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Abstract 

Preclinical animal models of mammary carcinoma formation are vital for the 

advancement of cancer research, specifically in drug development. Two different types of animal 

models were utilized to determine the efficacy of combinational treatment of common 

antineoplastic drugs and the new class of primaquines that act as gap junction enhancers (PQs) at 

attenuating mammary tumor growth. The classic xenograft mouse model was used to show that 

PQs could increase the efficacy of cisplatin and paclitaxel. Combinational treatment induced an 

upregulation of connexin and caspase expression in the isolated tumor. Next the transgenic PyVT 

mouse model was characterized by multiple factors, including hormone receptor status, 

molecular markers for survival and proliferation, tissue histopathology, and secondary 

metastases during multiple stages of tumor development. This model showed limited therapeutic 

response to the antineoplastic drugs tested. PQ1 effectively attenuated tumor growth at all stages 

of tumorigenesis in the PyVT model, while PQ7 was determined to be an effective 

chemopreventive compound rather than chemotherapeutic. The PQs altered the expression 

profiles of connexins during tumorigenesis. Together the results indicate that PQs have an 

anticancer effect that is more efficient at attenuating tumor growth than the common 

antineoplastic compounds. Lastly the PyVT mouse model was used to determine the efficacy of 

antineoplastic compounds on male mammary carcinoma development. Interestingly, the 

antineoplastic compound that attenuated female mammary carcinoma growth did not produce a 

therapeutic response in the males and vice versa, suggesting a need for further studies into the 

male response to therapy.  
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Chapter 1 - Review of Literature 

1.1 Intercellular communication 

Multicellular organisms are composed of complex networks of cells that form tissues and 

organs to perform specific functions in maintaining homeostasis. Optimal cell, tissue, and organ 

functions depend on maintaining the limits of the internal environment, which involves a variety 

of regulatory mechanisms and the coordination of a vast number of physiological activities, such 

as intermediary metabolism, cellular communication, cell growth, and cell differentiation. Cells 

are able to communicate with one another by releasing soluble factors that affect other cells 

either locally or distantly. There are several modes of transmitting information between cells: 

direct communication between adjacent cells, autocrine and paracrine signaling, and 

neurotransmitters and hormones produced by nerve and endocrine cells respectively. Here the 

focus is on the direct communication between neighboring cells.  

Adjacent cells may be connected together through tight junction, desmosomes, gap 

junctions and adherens to facilitate passage of signaling molecules from cell to cell. Tight 

junctions, or zonula occludens, form a virtually impermeable barrier to fluid between closely 

associated cells by joining the membranes together. These are typically more apically located. 

Desmosomes, or macula adherens, support cell-cell adhesion by attaching to intermediate 

filaments of keratin in the cytosol. Adherens junctions, or zonula adherens, form strong 

mechanical attachments by forming a bridge connecting the actin cytoskeleton of neighboring 

cells. These protein complexes are composed of cadherins and catenins, and are usually more 

basally located. Gap junctions form direct intracellular connections between adjacent cells 

allowing for intercellular communication via the transfer of low molecular weight molecules.  
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The integrity of epithelial cell layers is maintained by tight junctions, adherens junctions, 

and desmosomes, while gap junctions provide a route for intercellular communication, allowing 

a single cell to directly influence the behavior of neighboring cells in a specific manner. 

Intercellular communication between groups of specialized cells within organs/tissues regulates 

proliferation, apoptosis, and differentiation to maintain tissue homeostasis.  

 1.2 Gap junctions 

Gap junctions consist of aggregated transmembrane proteins that form channels between 

adjacent cells directly connecting their cytoplasms. Unlike other modes of intercellular 

communication, gap junctions are present in all animals and provide direct exchange of 

molecular signals between cells. Gap junctions are present in all vertebrate cell types, with a few 

exceptions: red blood cell, platelets, some neurons, mature skeletal muscle fibers, and 

spermatozoids [1]. The diffusion of molecules between adjacent cells through gap junctions is 

termed gap junctional intercellular communication (GJIC). This process is vital in maintaining 

homeostasis, synchronizing cellular activities, and regulating proliferation and apoptosis [2]. 

GJIC is critical for normal embryogenesis and development, neural activity, gamete production, 

endocrine function, immune function, smooth muscle function, and cardiovascular function. 

Defects in GJIC can lead to teratogenesis, neuropathy, infertility, diabetes, autoimmunity, 

atherosclerosis, cancer [3] [4].  

Adjacent cells are able to communicate directly with each other through gap junctions. 

Gap junctions are protein channels made of the protein connexin (Cx). Connexins have four 

hydrophobic membrane spanning domains; two conserved, extracellular domains involved in 

paired hemichannel docking; and three cytoplasmic domains (Figure 1.1) [4]. Intercellular 

channels are formed through oligomerization of six connexins into a hexameric hemichannel 
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called a connexon, which is trafficked to the plasma membrane. Hemichannels allow 

communication between cytoplasm and extracellular space. On the membrane the connexon 

floats laterally until it docks with a second connexon on the adjacent cell to form an intact gap 

junction channel. Groups of these channels form gap junctional plaques, allowing the flow of 

small molecules between the cytosol of neighboring cells.  

 

Figure 1.1  Structure of the gap junction. Connexins have four transmembrane domains (M1-

M4) with the C and N cytoplasmic termini, a cytoplasmic loop (CL) and two extracellular loops 

(E1 and E2). The connexon is formed from the assembly of six connexins. Two connexons come 

together to form the gap junction.  

 

The cytoplasmic regions of the connexin have variable amino acid sequences, leading to 

different connexin types [5]. Vertebrates have approximately 20 different connexins [1, 4, 6], 

commonly designated with numerical suffixes identifying the molecular weight of the sequence 
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in kilodaltons (kDa) [4]. The following studies will discuss Cx26, Cx32, Cx43 and Cx46. Cx46 

is a novel gap junction protein in mammary tissue that is hypoxia-specific. Vertebrate gap 

junctions have a permeability size of 1.2 kDa, allowing amino acids, sugars, nucleotides, most 

secondary messengers, water, and other small molecules to diffuse between cells [1, 4, 7]. This 

allows adjacent cells to share a common intracellular environment through the formation of gap 

junctions. GJIC provides cells a route to share information to function as a single metabolic unit, 

creating a local environment leading to regional functionality [8].  

Gap junction channels are not typically formed exclusively of one connexin subtype 

(homotypic), but rather consist of multiple distinct connexin isoforms forming a heteromeric 

channel [9]. The formation of heteromeric connexons increases the complexity of regulation. 

GJIC is regulated by activation of protein kinases  [10-12] and protein phosphatases [13].  

Phosphorylation induces channel gating: the molecular transition leading to gap junction channel 

opening or closing [14, 15]. Channels are regulated by various stimuli, including changes in pH, 

voltage, and phosphorylation stage of the c-terminal tail [1, 4, 7, 16]. The connexin proteins are 

regulated by protein kinases that phosphorylate serine and threonine residues of the connexin 

carboxyl terminal region [17, 18]. Studies have shown that the mitogen-activated protein kinase 

(MAPK) and protein kinase C (PKC) mediate phosphorylation of the C-terminal end to close 

Cx43 hemichannels [6]. Phosphorylation of gap junctions occurs after membrane insertion and 

deposition into gap junction plaques [19]. 

There are three kinetic routes of gap junctional control: fast, intermediate, and long-term. 

The fast gap junctional control involves gating responses that result in an effect within 

milliseconds of the initial response. These immediate effects may be the result of rapid changes 

in ion concentration, pH, protein kinases, phosphatases, or lipid composition of the membrane 
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[20-22]. Intermediate control is conducted by vesicular withdrawal or insertion of connexins in 

the membrane, which takes minutes. This is possible due to a perimembrane pool of connexins 

that is present within cytoplasmic vesicles, determined by the observation that connexins can be 

inserted into the plasma membrane despite the presence of inhibitors of protein synthesis [23]. 

Lastly, long-term control is regulated at a transcriptional level, where connexin mRNA is altered, 

adjusting the connexin protein pools within the cell. This takes hours from the initial stimuli. 

Gap junctions are dynamic plasma membrane structures with rapid turnover rates [24-26]. The 

half-life of the connexin protein is between 2-5 hours in cultured cells and tissue [22, 27-30]. 

There is controversy as to whether all the connexin proteins are conventionally synthesized in the 

endoplasmic reticulum, transported through the Golgi and exported to the plasma membrane. 

This is true for Cx43.  

Gap junctions provide regional functions. First they buffer the harmful effects of 

xenobiotic metabolites by dispersing them outward from the exposure point into the tissue. 

Second, healthy cells can provide nourishment for deprived or sick cells through shared 

metabolites. This gives the tissue plasticity as long as there is functional GJIC. Third, they 

function in the rapid exchange of electrical signals and regulators. Fourth, they distribute 

metabolites vital for cellular proliferation/health (i.e. cAMP). This is important in that not all 

cells within a tissue have the same metabolic capacity, requiring that essential metabolites are 

shared between cells [31].  Lastly gap junctions function to eliminate waste or unwanted 

byproducts.  
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 1.3 Cancer and gap junctions 

 Cx46 is a novel gap junction protein that is hypothesized to have pro-tumor effects due to 

its ability to prevent hypoxic death [32].  Due to this it will not be discussed in association with 

an observed GJIC deficiency as part of the cancer phenotype.   

 1.3.1 Gap junctions/connexins in initiation and promotion 

Defects in critical signaling pathways that regulate cellular properties, such as 

proliferation, differentiation, and apoptosis result in the formation of cancer. Tumorigenesis may 

be affected by secondary mechanisms not related to direct gene damage [33-35]. This is a 

category of carcinogens classified as non-genotoxic which indirectly stimulate hyperplastic 

growth, without altering DNA sequence or structure. Non-genotoxic carcinogens elicit a 

mechanism of cancer induction that includes receptor- and nonreceptor-mediated endocrine 

modulation, tumor promoters, toxicity responses, inflammatory responses, or deficiencies in 

GJIC. Many non-genotoxic carcinogens inhibit or reduce GJIC, including chlordane [36], TCDD 

[37], DDT [38], phenobarbital [38], and acetamide [39]. The absence of genotoxicity and the 

tendency of being tissue specific make non-genotoxic mechanisms challenging to identify and 

characterize.  

A deficiency in GJIC affects tumorigenesis in two main ways: 1) the loss of GJIC leads 

to a lack of homeostasis resulting in cellular damage and 2) excessive proliferation may occur 

due to hormone, metabolite, or secondary messengers not being effectively distributed to 

adjacent cells. Loewenstein and Kanno first reported a lack of electrical coupling in rat 

hepatomas in 1966 [40]. This was observed in chemically-induced and transplanted hepatomas 

[40, 41], which differed significantly from the normally well-coupled liver cells. Similar results 

were obtained in transplanted thyroid tumors [42] and carcinomas of the stomach [43]. The lack 
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of electrical coupling soon became a common characteristic found in solid tumors, whether 

chemically-induced, transplanted, or spontaneously formed. This was true for various species 

across an array of tissue types.  

Over 40 years, later multiple studies confirmed that a deficiency in gap junctions, and 

thus GJIC, is associated with the cancer phenotype [44-46]. There is a clear correlation between 

reduced GJIC and the promotion and progression stages of cancer formation [47-53]. Inhibition 

of GJIC in initiated tissue, in which there are I+ cells, leads to tumor promotion of a chemically 

induced carcinogenesis [47, 54-56]. Many tumor promoting agents have been found to be 

inhibitors of GJIC [54, 55, 57], reinforcing the hypothesis that a deficiency of GJIC leads to 

tumorigenesis.  Most known oncogenes (i.e. ras, raf, neu, src) downregulate GJIC, while tumor 

suppressor genes upregulate GJIC [2, 58, 59]. In primary cells isolated from human breast cancer 

[60], rat mammary carcinomas [61], and transformed breast cancer cell lines [61, 62] a 

deficiency in Cx26 and Cx43 has been observed. In fact cell lines are known to have less gap 

junctions than their corresponding normal tissue cells [63, 64]. There is a distinct inverse 

relationship between cell growth and GJIC in transformed cell lines, where the induction of GJIC 

leads to the inhibition of growth, while the inhibition of GJIC promotes cellular proliferation 

[65]. 

Loss of connexin is an early event in cancer development, though researchers have been 

unable to clearly identify at which stage of tumorigenesis the decreased expression of connexins 

occurs. There are two routes to explain this early development: 1) clonal expansion of adult stem 

cells that do not express connexins, therefore resulting in a lack of GJIC at very early stages; or 

2) differential expression of connexins after initiation, in that the expression level and/or function 

is reduced by the onset of oncogenic activities as malignancy progresses [66]. This second 
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explanation covers why only some cancers express connexins at early stages. In many cancer 

cases, loss of connexin expression is observed during dysplasia of the precancerous lesion, such 

as a reduction in Cx43 in cervical dysplasia [67]. Additionally in lobular or ductal mammary 

carcinomas, Cx43 is not detectable, indicating that Cx43 is a marker for early oncogenesis [61]. 

Reduced connexin expression may also be observed in the later stages of tumorigenesis. As an 

example there is a decrease in Cx43 expression during the late stages of prostate cancer, but not 

in the benign stages [68]. This observation indicates that loss of connexin expression in not 

required for initiation of prostate cancer [68]. In support of the hypothesis that loss of GJIC is 

important in carcinogenesis, there are studies showing that re-expression of connexins in cancer 

cells causes normalization of cell growth control and reduced tumor growth. In normal mammary 

tissue, Cx26 is not detected, but it is upregulated in invasive breast carcinoma lesions [69]. 

The observable lack of GJIC in neoplastic cells is not only due to a lack of connexin 

expression, but also aberrant localization of connexin proteins. Many studies demonstrate 

expression of connexins in neoplastic cells, but abnormally located in the cytoplasm in vitro and 

in vivo. In more than 50% of invasive breast carcinomas Cx26 is located in the cytoplasm [69], 

while about 90% of advanced grade tumors have cytoplasmic expression of Cx43 [70]. Cx32 has 

been shown to be cytoplasmic in liver cancer cell lines and tumors [71]. This is also true for 

chemically-induced tumors, in which Cx32 and Cx26 have been identified to be cytoplasmically 

located in 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat hepatomas [72]. Aberrant 

connexin localization may be due to impaired trafficking of connexins to the membrane. This is 

seen with human colon cancer cells, which express Cx43 cytoplasmically, and the 

overexpression of Cx43 via transfection of cDNA does not improve localization at the membrane 

or restore GJIC [73]. Other reports have suggested it may be due to a lack of cell-cell 
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recognition. Neoplasms often show a decrease in E-cadherin, a cell-cell recognition 

transmembrane protein, which is lost with a transition in phenotype. Overexpression of E-

cadherin produces a more epithelial phenotype with restoration of GJIC [74]. In addition nuclear 

localization of connexins has been reported, but no reasonable explanation has been provided. 

Specifically Cx43 is localized in the nucleus in rat liver cells that have been transformed by the 

oncogenes src or neu [75]. Additionally in HeLa cells the Cx43 carboxyl terminus is anchored in 

the nucleus, inhibiting cellular proliferation [76].  

The alterations in the expression levels of connexin proteins may be due to genetic 

mutations in the neoplastic cells. Such as a series of mutations in a tumor suppressor gene, or a 

specific gene mutation that affects connexin production [46]. Mutations in tumor suppressor 

genes may lead to a lack of connexin expression directly, by altering the gene sequence, or 

indirectly via changes in regulatory factors. An example of the indirect route is in liver tumors 

where altered expression of the transcription factor hepatocyte nuclear factor 1α (HNF-1α) 

downregulated Cx32 [77-79]. Alterations in the expression of connexins may also be due to 

mutations in the non-coding sequence of the genes, thus modulating the regulation of expression. 

 1.3.2 Gap junctions/connexins in progression  

Metastasis is a complex process involving cellular dissociation, tissue invasion, transport 

of metastatic cells via blood or lymph, extravasation to a distant site, and formation of a 

secondary tumor. Loss of GJIC has been observed in metastatic disease [47, 80-84]. There are 

two steps in which gap junctions play a role in metastasis: 1) cellular dissociation and invasion, 

and 2) extravasation at the secondary site. Evidence indicates that a loss of GJIC correlates with 

metastatic potential of the primary tumor. In a metastatic breast cancer cell line, transfection with 

the breast metastasis suppressor 1 (BRMS1) cDNA restores GJIC by increasing Cx43 expression 
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and reducing Cx32, resulting in a more normal phenotype [85]. E-cadherin expression also 

positively correlates with GJIC [74, 86]. A reduction in E-cadherin indicates a loss of 

cooperation between neighboring cells and reduced GJIC, leading to cellular dissociation in 

invasive tumors.  

Interestingly low metastatic potential cells do not establish functional GJIC with the 

surrounding cells, but highly malignant mammary carcinoma or melanoma rat cells have been 

shown to readily transfer dye to endothelial cells at a secondary site [87]. Extravasation of 

malignant cells involves diapedesis across the endothelial barrier into the tissue prior to 

secondary tumor formation. This has been observed in breast cancer cells, which require GJIC 

between tumor cells and endothelial cells at a secondary site [70, 88]. El-Sabban and Pauli 

showed an increase in cellular adhesion and communication by highly metastatic lung carcinoma 

cells, presumably to facilitate extravasation during the metastatic process [89]. These studies 

exemplify the importance of GJIC in the establishment of metastatic foci, though more research 

is needed into the role of gap junctions in extravasation. During the process of metastasis, data 

suggests a change in connexin profile from a loss of GJIC during tissue invasion to functional 

GJIC during extravasation.  

 1.4 Breast cancer 

Breast cancer is the most common cancer in women worldwide and the leading cause of 

premature death. Breast cancer is the formation of neoplastic cells in the tissue of the breast, 

usually the ducts and lobules. It occurs in both men and women, although male breast cancer is 

very rare.  In the US, breast cancer is the second most commonly diagnosed cancer (skin cancers 

being the first) and the second leading cause of cancer related deaths [90].  
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Several factors have been associated with an increased risk for developing breast cancer, 

such as family and personal history, nulliparity, early menarche, and age. Age is the strongest 

risk factor associated with breast cancer in women. Diagnosis at a younger age correlates with a 

cancer phenotype that is more aggressive and less responsive to treatment [91]. Incidence of 

breast cancer increases dramatically with an increase in age among premenopausal women (≤50 

years) and then slows among postmenopausal women (>50 years). This pattern reflects the 

influence of reproductive hormones on the occurrence of breast cancer [92]. There is a large 

variation in incidence and mortality rates across racial and socioeconomic groups. The risk of 

developing breast cancer is positively associated with socioeconomic status, measured by either 

income or education [93, 94]. Reproductive risk factors include less parity and later age at first 

child birth [95]. Of female breast cancer patients, 5-10% have a germ-line mutation in the 

BRCA1 and BRCA2 genes [96]. The lifetime risk of developing cancer in women with mutations 

in BRCA1 and BRCA2 is 40-85%.  

The following studies characterize and discuss mammary carcinomas at different stages 

of tumorigenesis. Tumor formation is a multistage process in which epithelial cells go through a 

series of changes forming multiple premalignant phenotypes, ultimately developing into an 

invasive cancer (Figure 1.2).  The process of tumorigenesis is divided into three stages: 

initiation, promotion, and progression. Initiation is the irreversible alteration of a normal cell in a 

cancer related gene (i.e. mutations).  Promotion immediately follows initiation and involves 

clonal expansion of the initiated cell resulting in the development of benign tumors. This stage is 

facilitated by the stimulation of proliferation by mitogenic growth factors, hormones, and 

inhibition of apoptosis. The last stage, progression, is the stable alteration of the initiated cell to 
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confer the malignant phenotypes of invasiveness and metastasis. Progression may be considered 

the terminal stage of cancer development [97].  

 

 

Figure 1.2  The stages of tumorigenesis. A tumor is generated by a three-step process: 

initiation, promotion, and progression. Blue represents the normal healthy cell. Red indicates a 

cell that has been transformed through either genomic instability or oncogenic activation. The 

latency period between the formation of the initiated cell and a malignant tumor may be 20 years 

or more.  

 

Carcinoma cells undergo a type of epithelial-mesenchymal transition (EMT) that leads to 

a manifestation of cancer progression through the generation of invasive cells and metastatic 

lesions. EMT is a biological process that allows epithelial cells to undergo biochemical changes 

that enable it to assume a mesenchymal phenotype. This includes enhanced migration, 

invasiveness, resistance to apoptosis, and an increase in the production of extracellular matrix 

(ECM) components [98]. This process involves a variety of distinct molecular processes, 

including the activation of transcription factors, expression of surface proteins, and cytoskeletal 

protein reorganization. Cancer cells may go through different extents of EMT; some cells may 



13 

 

retain epithelial traits while acquiring some mesenchymal ones, while other cells may become 

fully mesenchymal.  

Activation of EMT is a critical mechanism for the formation of malignant phenotypes by 

epithelial cancer cells [98]. Cell culture and mouse studies demonstrated that carcinoma cells can 

express mesenchymal markers such as vimentin and desmin when acquiring a mesenchymal 

phenotype [99]. These cells are observed at the invasive front of the primary tumor, and 

eventually enter into an invasion-metastasis cascade [100, 101]. The process of EMT is 

facilitated by the disruption of cell-cell adherens junctions and cell-ECM adhesions via integrins 

[99, 102, 103]. Many studies have established a connection between EMT and the loss of E-

cadherin expression in carcinoma cells [104-106]. Cells with a decrease in surface E-cadherin 

expression are more responsive to EMT-induction by growth factors [107], and show an increase 

in tumorigenicity and metastasis in xenograft models [108]. Additionally patient survival is 

inversely related to E-cadherin expression levels [109]. Interestingly it has been observed that the 

EMT-derived mesenchymal cancer cells establish a secondary colony at a distant site that 

resembles histologically the primary tumor it originated from. This involves metastasizing 

neoplastic cells to convert back to epithelial phenotype through a process of mesenchymal-

epithelial transition (MET) during the formation of a secondary tumor [110], possibly due to 

encountering a different local microenvironment in a distant organ [101, 111, 112]. It is unclear 

what signals induce EMT, and its reverse MET in carcinoma cells.  

Hormone receptor expression status represents the best predictive marker for breast 

cancer currently in clinical use. Expression of the estrogen receptor (ER) and progesterone 

receptor (PR) are routinely profiled to determine if a patient would benefit from endocrine 

therapy. Hormonal treatments are only effective when hormone receptors are present. The 
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predictive value of these hormone receptors is not clear. Not all ER+ tumors benefit from 

hormone treatment [113]. Human epidermal growth factor receptor 2 (HER2) status is also 

standard for breast cancer evaluation [114]. HER2 gene amplification is seen in 15-25% of 

invasive breast cancers and is associated with a more aggressive phenotype and poor clinical 

outcome [115-118].  

There are five distinct subtypes of breast cancer based on cDNA studies and molecular 

profiling [119, 120]. These were first categorized by estrogen receptor expression. There are two 

ER+ subtypes distinguished as Luminal A and B, named for the presence of luminal epithelial 

cytokeratin. The other three subtypes are ER-: basal-like, ERB2 (HER/neu) positive, and normal-

like. The basal-like subtype has cytokeratin expression in basal epithelial cells. The observation 

of luminal and basal subtypes indicates differentiation from two different progenitor cell types. 

This hypothesis is supported by the observation that tumors with the breast cancer type 1 gene 

(BRCA1) mutations are commonly ER, PR, and HER2/neu negative tumors with basal 

cytokeratin and lymphocyte infiltrate [121-123], while those with breast cancer type 2 (BRCA2) 

mutations have luminal ER+ expression [124]. Interestingly despite sharing gene expression 

similarities the Luminal A tumors show the best prognosis of the five breast cancer subtypes, 

while Luminal B tumors correlate with poor patient survival, possibly due to overexpression of 

HER2 and presence of tumor protein 53 (P53) mutations. The basal-like and HER2+ subtypes 

have the poorest prognosis of all the subtypes. 

There are five clinical stages of breast cancer development determined by the size of the 

primary tumor and by how far the cancer cells have spread; these are summarized in Table 1.1. 

Stage 0 represents three types of early breast cancer, carcinoma in situ, defined by the lack of 

invasion of tumor cells: Ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS), and 
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paget disease of the nipple. DCIS and LCIS are noninvasive condition with abnormal cell growth 

found in either the lining of the duct or the lobules, respectively, which may become invasive. 

Paget disease involves the formation of abnormal cells in the nipple only. Stage I is divided into 

stages IA and IB. Stage IA consists of a 2 cm or smaller tumor, with cancer restricted to the 

breast tissue. Stage IB is more advanced due to the inclusion of small clusters of neoplastic cells 

found in the lymph nodes. Stage II is divided into stages IIA and IIB. Stage IIA consists of 

either a tumor with a maximum diameter of 2 cm with neoplastic cells found in 1-3 axillary 

lymph nodes, or a tumor that is larger than 2cm, but smaller than 5cm in diameter without 

neoplastic cells found in the lymph nodes. Stage IIB is represented by a tumor that is either 

between 2-5 cm in diameter with neoplastic cells clustered in the lymph nodes (1-3 axillary LN), 

or a tumor larger than 5cm in diameter without spread of neoplastic cells to the lymph nodes.  

Stage III is divided into three further stages: A, B, and C. Stage IIIA involves either 4-9 

axillary lymph nodes and neoplastic cells attaching to the breast bone, or a tumor larger than 5cm 

in diameter with 1-3 clusters of neoplastic cells found in the lymph nodes. Stage IIIB consists of 

a tumor of any size that has spread to the chest wall or skin, possibly forming an ulcer, and up to 

9 axillary lymph nodes or neoplastic cells attaching near the breast bone. Stage IIIC includes the 

spread of cancer cells near the breast bone and to more than 10 axillary lymph nodes or lymph 

nodes above the collar bone. Stage IV breast cancer has metastasized to other organs, typically to 

the bones, lungs, liver, or brain. Another form of advanced breast cancer involves the spread of 

neoplastic cells to the skin, causing the breast to look red, swollen, and warm. This is termed 

inflammatory breast cancer. In this situation the neoplastic cells block the lymphatic vessels in 

the skin, causing an inflammatory response, sometimes accompanied by dimpling of the skin 

called peau d` orange. Inflammatory breast cancer may be present during stages IIIB-C or IV.  
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Table 1.1 Summary of the clinical stages of breast cancer development. DCIS: Ductal 

carcinoma in situ, LCIS: lobular carcinoma in situ, LN: lymph node, BB: breast bone.  

Stage Description 

0 

DCIS (abnormal cells in ducts) 

LCIS(abnormal cells in lobules) 

Paget disease (abnormal cells in nipple) 

I 

IA Tumor ≤ 2cm, breast tissue only 

IB Tumor ≤ 2cm, neoplastic cells found in LN 

II 

IIA 

Tumor ≤ 2cm, 1-3 axillary LN  

Tumor 2- 5cm, breast tissue only 

IIB 

Tumor 2- 5cm, , 1-3 axillary LN  

Tumor ˃ 5cm, breast tissue only 

III 

IIIA 

4-9 axillary LN, near BB 

Tumor ˃ 5 cm, 1-3 LN 

IIIB 

Tumor spread to chest wall and skin, ≤ 9 

axillary LN, near BB 
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IIIC ˃ 10 LN 

IV Metastasis 

 1.5 Breast cancer treatment 

There are six types of standard treatment options for breast cancer. These are surgery, 

sentinel lymph node biopsy, radiation, chemotherapy, hormone therapy, or targeted therapy. 

Most breast cancer patients have surgery to remove the tumor from the breast tissue. During 
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surgery some of the lymph nodes may be removed to determine the extent of lymph node 

metastasis [125, 126]. There are two types of surgical procedures: breast-conserving surgery or 

mastectomy. The types of breast-conserving surgery are lumpectomy, which involves removing 

the tumor and a small amount of normal tissue around it, and a partial mastectomy, which 

removes the region of the breast with cancer and possibly part of the lining of the pectoralis 

muscle below the tumor.  There are also two types of mastectomy, either a total mastectomy or a 

modified radical mastectomy. A total mastectomy removes the whole breast that has developed 

cancer. The modified radical mastectomy involves removal of the whole breast, many of the 

nearby lymph nodes, and part of the pectoralis major muscle.  

Often patients undergo a procedure called a sentinel lymph node biopsy prior to surgery. 

The sentinel lymph node is the first lymph node to receive lymphatic drainage from the tumor, 

thus it is the first lymph node that the neoplastic cells may spread to. A radioactive substance or 

dye is injected into the tissue near the tumor. The substance is allowed to flow through the 

lymphatic ducts to the sentinel lymph node, which is then removed and histologically observed 

for cancer cells. Additional lymph nodes may be removed depending on the presence of cancer 

cells found in the biopsy [127, 128].  

Treatment that is given along with or after a surgical procedure to reduce the chances of 

recurrence is termed adjuvant therapy. This includes radiation, chemotherapy, hormonal therapy, 

and targeted therapy. Treatment decisions related to the use of adjuvant systemic therapies rely 

on clinicopatholgic staging, histological appearance, subtyping, grading, lymph node status, and 

the presence of metastasis. Lymph node negative and positive breast cancer patients are 

commonly recommended for adjuvant systemic treatment [129], though only about 2-15% 

respond to treatment [130].  
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Radiation therapy uses high-energy X-rays, or possibly other types of radiation, to 

prevent cellular proliferation and kill the cancer cells. There are two types of radiation therapy: 

external or internal. External radiation involves the use of a machine to send radiation towards 

the cancer. Internal radiation uses a radioactive substance that is placed directly into or near the 

tumor. Chemotherapy is a general term for any drug that inhibits the growth of rapidly dividing 

cells. This may be given systemically via the blood or regionally by direct injection into the 

cancerous tissue.  The type of radiation or chemotherapy depends on the stage of cancer.  

Hormone therapy involves the manipulation of the endocrine system through exogenous 

administration of compounds that block the production of hormone or prevents their activity. 

This type of treatment option is used in hormone-dependent cancers. The most common type of 

hormonal therapy is tamoxifen (sold under the trade names Nolvadex, Soltamox, Istubal, and 

Valodex) a selective estrogen receptor modulators used to treat patients with early stage breast 

cancer or metastatic breast cancer. Another type of hormone therapy is the use of aromatase 

inhibitors which prevent the conversion of androgen to estrogen in postmenopausal patients. 

Lastly targeted therapies use drugs or substances to attack cancer cells by interfering with 

specific targeted molecules required for tumorigenesis. This treatment option is less harmful to 

normal cells since it does not affect all rapidly dividing cells, but has specificity to the neoplastic 

tissue. Examples of targeted therapies are monoclonal antibodies, tyrosine kinase inhibitors, or 

poly (ADP-ribose) polymerase (PARP) inhibitors. Immunotherapy treatment is a subcategory of 

targeted treatments, which uses the patient’s own immune system to fight cancer by either 

enhancing the immune system in general ways or training the immune system to attack cancer 

cells specifically. There are three types of immunotherapy: monoclonal antibodies, cancer 

vaccines, and non-specific immunotherapies such as cytokines or interleukins that are used to 



19 

 

boost immunity. Less common treatment options include hyperthermia and stem cell transplants 

into the peripheral blood or bone marrow. New types of treatment are constantly being tested in 

clinical trials.  

The three antineoplastic compounds used in the following studies are tamoxifen, 

paclitaxel, and cisplatin. As mentioned above, tamoxifen is a selective estrogen receptor 

modulator (SERM) that binds the estrogen receptor as a competitive antagonist to estrogen 

signaling. Tamoxifen was first produced by AstraZeneca in the early 1970s [131] and is used for 

a variety of disorders, including bipolar disorder [132], gynecomastia [133], and thyroiditis 

[134]. Tamoxifen is currently used for the treatment of early and advanced estrogen receptor 

positive breast cancer in female patients, and it is the most common hormone therapy for male 

breast cancer [135]. It blocks the binding of estradiol to its estrogen receptor, preventing the 

induction and growth of hormone-dependent mammary carcinomas [136-138]. Drug resistance 

does occur with long-term tamoxifen treatment. Adjuvant tamoxifen treatment was evaluated for 

5 year and 10 year treatment durations, where 10 years of treatment resulted in an accumulation 

of serious side effects and an increase in tumor recurrence [139].  Five years of tamoxifen 

therapy has become the standard treatment strategy since the 1990s, resulting in long-term 

benefits for patients [140]. 

Cisplatin is the first member of a group of anticancer drugs that are platinum containing 

compounds. Cisplatin is administered intravenously for short-term treatment of solid cancers. 

The compound cis-[Pt(NH3)2(Cl)2] was first described by Michele Peyrone in 1845 and was 

known as Peyrone’s salt [141]. In 1965, it was discovered that electrolysis of platinum electrodes 

generated a platinum complex that inhibited cell division in E. coli bacteria [142]. This finding 

later led researchers to the observation that cisplatin was highly effective at reducing tumor 
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growth in rats [143]. The FDA approved cisplatin for the treatment of testicular and ovarian 

cancer in 1978 (9). The mechanism of action for cisplatin involves the displacement of chloride 

by water, and water by a nucleobase, most commonly the purine guanine, forming DNA 

crosslinks and interfering with mitosis [144]. The initial responsiveness to cisplatin is high, but 

the majority of cancer patients receiving this treatment becomes resistant and eventually relapse.  

Paclitaxel (taxol) is a mitotic inhibitor isolated from the bark of the Pacific yew tree, 

Taxus brevifoli. It was first discovered in 1967 and developed commercially by Bristol-Myers 

Squibb. It wasn’t until 1978, when researchers showed that taxol was effective in leukaemic 

mice [145] and xenograft studies [146]. It was FDA approved in 1992 for the treatment of 

patients with head and neck, lung, ovarian, and breast cancer [146]. Paclitaxel is a cytoskeletal 

drug that binds tubulin to stabilize the polymer and protect it from disassembly, thereby 

preventing mitotic spindle assembly, chromosome segregation, and cellular division [147]. Until 

1993, almost all taxol production was derived from harvesting the bark from the Pacific yew, 

which killed the tree in the process. At this time it was discovered that taxol was synthesized by 

endophytic fungi living in the bark [148]. Currently taxol is produced through plant cell 

fermentation with the endophytic fungus Penicillium raistrickii followed by direct extraction and 

purification [149].  

The nonspecific nature of chemotherapy, hormone therapy, and radiation treatment leads 

to a variety of unpleasant side effects for patients. Radiation damages normal tissue that is 

adjacent to the cancer. Side effects associated with radiation therapy of the breast, chest wall, and 

regional lymph nodes include myelosuppression, hyperpigmentation of the skin, lymphedema, 

pneumonitis, myocardial infarction, and second cancers [150]. The risk of cardiac toxicity 

increases when daily radiation doses are high [151], while lymphademia post radiation varies 
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from 5-25% in breast cancer patients [152]. The risk of developing contralateral breast cancer 

post radiation therapy also increases, most likely due to “scatter” radiation towards the 

noncancerous tissue [153-155].  

Treatment with chemotherapeutic compounds damage normal, healthy cells that are 

rapidly dividing, such as hair follicles, nails, and bone marrow. Guidelines form the National 

Institutes of Health and the National Comprehensive Cancer Center Network recommend 

adjuvant chemotherapy, tamoxifen, for women with invasive breast cancer whether or not lymph 

nodes are involved [156, 157]. Common side effects with adjuvant chemotherapy include 

myelosuppression, nausea and vomiting, neurological toxicity, weight gain, ovarian failure, 

cardiac toxicity, secondary cancers, fatigue, and cognitive dysfunction [150, 158].  

Approximately 10-14 days post adjuvant chemotherapy patients often experience a small to 

moderate reduction in white blood cell count, termed myelosuppression. Due to this there is an 

increase in the incidence of infection, of which 2% are life-threatening [150]. Secondary cancer 

formation depends on the specific chemotherapeutic drug, the cumulative dose, and duration of 

treatment. Patients receiving both chemotherapy and radiation have a higher risk of developing 

acute myeloid leukemia [159, 160]. The most common side effect experienced by breast cancer 

patients receiving chemotherapy is moderate to severe fatigue, affecting two out of three patients 

[161, 162].  

Taking a closer look at tamoxifen and taxol, it is apparent that these compounds have 

detrimental side effects. The taxanes, such as paclitaxel and docetaxel, cause both sensory and 

motor peripheral neuropathy [150]. The severity of nerve damage is related to the individual 

dose, cumulative dose, and schedule of administration. Taxanes can also cause hypersensitivity 

reactions, myalgias, and arthralgias. The effects of tamoxifen depend on the target tissue. 
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Interestingly it has an estrogen-like effect on the endometrium, skeleton, coagulation system, and 

lipid metabolism [150]. Tamoxifen treatment results in a decrease in plasma concentration of 

antithrombin III, protein S, and fibrinogen [163-165], increasing the risk of developing 

coagulopathy. Hormone treatment with tamoxifen is also associated with a doubled risk of 

developing endometrial cancer [166-168], most likely due to an increase in estrogen-like 

signaling. It is clear that the optimal adjuvant therapy has not been determined. More research is 

needed to determine what patients would likely benefit from specific adjuvant therapies, increase 

the efficacy of treatment, and reduce the toxicity to minimize effects on normal tissue.  

 1.6 Gap junction enhancers as anticancer compounds 

The restoration of GJIC in cancer cells is a novel therapeutic approach for cancer 

research. GJIC may be altered by a number of small molecules, shown through 

electrophysiology and dye transfer studies [169]. Gap junction enhancers may be utilized as 

anticancer compounds alone or used in combination with antineoplastic compounds to elicit the 

bystander effect, a mechanism involving the transportation of cytotoxic compounds/molecules 

from a treated cell to an adjacent cell [170]. Establishment of functional GJIC in tumor cells may 

aid delivery of a drug throughout the tumor. This could potentiate drug effects, similar to its 

improvement of radiation and chemotherapy [171, 172].  

Low density structure of the gap junction was reported by Makowski et al. [173], 

providing a general shape of the gap junction channel using X-ray diffraction and electron 

microscopy. Unger et al. [174] further explored the transmembrane protein architecture by 

constructing a recombinant gap junction that was used in computational docking experiments 

with multiple small molecules that are known to restore GJIC, such as caffeic acid pehnethyl 

ester (CAPE) [58], liarozole [175], and lycopene [176]. Due to the high effective concentration 
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needed to elicit a response by CAPE and the lack of response in cancer patients to lycopene and 

liarozole, new gap junction enhancers are needed to study the mechanism of GJIC restoration 

and their anticancer effect.  

Quinoline derivatives are commonly used in medicinal chemistry and biomedicine, and 

may be isolated from natural resources or prepared synthetically. The quinoline ring is used as 

the base for the design of many synthetic compounds with a variety of activities, including 

antimalarial [177], anti-inflammatory [178], antibacterial [179], and anticancer [180-183] 

functions. Using the partial crystal structure of Cx43 [173, 184] the interactions of a class of 

substituted quinolines (PQs) were examined using Autodock computational docking software 

[185-187]. The substituted quinolines (PQs) were observed to bind to the inert core of the 

connexon of the gap junction channel [188]. Specifically the CF3 and OCH3 of PQ1 bound to the 

H-N of Leu144 and CH2 of Phe81 of connexin, respectively [188]. From this observation a class 

of substituted quinolines were synthesized from 4-acetaminoanisole to determine potential 

anticancer activities [188].  

Gakhar et al. [188] showed that the substituted quinoline PQ1 was predicted to have a 

high binding affinity for connexin from computational docking experiments. Tissue cell culture 

studies further examined PQ1 as a GJIC enhancer and anticancer agent. In T47D human breast 

cancer cells, 200nM PQ1 treatment induced an 8.5 fold increase in GJIC, determined by scrape 

load dye transfer experiments [188].  Additionally PQ1 was shown to inhibit colony growth and 

reduce cell viability of T47D cells, while having no adverse effect on normal human mammary 

epithelial cells (HMEC) [188]. This suggests that PQ1 has a low toxicity to the normal tissue.  At 

the molecular level, PQ1 significantly decreased the expression of phosphorylated Cx43, while 

increasing the expression of active caspase 3 [188]. This was the first study demonstrating the 
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ability of PQ1 to enhance GJIC in cancer cells, while showing promising results as an anticancer 

agent. 

The effect of PQ1 on normal tissue was determined through evaluation of vital organs 

post administration of 25 mg/kg PQ1 via oral gavage to healthy mice [189]. This study focused 

on the distribution of PQ1 throughout the body after a single exposure. Histological evaluation of 

the tissue showed no observable alteration due to treatment with PQ1 [189], indicating low 

toxicity to the vital organs. Molecular analysis of the organs revealed an increase in survivin 

expression, and a decrease in active caspase 3 and caspase 8 [189]. Thus treatment of healthy 

tissue with PQ1 showed no adverse effects at the molecular level and the tissue level. Since PQ1 

was previously shown to be a GJIC enhancer in neoplastic tissue, the expression level of Cx43 

was determined in the normal tissue. All the organs treated had a decrease in Cx43 expression; 

suggesting that PQ1 has a different mechanism of action in normal tissue compared to what has 

been seen in cancer cells [189].  

Based on previous studies showing the enhancement of GJIC and the anticancer activities 

of PQ1, analogs of this quinoline derivative were synthesized by varying the N1’ substituent.  Of 

the six compounds synthesized, PQ7 was determined to have the most potent anticancer activity 

in T47D cells with an IC50 value of 15.6 nM [190]. In T47D cell culture 500nM PQ7 increase 

GJIC determined by a 16 fold increase in dye transfer experiments [191]. Additionally PQ7 was 

shown to inhibit T47D colony growth, reduce viability, and decrease tumor growth in a T47D 

xenograft model [191]. Molecular analysis of cell lysate showed that PQ7 increased both Cx43 

expression and activate caspase 9 expression [191]. These studies indicate that PQ7 may be a 

promising anticancer therapy for breast cancer.  
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 1.7 Animal models of breast cancer 

Mouse models for human breast cancer are categorized into three groups: xenograft 

models; chemically, virally, or ionizing radiation-induced models; and genetically engineered 

models (GEM) such as knockout or transgenic mice [192-194]. The limited understanding of the 

cell biology in normal breast tissue and breast cancer prevents the development of new 

therapeutic approaches. Animal models of mammary gland development and tumorigenesis are 

critical in the advancement of our knowledge of both normal and neoplastic tissue. Molecular 

characterization and functional analysis of isolated mouse mammary cells from both the normal 

gland and tumor models provide insight into the nature of different epithelial cell types and the 

origins of mammary carcinomas. Additionally animal models are used to predict the safety and 

efficacy of new drugs prior to human use. Drugs are being cited as having unpredictable 

toxicities and/or a lack of efficacy due to the early identification of the therapeutic properties of a 

compound, which are primary goals for preclinical animal models.  

Preclinical animal studies allow the opportunity to measure pharmacodynamics and 

pharmacokinetic properties of the drug, such as absorption, distribution, metabolism, 

elimination, and toxicity. Rodent models are being utilized to identify chemopreventive agents, 

environmental and dietary risk factors, reproductive toxicity, and mechanisms of action. In vivo 

models are advantageous in that they incorporate multiple cell types, histology, and processes in 

a single biological system with accelerated tumorigenesis, due to the short life span of the mouse 

[195]. Animal models are the best option for the development of new drugs and testing 

therapeutic interventions. The main disadvantage of in vivo modeling is the difficulty in 

identifying molecular pathways and specific cellular processes. It is important to determine if 

tumorigenesis in a murine model resemble features of human breast cancer. The main paradigm 

that exemplifies the difference between human and murine species is the function of telomeres 
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and telomerase, which limit the life span of human cells [196]. Murine cells have longer 

telomeres and a basal telomerase activity [195]. Another important difference between rodents 

and humans is the mammary stroma; murine mammary stroma consists largely of adipose tissue, 

while human stroma has high amounts of fibroblasts. Normal and transformed cells do not just 

need the right hormones, but also an appropriate environment that supports epithelial cells 

growth.  

Every animal model has specific advantages and disadvantages. Xenograft models are the 

most widely used [197, 198] and have a dominant role in preclinical trails. This is due to factors 

such as being relatively inexpensive and easy to generate, short latency for tumor formation after 

subcutaneous injection, and the ability to utilize ER-positive cancer cell lines. The use of breast 

cancer cell lines and xenograft models has been adopted by NCI for current drug screening 

programs [199]. One issue with the use of human xenograft models is that they do not replicate 

histopathology of breast cancers displayed in human patients. This is due to the xenograft tumors 

consisting mainly of proliferating epithelial cells with a lack of stromal infiltration. This led to 

the use of recombinant xenografts which use a mixture of benign epithelium, normal stromal 

cells, and/or neoplastic cells implanted into nude mice [200]. This has become an ideal system 

for examining the characteristics of heterotypic interaction in cancer initiation and progression 

[201]. Unfortunately numerous chemotherapeutic agents have shown promising results in 

preclinical models and yet had minimal activity in clinical settings.  This has led to skepticism 

about xenograft tumor models.  The lack of a competent immune system in xenograft models is a 

common weakness in preclinical trials. Additionally, these subcutaneous tumors are relatively 

predictable and are sensitive to most treatments, but metastasize infrequently.  Tumorigenesis is 
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a multistep process and all stages of development need to be considered in the design of effective 

therapies.   

The chemically induced rodent model is ideal for studying early events in chemical 

carcinogenesis and malignant progression. The 7,12-dimethyl-benz(a)anthracene (DMBA)-

induced model of breast cancer requires hepatic activation, where the metabolites are present in 

the animal for several days. Co-administration of treatment with DMBA could cause an 

alteration in tumorigenicity due to pharmacokinetic properties of the different compounds; this 

can lead to inadequate modeling of adverse pharmacokinetic, pharmacodynamic, toxicologic, 

and/or molecular feedback signaling interactions. 

Genetically engineered mice (GEM) are used to determine the biological function of 

genes during normal development and tumorigenesis. The first generation GEM uses oncogene 

expression or tumor suppressor inactivation to form mammary tumors. To prevent tumor 

formation in other tissues, transgene expression is placed under the control of promoters such as 

the mouse mammary tumor virus (MMTV) to target expression or loss to the mammary 

epithelial. The second generation GEM is comprised of conventional knockout models with 

targeted mutations. A main issue with the vast majority of mammary tumors developed from 

GEM is that they are ER-negative [201]. A variety of transgenic models have been created, but 

few have been characterized for their potential use in preclinical research. Specific strains are 

now being used in chemopreventive and chemotherapeutic trials [202, 203]. The following 

studies utilize a transgenic mouse model with the MMTV promoter upstream of the cDNA 

encoding the Polyoma Virus middle T antigen (PyVT) to initiate tumor formation in the 

mammary epithelium. 
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For studying the role of connexins in carcinogenesis, in vitro models such as the use of 

cell lines may not be optimal. Connexin expression may depend on the cellular environment, 

which is lost in vitro. A shift in connexin expression has been observed between in vitro and in 

vivo techniques. Specifically the hepatoma cell line 9618A expresses mainly Cx43 in vitro, but 

Cx32 in vivo [69]. There are similar findings with skin carcinoma cell lines that have little to no 

Cx26 expression in vitro, while as a xenograft they begin to express Cx26 [204]. Connexin data 

is contradictory depending on the model. This is seen for breast cancer as well. In normal breast 

tissue Cx26 is not detectable, in breast cancer cell lines it is known to be a tumor suppressor, but 

in invasive and metastatic lesions from patients it is shown to be overexpressed [62, 205].  

Indeed cell lines present the advantage of minimizing the uncontrollable parameters, but the 

formation and progression of solid tumors is likely more complex than this experimental system, 

indicating a need for suitable animal models.  
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Chapter 2 - Hypotheses and Objectives 

 2.1 Hypotheses 

1. The anticancer effects of the gap junction enhancers PQs on T47D cells in vitro have been 

reported. The hypothesis is that PQs can be used as a combinational treatment with 

antineoplastic compounds to increase their efficacy in attenuating T47D xenograft tumor 

growth through the bystander effect.  

2. Xenograft models are useful models for testing novel anticancer compounds, but have 

limitations. Here the PyVT transgenic model is hypothesized to be a useful biological 

system for studying tumorigenesis. The effects of common antineoplastic compounds are 

shown on tumor development.  

3. PQ1 was shown to be an effective anticancer compound in a xenograft model. Using a 

spontaneous mouse model of mammary carcinoma development, we hypothesize that PQ1 

can be used to attenuate tumor growth at three developmental stages of the PyVT 

transgenic model. 

4. Minimal toxicity of PQ1 was observed in vitro and in vivo. PQ7 was observed to have 

minimal toxicity on human normal mammary epithelial cells (HMEC) while having an 

effective anticancer response in human breast cancer cells (T47D). The hypothesis is that 

PQ7 can be administered as anticancer drug with low toxicity to normal organs in vivo. 

5. Male breast cancer is a rare disease with limited cohort studies to determine the anticancer 

effects of commonly used antineoplastic compounds. Using the male PyVT mouse as a 

biological system of male mammary carcinoma development, the hypothesis is that 

tamoxifen, cisplatin, and paclitaxel can attenuate tumor growth in a male mammary 

carcinoma model.  

 

 2.2 Objectives  

1. Evaluate the combinational effects of PQs and cisplatin 

a. Effects of combinational treatment on tumor growth 

b. Determine the changes of protein expression due to treatment 

c. Histological evaluation of vital organs post exposure 

Appendix A: combination of PQs and paclitaxel. 

2. Characterize the transgenic mouse model as a biological system to study mammary 

carcinoma development. 

a. Examine the differential pattern of hormonal receptors 

b. Determine connexin expression at different stages of tumor development 

c. Establish histological description for different stage of tumor development 

3. Examine the effects of PQ1 in the PyVT model. 

a. Determine the effects of treatment on tumor growth and burden 

b. Examine the expression of connexins during tumor development 

c. Observe potential changes in lung metastasis 

d. Evaluate toxicity of PQ1 to normal tissue  
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4. Determine the potential toxic effects of PQ7 on normal tissue and the anticancer effects on 

tumor development. 

a. Examine the distribution of PQ7 to normal tissue 

b. Evaluate the toxicity of PQ7 to the vital organs 

c. Observe the effects on tumor growth at different stages of tumor development 

d. Pathological evaluation of isolated mammary tumors post treatment 

e. Determine connexin expression at different stages of tumor development post 

treatment 

5. Evaluate treatment of male mammary carcinoma development with tamoxifen, cisplatin, 

and paclitaxel. 

a. Examine the hormone receptor profile of male mammary carcinomas 

b. Determine the efficacy of three antineoplastic drug treatment  

c. Evaluate the expression of molecular markers of male breast cancer 

d. Pathological evaluation of isolated mammary tumors post treatment  
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Chapter 3 - Gap junction enhancer increases efficacy of cisplatin to 

attenuate mammary tumor growth 

A research article of the following findings has been published in PLoS ONE (2012) 7(9): 

e44963. doi:10.1371/journal.pone.0044963 

 3.1 Introduction 

Breast cancer is the most common cancer in women worldwide and mortality from breast 

cancer is consistently due to tumor metastasis [1].  Defects in neoplastic cells, such as excess 

proliferation, invasion, and metastasis, have a crucial role in the loss of tissue homeostasis [2, 3]  

[4].  Gap junctions are the only communicating junctions found in animal tissues, in all species, 

which are responsible for the direct trafficking of ions and molecules with molecular weights less 

than 1,200 Daltons [5].  Gap junctions directly connect the cytoplasms of neighboring cells, to 

allow the passage of intercellular signaling molecules and homeostatic regulators such as anti-

growth signals and apoptotic factors.  Intercellular junctions are important in the maintenance of 

the cellular homeostasis, cell differentiation, and cellular death.  A main characteristic of cancer 

formation is the loss of gap junction intercellular communication (GJIC) through the decreased 

expression or absence of gap junctions [6].  

Restoring GJIC in tumor cells is one approach that increases the spread of cytotoxic 

drugs and subsequently enhances antineoplastic therapies.  Use of a gap junction enhancer may 

potentiate the bystander effect of cytotoxic compounds, such as cisplatin and paclitaxel.  

Recently, a new class of substituted quinolines (PQs) was synthesized and found to possess 

potent inhibitory activities against T47D breast cancer cells (IC50 value of PQ7 is 16 nM and 

PQ1 is 119 nM) through the enhancement of GJIC [7, 8].  PQ7 has the ability to enhance the 
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GJIC between neoplastic cells by increasing the expression of connexin 43 (Cx43) [9].  In 

addition, in vivo, the treatment of PQ7 on nude mice with T47D xenografts showed a 100% 

decrease in tumor growth after seven intraperitoneal injections [9].  This agent is capable of 

normalizing GJIC and has cancer-preventive properties.  

Cisplatin is one of the most widely used cancer chemotherapeutic agents used clinically, 

but renal failure is a common problem in patients.  Cisplatin nephrotoxicity is dose-related and 

used to be considered dose limiting [10].  The primary mechanism for cisplatin toxicity is via 

formation of platinum-DNA adducts that induce cell cycle arrest [11,12].  Other main 

mechanisms of action include DNA-protein cross linking, ROS generation leading to oxidative 

stress [13], and a gap junction-mediated cell-interdependent pathway [14].  The cell 

interdependent pathway of cisplatin toxicity requires DNA dependent protein kinase (PK) 

signaling and intercellular communication through gap junctions [14].  He et al. [15] showed that 

Cx32-composed gap junctions are required components of toxicity suggesting a dependence on 

cells being GJIC competent.  Cisplatin damage in one cell triggers DNA-PK dependent signal 

and is transmitted by GJIC to neighboring cells.  Jensen and Glazer [14]  showed that by 

inhibiting GJIC with lindane, immortalized mouse embryonic fibroblasts (MEFs) were protected 

from cisplatin toxicity, while increasing GJIC by transfecting MCF-7 breast cancer cells with 

Cx43 enhanced drug sensitivity.  Induction of apoptosis/necrosis from cisplatin in one cell may 

cause a “death signal” that is transmitted to neighboring cells through gap junctions.  

Increasing gap junction activity or enhancing GJIC in tumor cells provides the targets to 

enhance antineoplastic therapies.  Tanaka and Grossman [16]  showed that by transfecting 

human bladder cancer cells with Cx26, tumor formation could be prevented.  In combination 

with cisplatin an increase in GJIC promoted apoptosis, cell cycle arrest, and down regulated Bcl-
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2 [16] .  A new class of substituted quinolines (PQs) possesses inhibitory activities against breast 

cancer cells through the enhancement of GJIC.  The objective of this study was to examine the 

effect of combinational treatment of PQ and antineoplastic drugs in a xenograft tumor model, 

showing an increase in efficacy of the antineoplastic drug, cisplatin (cis-

diamminedichloroplatinum), via the enhancement of gap junctions. 

 3.2 Material and methods 

 3.2.1 Ethics statement 

Husbandry of animals is conducted by the Comparative Medical Group (CMG) at the 

College of Veterinary Medicine at Kansas State University.  The CMG animal facilities are fully 

accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, 

International (AAALAC).  The compliance to aspects of animal welfare law is regularly 

monitored by the veterinary staff.  Animal care and use protocols were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Kansas State University (Protocol 

Number: 2985), Manhattan following NIH guidelines. This applies to all animal studies 

conducted.  

 3.2.2 Compounds 

Compounds PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethyl-

phenyloxy)quinolines, and PQ7, 6-methoxy-8-[(2-furanylmethyl)amino]-4-methyl-5-(3-

trifluoromethylphenyloxy)quinoline, were graciously provided by Dr. Duy H. Hua (Kansas State 

University, Manhattan, KS).  Cisplatin, cis-Diamminedichloroplatinum (II), was purchased from 

Sigma Aldrich (St. Louis, MO).  
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 3.2.3 Cell line and cell culture 

The T47D human breast cancer cell line was purchased from American Type Cell 

Culture (ATCC, Manassas, VA).  Cells were grown in RPMI medium supplemented with 10% 

fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA) at 37
◦
 C with 5% CO2 in T-125 cm

2
 

flasks. 

 3.2.4 Xenograft tumors of T47D cells in nude mice  

Nu/Nu female mice were ordered from Charles River Laboratories International, 

(Wilmington, MA, USA) and implanted with 17-β-estradiol (1.7 mg/pellet, Innovative Research 

of America, Sarasota, FL) before injection of 1x10
7
 T47D breast cancer cells subcutaneously 

into the inguinal region of the mammary fat pad.  Cell viability of T47D cells was performed 

prior to the injection.  Tumor size was measured in two dimensions with calipers every 2 days 

starting at day 7.  Tumor volume was determined by the equation: Volume = 

½(Length)*(Width)
2
. Mice were observed for any change in behavior, appearance or weight. 

When tumors reached >50 mm
3
, six animals were randomly assigned to each treatment group.  

Mice were administered 25 mg/kg PQ1 or PQ7 in succinic acid salt, 3.5 mg/kg cisplatin, or a 

combination of PQ and cisplatin via intraperitoneal injection of 100 µl.  Compounds were 

dissolved in DMSO, which was used as a vehicle control at the same volume.  Tissue was 

harvested from mice two days after the last injection.  

 3.2.5 Western blot analysis 

Tissue was harvested from the mice and whole cell extractions conducted using lysis 

buffer (20 mM Tris pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, and 0.5 % Triton X-100) with 

1:1000 dilution of protease inhibitors (Sigma-Aldrich, Saint Louis, MO, USA).  Tissue was 

homogenized via the OMNI Bead Ruptor 24 at a speed of 5.65 m/s for 45 seconds, followed by 
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centrifugation at 13,000 rpm for 30 minutes at 4˚C. Twenty-five μg of whole-cell extract was 

resolved by 10% SDS polyacrylamide gel electrophoresis (PAGE) and transferred to 

nitrocellulose membrane (Midwest Scientific, Saint Louis, MO, USA).  Nitrocellulose membrane 

was blocked in 5% milk for an hour at room temperature and then incubated with monoclonal 

antibodies against anti-Cx43, -Cx32, -Cx26, -caspase 3, -caspase 8, and -caspase 9 (200 µg/ml; 

Santa Cruz Biotechnologies, Santa Cruz, CA, USA) and beta actin (500 µg/ml; Sigma-Aldrich) 

at a dilution of 1:1,000.  Western blots were detected by enhanced chemiluminescence detection 

reagents (Pierce, Rockford, Illinois, USA) and visualized by Fluorochem E imaging system 

(ProteinSimple). 

 3.2.6 Immunohistochemistry  

All tumors were removed and fixed in a solution
 
of 10% formaldehyde and embedded 

into paraffin prior to sectioning them onto slides at a 5 µm thickness.  Paraffin sections (5 µm) 

were dried at 60°C for 25 minutes.  Deparaffinization was performed with 100% xylene and 

100%, 90%, 75%, 50% ethanol.  Antigen retrieval was performed in 1× citrate buffer solution 

and steam for 20 minutes. Endogenous peroxidase was blocked using 3% hydrogen peroxide. 

Slides were then incubated overnight at room temperature with antibody (1:50 dilution).  

Antibodies include: connexin 43, 32, 26; caspase 3, 8, 9; survivin; Cyclin D1; Ki-67; and Mig 

(Santa Cruz Biotechnologies, Santa Cruz, CA, USA).  After washes in PBS, slides were 

successively incubated with biotinylated secondary antibodies (1:1000) for 15 minutes.  Slides 

were washed and immunostains were amplified by incubation with Avidin Biotin Complex 

(ABC) for 10 minutes accordingly.  Cells were visualized with 3,3-diaminobenzidine (DAB) 

followed by a hematoxylin counterstain.  The sections were viewed and the images captured with 

a Nikon 80i microscope under 40X and 60X magnification.   
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 3.2.7 Statistical Analysis  

Significance was considered at a p-value ≤ 0.05 using Student’s t-test analysis.  All data 

are presented as mean ± 95% confidence interval of at least three independent experiments. 

 3.3 Results 

 3.3.1 T47D xenograft tumor growth in nude mice 

Mice were implanted with 17ß-estradiol (1.7 mg/pellet) before the injection of 1 x 10
7 

T47D breast cancer cells subcutaneously into the inguinal region of mammary fat pad.  Seven 

days post cell injection, animals was randomly assigned to each treatment group.  Animals were 

treated intraperitoneally with DMSO as a control of drug solvent, cisplatin, PQ1, PQ7, or a 

combining treatment of cisplatin and PQ in a total volume of 100 µl.  All treatments significantly 

reduced tumor size (Figure 3.1) compared to control.  Cisplatin alone induced a 1.8-fold decrease 

in mammary tumor growth while combinational treatment of cisplatin and PQ1 showed a 2.6- 

fold reduction after 7 treatments at every 2 days (p-value = 0.012).  PQ1 alone induced a 2.8-fold 

reduction in tumor growth after seven injections compared to control and 1.5-fold reduction 

compared to cisplatin treatment alone with a p-value of 0.001.  The data demonstrates that PQ7 

alone and in combination with cisplatin significantly reduced T47D xenograft tumor group 

compared to control (p-values < 0.001).  With PQ7 treatment alone, there was a 2.0-fold 

reduction in tumor size compared to control mice. Combinational treatments resulted in a 2.6- 

and 2.1-fold reduction in T47D xenograft tumor size for PQ1 (p-value = 0.028) and PQ7 

combinations with cisplatin, respectively, compared to control mice.  Combinational treatment of 

cisplatin with PQs showed greater reductions in tumor volume compared to cisplatin alone.  
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Figure 3.1  Xenograft tumor growth in nude mice.  The graphical presentation shows the 

proportion of tumor reduction normalized to control after 7 IP injections of DMSO, cisplatin 

(3.5mg/kg), PQ1 (25mg/kg), PQ7 (25mg/kg), or a combination of cisplatin and PQ. * P-value is 

<0.05 compared to control. ** P-value is <0.05 compared to control and cisplatin treatments. 

 

 3.3.2 Protein expression of xenograft tumors   

Morphological changes are the basis for contemporary cancer diagnosis. Hematoxylin 

and eosin (H&E) staining showed consistent morphology of all xenografts despite treatment 

received (Figure 3.2A). Tumor sections showed a solid nest of predominately poorly-

differentiated tumor cells with large, irregular nuclei, coarse granular chromatin, prominent 

nucleoli, and high mitotic activity. Neoplastic cells were larger than normal epithelium with a 

characteristic epithelioid morphology and marked nuclear pleomorphism. Histological staining 

does not show any prominent features of apoptosis or necrosis for any treatment group.  

Adjacent cells are able to exchange homeostatic regulators, such as anti-growth signals 

and apoptotic factors, through hydrophilic gap junction channels.  Each gap junction is 
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composed of two hemichannels (connexons) that are embedded in the plasma membrane. These 

connexons are formed by six connexin proteins [3] , of which there are 21 different human 

connexin genes identified [17] .  Only three connexin proteins are expressed in the human breast 

tissue: Cx43, Cx32, and Cx26 [18].  Immunoblot analysis and immunohistochemistry were 

conducted on T47D xenograft tumors harvested from mice after 7 intraperitoneal injections of 

DMSO, cisplatin, PQ1, PQ7, or a combining treatment of cisplatin and PQ.   Tumors treated with 

PQ alone and in combination showed an increase in connexins (connexin 43, 32, and 26), 

compared to controls and cisplatin treated tumors (Figure 3.2B).  Cisplatin treatment decreased 

the expression of Cx43 compared to control (Figure 3.2B).  Western blot analysis of tumor 

homogenates showed that PQ1 significantly increased Cx43 expression in T47D xenografts by a 

3.9 fold increase compared to control (p-value = 0.003) and 4.9 fold change compared to 

cisplatin (p-value = 0.007) treated mice (Figure 3.3A).  
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Figure 3.2  Immunohistochemistry of T47D xenograft tumors. Protein expression of  A) 

Hemoxylin and Eosin staining under 40x magnification, B) connexins (Cx 43, 32, and 26) under 

60X magnification, C) apoptotic proteins (caspase-3, -8, and -9) under 60X magnification and D) 

proliferative (Ki-67 and Cyclin D1) and survival proteins under 60X magnification in T47D 

xenograft tumors harvested after 7 IP injections treated with either DMSO (control), cisplatin, 

PQ1, PQ7, or a combination of cisplatin and PQs. 
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Figure 3.3  Protein expression of T47D xenograft tumors. Protein expression of A) connexins 

(Cx43, 32, and 26), B) apoptotic proteins (caspases), C) Cyclin D1 and survivin from T47D 

xenograft tumors harvested after 7 IP injections treated with either DMSO (control), cisplatin, 

PQ1, PQ7 or a combination of cisplatin and PQs. Actin and GADPH are loading controls. 

Numbers indicate the fold difference from control (top row) and cisplatin (bottom row). x = fold 

induction. Bold p-value is <0.05 compared to control or cisplatin (n=3).  
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The apoptotic signaling pathway induced by the treatment was determined by analysis of 

caspase expression.  Two major signaling pathways lead to apoptosis.  One is mitochondrial 

release of pro-apoptotic effectors such as caspase-9, which leads to caspase-dependent or 

independent apoptosis [19].  The other involves the interaction of death receptors with associated 

proteases and activation of caspase-8 [20].  Data indicate there is an increase in the density of 

apoptotic proteins (caspase-3, -8, and -9) staining with PQ treatment compared to control and 

cisplatin alone (Figure 3.2C), which is confirmed by Western blot analysis (Figure 3.3B).  

Cisplatin treatment increased capase-9 expression by 3.7x (p-value = 0.007) and caspase-3 

expression by 2.7-fold (p-value = 0.0004) in T47D xenografts compared to control (Figure 

3.3B).  PQ1 treatment increased caspase-3,-8,-9 expression in tumors compared to control by a 

5.4-fold (p-value < 0.0001), 2.0-fold (p-value = 0.003), and 1.6-fold change respectively.  

Compared to cisplatin treatment PQ1 increased caspase-3 expression by 2.0-fold (p-value = 

0.0007).  Additionally PQ7 also increases caspase-3, -8, and -9 expression compared to control 

by 1.6-fold (p-value = 0.015), 2.8-fold, and 3.8-fold (p-value = 0.001) respectively.  This 

suggests that PQs upregulate the expression of apoptotic signaling molecules to increase cellular 

induced death.  Combinational treatment of PQs and cisplatin did not increase caspase-3 or -9 

expressions significantly from cisplatin alone.  Caspase-8 expression was significantly increased 

with combinational treatment of PQ and cisplatin by 2.6-fold (p-value = 0.02) and 2.2-fold (p-

value = 0.01) for PQ1 and PQ7 combinations, respectively.  There is a significant increase in 

apoptosis in PQ7 treated cells compared to those treated with cisplatin alone, but the tumor sizes 

between groups are not significantly different. 

 Proteins that inhibit apoptosis provide protection for tumor cells against cytotoxic 

compounds.  Survivin is a member of the inhibitors of apoptosis protein family that is expressed 
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during embryogenesis and in tumor cells as an anti-apoptotic protein that is capable of regulating 

mitosis [21-23] .  Survivin is highly expressed in a range of tumors and its expression correlates 

with both accelerated relapse and chemotherapy resistance [24].  T47D xenograft tumors were 

isolated after treatment to determine the expression of survivin.  All tumors that received 

treatment showed an intense immunohistological staining for survivin, but expression was not 

evenly distributed through the tissue similar to the control (Figure 3.2D).  Western blot analysis 

of the tumors indicates cisplatin treatment significantly reduced survivin expression compared to 

control by 1.4-fold (p-value = 0.02; Figure 3.3C).  PQ1 treatment increased survivin expression 

by 2.1-fold (p-value = 0.04) compared to cisplatin.  PQ7 showed a 0.3-fold increase in survivin 

expression compared to control (p-value = 0.006) and a 2.25-fold increase compared to cisplatin 

treatment (p-value = 0.0045).  

 Ki-67 and Cyclin D1 were used as biomarkers for cell proliferation.  Ki-67 is found in 

rapidly dividing cells and is used to determine the rate of cellular proliferation.  Cyclin D1 is a 

key cell cycle regulator in which over expression results in rapid progression from G1 to S phase 

in mitosis [25].  From immunohistochemistry all isolated xenograft tumors that were treated 

showed a decreased expression in Ki-67 (Figure 3.2D).  The treated tumors have fewer cells 

expressing Ki-67, but those cells that are expressing this protein show strong positive staining 

compared to control.  Cyclin D1 expression in T47D xenografts were significantly lower with 

PQ treatment compared to control by 1.5-fold (p-value = 0.0007) and 0.4-fold (p-value = 0.008) 

for PQ1 and PQ7 respectively (Figure 3.2D and 3.3C).  This indicates that PQ treatment 

downregulates the expression of proliferative proteins Ki-67 and Cyclin D1 in xenograft tumors.  
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 3.3.3 Histological study of metabolic organs   

Histological examination of the kidney and liver from xenografted mice showed no 

significant difference in morphology due to the treatment received.  To determine if there was 

any change in protein expression of the metabolic organs, immunoblot analysis and 

immunohistochemistry was conducted.  In the kidney there was an increase in Cx43 expression 

and a decrease in survivin expression due to PQ treatment (Figure 3.4A).  There was an increase 

in caspase 3 expression after cisplatin treatment, which was not surprising since nephrotoxicity is 

common with cisplatin treatment.  The kidney showed a decrease in caspase 3 expression with 

PQ1 treatment.  The liver showed an increase in caspase-3 expression with cisplatin treatment 

(Figure 3.4B), suggesting possible cisplatin-induced hepatotoxicity.  PQ treatment in 

combination with cisplatin appeared to decrease caspase-3 expression compared to cisplatin 

alone.  There was an additional increase in survivin expression due to PQ treatment.  There was 

no significant difference in Cx43 expression of the liver between treatment groups.  

The monokine induced by interferon-gamma (MIG) was used as a biomarker for 

inflammatory signaling, indicating cytotoxicity due to treatment.  The enhanced release of this 

CXC chemokine targets activated T cells, causing an increase in intracellular calcium ion 

concentrations and chemotaxis [26].  The kidney isolated from cisplatin treated animals had an 

increase in MIG expression (Figure 3.4A).  The combinations of cisplatin and PQ show less 

staining than cisplatin alone, while PQs alone show low levels of MIG expression.  The liver 

showed a similar pattern of staining for MIG expression with each treatment (Figure 3.4B).  The 

decrease in MIG expression suggests that PQs may provide protection from the inflammatory 

response of cisplatin treatment.  
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Figure 3.4  Immunohistochemistry of metabolic organs from nude mice. Protein expression 

of  Cx43, the monokine induced by IFN-gamma (MIG), apoptotic protein (caspase 3) and 

survivin  in A) kidney and B) liver from mice with T47D xenograft tumors harvested after 7 IP 

injections treated with either DMSO (control), cisplatin, PQ1, PQ7 or a combination of cisplatin 

and PQs (view image under 60X magnifcation). 
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To determine if the normal GJIC of various organs was potentially affected by treatment, 

the expression of Cx43 was observed.  The uterus, heart, and brain showed no change in Cx43 

expression with any treatment (Figure 3.5).  There is no observable deleterious effect due to an 

increase in connexin expression of cells in the liver and kidney.  Further studies must be made to 

determine the full effects of this response.  

 
 

Figure 3.5  Immunohistochemistry of organs harvested from nude mice. Protein expression 

of  Cx43 in the uterus, heart, and brain (cerebral hemisphere and cerebellum) from mice with 

T47D xenograft tumors harvested after 7 IP injections treated with either DMSO (control), 

cisplatin, PQ1, PQ7 or a combination of cisplatin and PQs. Image viewed under 40X 

magnification. 

 

 3.4 Discussion 

This study used T47D xenografts to determine the effects of the combinational treatment 

of cisplatin and gap junction enhancers, PQs, in tumor-bearing mice.  The results showed a 

decrease in tumor growth with PQ treatment, both alone and in combination with cisplatin, 

compared to control after seven injections (Figure 3.1).  The combination of PQ1 and cisplatin 
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significantly reduced tumor size compared to cisplatin alone, providing evidence that PQ1 can 

increase the efficacy of antineoplastic drugs in this animal model.  Previously PQ7 demonstrated 

the ability to enhance GJIC activity through an increase in connexins 43 expression [9].  Here we 

show an increased expression of connexins 43, 32, and 26, suggesting a corresponding increase 

in cell to cell communication which would allow more efficient trafficking of cisplatin.  Protein 

expression in the tissue sections indicates that connexin 43 is being regulated by PQ treatment.  

Results support previous data [27]  that cisplatin cytotoxicity is dependent on GJIC.  There is an 

increase in cisplatin-mediated response with GJIC enhancement.  

The decrease in tumor size seen with PQ treatment may be attributed to an increase in 

apoptosis as the result of an up-regulation of caspase-3, caspase-8, and caspase-9 (Figure 3.3B).  

These findings suggest that PQ1 and PQ7 are anticancer agents. Cisplatin treatment did not 

upregulate caspase-8 expression since cisplatin induced apoptosis is regulated by caspase-9 [28]. 

Additionally caspase expression was not downregulated with cisplatin treatment, indicating that 

there was not cisplatin resistance observed with the T47D xenograft tumors.  There was an 

increase in caspase-8 expression in T47D xenograft tumors of PQ treated mice compared to 

cisplatin and control tumors, showing that PQ induced apoptosis through induction of both 

caspase-8 and capase-9 signaling. 

Apoptosis is recognized as a major mode of cisplatin induced cell death.  From 

histological results, there is a significant increase of apoptosis in PQ-treated cells compared to 

those treated with cisplatin alone.  The tumor sizes between cisplatin alone, PQ7 alone, and 

cisplatin and PQ7 in combination treated groups are not significantly different despite the 

differences in caspase expression.  The process of apoptosis produces multiple distinct 

populations of cells at varying stages, from early stage to secondary necrosis [29,30]; therefore, 



59 

 

the discrepancy in tumor size may be due to insufficient clearance from the body within the 14 

day time period.  Gap junctions have previously been shown to induce the synchronous cell 

death behavior of coupled cells [31], suggesting that PQs affect cell death by increasing 

connexin expression and indirectly inducing both pathways of apoptosis through an increase in 

caspase expression.  

Western blot analysis resulted in highly variable protein expression with whole organ 

homogenates, most likely due to the presence of multiple tissue types in each organ.  Kadle et al. 

[32] showed that different forms of Cx43 have a tissue-specific distribution, suggesting tissue 

wide differences in protein expression.  More data on the tissue-specific distribution of proteins, 

specifically connexins, is needed to accurately determine the effects of utilizing a gap junction 

enhancer systemically.  

Combinational treatment of cisplatin and PQ was not significantly different from PQs 

alone.  Wang et al. [27] demonstrated that high cisplatin concentrations strongly inhibit GJIC 

through direct interactions with connexins and indirect reduction of connexin expression.  

Cisplatin thus may act as a competitor for gap junction enhancers.  PQ7 may not have 

significantly increased the efficacy of cisplatin in a combinational treatment due to the direct 

competition between the compounds have when targeting gap junctions.  Cisplatin was shown to 

inhibit Cx32/Cx26 heteromeric hemichannel in a concentration dependent manner [27] , which is 

supported by the data presented in immunohistochemistry and immunoblot of Cx32 and Cx26 

(decrease in expression).  

Cisplatin induced “death signal” is transmitted to neighboring cells via GJIC [14].  

Enhancement of GJIC may allow transmission of this “death signal” more efficiently between 

cells.  Peterson-Roth et al. [33] showed that the level of expressed Cx43 in a cancer cell 
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modulates cell-to-cell cisplatin-mediate response.  Overexpression and activation of src is seen 

clinically in many cancer types treated with cisplatin [34-36].  Oncoproteins, such as src, 

promote cell growth and survival when exposed to cytotoxic agents [37-39] , therefore protecting 

the cancer cells from chemotherapeutics.  Src is specifically induced by cisplatin to produce 

tyrosine phosphorylation of Cx43, decease GJIC, and increases cell survival; thus, elevates 

survival of the neighboring cells by disrupting GJIC of the “death signal” [33].  Enhancement of 

GJIC with PQ may counter the effects of src in the cancer cell to increase the efficacy of 

cisplatin through an increase in transmission of the “death signal”.  The fact that cancer cells are 

widely accepted to be deficient in GJIC and/or connexins and that cisplatin inhibits GJIC may 

contribute to the development of cisplatin resistant tumors.  Development of drugs and methods 

that can increase or recover GJIC may be a new potent way to enhance chemotherapeutic 

methods and radiotherapy, which has also been shown to be GJIC-dependent [31] .  

Renal failure in cancer patients is a common problem.  Cisplatin nephrotoxicity is clearly 

dose-related and increases with frequency of administration and cumulative dose [40] .  The 

increased cell-to-cell communications displayed in the tumor cells is seen in the kidney and liver, 

but not in any other vital organ.  There are no observable morphological or molecular 

abnormalities due to the increase in connexin expression.  Cisplatin treatment alone induced an 

increase in both caspase and MIG expression, while PQ treatment did not (Figure 3.5).  The 

combinational treatment conducted in this study shows that PQs can be utilized to decrease the 

cytotoxicity of cisplatin.  This provides evidence for a new combinational treatment for breast 

cancer using cisplatin at a reduced dose to prevent renal toxicity.  Present data leads to the idea 

that PQ, at lower concentrations than needed for anticancer effects, may improve the efficacy of 
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chemotherapeutic agents.  This would allow the use of lower drug concentrations, thus 

decreasing the extent of detrimental side effects due to the cytotoxicity of the compounds. 

Gap junction enhancers prove to accelerate apoptotic cell death in breast cancer tumor 

cells while increasing the connexin expression.  This is promising for use of PQs in gap junction-

mediated intercellular transfer of toxic effects in multiple systems and the bystander effect.  The 

decrease in survivin distribution within the neoplastic tissue after PQ treatment also indicates 

good prognosis for patients post treatment since survivin is highly expressed in a range of human 

tumors and its expression directly correlates with both accelerated relapse and chemotherapy 

resistance [24].  Future studies will focus on potentiating other antineoplastic drugs through the 

enhancement of gap junctional activity, as well as expanding the treatment period to 21 or 28 

days and look at the reoccurrence of tumors post treatment remission.  

 The growth suppressive effect of PQs has been previously established in multiple breast 

cancer cell lines [8,9].  The antitumor effects of PQs on breast cancer xenografts in combination 

with antineoplastic agents in nude mice show did not show an additive or synergistic effect. The 

combinational treatment was not significantly different than treatment with PQs alone, 

suggesting that these compounds may function along the same pathway but that the effects in 

tumor growth may be due primarily to PQ exposure. This indicates that PQs can attenuate tumor 

growth independent from cisplatin treatment. Interestingly cisplatin decreased cell 

communication to antagonize connexin expression, and potentially PQ function. The 

combinational treatment of PQs and antineoplastic drugs show promising treatment for breast 

cancer. The efficacy of antineoplastic compounds can be increased via enhancement of gap 

junctions.  The outcome of our findings has introduced a new class of anticancer drugs, 

enhancing current treatment for breast cancer. 
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 Chapter 4 – The PyVT transgenic mouse as a multistage model for 

mammary carcinoma and the efficacy of antineoplastic treatment. 

 

A research article of the following findings has been published in Journal of Cancer Therapy 

(2013) 4(7) pp. 1187-1197. doi: 10.4236/jct.2013.47138. 

 4.1 Introduction  

In vivo models are important for translational research and may be used to explore the 

mechanism of tumorigenesis, or the pharmacodynamics and the development of therapeutics for 

cancer.  Animal models to study cancer formation should include features such as molecular 

targets, drug metabolism, pharmacokinetics/dynamics, drug distribution, anatomic similarities, 

microenvironment, angiogenesis, and metastasis.  Change in tumor size is the most widely used 

end point for drug efficacy, but tumor frequency, survival, and tumor burden are other important 

factors.  Thus, specific model systems have advantages for measuring tumor burden, drug 

sensitivity, and metastatic potential.  The antitumor activity of chemotherapeutics is commonly 

determined in immune deficient mice transplanted with human tumors, but these xenograft 

tumors have the potential loss of tumorigenicity, limited metastatic potential of many cell lines, 

and loss of linearity with increasing tumor volume [1]. 

Animal models have evolved from the transplantable syngeneic mouse tumor models to 

chemically induced, transgenic, and spontaneous animal tumor models.  Numerous 

chemotherapeutic agents have shown promising results in preclinical models and yet had 

minimal activity in clinical settings.  This has led to skepticism about xenograft and syngeneic 

tumor models.  Newer techniques, including transgenic mouse models, have the potential to be 

more predictive. Tumorigenesis is a multistep process and all stages of development need to be 
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considered in the design of more effective therapies.  Since several transgenic mammary models 

of human breast cancer progress through well-defined cancer stages, they are useful pre-clinical 

systems to test the efficacy of chemopreventive and chemotherapeutic agents.  The use of 

transgenic mammary carcinoma models allows for detailed study of stage-specific responses to 

antineoplastic agents, defining the appropriate timing for intervention with specific compounds.  

The transgenic strain FVB/N-Tg(MMTV-PyVT)634Mul/J (known as PyVT) is a novel in 

vivo model for the study of mammary carcinoma formation and metastasis with important 

clinical utility.  The PyVT mouse model carries the Polyoma Virus middle T antigen with the 

mouse mammary tumor virus (MMTV) promoter that drives mammary tissue-specific expression 

[2].  The PyVT oncogene activates multiple oncogenic pathways, such as src and 

phosphatidylinositol-3-kinase [3], leading to an aggressive tumor phenotype. Previous studies 

indicate that virgin females carrying the transgene develop multi-focal, poorly differentiated, 

highly invasive ductal carcinoma by 10–12 weeks of age, with a high incidence of lung 

metastases stemming from the primary mammary tumor [4].  At 5 weeks of age females develop 

noninvasive focal lesions which are classified into four groups: simple, solid, cystic, and mixed 

(solid and cystic) [5].  Solid lesions consist of large foci with a dense mass of atypical cells in 

nodular sheets.  Cystic lesions vary in size and complexity, and are lined by multilayered 

epithelium with significant amounts of clear fluid [5].  The premalignant tumors are 

morphologically heterogeneous and highly proliferative neoplastic cells with atypical nuclei that 

contain abnormal microvasculature, and stay within the basement membrane [5].   The MMTV-

PyVT transgene expression is variable in tumors [5], which suggests that the transgene is not 

necessary for the maintenance of the malignancy.  The PyVT model represents a multistep 

process due to lesions progressing from hyperplasia to an adenoma/mammary intraepithelial 
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neoplasia mixed phenotype, followed by early and late carcinoma with pulmonary metastasis [4, 

5].  Metastasis of the primary tumor to distant sites remains a significant cause of death in many 

cancer types, highlighting the importance for a metastatic model.  This model of spontaneous 

mammary carcinogenesis is a powerful tool for studying the mechanism associated with tumor 

progression and development of novel chemotherapeutics.  

This model has not been used to test the efficacy of many antineoplastic compounds 

despite its clinical relevance to human breast cancer.  The compounds utilized here are cisplatin, 

paclitaxel, and tamoxifen. The mechanism of action is briefly explained.  Cisplatin induces 

damage to tumors via formation of DNA adducts followed by cell growth inhibition and 

induction of apoptosis.  Paclitaxel prevents cellular proliferation by binding to tubulin and 

inhibiting disassembly of the microtubules in the cell.  Tamoxifen is a selective estrogen receptor 

modulator (SERM) that competitively inhibits the binding of estradiol to the estrogen receptors.  

The effects of these compounds on the MMTV-PyVT transgene-induced mouse have not yet 

been reported.  

The present study reviews the characteristics of tumor development and determines the 

effects of antineoplastic treatment on tumorigenesis and metastasis using the MMTV-PyVT 

transgene-induced mammary tumor model.  Interestingly with the progression of malignancy 

there is an increase in expression levels of Ki-67 and survivin, with a decrease in estrogen 

receptor (ER) and progesterone receptor (PR) expression.  This supports previous work done on 

this model.  We showed for the first time the anticancer activity of tamoxifen, not cisplatin or 

paclitaxel, against a multistage mammary tumor model. 
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 4.2 Materials and methods  

 4.2.1 Animals 

A colony of PyVT transgenic mice (The Jackson Laboratory; Bar Harbor, ME) was 

established.  To identify transgenic progeny, genomic DNA was extracted from a 1.5-cm tail 

clipping. All mice carrying the PyVT transgene developed mammary tumors.  Tumor 

development of positive female mice was closely monitored every 2–3 days.  Tumor onset was 

recorded as the age of the animal at which palpable abnormal masses were detected.   Tumor size 

was measured in two dimensions with calipers every 2 days. Tumor volume was determined by 

the equation: Volume = ½(Length)*(Width)
2
. Female mice at each stage of tumor development 

were randomly divided into four experimental groups: (1) control animals given the vehicle 

solvent (DMSO); (2) animals treated with 3.5 mg/kg cisplatin; (3) animals treated with 10 mg/kg 

paclitaxel; and (4) animals treated with 20 mg/kg tamoxifen.  All treatments were administered 

as an intraperitoneal (IP) injection every other day for 14 days.   

 4.2.2 Compounds 

cis-Diammineplatinum(II) dichloride (P4394), paclitaxel (T1912), and tamoxifen 

(T5648) were purchased from Sigma Aldrich (St. Louis, MO, USA).  

 4.2.3 Antibodies 

Primary antibodies: Anti-ERα (sc-8002, mouse monoclonal), anti-ERβ (sc-8974, rabbit 

polyclonal), anti-PR (sc-166170, mouse monoclonal), anti-survivin (sc-374616, mouse 

monoclonal), and anti-Ki67 (sc-23900, mouse monoclonal), from Santa Cruz Biotechnology 

(200 µg/ml; Santa Cruz, CA); anti-E-cadherin (3195, rabbit monoclonal; 43 µg/ml) and anti-

GAPDH (2118, rabbit monoclonal; 24 µg/ml) from Cell Signaling (Boston, MA); anti-pan 

epithelial (MAB1631) and anti-pigment epithelium (MAB1059) from Chemicon (1.0 mg/ml; 
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Temecula, CA); and anti-Her2 (AP7629e, rabbit polyclonal) and anti-p53 (AP6266b, rabbit 

polyclonal) from ABGENT (250 µg/ml; San Diego, CA) were used for both western blot and 

immunohistochemistry (IHC).  

 4.2.4 Western blot analysis 

Mammary gland tumor tissue was homogenized in 500 mL of lysis buffer (20 mM Tris 

pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, 0.5% Triton X-100) with protease inhibitors at 1:1000 

dilution (Sigma-Aldrich, Saint Louis, MO).   Tissue was homogenized via the OMNI Bead 

Ruptor 24 at a speed of 5.65 m/s for 45 seconds, followed by centrifugation at 13,000 rpm for 30 

minutes at 4˚C.  Twenty-five μg of whole-cell extract was resolved by 10% SDS polyacrylamide 

gel electrophoresis (PAGE) and transferred to nitrocellulose membrane (Midwest Scientific, 

Saint Louis, MO).  Nitrocellulose membrane was blocked in 5% milk for an hour at room 

temperature and then incubated with monoclonal antibodies (1:1,000).  Western blots were 

detected by enhanced chemiluminescence detection reagents (Pierce, Rockford, IL) and 

visualized by Fluorchem E imaging system (ProteinSimple, Santa Clara, CA). 

 4.2.5 Immunohistochemistry  

Mammary carcinomas and organs were removed and fixed in a solution
 

of 10% 

formaldehyde and embedded into paraffin prior to sectioning them onto slides at a 5 µm 

thickness.  Paraffin sections (5 µm) were dried at 60°C for 25 minutes.  Deparaffinization was 

performed with 100% xylene and 100%, 90%, 75%, 50% ethanol.  Antigen retrieval was 

performed in 1× citrate buffer solution and steam for 20 minutes. Endogenous peroxidase was 

blocked using 3% hydrogen peroxide.  Slides were then incubated overnight at room temperature 

with primary antibody (1:50 dilution).  After washes in PBS, slides were successively incubated 

with biotinylated secondary antibodies (1:1,000) for 15 minutes.  Slides were washed and 
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immunostains were amplified by incubation with Avidin Biotin Complex (ABC) for 10 minutes 

accordingly.  Cells were visualized with 3,3-diaminobenzidine (DAB) followed by a 

hematoxylin counterstain.  The sections were viewed and the images captured with a Nikon 80i 

microscope under 40X and 60X magnification.   

 4.2.6 Statistical analysis 

Significance was considered at a p-value ≤ 0.05 using Student’s t-test analysis.  All data 

are presented as mean ± 95% confidence interval of at least three independent experiments. 

 4.3 Results 

Female PyVT transgenic mice developed tumors as early as 4 weeks of age.   All 10 

mammary pads developed tumors with the maximum tumor burden achieved around 12 weeks of 

age.   Tumor development was divided into 3 stages based on the extent of tumor size and the 

frequency of tumor formation.  The Pre stage of tumor development began at 4-5 weeks of age, 

consisting of a pre-cancerous condition where no tumors were palpated and the mammary tissue 

appeared normal on gross observation.  The Early stage of development was confined to 6-8 

weeks of age, represented by the gross observation of 1-2 solid tumors within the mammary 

tissue.  The Late stage was based on the presence of all 10 primary mammary tumors with 

secondary lung metastasis, which appeared after 10 weeks of age.  Representative sections of the 

lung tissue were stained with hematoxylin and eosin (H&E) for histopathological review to 

determine the presence of metastases.  

To confirm the PyVT tumors were of epithelial origin, immunohistochemistry was 

conducted at each stage of development with pan epithelium, pigment epithelium-derived factor, 

and E-cadherin (Figure 4.1).  There was a strong positive staining for pan epithelium in the Pre 

and Early stages, while the Late stage showed weak staining.  This was consistent for the 
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pigment epithelium-derived factor (PEDF) and E-cadherin.  This is indicative of a transition in 

cellular phenotype, demonstrating the process of epithelial-mesenchymal transition (EMT) in 

this model. 

 

Figure 4.6  Immunohistochemisty of tumor epithelial phenotype from PyVT females during 

tumor development.  Paraffin-embedded sections stained with antibodies against pan epithelial, 

pigment epithelium-derived factor, and E-cadherin at Pre, Early, and Late stages.  Proteins 

staining: brown, counterstaining: blue (hematoxylin).  Images represent only 1 of n = 3 per group 

at a 40X magnification. Scale bar = 50 µm. 

   

 

Breast cancers are routinely assessed for hormone receptor status [estrogen receptor (ER), 

progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)] due to their 

relation to different subtypes and impact on prognosis, treatment, and overall survival.  PyVT 
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tumors isolated from all stages of development were shown to be ER- and HER2-positive 

(Figure 4.2). Tumors from all three stages of development expressed detectable levels of PR.  

This was confirmed with Western blot analysis (data not shown).  Estrogen receptor (ER), 

progesterone receptor (PR), and expression of human epidermal growth factor receptor 2 (HER-

2) are recognized prognostic and predictive factors.  ER found in 50-80% of breast cancers [6].  

PR is a surrogate marker of a functional ER and is expressed in 60-70% invasive breast 

carcinomas with a higher positivity in older age and postmenopausal women [7].  HER-2/neu 

also known as C-erb B2 (HER-2), is a proto-oncogene located on chromosome 17 and the 

protein (HER-2) is overexpressed in 15-25% of invasive breast carcinoma with associated poor 

prognosis [8].  

Tumors were shown to express p53 (Figure 4.2).  P53 is an additional prognostic marker 

for inflammatory breast cancer, a more aggressive form than locally advanced breast cancer [9].  

It is a sensor of cellular stress and master regulator of apoptotic programming [10].  The role of 

p53 protein is to maintain genomic stability as a multifunctional transcriptional regulator 

participating in the cell cycle [11].  In cells with active p53, it functions as a survival gene, and 

its loss sensitizes the cell to genotoxic stress [12].  Elevated levels of p53 expression have been 

associated with poor prognoses [13]. 
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Figure 4.7  Immunohistochemisty of tumor phenotype from PyVT females during tumor 

development. Paraffin-embedded sections stained with antibodies against estrogen receptor 

(ERα and ERβ), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), 

and tumor protein 53 (p53) at Pre, Early, and Late stages.  Proteins staining: brown, 

counterstaining: blue (hematoxylin).  Images represent only 1 of n = 6 per group at a 40X 

magnification. Scale bar = 50 µm. 

 

Neoplastic cells have multiple survival techniques against death signals, such as the use 

of inhibitors of apoptosis.  The anti-apoptotic protein survivin is a member of the inhibitors of 

apoptosis protein family expressed in a range of tumor types that regulates mitosis [14-16].  

Survivin expression correlates with chemotherapeutic resistance and accelerated relapse [17].  

Immunoblot analysis of tumor homogenate indicated that the expression of survivin increased as 

the tumor developed (Figure 4.3A). This was confirmed by immunohistochemistry (Figure 

4.3C).  

Cellular proliferation was determined by the expression of Ki-67, which is detectable 

during all activate phases of the cell cycle (G1, S, G2, and mitosis), but absent in the resting cell 
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(G0) [18].  Elevated Ki-67 expression is associated with increased breast cancer recurrence and 

poor patient survival [19].  Ki-67 is one of only five genes for proliferation, out of 16 cancer-

associated genes, that contribute significantly to the Oncotype score [20].  Immunoblot and 

immunohistochemistry of Ki-67 on PyVT tumors showed an increase in expression levels as the 

tumor progressed to a malignant phenotype (Figure 4.3B).  This was confirmed by 

immunohistochemistry (Figure 4.3C). 

 

   

Figure 4.8  Expression of molecular markers in tumors from each stage of development. A) 

Raw and graphical representation of protein expression in tumors from Western blot analysis. 

Data presented as fold-pixel intensity of survivin in PyVT female tumors in each of the three 

stages of tumor development. n = 4. B) Raw and graphical representation of protein expression 

in tumors from Western blot analysis. Data presented as fold-pixel intensity of Ki-67 in PyVT 

female tumors in each of the three stages of tumor development.  n = 4.  C) 

Immunohistochemisty of tumors from PyVT females.  Paraffin-embedded sections stained with 

antibodies against survivin and Ki-67 from PyVT females at Pre, Early, or Late stage of tumor 
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development.  Proteins staining: brown, counterstaining: blue (hematoxylin).  Images represent 

only 1 of n = 6 per group at a 60X magnification. Scale bar = 20 µm. 

 

Histopathological examination of the mammary tumors was conducted for each treatment 

group in the three stages of tumor development.  When present, tumors were categorized as 

adenoma/mammary intraepithelial neoplasia (MIN), early carcinoma, or late carcinoma (Figure 

4.4). Adenoma/MIN involved expansion of acini and ducts by a proliferation of polygonal 

neoplastic epithelial cells with multifocal coalescence of the affected ducts and acini.  Neoplastic 

cells exhibited minimal cellular atypia and a low mitotic index (averaged 1/400X field).  The 

neoplastic proliferation was confined by the basement membrane and there was a lack of fibrous 

connective tissue within the neoplasm.  Early carcinomas were unencapsulated and moderately 

well-demarcated, with closely packed nests and acini of neoplastic cells with mild to moderate 

cellular atypia and an average of 2 mitotic figures per high powered field. Neoplastic cells 

breached the basement membrane and were multifocally separated by a small to moderate 

amount of fibrovascular stroma.  Late carcinomas were unencapsulated, poorly demarcated and 

invasive, composed of sheets of tightly packed nest and acini of neoplastic cells separated by 

moderate amounts of fibrovascular stroma. Anisocytosis and anisokaryosis were moderate and 

mitoses averaged 2/400X field.  The Pre tumors were either adenoma/MIN or early carcinomas, 

while the Early tumors were all early carcinomas.  The Late tumors were both late carcinomas. 
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Figure 4.9  Pathological evaluation of hematoxylin and eosin (H&E) stained female PyVT 

mammary tumors. A) Adenoma/MIN: expansion of acini and ducts by a proliferation of 

polygonal neoplastic epithelial cells which exhibited minimal cellular atypia and a low mitotic 

index (averaged 1/400X field). The neoplastic proliferation was confined by the basement 

membrane and there was a lack of fibrous connective tissue within the neoplasm. B) Early 

Carcinoma: unencapsulated and moderately well-demarcated, with closely packed nests and 

acini of neoplastic cells with mild to moderate cellular atypia and 1-3 mitotic figures per high 

powered field. Neoplastic cells breached the basement membrane and were multifocally 

separated by a small to moderate amount of fibrovascular stroma. C) Late Carcinoma: 

unencapsulated, poorly demarcated and invasive, composed of sheets of tightly packed nest and 

acini of neoplastic cells separated by moderate amounts of fibrovascular stroma. Anisocytosis 

and anisokaryosis were moderate and mitoses averaged 2/400X field.  Images represent only 1 of 

n = 3 per group at 40X magnification. Scale bar = 50 µm. 

 

The mammary carcinoma developed by the PyVT transgenic model is characterized by a 

metastatic pattern involving the lung tissue.  No lung metastasis was observed for the Pre stage 

of tumor development.  Metastatic foci were not commonly found in the Early stage mice, but a 

few mice did develop small lesions by approximately 8 weeks of age (Figure 4.5A).  Mice in the 

Late stage of tumor development formed secondary tumors in the lung epithelium, as determined 

by gross observation and histopathology (Figure 4.5B, 4.5C, and 4.5D).    Lung tumors exhibited 

similar histopathologic features as those in the mammary tissue.  
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Figure 4.10  Representative images of hematoxylin and eosin (H&E) stained mammary 

tumors identified in the lung epithelium.  Lung tissue collected from female PyVT mice at the 

A) Early and BCD) Late stage of tumor development.  The lung contains metastatic foci of 

neoplastic cells.  Additional morphologically similar foci were noted throughout the lungs.  

Images are representative of n = 3 at a magnification of 40X. Scale bar = 50 µm.  

 

Tumor growth was monitored for two weeks during each stage of development.  The 

initial tumor volume for Pre stage mice was 7.57 ± 10.77 mm
3
 at 5 weeks of age.  Two weeks 

after the initial measurement of the Pre stage mice, the tumors grew to an averaged total of 

309.04 ± 16.63 mm
3
 (Figure 4.6A).  During the Early stage of development the initial tumor 

volume was measured at 6 weeks of age to be 133.33 ± 76.59 mm
3
. By 8 weeks of age, 14 days 

post initial volume measurement, the Early stage mice developed an average total tumor volume 

of 450.71 ± 39.56 mm
3
 (Figure 4.6B).   The Late stage of tumor development began at 10 weeks 

of age, when mice had an initial tumor volume of 588.3 ± 78.87 mm
3
.  After 14 days post initial 

volume measurement, total tumor volume was 1727.21 ± 50.82 mm
3
 (Figure 4.6C).   
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The effect of three antineoplastic compounds was tested on the development of tumors in 

the PyVT mouse model.  Treatment with cisplatin or paclitaxel did not significantly attenuate 

tumor growth during the Pre, Early, or Late stage of development (Data not shown).  However 

treatment with tamoxifen did significantly attenuated tumor growth during the Pre and Early 

stages of tumor development (Figure 4.6A and B). There was a significant difference in tumor 

volumes between tamoxifen and DMSO treated mice during the Pre stage of tumor development 

from day 10 to day 14 (Figure 4.6A).  The change in tumor volume over this 14 day period 

showed a significant reduction of 124 mm
3
 with tamoxifen treatment compared to control (p-

values = 0.018).  During the Early stage of development there was a significant difference in 

tumor volumes between tamoxifen and control groups at day 14 (Figure 4.6B).  Tamoxifen 

significantly reduced tumor growth, leading to a final volume of 306 mm
3
 after 14 days of 

treatment (p-value = 0.013).  The average size of tumors after 14 days of tamoxifen treatment 

was 144 mm
3
 smaller than the final control volume, which is a reduction of 31%.  Tamoxifen 

treatment did not significantly reduced tumor growth during the Late stage of tumor 

development (Figure 4.6C).  There was no observable change in the formation of metastatic lung 

lesions.  
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Figure 4.11  Tumor growth (mm
3
) in PyVT female mice.  Tumors measured in two 

dimensions with calipers every 2 days for Pre (A), Early (B), and Late (C) stages of tumor 

development. The tumor size is expressed over a 14 day period for treatment with tamoxifen 

(20mg/kg) of the vehicle control (DMSO) via 7 IPs. Days 0-12 represent the days of the 7 IP 

injections, day 14 represents the end of the study with measurements prior to tissue harvest. * P-

value < 0.05 compared to controls. 

  

 4.4 Discussion   

Throughout history, scientists have utilized a multitude of animal models to solve 

medical problems, develop new techniques and treatments, and cure disease.  Genetically 

engineered mice are pursued in the cancer field, allowing researchers to investigate multiple 
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aspects of cancer.  Many types of transgenic animal have been developed, most of which have 

been used in small numbers as tools for investigating gene function in vivo.   Several 

characteristics of the PyVT model make it ideal for research, such as its colony stability, 

predictable tumor growth behavior, metastatic phenotype, and its clinical similarity to human 

neoplasms.  

The process of EMT involves epithelial carcinoma cells acquisitioning mesenchymal 

markers, such as vimentin, for increased metastatic potential [21], as well as loss of epithelial 

cell adhesion molecules [21, 22].  Alteration in E-cadherin expression is the typical epithelial cell 

marker of EMT [23]; additionally loss of E-cadherin functionality promotes EMT [24].  The 

observed changes in epithelial marker expression in the isolated PyVT tumors are consistent with 

the EMT process.  In addition the decrease in PEDF, a multifunctional secreted protein with anti-

angiogenic and anti-tumorigenic functions, is associated with progression towards malignancy 

and poor patient outcome [25]. 

 The mammary tumors isolated from PyVT mice were shown to be ER+, PR+, P53+, and 

HER-2+ via immunohistochemistry.  This contradicts the results from Maglione et al. [5], which 

indicated that tumors identified as mammary intraepithelial neoplasia (MIN) had no detectable 

levels of PR antigen.  Maglione et al. used 9 week old virgin females with the PyVT transgene; 

this is in the age range between the Early and Late stages of development defined above, in 

which a reduction in PR was observed as the tumors progressed towards malignancy.  Here we 

used the PR (F-2) mouse monoclonal antibody raised against amino acids 375-564 of PR. It is 

recommended for detection of progesterone receptors A and B by immunohistochemistry with a 

starting dilution of 1:50 and provided at a concentration of 200 µg/ml PBS. Strong signal was 

observed in tissue samples using this antibody. Additionally, the expression of hormone 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Angiogenesis_inhibitor
http://en.wikipedia.org/wiki/Angiogenesis_inhibitor
http://en.wikipedia.org/wiki/Carcinogenesis
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receptors tends to show a cyclic change during the estrous cycle in mice [26, 27].  This variation 

implies that the phase of the cycle, and thus the time of tissue harvest, may also affect the 

expression of PR in the mammary carcinomas collected.  

Other studies on the PyVT mouse tumor phenotype indicate a loss of ERα and PR during 

tumor progression towards malignancy [4].  The results presented here support these 

conclusions.  In addition ERβ is shown to also decrease with increased malignancy (Figure 4.2).  

The ER genes share a large proportion of homology, but differ in their distribution and functions 

in many tissue types. While ERα is a known prognostic marker in breast cancer, the role of ERβ 

is less clear.  A decrease in ERβ protein expression has been shown in the transition of the 

normal mammary gland to a pre-invasive tumor [28].  The loss of ERβ protein in invasive 

carcinomas correlates with reported mRNA levels in breast tumors [29].  Overall, these results 

demonstrate for the first time a downregulation of ERβ during carcinogenesis in the PyVT 

model.  

Interestingly the expression of ER and Ki-67 are mutually exclusive in normal 

premenopausal breast tissue, but co-expression occurs in ER positive breast cancer.  With age the 

ER+ cell population increases, while the number of Ki-67+ cells decrease in the healthy 

mammary tissue [30].  The transformation of normal tissue to a neoplasia may reverse this 

phenotype.  The results shown here indicate that ER+ cell decrease and Ki-67+ cells increase 

with tumor progression towards a malignant phenotype.  The observed increase in Ki-67 

expression corresponds to previous finding that cyclin D1, a regulator of the cell cycle also used 

as a molecular marker for proliferation, increases during tumor progression in the PyVT mouse 

model [4]. 



82 

 

Strong expression of survivin is observed in the majority of cancer types, and is 

associated with tumor progression and chemoresistance [31].  Elevated survivin expression is 

associated with aggressive disease and has a strong correlation with poor patient outcome.  The 

PyVT model has an increased expression of survivin with progression of the tumor phenotype 

towards malignancy.  Survivin can regulate the cell cycle, cytokinesis, and apoptosis through 

multiple interactions, such as with heat shock protein 90 [32], Smac/Diablo [33], Cdk4 [34], and 

p53 [35].  The observable increase in survivin expression suggests it plays a role in tumor 

formation and development in the PyVT model.  

The p53 protein is a tumor suppressor that prevents progression of the cell cycle and may 

induce apoptosis [36, 37].  The PyVT mouse mammary tumors were shown to be p53 positive at 

each stage of development.  Interestingly, the survivin promoter sequence has two p53-binding 

sites [38].  Overexpression of the survivin protein saves neoplastic cells from p53-induced 

apoptosis [35].  The increase in survivin expression with tumor progression combined with a 

strong expression of p53 suggests that the cell is avoiding p53-dependent apoptosis through the 

upregulation of survivin.   

Previous investigations on the PyVT transgenic model have been limited to studies 

focusing on gene function or histological characterization to prove clinical similarity to human 

breast cancer.  This model has not been utilized to test the efficacy of antineoplastic compounds 

despite its multistage tumor development and similarities to human breast cancer.  The 

compounds cisplatin, paclitaxel, and tamoxifen were chosen due their popularity in cancer 

treatment.  Interestingly cisplatin and paclitaxel were not effective anticancer treatments, while 

tamoxifen successfully attenuated tumor formation in the PyVT model.  The lack of response to 

cisplatin and paclitaxel suggest potential mechanisms of resistance, such as a reduction in the 



83 

 

accumulation of compound insides the neoplastic cells due to membrane barriers or increased 

efflux, faster repair mechanism, or modulation of the apoptotic pathways.  

There is a pressing need for effective and low-toxicity chemotherapeutics and 

chemopreventive agents against mammary carcinomas.  Here the inhibitory effect of tamoxifen 

is demonstrated on neoplasm development in the PyVT model.  Tamoxifen has been extensively 

studied, but this is the first time it is shown to be effective in a multistage mammary carcinoma 

model with lung metastasis.  Exposure to tamoxifen prior to appearance of palpable mammary 

tumors significantly reduced tumor burden and attenuated tumor growth.  However when 

tamoxifen exposure began after the gross appearance of mammary tumors, it was less effective at 

attenuating tumor growth and metastasis, without changing primary tumor burden.  The means 

by which tamoxifen suppressed tumor development may be associated with the MMTV promoter 

sequence in this transgene-induced model.  The MMTV promoter sequence contains a hormone-

responsive element (HRE) that can bind progestin, glucocorticoid and androgen receptors.  

Hormone that has bound to its receptor can enter the nucleus where the complex can bind the 

HRE and stimulate the MMTV sequence.  MMTV is activated by high levels of estrogen and 

progestin, upregulating expression of the target genes and inducing cancer formation [39].  

Exogenous estradiol and progesterone treatment were shown to increase MMTV mRNA 

expression [40].  Therefore by treating with tamoxifen, hormone is unable to bind the ER, 

translocate to the nucleus, and bind the HRE in the MMTV promoter sequence.  This prevents 

promoter activation and reduces the expression of the PyVT antigen.  

Tamoxifen was shown to be effective only during the Pre and Early stages of tumor 

development. Previous research showed that the tumors had variable expression of the PyVT 

antigen, indicating an importance of the transgene expression in initiation of tumor formation but 
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not in the perpetuation of a malignant phenotype [5].  This suggests that during the Pre and Early 

stages of tumor development, when the transgene is more highly expressed, tamoxifen may be 

preventing MMTV activation and subsequent PyVT antigen expression.  Additionally the finding 

that tamoxifen efficiently suppressed the spontaneous mammary tumor development at these 

stages provides evidence that this compound may be beneficially utilized as a chemopreventive 

and chemotherapeutic in early intervention to reduce morbidity and mortality associated with this 

neoplastic disease.  

The long terminal repeat (LTR) region of the MMTV promoter has previously been 

shown not to be down-modulated by the antiestrogenic effects of tamoxifen [41], but this study 

was conducted in the T47D human breast cancer cell line stably transfected with the LTR of the 

MMTV.  There is not data indicating systemic estrogen concentrations or tamoxifen treatment in 

the transgenic mouse model does not alter promoter activation.  Multiple studies conducted on 

transgenic mice using the MMTV promoter sequence do show anticancer effects with the use of 

tamoxifen [42-45], though they do not indicate if the promoter sequence plays a role in the 

compound’s efficacy.  

This study looks at the transgenic PyVT mouse as a model for breast cancer research and 

drug development.  Tumor growth was monitored from a precancerous stage to a metastatic 

stage.  The tumor phenotype was determined for three distinct periods of development 

emphasizing a change in cellular phenotype (i.e. EMT) and hormone receptor expression, 

proliferative shift, survival techniques, and a detailed histopathological analysis of mammary 

carcinoma lesions.  For the first time this model was used to determine the efficacy of three 

common antineoplastic compounds in the development of spontaneous mammary carcinomas.  

Tamoxifen can attenuate the formation of breast carcinoma if given early enough to inhibit 
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transformation of the normal cell. The mechanism of tamoxifen chemoprevention may involve a 

reduction of the number of total cells transformed by the MMTV-PyVT transgene.  These data 

suggest that tamoxifen, not cisplatin or paclitaxel, may improve the clinical outcome in patients 

prior to diagnosis of metastatic disease, and could potentially reduce morbidity and mortality 

associated with breast cancer.  
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Chapter 5 - The anticancer effect of PQ1 in the PyVT mouse model 

A research article of the following findings has been published in the International Journal of 

Cancer (2013) doi: 10.1002/ijc.28461. 

 5.1 Introduction  

Cancer treatments using chemotherapies that target proliferating cells for destruction lead 

to severe side effects due to the lack of specificity for cancer cells. One characteristic of cancer 

cells is the loss of gap junction intercellular communication (GJIC). GJIC maintains tissue 

homeostasis through the sharing of small metabolites via channels in the cellular membrane of 

neighboring cells. Loewenstein and Kanno first reported a lack of electrical coupling in rat 

hepatomas in 1966 [1]. This was observed in chemically-induced and transplanted hepatomas [1, 

2], which differed significantly from the normally well-coupled liver cells. The lack of electrical 

coupling soon became a common characteristic found in solid tumors, whether chemically-

induced, transplanted, or spontaneously formed. Over 40 years, research has confirmed that a 

deficiency in gap junctions and thus GJIC is associated with the cancer phenotype [3, 4]. Many 

tumor promoting agents have been shown to inhibit GJIC [5], such as phenobarbital [6]. This 

reinforced the hypothesis that a deficiency of GJIC leads to tumorigenesis.   

Treatments that target gap junctions provide specificity for the neoplastic cells, while the 

restoration of GJIC could effectively attenuate tumor growth with less detrimental effects to the 

host. PQ1 was found to possess potent inhibitory activities against T47D breast cancer cells 

through the enhancement of GJIC [7, 8]. This compound is capable of increasing GJIC in cancer 

cells and has anti-cancer properties. Previous studies indicate that administration of PQ1 via oral 

gavage has a low toxicity to normal tissue with no observable adverse effects [9], while 

significantly attenuating tumor growth [10]. 
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This study focuses on utilizing PQ1 as a treatment for mammary carcinoma in the PyVT 

spontaneous mouse model.  We have taken advantage of the in situ generation of mammary 

tumors in transgenic mice to determine the biological and histological effects of PQ1 on 

spontaneous tumorigenesis and metastasis.  Development of tumors was divided into three time 

periods: Pre-tumor (4 weeks old), Early tumor stage (6 to 8 weeks old) and Late tumor stage 

(more than 10 weeks old).  For each stage, treated and control groups were evaluated. The results 

demonstrated a significant reduction of tumor growth in the PQ1 treated mice compared to 

control with DMSO treatment or without treatment.  Furthermore, immunoblot and 

immunohistochemical studies showed an increase in the expression of connexin in the treated 

tumors.  For the first time, the change of connexin expression has been shown to correlate with 

tumor growth in a spontaneous mammary carcinoma animal model.   

 5.2 Materials and methods  

 5.2.1 Compounds 

PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethyl-phenyloxy) 

quinolone, was synthesized by Dr. Duy H. Hua's laboratory [7]. 

 5.2.2 Animals 

A colony of PyVT transgenic mice (The Jackson Laboratory; Bar Harbor, ME) was 

maintained.  Genomic DNA was extracted from a 1.5-cm tail clipping to identify transgenic 

progeny.   Tumor development of positive female mice was closely monitored.  Tumor onset was 

recorded as the age of the animal at which palpable abnormal masses were detected.  Tumor 

volume was measured in two dimensions with calipers every 2 days starting at 4 weeks of age. 

Tumor volume was determined by the equation: Volume = ½(Length)*(Width)
2
. Mice were 

observed for any change in behavior, appearance or weight. When animals reached the specific 
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age range, six female mice were randomly assigned to each treatment group and administered 

either DMSO (vehicle control) or 25 mg/kg PQ1 via intraperitoneal (IP) injection.   

 5.2.3 Antibodies 

Primary antibodies: Anti-Cx46 (sc-20859, goat polyclonal), anti-PKCα (sc-8393, mouse 

monoclonal), anti-Ki-67 (sc-23900, mouse monoclonal), anti-survivin (sc-374616, mouse 

monoclonal), and anti-Cx43 (sc-13558, mouse monoclonal), from Santa Cruz Biotechnology 

(200 µg/ml; Santa Cruz, CA); anti-GAPDH (2118, rabbit monoclonal; 24 µg/ml) from Cell 

Signaling (Boston, MA); anti-p53 (AP6266b, rabbit polyclonal) from ABGENT (250 µg/ml; San 

Diego, CA) were used for both western blot and immunohistochemistry (IHC).  

 5.2.4 Western blot analysis 

Mammary gland tumor tissue and selected organs (brain, heart, liver and kidney) were 

homogenized in 500 mL of lysis buffer (20 mM Tris pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, 

0.5% Triton X-100) at 1:1,000 dilution of protease inhibitors (Sigma-Aldrich, Saint Louis, MO).   

Tissue was homogenized via the OMNI Bead Ruptor 24 at a speed of 5.65 m/s for 45 seconds, 

followed by centrifugation at 13,000 rpm for 30 minutes at 4˚C.  Twenty-five μg of whole-cell 

extract was resolved by 10% SDS polyacrylamide gel electrophoresis (PAGE) and transferred to 

nitrocellulose membrane (Midwest Scientific, Saint Louis, MO).  Nitrocellulose membrane was 

blocked in 5% milk for an hour at room temperature and then incubated with monoclonal 

antibodies (1:1,000).  Western blots were detected by enhanced chemiluminescence detection 

reagents (Pierce, Rockford, IL) and visualized by Fluorchem E imaging system (ProteinSimple, 

Santa Clara, CA). 
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 5.2.5 Immunohistochemistry   

Mammary carcinomas and organs were removed and fixed in a solution
 

of 10% 

formaldehyde and embedded into paraffin prior to sectioning them onto slides at a 5 µm 

thickness.  Paraffin sections (5 µm) were dried at 60°C for 25 minutes.  Deparaffinization was 

performed with 100% xylene and 100%, 90%, 75%, 50% ethanol.  Antigen retrieval was 

performed in 1× citrate buffer solution and steam for 20 minutes. Endogenous peroxidase was 

blocked using 3% hydrogen peroxide.  Slides were then incubated overnight at room temperature 

with antibody (1:50 dilution).  After washes in PBS, slides were successively incubated with 

biotinylated secondary antibodies (1:1,000) for 15 minutes.  Slides were washed and 

immunostains were amplified by incubation with Avidin Biotin Complex (ABC) for 10 minutes 

accordingly.  Cells were visualized with 3,3-diaminobenzidine (DAB) followed by a 

hematoxylin counterstain.  The sections were viewed and the images captured with a Nikon 80i 

microscope under 40X and 60X magnification.   

 5.2.6 Statistical analysis  

Significance was considered at a p-value ≤ 0.05 using Student’s t-test analysis.  All data 

are presented as mean ± 95% confidence interval of at least three independent experiments. 

 5.3 Results  

Tumor development was divided into the 3 stages based on the tumor size and the 

frequency of tumor formation: Pre, Early, and Late. Tumor growth over a 14 day period with 7 

IP injections of either control DMSO or PQ1 indicated a significant effect of PQ1 treatment on 

neoplastic development at all three stages of tumor development in female PyVT mice (Figure 

5.1). There was no significant difference between the controls (no treatment group and DMSO 

treatment group). The initial tumor volume for all Pre stage mice was 14.74 ± 11 mm
3
. There 
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was a significant difference in tumor volumes between PQ1 and DMSO treated mice during the 

Pre stage of tumor development from day 4 to day 14 (Figure 5.1A).  PQ1 significantly 

decreased the initial tumor size (day 0) with PQ1 treatment to 6.4 mm
3
 over the 14 day treatment 

period (p-value = 0.046).  The final tumor growth of the control DMSO treated mice was 377 

mm
3
.  The change in tumor volume over the 14 day period showed a significant reduction of 40 

mm
3
 with PQ treatment compared to both controls (p-values < 0.0001; Figure 5.1B).  There was 

a 56% reduction from initial tumor size in the Pre stage mice after treatment with PQ1.  

The initial tumor volume for all Early stage mice was 129 ± 49 mm
3
.  During this stage 

of development there was a significant difference in tumor volumes between treatment groups 

from day 8 to day 14 (Figure 5.1C).  PQ1 significantly decreased the initial tumor size to a final 

volume of 72 mm
3
 after 14 days of treatment (p-value = 0.0002), while the final volume for the 

control DMSO treated group was 410 mm
3
.  The average size of tumors after 14 days of PQ1 

treatment was 57 mm
3
 smaller than the initial volume, which is a  significant reduction of 44% 

 

from initial tumor size compared to the controls (p-value < 0.0001; Figure 5.1D).  PQ1 treatment 

during the Early stage of development resulted in a 53% and 56% reduction from initial tumor 

volume compared to the no treatment and DMSO controls, respectively. 

During the Late stage of tumor development, mice began treatment with the initial tumor 

volume of 610 ± 104 mm
3
.  PQ1 attenuated tumor growth compared to control, indicated by a 

final volume of 1727 mm
3
 for DMSO control and 968 mm

3
 after PQ1 treatment over 14 days (p-

value = 0.0001; Figure 5.1E).  PQ1 treatment lead to a significant reduction in tumor growth 

compared to controls (p-value No Trt = 0.001, p-value DMSO = 0.016); the controls increased by 

1463 and 1008 mm
3 

for no treatment and DMSO, respectively, while PQ1 treated tumors grew 
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only 382 mm
3
 (Figure 5.1F).  This was a 26% and 38% reduction in tumor growth with PQ1 

treatment compared to control no treatment and DMSO, respectively. 

 

  

   

      

Figure  5.1  Tumor growth (mm
3
) in PyVT female mice.  Tumors measured in two dimensions 

with calipers every 2 days prior to administration of treatment for AB) Pre, CD) Early, and EF) 
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Late stages of tumor development.  A, C, E) The tumor size is expressed over the 14 day 

treatment period for the DMSO (control) and PQ1 (25 mg/kg) treated PyVT mice.  Days 0-12 

represent the days of the 7 IP injections, day 14 represents the end of the study with 

measurements prior to tissue harvest.  Data points represent the mean ± the 95% confidence 

interval. B, D, F) The overall change in tumor size after no treatment, or treatment with DMSO 

(control) or PQ1 (25 mg/kg) via 7 IPs.  Data points represent the individual sample per treatment 

group, while the mean is represented as a horizontal bar. n = 6. * P-value < 0.05 compared to 

control no treatment and DMSO. 

 

PyVT mice have a total of 10 mammary fat pads that may develop tumors during their 

lifetime. The tumor burden was monitored during the course of treatment, and the final tumor 

number for each treatment in each stage of development is represented by Figure 5.2. During all 

stages there was no significant difference between the tumor burdens of the control groups. 

Treatment with PQ1 during the Pre stage significantly reduced the number of tumors developed 

after treatment (p-value = 0.0002; Figure 5.2A). During the Early stage of tumor formation, PQ1 

treatment significantly reduced tumor burden compared to the control DMSO group (p-value = 

0.02; Figure 5.2B). The no treatment control group for this stage had a greater variation in the 

number of tumors developed than the control DMSO treated group, though it was not 

significantly different. There was no difference in the tumor burden between experimental 

groups of the Late stage of tumor development (Figure 5.2C).  
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Figure 5.2  Number of developed tumors in PyVT female mice during development.  

Tumors identified grossly during the A) Pre, B) Early, and C) Late stages of tumor development 

after a 14 day period with either no treatment, or treatment with DMSO (control) or PQ1 (25 

mg/kg) via 7 IPs. n = 6.  * P-value < 0.05 compared to control no treatment. Columns represent the 

mean ± the 95% confidence interval. # P-value < 0.05 compared to control (DMSO). 

 

 

Histopathological examination was conducted of the mammary tumors for each treatment 

group in the three stages of tumor development. Tumors were categorized as adenoma/mammary 

intraepithelial neoplasia (MIN), early carcinoma, or late carcinoma. The Pre control tumors were 

either adenoma/MIN or early carcinomas, while the Pre PQ1 treated tumors appeared to be early 
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or late carcinoma. The Early control tumors were all early carcinomas. The Early PQ1 treated 

tumors varied from adenoma/MIN, early carcinoma, and late carcinoma. No lung metastasis was 

observed for the Pre or Early stages of development for either treatment group. The Late control 

and PQ1 tumors were both late carcinomas. The Late control mice had several metastatic foci in 

the lung, while Late PQ1 treatment resulting in less mice with metastatic lesions and fewer 

metastatic foci per mouse.   

Immunoblot analysis of connexin expression indicates that PQ1 treatment decreased 

Cx46 expression (Figure 5.3A) and increased Cx43 expression (Figure 5.3B) during 

carcinogenesis.  During the control PyVT mouse tumor development there was an increase in 

Cx43 and Cx46 expression from Pre to Late stage.  Data suggests that connexin 43 is expressed 

at higher levels in PQ1 treated animals compared to controls and the contrary for connexin 46.  

Cx46 expression in PyVT mouse tumors treated with PQ1 from the Pre and Late stages of 

development had significantly lower levels than that of the controls (p-value Pre= 0.019, p-value 

Early= 0.007).  Pre and Early stage tumors treated with PQ1 had a significantly greater level of 

Cx43 expression compared to controls (p-value Pre= 0.0003, p-value Early= 0.03).  During the Late 

stage of tumor formation, connexin 46 was expressed less in treated mice than controls, while 

there was no significant change in connexin 43 expression.  This is explained by the overall 

increase in both connexin 43 and connexin 46 during tumor development and metastasis. 
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Figure 5.3  Raw data and graphical representation of protein expression in tumors from 

Western blot analysis. Fold-pixel intensity of A) Cx46, B) Cx43, C) PKC-alpha, and D) 

survivin in PyVT female tumors treated with DMSO (control) or PQ1 (25 mg/kg) via 7 IPs in 

each of the three stages of tumor development.  Data points represent the mean ± the 95% 

confidence interval. n = 4.  * P-value < 0.05 compared to control.  

 

Connexin expression is regulated by a number of factors, such as transmembrane and 

transjunctional voltage, cytosolic ions (Ca
2+

 and H
+
), and post-translational modifications, 

predominantly the phosphorylation status [11-13]. All connexins, except Cx26, are 

phosphoproteins that are targeted by several kinases such as sarcoma (Src) kinases, protein 
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kinase C (PKC), protein kinase A (PKA) and Mitogen-Activated Protein Kinase (MAPK), which 

are required for efficient trafficking, assembly and disassembly, degradation, and gating of 

hemichannels and/or gap junctions [12, 14, 15]. GJIC regulation by phosphorylation is both 

connexin and kinase specific [12, 16]. The role of PKCα in the PQ1 induced altered connexin 

expression was determined in tumors isolated from the PyVT mouse at each stage of 

development by western blot analysis (Figure 5.3C) and immunohistochemistry (Figure 5.4).  

There was no significant change in PKCα.  
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Figure 5.4  Immunohistochemisty of tumors from PyVT females.  Paraffin-embedded 

sections stained with antibodies against Cx43, Cx46, PKCα, and Ki-67 from PyVT females 

treated with DMSO (control) or PQ1 (25 mg/kg) via 7 IPs at either A) Pre, B) Early, or C) Late 

stage of tumor development.  Proteins staining: brown, counterstaining: blue (hematoxylin).  

Images represent only 1 of n = 6 per group at a 100X magnification. Scale bar = 10µm. 
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Neoplastic cells use inhibitors of apoptosis as protection against cytotoxic compounds.  

The anti-apoptotic protein survivin is a member of the inhibitors of apoptosis protein family 

expressed in a range of tumor types that regulates mitosis [17-19].  Survivin expression 

correlates with chemotherapeutic resistance and accelerated relapse [20].  PyVT tumors treated 

with DMSO or PQ1 at each stage of development were analyzed for the expression of the anti-

apoptotic protein survivin.  PQ1 treatment significantly decreased the expression of survivin in 

mammary tumors during the Pre (p-value = 0.014) and Early (p-value = 0.028) stages of 

development (Figure 5.3D).  

Histopathology of the harvested PyVT mouse tumors showed no significant difference in 

morphology.  Immunohistochemistry of PQ1 treatment at all stages of tumor formation showed 

stronger positive cytoplasmic staining in Cx43 and a weaker positive cytoplasmic staining of 

Cx46 compared to control tumors (Figure 5.4). There was no significant change in Ki-67 

expression. 

The mammary carcinoma developed by the PyVT transgenic model is characterized by a 

metastatic pattern involving the lung tissue.  Mice in the Late stage of tumor development had 

many large secondary tumors in the lung epithelium, as determined by gross observation and 

histopathology.  With PQ1 treatment, there was a decrease in the size and frequency of these 

secondary lung tumors (Figure 5.5).  Lung tumors exhibited similar histopathologic features as 

those in the mammary tissue.  
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Figure 5.5  Representative images of hematoxylin and eosin (H&E) stained mammary 

tumors identified in the lung epithelium.  A) Female PyVT mouse treated with DMSO 

(control) at Late stage of tumor development.  The lung contains a large metastatic focus of 

neoplastic cells.  Additional morphologically similar foci were noted throughout the lungs.  B) 

Female PyVT mouse treated with PQ1 at Late stage of tumor development.  The lung contains 

small metastatic foci of neoplastic cells.  However, the foci are of decreased size and frequency, 

as compared to the control animals. Images are representative of n = 3 at a magnification of 40X. 

Scale bar = 50µm. 

 

Multiple vital organs (brain, heart, liver and kidney) were also examined using 

histopathology to determine any potentially detrimental effects of PQ1 administration.  There 

was no morphological change in the tissues compared to control, indicating that PQ1 had 

specificity for targeting neoplastic cells rather than the untreated tissue (Figure 5.6A).  Further 

examination of Cx43, Cx46, PKCα, and Ki-67 in the liver showed a strong positive cytoplasmic 

staining of Cx43, Cx46, and PKCα in PQ1 treated tissue (Figure 5.6B) from 

immunohistochemistry.  There was no significant change in Ki-67. Systemic exposure to PQ1 

over the 14 day period had no observed adverse effects on the health or behavior of the animals.  
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Figure 5.6  Evaluation of normal tissue isolated from PyVT mice. A) Representative images 

of hematoxylin and eosin (H&E) stained tissues from untreated PyVT mice in the Late stage of 

tumor development. Images are representative of n = 3 at a magnification of 40X. Scale bar = 

50µm. B) Immunohistochemistry of Liver isolated from PyVT mice.  Paraffin-embedded 

sections stained with antibodies against connexins (Cx43 and 46), PKCα, and Ki-67 in female 

PyVT mouse liver harvested after 7 IP injections treated with either DMSO (control) or PQ1 (25 

mg/kg) via 7 IPs during the Late stage tumor development.  Proteins staining: brown, 

counterstaining: blue (hematoxylin).  Images represent only 1 of n = 6 per group at a 100X 

magnification. Scale bar = 10 µm. 
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 5.4 Discussion   

PQ1 is the first compound targeting gap junctions as an anticancer drug in a spontaneous 

mammary tumor model.   It has previously been shown to be a specific enhancer of GJIC in vitro 

[8] and resulted in an increase in connexin expression leading to a significant decrease in tumor 

growth on a T47D human breast cancer cell xenograft model in nude mice [21].  This study 

translates the in vitro results of PQ1 previously obtained to an in vivo context using a 

spontaneous mammary carcinoma model.  Genetically engineered mice are pursued in the cancer 

field, allowing researchers to investigate multiple aspects of cancer.  Several characteristics of 

the PyVT model make it ideal for studies, such as its colony stability, predictable tumor growth 

behavior, and its similarity to human neoplasms.  The efficacy of PQ1 in reducing tumor cell 

growth is demonstrated in the PyVT mouse model over a two week period.  The results showed a 

43% and 53% reduction in tumor volume from the initial size in pre and early stages, 

respectively, while there was a 26% reduction from final tumor volume in the Late stage of 

development with PQ1 treatment compared to the DMSO control after seven injections of 

treatment.  

Molecular analysis of the protein expression demonstrated a general increase of 

expression of Cx43 and a decrease for Cx46 in PQ1-treated PyVT mice.  In the Pre stage of 

tumor development, there was an increase in Cx43 expression and a decrease in Cx46 expression 

with PQ1 treatment.  PQ1 alters the overall connexin profile by upregulating Cx43 and 

downregulating Cx46.  The general loss of GJIC correlates with tumorigenic phenotypes, but the 

different connexins play distinct roles in specific stages of cancer progression.  It has been 

observed in former studies that the proportion of the connexins constitutive of gap junctions 

differed in tumor stages.  Cx46 protein is expressed highly in both breast cancer cell lines and 

human breast tumors [22].  Knockdown of Cx46 in human breast tumor xenografts is shown to 
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inhibition tumor growth in nude mice [22].  This indicates that Cx46 is upregulated to promote 

tumor growth and development in early breast cancer tumors.  Other gap junction connexins 

(Cx43, Cx32, and Cx26) are considered tumor suppressors since loss of these correlates with 

breast tumor progression [23].  

Cx46 is a novel gap junction protein in mammary tissue that is hypoxia-specific.  Burr et 

al. [24] hypothesized that Cx46 has pro-tumor effects due to its ability to prevent hypoxic death.  

Solid tumors may have an upregulation of Cx46 to survive the hypoxic conditions prevalent 

during late stage development while also inducing a loss of Cx43, which promotes tumor growth.  

Treatment with PQ1 alters the expression of both Cx43 and Cx46 in such a way that it 

normalizes the tumor tissue and prevents tumor growth.  The increase in Cx43 could induce a 

downregulation of Cx46, sensitizing the tumor cells to hypoxic conditions and attenuate further 

tumor development.  The advanced stages of solid tumor development typically consist of 

tumors with more hypoxic centers, making them difficult to treat due to the slower rate of cell 

proliferation.  PQ1 could be utilized to restore the hypoxic cells to normal homeostasis and 

induce cellular death of unregulated cells.  

The decrease in survivin protein expression in the neoplastic tissue due to PQ1 treatment 

found during the Pre and Early stages of tumor formation supports the hypothesis above.  

Survivin expression in normal tissue is developmentally regulated and is low in most terminally 

differentiated tissues.  In cancer cells, elevated survivin is commonly associated with enhanced 

proliferative index [25], reduced levels of apoptosis [26], resistance to chemotherapy [27], and 

increased rate of tumor recurrence [28].  PQ1 treatment decreased survivin, suggesting that the 

tumor cells are sensitized to stressful conditions, such as hypoxia.  Our data suggest that PQ1 



105 

 

may act as a survivin disruptor, independent from its gap junction function, to sensitize cancer 

cells. 

The proliferation rates of the tumors have been evaluated in an attempt to correlated 

expression with prognosis. Ki-67 is one of several cell-cycle regulators that can be determined 

by immunohistochemistry. The Ki-67 antibody reacts with a nuclear non-histone protein that is 

highly expressed in all active phases of mitosis, except G0 [29]. A high Ki-67 labeling index for 

immunohistochemistry is associated with poor differentiation of tumors, large tumor size, and an 

increased risk in recurrence [30]. There was no observable change in Ki-67 expression due to 

PQ1 treatment, indicating that PQ1 is not involved in the proliferation of neoplastic cells in the 

PyVT model.  

As the PyVT tumor develops, there is an increase in Cx43 and Cx46 expression, which 

may be characteristic of an increase in the metastatic potential of the lesion.  The metastatic 

tumor, represented by the Late stage, had a significantly greater expression of Cx46 compared to 

the other stages of development (Figure 4A), suggesting that this upregulation may contribute to 

tumorigenesis.  With PQ1 treatment there is a decrease in the elevation of Cx46 during 

development, suggesting that the treatment is attenuating tumor formation and delaying the 

process of metastasis.  This is supported by reduced incidence of secondary tumor formation in 

the lung with PQ1 treatment.  Primary tumors that are initially GJIC impaired become GJIC 

competent during the metastatic stage[31].  Increased expression of connexins and GJIC 

correlate with invasiveness and metastasis in a variety of cancer cell types, including breast 

cancer.  Connexin expression profiles change from a metastatic cell to that more similar to a 

normal breast epithelial cell with expression of metastasis-suppressor gene BRMS1 [32].  This 

suggests that the connexin composition of gap junctions contributes to the lesions metastatic 
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potential.  Though functionality of the gap junctions was not conducted, the data presented 

shows a high expression level of Cx43 and Cx46 during late tumor development and metastasis.  

   PKCα expression did not vary between treatment groups.  PKCs are the principal kinases 

that regulates GJIC by phosphorylation of the C-terminal domain [12], which has been shown to 

be necessary for the Cx43 disassembly in lens epithelial cells [33].  Morley et al. [34] showed 

that PKC inhibition (PKCα and/or PKCβ1) increases GJIC to reduce the proliferation of tumor 

cells, which was due to altered trafficking of connexins.  The data presented here show an 

alteration in connexin expression without a change in PKCα expression.  This suggests that PQ1 

affects connexin expression through a mechanism that either does not affect PKCα, but rather a 

different isoform of PKC; or does not involve phosphorylation of the C-terminal domain of 

connexins.   

The MMTV promoter is a glucocorticoid hormone inducible promoter [35] that has been 

used as an ideal system for the generation of transgenic mice modeling tumor development in the 

breast and urogenital tissues due to its inducible and high activity in these tissues [36]. 

Pathological evaluation of the tumors post treatment lead to the observation that Pre stage PQ1 

treated tumor were histologically described as early or late carcinomas, while control tumors 

were adenoma/MIN or early carcinoma, implying that treatment lead to an increase in 

malignancy. To clarify the results, only one of the six tumors evaluated in this treatment group 

was characterized as late carcinoma, which may be due to biological variation within the 

transgenic model. This increase in malignancy may be explained by different levels of transgene 

expression due to copy number variation, or different spatial or temporal expression of the 

transgenes in the tissue. An increase in incidence of tumors is common with higher expression of 

the transgene in the mammary tissue with hormonal effects on the MMTV [37]. Different 
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quantitative levels of expression are possible due to differences in transgene copy number, 

leading to a variation in tumor incidence and phenotype. Therefore the single tumor 

characterized as more aggressive by pathological evaluation may simply have higher levels of 

transgene copy number. Additionally the Pre stage of tumor development occurs in concurrence 

with reproductive development, in which relatively mature levels of circulating hormone are 

present. Murine sexual maturity normally coincides with rising circulating gonadotropin some 

point after 4 weeks of age. Precisely when reproductive maturity occurs is highly variable 

between mice. High levels of circulating hormone may affect the activation of the promoter 

sequence, leading to variation in tumorigenesis. Transgene expression levels were not 

determined for the tumor samples.  

 The effectiveness of many anticancer drugs is limited by their toxicity to normal rapidly 

growing cells and vital tissues.  Administration through oral gavage of PQ1 indicated that 

exposure of the vital organs has low toxicity [9].  For this study the liver and kidney were 

examined histologically to determine potentially detrimental effects of systemic exposure to a 

gap junction enhancer.  PQ1 treatment showed no observable detrimental effects to any of the 

organs.  It is uncertain if the observed increase in Cx43 and Cx46 expression in the 

immunohistochemistry of the liver may induce damage. No acute toxicity was seen in this study.  

Long term survival studies after PQ1 treatment are needed to determine if the normal tissue is 

truly affected.  

Cancer has been characterized as a disease of differentiation or stem cell disease [38]. 

Despite the heterogeneity within a single tumor, they have all been derived from clonal 

expansion of a single cell. Stem cells are naturally immortal and become mortal when they 

differentiate [39]. The initiation process of carcinogenesis irreversibly inhibits the differentiation 
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of stem cells.  Adult stem cells do not express connexins or have functional GJIC. Normal 

human breast epithelial stem cells [40], limbral progenitor cells [41], and mouse embryonic stem 

cells [42] have been shown to lack expression of connexin genes and functional GJIC. Gap 

junctions are needed to differentiate stem cells. Stem cell growth is controlled without functional 

GJIC through secreted negative growth regulators from either their terminally differentiated 

daughter cells [43] or from some stroma-derived secreted factor [44]. If stem cells are deficient 

in functional GJIC but are targeted by the initiation phase, then they would remain in a primitive, 

less differentiated phenotype leading to cancer formation. Chemoprevention of the promotion/ 

progression of the initiated stem cell would require either interference with those secreted factors 

that stimulate the growth of stem cells or induction of the connexin genes and functional GJIC. 

PQ1 is shown in previous studies [7, 8] and the above results to satisfy the later.  

PQ1 is an enhancer of GJIC, which could lead to stem cell differentiation and prevention 

of cancer initiation. Here we show the attenuation in tumor formation with PQ1 treatment at the 

Pre stage. This may be explained by PQ1 enhancing GJIC in tumor stem cells, pluripotent and/or 

early progenitor cells. Introduction of GJIC by PQ1 could lead to differentiation of the 

pluripotent stem cell that has a normally low expression of connexins and deficient in GJIC, 

eliminating the potential for initiation. The early progenitor cell, which has stem-like potential 

and functional GJIC, if initiated is unable to terminally differentiate, but can still control its 

growth via GJIC. The initiated progenitor cell may then lose growth control during the 

promotion stage through the downregulation of GJIC, leading to proliferation, accumulation, 

promoter independence, invasion, and finally metastasis. PQ1 may have a role in preventing the 

loss of GJIC, maintaining growth control, and leading to apoptosis thereby preventing tumor 

formation.  In vitro studies of adult mammary stem cells with PQ1 treatment are needed to 
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determine the mechanism of action and any adverse effects on the normal tissue. This is a new, 

promising approach to chemoprevention and chemotherapy.  

     Normal cells can signal adjacent malignant cells to reverse their phenotype or induce 

apoptosis [45], but the deficiency in connexin expression intervenes in the regulation of cell 

proliferation, differentiation, cell death, homeostatic maintenance and reduced mitosis in the late 

G1, S and M phases [46], suggesting an involvement in carcinogenesis [1].  A new class of gap 

junction enhancers alters tumor growth in a spontaneous mammary carcinoma animal model 

with no apparent side effects.  This study shows additional evidence that connexin expression 

and cell growth are inversely correlated in malignant lesions, confirming the results of Saez et al. 

[47].  The previous studies on PQ1 conducted on T47D cells in nude mice, and these results 

obtained using a spontaneous mammary carcinoma model, are promising for the development of 

a new chemotherapy for breast cancer treatment, and potentially other cancer types, in humans.  

PQ1 may also be combined with other antineoplastic drugs to reduce their toxicity and increase efficacy.  
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Chapter 6 – Bioavailability and efficacy of a gap junction enhancer 

(PQ7) in a mouse mammary tumor model 

 A research article of the following findings has been published in PLoS ONE (2013) 8(6): 

e67174. doi:10.1371/journal.pone.0067174. 

 6.1 Introduction  

Gap junction intercellular communication (GJIC) has an important function in 

maintaining tissue homeostasis. GJIC is the process in which small metabolites are shared 

directly by contiguous cells that have their cytoplasms connected by aqueous channels called gap 

junctions. The loss of GJIC is related to the pathogenesis of multiple diseases, such as deafness 

and hearing loss, cataracts, skin disorders, oculodentodigital dysplasia, and cancer (see review 

[1]). The enhancement or restoration of functional gap junctions could be therapeutic treatment 

option for these diseases. Here we focus on the pathogenesis of cancer in relation to the loss of 

connexin expression. A class of substituted quinolines was described in Shi et al. and the effects 

of the first generation compound (PQ1) as a gap junction enhancer in breast cancer cell lines has 

been explored [2, 3]. PQ7 was shown to enhancer GJIC activity in cancer cells, with a more 

powerful effect on GJIC than the first generation PQ1 [4].  

Many cancer treatment methods utilize chemotherapies that target mitotic cells for 

destruction, but this is not specific to the cancer cells and leads to severe side effects.  The loss of 

GJIC by cancer cells is specific, suggesting that restoration of GJIC may provide a treatment 

with less detrimental effects to the host.  Previous studies indicate that administration of PQ1 via 

oral gavage has a low toxicity to normal tissue of healthy C57BL/6J mice with no observable 

adverse effects [5], while significantly attenuating xenograft tumor growth of nude mice [6]. 

Here the distribution and anti-tumor effects of PQ7 are explored. 
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This study first determined the systemic distribution of PQ7 after intraperitoneal injection 

in healthy C57BL/6J mice.  The drug distribution to the vital organs was determined at various 

periods of time after injection. Analysis using histological observation of PQ7 treated tissue 

showed no significant alterations in tissue organization or structure, suggesting a low toxicity. 

Next PQ7 was utilized as a treatment for mammary carcinoma in a spontaneous mammary tumor 

mouse model.  The in situ generation of mammary tumors in the PyVT mouse was used to 

determine the biological and histological effects of PQ7 on spontaneous tumorigenesis and 

metastasis. For each stage of tumor development previously described, the effect of PQ7 

administration was evaluated and the expression of connexins was determined in treated tissue.  

 6.2 Materials and methods  

 6.2.1 Compounds 

PQ7, 6-methoxy-8-[(2-furanylmethyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy) 

quinoline,  was prepared as previously reported [2]. 

 6.2.2 Animals 

Female C57BL/6J (The Jackson Laboratories, Bar Harbor, Maine 04609 USA) mice 

approximately 5 weeks of age were used in the distribution experiments. All mice were housed 

together in a temperature controlled environment (72  F) with a 12 hour light-dark cycle and 

unlimited access to standard mouse chow and water. Six animals were randomly assigned to 

each treatment group and administered 25 mg/kg PQ7 via intraperitoneal (IP) injection. At 6, 12, 

24, and 36 hours post injection, all organs were harvested from animals euthanized by carbon 

dioxide inhalation.  

 A colony of PyVT mice (The Jackson Laboratory; Bar Harbor, ME) was established for 

mammary carcinoma studies.  To identify transgenic progeny, genomic DNA was extracted from 
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a 1.5-cm tail clipping. All mice carrying the PyVT transgene developed mammary tumors.   

Tumor development of positive female mice was closely monitored every 2–3 days.  Tumor 

onset was recorded as the age of the animal at which palpable abnormal masses were detected.  

Tumor size was measured in two dimensions with calipers every 2 days as early as 5 weeks of 

age.  Tumor volume was determined by the equation: Volume = ½(Length)*(Width)
2
. Mice were 

observed for any change in behavior, appearance, and weight. When animals reached a specific 

age range, six female mice were randomly assigned to each treatment group and administered 25 

mg/kg PQ7 via IP injection. 

 6.2.3 PQ7 distribution studies in mice (HPLC and mass spectrometry) 

 6.2.3.1 Extraction of PQ7 from organs and plasma 

Organs were cut into small pieces followed by the addition of 4 mL of deionized water 

and 10 mL of a solution of 9:1 ratio of ethyl acetate and 1-propanol.  Plasma samples were 

directly mixed with 4 mL of water and 10 mL of a 9:1 solution of ethyl acetate and 1-propanol.  

Tissue and plasma solutions were separately sonicated for 40 minutes and 10 minutes, 

respectively, and the organic layer was separated from a separatory funnel.  The aqueous layer 

was extracted twice with 10 mL of a 9:1 solution of ethyl acetate and 1-propanol.  The organic 

layers were combined, washed with 5 mL of brine, dried over anhydrous MgSO4, and 

concentrated to dryness on a rotary evaporator.  The residue was diluted with 1 mL of 1-propanol 

and filtered through a 0.2 µm filter disc (PTFE 0.2 µm, Fisherbrand) and analyzed using HPLC 

and mass spectrometry as described below. 

 6.2.3.2 Quantification of PQ7 using HPLC 

HPLC analysis was carried out on a Varian Prostar 210 with a UV-vis detector and a 

reverse phase column (250 x 21.20 mm, 10 micron, Phenomenex, S. No: 552581-1).  A flow rate 
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of 5 ml/min and detection wavelength of 254 nm were used.  A gradient elution of solvent A, 

containing deionized water and 0.01% of trifluoroacetic acid, and solvent B, containing 

acetonitrile and 0.01% of trifluoroacetic acid, was applied for the analysis.     

1,2,4,5-Benzenetetracarboxylic acid (BTA) was used as an internal standard to quantify 

the amount of PQ7 in the tissue extracts.  Solutions of 100 μl of various mixtures of authentic 

PQ7 and BTA were injected into a HPLC instrument, the peak areas corresponding to PQ7 and 

BTA were integrated from the HPLC chromatogram, and the ratios of the peaks were obtained.  

Results of the ratios of HPLC peak areas and ratios from PQ7 and BTA concentrations were 

plotted, and a linear correlation line was obtained from the graph.  Hence using this correlation 

diagram, the ratio of HPLC peak areas of PQ7 and BTA from tissue extract, and the added 

known amount of BTA to the tissue extract, the amount of PQ7 in the tissue extract was 

determined.   

Hence, 100 µl of 1:1 mixture by volume of the tissue or plasma extract and BTA of 

known concentration was injected into the HPLC, the peaks corresponding to PQ7 and BTA 

were integrated from the HPLC chromatogram, and the ratio of their masses was determined.  

Comparing the ratio of the masses of the peaks of PQ7 in the extract and standard BTA to the 

ratio of the masses of the peaks of authentic PQ7 and standard BTA, the mass of PQ7 in the 

organs and plasma was quantified. 

 6.2.3.3 Mass spectroscopy 

An Applied Biosystem API 2000 LS/MS/MS mass spectrometer was used in the analysis.  

The eluent corresponding to PQ7 peak from the HPLC was collected and injected into the mass 

spectrometer.  A mass of 406 corresponding to M+1 of PQ7 was found in the mass spectrum, 
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and the fragmentation pattern of this M+1 mass is similar to that of the authentic PQ7 verifying 

the identity of PQ7.  

 6.2.4 Antibodies 

Primary antibodies: Anti-Cx46 (sc-20859, goat polyclonal), anti-PKCα (sc-8393, mouse 

monoclonal), and anti-Cx43 (sc-13558, mouse monoclonal), from Santa Cruz Biotechnology 

(200µg/ml; Santa Cruz, CA); anti-GAPDH (2118, rabbit monoclonal; 24 µg/ml) from Cell 

Signaling (Boston, MA) were used for both western blot and immunohistochemistry (IHC).  

 6.2.5 Western blot analysis 

Mammary gland tumor tissue and selected organs (heart, lung, liver, spleen, kidney, 

uterus, brain) were homogenized in 500 ml of lysis buffer (20 mM Tris pH 7.5, 0.5 mM EDTA, 

0.5 mM EGTA, 0.5% Triton X-100) with 1:1,000 dilution of protease inhibitors (Sigma-Aldrich, 

Saint Louis, MO).   Tissue was homogenized via the OMNI Bead Ruptor 24 (Omni International, 

Kennesaw, GA) at a speed of 5.65 m/s for 45 seconds, followed by centrifugation at 13,000 rpm 

for 30 minutes at 4˚C.  Twenty-five μg of whole-cell extract was resolved by 10% SDS 

polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose membrane 

(Midwest Scientific, Saint Louis, MO).  Nitrocellulose membrane was blocked in 5% milk for an 

hour at room temperature and then incubated with monoclonal antibodies (1:1,000).  Western 

blots were detected by enhanced chemiluminescence detection reagents (Pierce, Rockford, IL) 

and visualized by Fluorochem E imaging system (ProteinSimple, Santa Clara, CA). 

 6.2.6 Immunohistochemistry  

Mammary carcinomas and organs were removed and fixed in a solution
 

of 10% 

formaldehyde and embedded into paraffin prior to sectioning onto slides at a 5 µm thickness.  

Paraffin sections (5 µm) were dried at 60°C for 25 minutes.  Deparaffinization was performed in 
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solutions of 100% xylene and 100%, 90%, 75%, 50% ethanol.  Antigen retrieval was performed 

in a steam chamber with 1× citrate buffer solution for 20 minutes. Endogenous peroxidase was 

blocked using 3% hydrogen peroxide.  Slides were then incubated overnight at room temperature 

with primary antibody (1:50 dilution).  After washing in PBS, slides were successively incubated 

with biotinylated secondary antibodies (1:1,000) for 15 minutes.  Slides were washed and 

immunostains were amplified by incubation with Avidin Biotin Complex (ABC) for 10 minutes.  

Cells were visualized with 3,3-diaminobenzidine (DAB) followed by a hematoxylin counterstain.  

The sections were viewed and the images captured with a Nikon 80i microscope under 40X and 

60X magnification.   

 6.2.7 Statistical analysis  

Significance was considered at a p-value ≤ 0.05 using Student’s t-test analysis.  All data 

are presented as mean ± 95% confidence interval of at least three independent experiments. 

 6.3 Results  

 6.3.1 Distribution of PQ7 

Knowledge about the distribution of PQ7 in a biological system is important for the 

potential usage of this compound as an anticancer agent. PQ7 at 25 mg/kg was administered to 5-

week-old female mice systemically by intraperitoneal injection. The total amount of PQ7 

administered to each animal was defined as 100%. Six hours after the injection of PQ7, only 

8.14% of the compound was detectable in the tissue collected. At 12, 24, and 36 hours post 

administration 4.65, 1.53, and 0.29% of the original compound was measurable by HPLC, 

respectively. Six hours after treatment the majority of PQ7 was detected in the heart, liver, lung, 

and uterus at levels of 1.4% (107 µM), 1.3% (98.74 µM), 1.2% (90.90 µM), and 1.1% (82.02 

µM) of the total amount administered, respectively (Figure 6.1). A lower detectable level was 
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measured in the kidney (0.85%; 65.94 µM) and brain (0.92%; 71.34 µM). At 12 hours post 

exposure, the concentration of PQ7 changed in the liver from 1.28% of that administered at 6 

hours post injection to 0.47% (34.73 µM). At this time point PQ7 was no longer detectable in the 

spleen. At 24 hours post injection the compound was no longer detectable in the heart or uterus, 

while the lung and intestine had the highest concentration, at 0.41% (31.83 µM) and 0.48% 

(38.05 µM) respectively. After 24 hours of treatment, no PQ7 was found in the majority of the 

organs tested or the plasma. At 36 hours post exposure, the compound was detectable in limited 

amounts in the intestine (0.21%; 15.01 µM) and liver (0.07%; 5.21 µM). The trend in 

distribution of PQ7 remained fairly consistent in all tissues tested including plasma.  

 

 

 

Figure 6.1  Distribution of PQ7 in mice. Mice treated with 25 mg/kg of PQ7 were euthanized 

at 6, 12, 24, and 36 hours. The total amount of PQ7 administered to each animal was defined as 
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100%. Bar graph represents the mean distribution of PQ7 with a 95% confidence interval. Data 

obtained from sample size of n = 6 mice.  

 

 6.3.2 Analysis of vital organs post PQ7 exposure 

Multiple vital organs (brain, heart, liver and kidney) were examined using histopathology 

to determine any potentially detrimental effects of PQ7 administration in a single dose or in 7 

doses spread over a period of 14 days.  There were no morphological changes, evidence of 

hemorrhage, or inflammation in the tissues compared to control. This indicates that PQ7 had no 

toxicity to the normal tissue of healthy C57BL/6J mice. All mice exposed to PQ7 had no 

observed adverse effects on their health or behavior.  

PQ7 has been shown to enhance GJIC and increase the expression of connexins in 

neoplastic cells [4,6]. The expression of Cx43 in PQ7 treated and untreated organs were 

compared. Cx43 was detected in all tissues tested (Figure 6.2A). PQ7 treatment initially 

decreased Cx43 expression in the heart, lung, liver, uterus, and brain at 6 hours post injection 

(Figure 6.2B). The spleen had a significant decrease in Cx43 expression at 12 hours post 

injection. The heart and liver recovered normal expression levels after 24 hours. Cx43 expression 

in the lung, uterus, and brain remained significantly lower than normal over the 36 hours 

observed. There was no observable side effect due to the decreased expression levels. The kidney 

did not have a change in Cx43 expression. 
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Figure 6.2 Effect of PQ7 on connexin 43 expression in normal tissue. A) 

Immunohistochemisty of tissue sections. Paraffin-embedded sections stained with antibodies 

against Cx43 in female C57BL/6J organs harvested after a single IP injection of PQ7 (25 mg/kg) 

at 6, 12, 24, and 36 hours.  Proteins staining: brown, counterstaining: blue (hematoxylin).  

Images represent only 1 of n = 6 per group at a 100X magnification. Scale bar = 10 µm. B) 

Graphical representation of western blot analysis examining the effect of 6, 12, 24, and 36 hours 

of PQ7 treatment on the level of Cx43 expression. Mice without PQ treatment were used as a 

control. Bar graph shows the pixel intensities of protein bands normalized to the pixel intensities 

of loading control protein (actin) as a percentage of the control tissue. * P-value < 0.05 compared 

to control. 

 

 6.3.3 Effect of PQ7 on tumor growth in a spontaneous mammary tumor model 

Tumor development was divided into 3 stages: Pre, Early, and Late. Tumor growth over a 

14-day period with 7 IP injections of PQ7 or DMSO indicated a significant effect of PQ7 

treatment on the Pre stage of neoplastic development in female PyVT mice. The initial tumor 
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volume for all pre stage mice was 14.27 ± 13 mm
3
. There was a significant difference in tumor 

volumes between PQ7 and DMSO treated mice during the Pre stage of development from day 8 

to day 14 (Figure 6.3A).  PQ7 significantly attenuated tumor growth with a final volume of 27.8 

mm
3
 over the 14-day treatment period (p-value = 0.0008).  The final tumor growth of the control 

DMSO treated mice was 377 mm
3
.  The change in tumor volume over the 14-day period shows a 

significant attenuation of tumor size with PQ7 treatment compared to both controls (p-value NO 

TX= 0.005, p-value DMSO = 0.0005; Figure 6.3B).  There was a 98% difference between the 

overall changes in tumor growth after treatment with PQ7. 

The initial tumor volume for all Early stage mice was 104 ± 53 mm
3
.  During this stage 

of development there was not a significant difference in tumor growth between treatment groups 

(Figures 6.3C and 6.3D).  During the Late stage of tumor development, mice began treatment 

with the initial tumor volume of 676 ± 134 mm
3
.  PQ7 did not attenuate tumor growth compared 

to control during the Late stage of development (Figures 6.3E and 6.3F). 
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Figure 6.3  Tumor growth (mm
3
) in PyVT female mice.  Tumors measured in two dimensions 

with calipers every 2 days prior to administration of treatment for panels A and B) Pre, C and D) 

Early, and E and F) Late stages of tumor development.  Panels A, C, and E) The tumor size is 

expressed over the 14 day treatment period for the DMSO (control) and PQ7 (25 mg/kg) treated 

PyVT mice.  Days 0-12 represent the days of the 7 IP injections, day 14 represents the end of the 

study with measurements prior to tissue harvest.  Panels B, D, and F) The overall change in 

tumor size after no treatment, or treatment with DMSO (control) or PQ7 (25 mg/kg) via 7 IPs.  * 

P-value < 0.05 compared to controls.  
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PyVT mice have a total of 10 mammary fat pads that may develop tumors during their 

lifetime. The total number of palpable tumors, defined as the tumor burden, was monitored 

during the course of treatment, and the final tumor number for each treatment group in each 

stage of development is presented (Figures 6.4A-C). During all three stages there was no 

significant difference between the tumor burdens of the two control groups. Treatment with PQ7 

during the Pre stage significantly reduced the number of tumors developed after treatment (p-

value < 0.00001; Figure 6.4A). There was no difference in the tumor burden between 

experimental groups of the Early or Late stages of tumor development (Figure 6.4B and 6.4C). 

Tumors were analyzed to determine the quantity of PQ7 detectable after approximately 

48 hours after the last IP injection. At each stage of development, the parent compound was 

measureable in the neoplastic tissue harvested from treated animals. The Pre and Early stages of 

tumors were determined to have a concentration of 37 pM PQ7, while the Late stage tumors had 

1.1 nM PQ7 (Figure 6.5A). This indicates that the parent compound remained in the tumor for at 

least 48 hours after a 14 day treatment period with 7 IP injections.  
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Figure 6.4 Number of developed tumors in PyVT female mice during development.  Tumors 

identified grossly during the A) Pre, B) Early, and C) Late stages of tumor development after a 

14 day period with either no treatment, or treatment with DMSO (control) or PQ7 (25 mg/kg) via 

7 IPs.  * P-value < 0.05 compared to controls. 

 

 6.3.4 Pathological analysis of PyVT tumors post PQ7 treatment 

Histopathological examination of the mammary tumors of PyVT mice was conducted for 

each treatment group in the three stages of tumor development. When present, tumors were 

categorized as adenoma/mammary intraepithelial neoplasia (MIN), early carcinoma, or late 

carcinoma. The Pre control tumors were either adenoma/MIN or early carcinomas; while the Pre 

PQ7-treated tumors appeared to be focal hyperplasias or adenoma/MIN and early carcinoma. 
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The Early control tumors were all early carcinomas. The Early PQ7-treated tumors varied from 

adenoma/MIN, early carcinoma, and late carcinoma. The Late control and PQ7 tumors were both 

late carcinomas. In addition a few Late PQ7 tumors were identified as adenosquamous 

carcinomas. Histological examination of the lung tissue from all Late stage mice showed no 

significant difference in the presence of metastatic foci between treatment groups. 

 6.3.5 Effect of PQ7 on connexin expression in neoplastic tissue  

PQ7 has been shown to enhance GJIC and increase Cx43 expression in breast cancer 

cells [4], therefore the differential pattern of connexin proteins in PQ7-treated tumors was 

determined. Though most connexins are tumor suppressors, Cx46 has been shown to be 

upregulated in breast cancer cell lines and tumors to provide protection in hypoxic conditions 

[10]. Immunoblot analysis of connexin expression indicates that PQ7 treatment increased Cx43 

expression (Figure 6.5B) and decreased Cx46 expression (Figure 6.5C) during the early stages of 

carcinogenesis.  During the control PyVT tumor development there was an increase in Cx43 and 

Cx46 expression from Pre to Late stage.  Data suggest that Cx43 was expressed at higher levels 

in PQ7-treated animals compared to controls and the contrary for connexin 46 early in tumor 

formation.  Cx46 expression in PyVT tumors treated with PQ7 from the Pre and Late stages of 

development had significantly lower levels than that of the controls (p-value Pre= 0.016, p-value 

Late= 0.0007).  The Pre stage tumors treated with PQ7 had a significantly greater level of Cx43 

expression compared to controls (p-value Pre= 0.040), while during the Late stage they had 

significantly less Cx43 compared to controls (p-value Late= 0.034).  This may be explained by the 

overall increase in both connexin 43 and connexin 46 during tumor development and metastasis 

of the PyVT mice. 
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Figure 6.5 Analysis of tumors isolated from PyVT females 48 hours after the last IP 

injection. A) Quantitative analysis of PQ7 in the tumor homogenate. Data obtained from a 

minimum of three samples per developmental period. Data points represent the nanomolar 

concentration of PQ7 in each tumor isolated from treated mice, while the dashed lines represent 

the mean concentration of the PQ7 in all the tumors analyzed. B, C, and D) Graphical 

representation of protein expression in tumors from Western blot analysis. Fold-pixel intensity of 

B) Cx43, C) Cx46, and D) PKCα normalized to loading control in PyVT female tumors treated 

with DMSO (control) or PQ7 (25 mg/kg) via 7 IPs in each of the three stages of tumor 

development.  n = 4.  * P-value < 0.05 compared to control.  

 

 

Histopathology of the tumors harvested from PyVT mice showed no significant 

difference in morphology.  Immunohistochemistry of PQ7 treatment at Pre and Early stages of 

tumor formation showed stronger positive cytoplasmic staining in Cx43, while during the Late 
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stage there was stronger positive staining in the control tissue versus the PQ7 treated tissue 

(Figure 6.6A). The Cx46 immunohistochemistry indicated a weaker positive staining compared 

to controls. This supports the molecular analysis previously mentioned.  

Connexins are phosphoproteins that are targeted by kinases for efficient trafficking, 

assembly and disassembly, degradation, and gating of hemichannels [11,12,13]. Phosphorylation 

regulates GJIC in both a kinase and connexin specific manner [11,14]. Since PQ7 altered 

connexin expression, we explored the role of PKCα in the PQ7 treated PyVT mouse tumors at 

each stage of development by western blot analysis (Figure 6.5D) and immunohistochemistry 

(Figure 6.6C).  No significant change in PKCα expression was determined due to PQ7 treatment. 

Interestingly in the control tumors there appeared to be a stronger positive staining in the Pre 

stage compared to the Late stage of tumor development, suggesting a decrease in connexin 

phosphorylation and degradation. 
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Figure 6.6  Immunohistochemistry of tumors from PyVT females.  Paraffin-embedded tumor 

sections stained with A) H&E or antibodies against B) Cx43, C) Cx46, and D) PKCα from PyVT 

females treated with DMSO (control) or PQ7 (25 mg/kg) via 7 IPs at either Pre, Early, or Late 

stage of tumor development.  Proteins staining: brown, counterstaining: blue (hematoxylin).  

Images represent only 1 of n = 6 per group at a 100X magnification. Scale bar = 10 µm. 

 

 6.4 Discussion  

Effective use of antineoplastic drugs depends on the ability to balance the killing of 

tumor cells against the inherent toxicity to the host. Antineoplastic agents that act primarily on 
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rapidly dividing and growing cells produce multiple side effects and are dose limiting. The first 

generation gap junction enhancer was shown previously to have a low toxicity in healthy animals 

administered via oral gavage [5]. An intraperitoneal injection was used in this study to ensure a 

systemic exposure of a consistent amount of PQ7 to all the mice. Exposure of C57B/6J and 

PyVT mice to either a single or multiple doses, respectively, of PQ7 systemically showed no 

detrimental effects to any of the vital organs.  Uptake of the compound into a specific tissue 

depends on the availability of the compound in the blood supply and the extent of 

vascularization. The highest levels of PQ7 were detectable in the liver, heart, lung, and uterus, 

which may be due to the fact that these are highly vascularized tissues.  Interestingly PQ7 is 

detectable is the brain, indicating good penetration of the blood brain barrier. The 25 mg/kg PQ7 

administered to approximately 20 gram mice was equivalent to 9.56 mM. Results indicate that a 

9.5 mM concentration of PQ7 can be distributed to all the vital organs and metabolized in 

C57B/6J mice.  

Exposure of C57B/6J and PyVT mice to either a single or multiple doses, respectively, of 

PQ7 systemically showed no detrimental effects to any of the vital organs, indicating a low 

toxicity. The total amount of PQ7 detected in the tissue after six hours was only 8.1%. This 

suggests that the majority of the parent compound is metabolized and/or eliminated in less than 

six hours. The half-life of PQ7 in the liver appeared to be about 6 hours, suggesting complete 

metabolism or elimination by 48 hours. The optimal time between injections for treatment 

purposes would therefore be 48 hours, which has been shown to be effects in tumor bearing mice 

[6]. 

The levels of PQ7 measured in the intestinal tract had a high variability, however the 

compound was detectable at the highest level in this organ 36 hours post exposure. The intestinal 
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mucosal layer accumulates lipids and hydrophobic compounds, which have an increased 

permeability in the intestinal tract. This suggests that PQ7 may be secreted into the 

gastrointestinal tract through the bile duct for fecal excretion and potentially reabsorbed into the 

intestinal mucosa due to its lipophilicity. This is supported by the lack of PQ7 detected in the 

plasma or kidney after 24 hours, indicating that urinary excretion of the parent compound is 

complete by 24 hours post injection. Collectively these results suggest that PQ7 treatment may 

be useful in targeting neoplasias of the gastrointestinal tract.  

Cell proliferation and apoptosis are important factors in carcinogenesis [12], and GJIC is 

a key factor in carcinogenic process.  Reduced GJIC in preneoplastic and neoplastic tissue can 

lead to excessive cell proliferation, abnormal differentiation, and inhibited apoptosis, leading to 

the loss of homeostasis. More than 100 non-mutagenic and mutagenic carcinogens were reported 

to inhibit GJIC in vitro and in vivo [13-15]. These compounds are chemically diverse, including 

pharmaceuticals, polyaromatic hydrocarbons, plant products, and pesticides. The inhibition of 

GJIC correlates best with carcinogenicity in multiple in vitro tests [16]. This shows that the 

carcinogenic mechanism of multiple agents involves the down-regulation of GJIC. Therefore a 

compound that restores GJIC is vital for cancer prevention and treatment. The ability to 

normalize GJIC in neoplastic cell could restore homeostasis and prevent further tumor 

development.  

Many tumor promoters down-regulate GJIC to allow the initiated cell to proliferate and 

evade apoptosis [17]. The down-regulation of GJIC is a reversible process, indicating that 

intervention that enhanced GJIC could prevent promotion and progression of the neoplastic 

tissue. Previously PQ7 was shown to increase the expression of connexins and enhance GJIC [3, 

4]. The data presented here shows that PQ7 delays the development of mammary carcinomas, 
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suggesting it could be utilized as a primary chemopreventive compound for breast cancer. The 

PyVT mouse has a genetic alteration that predisposes them to the development of mammary 

carcinomas, however with PQ7 treatment during a pre-cancerous stage, the development of these 

malignancies was delayed significantly. The use of chemical intervention before an initiated cell 

becomes independent of the promoter stimuli could induce regression of the neoplastic tissue 

which is a process of chemoprevention. 

Cancer is a prominent disease throughout the world, despite the increasing knowledge of 

carcinogenesis and treatment options. More effective cancer therapies are needed.  Due to the 

fact that GJIC is involved in the development of cancer and metastasis, it is a promising target 

for new therapies. The enhancement of GJIC has been shown to increase the efficacy of multiple 

types of cancer therapies through the bystander effect [18-24]. GJIC could increase the 

distribution of chemotherapeutic compounds in tissues that are poorly vascularized and have 

impaired drug delivery, this is especially important for hydrophilic compounds that are unable to 

pass through the cell membrane [25]. Additionally, up-regulation of GJIC has been shown to 

increase the sensitivity of cancer cells to conventional chemotherapeutics [26, 27]. Though PQ7 

is not an effective anticancer compound on its own during later stages of tumor development, it 

could be used in combination with multiple types of chemotherapeutic options to enhance killing 

of the neoplastic cells.  

Molecular analysis of the protein expression demonstrated a general increase of 

expression of Cx43 and Cx46 during tumor development. Cx46 is a hypoxia-specific gap 

junction protein in mammary tissue suggested to have pro-tumor effects by preventing hypoxic 

death [28]. As a tumor grows in size, the neoplastic cells in the center of the mass may 

upregulate Cx46 to survive more hypoxic conditions. Additionally an increase in Cx43 
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expression typically correlates with metastatic potential [29, 30]. Interestingly expression of 

Cx43 in PQ7 treated animals has a reciprocal relationship with control Cx43 expression, while 

Cx46 expression in treated tissue remains low despite the stage of development. PQ7 affects the 

expression of each connexin differently during tumor development. Importantly the decrease in 

Cx46 and increase in Cx43 observed during the Pre stage of development with PQ7 treatment 

may be the key for prevention or delay of tumor formation.  Additional knowledge of the role of 

each connexin in tumorigenesis is needed.  

The gap junction enhancer PQ7 is shown here to have no apparent side effects when 

systemically distributed to all the vital organs, and is capable of altering the development of a 

spontaneous mammary carcinoma. These results are promising in the development of a novel 

compound for chemoprevention or combinatory uses for breast cancer.   
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Chapter 7 - The effect of antineoplastic drugs in a male spontaneous 

mammary tumor model 

A research article of the following findings has been published in PLoS ONE (2013) 8(6): 

e64866. doi:10.1371/journal.pone.0064866. 

 7.1 Introduction 

Male breast cancer accounts for 1% of all breast cancer cases in the United States, while 

it causes approximately 0.5% of all male cancer deaths [1].  Knowledge of this malignancy and 

appropriate therapies remain limited due to rarity of large cohorts of male breast cancer patients. 

Treatment for male breast cancer is therefore extrapolated from controlled clinical studies 

conducted in women [2]. Male breast cancer most commonly presents as late stage painless, firm 

masses in the subareolar location that become fixed to the pectoralis major muscle and the skin 

[3]. Male breast cancer is diagnosed in later stages than female breast cancer, leading to a 

tendency of small neoplasms to spread to the axillary lymph nodes. The 5-year survival rate for 

metastatic breast cancer in male patients is less than 20%, while the median survival is only 

about 15 months [4,5]. Prognosis of male breast cancer is similar to stage matched females. 

Male breast cancer differs from female breast cancer in many aspects. Most notably male 

breast cancer is diagnosed at older ages, presents at higher stage, has a bimodal age-frequency 

[4,6], racial differences [6], distinct histological subtypes, immunophenotypic variations [4,6,7], 

low survival rates [4], and differential genetic mutations, such as CYP17 polymorphism [8], 

androgen receptor (AR) [9], and CHEK2 mutations [10]. Male breast cancer has also been shown 

to have a higher frequency of hormone receptor (HR), estrogen receptor (ER) and progesterone 

receptor (PR), expression (80-90%) compared to females (75%) [4,5]. It is unclear if there is a 

relationship between ER+ male breast carcinomas and patient survival [4,11,12]. This may be 
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due to differences in ER function in males as compared to females [13]. There is a relatively high 

expression of ER in males compared to females due to the naturally lower estrogen levels in the 

tissue microenvironment, leading to an increase in estrogen targets [14]. An example of this is 

Bcl-2, which is an inhibitor of apoptosis, and has also been found to be overexpressed in male 

breast cancer [15].  

The molecular subtypes of male breast cancers are based on the expression of certain 

protein markers in the neoplastic tissue, which are used to evaluate their association with the 

observed pathological features and patient outcome. It is important to note that the HR positivity 

of male breast carcinomas may not have the same prognostic value as female breast cancer. It is 

unclear whether the human epidermal growth factor receptor 2 (HER2) plays a prognostic role in 

male breast cancer [16,17]. In a comparative study between male and female invasive breast 

carcinomas, the most common male breast tumor phenotype was luminal A (HR+/HER2-), while 

HR- and HER2+ were not identified in male patients [18]. In another study luminal A tumors 

were 82.8%, luminal B (HR-/HER2+) tumors found in 6.2%, and basal-like (HR-/HER2-) 

tumors were found in 9.6% of the male breast cancer cohort [19]. Contrary to these, another 

series reported to have no significant difference between tumor subtypes [20]. These studies 

show that the distribution of molecular subtypes in male breast cancer varies, but that it is also 

different compared to the female breast cancer cohorts. This is indicative of a pathological 

difference in carcinogenesis between males and females.  

Certain populations have a higher risk of developing male breast cancer. The major risks 

are either genetic factors or hormone imbalance. Approximately 20% of males with breast cancer 

have a family history of breast or ovarian cancer [21]. Mutations in the BRCA1 or BRCA2 genes 

are the strongest known genetic risk factors for male breast cancer. More specifically the BRCA2 
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gene mutation has a 7% lifetime risk of male breast cancer [22], which is a greater risk than 

females with a genetic predisposition of this disease. A change in the ratio of estrogen and 

testosterone is also an important factor contributing to male breast cancer. Individuals with 

Klinefelter’s syndrome have low testosterone levels, increasing the lifetime risk of developing 

male breast cancer to approximately 5% [21].  

The commonly used therapeutic approach involves mastectomy with axillary lymph node 

evaluation and hormonal therapy, with potentially additional adjuvant chemotherapy. Hormonal 

therapy, primarily tamoxifen, is the mainstay of treatment for male breast cancer and is 

considered to be the first line treatment for metastatic male breast cancer, with an overall 

response rate of 49% [23]. In another study [24], it was reported that tamoxifen increased the 5-

year actuarial survival (61% verse 44%) and disease free survival (55% verse 28%) rates of 39 

male breast cancer patients compared with the historical control group [25]. Men in general 

tolerate tamoxifen well, with the most common side effects reported as decreased libido, weight 

gain, hot flashes, mood alteration and depression. However, it is important to note that there have 

been no randomized trials to evaluate the real response rates or the toxicity of tamoxifen in men. 

The role of other antineoplastic drugs commonly used for female breast cancer treatment has yet 

to be determined in male patients.  

Advancements in diagnosis and treatment of female breast cancer have resulted in a 

steady decline in incidence and clinical outcome, while male breast cancer has been on a steady 

rise in incidence over the past several decades and a much slower improvement on clinical 

outcome [26]. The treatment for male breast cancer is extrapolated from female clinical trials, 

despite distinct clinical and pathological differences, as well as a lack of clinical improvement in 

patient outcome. There is a need for new clinical management of male breast cancer. The major 
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hormonal differences between male and female patients regarding endocrinology and the breast 

carcinomas’ response, suggests a need to explore alternate treatment options. 

The PyVT mouse is a novel in vivo model of mammary tumor formation and metastasis.  

Studies show that even at early stages of mammary development the mammary fat pads were 

clearly abnormal with irregular growth of side branches, enlarged terminal buds, and large 

tumorous masses. Male animals generally develop mammary tumors by 15 weeks of age and 

reach maximum tumor burden around 25 weeks of age. This study focuses on utilizing the in situ 

generation of male mammary tumors by the PyVT model to determine the efficacy of 

antineoplastic drugs, cisplatin, paclitaxel, and tamoxifen in attenuating tumor growth. The 

potential benefits of each treatment option are revealed for a male mammary tumor model.  

 7.2 Materials and methods 

 7.2.1 Mouse model 

PyVT mice were purchased from the Jackson Laboratory (Bar Harbor, Maine).  The mice 

were monitored every other day to check for the appearance of tumors. The tumor size was 

measured in two dimensions with calipers. Tumor volume was determined by the equation: 

Volume = ½(Length)*(Width)
2
. Mice were observed for abnormal behavior, appearance or 

weight loss. If the animals showed any signs of pain, extreme tumor growth (greater than 1.5 cm) 

or loss of body condition, they were humanely euthanized before the end of the experimentation 

period.  At different time points (10, 15, 20 weeks of age) the male mice were sacrificed to 

examine mammary epithelium and tumor formation. All treatments were conducted on male 

mice determined to be in an early tumor development stage, which was 15 weeks of age. 

Average weight of this age group was 28-32 grams. Male mice were randomly divided into four 

experimental groups: (1) control animals given the vehicle solvent (DMSO); (2) animals treated 
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with 3.5 mg/kg cisplatin; (3) animals treated with 10 mg/kg paclitaxel; and (4) animals treated 

with 40 mg/kg tamoxifen.  All treatments were administered as an intraperitoneal injection.   

 7.2.2 Antibodies 

Primary antibodies to Survivin (sc-8807, goat polyclonal), Caspase 3 (sc-56046, mouse 

monoclonal), Cyclin D1 (sc-8396, mouse monoclonal), Bcl-2 (sc-492, rabbit polyclonal), ERα 

(sc-8002, mouse monoclonal), ERβ (sc-8974, rabbit polyclonal) and PR (sc-166170, mouse 

monoclonal) from Santa Cruz Biotechnology (200 µg/ml; Santa Cruz, CA); anti-GAPDH (2118, 

rabbit monoclonal; 24 µg/ml) and anti-HER2 (4290, rabbit monoclonal; 22 µg/ml) from Cell 

Signaling (Boston, MA) were used for both western blot and immunohistochemistry (IHC).  

 7.2.3 Immunohistochemistry 

All tumors were fixed in a solution of 10% formaldehyde and embedded into paraffin 

prior to sectioning them onto slides at a 5 µm thickness. Paraffin sections (5 µm) were dried at 

60°C for 25 minutes. Deparaffinization was performed with 100% xylene and 100%, 90%, 75%, 

50% ethanol. Antigen retrieval was performed in 1× Citrate buffer solution and steam for 20 

minutes. Endogenous peroxidase was blocked using 3% hydrogen peroxide. Slides were then 

incubated overnight at room temperature with a polyclonal antibody (1:50 dilution). After 

washes in PBS, slides were successively incubated with biotinylated secondary antibodies 

(1:1000) for 15 minutes. Slides were washed and immunostains were amplified by incubation 

with Avidin Biotin Complex (ABC) for 10 minutes accordingly. Cells were visualized with 3,3-

diaminobenzidine (DAB) followed by a hematoxylin counterstain. The sections were viewed and 

the images captured with a Nikon 80i microscope.   
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 7.2.4 Western blot analysis 

Mammary gland tumor tissue were homogenized in 500 mL of lysis buffer (20 mM Tris 

pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, 0.5% Triton X-100) at 1:1000 dilution of protease 

inhibitors (Sigma-Aldrich, Saint Louis, MO).   Tissue was homogenized using the OMNI Bead 

Ruptor 24 at a speed of 5.65 m/s for 45 seconds, followed by centrifugation at 13,000 rpm for 30 

minutes at 4˚C.  Twenty-five micrograms of whole-cell extract was resolved by 10% SDS 

polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose membrane 

(Midwest Scientific, Saint Louis, MO).  Nitrocellulose membranes were blocked with 0.5% milk 

in Tris-Buffered Saline and Tween 20 (TBST) using a SNAP i.d. device (Millipore) at room 

temperature.  Membranes were then incubated with primary antibody at a 1:1000 dilution, 

followed by HRP-linked secondary antibodies (1:2000).  Western blots were detected by 

enhanced chemiluminescence detection reagents (Pierce, Rockford, IL) and visualized by 

Fluorochem E imaging system (ProteinSimple, Santa Clara, CA). 

 7.2.5 Statistical analysis  

Significance was considered at a p-value ≤ 0.05 using Student’s t-test analysis.  All data 

are presented as mean ± 95% confidence interval of a minimum of three samples for molecular 

analysis and six samples for animal studies.  

 7.3 Results 

7.3.1 Characterization of the PyVT mouse model and effects of treatment on hormone 

receptor expression 

Male PyVT mice developed tumors as early as 14 weeks of age.  All 10 mammary pads 

developed tumors with the maximum tumor burden achieved around 25 weeks of age.  Tumor 

development in this spontaneous model was divided into 3 stages based on the extent of tumor 
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size, the frequency of tumor formation, and whether it has metastasized to the lungs.  Pre stage of 

male PyVT tumor development occurred from 10-13 weeks of age and consisted of a pre-

cancerous condition where no tumors were palpated and the mammary tissue appeared normal 

on gross observation.   The Early stage of development represents solid tumor formation within 

the breast tissue at 15-18 weeks of age.  This stage consisted of the gross observation of 1-2 solid 

tumors.  The Late stage consisted of the presence of all 10 primary mammary tumors and 

secondary lung metastasis, which occurred after 20 weeks of age.   The presence of metastases 

was confirmed by hematoxylin and eosin (H&E) staining of representative sections of the lung 

and histopathological review. This report focused on the Early stage of tumor formation and 

examined the effect of antineoplastic drugs on tumor growth at this stage. 

The mammary tumors were isolated from each treatment group to determine hormone 

receptor (ER, PR, and HER2) expression. Immunohistochemistry of the control tumor sections 

had weak positive staining of HER2 and strong positive staining of ERβ (Figure 7.1A). 

Tamoxifen treatment resulted in an increase in positive nuclear staining of ERα in the tumors 

isolated, while decreasing the positive staining of ERβ. Western blot analysis was conducted to 

determine quantifiable expression levels of each hormone receptor in treated tissue. Control 

tumors expressed ERα, ERβ, PR, and HER2 (Figure 7.1B). Tamoxifen treated animals had an 

increased expression of ERα (p-value = 0.0021) and PR (p-value = 0.0300; Figure 7.1B), while 

inducing a significant decrease in HER2 (p-value = 0.0002) and ERβ expression (p-value = 

0.0002). Mice receiving paclitaxel treatment had a significant reduction in ERα and ERβ 

expression compared to control mice (p-value = 0.0201 and 0.0219, respectively), with no 

change in PR and HER2 expression. Interestingly animals treated with cisplatin showed no 
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change in ERα, ERβ, PR, or HER2 expression, suggesting that treatment does not affect 

expression of the molecular markers.  
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Figure 7.1  Male PyVT phenotype during early tumor development. A) 

Immunohistochemistry of tumor phenotype from PyVT males during tumor development.  

Paraffin-embedded sections stained with antibodies against estrogen receptor (ERα and β), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) at the early 

stage of development.  Proteins staining: brown, counterstaining: blue (hematoxylin).  Images 

represent only 1 of 6 animals per group at a 60X magnification. B) Representative Western blot 

(n=1) for hormone receptor expression in tumors isolated from male PyVT. Graphical 

representation shows the percent of control protein expression determined by pixel intensity of 

ERα, PR, HER2, and ERβ in PyVT male tumors treated with DMSO (control), tamoxifen (40 

mg/kg), paclitaxel (10 mg/kg) or cisplatin (3.5 mg/kg) via 7 IPs during early tumor development.  

n = 4.  * P-value < 0.05 compared to control.  

 

 7.3.2 Effect of cisplatin on early development of PyVT mice 

Tumor growth over a 14 day period with cisplatin treatment every other day indicates a 

significant effect of treatment on neoplastic development during the Early stage of tumor 

formation (Figure 7.2). The initial tumor volume for all mice was 66.86 ± 21.99 mm
3
. There was 

a significant difference in tumor volumes between DMSO and cisplatin treated mice from day 8 

to day 14 (Figure 7.2A). The final tumor volume for the control DMSO treated mice was 293.33 

± 71.39 mm
3
, while the cisplatin treated mice had a final volume of 100.18 ± 105.78 mm

3
. The 

change in tumor volume over the 14 day period shows a significant reduction of 215.59 mm
3
 

with cisplatin treatment compared to control (p-value = 0.00044; Figure 7.2B). This is a 90.71% 

difference between the overall changes in tumor growth after treatment with cisplatin.  

Control mice have a total of 10 mammary fat pads that developed tumors during the 

treatment period. Treatment with cisplatin significantly reduced the number of tumors developed 

compared to the control group (p-value < 0.0001; Figure 7.2C).  A total of 4 tumors developed 

with cisplatin treatment during the 14 day period.  
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Figure 7.2  Tumor growth (mm
3
) in PyVT male mice treated with cisplatin.  Tumors 

measured in two dimensions with calipers every 2 days prior to administration of treatment 

during early tumor development.  A) The tumor size is expressed over the 14 day treatment 

period for the DMSO (control) and cisplatin (3.5 mg/kg) treated PyVT mice.  Days 0-12 

represent the days of the 7 IP injections, day 14 represents the end of the study with 

measurements prior to tissue harvest.  B) The overall change in tumor size after treatment with 
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DMSO (control) or cisplatin (3.5 mg/kg) via 7 IP injections.  C) Number of developed tumors 

per PyVT male mouse during development.  Tumors identified grossly during the early stage of 

tumor development after a 14 day period with either treatment with DMSO (control) or cisplatin 

(3.5 mg/kg) via 7 IP injections. n = 6.  * P-value < 0.05 compared to control.  

 

 7.3.3 Effect of paclitaxel on early development of PyVT mice 

The initial tumor volume for all mice treated with either paclitaxel or DMSO was 137.34 

± 93.05 mm
3
. There was not a significant difference in tumor volumes between treatment groups 

at any time during the 14 day treatment period (Figure 7.3A). The change in tumor growth over 

the 14 day treatment period indicated that paclitaxel did not significantly attenuated tumor 

growth (p-value = 0.029, Figure 7.3B). The control mice had an overall tumor growth of 237.68 

± 65.78 mm
3
, while those mice treated with paclitaxel grew by an additional 75.10 ± 134.57 

mm
3
.  Paclitaxel treatment did significantly reduced the tumor burden by an average of 2.5 

tumors (p-value = 0.00022, Figure 7.3C).  

 7.3.4 Effect of tamoxifen on early development of PyVT mice 

The tamoxifen treated mice and respective control mice began treatment with an initial 

tumor volume of was 127.91 ± 122.53 mm
3
. Tamoxifen treatment did not affect tumor growth 

compared to the control animals during the treatment period (Figure 7.4A and 7.4B). There was, 

however, a significant reduction in tumor burden by approximately 4 tumors (p-value = 0.00478, 

Figure 7.4C). 
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Figure 7.3  Tumor growth (mm
3
) in PyVT male mice treated with paclitaxel.  Tumors 

measured in two dimensions with calipers every 2 days prior to administration of treatment 

during early tumor development.  A) The tumor size is expressed over the 14 day treatment 

period for the DMSO (control) and paclitaxel (10 mg/kg) treated PyVT mice.  Days 0-12 

represent the days of the 7 IP injections, day 14 represents the end of the study with 

measurements prior to tissue harvest.  B) The overall change in tumor size after treatment with 

DMSO (control) or paclitaxel (10 mg/kg) via 7 IP injections.  C) Number of developed tumors 

per PyVT male mouse during development.  Tumors identified grossly during the early stage of 
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tumor development after a 14 day period with either treatment with DMSO (control) or 

paclitaxel (10 mg/kg) via 7 IP injections. n = 6.   * P-value < 0.05 compared to control. 
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Figure 7.4  Tumor growth (mm
3
) in PyVT male mice treated with tamoxifen.  Tumors 

measured in two dimensions with calipers every 2 days prior to administration of treatment 

during early tumor development.  A) The tumor size is expressed over the 14 day treatment 

period for the DMSO (control) and tamoxifen (40 mg/kg) treated PyVT mice.  Days 0-12 

represent the days of the 7 IP injections, day 14 represents the end of the study with 

measurements prior to tissue harvest.  B) The overall change in tumor size after treatment with 

DMSO (control) or tamoxifen (40 mg/kg) via 7 IP injections.  C) Number of developed tumors 

per PyVT male mouse during development.  Tumors identified grossly during the early stage of 
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tumor development after a 14 day period with either treatment with DMSO (control) or 

tamoxifen (40 mg/kg) via 7 IP injections. n = 6.  * P-value < 0.05 compared to control.  

 

 7.3.5 Protein expression in isolated PyVT tumors 

Immunoblot analysis was conducted to determine the expression of molecular markers 

for male breast cancer, including Bcl-2, caspase-3, survivin, and cyclin D1. Bcl-2 has been 

shown to correlate with low mitotic cell count  and lower grade tumors, suggesting it can be an 

important biomarker in male breast cancer pathogenesis [27].  Tamoxifen increased Bcl-2 by 

65% compared to control (p-value = 0.0131; Figure 7.5B). Paclitaxel significantly reduced the 

expression of Bcl-2 by 22% (p-value = 0.0346). There was an insignificant decrease of 17% in 

Bcl-2 expression with cisplatin treatment.  Immunohistochemistry indicates strong positive 

staining of Bcl-2 in control and treated tumors (Figure 7.5A). Tamoxifen treated tumors appear 

to have a stronger staining of Bcl-2, confirming western blot analysis.  

The ability to induce apoptotic signaling in the tumor cells was determined by analysis of 

caspase expression.  Cisplatin increased caspase 3 expression by 55% (p-value < 0.0001) 

compared to control tumors (Figure 7.5B). Tamoxifen and paclitaxel treatment did not change 

the expression of caspase 3. Control tumors have very weak positive staining for caspase 3 

(Figure 7.5A). All antineoplastic compounds show an increase in positive staining compared to 

control, but cisplatin and tamoxifen have the strongest positive staining for caspase 3.  

Tumor cells are highly proliferative; therefore we explored the expression of cyclin D1 as 

a biomarker for cell proliferation. Cyclin D1 is a key cell cycle regulator in which over 

expression results in rapid progression from G1 to S phase in mitosis [28]. Analysis of cyclin D1 

expression indicated that tamoxifen significantly increased expression by 96% (P-value = 

0.0115), while paclitaxel and cisplatin did not significantly alter expression levels (Figure 7.5B). 
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Control tumors had weak positive staining for cyclin D1 (Figure 7.5A). Tamoxifen treated 

tumors had a strong positive staining, while paclitaxel and cisplatin treated tumors had weak 

positive staining for cyclin D1 (Figure 7.5A). 

Proteins that inhibit apoptosis provide protection for tumor cells against cytotoxic 

compounds.  Survivin is a member of the inhibitors of apoptosis protein family that is expressed 

during embryogenesis and in tumor cells as an anti-apoptotic protein that is capable of regulating 

mitosis [29-31]. Survivin is highly expressed in a range of tumors and its expression correlates 

with both accelerated relapse and chemotherapy resistance [32].  Immunohistochemistry of the 

control tumors showed strong positive staining for survivin (Figure 7.5A). Tumors treated with 

tamoxifen and cisplatin had weak positive staining for survivin compared to paclitaxel and 

control tissue. Tamoxifen and cisplatin treatment significantly reduced survivin expression by 

77% (p-value = 0.0019) and 48% (p-value < 0.0001), respectively (Figure 7.5B).  
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Figure 7.5  Expression of molecular markers Bcl-2, caspase 3, Cyclin D1, and survivin. 

Tumors isolated from PyVT males treated with DMSO (control), tamoxifen (20 mg/kg), 

paclitaxel (10 mg/kg), or cisplatin (3.5 mg/kg). A) Representative Western blot (n=1) of protein 
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expression in tumors isolated from male PyVT. Graphical representation shows the percent of 

control protein expression determined by pixel intensity of Bcl-2, caspase 3, Cyclin D1, and 

survivin in PyVT male tumors during early tumor development. n = 4. * P-value < 0.05 

compared to control. B) Immunohistochemistry of tumors from PyVT males.  Paraffin-

embedded sections stained with antibodies against Bcl-2, caspase 3, Cyclin D1, or survivin from 

PyVT males. Proteins staining: brown, counterstaining: blue (hematoxylin).  Images represent 

only 1 of 3 samples per group at a 60X magnification.  

 

 7.3.6 Pathological review of male mammary tumors 

Pathological review of the mammary tumors was conducted for each treatment group. 

The tumors were categorized as either early carcinoma or late carcinoma. An early carcinoma 

consisted of a moderately demarcated neoplasm with closely packed nests and acini of 

proliferative neoplastic epithelial cells with cellular atypia and invasion of the basement 

membrane. The late carcinoma featured poorly demarcated neoplasms composed of sheets of 

tightly packed nest/acini of neoplastic epithelial cells separated by fibrovascular stroma with a 

loss of mammary architecture, increased proliferation, and more extensive invasion.  

Control tumors were characterized by focal hyperplasia with normal lymph nodes and 

adipose tissue or early carcinoma lesions. Treatment with cisplatin and paclitaxel had no 

significant change in the histopathology, and tumors remained characteristic of early carcinoma. 

Mice treated with tamoxifen developed tumors characteristic of late carcinoma, suggesting an 

increase in malignancy due to treatment.  

 7.4 Discussion 

The transgenic PyVT model was used here for translational studies of male breast cancer 

due to its clinically relevant pathology and protein expression profile. Models for male breast 

cancer are limited, but the lack of clinical patients make this transgenic mouse model vital to 
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gain an understanding about the pathological differences in male breast cancer compared to the 

female counterparts. The male PyVT model has provided an opportunity to address the efficacy 

of treatment using the antineoplastic drugs: tamoxifen, paclitaxel, and cisplatin. Tamoxifen is 

better known as a selective estrogen receptor modulator (SERM) because of its multiple 

activities [33].  Due to the high hormone receptor positivity in male breast cancer, tamoxifen is 

the standard adjuvant therapy. Paclitaxel, approved by the Food and Drug Administration (FDA) 

to treat ovarian and breast cancer, is a first-line treatment of female metastatic breast cancer. 

Paclitaxel promotes the stable assembly of microtubules and inhibits their de-polymerization 

[34], therefore interfering with the normal function of microtubules and preventing the 

progression of the cell cycle [35]. Cisplatin is a platinum based chemotherapy drug used to treat 

a variety of cancers through the formation of platinum-DNA adducts that induce cell cycle arrest 

[36, 37]. These compounds have drastically different modes of action. Here we determined the 

efficacy of each in attenuating mammary tumor growth in a male model.  

This study shows that early male mammary tumor formation is significantly attenuated 

by cisplatin treatment, while tamoxifen and paclitaxel have no effect on male PyVT tumor 

growth. This suggests that treatment options may need to be reconsidered for male breast cancer 

patients. Tamoxifen is the current primary treatment, but results indicate that it does not 

efficiently attenuate tumor growth in male PyVT mice. Cisplatin was shown to be the more 

efficient antineoplastic tested, suggesting a switch in compounds for primary treatments of male 

breast cancer patients. Interestingly all three antineoplastic compounds, cisplatin, paclitaxel, and 

tamoxifen reduced the total number of developed tumors, indicating they could have a 

chemopreventive property.  
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Hormone receptor expression is the primary way to profile mammary carcinomas. The 

male PyVT mouse tumors were shown to be ERα/β+, PR+, and HER2+. Tamoxifen treatment 

increased the expression of both ERα and PR, while resulting in a decreased expression of HER2 

and ERβ, indicating an inverse relationship between the ER isoforms due to tamoxifen treatment. 

Hormone sensitive tumors are typically based on the expression of only ERα. The role of ERβ in 

the pathology and treatment of breast cancer remains largely unknown. The functions of these 

two estrogen receptors are drastically different in response to both estrogen and anti-estrogenic 

compounds [38, 39]. Multiple reports show that estrogen exposure to ERα expressing breast 

cancer cells lead to an increase in proliferation, while exposure to ERβ expressing cells, either 

alone or in combination with ERα, results in inhibition of cellular proliferation [40-42]. This 

suggests that ERβ may function more as a tumor suppressor than a tumor promoter. The 

expression of ERβ has been found in 47% of breast tumors classified as ERα negative [43]. 

Interestingly paclitaxel also reduced the expression of ERβ, but did not affect expression of ERα, 

PR, or HER2. The clinical relevance of ERβ expression is uncertain, multiple studies indicate a 

correlation with improved survival [44, 45], while others suggest little correlation or worse 

prognosis [46, 47].  These findings emphasize the need to further elucidate the function of ERβ 

in the pathology and treatment of breast cancer.  

Tumor regression occurs when the rate of cellular proliferation is less than the rate of 

cellular death. To determine the apoptotic signaling due to the antineoplastic treatments, caspase 

3 expression levels were measures in all tumors. Cisplatin was the only compound to induce a 

significant increase in caspase 3, indicating induction of apoptosis due to treatment. This is 

observed grossly by a significant reduction in tumor size. Tamoxifen and paclitaxel did not have 

an observable apoptotic effect. The inhibitor of apoptosis, survivin, was measured in tumor tissue 
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after treatment with the antineoplastic compounds. There was a significant decrease in the 

expression of survivin after tamoxifen or cisplatin treatment.  This indicates that both treatments 

reduce the anti-apoptotic signals, thus promoting cellular death. Cisplatin treatment therefore 

promotes and induces apoptosis, resulting in a decreased tumor volume. Tamoxifen treatment 

only promotes apoptosis, thus sensitizing the cell for apoptotic signaling, but not directly leading 

to cellular death. 

Bcl-2 is another regulator of apoptosis, but has been shown to be an important biomarker 

in male breast cancer pathogenesis, correlating with low mitotic cell count and smaller tumors 

with lower histological grade [27].  Bcl-2 is also a critical biomarker for female breast cancer in 

predicting patient survival [48]. In this study tamoxifen was shown to increase Bcl-2 expression, 

while paclitaxel and cisplatin decreased expression levels compared to control tumors. The 

expression of survivin with other anti-apoptosis genes like Bcl-2 reduces apoptosis of cancer 

cells [49]. Bcl-2 expression is expected to correlate with survivin, which was observed with 

cisplatin treatment in which both proteins have a reduced expression compared to control tumors. 

Interestingly tamoxifen treated tumors show an inverse relationship between Bcl-2 and survivin. 

Bcl-2 proteins are found as dimers in the outer mitochondrial membrane [50]. The physiological 

role of Bcl-2 expression and control of homeostasis in normal breast tissue is suggested to 

involve upregulation by estradiol and down-regulation by progesterone [51]. Additionally in 

breast cancer cells estradiol was shown to stimulate, while progesterone inhibited Bcl-2 protein 

expression [52]. This suggests Bcl-2 regulation through the hormone receptors, specifically the 

upregulation of Bcl-2 by ERα and down-regulation by PR. Here we show that tamoxifen 

treatment increases expression of ERα and decreases ERβ, which may lead to the increased 

expression of Bcl-2.   
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Highly proliferative neoplastic cells and high histological grade tumors have been 

associated with increased expression of cellular markers for proliferation. Abnormal cyclin D1 

expression is common in female breast cancer [53, 54]. Prognostic relevance of the proliferative 

proteins cyclin D1 and Ki67 have not been confirmed in male breast cancer patients. Cyclin D1 

has been shown to be overexpressed in 77% of male breast cancer [27]. Interestingly, in a cohort 

of male breast cancer patients cyclin D1 overexpression was predicative of better patient 

survival, while high levels of cyclin A and B expression increase the risk for breast cancer 

related death by 2-3 fold [55]. In male PyVT mice, treatment with tamoxifen increased cyclin D1 

expression without significantly altering tumor growth. This conflicts with the findings from 

Nilsson et al. while affirming that cyclin D1 may not be a suitable molecular marker for male 

breast cancer.   

The differences in the physiology of female and male patients with breast cancer warrant 

a different treatment approach, specifically with regards to hormonal therapy. More research is 

needed to determine the role of anti-estrogenic compounds such as tamoxifen in male breast 

cancer treatment. Scattered reports are insufficient to recommend treatment guidelines. Based on 

the known differences in the biology of male and female breast cancer, it is only practical to 

consider treatment options that do not alter the hormonal signaling or at least not as a single 

treatment agent of breast cancer in men.  

This study offers a unique opportunity to study the effects of certain antineoplastic drugs 

in a male mammary tumor model. The results show the effects of treatment with three accepted 

antineoplastic drugs that have not been effectively assessed in the male system due to low 

clinical occurrence rates of male breast cancer.  The results of this study provide valuable 
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information toward the better understanding of male breast cancer and may help guide treatment 

decisions. 
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Chapter 8 – General Discussion 

 8.1 Summary  

 GJIC and connexin expression are inversely correlated with neoplastic development. The 

synthesis of the substituted quinolines PQ1 and PQ7 has introduced a new class of anticancer 

compound that function as gap junction enhancers. In vitro modeling introduced these 

compounds as potent inhibitors of neoplastic cell proliferation and reduced viability. Here we 

introduced PQs to mouse models of mammary carcinoma to determine their efficacy in a 

biological system.  

 PQs were first used to examine the effect of a combinational treatment with 

antineoplastic compounds cisplatin, paclitaxel, and tamoxifen. These gap junction enhancers 

were previously shown to increase cellular communication; therefore, it was hypothesized that 

they could be utilized to increase the efficacy of commonly used antineoplastic compounds 

through the bystander effect. Tamoxifen was observed to have severe side effects in the 

xenograft model, and was then removed from this study. The efficacy of cisplatin was increased 

when used in combination with PQ1, but not PQ7, while both PQs increased the efficacy of 

paclitaxel when used in combination.  Interestingly PQs alone were shown to be effective 

anticancer treatments in the xenograft model. Isolation of the T47D tumor showed that PQ 

treatment induced an upregulation of connexin and active caspase expression, and a reduction in 

proliferative marker expression.  

 In search for a new model of mammary carcinoma development to use as a preclinical 

tool, the female PyVT mouse was characterized. This model proved to be both similar to human 

female breast cancer in morphology and molecular marker expression (i.e. ER), while having 

multiple stages of tumor development and consistent lung metastasis. Using the antineoplastic 
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compounds cisplatin, paclitaxel, and tamoxifen, the efficacy of currently marketed drug 

treatments were tested in this model system. Paclitaxel and cisplatin were both ineffective 

treatment options at all stages of development, while tamoxifen significantly attenuated tumor 

growth in the Pre and Early stages of tumor formation. This may be due to the fact that the 

MMTV promoter sequence of the transgene is an estrogen responsive element and tamoxifen 

inhibits estrogen signaling.  

 To determine if the first generation substituted quinoline was an effective anticancer drug 

in the PyVT model; mice at each stage of development were treated via 7 intraperitoneal 

injections at 25 mg PQ/kg body weight for a period of 14 days. PQ1 was shown to attenuate 

tumor growth and reduce tumor burden at all stages of development, as well as reduce the 

frequency of metastasis. This indicates PQ1 is a promising chemotherapeutic compound for the 

treatment of breast cancer. At the molecular level, PQ1 was able to modulate connexin 

expression profiles during tumorigenesis, possibly playing a role in its efficacy as an anticancer 

compound.  

 The substituted quinoline PQ7 was then tested for its bioavailability via intraperitoneal 

injection in normal healthy mice. From a single injection of 25mg PQ/kg body weight, this 

compound was systemically distributed to all organs and was present within the system even at 

36 hours post injection. Additionally there was no change in morphology of the tissue. 

Interestingly there was a temporary reduction in Cx43 after exposure in a majority of the tissue, 

which was normalized by 36 hours post injection. From these results we concluded that 

treatment every 48 hours would be appropriate for continual exposure. It is still uncertain if the 

Cx43 reduction observed in the normal tissue is detrimental to the animal.  
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 The work was continued to test the effects of PQ7 treatment in the PyVT model. Again 

mice at each stage of development were treated via 7 IP injections at 25 mg PQ/kg body weight 

for a period of 14 days. PQ7 successfully attenuated tumor growth at the Pre stage of tumor 

formation. There was no significant effect on tumor growth during the Early or Late stages. This 

observation suggests that PQ7 could be used as a chemoprotective compound rather than a 

chemotherapeutic compound. Interestingly PQ7 was also able to alter the connexin profile during 

tumorigenesis, but differently than previously seen with PQ1 treatment. 

 The PyVT model was further utilized to test the efficacy of antineoplastic treatment on 

male mammary carcinoma development. Due to the lack of large cohorts of male breast cancer 

patients to study therapeutic responses, treatment options are dependent of female studies. Here 

was show that the male PyVT mice can be utilized as a preclinical model for male breast cancer. 

At the Early stage of tumor development paclitaxel and tamoxifen were ineffective 

chemotherapeutic options, while cisplatin effectively reduced tumor burden and attenuated tumor 

growth. Tamoxifen was shown to alter the hormone receptor expression profile of the tumors, 

and increase the expression of the proliferative marker Ki-67. This indicates that endocrine 

therapy for male breast cancer may exacerbate the disease rather than providing relief. Cisplatin 

treatment was shown to upregulate the expression of caspase-3, while reducing survivin 

expression leading to an increase in apoptotic signaling. These results suggest that the current 

treatment options for male breast cancer should be revised. 

 8.2 Discussion 

 Proper preclinical models are necessary for drug development. Here the utilization of 

xenograft model of female breast cancer in nude mice and a transgenic model of spontaneous 

mammary carcinoma development were studied. Both models provide valuable information 
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about the efficacy of treatment options for breast cancer patients.  Xenografts are commonly 

used as preclinical models, while the PyVT model has only previously been used in genetic 

studies. This transgenic mouse may be a vital preclinical tool to test chemopreventive 

mechanisms and new anticancer compounds for multiple stages of tumor development. It is 

advantageous to have a model system that develops not only the primary tumor, but also 

metastasizes frequently and predictably. The PyVT mouse model studies above indicate that with 

an increase in malignancy, there is an epithelial-mesenchymal transition, predictable changes in 

expression of anti-apoptotic proteins (survivin), proliferative markers (Ki-67 or cyclinD1), and 

connexins. This model may be used in an array of new molecular and therapeutic studies, such as 

determining the role of connexins in tumorigenesis. 

 Current antineoplastic drugs were tested for their efficacy at attenuating tumor growth in 

both models. Xenograft tumors were most significantly affected by cisplatin treatment, while 

paclitaxel was ineffective and tamoxifen produced fatal side effects. In the PyVT model the 

therapeutic benefits of each compound were determined in both the male and female mice. 

Interestingly the antineoplastic that significantly attenuated tumor growth varied between the 

sexes despite the tumors being genetically similar. This indicates that the difference in 

endocrinology between males and females may be vital in determining the response to drug 

treatment.   

 From bioavailability studies, PQs appear to be well distributed through the tissue via oral 

gavage and intraperitoneal injection. Pathological review of the normal tissues from PQ treated 

mice in all the studies indicated a limited acute toxicity. Additionally the observed reduction in 

Cx43 seen with exposure of normal tissue to PQ did not appear to affect functionality or 

morphology.  Due to the short period of exposure and monitoring post exposure, long term 
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toxicity was not determined. Future research should identify the long term effects of treatment 

and the effects of chronic exposure to low levels of the compounds.  

 Treatment with the gap junction enhancers PQ1 and PQ7 altered the connexin expression 

of the neoplastic cells. In the T47D xenograft model Cx26, Cx32, and Cx43 were upregulated, 

which was not surprising due to in vitro results previously reported. In the PyVT model there 

was a change in the connexin profile in normal tumorigenesis due to PQ treatment. Both PQs 

reduced the expression of Cx46 in all stages of development. Interestingly PQ1 treatment 

induced an upregulation of Cx43 expression during all stages, while PQ7 treatment elevated 

Cx43 in the Pre stage and reduced it in the Late stage of tumor development. This difference in 

connexin modulation may provide insight into why these two compounds differ in efficacy in 

this model. The therapeutic response to PQ1 seen in the Early and Late stages may be due to the 

increased expression of Cx43, which is not observed in PQ7 treated mice. The PQ induced 

effects on Cx43 expression may be key to the efficacy of these compounds in vivo.  

 This dissertation has provided information on the effects of PQs in animal models of 

breast cancer, and the therapeutic efficacy of cisplatin, paclitaxel, and tamoxifen in a 

spontaneous model of mammary carcinoma. Xenograft and transgenic models both show PQ1 

and PQ7 are effective anticancer compounds, which increase connexin expression and activate 

the apoptotic signaling pathway. The exact mechanism of action for PQs is not known. Future 

research will focus on determining the signaling pathways activated or inhibited by PQ 

treatment, specifically those that lead to an increase in active caspase-3 and the upregulation of 

connexin expression.  
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 8.3 Future direction  

 Future studies will determine mechanism of action of PQ1 in mammary carcinoma cell 

lines. Two cell lines have already been established from the late stage of male and female PyVT 

mice, named MMC2 and FMC2u respectively. Although a number of breast cancer cell lines 

have been established, no breast cancer cell lines have been reported derived from a transgenic 

mouse model of spontaneous mammary carcinomas. Additionally there is no male breast cancer 

cell line for in vitro research. The establishment of such lines will provide another method to 

study tumor growth and therapeutic effects despite genetic predisposition for cancer formation.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 



168 

 

Appendix A - Combinational treatment of PQs and paclitaxel 

 A.1 Results 

 A.1.1 T47D xenograft tumor growth in nude mice 

 Mice were implanted with 17ß-estradiol (1.7 mg/pellet) before the injection of 1 x 10
7 

T47D breast cancer cells subcutaneously into the inguinal region of mammary fat pad.  Seven 

days post cell injection, animals was randomly assigned to each treatment group.  Animals were 

treated intraperitoneally with DMSO as a control of drug solvent, paclitaxel, PQ1, PQ7, or a 

combining treatment of paclitaxel and PQ in a total volume of 100 µl.  All PQ treatments 

significantly reduced tumor size (Figure A.1) compared to control and paclitaxel alone.  

Paclitaxel alone did not significantly reduce mammary tumor growth. Combinational treatment 

of paclitaxel with PQ1 and PQ7 showed a 2.3- and a 2.2-fold increase in efficacy compared to 

paclitaxel alone, respectively (p-value < 0.0001). PQ1 treatment alone led to a 2.5-fold decrease 

in tumor growth compared to paclitaxel treatment alone (p-value < 0.0001). Combinational 

treatment of paclitaxel with PQs showed greater reductions in tumor volume compared to 

paclitaxel alone.  
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Figure A.1  Xenograft tumor growth in nude mice.  The graphical presentation shows the 

proportion of tumor reduction normalized to control after 7 IP injections of DMSO, paclitaxel 

(TAX; 10mg/kg), PQ1 (25mg/kg), PQ7 (25mg/kg), or a combination of paclitaxel and PQ. * P-

value is <0.05 compared to control and paclitaxel treatments. 

 

 A.1.2 Protein expression of xenograft tumors 

Adjacent cells are able to exchange small molecules to maintain homeostasis, such as 

anti-growth signals and apoptotic factors, through gap junctions. There are three major connexin 

proteins that are expressed in the human breast tissue: Cx43, Cx32, and Cx26 [1].  Immunoblot 

analysis and immunohistochemistry were conducted on T47D xenograft tumors harvested from 

mice after 7 intraperitoneal injections of DMSO, paclitaxel, PQ1, PQ7, or a combining treatment 

of paclitaxel and PQ.  Tumors treated with PQ showed an increase in connexins (Cx 43, 32, and 

26), compared to controls (Figure A.2A). PQ1 and PQ7 treatment increased Cx43 expression in 

T47D xenografts by a 1.9- (p-value = 00111) and 2.9-fold (p-value = 0.0042) increase compared 

to control, respectively. (p-value = 0.0117).  
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 The apoptotic signaling pathway induced by the treatment was determined by analysis of 

caspase expression.  There are two major signaling pathways that lead to apoptosis: 1) intrinsic 

activation through the release of pro-apoptotic effects (i.e. caspase-9) [2] and 2) extrinsic 

activation through the interaction of death receptors with associated proteases, which leads to the 

activation of caspase-8 [3]. Data indicate there is an increase in the expression of the apoptotic 

proteins, caspase-3, with treatment compared to control (Figure A.2B).  Paclitaxel treatment 

increased capase-9 expression by 5.1-fold (p-value= 0.0003) and caspase-8 expression by 3.1-

fold (p-value= 0.0019) compared to control. PQ treatment alone increased the expression of 

caspase-8 and caspase-9. The combinational treatment of PQ1 and paclitaxel led to a reduction in 

caspase-3 and caspase-8 expression compared to PQ1 alone (p-value = 0.0375 and 0.0039, 

respectively), which may explain why this combination did not upregulate caspase-9. 

Interestingly PQ7 in combination with paclitaxel did not alter caspase-8, possibly due to high 

variability.   

 Cyclin D1 is a key cell cycle regulator in which over expression results in rapid 

progression from G1 to S phase in mitosis [4].  From immunoblot analysis paclitaxel treated 

mice developed tumors with an upregulation in expression of Cyclin D1 (Figure A.2C). 

Xenografts isolated from PQ7 and both combinational treatment groups did not show a change in 

Cyclin D1 expression compared to control tissue due to treatment. Cyclin D1 expression in 

T47D xenografts was significantly reduced with PQ1 treatment compared to control by 20% (p-

value = 0.0032).  This indicates that PQ1 treatment downregulates and paclitaxel treatment 

upregulates the expression of the proliferative protein Cyclin D1 in xenograft tumors.  

 Molecular analysis indicates that PQs are more effective anticancer compounds than 

paclitaxel. PQs are gap junction enhancers that are able to upregulate connexin expression, while 
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activating both intrinsic and extrinsic apoptotic pathways.  Paclitaxel was also able to induce 

upregulation of caspases, accompanied by an increase in cellular proliferation, and resulting in a 

lack of therapeutic response. In combinational treatment, PQs and paclitaxel significantly 

attenuate tumor growth. The hypothesis is that this is due to an increase in GJIC which is 

suggested by the upregulation of connexin protein induced by PQ treatment, which leads to an 

increase in the distribution of paclitaxel due to the bystander effect.  
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Figure A.2 Analysis of T47D xenograft tumors isolated from nude mice. Raw and graphical 

representation of protein expression in tumors from Western blot analysis. Fold-pixel intensity of 
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A) connexins (Cx43,32,26) , B) caspases (-3,-8,-9), and C) Cyclin D1 normalized to loading 

control in T47D xenograft tumors treated with DMSO (control), paclitaxel (10 mg/kg), PQs (25 

mg/kg) or a combination of PQ and paclitaxel via 7 IPs.  n = 3.  * P-value < 0.05 compared to 

control.  

 

 A.1.3 Histological review of organs 

Histological examination of the vital organs from xenografted mice showed no 

significant difference in morphology due to the treatment received.   

 A.2 Discussion  

 Here we investigated the influence PQs have on the cytotoxicity of paclitaxel in T47D 

xenografts. The results indicated that through the combinational treatment of T47D xenograft 

tumors, the gap junction enhancers were able to increase the efficacy of paclitaxel to attenuate 

tumor growth. The bystander effect is mediated by GJIC and has previously been shown to play 

an important role in transferring toxic effects [5, 6]. PQs were able to increase the expression of 

connexin proteins, suggesting that the attenuation of tumor growth is GJIC-dependent. This 

suggests that PQs are able to increase the efficacy of paclitaxel through the bystander effect. In 

addition it has been shown that paclitaxel treatment is related to the impairment of GJIC [7]. The 

reduced GJIC due to paclitaxel treatment may prevent the cytotoxic molecules or signals from 

spreading throughout the tumor. Therefore treatment options that regulate gap junctions would 

be useful in increasing paclitaxel’s efficacy.  

 In epithelial cells the formation of functional gap junctions is dependent on the integrity 

of the microtubule network [7]. Paclitaxel is a microtubule stabilizer that disrupts membrane 

organization, membrane trafficking [8, 9], and alters signal transduction [10, 11]. This indicates a 
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potential disruption of GJIC and connexin transport, which may disturb gap junction assembly 

and induce an overexpression of connexin proteins.  

 PQs are promising agents in a gap junction based anticancer therapy. PQ treatment alone 

reduced tumor size significantly compared to control and paclitaxel treatment. The 

combinational treatments did not induce a greater therapeutic response than the PQs alone. This 

suggests that PQs are more effective anticancer compounds than paclitaxel.  

 This study showed that the combinational treatment of PQs and paclitaxel had a 

synergistic effect on apoptosis by activating both the intrinsic and extrinsic pathways of 

apoptosis. This may be due to both the bystander effect and a GJIC-independent mechanism. 

One hypothesis is that the PQs restore gap junctions therefore allowing more paclitaxel to induce 

a cytotoxic response and pass to the neighboring cells. This increases the distribution of the 

antineoplastic through the tumor, triggering apoptosis in more cells by a GJIC-dependent 

mechanism.  

 A.3 References  

1. Pozzi, A., et al., Analysis of multiple gap junction gene products in the rodent and human 

mammary gland. Experimental Cell Research, 1995. 220(1): p. 212-9. 

2. Kroemer, G. and J.C. Reed, Mitochondrial control of cell death. Nat Med, 2000. 6(5): p. 

513-519. 

3. Ashkenazi, A. and V.M. Dixit, Death receptors: signaling and modulation. Science, 

1998. 281(5381): p. 1305-8. 

4. Jiang, W., et al., Overexpression of Cyclin D1 in Rat Fibroblasts Causes Abnormalities 

in Growth-Control, Cell-Cycle Progression and Gene-Expression. Oncogene, 1993. 

8(12): p. 3447-3457. 

5. Carystinos, G.D., et al., Cyclic-AMP induction of gap junctional intercellular 

communication increases bystander effect in suicide gene therapy. Clin Cancer Res, 

1999. 5(1): p. 61-8. 

6. Mesnil, M. and H. Yamasaki, Bystander effect in herpes simplex virus-thymidine 

kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular 

communication. Cancer Res, 2000. 60(15): p. 3989-99. 



175 

 

7. Giessmann, D., et al., Decreased gap junctional communication in neurobiotin 

microinjected lens epithelial cells after taxol treatment. Anat Embryol (Berl), 2005. 

209(5): p. 391-400. 

8. Hamm-Alvarez, S.F., et al., Coordinate depression of bradykinin receptor recycling and 

microtubule-dependent transport by taxol. Proc Natl Acad Sci U S A, 1994. 91(16): p. 

7812-6. 

9. Hamm-Alvarez, S.F., et al., Paclitaxel and nocodazole differentially alter endocytosis in 

cultured cells. Pharm Res, 1996. 13(11): p. 1647-56. 

10. Blagosklonny, M.V., et al., Taxol-induced apoptosis and phosphorylation of Bcl-2 

protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. 

Cancer Res, 1996. 56(8): p. 1851-4. 

11. Liu, Y., et al., Evidence for involvement of tyrosine phosphorylation in taxol-induced 

apoptosis in a human ovarian tumor cell line. Biochem Pharmacol, 1994. 48(6): p. 1265-

72. 

 



176 

 

 

Appendix B - Copyright of Published Materials 

 

 

Open-Access License 

No Permission Required 

 

PLOS applies the Creative Commons Attribution License (CCAL) to all works we publish (read 

the human-readable summary or the full license legal code). Under the CCAL, authors retain 

ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, 

modify, distribute, and/or copy articles in PLOS journals, so long as the original authors and 

source are cited. No permission is required from the authors or the publishers. 

This broad license was developed to facilitate open access to, and free use of, original works of 

all types. Applying this standard license to your own work will ensure your right to make your 

work freely and openly available.  

 

 

In accordance with the license agreement, reprint of this data is acceptable as long as the original 

authors and source are cited. No permission is required from the authors or the publishers. 

 

 

Journal of Cancer Therapy 

 

Open Access authors retain the copyrights of their papers, and all open access articles are 

distributed under the terms of the Creative Commons Attribution License, which permits 

http://www.plosone.org/
http://www.plosone.org/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/legalcode


177 

 

unrestricted use, distribution and reproduction in any medium, provided that the original work is 

properly cited.  

 

The use of general descriptive names, trade names, trademarks, and so forth in this publication, 

even if not specifically identified, does not imply that these names are not protected by the 

relevant laws and regulations. 

 

While the advice and information in this journal are believed to be true and accurate on the date 

of its going to press, neither the authors, the editors, nor the publisher can accept any legal 

responsibility for any errors or omissions that may be made. The publisher makes no warranty, 

express or implied, with respect to the material contained herein. 


