uranium coupled with a zirconium

hydride moderator; see Chapter 2 for description of the fuel. Historical inventories

of KSU TRIGA fuel include little information on the initial fuel composition due

to depletion prior to insertion into the KSU reactor. Additionally, there exists

a lack of experimental data to verify the present composition. The present core

composition depends strongly on the initial and subsequent fuel loadings and

irradiation history, and thus a detailed accounting of material evolution over time

is strongly needed. While this presents a challenge in developing the model, it also

presents an opportunity to generate new benchmark data suitable for the effort.

To address the data needed, efforts were made to understand the nondestructive
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techniques and computational tools available to quantify burnup of fuel elements

irradiated in the KSU reactor. Burnup is a process when nuclear fuel undergoes

significant compositional changes due to depletion of the isotopes. During its

time in the reactor, the fuel “burns,” ultimately depleting the most important

isotope 235U and generating various fission products. Some of these fission products

are parasitic neutron absorbers, e.g., stable 149Sm and radioactive 135Xe. Each

spent fuel element contains several hundred different isotopes, the concentrations

of which vary considerably in the axial dimension, and potentially, in the radial

and azimuthal dimensions.

Gamma spectroscopy is one nondestructive technique used to determine burnup by

analyzing γ-emitting nuclides inside the fuel elements. Activity measurements along

the axis of an irradiated fuel element can be used to determine relative and absolute

burnup. Through gamma spectroscopy, information about fuel composition and

fission rates can be obtained by selecting appropriate gamma peaks and evaluating

their ratios to determine their burnup.

The work of this thesis pursues another nondestructive technique called the “reac-

tivity method” for generating new experimental data that can help identify the

present composition and to verify the historical inventories of KSU TRIGA spent

fuel. Therefore, preparations were made in support of this work to compile and

assess the available data from the operation history of the KSU reactor. The

reactivity method is an indirect method that relates reactivity worths to burnup

and can be implemented using the positive-period method to measure the positive

asymptotic period of an element. The period is the length of time required for

the reactor power to increase by a factor of e≈2.718. This quantity can be used

in the inhour equation to determine reactivity. The work of this thesis also uses

Serpent[6] and MCNP[7] models to determine axially-zoned fuel compositions and

various kinetics parameters.
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1.2 Background and Problem Description

The KSU TRIGA MARK II reactor first went critical in 1962 and has been actively

used for research since. The KSU reactor had a license upgrade in 1968 and, as

a result, the reactor fuel was replaced in 1973 with stainless steel (SS) clad fuel,

much of which still remains in the core today. Since then, the reactor has had 29

different core configurations, i.e., different arrangements of fuel elements inside the

core. New arrangements with shuffled positions or addition of fuel are necessary

to compensate for reactivity loss over time. Typically, one additional element is

added and another is shuffled when changing core configurations. When the KSU

reactor received the license to increase up to 1250 kW in 2008, major shuffling of

the core elements occurred such that inner core element were placed in the outer

region of the core. Additionally, a new control was installed called the Safety Rod.

The detailed power history of each configuration is thoroughly documented in the

operational log books in addition to day-to-day documentation of water and fuel

temperatures, control rod heights, and water conductivity. Currently available

data includes operational log books and historical documents that date back to

the first shipment of stainless steel cladding fuel to the KSU reactor. Documents

of these initial shipments show that all but a few of the fuel elements received had

burnups ranging from approximately 1 g to 11 g of the original 235U content, with

most elements having approximately 4 g to 6 g of burnup. Other fuel elements

shipped in the latter years had an average burnup of approximately 0.7 g. Table 1.1

provides the assumed accumulated burnup for all the fuel elements received at

KSU per shipment date.

Table 1.1: Accumulated burnup for all shipments of TRIGA fuel.

Shipment Date Number of elements Total Burnup (g of 235U)

1973 88 350.9
1985 18 12.51
1995 4 0
1999 4 0
2005 4 0
2011∗ 6 0

∗12% weight fuel awaiting NRC approval for use.
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A detailed description of how these burnup values were estimated is provided in

Chapter 2. All of these documents provide no information on burnup uncertainties

and initial compositions, which make the recorded values hard to verify. Moreover,

the depletion of these fuel elements in the KSU reactor further complicates the

quantification of the burnup and, hence, composition.

The current methodology used by the KSU TRIGA staff to estimate fuel burnup

also suffers from great uncertainties. The burnup of the unknown fuel elements

is estimated by converting the core burnup from the log books for all the fuel

element’s length of time in the core to 235U grams burned. A detailed description

of core burnup calculations in (kWh) and uncertainty within the methodology

is also discussed in Chapter 2. This estimation is admittedly inaccurate due

to its approximations. One major approximation is assuming a uniform power

distribution in the core by dividing the total core burnup equally among the core

fuel. Another major approximation is assuming that all fissions born are a direct

result of 235U thermal neutron capture. Not only is this approximation confined to

a specific energy, but it also assumes that all fissions are from one fissile isotope

and thereby ignores fission in 238U and isotopes of Pu produced during operation.

These approximations lead to under- or over-predicting the fuel burnup.

There exists a lack of new benchmark data to help identify the composition of

these fuel elements. The uncertainty in the initial burnup of fuel elements in

addition to the depletion in the KSU core further increases the uncertainties in

the fuel composition. New experimental data from reactivity measurements will

be important for ongoing efforts to quantify the core composition. In order to

have a well defined relationship between reactivity and burnup, and well defined

uncertainties, a consistent method to estimate initial burnup of depleted fuel is

required. The current methodology creates too great an uncertainty due to simple

approximations.
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1.3 Motivations

The primary motivation of this work is to provide new experimental benchmark

data to produce a detailed model of the KSU reactor. The model will serve as a

predictive tool capable of developing new reactor physics experiments at the KSU

reactor by accurately modeling the physics inside the TRIGA reactor. Moreover,

future researchers are provided with time dependent composition data for verifying

application-specific depletion studies. Another motivation for this work is to provide

the KSU TRIGA MARK II staff a precise method for determining the fuel burnup.

The work proposed provides an alternative to the current methodology of estimating

burnup, which suffers from great uncertainties. The resulting relationship between

reactivity worths and burnup can be used to determine total burnups for fuels that

cannot be measured directly perhaps due to excessive radioactivity like the in-core

fuel elements currently residing in the KSU reactor.

1.4 Objectives

The primary goal of this work is to develop a well defined relationship between

reactivity and burnup along with computational work in support of efforts to

understand the KSU reactor fuel composition. The present work will employ

available out-of-core elements for the reactivity method, and aims to provide data

in support to understand this composition. This work uses the positive-period

method to measure asymptotic period to solve for reactivity via the inhour equation.

Reactivity measurements will indirectly determine the burnup of KSU TRIGA fuel

elements with quantifiable uncertainty. The total burnup of the fuel is limited

to element-integrated values; however, these can serve as measurable data points

against which computed estimates can be benchmarked. Specifically, this work uses

Serpent to estimate the compositions of burned fuel as an input in MCNP to extract

the kinetics parameters needed as input to the inhour equation. The multiplication

factor keff from MCNP is also used to calculate reactivity for modeling comparisons.
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To support this goal, operational log history, current periodical burnup estimations

performed at the KSU reactor, and documented fuel inventories for initial estimates

of burnup are all addressed in Chapter 2. A review of the reactivity method and

its previous application is provided in Chapter 3. The experimental procedure

and the reactivity measurements performed at the KSU reactor by the means of

positive period measurements are discussed in Chapter 4. MCNP6 and SERPENT

results are described and summarized with the analysis of the experimental efforts

in Chapter 5 followed by a conclusion in Chapter 6.
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Chapter 2

Reactor Historical Data

This chapter aims to provide the reader with an overview of the history of KSU

TRIGA fuel, the initial burnup inventories prior to KSU reactor use, and the

available KSU operational log book data.

2.1 Fuel history

In 1973, the United States Atomic Energy Commission (AEC) approved the transfer

of TRIGA fuel stainless steel (SS) clad elements, developed by General Atomics

(GA), San Diego, California to KSU reactor. These TRIGA MARK III type fuel

elements contain approximately 8.5 weight percent of uranium enriched to 20

percent in 235U homogeneously combined with a zirconium hydride moderator

with a hydrogen-to zirconium atom ratio of approximately 1.7 to 1. As shown in

Figure 2.1, the fuel elements have an active region of approximately 15 inches long

and 1.43 inches in diameter with a 0.18 in. diameter zirconium rod in the center

to facilitate hydriding.

The fuel moderator elements have an inherent safety feature that allows a TRIGA

reactor to return the reactor power to a normal level in the event of a power

excursion, i.e., the fuel has a large prompt negative temperature coefficient of

reactivity. Graphite end sections of the fuel elements serve as reflectors and are
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Figure 2.1: KSU reactor standard TRIGA fuel.[1]

approximately 3.47 inches long and 1.43 inches in diameter. The active fuel and

graphite sections are contained in 0.02 inch thick stainless steel cladding welded to

the top and bottom end fittings. The top end fitting is designed to fit and lock

into a fuel handling tool and also has a triangular spacer block that positions the

top of the element in the top grid plate. The bottom end fitting is designed to fit

into sloping edge holes of the bottom grid plate for support of the entire weight

of the element. These elements weigh approximately 3.4 kg, and the average 235U
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content before any depletion is about 38 g. Among these fuel elements, there are

several instrumented elements which contain a thermocouple at three axial points

within the fuel meat. These instrumented elements provide a watertight conduit

carrying the wires above the water surface in the reactor pool for fuel temperature

readings.

The fuel elements with stainless steel cladding (SS) were introduced to allow

continued operation of the KSU reactor as the previous aluminum clad fuel became

too weak for full-power operations. In 2008, when the reactor license was renewed,

the maximum power level was upgraded to 1250 kW and a new control rod was

installed. However, the current maximum power level is limited to approximately

660 kW based on the available fuel; KSU is waiting for NRC approval to use 12%

uranium fuel, which will allow operation at 1 MW.

Between 1973 and 2016, there have been a total of 29 critical configurations of

the KSU reactor with approximately 100 core fuel elements. The KSU reactor

core consists of a concentric cylindrical lattice that is surrounded by a 12 in. thick

graphite reflector enclosed in aluminum casting with a total of six rings: A, B,

C, D, E, and F, having 1, 6, 12, 18, 24, and 30 locations, respectively. With the

exception of components like control rods, graphite elements, a neutron source,

and irradiation channels, the reactor core over the course of these configurations

was occupied mostly by fuel elements. The changes in core configuration are due to

addition of new fuel and the shuffling positions of in-core elements. Fuel elements

closer to the center of the core experience a relatively high neutron flux and thus

deplete faster. Therefore, when deemed necessary, the KSU reactor staff place

those elements in the outer regions of the core. The KSU core lattice geometry is

depicted in Figure 2.2.

A large portion of the fuel elements in the current configuration are from the

initial loading of the SS fuel elements in 1973. The majority of these fuel elements

had been depleted at the TRIGA MARK III reactor in GA laboratories, with an

average burnup of just over 4 g of original 235U content, when loaded. The rest

of the fuel elements came from other fuel shipments in the latter years that were
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Figure 2.2: KSU reactor lattice geometry.

periodically added to the core when necessary to compensate for reactivity loss

or to replace damaged fuel. Some of these elements came from a 1985 shipment

from Northrop corporation following their decision to decommission their TRIGA

F Reactor. These fuel elements had an average burnup of approximately 0.7 g.

The remaining elements were fresh when loaded and came from a 1995 shipment

from GA and 1999 and 2005 shipments from CERCA (Compagnie pour l’Étude et

la Réalisation de Combustibles Atomiques).

Knowledge of the burnup of the initial loading of elements is essential to determine

the present composition of the KSU TRIGA reactor. More importantly, for

the purposes of this work, the study of out-of-core elements relied heavily on

the reported burnup along with known depletion received at the KSU reactor.

Fortunately, among the associated fuel documents available at KSU, a report

describes the method previous TRIGA reactor facilities used to calculate the burnup
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in g of 235U during its time in their facility. These initial burnup calculations along

with the current burnup from the operational log books at the KSU reactor can be

used to provide the overall burnup of the fuel elements of interest.

2.2 Initial burnup of KSU TRIGA fuel

The burnup of these initial fuel elements consumed substantial 235U content prior

to installation at KSU. The previous TRIGA facility at GA used a standard report

that dates back to 1969 that outlined the method to calculate the burnup of 235U

in TRIGA fuel. Eq. (2.1) defines the amount of 235U consumed of an individual

element,

Gj = 1.24
∑
i

PiEi
Ni

(2.1)

where Gj is the amount of 235U consumed in the jth element in grams, Pi is the

ratio of the ring average power density in the ith fuel position to the average in

the core, Ei is the integrated reactor energy generated while the jth element was in

the ith position in MWD, and Ni is the number of elements in the core during the

time that the jth element was in the ith position. For a typical 250 kW TRIGA

reactor operating 200 days a year and 8 hours per day, the 235U consumption is

approximately 20 g per year[8]. Thus, the rate of consumption is about 1.24 g of

235U per MWD of thermal power production, as used in Eq. (2.1). A standard

calculation for the consumption and conversion of thermal power production to

235U grams burned is provided in Appendix A.

Enclosed in the same report was a burnup summary card of one of the fuel elements

initially burned at the TRIGA MARK III reactor in San Diego before its transfer

to KSU. Like the KSU TRIGA reactor, the TRIGA MARK III reactor had circular

rings but included an additional outer G ring. The power peaking factors for the

rings were also included in the report (see Table 2.1). As seen in Table 2.2, the

summary card indicates the in-core history of fuel element 3113. For simplicity, it
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Table 2.1: Specified Ring Power peaking factor.

Ring Position Pi

A 1.61
B 1.57
C 1.46
D 1.29
E 1.07
F 0.81
G 0.66

was assumed that there were 120 fuel elements, i.e., Ni=120, in the core during the

lifetime of fuel element number 3113.

Table 2.2: Burnup summary card for Fuel element 3113 prior to KSU depletion.

Ring position Length of time MWD Number of elements in core

C 08/04/1964-01/28/1965 107.44 120
E 01/28/1965-06/10/1971 161.07 120

The total amount of U235 consumed is, then,

G3113 = 1.24
∑
i

1.46× 107.44 + 1.07× 161.07

120
= 3.29 g. (2.2)

Further information on the integrated reactor power in MWD from the facility’s

operational data or how the power peaking factors and related uncertainties were

calculated were not documented. For the purposes of maintaining consistency, the

preliminary burnup calculations of tested fuel elements for the reactivity method

in this work were calculated using Eq. (2.1). The KSU core ring power peaking

factors used in the calculations for further accuracy are discussed in Chapter 5.

2.3 KSU Logbook data

The KSU operating logbooks contain records of the power history since the reactor

first went critical in 1962. These records consist of all operations and events
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which affect the reactor, including changes in reactor configuration, fuel loading,

control rod position and worth, and insertion of experimental apparatus. In a

day of operation, reactivity manipulations such as startup, shutdown, and power

changes are recorded by the reactor operator on duty. Logbook entries, as shown

in Figure 2.3, for each operating day take the following form: time of event; person

reporting; power level channel readings; control rod positions; fuel and water

temperature readings; description of event.

Date: Core: Checklist Page #: Continuation Page: Supervisor Signature: 

Time 

Operations Information 
Operating Data 

Status 
Power 

Control Rod Position Power Level Readings Cooling Temp Fuel Temp 

Run Operator Supervisor Trainee Pulse Safety Shim Reg NLW 
NMP 

Range 

NMP % 

Range 

NPP % 

Power 
Inlet Outlet Bulk #1 #2 

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

Figure 2.3: log sheet.

Startup procedures begin by entering the reactor conditions as indicated by the

instrumental readings before any control rod movements. Afterwards, control rods

are then used one at a time for a desired power level. Since 1962, these logbook

entries have changed in structure but maintained time entries for power levels

during power changes with a maximum of a five minute delay in recording according

to the operational limitations[9]. Reactor operators will thus wait to enter the time

in critical sets, i.e, when keff = 1, until power stabilizes. Finally, the time entry for

the shutdown of the reactor is recorded following the insertion of the control rods.

There are three indications of power that operators record in the logbook. First,

the NLW (Nuclear Logarithmic Wide Range) power channel, which uses a fission
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counter for detecting thermal neutrons incorporating pulse height discrimination

to distinguish neutron pulses from gamma pulses at low power levels. Second, the

NMP (Nuclear Multi-Range Power) channel uses a compensated ion chamber for

detection of thermal neutrons, which provides a multi-range linear power indication.

The NPP (Nuclear Percent Power) channel, coupled to an uncompensated ion

chamber, provides power reading percentages of 1 MW. Incremented burnup

generation is reported each day of operation and are added to the overall burnup

generation since the reactor first went critical. Estimates of burnup generations

in kWh are calculated using the rectangle method of integration over the power

dependent time data in critical log sets and shutdown periods and neglect any

startup power generation. Critical log sets are reported using the NMP channel as

the main indication of power. These estimations were designed such that neglected

startup power generation would be compensated by overestimating the shutdown

periods.

Table 2.3: The discrete steps for a simple operational day.

Time Power (kW) status

01:28:00 PM 0 startup
01:35:00 PM 0.01 keff = 1
01:38:00 PM 0 shutdown
03:08:00 PM 0 startup
03:19:00 PM 200 keff = 1
03:51:00 PM 500 keff = 1
04:51:00 PM 100 keff = 1
05:00:00 PM 0 shutdown

To illustrate these estimations, Table 2.3 summarizes a simple day of operation

where discrete steps such as startups, critical operation, and shutdowns are included.

Figure 2.4 depicts the power data from the NLW and NMP power channels and

illustrates the rectangle method of integration by approximating the definite integral,

highlighted in blue rectangles. There was not a recording of power from the NPP

channel in the stripchart recorder on that day. Based on the method used by the

reactor staff, the total power generation would be 621.67 kWh or 0.026 MWD. As

observed in Figure 2.4, the method underestimates during startup power levels but

overestimates the power generation during shutdown. Since 2011 the KSU reactor
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Figure 2.4: Power data with mock up estimations burnup.

facility used an SV 180 digitized strip-chart recorder, a paperless data acquisition

system, that records power level readings and fuel and water temperatures every

second. For the same day of operation in the example above, the total power

generation according to the NLW and NMP channels is 610.67 kWh or 0.025 and

632.43 kWh or 0.026 MWD, respectively. The digitized recording can be used to

calculate a more accurate power generation by integration of the time dependent

power data. Moreover, the transition to recording power generations per second

from the stripchart recorder could help quantify the uncertainties in the burnup

calculation. For the purposes of this work, only uncertainties introduced later from

the power factor calculations were determined, see Section 5.3.
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Chapter 3

Literature Review

This chapter describes the relationship between reactivity and burnup, and how

that relationship is used via the “reactivity method” to determine fuel burnup.

Past use of the reactivity method and its sensitivity to isotopic uncertainties is

also summarized.

3.1 The Reactivity Method

The reactivity method is an indirect technique for estimating burnup (and, therefore,

composition) based on the assumption that the reactivity worth of a fuel element

is a known function of burnup. In this method, fuel elements of interest are placed

in a specific “measurement” location within a core configuration established to be

approximately supercritical (reactivity ρ > 0) with all control rods fully withdrawn

before an element is inserted. The positive period method is among a variety

of experimental techniques that have been developed to measure fuel reactivity

worth and was chosen for this work due to its simplicity. With this technique,

reactor periods are determined by analyzing the power transient resulting from

the reactivity insertion and later used in the inhour equation to determine the

reactivity. The core excess reactivity, i.e., the reactivity remaining when the control

rods fully withdrawn, is the only measured quantity needed to determine a fuel
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element’s reactivity worth. The respective reactivity worth is equal to the difference

of core excess reactivity before and after insertion of a fuel element. The core

configuration used for this work and the procedure for the positive period method

are addressed in Chapter 4.

Reactivity is a parameter that indicates a nuclear reactor’s departure from criticality,

i.e., when the keff of the system is 1 and a reactor is sustaining a fission chain

reaction, defined in Eq. (3.1). The effective multiplication factor keff can be defined

as the ratio of the neutrons produced in a reactor in one generation to the number

of neutrons produced in the previous generation;

ρ =
∆keff

keff

=
keff − 1

keff

, (3.1)

where the reactor state, with a given value of keff , is defined as

keff > 1 supercritical

keff = 1 critical

keff < 1 subcritical.
(3.2)

Generally, the reactivity worth of a fuel element decreases with increased burnup,

and often a simple relationship between burnup and reactivity can be established.

In particular, if at least two of the measured fuel elements have well-specified

burnups, a linear relationship between reactivity and burnup can be defined. This

relationship can be used to determine total burnups for fuel elements that cannot be

measured directly (due, perhaps, to excess radioactivity). It is convenient to use a

fresh element, i.e., no burnup, to serve as a lower bound in the defined relationship.

Nonetheless, if a fresh element is not available, two or more elements can be picked

for references as long as its burnup is determined with sufficient accuracy. Therefore,

it must be emphasized that the reactivity method is a relative method and another

method, such as gamma spectroscopy or reactor physics calculations, must be

used for a supplementary absolute burnup determination if an additional reference
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point is needed. For the purposes of this work, the reactivity method was used

as the primary technique to define a relationship between reactivity worths and

burnup along with support from computational modeling; additional supporting

measurements via gamma spectroscopy are planned at KSU.

3.2 Summary of Past Work

The relationship between reactivity and burnup depends significantly on the fuel

in question. The accuracy of calculated burnup varies significantly from element to

element and if one type of fuel has been used in regions with another type. Previous

applications of the reactivity method had to account for such effects because many

TRIGA facilities operate with mixed fuel types. At the KSU reactor, only one

type of fuel has been used for the operational history considered, however, it is

not clear whether much of the spent fuel had been depleted where operations had

mixed fuel types[10]. This section aims to provide a summary of past applications

of the reactivity method and the significance of fuel elements that spent most of

their core lifetime around heterogeneities that cause irregular flux distributions.

3.2.1 Initial Work

The reactivity method was first introduced in early work performed at the Atomin-

stitut TRIGA MARK II reactor to provide an alternative method for determining

fuel element burnups based on the measurement of the element’s relative reactivity

worth[2]. The facility operated with mixed fuel that included stainless steel (SS)

and aluminum (Al) cladding both with 8.5 weight (wt) % uranium enriched to 20%

in 235U and FLIP (Fuel Lifetime Improvement Program) fuel that was 8.5wt % in

uranium and 70% enriched in 235U. The reactivity measurements were performed

only with in-core Al and SS clad fuel elements. In-core FLIP fuel were not experi-

mented with since they were necessary to compensate the reactivity loss during

the vacancy of the tested fuel elements. A measurement location was chosen in
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Figure 3.1: K∞ versus % burnup for Al, SS, and FLIP fuel after ref.[2].

the C-ring, an inner ring, though the reason for choosing this location was not

specified. Prior to the reactivity measurements, the dependence of reactivity on

burnup for all the TRIGA fuel element types in the reactor were tabulated using

the TRIGAP computer code, a one-dimensional, two-group diffusion approximation

code in which group constants were calculated using the WIMS code[2][11][12].

The calculation was done to understand the dependence on burnup of those fuel

types and to give insight into how these correlations could affect the reactivity

measurements, especially for elements used in mixed-fuel configurations.

As shown Figure 3.1, the multiplication factor (or reactivity) of low enriched

uranium (LEU) fuel exhibits a linear dependence on burnup while that high of

enriched uranium (HEU) fuel has a strong non-linear dependence on burnup. Non-

linearity in burnup is observed for the case of Al cladding at lower burnup and

FLIP fuels because of burnable poisons, samarium and erbium, included in the fuel

elements[2]. It is important to note, as mentioned in Section 2.1, that the KSU

TRIGA fuel had SS cladding with no burnable poison. However, samarium is a
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fission product that builds up over time, and several of its isotopes are important

to include in burnup calculations.

The reactivity measurements were conducted by observing the variation in the

neutron flux signal by a digital reactivity meter. This meter has a range -20 to +300

pcm (“per cent mille” equals 10−5 ∆k
k

)), which allowed measurements at subcritical

conditions to be taken into account[2]. The reactivity measurements were performed

along with the predictive TRIGAP code for both types of fuel to compare the

experimental to reactor calculational techniques in estimating the burnups of the

measured fuel elements. It was concluded that the differences were due to the

simplifications of the TRIGAP models that inadequately treated the irregularities

of flux distributions caused by the mixed fuel. FLIP fuel has a thermal absorption

cross section of approximately seven times that of standard fuel[13]. This led to

large variations in the final burnup calculations of the reactivity measurements

that were performed. Furthermore, some of these measured fuel elements were near

graphite reflector elements, control rods, and water-filled assemblies during their

lifetime in the core, and the model inadequately treated these irregularities. There

was no specific uncertainty analysis in the reactivity results in this early work, and

therefore, benchmark experiments conducted at the Josef Stefan TRIGA MARK

II reactor in Ljubljana, Slovenija were reviewed.

3.2.2 Reactivity measurements at Josef Stein TRIGA re-

actor

At the Jozef Stefan TRIGA reactor in Ljubljana, Slovenia, two benchmark exper-

iments were performed in which several parameters (multiplication factor, fuel

temperature reactivity coefficient, fuel element reactivity worth distribution, radial

and axial flux distributions, among others) were measured in 1991 and again in 1998.

These benchmark experiments were conducted to test computer codes for research

reactor fuel management and burnup calculations. Since reconstruction began in

1990, the reactor has operated with only standard SS clad 20% enriched TRIGA

fuel that included used 8.5wt % and new fresh 12wt % fuel. Specifically, in the
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second benchmark experiment, fuel element burnup was measured by the reactivity

method in which the measurements were performed in an experimental core config-

uration loaded only with 12wt %, 20% fuel. This configuration was constant during

the experiments since the measurements were relative. The measurement location

was chosen in the C-ring, near the center of the core. It was chosen because the

fission rate was high, and the gradient of neutron flux was approximately constant.

The control rods were fully withdrawn during the reactivity measurement, and

a reactivity meter, similar to that at the Atominstitut reactor, was available to

analyze the flux time dependent data to measure reactivity.

A total of nine standard 12wt % 20% enriched TRIGA fuel elements were selected

for measurements. It is important to note that three of them had spent most of

their core lives near control rods and irradiation channels and one in a mixed ring

with 8.5 wt % 20 % enriched fuel. The rest of these elements had relatively simple

burnup histories, and one, included approximately fresh element, which served as

a reference element for absolute burnup determination[3].

The first set of reactivity measurements were performed only 20 hours after the

reactor had been operating at full power (250 kW). The total thermal energy

produced from that operation, approximately 6.4 MWh, led to high xenon (Xe)

presence in the reactivity measurements. One measurement was observed to have

a difference of approximately 7 pcm in a 132 minute interval. For that reason, all

the measurements were repeated after 40 hours after shutdown to eliminate the Xe

influence. Subsequently, reproducibility of the same reactivity measurement had

shown a ±1 pcm difference in a 97 minute interval. Since some of the elements

had spent their core lives under irregular flux distributions, the orientation of two

fuel elements were studied by rotating them around their axis and observing the

difference in the reactivity measurement. Measurements of the elements showed

that the effect contributes about ±8 pcm[3].

The results of these measurements were compared to modeled reactivity worths

from TRIGLAV, as shown in Figure 3.2[14]. TRIGLAV is based on a four-group,

two-dimensional theory model in which every location in a given core configuration
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Figure 3.2: Reactivity versus burnup for Josef Stefan TRIGA fuel after.[3]

is treated explicitly as a homogeneous region equivalent to a unit cell. TRIGLAV

was shown to be a good predictor of burnup for almost all of the fuel elements and

showed good agreement within ±1% burnup. One element showed that the burnup

calculation was too low due to the uncertainty in initial hydrogen and zirconium

content which contributed to a reactivity change of approximately 30 pcm and was

equivalent to the reactivity loss due to a burnup of 1.5 MWd/MTU.

3.2.3 Sensitivity studies of burnup composition

Sensitivity studies of the TRIGA benchmark critical experiment were performed

to estimate the effects of various uncertainties on the effective multiplication factor

using reactor calculation codes to validate the experimental results. Most notably,

the effects of fuel composition were investigated to observe the effects it would have

on keff modeled calculations. Between the two benchmark experiments, the fuel

element burnup accumulated during 1991-1998 was calculated with TRIGLAV. The

isotopic compositions for these elements were supplied to TRIGLAV using WIMD4
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code for each fuel element at a particular burnup. In an aim to conduct these sensi-

tivity studies on compositions, a Monte Carlo model that was developed in 1997[15]

was used to observe the effect of the inclusion and exclusion of several isotopes at

different burnups. To extend that analysis, WIMSD4 results were compared to

ORIGEN2 results for fuel isotopic composition importance. Calculations of the

standard TRIGA fuel element isotopic composition as a function of burnup were

performed for 3%, 10%, and 20% burnup of 235U. It was concluded that only 135Xe,

149Sm, 151Sm, 239Pu, and 143Nd are important for criticality calculations if burnups

are less than 5%. For higher burnups (burnup > 10%) an additional 7 isotopes

(236U, 147Pm, 103Rh, 131Xe, 133Cs, 99Tc, and 240Pu) had to be included yeilding a

± 10% uncertainty in the change of keff due to burnup. It also was concluded that

both WIMSD4 and ORIGEN2 gave similar burned material compositions and the

differences observed in some isotope concentrations had very little impact on the

criticality calculations.[16] The isotopes included in the computation efforts for

this work are discussed in more detail in Chapter 5.
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Chapter 4

Experimental Procedure

To calculate the reactivity worth of a fuel element via the positive period method,

the inhour equation is required, the theory of which is given first. The experimental

procedure for the measurements at the KSU reactor is then described followed by

a brief overview of the experimental data output from the stripchart recorder.

4.1 Theory

The theoretical relationship between the stable or asymptotic period of a reactor

and the corresponding reactivity responsible for that period is developed in this

section. The time-dependent behavior of a reactor is related to the effective

multiplication factor and its deviation from criticality. The power produced during

a reactor transient is not only related to keff but also to the prompt and delayed

neutron properties through the reactor kinetics equations as will be shown later.

Fission is a process in which the nucleus of a heavy atom splits into lighter nuclei,

simultaneously ejecting free neutrons and releasing large amounts of energy. More

than 99 percent of fission neutrons produced are prompt neutrons. They are born

instantaneously at the time of fission and have a lifetime, i.e., the length of time at

which a neutron is born until its absorption by surrounding medium or escaped from

the system, of 10−5 to 10−4 seconds[4]. The prompt neutron lifetime is dominated
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by the slowing down time to thermal energies and its subsequent diffusion time

before being removed from the system. With these small neutron lifetimes, it is

difficult to manage the rates of change in neutron populations even for a small

step change of reactivity. However, the remaining fraction, known as the delayed

neutron fraction, has a great impact in decreasing the rate of change in the neutron

population. Delayed neutrons are the result of the decay of neutron-emitting

fission products. They are typically lumped in the framework of groups, known

as neutron precursors, based on their half-lives; see Table 4.1 for typical delayed

neutron properties for 233U, 235U, and 239Pu. Half lives, i.e., the time taken for

one-half of the atoms of a radioactive isotope to undergo radioactive decay, of these

precursors range from a fraction of a second to nearly a minute, and they dominate

the average neutron lifetime making it possible to manage the rates of change in

the neutron population. As seen in Table 4.1, the delayed neutron precursors are

divided into 6 groups, and the new features from MCNP also provide the same

number of groups.

Table 4.1: Delayed Neutron properties.[4]

Group Approximate Half Life(sec)
Delayed Neutron Fraction

233U 235U 239Pu

1 56 2.3 ·10−4 2.1 ·10−4 0.7 ·10−4

2 23 7.8 ·10−4 14.2 ·10−4 6.3 ·10−4

3 6.2 6.4 ·10−4 12.8 ·10−4 4.4 ·10−4

4 2.3 7.4 ·10−4 25.7 ·10−4 6.9 ·10−4

5 0.6 1.4 ·10−4 7.5 ·10−4 1.8 ·10−4

6 0.2 0.8 ·10−4 2.7 ·10−4 0.9 ·10−4

The point reactor kinetics equations (PRKEs) are an approximate model of the

time-dependent reactor behavior. From this model, the inhour equation is derived

to determine reactivity through a relatively simple period measurement. In the

PRKEs model, the reactor power varies proportionally throughout its volume,

considering only an average value of the power density. The PRKEs uses the

one-speed approximation in which the neutron distribution and the associated

cross sections are averaged over energy. Moreover, an assumed time-independent

spatial flux shape is approximated by a non-leakage probability which removes

25



the need to treat spatial effects. These approximations are defined primarily to

emphasize the study of time dependent behavior of a nuclear reactor.

The derivation of the PRKEs begins by introducing the neutron balance equation

for a finite reactor. For simplicity, we consider only neutrons, of one speed:

dn(t)

dt
= source neutrons produced + fission neutrons produced

− neutrons absorbed− neutrons leaked from the system

dn(t)

dt
= S(t) + ν̄Σf v̄n(t)− Σav̄n(t) +D∇2v̄n(t)

(4.1)

where S(t) is the strength of the external neutron source in the reactor, n(t) is

the neutron density, v̄ is average neutron speed, Σa is the energy-averaged cross

section for absorption, Σf is the energy-averaged cross section for fission, ν̄ is the

average number of neutrons produced per fission, and D is the diffusion coefficient.

For a steady-state, critical reactor for which dn(t)
dt

= 0, Eq. (4.1) simplifies to,

ν̄Σf v̄n(t)− Σav̄n(t) +D∇2v̄n(t) = 0. (4.2)

Notice that the extraneous source is omitted from Eq. (4.2). This is because

in a critical state, the production term is independent of any extraneous source

and dependent only upon fission neutrons from the fuel, assuming ν̄Σf v̄n(t) >>

S(t). The quantity L, called the diffusion length, can be defined by L2 = D
Σa

.

Here L quantifies the distance a neutron travels to absorption. Furthermore, the

quantity k∞, taken here as the infinite multiplication factor, can then be defined

as k∞ =
ν̄Σf

Σa
. Substitution of L and k∞ into Eq. (4.2) simplifies to the following

equation:

∇2v̄n(t)− k∞ − 1

L2
v̄n(t) = 0. (4.3)
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By defining a quantity called “buckling”, B2, Eq. (4.3) then simplifies to

∇2v̄n(t)−B2v̄n(t) = 0. (4.4)

The eigenvalue B2 in the wave equation above can be expressed as the material

buckling where the buckling is dependent on reactor materials, i.e., B2
m = k∞−1

L2 .

Additionally, B2 dependence could also be expressed based on the geometry, i.e.,

the size and shape, of the reactor, where geometric buckling B2
g is a a measure

of the bending or curvature of the neutron flux at any point (x, y, z) within the

reactor,

B2
g =
−∇2v̄n(x, y, z)

v̄n(x, y, z)
= 0. (4.5)

Notice the relationship of buckling to the leakage expression D∇2v̄n(t). A greater

curvature of the neutron flux indicates a greater leakage from the reactor. Note

that at a critical condition, dv̄n
dt

= 0 and B2
g = B2

m, which can be used to give the

critical dimensions of the reactor. Recall in Eq. (4.1) that the neutron leakage

term is D∇2v̄n(t) and the absorption term is Σav̄n(t). The thermal non-leakage

probability can be defined as PNL, i.e., the ratio of thermal absorption to the total

loss of thermal neutrons, or the portion that did not leak from the system, where

D∇2v̄n(t) is equal to DB2v̄n(t) (from Eq. (4.4)),

PNL =
Thermal absorption

Thermal absorption + Thermal leakage

PNL =
Σav̄n(t)

Σav̄n(t) +D∇2v̄n(t)
=

1

1 + L2B2
. (4.6)

Eq. (4.1) then is reduced to

dn(t)

dt
= S(t) +

keff − 1

l
n(t), (4.7)
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where

keff =
νΣf

Σa

PNL

l =
1

v̄Σa

PNL. (4.8)

Here, l is defined as the neutron lifetime and keff is the multiplication factor with

leakage effects included. In reality, the total non-leakage probability also includes

the non-leakage probability for fast neutrons when they are born from fission using

the Fermi slowing-down theory. However, for the purposes of one-group calculations

as indicated above, the non-leakage probability is well described in Eq. (4.6).

From Eq. (4.7) , we solve for the neutron population without extraneous sources of

neutrons,

n(t) = n(0)exp

(
keff − 1

l
t

)
(4.9)

Recall that the period T is the time where the flux or neutron population to

increase by a factor of e. Eq. (4.8) then becomes

n(t) = n(0)exp

(
t

T

)
(4.10)

where the period is

T =
l

keff − 1
. (4.11)

According to Eq. (4.10), for a change in keff from 1, i.e., steady-state critical reactor,

to keff=1.001, and a thermal neutron lifetime of 4.3 ·10−5, taken from KSU Safety

Analysis Report, the period is 0.043 s. This would mean that in 1 s, the flux

would rise by ≈ e23. The reactor would be completely out of control if this were
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reality. Fortunately, the effect of delayed neutrons, which have been ignored until

now, greatly decreases the rates of change in the neutron populations. Recall that

delayed neutrons are well described in groups known as precursors. Rewriting

Eq. (4.1), the neutron balance in which the effects of delayed neutrons are included

takes the following form,

dn(t)

dt
= S(t) + (1− β)ν̄Σf v̄n(t) +

∑
i

λiCi(t)− Σav̄n(t) +D∇2v̄n(t) (4.12)

where βi is the delayed fraction of the i-th group of delayed neutrons, Ci is the

concentration of radioactive precursors produced of the i-th group, and λi is the

decay constant of the delayed neutron precursors of the i-th group so that the rate

of delayed neutron production is
∑

i λiCi(t).

In order to solve Eq. (4.12), it is important to determine the precursor concentration

for each delayed group. This can be done with the following equation:

dCi(t)

dt
= Number of precursors produced/s +

Number of precursors decaying/s

dCi(t)

dt
= βiνΣf v̄n(t)− λiCi(t). i = 1, 2, ...

(4.13)

By using the definition of reactivity in Eq. (3.2) and designating the quantity l
keff

as Λ, Eqs. (4.12)–(4.13) can be reduced to the following linear ordinary differential

equations that describe the time-dependent behavior of a reactor,

dn(t)

dt
= S(t) +

ρ− β
Λ

+
∑
i

λiCi(t) i = 1, 2, ... (4.14)

dCi(t)

dt
=
βi
Λ
n(t)− λiCi(t) i = 1, 2, ... (4.15)
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Figure 4.1: Reactivity Insertions of ± 0.10β at an initial critical reactor[4].

A Python script was written to illustrate the neutron population as a function

of time using the point reactor kinetics equations and the KSU TRIGA delayed

neutron data[9]. Fig. 4.1 depicts the time dependent behavior of the reactor power

after a sudden positive as well as a negative change in reactivity in an initially

critical reactor. For times less than one second, the prompt neutrons are abruptly

in control of the neutron population. This is known as the prompt jump. The slow

growth and decline of the two curves following the prompt jump occur because

small reactivity insertions, ρ < β, cause the delayed neutrons to be the primary

determinant of the neutron population. Subsequently, for large positive insertions

of reactivity, ρ > β, it is apparent that the prompt neutron lifetime is the primary

determinant of the reactor response. Modern units of reactivities are expressed in

pcm or in dollars, where $ =ρ/β. As ρ approaches β, the reactor period becomes

shorter, making the reactor difficult to control. Avoiding such an approach is why

units of reactivities are expressed in dollars[4]. Moreover, the asymptotic behavior

of the neutron population is expressed in an exponential form, n(t) ∝ exp(t/T ),
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Figure 4.2: Solutions of the inhour equation[4].

where T is the asymptotic or stable period. Depending on whether the reactor is

subcritical or supercritical, the reactor period is negative or positive, respectively.

To determine the reactor stable period, a well known equation in reactor theory,

known as the inhour equation, is used to to relate the measured positive period to

a positive step change in reactivity. This key equation is derived from the PRKE,

where the solution of the ordinary differential equations of 4.16 and 4.17 are sought

in the form of n(t)= N exp(ωt) and Ci(t) = Biexp(ωt), where N, Bi, and ω are

constants. By substituting these forms in the kinetics equations, the solution yields

ρ = f(ω) = ω

(
Λ +

∑
i

βi
ω + λi

)
, (4.16)

where ρ is reactivity and ω is the inverse stable period.

Figure 4.2 depicts the graphical solution of Eq. (4.16) where i=6 for 6 precursor

groups. Subsequently, there are a total of 7 eigenvalues, ωi, for the solution of the

inhour equation. Accordingly, the solution of the neutron density n(t) is expressed

as a linear combination of the seven solutions,

7∑
i=1

= Niexp(ωit). (4.17)

It is evident that for positive reactivities, only one root is positive, ω1, and the rest

are negative, which makes the remaining terms in Eq. (4.17) die away with time.
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Negative reactivities show that all roots are negative, with ω1 dying away more

slowly than the other roots. Consequently, the asymptotic solution of the neutron

population is,

n(t) ≈ N1exp(t/T ) (4.18)

where T = 1/ω1 is the reactor stable period.

Note that a limiting period , i.e. T= 1/λ1 of the longest-lived group, is in place for

negative changes in reactivity, which implies that a reactor cannot shutdown faster

than on that period. Eq. (4.16) is then expressed for an asymptotic period, T , as

ρ =

(
Λ

T
+
∑
i

βi
1 + λiT

)
(4.19)

Fuel element reactivity worth can be measured using a technique known as the

positive period method. Such a method is advantageous in that it requires only

the use of the core excess reactivity, i.e., all control rods fully withdrawn. It

also eliminates the necessity for extra instrumentation to measure the reactivity

worths of fuel elements. Additionally, it eliminates the effect of uncertainty in

control rod calibration and in position indications of control rods. Positive period

measurements are used with the inhour equation to determine the magnitude of

the reactivity perturbation corresponding to the observed stable period.

It is important to note that there are bounds for using the positive period method.

Such limits allow period measurements to be free of internal and external effects.

However, the method is only applicable in the absence of temperature feedback

caused by the inherent fuel moderator in KSU TRIGA fuel. Rising temperatures in

the fuel cause the hydrogen in the fuel moderator (i.e., bound H) to oscillate, thus

increasing the probability that a thermal neutron will gain energy in the lattice.

This causes the thermal neutron spectrum to harden, causing a loss of reactivity

due to decreased neutron absorption in 235U. Additionally, rising temperatures

in the fuel cause the capture resonances in 238U to be broadened, known as the
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Doppler effect, thus decreasing the resonance escape probability and resulting in a

loss in reactivity in addition to requiring low fuel temperatures. The method also

requires the absence of external sources of neutrons.

By evaluating a neutron flux or power signal for a given step reactivity insertion,

the asymptotic period can be extracted to compute the reactivity using the inhour

equation. The experimental procedure in the next section provides the setup for

the positive period measurements. The power range used for these measurements,

to avoid reactivity changes due to temperature feedback, is also discussed.

4.2 Experimental Configuration and Procedure

The positive period method was used at the KSU TRIGA MARK II reactor to

determine the burnup of 26 out-of-core fuel elements. These elements have been

used in the KSU core and were placed into the storage racks when replaced during

changing configurations. The first set of measurements was performed in September

2015, for which six elements were selected, including a fresh element, to provide

a burnup reference point. In March of 2016, 19 out-of-core fuel elements were

used. There was prior knowledge that a slightly elevated xenon concentration

had been in the core from the previous day of operation. The decision was made

to measure these elements when it was initially thought that the concentration

was negligible. However, it was later noted that xenon presence was high when

a difference of 21 pcm in the core excess reactivity was measured in only an 8

hour interval. Therefore, these measurements were not included in the reactivity

calculations of this work. Finally the last set of measurements were performed in

May of 2016 which included a total of 26 out-of-core fuel elements, including the

six elements performed in September 2015. Before starting the first and last set of

measurements, the reactor had been shutdown for approximately 72 hours, which

has sufficient to eliminate xenon effects on the reactivity measurements.

The procedure for these measurements began with a briefing from the Reactor

Manager to the staff members about the fuel handling procedure to ensure that
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Figure 4.3: Core configuration for the reactivity method measurements

precautions and limits were implemented when moving fuel elements. A Senior

Reactor operator (SRO) was notified to be present in the reactor bay for all fuel

movements per fuel handling procedure. To establish a slightly supercritical core

with all control rods withdrawn, nine fuel elements and the extraneous neutron

source (Am,Be) from the F-ring and 1 fuel element from the E-ring were removed

using the fuel handling tool. The core was established to be barely critical, so

the period was small enough for the reactivity method with all rods withdrawn

completely with a test element installed. The fuel elements and the source were

placed in the racks available nearby in the reactor pool. A staff member in the

control room was present to log the serial numbers of the fuel elements and their

new rack locations. A survey meter was available for use during fuel movements

to measure radiation levels at the pool surface. The core configuration for this

experiment is depicted in Figure 4.3.

The achievement of a slightly supercritical core with fully withdrawn control

rods allowed a first measurement of the excess reactivity of the new core. The
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positive period method was conducted in three major steps to ensure a consistent

methodology. First, three control rods (Pulse, Shim, Safety) were fully withdrawn

and a fourth rod (Regulating) was withdrawn to the appropriate position to

establish criticality at 1 W. The reactor operator then recorded the time and

positions of these control rods in the logbook. Second, the fourth control rod was

fully withdrawn and the positive period was observed. Third, the reactor operator

scrammed the reactor, rapidly inserting all the control rods, when power reached

10 kW.

According to the KSU nuclear facility training manual, thermal feedback is absent

roughly for thermal power less than 1000 W. However, the scram point was set at

10 kW to extract as much recorded data as possible. The exact point of thermal

feedback was determined in later analysis by visual inspection of the power trend

and verified by statistical analysis; see Chapter 5. The time-dependent power data

for this first measurement was recorded by the strip chart recorder provided by the

control console for the measurement. After that, the experimental position chosen

was F-4, (see Figure 4.3) to avoid interfering with ongoing experiments in the reactor

pool. As mentioned in Section 3.2.2, the experimental position in the past work

was chosen in the C-ring, to have a gradient of neutron flux that was approximately

constant. However, in this work, it was advisable to use an outer ring (e.g., E-

or F-ring) for a test location in order to minimize the reactivity perturbation to

facilitate a slow measurable period. The analysis of this effect is discussed further

in Chapter 6. The minimization of reactivity perturbations increases the precision

of positive period measurements and will reduce the likelihood of a period scram.

The selected fuel element of interest was lowered into lattice position F-4 one by

one and the same steps were taken for the measurements. At the conclusion of the

procedure all fuel elements were returned to their starting locations in order to

re-establish the prior core configuration.
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Table 4.2: Stripchart Recorder.

Date Time NMP (% power range) NLW (kW) Fuel Temp (C) NPP (% 1 MW)

5/23/2016 10:29:24 50.49133 0.9431407 19.48584 0.4691752
5/23/2016 10:29:25 50.49133 0.9431407 19.48584 0.4691752
5/23/2016 10:29:26 52.32051 0.9649889 19.61674 0.4746915
5/23/2016 10:29:27 53.44722 0.9857489 19.57934 0.4746915
5/23/2016 10:29:28 53.44722 0.9857489 19.57934 0.4746915
5/23/2016 10:29:29 54.98429 1.003435 19.46715 0.4802079
5/23/2016 10:29:30 56.95256 1.024745 19.59804 0.4802079
5/23/2016 10:29:31 56.95256 1.024745 19.59804 0.4802079

4.3 Experimental Data

The NLW, NMP, and NPP channels were available at the control console to

report power versus time in the strip chart recorder. Table 4.2 illustrates the

simple table format of the stripchart recorder, including the date, time, power

indications, and the fuel temperature provided by a thermocouple element in one

of the measurements. For the purposes of these measurements, only the NMP

channel was used in the data analysis, since it was most valid for the range of

power in the measurements. The NLW channel is a good indicator at low power

but was invalid for these measurements since the readings were disrupted around 1

kW where the pulse mode changes automatically to a current mode. The NPP

channel, which gives reading from 0-100% of 1 MW, was clearly invalid for these

measurements because it gave 0% readings. The power ranges selected in the data

analysis for the reactivity calculations is provided along with the burnup value of

the each respective fuel element experimented within Chapter 5.
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Chapter 5

Results

In this chapter, the inhour equation is used with the period measurements to

determine reactivity. All analysis was performed using Serpent and MCNP with

the ENDF/B-VII cross-section library. Python scripts were written to interpret

the experimental and computational data.

5.1 Period Measurements

Recall that the neutron population P in a delayed supercritical nuclear reactor is

well described by a single exponential in the asymptotic regime, i.e., P ∝ exp(t/τ),

where τ is the period and t is the time. The stripchart recorder was used to extract

the time-dependent data of all control rods out core with 26 out-of-core tested fuel

elements. Data recorded by the NMP channel as percent power was converted to

absolute power in kW for analysis. The top portion of Fig. 5.1 shows the NMP

channel’s power and a corresponding linear regression model of a fall 2015 period

measurement of fuel element 6578 by the least squares method, where the slope is

taken as the inverse period.

As observed in the figure, the period stabilizes (i.e., becomes asymptotic) at around

65 seconds. The bottom portion of Fig. 5.1 shows a normal probability plot of

the model error (t> 65 seconds) for the same tested element. These percent
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Figure 5.1: NMP channel’s (compensated ion chamber), power vs time for fuel
element 6578.

differences were examined by the Anderson-Darling Normality test, a statistical

test used to determine if data is drawn from a normal probability distribution.

The coefficient of determination, a statistical measure of how well the regression

line approximates the data points, was found to be 0.9914[17]. In order to extract

the asymptotic or stable period for all measurements, lower and upper bounds of

the time dependent power data were set for all the measurements to avoid any

distribution to the asymptotic behavior of period measurements. A conservative

lower bound was set at 50 W, since loss of sensitivity on the NMP channel was

observed below about 4 W. As mentioned in Section 4.2, the thermal feedback

for the KSU reactor is observed above 1 kW, however an upper bound was set

at 2 kW based on visual inspection of thermal feedback of power data for all 26

fuel elements. The same bounds were selected for all the time dependent power

data to maintain consistency. Table 5.1 shows the period for all fuel elements

tested with their respective uncertainties. These periods are used in the inhour

equation Eq. (4.19) later in this chapter to calculate reactivity worths for all the

fuel elements. However, first the delayed neutron data for each tested fuel element
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Table 5.1: Asymptotic period measurements.

Test Element Measurement 2015 Day 1 2016 Day 2 2016 Day 3 2016

Vacant 27.45 ± 0.097 41.673 ± 0.066 40.095 ± 0.061 36.738 ± 0.071
11352 9.293 ± 0.082 NA 12.515 ± 0.094 NA
6578 9.535 ± 0.069 NA 12.748 ± 0.089 NA
4349 9.685 ± 0.074 13.653 ± 0.063 NA NA
4339 10.086 ± 0.070 13.712 ± 0.071 NA NA
5254 10.272 ± 0.081 NA 14.318 ± 0.084 NA
5031 10.591 ± 0.087 NA 14.330 ± 0.064 NA
3684 NA 15.015 ± 0.089 NA NA
4078 NA 14.513 ± 0.082 NA NA
4080 NA 14.997 ± 0.119 NA NA
4102 NA 14.311 ± 0.100 NA NA
4143 NA 13.804 ± 0.071 NA NA
5019 NA 14.082 ± 0.072 NA NA
5253 NA 14.340 ± 0.068 NA NA
2942 NA NA 12.787 ± 0.091 NA
2982 NA NA 13.072 ± 0.083 NA
5039 NA NA 14.318 ± 0.083 NA
5647 NA NA 14.187 ± 0.082 NA
5654 NA NA 13.896 ± 0.068 NA
5947 NA NA 13.596 ± 0.087 NA
5950 NA NA 13.765 ± 0.068 NA
5951 NA NA 13.333 ± 0.084 NA
2425 NA NA NA 12.735 ± 0.082
2788 NA NA NA 12.041 ± 0.072
2789 NA NA NA 11.801 ± 0.072
2937 NA NA NA 11.681 ± 0.072
4072 NA NA NA 13.003 ± 0.060

is required for these calculations. Kinetics parameters needed for evaluation of the

inhour equation can be found using the adjoint-weighting features of MCNP6. In

order to extract the delayed neutron data, models from MCNP and Serpent was

used to perform step-burnup calculations in order to properly model the present

core configuration starting from the initial loading of SS clad fuel.

5.2 Serpent Isotopic Composition

Serpent, a three-dimensional, continuous-energy Monte Carlo code, was used

to evaluate the burnup compositions of KSU TRIGA Fuel[6]. Fuel elements

as mentioned before in Section 2.1 are arranged in rings which meant that a

representative repetitive fragment of the large reactor lattice, known as a unit cell,
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can be modeled[18]. A unit cell is composed of a single fuel element surrounded

by a moderator portion where the boundary is set in the middle of the moderator

dividing the nearest fuel elements. To be able to identify the representative reactor

lattice in the model, evaluation of the geometry of the KSU core was made. It was

found that there are fuel elements arranged in both square and hexagonal lattices

where fuel elements are situated in corners of squares and hexagons, respectively.

Later analysis in this section to compare burnup compositions of a square and

hexagonal-pitch unit cell model in Serpent showed indifference to the type of unit

cell used. Therefore a square-pitch unit cell used as the model approach was

appropriate to use for input material definitions in MCNP.

Fuel that was used inside the KSU reactor was defined in the model based on

the fuel description described in Section 2.1. Figure 5.2 depicts the view section

of a single square-pitch unit cell that was used for a 3-D axial discretization of

7 fuel regions and a single radial region. The lattice pitch, the distance between

centers of direct neighbors of fuel elements, was averaged over the entire core to

determine the unit cell boundary distance. As mentioned in Section 1.1, this work

will emphasize the effectiveness of modeling only the axial burnup dependence on

reactivity. This is a reasonable approach because defining fuel compositions as

continuous functions of z,r,θ for each element would most likely be impossible and

ongoing work suggests little dependence on r for unit-cell studies[5]. Furthermore,

7 regions of axial discretization is sufficient enough to eliminate reactivity biases

due to material evolution[5].

It is important to note that the 3-D fuel model is symmetric about Fuel 1, hence all

discretization used results of fuel materials 1, 2, 3, 4, see Figure 5.2[5]. Reflective

boundary conditions were made in the Serpent model in an infinite moderator

lattice in the top and bottom of the fuel pin. A series of burnup steps were made in

the Serpent model to produce composition data in the range of 0-50 MWD/kg(U).

The cross section libraries were chosen based on a uniform temperature of 600 K for

the fuel materials. In all cases, 50 inactive cycles and 500 active cycles with 20,000

histories per cycle were used for each burnup step. Selection of major actinides

and fission products were made to track during the simulation. These dominant
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Figure 5.2: Model of 7 axial discretization of KSU TRIGA fuel[5].

isotopes were selected based on the efficiency of their ability to absorb neutrons.

According to the sensitivity analysis performed by Oak Ridge National Laboratory

on burnup credit for PWR spent fuel[19] and the sensitivity analysis mentioned in

Section 3.2.3, the isotopes are: 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu,

242Pu, 241Am, 243Am, 237Np, 99Tc, 133Cs, 135Cs, 143Nd, 145Nd, 147Sm, 149Sm, 150Sm,

151Sm, 152Sm, 153Eu, 155Gd, 95Mo, 154Eu, 135Xe, 147Pm, 131Xe, and 103Rh.

Figure 5.3 illustrates the importance of Pu, a vital isotope for fission reactions,

production as a function burnup. The Serpent model shows that a TRIGA fuel

element that has a burnup of 6 g of original 235U would lead to approximately 0.45

g of 239Pu produced. In order to extract the compositional data prior to the initial

loading of the SS clad fuel inside the KSU reactor, the initial burnups of 235U in

grams were converted to MWD/kg(U) using the procedure in Appendix A. The

compositional data was later interpreted to write the material definition for MCNP
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Figure 5.3: Pu growth as a function of burnup.

input files. The burnup of all KSU TRIGA fuel was estimated using the power

peaking factor calculations in MCNP using an F7 tally. This will be described in

more detail in the next section.

(a) Hexagonal (b) Square

Figure 5.4: Hexagonal and square Pitch unit cell Serpent models[5].

A comparative analysis explored the difference between a square-pitch unit cell

and a hexagonal-pitch unit cell model for composition inputs in MCNP kcode
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Table 5.2: Hexagonal vs square pitch unit cell model.

Parameters Hexagonal σ (%) Square σ (%)

keff 1.08597 0.00280 1.08573 0.00284
ρ (pcm) 7916.49 20.00 7895.90 20.00

calculations. Figure 5.4 shows both the hexagonal and the square pitch unit cell

Serpent models. 50 cases of MCNP files were run for this analysis, 25 for each unit

cell type used for input material definitions, with different initial seed numbers. All

cases were run with 30 inactive cycles and 250 active cycles with 100,000 histories

per cycle. Table 5.2 provides both the modeled keff and the excess reactivity for

the unit cell definitions. By observing the variations of keff and ρ in the MCNP

model of configuration Core III-7 with control rods withdrawn, it was determined

that the overall effect of keff and ρ were indifferent to the type of unit cell modeled

in Serpent.

5.3 Power Peaking Factors

As mentioned in Section 1.2, the current methodology performed by the KSU

reactor staff to estimate spent fuel burnup suffers from large uncertainties. In order

to maintain consistency with the fuel-inventories method of estimating burnup,

see Eq. (2.1), power peaking factors of the KSU core were calculated using an

F7 tally in MCNP[7]. The F7 tally which produces results in the fission power

in MeV/g per source particle released in each cell is used to calculate the power

peaking factor by taking the ratio of local to average power density in each fuel

element, starting with the first core configuration in 1973. The integrated energy

produced for each core configuration, taken from the logbooks, in combination with

the power peaking factors are used to estimate the burnup of individual elements.

The Serpent model was used again to interpret the new compositional data based

upon those burnup values for the next core configuration and the sequence was

repeated until the current configuration. The patterns, and subsequent changes

in the core configurations, were used to update the burnup of all fuel elements in
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the core’s history, as shown in Figure 5.5. Control rods were fully withdrawn in

the MCNP model to eliminate reactivity biases from control rods in the power

peaking factor calculations. In all cases, 30 inactive cycles and 250 active cycles

with 100,000 histories per cycle were used for each core step.

Writing
MCNP

input file

Running
MCNP file

Output

Calculate
new burnup

Serpent
Composition

Figure 5.5: Flow chart for the Python script used for burnup calculations.
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Figure 5.6: Core III-7 element averaged power peaking factor plot.
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Figure 5.7: Estimated total burnups in MWD
kg(U) for Core III-7.

Two power peaking factor methods were examined in determining the total burnup

of several fuel elements. The first case was to use the ring averaged power peaking

factor. The second case was to use the specific element power peaking factor. In

both cases, the axial discretization tallies were averaged for a single fuel element.

The fuel elements chosen for this examination conveniently remained in the same

locations since their first loading in the KSU core.. Figure 5.6 depicts the element

averaged power peaking factors plot for the Core III-7 while Figure 5.7 shows the

estimated total burnups for those elements. These two cases were compared to the

methodology used by the KSU staff for analysis. Table 5.3 provides both cases

respective to the fuel elements’ accumulated burnup and position at KSU.

It is evident that the current methodology performed by the KSU staff suffers from

large errors in element-wise burnups, especially for fuel elements closer to the center

of the core, where higher neutron flux occurs. In the cases of fuel elements 6315
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Table 5.3: Accumulated burnup for three methods.

Position Fuel ID KSU method Element Pf method Ring Pf method Ring-Core (%) Element-Core (%)
MWD/kg(U) MWD/kg(U) MWD/kg(U)

B1 6315 5.388 8.069 8.185 -51.897 -49.755
B2 10880 1.667 2.485 2.530 -51.743 -49.043
B5 10895 1.528 2.363 2.318 -51.749 -54.677
B6 11341 0.825 1.265 1.253 -51.794 -53.211
C1 11351 1.667 2.253 2.330 -39.715 -35.084
C2 6316 5.388 7.781 7.474 -38.710 -44.398
D1 3380 5.388 6.183 6.309 -17.069 -14.751
D2 3330 5.388 6.111 6.309 -17.069 -13.419
D11 2435 5.388 6.707 6.309 -17.069 -24.472
E4 3006 5.388 4.786 4.895 9.165 11.184
E12 3690 5.388 5.140 4.895 9.165 4.608
F1 5017 5.388 3.874 3.691 31.512 28.108
F2 5018 5.388 3.545 3.691 31.512 34.222
F3 5027 5.388 3.408 3.691 31.512 36.751
F4 5021 5.388 3.310 3.691 31.512 38.574
F5 5026 5.388 3.282 3.691 31.512 39.100
F14 5653 5.388 3.776 3.691 31.512 29.936

and 6316, fresh at the time of loading, the current methodology under-predicts the

accumulated burnup by approximately 50% and 40% for both power factor methods.

These differences generally decrease for D and E elements but is increased for F

ring elements, where the accumulated burnup is over-predicted by approximately

30% for both power factor methods. For the purposes of this work, the second

case was used to individually assess the burnup of each fuel element to accurately

model the current configuration.

5.4 Test cases for burnup sampling and kinetics

parameters

According to the power peaking factor calculations, the KSU method is unfit to

properly quantify spent fuel compositions. The element position power factor

method is well suited to estimate the burnup of the KSU fuel, though. Note,

however, that initial burnup estimations made prior to installation at KSU used

ring-averaged power peaking values, see Eq. (2.1). In order to quantify the overall

uncertainties associated with the current composition in the KSU fuel, the percent

differences between the two power factor methods were further analyzed.
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Percent differences between the two power factors were made for all the elements’

accumulated burnup during their respective time in the KSU core. This allowed a

comparison between the two methods, which provided an estimate of the errors

associated with the ring averaged power peaking factors used in Eq. (2.1). These

percent differences were later examined by the Anderson-Darling Normality test.

The data was then determined to follow a normal distribution, where the coefficient

of determination is 0.9859. Figure 5.8 shows the normal probability plot of all the

fuel elements percent differences between the two cases.
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Figure 5.8: Normality plot of errors in the two power factor methods.

In order to accurately represent the uncertainties associated with the initial burnup,

200 test simulations were performed and investigated. From the distribution of the

errors, initial burnups of elements for the initial configuration back in 1973 were

sampled. Burnups were sampled using assumed ring-averaged total burnup values,

from the shipment documents, with an associated error value sampled from the

error distribution, see Eq. (5.1),

BUSIi = BURIi (1 + η) (5.1)
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where BUSIi is the initial burnup for element i, BURIi is the assumed initial burnup

value for element i based on the ring-averaged power peaking factor, and η is the

percent error sampled from the error distribution.

200 file cases were made such that the initial burnup values for each element in the

initial core configuration was sampled individually. These burnup samples were

then used to generate 200 MCNP input files to run a sequence of burnup steps,

starting with the initial core configuration in 1973 until Core III-7. Much like

the procedure described previously, the power peaking factor method was used

to calculate the new burnup in each changing configuration. The file cases were

automatically updated by the Python script, see Section 5.3, with each burnup

step. In all cases, 30 inactive cycles and 250 active cycles with 10,000 histories per

cycle were used for each core step. The number of histories per cycle were lowered

in order to reduce computational time. The final output of the 200 files was an

estimated total burnup value for each element that has been in the KSU core.

By comparing the variations of the 200 total burnup values for each element to

its average total burnup values, one could determine the type of the distribution

in the error differences. Since fewer histories were used for the generation of the

200 output files, the uncertainties associated with the power factors in the MCNP

models are increased compared to calculations performed in Section 5.3. Regardless,

it has been determined that the error differences between total burnup values using

both power methods are reasonably well represented by a normal distribution, as

shown in Figure 5.9.

Note that the error distribution does not account for the errors from the fuel’s

compositions prior to usage at KSU. There is little information about the fuel

surroundings, i.e., mixed fuel, control rods, etc., prior to installation at KSU

which could lead to deviations in the axial compositions and reactivity worths.

Fortunately, linear expectations from the reactivity worth measurements based on

total burnup estimations could identify the deviations of a fuel element’s worth

from those modeled by MCNP as presented in the next section. From the 200

output files of total burnups, the experimental core configuration described in
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Figure 5.9: Normality plot of error differences in 200 burnup values to its
average for fuel element 6578.

Section 4.2, was modeled in MCNP for vacancy in the test location as well as for

the 26 tested fuel elements selected for this work. The output of these MCNP

file simulations is keff from which reactivity is computed via Eq. (3.1) for modeled

reactivity worth comparisons. Additionally, the kinetics parameters needed for

evaluation of the inhour equation were found using the new adjoint-weighting

features of MCNP. Table 5.4 shows an example of the 6 precursor groups produced

by MCNP.

Table 5.4: An example of kinetics parameters from MCNP.

precursor βeff std. dev. energy std. dev. λi std. dev. half-life
(MeV) (/sec) (sec)

1 0.00021 0.00001 0.40347 0.00150 0.01249 0.00000 55.49352
2 0.00116 0.00003 0.47190 0.00068 0.03180 0.00000 21.79599
3 0.00119 0.00004 0.44290 0.00067 0.10940 0.00000 6.33582
4 0.00326 0.00006 0.55654 0.00053 0.31718 0.00000 2.18537
5 0.00099 0.00003 0.51665 0.00102 1.35345 0.00002 0.51213
6 0.00034 0.00002 0.54175 0.00191 8.65215 0.00066 0.08011

49



5.5 Reactivity worth calculations

As mentioned in Section 4.2, only period measurements of September 2015 and

May 2016 were considered for this work. The period measurements were and

kinetics parameters extracted from MCNP were used for the inhour equation,

(Eq. (4.16)) for experimental reactivity worth calculations. Not only did the initial

sampling of the 200 input burnups in the MCNP files create total burnups of all

fuel elements and its uncertainties, but it also provided the opportunity to model

200 experimental core configurations for which 200 modeled and experimental

reactivity worths were evaluated for the 26 tested fuel elements. Table 5.5 shows

the total burnup of 26 out-of-core fuel elements, the modeled and experimental

reactivity worths, and their associated uncertainties from the variation of the 200

values. Appendix B provides estimated total burnups for all fuel elements used in

the KSU core. Figure 5.10 illustrates all the experimental and modeling efforts for

this work.

Table 5.5: Table of burnup and reactivity worths of the tested 26 fuel elements.

Fuel ID burnup σ September 2015 σ May 2016 σ Modeled σ Fall-modeled Spring-modeled
MWD/kg(U) % pcm pcm pcm pcm pcm pcm pcm pcm

11352 0 0 114.56 0.99 110.67 0.87 117.51 1.36 -2.95 -6.83
2937 2.92 6.00 NA NA 100.96 0.89 110.23 1.36 NA -9.27
2982 2.94 7.10 NA NA 106.11 0.86 102.90 1.36 NA 3.21
2942 2.95 6.35 NA NA 108.03 0.86 107.68 1.36 NA 0.35
6578 6.02 0.22 111.42 0.98 108.54 0.86 108.31 1.36 3.12 0.23
2788 7.23 3.28 NA NA 102.12 0.89 114.10 1.36 NA -11.99
2425 13.68 5.00 NA NA 101.61 0.87 103.53 1.36 NA -1.92
2789 15.04 5.20 NA NA 101.67 0.89 105.53 1.36 NA -3.86
5039 22.25 6.65 NA NA 95.53 0.83 101.49 1.36 NA -5.97
4339 23.29 5.78 103.78 0.97 102.49 0.84 100.71 1.37 3.07 1.78
4349 23.72 5.59 110.77 0.98 104.89 0.85 103.98 1.36 6.78 0.91
5254 26.95 5.22 101.92 0.96 95.14 0.83 100.60 1.36 1.32 -5.46
5950 28.36 6.85 NA NA 99.24 0.84 100.11 1.36 NA -0.87
5019 29.01 6.18 NA NA 100.27 0.83 96.81 1.36 NA 3.46
4102 29.20 6.52 NA NA 98.88 0.83 98.66 1.36 NA 0.21
5951 29.58 5.76 NA NA 102.58 0.85 98.82 1.36 NA 3.77
5947 29.70 6.01 NA NA 101.47 0.85 96.66 1.36 NA 4.82
5654 29.84 6.14 NA NA 99.67 0.84 98.41 1.36 NA 1.26
5031 30.71 5.67 98.86 0.96 95.45 0.83 101.01 1.36 -2.15 -5.56
5647 31.59 6.54 NA NA 96.91 0.84 95.89 1.36 NA 1.03
5253 35.17 6.26 NA NA 98.36 0.83 93.70 1.36 NA 4.66
4080 35.68 6.19 NA NA 92.19 0.81 93.26 1.37 NA -1.08
4072 38.48 5.61 NA NA 101.70 0.87 92.54 1.36 NA 9.16
4143 40.73 6.39 NA NA 104.00 0.84 93.37 1.36 NA 10.63
3684 44.63 6.97 NA NA 92.45 0.81 91.82 1.36 NA 0.63
4078 49.10 6.19 NA NA 97.03 0.83 88.30 1.37 NA 8.73

As shown in Table 5.5, a large number of measured reactivity worths differ from

those modeled. The overall trend of both the experimental and modeling efforts

suggest that reactivity and burnup have an inverse linear relationship, confirming
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Figure 5.10: Reactivity vs Burnup for KSU TRIGA fuel.

previous work; recall Figure 3.1. By comparing the September 2015 and May

2016 measurements, there exists a constant bias where the worths of the 2015

measurements are higher for the 6 tested fuel elements. According to the experi-

mental measurements performed on Day 1 and 2 of 2016, there exists a decrease

of approximately 5 s and 3 s in period measurements of the core configuration at

vacancy during an 8 hour period, respectively. The excess reactivity difference

that lead to this change was approximately a gain of 10 pcm and 6 pcm between

the two periods. Day 3 did not experience such a difference. It was suspected

during the evaluation of this bias, that there might be instrumental errors on

the NMP channel. For sanity, the NLW power data was used to determine the

period measurements to observe any bias. Although the NLW power data does not

provide the correct magnitude of the period measurements, evaluations was made

for its time-dependent power asymptotic regime during the 8 hour difference. It

too showed a decrease in the period measurements of 5s and 6s for Days 1 and 2,

respectively, while no such difference was observed for Day 3. This suggests that

the suspected instrumental errors on the NMP channel could not have been the
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cause for such a difference. This is confirmed by approximate loss of reactivity

between the 2015 and Day 3 measurements. The increase of approximately 10s,

from 27.45s to 36.74, which led to a decrease of approximately 25 pcm, in the

period measurements for a vacant position between the measurement in 2015 and

Day 3 of 2016. This was validated by modeling the two measurements in which in-

tegrated energy produced between the 2015 measurements and 2016 measurements,

approximately 1.33 MWD, was accounted for in the fuel burnup. This contribution

of integrated burnup led the difference between the modeled worths of the two

measurements to be approximately 21 pcm. This indicates that there might be

unresolved core conditions existing for measurements performed on Days 1 and

2. As previously implied, the Xe effects are eliminated as a potential cause, since

there were not any operations for 72 hours prior to the measurements. The logbook

data also showed that the last two operational days prior to the awaiting period of

72 hours was kept at approximately 10 W, “zero-power region”, at critical log sets,

implying that there is a definite elimination of the potential cause arising from Xe

effects. By examining the fuel temperature responses during the measurements, it

was also concluded that any rise in temperatures would have a negative response

in reactivity, so this was also eliminated as a potential cause. There is, however, a

positive response to moderator temperatures rising but this was not considered as

a significant factor because they did not rise during critical log sets. Furthermore,

the pool coefficient of reactivity is very small in TRIGA reactors, 0.05
¢
◦C

[8] and

therefore could not have been the cause. The specific bias is yet to be determined

after eliminating several potential causes.

By comparing the modeled worths to the experimental worths on Day 3, there

were a few elements that suggest another reason for the reactivity biases observed

in this work. Higher burned fuel element, e.q., 4072, 4143, 4078, suffer from large

biases from their respective modeled worths. Since there is an unclear cause for the

measurement biases observed on Days 1 and 2, the measurement of fuel element

4072 which was performed on Day 3 can give a clearer insight on biases observed for

those higher burned elements. The background history of these elements prior to

installation at KSU is unknown, and therefore it is probable that they spent most
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of their core lifetimes in different conditions experiencing high flux irregularities

during their lifetimes prior to installation at the KSU core. This suggests that the

differences could be caused by the orientation of these specific fuel elements during

the period measurements. Note that orientation of fuel elements surrounding the

test location during the measurements, i.e., in E-3 and E-4, remained the same

and thus is not a reason for any biases observed in this work. Furthermore, the

same reason is said of fuel element 2788. This specific fuel element had received

minor burnup prior to use at KSU, however, upon reviewing its surroundings at

the KSU core, the bias observed between the measured and modeled worths could

be explained by its lifetime near the Shim rod.
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Chapter 6

Conclusion and Future Work

6.1 Summary

The overarching goal of this work was to provide KSU reactor researchers with

new experimental benchmark data to produce a detailed model of the KSU reactor

core. This work has pursued the reactivity method as one nondestructive technique

to understand current KSU reactor fuel composition. The technique allows an

indirect estimation of burnup and composition of fuel based on the assumption

that reactivity is a known function of burnup. Since the technique allows only

relative reactivity differences, a minimum of two fuel elements with well-specified

burnups must be available to define a relationship between reactivity and burnup.

The motivation for this work was to provide the KSU staff with a reliable method

for determining burnup. In particular, it was noted that the current methodology,

which suffers from great uncertainties due to inaccurate approximations, is not

suitable for determining element-integrated values of burnup. Moreover, since the

majority of the KSU TRIGA fuel was depleted prior to installation at KSU, it

was important that these values served as measurable data points in the reactivity

measurements.

As an alternative, the standard report outlined in Chapter 2, which provided the

estimation of burnup prior to KSU usage, was taken as the method to estimate
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the additional depletion at KSU to maintain consistency. A literature review was

developed, which took into account the expected trend between reactivity and

burnup for TRIGA fuel in Chapter 3. For a 8.5 wt % SS TRIGA fuel, like that of

KSU fuel, a linear correlation was expected. The positive period method was also

discussed to measure asymptotic or stable periods for which reactivity could be

solved via the inhour equation. Furthermore, a study was reviewed to determine

the isotopic composition importance for TRIGA fuel during depletion. These

isotopes were later incorporated in a Serpent model of KSU TRIGA fuel to track

its concentration as a function of burnup.

Thereafter, the experimental procedure and setup of the KSU core configuration

for a slightly supercritical core with all control rods withdrawn for the positive

period measurements was developed in Chapter 4. Only measurements with no Xe

presence were considered for this work. The excess reactivity of the core allowed

reactivity worth difference to be computed for all tested fuel elements. Furthermore,

only the NMP channel (compensated ion chamber) was used in the data analysis

since it was the most valid for the range of power in the measurements. Time-

dependent power data extracted from the stripchart recorder was used to determine

the asymptotic period to compute reactivity. The inhour equation was derived

earlier in Chapter 4 to provide the relationship between asymptotic period and

reactivity. The extraction accounted for the lower and upper bound set in the

transient response to eliminate the reactivity disruptions due to loss of sensitivity on

the NMP channel and avoid thermal feedback. The kinetics parameters needed to

compute the experimental reactivity worths were found using modeling in MCNP.

Serpent was used to model the KSU TRIGA fuel as a square-pitch unit cell with

7 discrete axial fuel regions, the minimum number of fuel regions to eliminate

reactivity biases due to material evolution. Thereafter, isotopic composition was

available in the range of 0-50 MWD/kg(U). As an example, Pu production as a

function of burnup were determined from the model. Burnup step procedures began

by defining the material composition of initial loading of fuel at KSU in 1973 using

Serpent. To account for the burnup steps throughout changing core patterns at

KSU, a Python script was used to input material definition cards from Serpent into
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MCNP files. A procedure for determining total burnup of the KSU TRIGA fuel was

developed using the F7 tally provided by MCNP to compute power peaking factors

methods. The procedure took into account two power peaking factor methods;

one by using local cell values and another by ring-averaged values. The percent

differences of accumulated burnup at KSU from using the two methods allowed

burnup sampling for 200 test simulations of initial burnup prior to installation at

KSU. This is due to the accurate representation of the uncertainties associated

with the ring-averaged power factor method.

Finally, ρ values were provided as a function of burnup from the model and the

experiments. It was observed that the overall correlation of reactivity to burnup

was linear. However, large reactivity biases were observed, especially for three

highly burned fuel elements whose historical surrounding at previous facilities is

unknown. The reactivity bias observed in this elements was most likely due to the

unknown radial orientation of tested fuel elements, as was reported in previous

work[3]. Biases observed between the measurements of 2015 and 2016 is unclear

after eliminating potential biases, though it suggests core conditions were the

primary reason for the observed increased in excess reactivities.

6.2 Future Work

The work described in this thesis addresses the importance of quantifying burnup

and composition. There are a few direct extensions of work that would be of

substantial value to this area of research. Some of the key points of interest are:

• Verifying total burnup values. Gamma spectroscopy is a direct method of

determining burnup, and hence will serve as validation for the reactivity

method implemented in this work.

• A much more thorough period re-measurement should be made with known

fuel orientation. Furthermore, re-measurements of the same fuel elements in

the same day should be made to observe any biases due to core conditions.
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• More work should be performed to model the KSU TRIGA fuel. In particular,

graphite spacers should be added to the Serpent model at the top and bottom

of fuel segments to observe the compositional changes with increasing burnup.

• More work should be performed to quantify the uncertainties in the logbook

data. Both the log data and the strip-chart recorder are limited by the

uncertainties in the instruments. However, the logbook in addition is also

limited by the uncertainty arising from the operator recording the data. The

difference between the reactor staff method and power generation per second

from the strip-chart recorder could help quantify the uncertainties in the

burnup calculation.
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Appendix A

Burnup Conversion

In this note, the consumption rate of 1.24 g of 235U per MWD indicated in Section

2.2 is developed. The formulation takes into account only thermal energy cross

section of 235U.

1MW d× 106W

1MW
× 3600s

1d
Joules

× 1.60× 10−13MeV

1J
× 200

1MeV
Fissions

× (σf + σc)

σf
235U atoms lost× 235.04g/mol

6.022× 1023atoms/mol

= 1.24 g

(A.1)

where σf = 585 b and σc = 99 b
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Appendix B

KSU estimated fuel element

burnup

Fuel ID burnup MWD
kg(U)

σ (%) Fuel ID burnup MWD
kg(U)

σ (%)

6315 8.07 0.22 5018 27.22 5.81

6578 6.02 0.22 5027 26.40 5.85

6526 7.17 0.24 5021 27.04 5.42

6223 6.32 0.27 5026 27.11 4.89

6577 8.00 0.21 4339 23.29 5.78

6525 7.37 0.22 4143 40.73 6.39

6224 6.86 0.28 5022 30.96 5.45

6316 7.78 0.23 4078 49.10 6.19

6317 8.05 0.25 3684 44.63 6.97

6527 7.57 0.26 5000 32.19 5.63

6314 7.66 0.26 5031 30.71 5.67

2788 7.23 3.28 5653 32.06 5.69

3107 20.22 4.07 5654 29.84 6.14

3082 14.84 3.19 5019 29.01 6.18

2425 13.68 5.00 5039 22.25 6.65

3329 18.53 3.83 5253 35.17 6.26

4072 38.48 5.61 5254 26.95 5.22
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Fuel ID burnup MWD
kg(U)

σ (%) Fuel ID burnup MWD
kg(U)

σ (%)

3380 17.97 4.17 5649 27.97 4.79

3330 16.05 4.14 5256 29.78 5.38

3336 15.94 4.09 5647 31.59 6.54

2789 15.04 5.20 5655 32.17 5.01

3498 15.81 3.67 5944 32.38 5.73

3501 15.78 3.90 5950 28.36 6.85

3494 15.48 3.67 5939 33.15 5.88

3696 15.98 3.81 5946 32.46 5.47

3876 16.65 3.67 5947 29.70 6.01

2435 12.86 2.87 5948 33.19 5.95

2448 15.66 3.57 5949 31.96 5.63

2452 16.16 3.96 5951 29.58 5.76

3105 17.78 4.14 2144 2.18 0.43

3018 18.70 4.49 2900 5.34 3.55

3147 18.58 4.17 2907 5.58 3.43

3144 18.39 4.19 2909 4.58 4.12

3111 17.92 4.55 2914 6.38 2.86

3326 19.97 4.47 2917 4.33 4.44

4080 35.68 6.19 2933 5.53 3.15

2458 14.30 3.97 2934 6.73 2.75

3006 15.04 4.11 2937 2.92 6.00

3008 15.49 4.10 2942 2.95 6.35

3014 17.98 4.09 2949 4.62 4.04

3011 17.98 4.89 2953 6.83 2.82

3009 16.96 4.01 2963 7.19 2.46

3503 14.42 3.80 2966 7.79 2.42

3502 9.97 3.04 2982 2.94 7.10

3517 9.93 2.93 2986 6.78 2.53

3690 14.39 3.95 2987 5.87 3.16

3113 17.15 5.24 2988 2.96 7.08
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Fuel ID burnup MWD
kg(U)

σ (%) Fuel ID burnup MWD
kg(U)

σ (%)

3118 17.18 4.17 2989 2.97 6.25

4102 29.20 6.52 10706 0.20 1.08

4343 26.19 4.94 10707 2.32 0.46

4349 23.72 5.59 10893 0.22 0.96

4351 30.26 5.42 10894 0.46 0.66

4742 36.46 5.25 10895 2.36 0.46

4991 24.75 5.10 10880 2.49 0.43

4744 23.97 4.97 11341 1.26 0.50

5014 24.51 5.10 11351 2.25 0.50

5001 24.68 4.94 11352 0.00 0.00

5017 28.26 5.28
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