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Abstract 

 We have made significant accomplishments in the development of portable frequency 

standard inside hollow optical fibers. Such standards will improve portable optical frequency 

references available to the telecommunications industry. Our approach relies on the development 

of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser 

is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of 

a molecular transition. The molecular transition is realized using a hollow core fiber filled with 

acetylene gas. We finally measured the absolute frequency of these molecular transitions to 

characterize the references. In this thesis, the major ideas, techniques and experimental results 

for the development and absolute frequency measurement of the portable frequency references 

are presented. 

A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the 

prism modulation along with power modulation inside the cavity in order to actively stabilize the 

frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the 

laser and its effect on laser stabilization. A reduction of f0 linewidth from ~2 MHz to ~20 kHz 

has also been observed. Both our in-loop and out-of-loop measurements of the comb stability 

showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by 

our reference signal. 

In order to develop this portable frequency standard, saturated absorption spectroscopy is 

performed on the acetylene ν1 +ν3 band near 1532 nm inside different kinds of hollow optical 

fibers. The observed linewidths are a factor 2 narrower in the 20 μm fiber as compared to 10 μm 

fiber, and vary from 20-40 MHz depending on pressure and power. The 70 μm kagome fiber 

shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the 

hollow optical fiber, we have also developed a technique of splicing the hollow fiber to solid 

fiber in a standard commercial arc splicer, rather than the more expensive filament splicer, and 

achieved comparable splice loss. 

We locked a CW laser to the saturated absorption feature using a Frequency Modulation 

technique and then compared to an optical frequency comb. The stabilized frequency comb, 

providing a dense grid of reference frequencies in near-infrared region is used to characterize and 

measure the absolute frequency reference based on these hollow optical fibers.  
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Abstract 

We have made significant accomplishments in the development of portable frequency 

standard inside hollow optical fibers. Such standards will improve portable optical frequency 

references available to the telecommunications industry. Our approach relies on the development 

of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser 

is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of 

a molecular transition. The molecular transition is realized using a hollow core fiber filled with 

acetylene gas. We finally measured the absolute frequency of these molecular transitions to 

characterize the references. In this thesis, the major ideas, techniques and experimental results 

for the development and absolute frequency measurement of the portable frequency references 

are presented. 

A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the 

prism modulation along with power modulation inside the cavity in order to actively stabilize the 

frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the 

laser and its effect on laser stabilization. A reduction of f0 linewidth from ~2 MHz to ~20 kHz 

has also been observed. Both our in-loop and out-of-loop measurements of the comb stability 

showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by 

our reference signal. 

In order to develop this portable frequency standard, saturated absorption spectroscopy is 

performed on the acetylene ν1 +ν3 band near 1532 nm inside different kinds of hollow optical 

fibers. The observed linewidths are a factor 2 narrower in the 20 μm fiber as compared to 10 μm 

fiber, and vary from 20-40 MHz depending on pressure and power. The 70 μm kagome fiber 

shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the 

hollow optical fiber, we have also developed a technique of splicing the hollow fiber to solid 

fiber in a standard commercial arc splicer, rather than the more expensive filament splicer, and 

achieved comparable splice loss. 

We locked a CW laser to the saturated absorption feature using a Frequency Modulation 

technique and then compared to an optical frequency comb. The stabilized frequency comb, 

providing a dense grid of reference frequencies in near-infrared region is used to characterize and 

measure the absolute frequency reference based on these hollow optical fibers. 
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CHAPTER 1 - Introduction and background 

1.1. Introduction 
Interest in time has evolved as a part of human civilization.  Until the last centuries, only a small 

subset of lucky people got some “leisure time” to treat time as an experimental parameter.  In 

1967, the General Conference on Weights and Measures defined one second as the duration of 

9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine 

levels of the 133Cs atom.  The definition of time can be used to derive the unit of frequency, the 

Hertz. The future of time and frequency metrology was changed fundamentally by the invention 

of the laser. The central concept of these advances is that a pulse train generated by a mode-

locked laser has a frequency spectrum which consists of a series of discrete, regularly spaced 

sharp lines known as a frequency comb. In 2005, John L. Hall and Theodor W. Hänsch shared 

half the Nobel Prize for their contributions to the development of laser-based precision 

spectroscopy, including the optical frequency comb technique.  

These frequency combs now can measure frequency stability of less than 1 part in 1016 

[1-3] at 1s of averaging time whereas relative uncertainties of the combs can be as good as 1 part 

in 1020 [4].  Now we are in an era of such precise and accurate capability to measure time and 

frequency that one may be able to see slow variation of the fundamental constants, if there is 

any, over time and may well be able to test fundamental physical laws more accurately that 

eventually will have long term impact on the development of science and technology. 

Additionally, frequency comb techniques provide a key to extreme nonlinear optics, ultrafast 

science, and attosecond science, an emerging field in physics, by offering control of the electric 

field of the ultrafast laser. However, these precise and accurate measurements of optical 

frequency are not yet very useful for commercial and military applications, including optical 

telecommunications, because of their cost, lack of portability, and requirement for extremely 

accurate and stable references. The telecom industry still relies on portable optical frequency 

references with uncertainties of ~ 5×10-7. We investigate a portable frequency reference based on 

acetylene-filled optical photonic band gap fiber to provide uncertainties with at least one to two 

orders of magnitude better. We have also developed a frequency comb in near-IR region in order 

to measure and characterize the absolute frequencies of these portable frequency references.  
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 Any device to measure time (or frequency) needs a reference element such as the quartz 

crystal in a wrist watch. Frequency standards are based on crystal or atomic oscillators. A crystal 

oscillator such as quartz has good short term stability (~1 s) but poor long term stability. These 

crystals produce RF signals that serve as the standard. Atomic transitions in oscillators such as 

rubidium and cesium also produce RF signals and they offer higher performance over quartz 

crystals. There are many atomic oscillators such as neutral calcium and neutral ytterbium which 

produce optical signals instead of RF signals. These optical standards offer much higher 

improvement over their RF counterparts by virtue of much higher oscillation frequencies,              

( 610optical rfν ν ≈ ). But these optical standards are very expensive and owned by very few 

laboratories or standards organizations.  In our laboratory, we use a GPS-disciplined Rb clock 

which takes advantage of short terms stability of Rb and the long term stability of the GPS 

satellite network of Cs atomic clocks. For a portable frequency comb, one can use the GPS-

disciplined clock which needs to be in satellite contact all the time and requires several hours of 

continuous connection to achieve maximum stability and accuracy. In contrast, an on-board CW 

laser locked to the molecular transition can offer good short term and long term stability without 

access to any external reference or source.  

 

Table 1.1. Stability of crystal and atomic standard references. 

Oscillator Type Stability in 1 s Aging/year         Cost Portable?

Temperature-compensated quartz oscillator 1×10-9 5×10-7 $100 Yes 

Microcomputer-compensated quartz oscillator 1×10-10 5×10-8 $1000 Yes 

Oven-controlled quartz oscillator 1×10-12 5×10-9 $2000 Yes 

Rubidium 5×10-11 to 5×10-12 2×10-10 $5000 Yes 

Cesium 5×10-11 to 5×10-12 None $50,000 Yes 

Hydrogen maser 1×10-12 1×10-13 $250,000 No 

Cryogenic sapphire ~2×10-16 <10-13 ~$250,000 No 

Calcium optical clock transition 1×10-16 ? >$500,000 No 

  

The telecommunication industry uses absorption spectra of different molecular gases as 

optical frequency references (Fig 1.1) [5-8].   Some of these molecular gases have served as a 
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standard reference material (SRM). Some of them have been created and characterized by the 

National Institute of Science and Technology (NIST). 

 
Figure 1.1. Common gases used by international telecommunication union (ITU) for 

referencing the wavelength used [9]. 

 

Currently, there are several methods to precisely measure frequency and wavelength for 

metrology purposes. The Burleigh Wavemeter  [10] is a travelling Michelson based 

interferometer that offers the best commercially available CW laser wavelength measurement. 

This method can give uncertainty of ~40 MHz at 1.5 µm (~200 THz) wavelength. Other 

commercial devices are optical spectrum analyzers (OSA) which are basically diffraction-grating 

based spectrometers. Some of the high-end spectrometers contain built-in calibration in the form 

of a glass cell filled with a reference gas such as acetylene (12C2H2) [6, 7], hydrogen cyanide 

(H13C14N) [5, 11], and carbon monoxide (12C16O and 13C16O) [8]. These molecular gas filled 

cells are also called standard reference materials (SRM) and can have intrinsic frequency 

uncertainty of ~13 MHz on some lines and ~130 MHz on most features. These glass cells are 

generally filled to pressures of ~50 Torr at which pressure broadening and Doppler broadening 

of around ~500 MHz are dominant factor for frequency uncertainty. Relative accuracies of some 

of the best commercially systems are shown in Table 1.2. 
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Table 1.2. Relative accuracy of some of the best commercially available systems. 

Product Accuracy at 1500 nm Technology 

Agilent 8191A [12]  

All-parameter Analyzer 

± 1.5 pm (typ) 

± 4.0 pm (spec) 

± 200 MHz 

± 530 MHz 

NIST HCN cell 

Agilent 8614xB OSA [13] ± 10.0 pm ±1300 MHz NIST HCN cell 

ANDO  6317B OSA [14] ± 20.0 pm  ±2600 MHz NIST HCN cell 

EXFO/Burleigh [10] 

WA-1500 Wavemeter 

± 0.3 pm  (2σ) ± 40 MHz I2-stabilized HeNe 

laser  

Precision Photonics 

TLSA1000  [15] 

± 0.4 pm  (rms) ± 50 MHz NIST HCN cell 

 

NIST SRM’s [5, 6] 

[16] 

± 0.1 pm C2H2 

± 0.4 pm HCN 

± 13 MHz 

± 53 MHz 

Molecular abs.  

 

 

As I mentioned above, the development of frequency comb metrology dramatically 

improved the precision and accuracy of optical frequency in research laboratories. The phase 

stabilized frequency comb can easily measure optical frequency eight orders of magnitude better 

than the best commercially available system. Ti:sapphire laser frequency combs are the most 

researched and well-developed system to which all other combs are compared. Ti:sapphire laser 

combs can produce an optical or RF signal with more precision than the cesium standard so the 

best method to characterizing a Ti:sapphire comb is to compare with another Ti:sapphire comb. 

So the best reported optical to optical comparasion gives a relative frequency uncertainty of 

8×10-20 [4] between two optical frequencies generated by two separate Ti:sapphire frequency 

combs locked to the same optical reference. But the Ti-sapphire laser based frequency comb 

does not extend into the near-IR region.  Thus, the Ti:sapphire laser system is not convenient for 

frequency metrology near 1550 nm.  While 1550 nm can be frequency doubled into the 

Ti:sapphire band, such doubling requires significant power and stability as well as availability of 

bandwidth requirement on the doubling crystal to cover the entire C2H2 spectrum from 1510 to 

1540 nm.  Both diode-pumped solid state laser systems and fiber-based systems can fulfill this 

criterion and each type has their own associated advantages and disadvantages.  For example, all 

fiber based systems offer the potential for compact and robust systems requiring little fine tuning 

with very reliable operation at modest costs.  But there are currently inherent limitations in the 

repetition rates they can achieve because of the need to exactly manage the fiber lengths 
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necessary for mode-locked operation.  Diode pumped solid state systems on the other hand can 

overcome this issue as they are primarily free-space propagating systems. Therefore, we use a 

Cr:forsterite laser as an alternative laser source. Cr:forsterite (Cr+4:Mg2SiO4)  readily covers the 

1150-1350 nm region and is capable of producing 14 fs pulses [17] at relatively high output 

powers.  Consequently its second harmonic partially fills the gap between the fundamental and 

second harmonic of Ti:sapphire and enables it to bridge the gap between Ti:sapphire combs and 

fiber combs [18].  Furthermore, the supercontinuum produced by its pulse propagation through 

highly nonlinear fiber (HNLF) can readily span an optical octave often ranging from 1000 nm to 

2300 nm. 

Although very high frequency references already exist in a few laboratories across the 

world, robust and portable frequency references have a resolution of ~100 MHz, and 

commercially available wavelength measurement devices are limited to about 10 - 100 MHz in 

accuracy.  In contrast, gas-filled fiber references have the potential to be at least 1 or 2 orders of 

magnitude more accurate.  

These hollow core photonic bandgap fibers (PBGF) allow light to be confined at high 

intensities in a hollow air or gas-filled region with very low loss [19] and they are extremely 

portable.  These fibers are vastly superior to capillary fibers for small core diameters [20], and 

have therefore been used in many recent demonstrations of nonlinear light-gas interactions.  

Examples include gas sensors [21], Raman scattering in hydrogen-filled fiber as a tunable light 

source [22], and electromagnetically induced transparency (EIT) in PBGF filled with acetylene 

and rubidium [23-25]. We characterize the accuracy of the gas-filled PBGF cells by locking an 

extended cavity diode laser to the acetylene absorption feature, and then measure the absolute 

value of that locked CW laser frequency.  We will investigate the shift in the center frequency 

with temperature, gas pressures, fiber length, laser polarization, and other parameters that may 

drift during the operation of such a reference.  These measurements are initially made on a gas 

inside the 20 μm fiber core.  Now we use much larger core kagome fiber since they offer much 

narrower transition. To characterize the short-term stability we replace the extended-cavity 

diode laser with a narrow linewidth fiber laser, commercially available and beat two of the 

similar system together.  To demonstrate the stability of the locked laser, we compare it to a 

frequency comb from Cr:forsterite laser.   
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1.2. Thesis outline 
We have made significant accomplishment in the development of the portable frequency 

references. We described the state-of-the art capabilities in many technical areas that form the 

basis of this thesis. Our approach relies on the development of a stabilized Cr:forsterite laser to 

generate the frequency comb in near-IR region. This laser is self referenced and locked to a CW 

laser which is in turn stabilized to a molecular transition. The molecular transition is realized 

using a hollow core fiber, an extremely portable device. We finally measure absolute frequency 

of these molecular transitions to characterize of the stability of these references. In this thesis, the 

major ideas, techniques and experimental result for development and absolute frequency 

measurement of the portable frequency references are presented. 

In Chapter 2, we review historical perspective of Cr:forsterite laser as well as some of the 

inherent properties of the Cr:forsterite crystal and its overall effect on mode locking.  It will then 

be followed by dispersion of Cr:forsterite crystal, cavity configuration as well as ABCD matrix 

analysis for the stable mode locking operation.  

In Chapter 3, design and building of Cr:forsterite laser stabilization is presented. An 

overall scheme of control of carrier envelope offset frequency, f0 and, repetition frequency, fr of 

the mode-locked laser using 4 different servo system is discussed. A prism servo inside the laser 

cavity is one of the unique ways to stabilize the laser. Here we also discuss the dramatic 

narrowing of the width of the carrier envelope offset frequency by two orders of magnitude. 

In Chapter 4, saturation spectroscopy of acetylene inside hollow core fiber is 

investigated. Larger core fiber gives narrower linewidth and it also offers significant advantage 

in reduction of background noise of the sub-Doppler feature. We also characterize narrow sub-

Doppler features in terms of pressure, power and fiber diameter. Saturation spectroscopy in 

much larger core, recently developed kagome fiber is also discussed. 

In Chapter 5, a new method to splice microstructured fibers with step index single-mode 

fiber (SMF) is presented. This is an important step to get rid of the vacuum chamber and one step 

closer to realizing an all fiber setup for the development of portable frequency references. A 

simplified setup of pump probe spectroscopy by exploiting the reflection of light from spliced 

interface is also discussed. 

In Chapter 6, a common technique, called Frequency Modulation Spectroscopy for 

frequency stabilization of CW laser is presented. We lock CW laser to peak of the narrow sub-
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Doppler feature realized in hollow core fiber. We also beat different kinds of CW laser to 

characterize the stability of the locked laser. (Note: The particular experimental setup for this FM 

modulation spectroscopy is done by my colleagues Kevin Knabe and Andrew Jones) 

In Chapter 7, the phase stabilized Cr:forsterite frequency comb is used to provide a dense 

grid of reference frequencies to measure and characterize the absolute frequency of molecular 

lines of acetylene inside a hollow core optical fiber to develop frequency references in near-IR 

region. This in fact measures stability of both the comb as well as the CW laser locked to the 

molecular transition. 
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CHAPTER 2 - Cr: forsterite laser 

2.1. Cr: forsterite laser: a history 
Cr:forsterite (Cr+4:Mg2SiO4) is a solid state laser material lasing in the range of 1150-1350 nm, 

which is just above the Ti:sapphire tuning range and important for fiber communication 

applications. The second harmonic of Cr:forsterite partially fills the gap between the 

fundamental and second harmonic of Ti:sapphire. Besides allowing access to telecommunication 

wavelengths. The Cr:forsterite gain medium is of significance due to its relevance to optical 

coherence tomography [26], biophotonics [27], two-dimensional transillumination imaging, and 

potentially in two-photon focusing microscopy.  

There are several possible gain materials in which chromium plays a role, including 

Cr:YAG, Cr:forsterite, Cr:LiSaf, Cr:ZnSe and Cr:sapphire. In the beginning it was thought that 

Cr3+ was responsible for the lasing action [28, 29]. However, spectroscopic analysis supported 

the theory that Cr4+ was the lasing ion and showed that the presence of Cr3+ in the host lattice 

actually decreased the efficiency of the laser due to two-photon absorption of the pump 

wavelength [30, 31]. Lasing action in the Cr4+:forsterite gain material was first reported in 1988 

[28, 30, 32] .In Cr4+ doped forsterite (Mg2SiO4) the lasing transition takes place between the 

electronic energy levels of the 3d electrons. The active laser ions are not shielded from the 

surrounding host lattice and, as such, strong electron-phonon coupling will take place and give 

rise to a broadly tunable output [33]. The output is compatible with telecommunications 

wavelengths and its gain bandwidth makes it a good alternative to Ti:sapphire systems for longer 

wavelength configurations.  Furthermore, at room temperature Cr4+:forsterite has upper state 

lifetime of 2.7 µs. This upper-state lifetime is sensitive to temperature and by cooling to liquid 

nitrogen temperatures (77K) the upper-state lifetime can be increased to 20 µs [34-37]. The 

thermal load from the pump beam inside the crystal can have a detrimental effect on this 

duration, because an increase of the crystal temperature causes a decrease in the upper-state 

lifetime. This necessitates a heat removal mechanism to keep the crystal at a constant 

temperature.  

Mode-locked operation of Cr4+:forsterite in the picoseconds domain (31 ps pulses) was 

first achieved in 1991 using an intracavity loss modulator in the form of an acousto-optic device 

[38]. To achieve shorter pulses, passive mode-locking techniques must be used, and in 1992 
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150 fs pulses from a Cr4+:forsterite laser were realized using additive pulse mode locking [36].  

This technique was not pursued further due to the development of Kerr-lens mode locking and 

semiconductor saturable absorbers. Both of these provide a more versatile and simpler path into 

the femtosecond domain. The technique of Kerr-lens mode locking initiated by an acousto-optic 

modulator was used to mode lock a Cr4+:forsterite laser producing pulses initially of 60fs [39] 

before careful management of the dispersion compensation allowed 36fs [40] pulses to be 

realised. This mode-locked operation was sustained even after the acousto-optic modulator was 

turned off indicating that the laser was self-mode-locked [36, 39-42]. Kerr-lens mode locking has 

also provided the shortest pulses from a Cr4+:forsterite laser, with the crystal cooled to -10 °C 

and, using a combination of chirped mirrors and prisms to compensate for higher-order 

dispersion, pulses of 14 fs in duration were produced [17].   

The starting and stabilization of Cr:forsterite laser is quite difficult as compared to other 

solid state lasers. Besides the necessity of heat removal mechanism to increase the life time of 

the excited states, it was also realized that the low thermal conductivity of the Cr:forsterite gain 

medium is another drawback to having poor CW laser performance [43]. Thermal conductivity 

can be dramatically increased by cooling the crystal up to 77K and as much as 3W of average 

power can be obtained [44]. But the high power CW laser pumping gives rise to the thermal 

lensing effect [45, 46] and thereby degrades the laser performance. This thermal effect also 

contributes to increasing the lasing threshold of Cr:forsterite [47-49]. A higher lasing threshold 

increases the pump power requirement, resulting in a significant increase in the overall system 

cost and also increases the thermal effects.  Moreover, the figure of merit of this material, 

generally defined as a ratio of absorption at the pump and lasing wavelength, is an order of 

magnitude lower than that of the Ti:sapphire laser. It is therefore very important to build a very 

stable and broadband Cr:forsterite laser by careful design and implementation. 

Besides being prone to environmental perturbations, thermal lensing arising from poor 

thermal conductivity of Cr:forsterite, a 20 years history of this material development resulted in a 

significant progress. Much work has been done with Cr:forsterite active crystals for optimizing 

laser efficiency and minimizing thermal problems. [47-49]. Very recently, the development of 

techniques to enable low-threshold operation of end-pumped tunable solid-state lasers has 

received a great deal of attention in both Ti:sapphire and Cr:forsterite lasers [47, 48, 50-52]. The 
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most straightforward approach is to lower the laser threshold by employing tighter focusing, 

smaller crystal size and optimum doping concentration [53]. 

 

2.2. Tunable solid-state laser 
Solid state laser are categorized into two main classes depending upon the output spectral 

characteristics: rare-earth ion-doped solid-state laser, and transition metal ion-doped solid-state 

laser. In the former case the laser active 4f electron is shielded from the surrounding lattice by 

higher lying electrons which form a closed loop xenon cell with the 5s25p6 configuration. This 

screening greatly reduces electron-phonon coupling resulting in a very weak interaction between 

the ion and the surrounding lattice. As a result, optical amplification is obtained over a narrow 

spectral range and the emission wavelengths do not vary significantly in different host media. 

The best known member of this group is the Nd:YAG laser [54] which can operate at many 

wavelengths in the near infrared including 946, 1064, and 1319 nm, besides others. In the second 

group of solid-state lasers, also known as tunable solid-state lasers, the host medium is doped 

with transition metal ions such as Ni2+ , V2+, Co2+, Ti3 + , Cr3 + , Cr4+ and so on. Here, lasing 

occurs as a result of the transitions between the electronic levels of the 3d electrons. Because the 

laser active ion is not shielded from the surrounding lattice, strong electron-phonon coupling 

takes place, giving rise to broadly tunable output. The tuning range of some of the Cr4+ doped 

lasers are given in Table 2.1. (Note: Some of the pictures in Section 2.2 and 2.3 are reproduced 

with permission from author Alphan Sennaroglu.) 

 

Table 2.1. Tuning range obtained with some of the Cr:doped laser [33] 

Cr4+ laser Tuning range (nm) 

Cr4+:forsterite 
Cr4+:YAG 
Cr4+:Y3Sc0.5Al4.5O12 
Cr4+:Y3ScAl4012 
Cr4+:Ca2Ge04 

1130-1367 
1309-1596 
1394-1628 
1464-1604 
1348-1482 

 

Let us consider a transition metal ion embedded in a laser crystal. In presence of the 

vibrating lattice, the total Hamiltonian of the non-ionic system is contribution due to both the 

static lattice and vibrating lattice, 
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T s lH H H= +            (2.1) 

Here, lH  represent energy due to the vibrating crystal, 

2

2
i

L L
i i

PH V
M

= + ∑              (2.2)    

where, VL is the inter-ionic potential energy, Pi, the momentum operator of ion of mass iM  

Let us assume that each ion has one vibrational mode and oscillates around the 

equilibrium point; in this case, the eigenvalues of LH can be treated as those of an harmonic 

oscillator. 

 L LH n E n=  

 1( )
2L LH n hv n n= +  

Here Lv is treated as classic frequency of the ionic vibration mode and also referred to as the 

phonon frequency. 

Under Born-Oppenheimer approximation, the electronic and ionic states are treated 

independently in which case the total energy eigenvalue ET is given by, 

1
2T e LE E hv n⎛ ⎞= + +⎜ ⎟

⎝ ⎠
         (2.3) 

This is an important result which shows that the total energy of the ion-lattice system is 

due to electron-phonon coupling. This can be represented by so called “configuration-

coordinate” diagram. In the picture below, the configuration coordinate refers to the distance 

between the central active ion and the neighboring ion. The lowest eigenenergy of the lattice-ion 

system is given by, 1
1
2e LE hν+ . When the system get excited to higher electronic states with 

static electron eigenenergy Ee2, the coupling between ion-lattice also changes and equilibrium 

point Q01 shifts to Q02. When pump wavelength at λP excites the system to ground state to the 

excited vibronic states 3 , the system quickly returns back to upper laser states 2 by emitting 

phonon, which is referred to as non-radiative decay. From the state 2 ion can make a transition 

to 1  states either by spontaneous emission or by stimulated emission.  Once the system is in the

1 state, it undergoes rapid non-radiative decay to the ground state g . Typically, non-radiative 
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transitions occur at a much faster rate. Hence, ions excited to the 3  states rapidly decay to 2

and the population in number 1 is negligible. So vibronic states behave with a very good 

approximation like a 4-level system and lasing can be obtained at reasonably low pumping 

levels. 

 

 
Figure 2.1. Single Configuration coordinate diagram showing coupling between transition 

metal ion to vibrating lattice. This system can be well approximated as four level systems. 

Q represents distance between central active ion and the neighboring ion. This Fig. is 

reproduced from Ref. [33]. 

 

The lattice vibration consists of a large number of modes. Every mode has its own 

phonon frequency. The result of the large number of frequencies is to broaden absorption and 

emission bands. This effect is more pronounced at higher temperature since the upper vibronic 

level becomes populated to some degree which gives rise to the transition at different 

wavelengths. It is shown in the Fig. 2.2 that the emission spectra of Cr4+
 doped YAG crystal at 

the temperatures of 293 K is very broad as compare to the temperature at 77 K.  
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Figure 2.2. Emission spectrum of Cr4+ doped YAG at different temperatures  [33]. 

 

   So the electron-phonon interaction enables both the 4-level energy structure and 

tunability. But it also has some undesirable effect at higher temperature since it gives rise to the 

non-radiative component of the spontaneous decay between states 2 to 1 . The consequence of 

this is to reduce the population inversion and hence lowers the emission strength. Moreover, the 

increase in non-radiative decay decreases the efficiency of the gain medium by heating the 

crystal. For the higher laser performance this heat has to dissipate quickly. Therefore thermal 

conductivity of the crystal is an important parameter to decide the overall power performance of 

vibronic lasers such as Ti3+: sapphire and a variety of chromium-doped laser. Sometime we may 

need to employ cryogenic cooling to get higher laser output. Figure 2.3 below shows the 

wavelength tuning range of some of the tunable solid state lasers. 
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Figure 2.3. Tuning range of some of the tunable solid state lasers. Whole tuning range from 

665 nm to 4500 nm is covered by various ion-host combinations. Figure is reproduced from 

reference  [33]. 

 

We can see the almost whole tuning range from 665 nm to 4500 nm is covered by using different 

ion-host combinations. Among these transition metal ion, besides Ti:sapphire, Cr-doped lasers 

have been extensively studied because of the ionic charges and broad absorption band. 

 

2.3. Characteristic of Cr: forsterite crystal 
Cr:forsterite laser is named after the German naturalist Johan Forster. The host material forsterite 

(Mg2SiO4) is a naturally occurring crystals belongs to the orthorhombic class of crystals, 

commonly known as olivines. Cr:forsterite is a biaxial crystal. The three different crystal axes 

can be specified according to the lattice constants as the a axis 4.76 Å, b axis 10.22 Å, and c axis 

5.99 Å [28]. Here we use the Pbnm crystallographic notation. When the host material forsterite is 

doped with the chromium ion,  Cr3+
 can substitute for the octahedral coordinated Mg and Cr4+ 

substitute for the tetrahedral coordinated Si [55].  
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2.3.1. Absorption and fluorescence 
The Cr:forsterite laser covers an important wavelength range in near-infrared spectral region 

from 1100 nm to 1400 nm. Figure below shows the absorption and emission spectra of 

Cr:forsterite crystal at room temperature [28], 

 

 
Figure 2.4. Absorption and fluorescence spectra of Cr:forsterite at room temperature [28]. 

 

There are two broad peaks in absorption spectra as shown in Fig. 2.4, one at 780 nm and 

the other ranging between 900-1150 nm. This allows the crystal to be pumped optically by 

various commercially available lasers. Among them Nd:YAG laser at 1064 nm and ytterbium-

doped fiber lasers at 1075 nm are two mostly used.  

 

2.3.2. Lifetime thermal loading and lensing 
As mentioned earlier, enhancement of non-radiative decay at higher temperature decreases the 

fluorescence lifetime. Cr:forsterite suffers most from the degradation of the lifetime of the 

pumping states and poor thermal conductivity [48]. These effects cause subsequent reductions in 

population inversion and quantum efficiency of the laser crystal which thereby raise the lasing 
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threshold and lower output efficiency. Furthermore, this detoriation of the lifetime due to thermal 

loading is particularly important for the gain media with low heat conductivity. Despite the use 

of various cooling methods to stabilize the crystal boundary temperature, the heat load due to 

unused pump power can still lead to a considerable amount of local heating inside the crystal. 

Because of the temperature dependence of the refractive index, the heat loss due to unused pump 

power can also cause thermal lensing which can change the beam profile and power transmission 

inside the cavity [33]. But these problems can be minimized to some extent by choosing a crystal 

rod with reduced transverse dimensions [33].  Figure 2.5 below shows the temperature dependent 

lifetime for Cr:forsterite, Cr:YAG and Ti:sapphire crystal reproduced from Ref. [48]. 

 

 
Figure 2.5. Temperature dependent lifetime data for Cr:forsterite, Cr:YAG and 

Ti:sapphire gain media. We can see that Cr:forsterite has steeper slope and it suffers most 

from the change in temperature. In fact, cooling to 77K from room temperature changes 

life time of the excited state from 2.4 µs to 20µs. Figure reproduced from reference [48]. 
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Thermal and spectroscopic parameters of various vibronic lasers used in the calculation of figure 

of merit for lifetime thermal loading is performed by Alphan Sennaroglu in Ref. [56]. 

 

2.4. Dispersion  
This Section focuses on the mathematical development of an ultrashort laser pulse and its 

interaction with the medium through which it propagates. The nature of this interaction depends 

upon the intensity of the pulse and the properties of the material. Higher intensity of the pulse 

gives various nonlinear effects that can be utilized even in the process of mode locking. In the 

laser cavity, there are many optical components such as laser crystal, prism, chirped mirror, air 

and output coupler where laser pulse is generated and interacts with medium itself. This gives 

rise to various effects such as dispersion, self phase modulation etc.  

An optical pulse in the time domain can be written as, 

0( ) ( )exp (( ( ))E t A t i t tω φ= −        (2.4) 

where A(t) is time varying electric field envelope, ( )tφ  is the temporal phase variation across the 

pulse and ω0 is the optical carrier frequency.  

When these pulses propagate through the dielectric medium of neutral charge, the 

individual atom experiences a dipole force. As a result each atom develops a dipole moment and 

the sum of all these dipole moments within the medium is called polarization. Depending upon 

the intensity of the beam and the nature of the material, we can get all sorts of linear and 

nonlinear effects inside the medium. So, a dielectric medium under the influence of 

electromagnetic field produces an intensity-dependent polarization of the form,  
(1) (2) 2 (3) 3

0 ...P E E Eε χ χ χ⎡ ⎤= + + +⎣ ⎦       (2.5) 

where 0ε is the permittivity of free space, E is the applied electric field and ( )nχ is the nth order 

susceptibility. The exact description of how an intense pulse interacts with a medium depends on 

the strength of its electric field and one common approach is consider a linear response due to 

the first term of Eq. (2.7) separately from the nonlinear response arising from the higher order 

terms. Generally, a linear response arises at lower laser intensity than the nonlinear response 

does. 
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In the expression ሺ2.7ሻ,  (1)χ  is the linear susceptibility and is used to describe the linear 

optical effects such as refraction, reflection and dispersion. Similarly, nonlinear effects due to 

second order susceptibilities, (2)χ   describe  second harmonic generation (SHG) and sum-

frequency mixing (SFG). The third term, (3)χ  describes third order nonlinear effects such as third 

harmonic generation (THG) and the optical Kerr effect.  

2.4.1. Material dispersion: linear effect 

When an ultrashort laser pulse with a specific spectral bandwidth propagates through a linear 

dielectric medium, the spectral components will travel at different speeds in the medium due to a 

wavelengths dependence of the index of refraction. The material dispersion will cause the 

ultrashort pulse to broaden in time but its spectral width remains the same. Only nonlinear effects 

or wavelength-dependent gain or loss can cause change in a pulse’s spectral width. 

The dispersion is characterized by the mode propagation constant, ( )β ω  which is 

typically written as a Taylor series 

( ) ( ) ( )
2 3

0 00
0 1 2 3 0

1( )
1! 2! 3!

m
m

m m
ω ω ω ωω ωβ ω β β β β β ω ω

− −−
= + + + + −∑  (2.6) 

where, 
0

m

m m

d
d ω ω

ϕβ
ω

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
        (2.7) 

ω0  represents  carrier  frequency.  The  mode  propagation  constant, ( )β ω   represents  the 

component  of  the wave  vector k  along  the direction of propagation. The  first term, 0 ( )β ω  

describes a change in the phase of the central carrier frequency as it propagates through the 

material and has no effect on the pulse shape itself.  The second term, 1
d
d

ϕβ
ω

= describes a linear 

phase ramp in frequency that corresponds to a temporal delay in the pulse as it travels through 

the medium. It is related to the group velocity, vg which defines the velocity of the pulse in the 

medium. 

1

1 1/g
dv
d

ϕ
β ω

= =          (2.8)

This definition of group velocity is consistent with a slightly different approach in which the 

phase velocity of a wave is defined by: 
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1−

⎟
⎠
⎞

⎜
⎝
⎛=

ω
kvp                                                                                                                 (2.9)  

where k is the wave vector andω its frequency. The third term or quadratic spectral phase term 

is responsible for introducing a linear chirp into the pulse; this effect is temporally broadens a 

pulse. The fourth term or cubic chirp is responsible for introducing the quadratic frequency chirp 

into the pulse, which can temporally extend one end of the pulse and sharpen the other end and 

can lead to pulse break up. All of these processes in effect are to limit the minimum attainable 

pulse duration by a system such as a laser cavity.  

For a bulk medium, 1 2 3,  and β β β are related to the index ( )n λ by, 

1
1 1 1dn n dn
c d c n d

λβ ω
ω λ

⎡ ⎤ ⎛ ⎞⎛ ⎞= + = −⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠
       (2.10) 

32 2

2 2 2 2

1 2
2

dn d n d n
c d d c d

λβ ω
ω ω π λ

⎛ ⎞
= + ≈⎜ ⎟

⎝ ⎠
       (2.11) 

4 2 3

3 2 2 33
2

d n d n
c d d

λβ λ
π λ λ

⎛ ⎞
≈ − +⎜ ⎟

⎝ ⎠
       (2.12) 

where, ( )n λ , is wavelength dependent refractive index, can be described by the empirical 

relation called Sellmeier equation of the general form, 

( )
3

2

2
3

2
2

2
2

1
2

2
12 1n

B
A

B
A

B
A

−
+

−
+

−
+=

λ
λ

λ
λ

λ
λ

λ      (2.13) 

where A1,2,3 and B1,2,3 are material dependent coefficients that are determined by experiment. 

Figure 2.6 shows the effect of dispersion on a Gaussian pulse. 
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Figure 2.6. Simulation shows the effect of first, second, third and all three terms of expansion of 

mode propagation constant; ( )β ω  from Eq. (2.7) on temporal profile of the Gaussian pulse. These 

plots clearly show that the effect of higher order dispersion is not only to broaden the pulse but it 

also can  lead to significant pulse distortion even to the point of pulse break up. Plot on right side 

(blue line) of each plot shows the instantaneous phase of the pulse. 
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2.4.2. Dispersion due to Cr:forsterite crystal inside the cavity 

Generation of the shortest femtosecond pulse requires accurate dispersion data for the material 

inside the laser cavity. This requires a slightly negative net cavity dispersion and minimum third 

order dispersion. The largest dispersion source in the Cr:forsterite laser is still the crystal and pair 

of prisms provides the necessary negative dispersion. The selection of the material for the prism 

is determined by the crystal dispersion itself. Most of the dispersion data for Cr:forsterite has 

been reported in the context of femtosecond pulse generation[42, 57-60].  To the best of my 

knowledge, there is only one measurement of the index of refraction of the Cr:forsterite at 

different wavelength from which required dispersion can be computed [61]. But the data of 

refractive index dispersion for Cr:forsterite shows little agreement with any of the other studies 

and there are significant discrepancies among many of these measurements. To make accurate 

dispersion data available for broadband dispersion compensation, Thomann et al [62] made some 

independent determination of Group-delay dispersion (GDD) and Third-order dispersion (TOD) 

of Cr:forsterite using a white-light Michelson interferometer. The crystal used by Thomann was 

purchased in the same batch as ours. In this section, here we briefly review some of these 

dispersion measurements. 

The refractive index dispersion allows access to the group velocity dispersion. Burshtein 

et al. measured the room temperature refractive dispersion of the Cr4+:forsterite in the 0.35-2.0 

µm spectral range for all crystallographic orientations, a, b and c. First of all they showed the 

dispersion curve for na, the data points are best fitted to a Sellemeier function of the form, 

 
2

2
2 21 An

B C
λ

λ λ −= +
+ +

        (2.14) 

Where, ܣ௔ ൌ 1.6595 േ 0.002, ௔ܤ  ൌ െ0.0162 േ 0.001 µmଶ and ܥ௔ ൌ ሺ5 േ 0.4ሻ10ିସ µmସ 

The data for nb and nc are best fitted to the Sellemeier function of the form, 

 
2

2
2 1.61 An

B C
λ

λ λ−= +
+ +

        (2.15) 

Where,ܣ௕ ൌ 1.608 േ 0.0025, ௕ܤ  ൌ െ0.0185 േ 0.0002 µmଶ  and ܥ௕ ൌ ሺ11.0 േ 0.6ሻ ൈ

10െ4µm4 

௖ܣ             ൌ 1.7145 േ 0.0025, ௖ܤ  ൌ െ0.0175 േ 0.0002 µmଶ, ௖ܥ ൌ ሺ9.9 േ 0.8ሻ ൈ 10ିସµmସ 

The plots of all of these three values of refractive index dispersion curve is shown in Fig. 2.7, 
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Figure 2.7 Spectral dispersion of refractive indices in Cr4+:Mg2SiO4 (reproduced from 

Ref.[61]). 

 

From the measurements of spectral dispersion of refractive indices as given in Eq. 2.14 

and 2.15, we can easily find the GDD and TOD by using Eq. 2.11 and 2.12; the plot of GDD and 

TOD is shown in Fig. 2.8 and Fig. 2.9 below to compare with the other measurements. 

Zhang et al. [58] made an independent measurement of group delay of Cr:forsterite 

crystal from which we can easily calculate GDD and TOD of the material. He has given an 

analytic function for the group delay (in fs) as a function of frequency (in THz). The expression 

of Zhang is for 7 mm of Cr:forsterite which is double passed (i.e. 14 mm total) so I have 

normalized this expression to compare with other by dividing by 14 mm.  Zhang claims this is 

for propagation along the c axis with the E-field parallel to the a-axis.  However, he does not 

define his axis system, so it may be difficult to compare to other results.  
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where f is in THz. From this expression we can simply calculate GDD and TOD by taking 

successive differentiation of group delay which I have plotted in Fig. 2.8 and Fig. 2.9 below. The 

GDD calculated from Eq. (2.16) is found to be in close agreement with one that is measured by 
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Thomann et al using white light interferometry techniques, which we believe is the most reliable 

one. Thomann has given expression for GVD and TOD for b-axis of crystal in Ref. [62], 

GVDT୦୭୫ୟ୬୬ ൌ
ଵ

ଶכ௅כଵ଴షయ
ሺ2݇ଶ ൅ 6݇ଷሺ߱ െ ω0ሻ ൅ 12݇ସሺ߱ െ ω0ሻଶ ൅ 20݇ହሺ߱ െ ω0ሻଷሻ                                    

(in fs2/mm)                        (2.17) 

TODT୦୭୫ୟ୬୬ ൌ
ଵ
ଶכ௅

ሺ6݇ଷ ൅ 24݇ସሺ߱ െ ω0ሻ ൅ 60݇ହሺ߱ െ ω0ሻଶሻ(in fs3/mm)       (2.18) 

 

Where, ݇ଶ ൌ 84.42fsଶ, ݇ଷ ൌ 116.7fsଷ, ݇ସ ൌ െ101.21fsସ, ݇ହ ൌ 125.08fsହ 

 

 
Figure 2.8. Group delay dispersion of Cr:forsterite crystal vs. frequency. We can see very 

large discrepancy in different measurement performed by different group. Blue line is the 

GDD derived from the Sellemeier function of Cr:forsterite crystal [61] which is given in 

Eq. (2.15) .  Thomann [62] measurement (green solid line) is in reasonably good agreement 

with Zhang [58] measurement (red dotted line).  

 

When we compare all of these measurements for GDD, we can infer that the 

measurement done by Thomann is in reasonably good agreement with Zhang. Even though 

Thomann and Zhang measurements agree pretty well in terms of GDD, there is a discrepancy of 

at least 50% in the measurement of TOD between them. Although the crystal orientation is not 
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specified in the Zhang measurements, we assume that the most common orientation for all 

previous measurements was for light polarized along the b axis.  

 
Figure 2.9. Third order dispersion of Cr:forsterite crystal vs. frequency in THz. Blue 

dotted line is the TOD derived from the Sellemeier function of Cr:forsterite crystal [61] 

which is given in Eq. (2.15) . There is a discrepancy of at least 50% in the measurement of 

TOD between Thomann measurement (green solid line) and Zhang measurement (red 

dotted line).  

Even though the crystal used by Thomann et al. in their measurement is exactly similar to 

ours, it should be noted that the theory described in white light interferometry does not take into 

account the possible nonlinear refractive index of Cr:forsterite. For mode-locked laser operation 

when beam is focused to the crystal, peak intensities can become so large that nonlinear 

refractive index might contribute to dispersion. 

 

2.4.3. Dispersion compensation using SF6 Prism 

Cr:forsterite crystal has low gain. Therefore, we need to choose longer crystal to get 

sufficient pump absorption for lasing. We use a 15 mm long crystal. The longer crystal has larger 

group delay dispersion (GDD) and third order dispersion (TOD); therefore, Cr:forsterite crystal 

itself is the dominant source of dispersion inside the laser cavity. Precise control of GDD and 

TOD is extremely important to get reliable and stable modelocking. The calculation and 
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measurement for dispersion compensation shows that a pair of SF6 prism inside the cavity can 

compensate both the GDD and TOD of Cr:forsterite laser cavity. 

Here, we would like to calculate quadratic (related to GDD) and cubic phase distortion 

(related to TOD) due to SF6 prism pairs. TOD is not as dominant as GVD inside the cavity 

unless we are dealing with pulse shorter than ~20 fs. Net dispersion due to prism pairs is the sum 

of dispersion due to material itself and angular dispersion due to the geometry of the prism 

separation. Material dispersion is generally positive whereas prism separation gives negative 

dispersion inside the cavity. For ultrashort pulses to be realized, a net cavity dispersion should be 

negative. By choosing the correct separation between the prisms, an overall negative dispersion 

can be introduced inside the cavity where shorter wavelength components experience a shorter 

physical path length through the prism system as compared to longer wavelength component. 

The arrangements of prisms are shown in Fig.2.10; both the prisms have been cut so that the 

angle of minimum deviation is also Brewster’s angle. The arrangement of prism with mirror acts 

like a four prism in sequence where light exactly follows the same path in both directions. 

 
Figure 2.10. A sequence of prisms and mirror which can be adjusted to give a net negative 

dispersion. The prisms are used at angle of minimum deviation and the rays enter and 

leave at Brewster’s angle. 

 

Sellemeier equation and coefficients for SF-6 glass are given below, 

݊ሺλሻ: ൌ ට1 ൅ ஻భఒమ

ఒమି஼భ
൅ ஻మఒమ

ఒమି஼మ
൅ ஻యఒమ

ఒమି஼య
        (2.19)  

Where the coefficients are, 

B1 = 1.72448482   B2 = 0.390104889 

B3 = 1.04572858   C1 = 0.0134871947    (2.20) 

C2 = 0.0569318095   C3 = 118.557185 
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The detail of the theoretical calculation of net cavity dispersion due to prism pair is given in Ref. 

[63].  Let us consider the Cr:forsterite laser cavity where we use  an SF6 prism pair separated by 

a distance of l = ~300 mm. The beam size of the laser inside the cavity is d = ~1.5 mm. The 

amount of prism inserted inside the laser beam is d = 15 mm. The material dispersion due to 

insertion of prism inside the laser beam can be calculated by using the expression 2.11 and 2.12, 

 

 
Figure 2.11. Material dispersion due to prism pairs inside the cavity. 

 

Now the angular dispersion due to separation of the prism can be calculated by using the 

expression given in Ref. [63]. Let P be the optical path length. The dispersion parameter D is 

related to the second derivative of the optical path length with respect to wavelength, 
2

2

d PD
cL d
λ

λ
= −           (2.21)

 
2 22 2

2 2 3

1where, 4 2 sin 2 cosd P d n dn dnl n
d d n d d

β β
λ λ λ λ

⎡ ⎤⎧ ⎫⎪ ⎪⎛ ⎞⎛ ⎞ ⎛ ⎞= + − −⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

  (2.22) 

Here, L is physical length of the light path and l is the physical distance between prisms in 

meters. However, the spot size is related to l and b.  The term l sinb should be on the order of 

twice the spot size d.  Thus, 

22sin and cos 1 sind
l

β β β= = −       (2.23) 

The phase change due to the prisms can be related by the change in optical path length with 

wavelength.  The second and third order phase derivative is represented in units of fs2 and fs3 

respectively.  
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3 2

2 2 22
d P

c d
λβ
π λ

=          (2.24) 

And,    
4 2 3

3 2 2 33
2

d P d P
c d d

λβ λ
π λ λ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
       (2.25) 

 

 
Figure 2.12. Angular dispersion due to prism separation. 

 

Figure 2.11 and 2.12 shows that the SF6 prism pair with separation of ~30 cm not only 

compensates the material dispersion due to the prism itself but it also provides sufficient negative 

GDD and TOD to compensate both second order and third order dispersions due to the 

Cr:forsterite crystal. 

 

2.5. Cr: forsterite cavity design 
The cavity configuration of the prism-based Cr:forsterite laser is shown in Fig. 2.13 

below. The Cr:forsterite crystal we used has the same bulk properties as that used in Ref. [62] 

(doping of 0.2% by weight, absorption coefficient α = 1.1 cm-1 at 1075 nm, dimension 2 mmൈ4 

mmൈ15 mm). The general resonator configuration of the solid state laser is a 4 mirror resonator 

consisting of two flat mirror and two curved mirrors that focus the fluorescence into the laser 

crystal. One of the flat mirrors is a high reflector mirror and another is an output coupler. We can 

insert one or more flat mirrors between the curved mirror and the high reflector without changing 

the laser characteristics. Since the Cr:forsterite crystal has low gain, in order to have optimum 

output power, there must be extremely good mode matching of the pump beam and laser beam. 

Due to the short upper-state lifetime of the Cr:forsterite crystal, a high intensity pump beam is 
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required to obtain sufficient population inversion for lasing. Such a high intensity can be 

achieved by tight focusing of the pump beam inside the crystal. We have used the ABCD matrix 

simulation to figure out the optimum beam profile inside the crystal for optimum cavity mirror 

position. The program written in Mathematica can calculate the positions of the cavity mirrors 

that allow stable operation. We can also plot the stability region inside the cavity as well as beam 

shape inside the cavity for particular mirror separation values. 

 

 
Figure 2.13. Sketch of 4 mirror cavity design of Cr:forsterite laser cavity. 

 

The effect of the asymmetric devices such as a Brewster cut crystal is to produce 

astigmatic Gaussian beams. The beams have different spot sizes, wavefront curvatures and beam 

waist positions in the two orthogonal planes called the sagittal plane and the tangential plane.  In 

other word, because of a lack of axial symmetry in our cavity, the beam waist along the sagittal 

and tangential planes may not necessarily overlaps spatially due to astigmatism. Therefore, the 

effects of astigmatism must be taken into account in cavity stability analysis.. There are two 

focusing lengths of the crystal depending upon the plane in which beam is focused, 

cos  and 
cosx y

ff f fθ
θ

= =         (2.26) 

where θ is the angle between the incident beam and the normal to the mirror. The effect of this 

astigmatism is also to lift the frequency degeneracy between the TEMmn modes with the same 
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value of m+n. One way to compensate these effects is to use another source of astigmatism such 

as off-axis reflection from the curved mirror into the crystal.  

 In this way, for the tangential plane, the exit beam parameters from the crystal to air 

differ from the entrance-beam parameters from air to crystal in the same ways as if beam had 

traveled the free space distance of  
( )1/22 2sin

t
n θ−

and for tangential plane it is 
( )

2 2

3/22 2

(1 sin )
sin

t n
n

θ
θ

−

−
 

[64] 

Hence for the tangential plane, the ray transfer matrix for air to crystal interface is, 

( )
2 2

3/22 2

(1 sin )1
sin

0 1

t n
n

θ
θ

⎛ ⎞−
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠         (2.27)

 

Similarly, for the sagittal plane, the ray transfer matrix is, 

( )1/22 2
1

sin

0 1

t
n θ

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠         (2.28)

 

If we assume that light get incident under Brewster angle, 2

1

arctan n
n

θ
⎛ ⎞
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⎝ ⎠

, for the air-to-crystal 

interface, n1=1 and n2= n, ⇒
2
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nn
n
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+

, so both the above expression 2.27 

and 2.28 reduces to, 
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 ,                                        (2.30)        

both of these effects can be compensated by varying θ. The astigmatically corrected cavity not 

only has lower threshold but also gives close to circular output beam as compared to the 

uncorrected cavity. 
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2.4.1 Rays in periodic focusing systems 

We need to figure out the stability criteria for the laser cavity. Laser cavities are in fact a periodic 

focusing system which can be divided into either stable or unstable periodic systems depending 

only on the properties of the eigenvalue of the ABCD matrices, 

Let us suppose a ray matrix, M, propagation through one period in such a system, 

A B
M

C D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, let us find eigenvalue of M, for non-trivial solution, 

20 1 0
A B

m
C D

λ
λ λ

λ
−

= ⇒ − + =
−

 where, 
2

A Dm +
=  

So matrix eigenvalues are, 2, 1a b m mλ λ = ± − which obey the relation ship 1a bλ λ× =  

If ar  and br  are two eigenray vectors then M and Ma a a b b br r r rλ λ= = , Now we can 

write any arbitrary ray, r0 into the form, 0 a a b br c r c r= +  where ca and cb are expansion coefficient. 

If ray travels through number of optical element then the ray vector can be written as, 

0 ( )n n n n
n a a b b a a a b b br M r M c r c r c r c rλ λ= = + = +  

 Let us suppose the ray matrix for one period has A and D coefficients such that, 

21 1 or 1
2

A Dm m +
− ≤ ≤ = ≤ , In this situation we can write m=cosθ. Therefore, 

2, 1 cos sin i
a b m i m i e θλ λ θ θ ±= ± − = ± =  

rn takes the form, 0 0cos sinin in
n a a b b n nr c r e c r e r sθ θ θ θ−= + = +   

  0

0

where,  is the input ray vector and 
( ) is the input slope vector
a a b b

a a b

r c r c r
s i c r c r

= +
= −

 

So, if m൑1, 2 1
2

A Dm +
⇒ = ≤ ,         (2.31) 

represent conditions for a stable periodic system in which rays in the system oscillate back and 

forth about the axis where ro and so are the initial conditions. Similarly, we can show that for 

m൐1, we will get an unstable periodic system in which the final ray vectors turns out to be 

2
0 0cosh sinh  where ln( 1)n n nr r s m mθ θ θ= + = + − ; here rn diverge exponentially and therefore 

represents an unstable periodic system. 
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2.4.2. Stability analysis of a Cr:forsterite cavity  

The Cr:forsterite laser cavity, as shown in Fig. 2.14 below, consists of 1.5 cm long crystal that 

lies in between the two curved mirror of radius of curvature 10 cm, with distances d1 and d2, 

which are the variable parameters of the stability analysis. There is a flat mirror, output coupler, 

which has a distance of L1=50 cm to the curved mirror M1 as shown in figure. The distance of 

another curved mirror M2 to the end mirror M4 is L2 = ~60 cm. In the arm L1 of the cavity, we 

have a prism pair for dispersion compensation which is not considered here even though prism is 

also a source of astigmatism. 

 

 
Figure 2.14. Approximate dimension of the Cr:forsterite laser cavity. 

 

The ABCD matrix of this linear cavity is calculated by including astigmatism introduced 

from the end mirror as well as from the Brewster-cut gain medium with refractive index ~1.63.  

These two astigmatisms are used in a way to nullify effect of both to get astigmatic free beam 

profile inside the crystal. The round trip ABCD matrix of the four mirror cavity is calculated by 

choosing a reference plane at the middle of the crystal. Note that this process is performed twice, 
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once for the tangential plane and once for the sagittal plane since the curved mirrors M1 and M2 

and Brewster-cut crystal behave differently in the two planes. The ABCD matrix for a complete 

round trip through the cavity is then given by multiplying all the matrix elements for each and 

every optic starting from the centre of the crystal and all the way back to the same place. In short 

an ABCD matrix allows the output of an optical element to be written in terms of its input. The 

hard part about ABCD matrix analysis is coming up with the appropriate ABCD matrices for the 

elements in the system to be analyzed. The detailed derivations of the transfer matrices of other 

simple optical elements will not be discussed here, but a table is included which gives the 

general form of the transfer matrices for several optical elements [65]. 

 

Table 2.2. Transfer matrices of some of the simple optical elements [65]. 

Elements Matrix Remarks 

Propagation in free space 

or in a medium of constant 

refractive index 

൥1
ܮ
n0

0 1
൩ 

L = distance 

Reflection from a flat 

mirror 
ቂ1 0
0 1ቃ 

Identity matrix 

Reflection from a curved 

mirror,  

for tangential plane. 

 

 

for sagittal plane 

൥
1 0

െ
2

ܴCosሾߠሿ 1൩ 
R = ܴCosሾߠሿ radius of 

curvature for tangential plane 

൥
1 0

െ
2Cosሾߠሿ

ܴ 1൩ 
R= ோ

C୭ୱሾఏሿ
 radius of curvature 

for sagittal plane 

Incidence of light under 

Brewster angle from air to 

crystal. 

቎1
√1 ൅ ݊ଶݐ

݊ସ
0 1

቏ 
t=thickness of crystal. 

For tangential plane 

቎1
√1 ൅ ݊ଶݐ

݊ଶ
0 1

቏ 
For sagittal plane 

 

The matrices depend on the mirror’s radii of curvature, the thickness of crystal, the 

refractive index, the distances from the curved mirrors to crystal, denoted by d1 and d2, the 
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distance from curved mirrors to the end mirrors, L1 and L2, and angle between incoming and 

outgoing beams on the curved mirrors. 

 

The ABCD matrix for a complete round trip through the cavity in tangential plane is 

given by, 

ቆ1
√ଵା௡మ௧/ଶ

௡ర

0 1
ቇ כ ൭

1 0

െ
ଶSୣୡቂಐమమ ቃ
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൱ כ ቀ1 2L2

0 1 ቁ כ ൭
1 0

െ
ଶSୣୡቂಐమమ ቃ

Rଶ
1
൱ כ ቀ1 d2

0 1 ቁ כ

ቆ1
√ଵା௡మ௧
௡ర

0 1
ቇ כ ቀ1 d1

0 1 ቁ כ ൭
1 0

െ
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െ
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Rଵ
1
൱ כ ቀ1 d1

0 1 ቁ כ

ቆ1
√ଵା௡మ௧/ଶ

௡ర

0 1
ቇ           (2.32) 

The ABCD matrix for a complete round trip through the cavity in sagittal plane is given 

by, 
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There are two ways to figure out the stability criterion, the first is to use the expression 

for stability criteria using Eq. 2.31, which is, 

1
20 1

2

A D+
+

≤ ≤
         (2.34)

 

where A+D is the trace of the matrix 2.32 and 2.33. Now we plot the quantity 
1

2
2

A D+
+

 for both 

the tangential plane and sagittal plane by adjusting the angle of incidence on the two curved so 

that both regions get well overlapped. The angle of best overlap is found to be at ~θ=15º, angle 
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of incidence on the mirrors. The combined plot of the both planes where d1 and d2 are varied 

from 4 cm to 6 cm is shown in the Fig. 2.15. The contour plot shows that there is the region 

where the beam profile on both the tangential and sagittal plane overlaps. 

 

 
Figure 2.15. The contour plot shows that there is only one stability region inside our 

Cr:forsterite laser cavity where beam profile on both the tangential (blue stripe) and 

sagittal plane (red stripe) overlaps. 

 

Another way to find the stability region is to look at the formula for the beam waist, ω, 

which is given by relation, 

2

2
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B
n A Dq

λω
π

= ±
+⎛ ⎞− ⎜ ⎟

⎝ ⎠

       (2.35)

This expression also enables us to calculate the laser beam size inside the crystal. When the 

imaginary part of this beam waist expression given in Eq. 2.35 is zero, one can obtain physically 

meaningful beam size.  

Figure 2.16 shows the stability regions and beam waists ω0 as a function of d1 and d2, 

which are the distances between the crystal and curved mirrors. From the result we find the 
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optimum combination of d1 and d2 where the beam radius at the laser crystal strongly shrinks due 

to the Kerr lens effect. In the graph above dotted line (green) above the X-axis indicated 

imaginary part of the beam size inside the crystal in tangential plane whereas solid line (red) is 

the real part of the beam size in the tangential plane. Similarly, below the X-axis we have real 

and imaginary beam size in the sagittal plane. There is a region somewhere in between 4.5 cm 

and 5 cm where the imaginary part vanishes, which gives the real beam size. We have adjusted 

the angle of incidence on the two curved mirrors so that the beam profiles in both the tangential 

and sagittal plane overlap in order to avoid astigmatism. From the simulation, we have found that 

the angle of incidence of the curve mirror should be θ = ~150, to compensate astigmatism inside 

the cavity and beam size inside the crystal is 26 µm. 

 

 
Figure 2.16. Stability regions and beam waists as a function of d1 and d2, distance between 

the crystal and curved mirrors. Real part of the beam size is indicated by the solid line and 

imaginary part by dotted line in both the sagittal (above x-axis in graph) and tangential 

plane (below x-axis is graph). 
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CHAPTER 3 - The femtosecond Cr:forsterite frequency comb 

stabilization 

The optical frequency comb produced from phase stabilized mode-locked laser [66] has 

permitted the determination of optical frequencies with unprecedented precision [67, 68]. 

Recently Ti:sapphire laser systems that directly produce octave-spanning frequency combs have 

also been demonstrated [69-72]. The high frequency resolution available using stabilized lasers 

has allowed for experimental investigation into various aspects of fundamental physics [73] such 

as gravitational wave detection [74], time variation of fundamental constants [75] , and quantum 

electrodynamics [76]. Besides this, the techniques pioneered in precision measurement have also 

led to advances in optical communication[77], measurements of absolute optical frequencies and 

precision laser spectroscopy [78], development of optical atomic clocks [79, 80], optical 

frequency synthesis [81] and broadband, phase-coherent spectral generation [71, 82], along with 

coherent synthesis of optical pulses [83], phase-sensitive extreme nonlinear optics [84] and pulse 

timing stabilization. The main problem with using a pulsed laser for spectroscopy is the broad 

frequency bandwidth associated with a short pulse. The broad spectrum prevents high precision 

measurements. This problem can be avoided by using a train of phase-coherent pulses, which 

permits frequency resolution orders of magnitude better than that associated with a single pulse. 

Many new technologies have been enabled by the phase-stabilization of femtosecond lasers. 

The series of pulses from mode-locked laser in time domain acts like a comb in 

frequency domain; it is therefore called frequency comb. Correspondence of time and frequency 

domain of the modelocked laser is shown in Fig. 3.1. Frequency comb can be described using 

two independent quantities: the laser repetition frequency (fr) and the carrier envelope offset 

frequency (f0).  Any tooth of the comb (fn) can be described exactly using Eq. (3.1) and the 

stabilization of fr and f0 simultaneously ensures that all the teeth of a comb occupy well defined 

and fixed frequency locations. 

௡݂ ൌ ଴݂ ൅ ݊ ௥݂           (3.1) 
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Figure 3.1. Time and frequency domain representation of mode-locked laser. In time 

domain the carrier-envelope phase changes at a defined rate between pulse to pulse and 

give rise to the carrier-envelope offset frequency, f0 in frequency domain. In frequency 

domain, comb lines are spaced by the laser repetition rate, fr determined by the round trip 

time, tr,t of the laser pulse inside the cavity. 

 

 The repetition frequency is often trivial to stabilize, generally only requiring high speed 

cavity length control offered by PZT mounting of the end mirror controlled by fast servo 

electronics.  Control of f0 however is generally nontrivial and the choice of intracavity dispersion 

compensation scheme in a laser cavity often determines the control mechanisms for its 

stabilization.  Regardless of the mechanism used in stabilizing f0, the intensity-related dynamics 

of f0 is of considerable importance as it governs the stability of the entire comb.  The intensity-

related dynamics of f0 in Ti:sapphire frequency combs in both prism based systems and chirped 

mirror based systems have previously been investigated [85] and it was noted that the f0 

dynamics were different for the two cases and depended on certain operational characteristics.  

The chirped mirror configuration demonstrated a roughly linear change in f0 response and 

contained a zero crossing point with a reversal in the sign of the response.  It was however found 

to be relatively easy to stabilize f0 using pump power modulation for comparatively broad f0 
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linewidth.  Conversely the prism based configuration did not show any reversal of the response 

sign and exhibited narrower linewidth throughout but was considerably more difficult to servo 

using pump power modulation [85, 86].  To date there has been no such reported study for a Cr: 

forsterite laser and consequently the intensity related dynamics of f0 are as yet undetermined. 

The linewidth of the detected  f0 signal is often attributed to the level of intensity noise 

present on the pump laser [87] but it can also depend on the cavity configuration.  For example 

Ref. [87] reported broad f0 signals with widths of 6.7 MHz FWHM when using a chirped mirror 

based Cr:forsterite.  In this paper, we report on a prism-based Cr: forsterite laser system with f0 

linewidth of the order of ~1.5 MHz in spite of employing a similar pump laser. This is in 

agreement with that seen in Ti:sapphire systems [86] with the addition that the stabilization of 

our prism-based Cr:forsterite comb required the inclusion of an intracavity prism modulation 

scheme in conjunction with power modulation. We have also seen a dramatic reduction in 

linewidth from ~2 MHz to ~20 kHz in the carrier envelope offset frequency of a femtosecond 

Cr:forsterite comb due to insertion of knife edge in front of the end mirror inside the cavity. 

Insertion of the knife edge also shifts the central frequency of the laser as well as the amplitude 

of the beat note. We believe this change in f0 linewidth may be due to change in intracavity 

dispersion and change in wavelength dependent intracavity loss. But, the exact cause of the 

narrowing remains unexplained. In this Chapter we presented the results of the stabilization of 

our self-referenced prism-based mode-locked Cr:forsterite system and a  study of the intensity 

related dynamics of the frequency comb in terms of both f0 and fr.  We have also measured the 

approach used for phase stabilization and a discussion of the f0 linewidth and stability that was 

achieved. Furthermore, the fractional stability of the stabilized Cr:forsterite comb was 

determined using in-loop and out of loop measurements.  

 

3.1. A self-referenced prism based Cr:forsterite comb 
Cr:forsterite lasers have previously been phase stabilized and used for infrared frequency 

measurements using two different cavity configurations: one employing a prism-pair for 

dispersion compensation [88] and another employing chirped mirrors [89, 90].  Chirped mirror 

based lasers are generally more compact and can generate higher repetition rate combs but are 

limited with regards to their ability to change output characteristics. Prism based systems on the 
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other hand allow for more control over intracavity dispersion and enable a greater flexibility in 

the output characteristics.  Unfortunately this flexibility comes at the cost of greater complexity 

with regards to the phase stabilization of the frequency comb.  For instance, a common technique 

used in the stabilization of chirped mirror combs is to use pump power changes to differentially 

affect the group velocity and phase velocity of the propagating pulses.  A change in the pump 

power effects the overall intracavity dispersion by changing both the linear and nonlinear 

refractive index of the gain medium but for prism based systems there is  also a change in the 

intracavity beam path through the dispersion prisms [91] which alters their contributions to the 

total linear refractive index. 

 

3.1.1. Cavity configuration 

The cavity configuration of the prism-based Cr:forsterite laser is shown in Fig.3.2 which 

includes a 10W Ytterbium fiber pump laser (IPG Photonics) that operates at 1075 nm with a 

spectral bandwidth of ~3 nm.   The pump is then directed through an acousto-optic modulator 

(AOM) to enable pump power modulation for f0 control before being focused into a 15 mm long 

Brewster cut Cr:forsterite crystal using a 10 cm focal length lens.  Two 100 mm radius of 

curvature (ROC) cavity mirrors, M1 and M2, then maintain an intracavity beam focus calculated 

to have a spot size of radius  ~18 µm within the crystal, which has the same bulk properties as 

that used in Ref. [62] (doping of 0.2% by weight, absorption coefficient α = 1.1 cm-1 at 1075 

nm).  As described in Chapter 2, dispersion compensation is achieved using a pair of intracavity 

SF6 prisms, Brewster cut for 1250 nm, mounted on translational stages and separated by ~ 30 

cm.  The high reflecting end mirror was then initially mounted onto a high-response PZT (f3dB ~ 

30 kHz) to enable fast servo control of fr.  Astigmatic aberration compensation requires the two 

cavity mirrors (M1 and M2) be angled at a relatively large angle of ~30°.  A 6% output coupler 

is then used to extract ~300 mW of mode-locked power for 8W of pump power at a crystal 

temperature of 263 K and autocorrelations reveal pulses with ~40 fs duration for a ~45 nm 

spectral bandwidth (transform limited case yields 37.6 fs for this bandwidth). The repetition rate 

of the laser was 117 MHz. 
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Figure 3.2. Schematic of the prism-based Cr:forsterite laser cavity (OC=output coupler, 

ROC=radius of curvature, HR=High reflector, cavity mirrors= M1 & M2, SF6 dispersion 

prisms=P1 & P2) including the four components used for servo control of both fr and f0.  

fr(1) and f0(1) offer slow speed control while fr(2) and f0(2) allow higher speed control 

Mode locked operation is achieved by dithering the second prism (P2) using a computer 

controlled stepper motor and once optimized, mode-locking can be regularly observed 

uninterrupted over a period of a week.  The laser is enclosed in a Plexiglas box and is purged 

with dry nitrogen to prevent water condensation on the crystal surface and it also helps to 

maintain a constant environment that aids in ensuring a consistent performance of the laser. 

As will be discussed later in section 3, AOM modulation alone was insufficient to 

stabilize f0 due to large excursions and so an additional servo control system was needed to allow 

more significant control.  A small Piezoelectric Transducer (PZT) (with ~ 4 µm of movement) 

was inserted into the translational mount of an intracavity prism (P1) at the tip of the micrometer 

to enable the prism insertion to be modulated at slow speeds (<1 kHz) and produce large shifts in 

f0.  These two control mechanisms allow for both coarse (slow) and fine (fast) control of f0 

simultaneously and allow f0 to be appropriately stabilized but the prism modulation has an 

additional effect on fr stabilization. To compensate for the prism insertion fr required additional 

servo control which was achieved by way of inserting a large PZT (with ~10 µm of movement) 

at the tip of the micrometer used for moving the high reflecting cavity end mirror.  This allowed 

fr to be shifted at slow speeds (<1 kHz) in response to the slow prism modulation and added extra 

dynamic range to fr control to help compensate for environmental conditions that cause it to drift 

over long time periods (hours). 
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For self-referenced f0 detection the laser output is directed into a dispersion-shifted highly 

nonlinear fiber (HNLF) [92] with dispersion D =  1.19 ps/(nm km) at 1550 nm, where 130 mW 

of average power emerges and has a supercontinuum spectrum that spans more than an optical 

octave.  The supercontinuum output is shown in Fig. 3.3 and contains two measurements of the 

spectral coverage due to wavelength response limitations of the equipment used for the detection.  

The main plot in that figure shows the data recorded using an optical spectrum analyzer 

(HP8361A) which has a wavelength cut off at 1700 nm.  While the inset of Fig. 3.3 shows a 

portion of the supercontinuum signal above the cut-off of the optical spectrum analyzer recorded 

using a monochromatic spectrometer and shows that a portion of the supercontinuum covers ~ 

2050 - 2220 nm. 

   
Figure 3.3. Laser spectrum (grey) and supercontinuum spectrum (black).  The main plot 

shows the OSA measured signal with a cut-off at 1700 nm due to the internal detector and 

the inset shows the signal measured beyond 1700 nm using a monochromator revealing a 

large peak at ~ 2060 nm. 

Once generated, the supercontinuum is then directed into an f-2f interferometer where a 

section of the signal at 1030 nm is mixed with the second harmonic of the signal at 2060 nm to 

directly retrieve f0.  A 10 mm long crystal of periodically poled lithium niobate (PPLN) with a 30 

µm grating period is used to generate the second harmonic signal and is held at a temperature of 

150°C to optimize conversion efficiency.  After detection the f0 signal was recorded showing a 
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signal-to-noise ratio of ~40 dB and a linewidth of ~1.5 MHz.  A schematic of the f-2f 

interferometer is shown in Fig. 3.4 and both fr and f0 were detected simultaneously using a pair 

of 125 MHz InGaAs photodetectors.  The detected signals were then input into a pair of 

frequency counters for recording via GPIB connection to a computer. 

 
Figure 3.4. Schematics of the f-2f interferometer used for the self-referenced detection of f0. 

(HNLF =highly nonlinear fiber, SC=supercontinuum, DM=dichroic mirror, F1=1030 nm 

bandpass filter, PBS=polarization beam splitter cube) A surface reflection from the band 

pass filter, F1 is used for fr detection. 

3.1.2. Phase-stabilization of Cr:forsterite laser 

In order to stabilize the entire frequency comb both fr and f0 need to be stabilized.  In the case of 

fr, the detected signal is mixed with a synthesizer at ~ 117 MHz; phase detection generates an 

error signal which is converted to an output signal that drives the PZT mounted end mirror in 

order to change the cavity length and hence fr and minimize the error signal.  Control of the 

cavity length is straightforward and high accuracy control of fr is possible using relatively simple 

but high speed electronics.  The carrier envelope offset signal however is a different matter. 

Before any phase detection can be implemented, the  f0 signal is first sent through a 50 MHz low-

pass filter (LPF) and then mixed with a 1 GHz synthesizer signal where the resulting signal is 

filtered, amplified and frequency divided (by a factor of 120). At this point the resultant signal is 

phase compared to a second synthesizer (set at ~16.8 MHz for f0 locked at 35 MHz) and used to 

generate an error signal for use to vary the pump power input into the Cr:forsterite crystal.  

Figure 3.5 is a schematic of the servo control loops used to control both the fast and slow circuits 

for fr and f0 control and Fig. 3.2 shows what component of the laser cavity setup was modulated 

for the appropriate signal control.  
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Figure 3.5. RF electronics used for servo control of f0 and fr.  In both the f0 and fr case a 

slow (indicated by a 1) and fast (indicated by a 2) servo signal. 

 

Unlike the case for many Ti:sapphire lasers, Cr:forsterite has a narrow power operating 

range over which mode-locked operation can  be maintained.  In our case we cannot change the 

10 W pump power by more than 5% when modulating at slow speeds (less than a few kHz).  

This means that for our system power modulation alone is insufficient to control f0 while 

maintaining a mode-locked output due to frequent large and slow fluctuations in beat note 

frequency.  Therefore a second method is required that does not affect the input pump power but  

allows f0 to be changed by large amounts at relatively slow speeds.  This was achieved by 

modulating the insertion of an intracavity prism (P1 in Fig.3.2) which affects both the group and 

phase velocity of the intracavity pulse and changes both f0 and fr without detrimental effects on 

the mode-locked operation of the laser.  In combination, prism modulation and power 

modulation significantly changed f0 at both fast and slow speeds, but they do not compete.   

Initially the f0 phase detection error signal was used to drive prism P1 at slow speeds (<1 

kHz) and resulted in a ‘loose’ lock on f0 by removing slow but large fluctuations, f0(1).  After this 

the remaining error signal was ac-coupled into a second servo circuit which modulated the AOM 

and the input power of the pump laser and ‘tightened’ the f0 lock, f0(2).  This combined approach 
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enabled f0 to be stabilized to within ~1 Hz of the reference signal and held at 35 MHz for 2-3 

hours. Clearly there are drawbacks to this approach, the main one being that changes in the prism 

insertion also affect the cavity length and degrade fr stability and slow variations in the prism 

insertion were problematic for the fr servo circuit due to its gain at low frequencies.  Therefore 

additional slow servo capability was also required for fr to counteract the prism modulation and 

could also be used to counteract slow temperature fluctuations in the lab beyond the capability of 

the short range PZT mounted to the HR end mirror.  An additional, larger PZT was integrated 

into the translational stage of the end mirror mount and was controlled by a slow loop filter to 

remove the slow fluctuations introduced by the prism modulation for f0 locking.  Again to ensure 

no competition between the two fr servos the error signal generated by the phase difference 

between the detected RF signal and the reference synthesizer was first used in the slow servo 

circuit, fr(1), to drive the large PZT and the residual error signal was ac-coupled into a second 

faster servo circuit, fr(2), to drive the small PZT.  Combining the fast and slow servos it was 

possible to measure a counter limited fr signal that was within 1 mHz of the synthesizer signal.  

Lastly, all three synthesizers used for fr and f0 stabilization were referenced to a commercial 

GPS-disciplined rubidium oscillator offering a long-term stability of ~ 10-13 at a gate time of 1s 

for a week.  After stabilizing the comb the f0 linewidth was recorded using an RF spectrum 

analyzer and a linewidth of ~1.5 MHz was measured (Fig. 3.6).  
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Figure 3.6:  Detected f0 signal, with S/N ~ 40 dB and a FWHM linewidth ~ 1.5 MHz (RBW 

= 100 kHz) 

 

Previous work involving the stabilization of a 420 MHz chirped-mirror based 

Cr:forsterite laser [87] had demonstrated an unusually broad linewidth of 6.7 MHz which was  

attributed to noise during supercontinuum generation seeded by the intensity noise on pump 

laser. Here a similar pump laser has been used with an alternative dispersion compensation 

scheme and a narrower linewidth has been measured.  In both cases the pump laser is a 

commercial 10 W CW Yb:fiber laser operating at 1075 nm with a spectral bandwidth of ~3 nm 

(IPG Photonics).  The pump laser contains multiple longitudinal modes generating a suppressed 

noise spike at ~3.5 MHz which potentially results in a ~10% fluctuation in output power. But 

these higher frequency spikes do not have much effect on the performance of the laser since the 

laser frequency response is almost negligible at these frequencies. 

 

3.1.3. Intensity-related dynamics of the carrier-envelope offset frequency 

The relationship between f0 width and pump power laser intensity fluctuation has been studied by 

many groups. This is basically a study of response of fr and f0 to pump power changes.  A 

detailed study of the intensity related dynamics of a Ti:sapphire frequency comb [85] has shown 
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that prism-based systems are less responsive to pump power fluctuations and intrinsically exhibit 

a narrower f0 linewidth than chirped mirror based systems.  In such a system utilizing prism 

pairs, we optimize the cavity to achieve near-zero net cavity dispersion. The consequence of this 

is that prism based systems are more difficult to stabilize using a servo controlled AOM.  The 

study presented in Ref. [85] demonstrated explicitly that f0 linewidth increased linearly with an 

increased dependence of f0 on pump intensity changes (df0/dI) and can be accompanied by a sign 

reversal in both the fr and f0 response.  These dynamics can be explained by considering a 

corresponding shift in the spectrum of the laser pulse.  In prism-based systems, mode-locking 

conditions can be found under which the intensity-related spectral shift or the magnitude of GDD 

is minimized, thereby minimizing the noise on both fr and f0 and giving narrower f0 linewidths.  

Washburn et al [93] have also studied the intensity related response dynamics using 

Erbium as a gain medium; they have found that the response of the gain medium was also an 

important determining factor for the linewidth of f0. For systems where the response rolled off at 

lower frequencies, the linewidth of f0 was narrower. The roll-off frequency in Er:fiber lasers 

differed depending on the cavity configuration that was used but occurred at around 10 kHz 

whereas for Ti:sapphire laser it was measured at a much higher frequency of ~800 kHz [94].  

Another important factor in determining the linewidth of f0 is the relative intensity noise (RIN) of 

the laser systems being used, meaning both the pump laser and the femtosecond laser [95].  

McFerran et al [96] reported that the linewidth of f0 in fiber lasers can mainly be attributed to 

white amplitude noise on the pump diode laser leading to a breathing-like motion of the comb 

about a fixed frequency [96].  This effect can be observed in the wings of the comb where optical 

linewidth of fiber-laser frequency teeth are particularly large.  Using these factors to develop an 

understanding of laser dynamics means there are strong implications to the optimal use of pump 

power variation to control f0 and fr.  In an attempt to better understand the intensity related 

dynamics of f0 in a prism-based Cr:forsterite system and to make use of power modulation as a 

stabilization approach, a study of the key influential factors determining our f0 linewidth was 

required. 

Prism-based lasers are known to exhibit significant variations in the strength of their f0 

response to power fluctuations (df0/dP) depending on often small and subtle changes to the total 

intracavity dispersion [86].  By understanding the resulting variation in the Cr:forsterite medium 

it may be possible to chose an appropriate configuration where a strong response is detected and 
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use it to stabilize the comb.  Based on the work of previous groups [86, 93-97], three key 

influential factors can be identified which include: laser RIN (pump and the femtosecond laser), 

the response roll off frequency (f-3dB) and the gain medium power response (df0/dP).  RIN is a 

relatively simple measurement to make in that once the output from the laser cavity is incident 

onto a fast photo detector it is simple to record the RIN over a given range using a frequency 

spectrum analyzer.  For our measurements 100 kHz segments were recorded (RBW=1 kHz) 

covering 0 – 3 MHz for the two cases of the pump laser alone (Yb:fiber) and the combination of 

the Cr:forsterite laser and pump laser.  The data recorded is presented in Fig. 3.7 where the red 

trace shows the pump noise only, the black trace shows the combined Cr:forsterite and pump 

noise and the blue trace shows the Cr:forsterite noise only (calculated by subtracting the pump 

noise from the combined noise).  The RIN of Cr:forsterite only shows a 3dB roll-off in the signal 

at around 700 kHz which is similar to that measured in Ti:sapphire [94].  

 

 
Figure 3.7. Pump RIN (Red circles), Cr:forsterite RIN (black squares) and comparison of  

Cr:forsterite and pump RIN (Blue triangles) plotted as a function of detection frequency.  

The alternative technique involved first locking f0 and then modulating the pump power 

at a range of frequencies and measuring how the modulation broadened the linewidth of the 

locked signal. At frequencies below 700 kHz the locked linewidth saw significant broadening 

effects that were reduced as the modulation frequency rose above 700 kHz and were virtually 

undetectable above 1 MHz. 
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Figure 3.7 shows that the response of Cr:forsterite to pump power fluctuations greatly 

diminishes above 700 kHz and indicated that what was previously considered one of the key 

noise sources, the pump laser, was not in fact a significant contributor to the linewidth of the f0 

signal.  Namely that the noise spike at 3.5 MHz due to longitudinal modebeating within the 

Yb:fiber cavity was not significantly influencing the comb stability. 

Another necessary measurement was to find the response of the Cr:forsterite f0 signal to 

pump power fluctuations, df0/dP, which would also give an indication of the change in f0 

linewidth introduced by modulating the pump power for f0 control.  This measurement was 

initially made by recording changes in the position of f0 using a known pump power change (i.e. 

Δf0/ΔP) for a range of different intracavity prism positions.  Additionally the prism itself was 

modulated about each of the different center positions and a change in f0 was also recorded.  

Figure 3.8 shows a schematic of the setup used for the AOM modulation experiment where a 

square wave signal at 3 Hz was applied to the AOM to change the input power by a known 

amount of ~150 mW.  

 

 
Figure 3.8: Experimental configuration used to make Δf0/ΔP measurements as a function of 

relative prism insertion. Pump power changes were made using AOM modulation (ΔP) at 

different fixed prism positions and a change in f0 position was recorded (Δf0). 
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Two such measurements are shown in Fig. 3.9 where amplitude and frequency of 

modulation to AOM are similar at two different prism positions; we can clearly see the reduction 

in beat note response.  

 

        
Figure 3.9. Effect of power modulation at different prism insertion inside the cavity. Blue 

line is the frequency of modulation applied to the AOM and Red is the response of the f0 

measured at two different prism positions. 

 

Fourteen different prism positions were used, each separated by 50 µm which for SF6 

glass corresponds to a group delay dispersion (GDD) difference of ~6.36 fs2 per position 

changing the spectral bandwidth of the output pulses from 30-45 nm.  Figure 3.10 shows the 

results of this experiment with Fig. 3.10a showing the results of the AOM modulation and Fig. 

3.10b show the results of the prism modulation.  In Fig. 3.10a significant variation in Δf0/ΔP as a 

function of the prism position is clearly evident whereas the response of f0 to prism modulation is 

virtually uniform throughout. 
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Figure 3.10. a) Response of f0 to power modulations for different fixed prism settings where 

a maximum of 250 MHz/W was recorded (a prism position change of 0.1 mm results in a 

change in cavity GDD of ~ 12.72 fs2 for SF6) b) Response of the f0 to changes in prism 

insertion for different prism positions (~ 13.5 MHz throughout).  

 

Prior to making this measurement it was difficult to stabilize f0 due to a small df0/dP 

response and large but slow fluctuations (10’s of MHz) in its frequency.  Consequently the servo 

circuit used large pump power changes at slow speeds to attempt to compensate for the changes 

which were sufficient to force the Cr:forsterite laser out of mode-locked operation after a few 

seconds.  This experiment indicated that it was possible to choose a prism position where df0/dP 

was maximized and enable effective servo control of f0.  Due to issues of repeatability in the 

actual response values measured using the previous approach an alternative technique was 

required to accurately quantify df0/dP for the Cr:forsterite laser.  So the idea was to measure an f0 

response using both a fast and slow modulation in pump power at a fixed prism position (or 

intracavity dispersion) and then calculate df0/dP for both cases.  For the fast pump power 

modulation measurement a previous approach was used where f0 was locked using only the 

prism servo and then an AOM ( f-3dB response was measured to be ~ 1.2 MHz) was used to 

modulate the pump power at frequencies between 50 kHz and 2 MHz.  The resultant f0 linewidth 

was then measured on an RF spectrum analyzer and compared to an unmodulated f0 linewidth to 

reveal a broadening that was attributed to the applied pump power modulation.  The AOM 

modulation signal used throughout the fast modulation was sinusoidal with amplitude of ~5 % of 

the 8 W input pump power or ~350 mW peak-to-peak.  For the slow pump power modulation 

measurement a lock-in detection approach was used to ensure only the contributions to an f0 

change arising from the AOM modulation of the pump power were detected.  The basic principle 
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was to first lock the f0 signal using the prism servo only and then to modulate the pump power by 

a known amount and then measure the increased prism servo signal needed to remove that pump 

power change.  This required calibration of the prism servo signal to correspond to a known 

prism insertion indicating a known frequency and by knowing the pump power change 

corresponding to the applied AOM modulation signal.   The lock-in amplifier and pump 

modulation signal were both synchronized using the same 3 Hz (100mV) signal from an external 

signal generator and the modulated f0 signal was detected on a InGaAs photodiode.   Figure 3.11 

shows the relatively simple setup used for both the fast and slow pump power modulation 

experiments.  The fast and slow pump modulation data agreed to within 20% of each other and 

resulted in a calculated value of df0/dP of 90 MHz/W and 110 MHz/W respectively. 

 

 
Figure 3.11. Response of the beat note f0 to both the fast, > 50 kHz, and slow, < 50 Hz, 

power modulations. To measure Δf0 for fast pump modulation, it was first stabilized to 

some extent using a slow-speed (<1 kHz) feedback loop to the prism insertion.  An RF 

spectrum analyzer was used to make Δf0 measurements.  We employ a lock in detection 

technique with slower pump power modulation to avoid ambiguity in the measurement to 

observe small change f0 width.  
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Both the RIN measurements and the df0/dP measurements allowed the effect of the pump 

noise on f0 width to be estimated using a similar expression to that mentioned in references [96]  

and [98].  This expression takes into account the three key factors mentioned previously namely 

RIN, the laser’s response cut-off frequency (f-3dB) and f0’s response to pump power fluctuations, 

df0/dP.  The estimated value of f0 linewidth can be found using Eq. (3.2): 

∆ ଴݂ ؆ ቀܲ డ௙బ
డ௉
ቁ ׬ ௙షయ೏ಳߥሻ݀ߥሺܰܫܴ

଴                                                                                    (3.2) 

Using the previous data of df0/dP (Fig. 3.10) and integrating area under the RIN as shown 

in Fig. 3.7 up to the 3dB response of laser, the estimated f0 linewidth should be ~50 kHz which 

underestimate the actual f0 linewidth of 1.5 MHz by a factor of 30 and suggests the dominating 

linewidth broadening mechanism for f0 in Cr:forsterite is not the pump noise. 

 

3.1.4. Effect of knife edge inside the cavity 

We also discovered that a narrow f0 beat is observable when a knife edge is inserted after the 2nd 

prism, to tune the laser to shorter wavelengths.  Insertion of the knife edge also shifts the central 

frequency of the laser and changes the signal to noise of the beat note. There is some optimum 

value of the knife edge where the beat note seems to be narrower. Figure 3.12a below shows the 

absolute peak power of f0 with respect to knife edge insertion. We have observed that the f0 

linewidth begins to shrink down in its width and a narrow peak begins to appear on top of a wide 

pedestal.  For example, as shown in Fig. 3.12a, when the knife edge reaches ~225 µm of 

insertion towards the beam, we then begin to see the narrowing effect. At this point, the central 

frequency of the laser shifts to 1265 nm and the output power drops by 20 mW as shown in Fig. 

3.12b. Reference position ‘0’ is the position of the knife edge before it just begins to cut off a 

small section of the beam so that we can see the change in output power as well as the shift in 

central frequency of the laser.   
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Figure 3.12 a) Absolute peak power of beat note measured in RF spectrum analyzer with 

the position of the knife edge towards the beam right before the pzt mounted mirror. The 

base value of RF signal was -76.90 dBm. RBW was 100 kHz. Pump power was 7.9 W and 

Average output power was ~300 mW. 0 in X-axis is some referenced value of the knife edge 

when the beam is unblocked. b) Output power measured using power meter. There is also a 

shift in the central frequency of laser output with respect to knife edge measured in 

spectrum analyzer. 

 

The knife edge insertion dramatically narrows the beat note by about two orders of 

magnitude.  Figure 3.13b shows a comparison between the narrow and wide profiles measured 

with and without the knife edge inserted.  The data in Fig 3.13a shows a narrow linewidth of 30 

kHz, which is limited by the resolution band width (RBW) of the RF spectrum analyzer. 

Changing the RBW to 3 kHz yielded a narrow linewidth of ~ 10 kHz (Fig 3.13b). We stabilized 

the laser at every position of the knife edge and measured the f0 linewidth (Fig 3.13c). It was 

difficult to lock the laser at narrower linewidth; this is due to a significant decrease in response 

of the f0 with change in pump power. At wider beat note, it is much easier to lock but the f0 

linewidth shows breathing like behavior and its width changes by ~0.5 MHz as shown in Fig. 

3.13c.   
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Figure 3.13 a) (black) shows narrow f0 beat measured on RF spectrum analyzer with RBW 

of 30 kHz with knife edge insertion. (gray) shows wider f0 signal without knife edge 

insertion measured at different time, approx ~ 1.5 MHz wide, with RBW = 100 kHz. Pump 

powers are similar in either case, ~ 8 W and output laser power was ~300 mW. Our pump 

is 1075 nm Yb doped fiber laser (IPG Photonics). b) It shows narrower signal (zoom in) 

with knife edge insertion, approx ~ 10 kHz wide, with RBW = 3 kHz. c) measured f0 

linewidth of the laser at various positions of the knife edge insertion inside the cavity.  

 

We have measured the response of f0 to the pump power for different knife edge 

positions; we performed both the slow and fast modulation exactly the same way it is described 

in section 3.1.2. The only difference is that we did not change the prism position as shown in Fig. 

3.10. The data shown in Fig. 3.14 are taken at different time as compared to the data shown in 

Fig. 3.12 and 3.13; it is expected that the laser response will change on a day by day basis since 

we have to tweak the laser several times to get its stable operation. The difference is obviously 

960 963 966 969

-80

-60

-40
In

te
ns

ity
 (d

B
m

)

Frequency (MHz)

(a)
964.9 965.0 965.1

-55

-50

-45

-40

In
te

ns
ity

 (d
B

m
)

Frequency (MHz)

(b)

0 200 400 600

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f 0 w
id

th
 (M

H
z)

K n ife  Insertion  (μ m )

(c)



 55

clear if we compare Fig. 3.13c and 3.14b. In the former case we changed the knife edge until we 

got the narrowest f0 linewidth and we did not insert the knife edge further. In later case, we 

inserted the knife edge beyond the point where we get narrowest f0 linewidth and clearly saw the 

broadening afterwards. We then compared the measured f0 linewidth at every knife edge position 

to the estimated value of the f0 linewidth calculated form Eq. 3.3. The calculation based on 

df0/dip, f-3dB and pump RIN significantly underestimates f0 linewidth. 

                  

  
Figure 3.14 (a) slow and fast response of the f0 to the pump power modulation. The 

modulation frequency of the slow modulation is 5 Hz whereas that of the fast frequency 

varies from 50 kHz to 2 MHz. In both the slow and fast modulations, the amplitude of the 

modulation is 100 mVP-P which corresponds to approximately 10% change in pump power. 

The input pump power is ~9 W. (b) Red star in the picture is the measured f0 linewidth and 

the black circle is f0 linewidth calculated with the help of Eq. 3.2. The basic estimation of 

calculated f0 linewidth underestimates the measured value. 
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3.1.5. Fractional stability of the Cr:forsterite comb 

To measure the fractional frequency stability of the stabilized Cr:forsterite comb, both in-

loop and out-of-loop stability measurements were required. To make in-loop measurements, both 

fr and f0 were counted using different gate times and a corresponding Allan deviation was 

calculated for each signal at each of the gate times used. The overall comb lock was relatively 

robust and could be maintained for several hours. However, the fractional stability of f0 degraded 

if the fr lock was optimized, as observed on the size of the servo error signal while locked. The 

frequency counters did not reveal any difference because they were limited to measuring 10’s of 

μHz at 117 MHz.   Consequently it was not possible to count fr exactly but only to place an 

upper limit on its stability. Sometimes, during each data run, the phase lock loop of the 

Cr:forsterite laser comes out of lock and we need to manually relock it. This may be due to 

several factors such as thermal drift, pump power fluctuation, temperature of the lab etc. Most of 

these data were recorded and removed from the raw data. Each of this data set has been recorded 

for different gate time of the counter to characterize the stability of the comb by calculating 

Allan deviation. 

Allan deviation is the non-classical statistics used to estimate stability of the clocks, 

oscillators and frequency standards. Allan deviation measures point to point fluctuations of the 

data unlike standard deviation which measures fluctuation from mean value. Allan deviation is 

also used to identify types of oscillator and measurement system noise. The slope of the Allan 

deviation vs. sampling time or gate time plot will tell you about the kind of noise in the 

oscillator. Allan deviation can be expressed mathematically as, 
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where yi is a set of frequency measurements that consists of individual measurements, y1, y2, y3, 

and so on; N is the number of values in the yi series. A low Allan variance is a characteristic of a 

clock with good stability over the measured period of time. We use the same statistics to 

calculate the frequency stability of our frequency comb. The time series measurement of the data 

of f0 and fr is shown in the fig. 3.15 below. 
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Figure 3.15. Counter frequency measurement of fr and f0 with 1-s gate time (upper two 

graphs) and 10-s gate time (lower two graphs). We have removed some of the occasional 

large spikes from the graph. 

Each of the measurements of fr and f0 consists of count data of three different counters 

that were monitored and recorded in a computer using a program called “peasoup” originally 

written at NIST, Boulder. We repetitively gate the counter using different gate times of 1 ms, 10 

ms, 100 ms, 1000 ms and 10000 ms in each run. The repetition rate data were limited by noise in 

the counters to approximately ∆f/f ≈ 5×10-11 or 50 mHz at 1-s gate time. We then calculate the 

Allan deviation to describe the stability of fr and f0. Based on these measurements we assign an 

upper limit of fractional frequency uncertainty for the stabilized Cr:forsterite frequency comb of 

~ 5×10-12 at a 1 second gate time. This is the in-loop measurement of the stability of the comb 

and this measurement does not take into account noise in the GPS system. Reliable measurement 

of the stability of the comb can be carried by making out-of-loop measurement. However, our 

out of loop measurement is also limited by the stability of the GPS reference at 2×10-11 at 1s-gate 

time. The out-of-loop measurement of comb stability is discussed in Chapter 7. Figure 3.16 

below shows the Allan deviation of the time series measurements of fr and f0. 
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Figure 3.16 Fractional stability of f0 (upper graph) and fr (lower graph) for different gate 

times measured in RF domain. 

To the best of my knowledge, this the first stabilized frequency comb using a prism-

based Cr:forsterite laser. As discussed already, Cr:forsterite laser is a difficult laser to work with 

because of several drawbacks of the crystal itself. Moreover, our pump is not strictly single mode 

and it has lots of high frequency noise as well as significant power fluctuations. We have 

developed four different servo systems including a prism servo inside the cavity to stabilize the 

Cr:forsterite laser. These kinds of servo systems, we believe, can be used in many other less 

stable laser systems as ours. Kim et al. at NIST also stabilized the chirped mirror based 

Cr:forsterite laser and was able to phase stabilize it with the frequency stability of 2.9×10-13 at 1-

s of averaging time [87]. But their comb is referenced with a maser which has the frequency 

stability of 2.5×10-13 at 1-s; at least 2 order of magnitude better than our GPS reference system 

which puts the upper limit on the frequency measurement. One subtle difference between two of 

these laser systems besides the cavity configuration is the width of the f0 which is much wider in 

the chirped mirror based Cr:forsterite laser system, ~ 6.7 MHz, despite employing a similar 

pump system. They attributed the width of the f0 to the level of intensity noise present on the 

pump laser but it can also depend on the cavity configuration. We have demonstrated that the 

dominating linewidth broadening mechanism for f0 in Cr:forsterite is not the pump noise since 

the estimated f0 linewidth should be ~50 kHz as per the noise in the pump system which 

underestimate the actual f0 linewidth of 1.5 MHz by a factor of 30. Our result of knife edge 

insertion inside the cavity also shows the potential to use prism based Cr:forsterite laser with 

much narrower f0 width of around 10 kHz. It was however found to be relatively easy to stabilize 
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f0 using pump power modulation for comparatively broad f0 linewidth. We use our stabilized 

Cr:forsterite laser system to measure the absolute frequency of acetylene lines inside the hollow 

core optical fiber which will be discussed in later chapters. The next Chapter basically focuses on 

the spectroscopy inside these hollow core fibers which is the first step toward developing these 

portable frequency references. 
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CHAPTER 4 - Saturation spectroscopy of acetylene inside hollow 

core fibers 

This Chapter describes the nonlinear spectroscopy of acetylene in the near infrared spectral 

region inside a photonic band gap fiber. The near infrared region of the optical spectrum is an 

area of intensive research due to its relevance to telecommunication and optical metrology. 

Acetylene provides a large number of reference transitions coincident with the international 

telecommunication band.  Acetylene contains about 50 strong lines between 1510 nm and 1540 

nm in the ν1+ν3 ro-vibrational combination band. We have observed the Doppler-free saturated 

spectrum of several of these lines, inside a variety of fibers. Saturated absorption spectroscopy is 

performed on acetylene inside photonic bandgap fibers of small (~10 μm) and large (~20 μm) 

core diameters.  The large core fiber offers significant advantages, including a significant 

reduction in background oscillations which have been attributed by others to surface modes.  

Furthermore, the linewidth is reduced significantly due to increased interaction time between the 

molecules and the laser beam.  The ν1 +ν3 band near 1532 nm is explored, and line widths of 20-

40 MHz are observed.  Recently, we have used much larger core, kagome structured (~68 μm 

core) fiber, to perform saturation spectroscopy and observed ~10 MHz linewidth. This is 

described in the last part of this chapter. The line width and signal strength depend upon various 

parameters, including fiber diameter, pressure, optical power, and fiber length but is mostly 

dominated by the mode field diameter of the fiber.   

 

4.1. Introduction 
The development of optical frequency standards in the near-infrared spectral region has been 

motivated in part by the optical telecommunications industry.  Acetylene gas offers a series of 

well-spaced spectral features in the 1.5 μm region, spanning the C band.  By pressure-broadening 

these features to about 1 GHz in width, the National Institute of Standards and Technology 

(NIST) has created portable standards of moderate uncertainties, between 13 MHz and 130 MHz, 

that can be built into commercial devices [6, 99].  Meanwhile, sub-Doppler spectroscopy of 

molecular gases provides high-accuracy infrared optical frequency references.  Typically the 

weak molecular overtone transitions employed at these wavelengths require high powers for 
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saturation, and therefore to date all high-accuracy references have been based on power build-up 

cavities [100, 101] , which provide power amplification and long effective interaction lengths but 

are not readily portable.  A series of measurements of lines in the ν1 +ν3  band [101-103] led the 

Comitté International des Poids et Mesures (CIPM) to adopt a value of the P(16) line in 13C2H2 

with an uncertainty of 100 kHz [104].   With the advent of frequency comb technology, groups at 

the National Institute of Advanced Industrial Science and Technology (AIST) in Japan [105, 

106], National Physics Laboratory (NPL) in Great Britain  [107], and the National Research 

Council (NRC) in Canada [108, 109] have measured these lines with greatly increased precision.  

The CIPM recently reduced the uncertainty of the P(16) transition to 10 kHz, and most recently, 

61 lines in the band have been realized with a width of 600 kHz and measured to an uncertainty 

of 1.4 kHz [110].  There are many advantages to performing saturation spectroscopy independent 

of a power build-up cavity, as described in Ref. [111], where signals with widths ~1 MHz have 

been observed inside a 1 m long glass cell. 

 While the science of frequency metrology has been transformed, optical fiber technology 

has simultaneously been revolutionized.  The advent of hollow, low-loss photonic bandgap 

(PBG) fiber allows light to be confined at high intensities in a hollow air or gas-filled region with 

very low loss [19].  These fibers are vastly superior to capillary fibers for small core diameters 

[20], and have therefore been used in many recent demonstrations of nonlinear light-gas 

interactions.  For example, acetylene has been detected in small quantities inside a PBG fiber 

employed as a gas sensor [112], and Raman scattering in hydrogen-filled fiber has created very 

tunable laser light [22]. Furthermore, electromagnetically induced transparency (EIT) in 

acetylene-filled PBG fibers [113, 114], revealing sub-Doppler transitions when the pump and 

probe lasers were arranged in a co-propagating laser beams [115].  Lasers have been locked to 

the side of Doppler-broadened transitions in acetylene-filled fibers, toward the development of 

portable frequency references [24].  These fibers were sealed by splicing the PBG fibers to solid-

core fiber on both ends.  Finally, saturated absorption has been observed inside photonic bandgap 

fibers, but with larger linewidth and reduced signal-to noise [115, 116]. 

 All the previous work in PBG fibers has been based on single laser beam interrogation, or 

co-propagating pump-probe geometry.  To establish frequency references based on gas-filled 

PBG fiber, a counter-propagating geometry is required, which gives rise to unwanted optical 

interference. We characterized saturated absorption inside PBG fibers, as a function of gas and 
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fiber dimensions.  We have measured saturated absorption features inside PBG fibers for a 

variety of pressure and pump power values.  The central dip in transmitted power is due to the 

presence of the pump beam, which burns a Bennett hole in the ground-state population of the 

acetylene molecules.  When the probe and the pump are resonant with the same velocity class of 

molecules, the probe light is less strongly absorbed.   A laser may be locked to this feature and 

used as a frequency reference which we will discuss in chapters 5 and 6. 

 

4.2. Theoretical background: Doppler free saturated absorption spectroscopy 
The technique of Doppler-free saturated absorption spectroscopy was developed by the research 

group of Arthur L. Schawlow, who was one of the recipients of the 1981 Nobel Prize in physics 

for this work. Before the development of this technique, Doppler widths of about 500 MHz, 

caused by the random thermal motion of the atoms being studied, ultimately limited the 

resolution of optical spectroscopy. Doppler-free saturated absorption spectroscopy is insensitive 

to this effect. In this technique, there are two counter-propagating laser beams- a saturating beam 

and a probe beam. The saturating beam identifies a group of molecules in a narrow interval of 

axial velocities and pumps a sizable portion of the molecules from the lower level to the upper 

one. It thereby creates hole in the velocity distribution of the lower level. A second laser beam, 

called a probe beam, is needed to probe this modified velocity distribution of molecules. When 

both saturating and probe beams are tuned to interact with the same group of molecules, the 

probe beam will experience a lower amount of absorption or a modified refractive index and 

therefore a saturated absorption signal will emerge from the Doppler-broadened absorption 

background. The saturating field and probe beam generally influence each other but we have 

minimized that effect by working at lower probe power. 

The effect of optical pumping on the saturation of population densities can be explained 

by simple two-level systems in which the two levels are coupled to each other by absorption or 

emission and by relaxation processes.  Such a two-level system is realized by many atomic 

resonance transitions without hyperfine structure.   

Let E1and E2 be the lower and upper energy levels respectively, with population in each 

level denoted by N1 and N2 respectively. 1γ  and 2γ  are the decay rates for levels 1 and 2. 
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Figure 4.1. Uncertainty in the energy level.          

                                                                       

When a monochromatic laser beam 0 ( )E E cos t kzω= −  passes through the sample of 

molecules, the intensity, I, of the laser beam changes according to Beer’s law as, 

dI I
dz

α= −            (4.1) 

where ( )α α ν= is the frequency-dependent absorption coefficient. The absorption 

coefficient ( )α ν for a transition 1 2→ depends upon the population densities of the lower and 

upper levels, and on the optical absorption cross-section 12σ of each absorbing atom. 

To a good approximation, for a single weak beam, ( )α ν does not depend upon position. 

Therefore, the overall transmission through the fiber cell of length l is given by  

0 exp[ ( ) ]I I lα ν= −           (4.2) 

where ( )lα ν is also called optical depth. 

 
Figure 4.2. Intensity profile due to absorption of radiation. 
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The exact form of ( )α ν depends upon physical situation. Ideally, it would be Lorentzian with a 

characteristic linewidth equal to that of the natural linewidth of the transition (Fig.4.2). However, 

many mechanisms such as Doppler broadening, transit time broadening, power broadening etc. 

serve to broaden that linewidth. Typically the absorbance ( )α ν for saturation absorption is 

calculated either in the limit of equal pump and probe power or in the case when the saturation 

parameter, which we will discuss later, is much smaller than unity; here we seek to make a more 

general calculation of α that will apply to our system. 

The absorption of the incident wave causes changes in the population of the levels 

involved in the absorbing transition. The rate Eq. for the population densities N1 and N2 of the 

non-degenerate levels 1  and 2  with statistical weight factors 1 2 1g g= = can be written as,  

1
12 2 1 1 1 21 2 1( - ) -dN B N N R N R N D

dt νρ= + +        (4.3) 

2
12 1 2 2 2 12 1 2( - ) - R NdN B N N R N D

dt νρ= + +       (4.4) 

where νρ is the spectral energy density of the radiation field, 12B  and 21B are Einstein’s 

coefficients, 1 1R N  is relaxation of N1 due to collision of 1 with anything that depopulates state 1 

due to collision with velocity v at z, 2 2R N  are the relaxation of  N2 due to collision of 2 with 

anything that depopulates state 2. R21 arises due to inelastic collisions that knock a molecule in 

2  to 1 . 12 1 21 2 and R N R N  are spontaneous emission that depopulates level 1 and 2 , and 1D  

and 2D  take care of diffusion rate of molecules in both the levels.  

 When a laser beam 0 ( )E E cos t kzω= −  with the mean intensity, 2
0 0

1
2

I C Eε=  passes 

through the sample of molecules, which absorb on the transition 2 1 LE E ω− = , the power dP 

absorbed in the volume dV Adz= is given by 12dP AI Ndzσ= Δ . Therefore we can write,  

Energy at Lω absorbed in volume 3( , )( ) ( , ) L
L L

L

I zAdz N v Adz z d vωσ ω ω
ω

= Δ∫  
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where v is the velocity of the molecule under consideration in the direction of propagation of the 

laser beam, 3( )N v Adzd vΔ∫ represents the number of targets, ( , )( , ) L
L

L

I zz ωσ ω
ω

is the rate of 

transition per target and Lω represents energy per transition. 

3

3

3

Energy absorbed in volume ( , )
( )

( , ) ( , ) ( , ) ( , )

( , )1 ( , ) ( , )
( , )

log ( , ) ( , ) ( , )

L

L
L L

L
L

L

L
L

AdzI z
Area A

I z N v z v I z d v
z
I z N v z v d v

z I z
d I z N v z v d v

dz

ω

ω σ ω ω

ω σ ω
ω
ω σ ω

∴Δ = −

Δ
⇒ = −Δ

Δ
Δ

⇒ = −Δ
Δ

∴ = −Δ

 

If ∆N were independent of ( , )LI zω , then the integral gives ( , )L zα ω . Typically ∆N(v,z) is also 

independent of z, so, 
3( , ) ( ) ( , ) ( , )L L Lz N v z v d Vα ω α ω σ ω= = − Δ∫       (4.5) 

3log ( , ) ( , ) ( , )L
L

d I z N v z v d V
dx

ω σ ω∴ = − Δ∫       (4.6) 

Now let us take the case when both pump and probe are present at the same time,  
'

'1
2 1 '

'
'

2 1 1 21 2 1'

( , ) ( ) ( )( , ) ( , ) ( , ) ( , )

( ) ( )( , ) ( , ) ( , ) ( , ) ( , )

L L
sp L L

L L

L L
L L

L L

dN v z I IN v z N v z v v
dt

I IN v z v v R N v z R N v z D

ω ωγ σ ω σ ω
ω ω

ω ωσ ω σ ω
ω ω

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
⎡ ⎤

+ + − − + +⎢ ⎥
⎣ ⎦

 

First bracketed expression in above equation represents depopulation of N1 level with pump and 

probe where they have different frequencies Lω and '
Lω respectively. Similarly, the second 

bracketed term is due to an increase in the population of level 2 due to the presence of both 

pump and probe. 
'

'1
1 2 '

2 1 1 21 2 1

( , ) ( ) ( )( ) ( , ) ( , )

( , ) ( , ) ( , )

L L
L L

L L

sp

dN v z I IN N v v
dt

N v z R N v z R N v z D

ω ωσ ω σ ω
ω ω

γ

⎡ ⎤
∴ = − − + −⎢ ⎥

⎣ ⎦
+ − + +

   (4.7) 
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Similarly, 

'
'2

1 2 '

2 2 2 12 1 2

( , ) ( ) ( )( ) ( , ) ( , )

( , ) ( , ) ( , )

L L
L L

L L

sp

dN v z I IN N v v
dt

N v z R N v z R N v z D

ω ωσ ω σ ω
ω ω

γ

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
− − + +

   (4.8) 

Now, at steady state, 1( , ) 0dN v z
dt

= , so, 

'
'

1 2 '

2 1 1 21 2 1

( ) ( )( ) ( , ) ( , )

( , ) ( , ) ( , ) 0

L L
L L

L L

sp

I IN N v v

N v z R N v z R N v z D

ω ωσ ω σ ω
ω ω

γ

⎡ ⎤
− + −⎢ ⎥

⎣ ⎦
− + − − =

 

1 2 2 1 1 1But ,  and N N N D R N D= − ≈ − , we can get, 

21 2
1 2 '

'
21'

( ) 2
( ) ( )2 ( , ) ( , )

sp

L L
L L sp

L L

N R D
N N N

I Iv v R

γ
ω ωσ ω σ ω γ
ω ω

+ −
Δ = − =

⎡ ⎤
+ − + +⎢ ⎥

⎣ ⎦

   (4.9) 

Where we have assumed that 1 1R N  includes the collisions which do not change velocity. 

When laser is turned off, all the population is in 1 .The unsaturated population 

difference ∆N0 can be written as 

0 2

21

2

sp

DN N
Rγ

Δ = −
+

         (4.10) 

But, when beam is on, we can rewrite expression 4.9 as, 

2
0

21
'

'
'

21

2

1( ) ( )2 ( , ) ( , )
1

sp

L L
L L

L L

sp

DN
R NN

SI Iv v

R

γ
ω ωσ ω σ ω
ω ω
γ

−
+ Δ

Δ = =
+⎡ ⎤

+ −⎢ ⎥
⎣ ⎦+

+

    (4.11) 

where the saturation parameter, 

 

'
'

'

21

( ) ( )2 ( , ) ( , )
( , )

L L
L L

L L

sp

I Iv v
S S v z

R

ω ωσ ω σ ω
ω ω
γ

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦= =
+

      (4.12) 

is the saturation parameter which includes a contribution due to both pump and probe. If we 

consider only pump beam propagation, then the saturation parameter can be written as 
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' '

'
21

2 ( , ) ( )
( )
L L

L sp

v IS
R

σ ω ω
ω γ

−
=

+
         (4.13) 

It gives the ratio of the induced transition probability to the mean relaxation probability. The 

intensity I=IS at which the saturation parameter S becomes S=1 is called the saturation intensity, 

where, 
'

21( )
2

L sp
S

R
I

ω γ
σ

+
=          (4.14) 

It is obvious from Eq. 4.11 that, for S=1, the population difference NΔ  decreases to one 

half of its unsaturated value 0NΔ . Saturation also decreases the absorption coefficient  ( )α ω  by 

the factor (1+S) as shown in Fig. 4.3. 

 ( )( )
1s S
α ωα ω =

+
       

 

 

Figure 4.3. Saturation absorption profile. 

 

As mentioned before, collisions usually do change the velocity so this expressions and original 

expression for dN1/dt is approximate. Now, Eq. 4.6 reduces to, 
0

3log ( , ) ( ) ( , )
1 ( , )

A L
A L

d I z N v v d v
dz S v z

ω σ ωΔ
∴ = −

+∫  and     (4.15) 

0
' 3log ( , ) ( ) ( , )

1 ( , )
B L

B L
d I z N v v d v

dz S v z
ω σ ωΔ

∴ = − −
+∫      (4.16) 

  ( )1 2N Nα ∝ −

sγ
( )sα ω

ω

( )0α ω

γ
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Where, ( , )A L vσ ω and '( , )B L vσ ω − are absorption cross-section of pump and probe having 

intensity of IA and IB respectively, 

Let us suppose that probe IB is weak as compare to pump intensity IA; then we can ignore 

the term with IB in expression 4.12 for ∆N. Also, ignore 2

21sp

D N
Rγ +

, so eq. 4.12 can be 

written as, 

21

( )2 ( , )
( , )

A L
A L

L

sp

Iv
S S v z

R

ωσ ω
ω

γ
= =

+
       (4.17) 

Equation 4.15 can be written as, 
0

3

21

log ( , ) ( ) ( , )( )2 ( , )
1

A L
A L

A L
A L

L

sp

d I z N v v d VIdz v

R

ω σ ωωσ ω
ω

γ

Δ
∴ = −

+
+

∫     (4.18) 

In two-level system, the absorption cross-section of a molecule in level E1 that moves 

with velocity vz has a  Lorentzian profile with natural line widthγ  given by, 

( )
0

0

2/2
( , ) 2

2( )
2

A L

L
L z

v

v
c

γ
σ ω σ

ω γω ω

=
⎛ ⎞− − +⎜ ⎟
⎝ ⎠

       (4.19)  

where 0 0( )L
zv

c
ωσ σ ω ω= = +  is the maximum absorption cross-section at the line center 

of the molecular transition. 

( )0 3

0

0 21

2/ 2log ( , ) ( ) ( , )
2 2

2( ) 2 ( , )
2 21

2( ) ( )

A L A L

L
L z A A L

L
L z L sp

d I z N v v d v
dz

v I z
c

v R
c

σ γω σ ω

ω γ γω ω σ ω

ωω ω ω γ

∴ = −
⎛ ⎞ ⎛ ⎞− − + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

− − +

∫

 ( )0 3

0

0
21

2/ 2 ( )
2

2 ( , )2 22( )
2 ( )

A L
L

L z
L sp

N v
d v

I z
v

c R

σ γ

γσ ω
ω γω ω

ω γ

= −
⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠− − + +⎜ ⎟ +⎝ ⎠

∫      (4.20)                           
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At thermal equilibrium, all the molecules of a gas follow a Maxwell velocity distribution. 

Therefore the number of molecules with velocity vz in the direction of the observed light is given 

by, 

  
2

2

-v(v ) v exp z
z z

thth

Nn d
vv π

=         (4.21) 

where N is total number of molecules. 

( )
2

02

0

0
21

-v 2exp / 2
log ( , )

2
2 ( , )2 22( )

2 ( )

z
z

thA L

A L
L

th L z
L sp

dv N
vd I z

dz
I z

v v
c R

σ γ
ω

γσ ω
ω γπ ω ω

ω γ

∞

−∞

∴ = −
⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎛ ⎞ ⎝ ⎠− − + +⎨ ⎬⎜ ⎟ +⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

∫

(4.22)

 

If Lorentzian is sharper than Gaussian, then, 
0

21

2
2 ( , )2 12 /

2 ( )

A L
L

L sp th

I z

R c v

γσ ω
ωγ

ω γ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎝ ⎠+⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠  

( )
2

0
0

0

0
21

log ( , ) 2exp / 2
/

/
2

2 ( , )2 22( )
2 ( )

LA L

L

L z

A L
L L

th L z
L sp

d I z N
dz c

cdv

I z
v v

c R c

ω ωω σ γ
ω

ω

γσ ω
ω ωγπ ω ω

ω γ

∞

−∞

⎧ ⎫⎛ ⎞−⎪ ⎪∴ = − −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎛ ⎞ ⎝ ⎠− − + +⎨ ⎬⎜ ⎟ +⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

∫
 (4.23) 

The integral is in the form, 

2 ( ) / ( ) /A L A L

dx
x a bI c a bI c

π
ω ω

∞

−∞
=

+ + +∫
      (4.24) 

So above equation reduces to, 
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( )
2

0
0

0

21

2exp / 2
/log ( , )

2
2 ( , )2 2 /

2 ( )

L

LA L

A L
L

th
L sp

N
cd I z

dz
I z

v
R c

ω ω σ γ π
ωω

γσ ω
ωγ

ω γ

⎧ ⎫⎛ ⎞−⎪ ⎪− −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭∴ =

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠+⎜ ⎟ +⎝ ⎠

  (4.25) 

( )
2

0
0

2exp / 2
/

1

L

L

A

S

N
c

I
I

ω ω σ γ π
ω

⎧ ⎫⎛ ⎞−⎪ ⎪− −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭=

+
    (4.26) 

Where 21

0

( )
2

2
2

L sp
S

R
I

ω γ

γσ

+
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is saturation intensity as mentioned in eq 4.14.  

Equation 4.26 is in the form, 1

2

log ( , )
1

A L

A

d I z C
dz C I

ω
= −

+
which can be solved 

analytically, 

2
1

1 A
A

A

C I
dI C z

I
+

= −∫  where, ( )
2

0
1 0

2exp / 2
/

L

L

C N
c

ω ω σ γ π
ω

⎧ ⎫⎛ ⎞−⎪ ⎪= − −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 which gives, 

1
2 2 12 1 2 tan 1A AC I h C I C z−+ − + = −       (4.27) 

( , ) ( )A LI z f zω⇒ =  This expression gives pump power at every point along the 

propagation direction. 

Now, let us consider probe beam in presence of pump,  

' ' 3( )( , ( ) ( , )
1 ( , )B L A B L

A

N vI z v d V
S v I

α ω σ ω= −
+∫  

Similar to expression (4.22), we can write, 



 71

( )
2 '

'
0 02

'

0

21 0

2-v 2 2exp / 2 / ( )
2

( , ( )
2

2 ( , )
21

2
2( ) ( )

2

z L
z L

th
B L A

A L

th

L
L sp L z

dv N v
v c

I z

I z
v

R v
c

ω γσ γ ω ω
α ω

γσ ω
π

ω γω γ ω ω

∞

−∞
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 (4.31) 

The integration gives the general expression of absorption coefficient of the probe in the case 

when both the pump and probe are simultaneously tuned over the velocity distribution.  

If the frequency of the pump and probe are same i.e. '
L Lω ω ω= = , we can easily solve 

this using contour integral since there are four poles as seen from the denominator of the above 

integral. We can write 4.31 as 
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Equation 4.33 is the absorption coefficient in the case when both the pump and probe are 

simultaneously tuned over the velocity distribution with the same frequency. 

We can write 
2 2

2 2
s A

S

I
I

γ γ⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 as, 
2 0

21

2
22 2

2 2 ( )

A
s

L sp

I

R

γσ
γ γ

ω γ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠= +⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 

2 2 20

21

2 1
( )

A
s s

L sp

I S
R

σγ γ γ γ γ
ω γ

∴ = + ⇒ = +
+

     (4.34) 

Similarly, we can simplify, * 1 1
2 2

s
S Sγ γ γ+ ⎡ ⎤Γ = = + +⎣ ⎦      (4.35) 

The FWHM of *
SΓ  represents the sum of the width of the saturated dip due to the strong 

pump beam and the unsaturated homogeneous absorption width γ  of the weak probe beam when 

both the pump and probe are simultaneously tuned; the detected dip is called a Lamb dip. 

 We can rewrite Eq. 4.33 in the form 
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If the intensity of the probe beam is very small as compared to the pump beam, i.e. for 

S<<1, Sγ γ≈  , we will get 
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This equation indicates that our experimental line profile with a narrow feature on top of 

a Doppler profile has the form of a Gaussian Profile times (1-Lorentzian Profile) as 0 ( )α ω has 

Gaussian profile. If we subtract 0 ( )α ω from ( )Sα ω , we will get the line shape for a narrow 

feature which would be a narrow Lorentzian times a broad Gaussian. 

 Considering the form of the equation above, we have fitted our line shape with the 

similar kind of function in Origin software. Our exact fitting expression in the Origin software is, 
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   (4.38)  

where Ag is the amplitude of the Gaussian Profile, Ag times Al gives the amplitude of the narrow 

feature on top of the Gaussian profile, Xcg and Xcl are the peak values of the two peaks, and gω  

and lω  are the widths of the profiles.  

 

4.3. Experimental setup 
The experimental setup used to realize these saturated absorption spectra is shown in Fig. 

4.4.  Two PBG fibers from Crystal Fibre A/S with central wavelengths of 1.55 μm were used.  

The “20 μm fiber” has 19 missing cells, a core diameter of ~20 μm, and 0.78 m length.  The “10 

μm fiber” has 7 missing cells, a core diameter of ~10 μm, and 0.90 m length.  As shown, both 

ends of the PBG fiber are fed into the vacuum chambers (VC) via either Torr-seal® feed-

throughs or compression fittings.  A diode laser (ECDL) emits ~5 mW, 10% of which is 

amplified by a fiber amplifier (EDFA) to up to 500 mW.  70% of this power becomes the pump 

beam, and is coupled into the evacuated PBG fiber after passing an isolator (Iso.), a polarization 
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controller (PC), and a polarizing beam splitter (PBS).    The probe beam originates at the EDFA, 

passes through a double-passed acousto-optic modulator (AOM), an isolator and a PC, and then 

counter-propagates the pump beam through the PBG fiber. The polarization of the pump and 

probe beams are intended to remain orthogonal inside the PBG fiber, but polarization rotation 

inside the fiber must be corrected using half-wave and quarter-wave retarders.  Thus the probe 

beam exiting the fiber can be separated from the pump beam path at the PBS, and the transmitted 

probe beam power is detected by a photodetector (PD).  The AOM and waveplates are essential 

for minimizing the noise due to interference between the pump laser light reflected from the end 

of the fiber and the probe beam. 

 

ECDL EDFAEDFA 2x
AOM

70%

30% PC

PBG

PBS PBS2
λ

4
λ

PD

10%

90%

Iso.

DiagnosticsDiagnostics

VCVC

 
Figure 4.4.  Schematic of experimental setup.  Solid lines indicate optical fiber, and dashed 

lines indicate free-space optical beams. Aspheric lenses are shown as shaded ovals, the 

vacuum chambers (VC), indicated schematically, have wedge windows.  The PBG image, 

courtesy of Crystal Fibre A/S, depicts the 20 μm fiber. 

 

A Michelson interferometer is used to calibrate the horizontal axis of the oscilloscope in 

optical frequency units. The laser beam is divided by a beam splitter and two beams are 

recombined at the beam splitter and detected by a photodetector after the beams have traveled 

distances of 2L1 and 2L2 (as shown in Fig. 4.5). After returning to the beam splitter, the two 
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beams will have a phase difference due to their path differences.  As the laser frequency is 

scanned, this phase difference will change, causing a series of maxima and minima. 

The frequency spacing of the resolution maxima is given by, 

    
1 22( )
c

L L
υΔ =

−
 

 

Figure 4.5. Michelson Interferometer. 

 

We can also use the fiber based device such as beam splitter to create a cavity which 

gives similar kinds of fringes but slightly lower contrast as compare to a Michelson 

interferometer. The spacing of the fringes or free spectral range, FSR, is governed by the length 

of the closed loop (Fig 4.6). 

 
Figure 4.6. Fiber based interferometer 
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Now, we focus the pump and probe beams into the photonic band gap fiber placed inside 

the vacuum chamber. The vacuum chamber consists of two separate parts, connected to each 

other only through the photonic band gap hollow core fiber (PBG Fiber). A long PBG fiber is 

kept inside two hollow metal tubes. Two extreme ends of the stripped and nicely cleaved small 

portion of fiber are just outside the metal tube as shown in Fig. 4.7.  

 

 
Figure 4.7. Compression fitting for fiber adapter. Torr seal is used to create a vacuum seal 

between the fiber and hollow metal tube. 

An epoxy such as “Torr Seal” is used to create a vacuum seal between the fiber and the 

hollow metal tube. The metal tube is in turn sealed to two separated vacuum chambers by 

compression fittings. Gas is then introduced into both chambers, one on each end of the already 

evacuated chambers so that an equilibrium state of pressure inside the fiber is reached quickly.  

There is some drawback of using epoxy as a sealant. Since the fiber is glued to the steel 

tube, we need to cut the steel tube along with the fiber to re-cleave or change the fiber in the case 

when fiber degrades in transmission over time or we want to use different fiber. Therefore we 

now use a slightly different compression fitting technique that creates a seal using an O-ring 

directly around the fiber as shown in Fig. 4.8. 

 
Figure 4.8. Compression fitting for fiber adapter without the use of “Torr seal”. 
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4.4. Data analysis 
The theory of saturated absorption spectroscopy is well-known in vapor cells [117]. It has been 

also discussed in the theory section of this Chapter. In our pump-probe setup, we shift the 

frequency of the probe by a fixed amount different from the pump frequency using an AOM.  

The propagation of a laser beam with power Pi along the fiber in direction z can be described by 

dP i = - P i (z) αi(ν,z) dz, with i=(u,r) for the case of pump and probe beams, respectively.  The 

pump power is absorbed according to D( , ) 1 ( )u z S zα ν α ν= ( ) +  , where αD(ν)= α0 exp[-(ν-

ν0)2/ (0.36 νD
2 )] is the Doppler-broadened absorption profile, α0  is the maximum absorption 

coefficient on resonance, ν is the laser frequency, ν0  is the unshifted resonance frequency of the 

molecules, and νD is the Doppler width [117].  The resonant saturation parameter S0(z) = Pu (z)/ 

Ps, where the saturation power, Ps, is the power required at frequency ν0 to pump ¼ of the 

ground-state molecules into the excited state.   

When the probe beam counter-propagates the pump, with input power Pr (z=l) = Pr0, the 

absorption coefficient of the probe beam in terms of S0 and transition width γ becomes  
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where ( )*
0( ) 1 1 ( ) 2S z S zγΓ = + + ,as derived in section 4.2  To analyze the data such as that 

shown in Fig. 4.9, an effective alpha is calculated, [ ]r0( ) ln P ( , 0) / ( , )e r z P z lα ν ν ν= = = and fit 

to 
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,      (4.40)  

where Δν = ν-νAOM-ν0 includes the shift in the signal due to the AOM.  The 10 μm fiber 

data were fit with additional terms to account for slope and sinusoidal modulation of the 

background. The width of the saturation feature varies significantly between the 10 μm and 20 

μm fibers.  At comparable pressures, w is consistently greater in the 10 μm fiber over a range of 

powers, as shown in Fig. 4.9. 
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Figure 4.9. Saturated absorption spectra of the P (11) feature as a function of 5 different 

pressures for the 10 ૄm and 20 ૄm fiber. Each curve is normalized to unit intensity at 

resonance. The zero point in the frequency scale is adjusted so that the origin of the 

frequency is at the line of symmetry of the Doppler-broadened curve. 

 

We can see from Fig 4.9 that large-core PBG fiber not only gives narrower transitions but 

it also has much cleaner signals than those observed in smaller PBG fibers.  This larger core fiber 

happens to have fewer surface modes than smaller core fibers which give rise to noises at the 

back ground of the absorption signal due to surface mode beating. This is consistent with the 

predictions and observations of West et al.[118]. Fig. 4.10 below is the frequency scan of the

( )Sα ν , calculated from measurements shown in Fig. 4.9, of P (11) transition line shapes and an 

overlaid theoretical fit based on the broadening formalism explained in Eq. 4.39. The fit result 

also produces information such as the amplitude of the Gaussian profile, the amplitude of the 

small peak on top of the Gaussian, and the width of both. 
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Figure 4.10. Fractional transmission vs. Δν, for the P(11) transition at 1531.6 nm with a 

pump power of 29 mW incident on the fiber and a counter-propagating probe power of ~1 

mW.  The 12C2H2 pressure, from top to bottom, was 0.15, 0.26, 0.53, 0.72, and 2.25 torr.  

(left inset) αe(ν) l vs. Δν over the range of +/- 750 MHz,  calculated from the data taken at 

0.53 torr (squares) and fit with Eq. (2) (line). (right inset) Same as the main figure, but with 

expanded axes. 

 

The width of the saturation feature (w) varies significantly between the 10 μm and 20 μm 

fibers.  Figure 4.11 below compares width, w from transitions measured in the 10 μm and 20 μm 

fibers as a function of pressure.   At comparable pressures, w is consistently greater in the 10 μm 

fiber over a range of powers. Again, features in the 10 μm fiber are broader than in the 20 μm 

fiber.  Linear fits to the resulting data give intercepts of 34 MHz, 21 MHz, 18 MHz, and 19 

MHz, with slopes of 10 MHz/torr, 10 MHz/torr, 7 MHz/torr, and 7 MHz/torr respectively (1 

torr= 133 Pa). These are smaller than the pressure broadening measured in higher-pressure 
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systems, but the discrepancy may be due to the reduction in power broadening at higher pressure, 

due to stronger attenuation of the pump beam. 

 

 
Figure 4.11. Full width at half maximum (w) vs. pressure for P (11), P (13), and P (16) 

transitions in the 10 μm and 20 μm diameter PBG fibers. Linear fits to the resulting data 

give intercepts of 34 MHz, 21 MHz, 18 MHz, and 19 MHz, with slopes of 10 MHz/torr, 10 

MHz/torr, 7 MHz/torr, and 7 MHz/torr respectively (1 torr= 133 Pa). 

 

The measured width w is expected to reflect broadening of the natural line width (~kHz) 

due to power, pressure, and interaction time between the molecules and the laser beam.  The y-

intercept of Fig. 4.11 data give the γ of Eq. 4.39 without power broadening, and should reflect 

pressure broadening and interaction time broadening.  Once the pressure broadening of ~11.5 

MHz/torr [99] is subtracted, the resulting widths of  16 MHz and 24 MHz in the 20 μm and 10 

μm fiber diameters, respectively, reflect the interaction time broadening, the cause of which may 

be modeled by wall collisions ( wall
colγ ) as discussed in Benabid et al.[24] or transit time (γtt).  The 

transit time limited width can be approximated as γtt = 0.375 v/r1/e [117], where v is the thermal 

velocity, which gives 25 MHz and 43 MHz for the same fibers with 1/e mode field diameters of 

13 μm and  7.5 μm, respectively.  Estimates for wall collision rates give similar values.  Both 
wall
colγ  and γtt give the same scaling with fiber diameter. 
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Figure 4.12 below shows the power broadening effect on the width of the sub-Doppler 

profile. Fits of the three data sets shown in Fig. 4.9 to ( )*
0( 0) 1 1 ( 0) 2S z S zγΓ = = + + =   yield 

γ values of (34 MHz, 26 MHz, and 27 MHz) and PS values of (17 mW, 49 mW, and 43 mW) 

respectively.  These fits neglect the significant effect of pump attenuation, but offer insight into 

the physical broadening mechanisms.  For example, the y-intercept, γ, is clearly larger in the case 

of the 10 μm fiber.  

 

 
Figure 4.12.  Full width at half maximum (w) vs. injected pump power for P(11) and P(13) 

transitions in the 10 μm and 20 μm diameter PBG fibers.  The theoretical fit is based on the 

formalism explained in eq. 3.45. The fibers were filled to (▲) 0.76 T and (○,■) 0.93 T.   

 

In particular, we are interested in the determination of the optimum pressure for the 

maximum signal slope. The maximum signal slope will have the larger signal with smaller width 

which in turn gives the better resolution of the peak frequency. A figure of merit for a frequency 

reference, “discrimination” (D), can be calculated based on the fractional change in optical 

power transmission divided by the transition width. 

                                   

(1 )g l gA A A

l

e eD
ω

− ⋅ − −−
=  

where Ag is the amplitude of the Gaussian profile and Ag times Al is the amplitude of the narrow 

feature.   The value of D is thus proportional to the derivative signal obtained from modulation 
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spectroscopy, which would be required in order to peak-lock a laser to the saturated absorption 

feature.  

 

 
Figure 4.13. Graph shows D, the figure of merit for the frequency discrimination of the 

signals.  For comparison, the Doppler-broadened resonances of Benabid et al.[24] have a D 

of about 1 kHz-1, while the cavity-based standards have D = 40 kHz-1 .  Thus the 

discrimination of PBG fiber-based references does not yet rival cavity-based standards, but 

is clearly superior to Doppler-broadened lines.   The optimum conditions for operating a 

frequency reference at a given input pump power inside PBG fiber can be deduced from 

this plot.  P(11) data were taken at a higher pump power than the P(13), and therefore 

exhibit a higher value of D.  The optimum pressure is expected to depend nearly inversely 

on fiber length for long fibers. 

 

  To figure out the saturation parameter, we have initially used the calculation based on 

the expression ( )*
0( 0) 1 1 ( 0) 2S z S zγΓ = = + + =  for γ values of 34 MHz, 26 MHz, and 27 

MHz, which gives saturation power of  PS values of (17 mW, 49 mW, and 43 mW) respectively.  

As I mentioned above, this does not take into account pump attenuation.  We then simulated the 

experiment by dividing fiber into large number of very small section so that we can use Beer’s 

law in each fine section of the fiber. Then we repeat the procedure through the fiber so that we 
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get the saturated absorption signal of the probe in presence of the pump.  To simulate the 

experiment, experimental values of Pu (z=0), Pr (z=l), α0 , Ps and γ are chosen, and then Pu and Pr 

are propagated along the fiber numerically.  Ps and γ are varied independently until the amplitude 

and width of the simulated signal match that of the experiment.  The measurement based on 

measured attenuation of the pump beam gives 22 ± 4 mW of saturation power, in agreement with 

Henningsen et al. .[119] using the same approach.  Error in both cases is primarily systematic, 

and found by taking the standard deviation of ~ 20 measurements.  The discrepancy between the 

two approaches remains unresolved. 

 We have investigated saturation spectroscopy inside large-core PBG fiber, and 

observed narrower transitions and much cleaner signals than those observed in smaller PBG 

fibers.  Thus the larger core fibers appear to be much less sensitive to surface mode 

contamination. This is consistent with the predictions and observations of West et al.[118].  We 

have optimized the conditions to maximize the signal inside the 20 μm fiber.  Larger core fibers 

should result in increasingly narrow lines. 

 

4.5. Saturation absorption spectroscopy in Kagome fiber 
We have recently formed an informal collaboration with Fetah Benabid and his group at the 

University of Bath, United Kingdom, to study saturation absorption of acetylene inside new 

large-pitch kagome fibers [120].  These fibers were recently designed and demonstrated by the 

Bath group.  Benabid’s group sent us some of this fiber, and we have done pressure and power 

studies on saturated absorption in these fibers, and some of the results are reported below. 

Benbid’s group has also studied EIT in Rb inside these fibers [121] to demonstrate their 

usefulness.  
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Figure 4.14. (A) – (C) SEM images and (D)–(F) Optical micrographs of the single-cell, 7-

cell, and 19-cell defect fibers.  The single, 7-cell, and 19-cell fibers have diameters 

(min/max) of 22.3/26.1, 43.7/45.4, and 47.8/68.3 μm respectively.  Figure taken from Fig. 1 

of Ref. [121] 

 

These fibers not only offer larger cores (up to 70 μm),  but they also have improved 

optical properties such as much smaller surface mode coupling and larger infrared and optical 

transmission regions as compared to PBG fibers. Fetah Benabid’s group sent us the fiber and we 

carried out saturation absorption spectroscopy in 19-cell kagome fibers, and found that they can 

give smaller linewidths and larger linewidth slopes as compared to PBG fibers. The setup for 

saturation absorption spectroscopy with kagome fiber is similar to PBG fibers except we replace 

PBG fiber with kagome and we now have two additional CW fiber laser sources instead of only 

the diode laser which we described in the previous PBG fiber setup.  These fiber lasers 

purchased from Orbits Lightwave, Inc. have narrow linewidth (~500 Hz at 100 ms) and higher 

power (25 mW). They are extremely robust and stable CW laser sources, but their tuning range is 

only 10 GHz, so only a single ro-vibrational transition is accessible. Therefore we specified that 

the lasers should be centered near the P(13) line of acetylene, unlike the diode laser which can 

scan the entire P-branch of the acetylene lines.  
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Figure 4.15. Saturated absorption spectroscopy setup inside 19-cell, ~70 μm core diameter 

kagome hollow core fiber (HCF.  erbium doped fiber amplifier (EDFA), photo-detector 

(PD), polarizing beam splitter (PBS), acousto-optic modulator (AOM), and electro-optic 

modulator (EOM). 

The light from either the diode laser (~ 5 mW) or the fiber laser (~4.5 mW) is amplified 

using an EDFA to achieve output powers up to 300 mW. The amplified power is split into two 

parts as a pump and probe as shown in Fig. 4.2. Most of the amplified (~ 90%) light goes to the 

pump and the rest is passed through an AOM which shifts the frequency by ~50 MHz.  The 

AOM helps to minimize noise by forcing the interference between the pump and probe beams to 

occur at a frequency too fast to detect. The light is then passed through the EOM which has no 

use here except that we use it afterward for frequency modulation spectroscopy setup only 

(discussed in Chapter 6). Finally, the pump and probe are coupled inside the fiber in opposite 

directions. Polarizing beam splitter, half-wave plate and quarter-wave plate are used to make 

pump and probe polarization orthogonal so that probe can be detected separately from the pump. 

They also help to reduce the back reflection of the pump that is detected by the probe photo 

detector. 
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Saturation spectra were recorded for different pressure and power values. The kagome 

data show a further reduction in linewidth to less than 10 MHz at 100 mW of pump power, and 

to even lower widths at 30 mW pump power, comparable to the data taken for the HC-PCF’s. 

We then calculated a measure of the slope of the sub-Doppler feature and called it the 

discrimination, D, for the saturation signal for kagome setup. The D values observed in kagome 

are more than 2 times larger than those observed inside 7- and 19-cell HC-PCFs at comparable 

powers; it is due to narrower linewidth at comparable signal strength. The discrimination and 

width vs. pressure graph for kagome fiber. (The particular data shown in Fig. 4.16 and Fig 4.17 

for kagome fiber with green hexagon and green star is taken by my colleagues Kevin Knabe.)  

 
Figure 4.16. Sub-Doppler FWHM width ૑l vs pressure for different core size and types 

of fiber. The cross-section of the fiber has been shown from reference [1], Crystal Fiber A/S, 

www.crystal-fibre.com for 10 μm and 20 μm PBG fiber, and reference [2] F. Couny, et al.,Optics 

Letter 31 (2006) for ~70 μm kagome fiber. The widths of the 10 μm (red triangle) and 20 μm 

(blue diamond) PBG fibers are shown here for comparison with the kagome spectra (green 

hexagon and green star).  The 10 μm PBG fiber was 0.9 m long and had an optical power of 30 

mW, the 20 μm PBG fiber was 0.8 m long and had an optical power of 29 mW, and the kagome 

fiber was 1.4 m long and had an optical power of 92 mW.  The filled green hexagon indicates a 

point taken at 30 mW of pump power exiting the kagome fiber. 

L = 0.9 m

P = 30 mW

L = 0.8 m

P = 30 mW

L = 1.4 m

P = 100 mW

~70 μm

~20 μm

~10 μm

[1] 

[1] 

[2] 

0.00 0.25 0.50 0.75 1.00
0

10

20

30

40

 10 μm PBG 30 mW
 20 μm PBG 30 mW
 70 μm kagome 100 mW
 70 μm kagome 30 mW

 

ω
l (M

H
z)

Pressure (torr)



 87

 
Figure 4.17. Discrimination,D, versus pressure inside the fiber for different optical pump 

power exiting the fiber 10 μm (red triangle) and 20 μm (blue diamond) PBG fibers and 70 

μm kagome fiber (green hexagon and green star).  The D values observed in kagome are 

more than 2 times larger than those observed inside 7- and 19-cell HC-PCFs at comparable 

powers. 

The narrower line and smoother background transmission make the large-core kagome 

fiber a likely candidate for portable acetylene-based frequency references. But one subtle 

problem with kagome fiber is the mismatch between its outer diameter (300 micron) and SMF 

(125 microns) which makes splicing very difficult.  Since we want to develop a portable fiber 

cell, splicing is an integral part of our research. We are in the process of investigating how to 

splice (or at least seal) large-core kagome fiber. But we have successfully spliced 10 μm and 20 

μm PBG fiber. The next Chapter basically focuses on the splicing of 10 μm and 20 μm PBG 

fibers with single mode fiber (SMF 28). 
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CHAPTER 5 - Fiber splicing: towards portable fiber cell 

Photonic bandgap fibers (PBGF) are optical waveguides that will serve as a key technology to 

enable future advances in frequency metrology, spectroscopy, and quantum optics.  A PBGF is a 

low-loss waveguide whose hollow core can be filled with a fluid.  This allows light to interact 

with the fluid while being guided by the PBGF geometry.  Recently, much progress has been 

made using gas-filled PBGF.  For instance, resonant interactions and electromagnetically-

induced transparency have been observed in acetylene-filled fibers with applications toward all-

optical fiber communications [23, 122].  Saturation spectroscopy, for higher-accuracy portable 

optical frequency references, has also been demonstrated [123, 124].  Even linear interactions are 

significantly enhanced, resulting in the development of gas sensors [125] and Doppler- and 

pressure-broadened frequency references [14, 126].   

Splices between microstructured fibers and step index single-mode fiber (SMF) are 

difficult to create, because the air holes in the fiber tend to collapse at the high temperatures 

required to form a strong splice (see Ref. [127] and references therein).  Splicing solid-core 

microstructured optical fibers to SMF is typically accomplished with filament splicers [14, 128, 

129], but has also been demonstrated using an arc splicer [130].  Indeed, splicing SMF to 

hollow-core PBGF is even more difficult due to the presence of the large guiding hole, and this 

difficulty limits the use of these fibers in laboratory experiments or in commercial products.  

However, successful splices between hollow-core PBGF and SMF have been made using a 

filament-based fusion splicer, and are commercially available [131].  Furthermore, arc splicers 

have been used to systematically investigate the collapse of air holes in PBGF for selective 

injection [132], but until now, no low-loss, robust splices have been made with the relatively 

inexpensive and ubiquitous arc fusion splicer.     

Many applications of PBGF require the fabrication of a PBGF cell, in which a length of 

PGBF is filled with a gas or liquid and spliced to solid-core single-mode fiber on each end.  This 

cell is doubly difficult to produce since 1) two low-loss splices between the SMF and PBGF fiber 

must be made and 2) at least one splice must be made while keeping the gas in the PBGF 

microstructures.  Such PBGF cells have been created [14, 126, 128] where the first splice 

between the PBGF and SMF is made in air, while the second splice to SMF must be made in a 

gas atmosphere.  In fact, PBGF have been sealed after being filled by acetylene gas [14], but this 
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technique relies on the use of an expensive, filament-based fusion splicer.  Another clever 

method of making gas-filled PBGF cells involves splicing the PBGF to SMF in a helium and 

acetylene gas purge using a filament splicer [128].  The helium diffuses from the PBGF, leaving 

only high purity acetylene in the cell.  Nevertheless, a simple recipe for splicing PBGF to SMF 

using a conventional arc fusion splicer has until now been lacking.  Here we demonstrate a 

repeatable, robust, low-loss splice between a hollow-core PBGF and SMF.  The performance of 

this fiber compares favorably with a commercially made spliced fiber. 

5.1. Fusion splicing hollow-core PBGF to SMF 

Two types of hollow-core PBGF, both purchased from Crystal Fibre A/S, are discussed in this 

study.  The PBGFs were spliced to Corning® SMF-28e® SMF using an Ericsson FSU-995 

electric arc fusion splicer.  The first PBGF, part number HC-1550-02, has a hole diameter of 10.9 

µm and a mode overlap of >90 % with the SMF.  The second PBGF, part number HC19-1550-

01, has a hole diameter of 20 µm.  The significant fiber parameters are listed in Table 1.   

 

Table 5.1. Fiber Parameters for the PBGF and the Single-Mode Fiber 

Fiber Name Core 
diameter 

Mode-field 
diameter† 

Numerical  
Aperture† 

Hole 
Separation Λ 

HC-1550-02 10.9 μm 7.5 μm† 0.12† 3.8 

HC19-1550-01 20 μm 13 μm‡ 0.13‡ 3.9 

SMF-28e 8.2 μm 10.4 μm† 0.14 -- 
† Values given at 1550 nm [133].  ‡Values given at 1570 nm [134, 135]. 

 

5.1.1. Splicing procedure using an electric arc splicer 

Filament splicers are generally preferred for fusion splicing PBGFs since they heat the fiber 

more slowly and uniformly.  Our goal, which is motivated largely by the cost and popularity of 

arc fusion splicers, is to mimic this performance with a more common electric arc fusion splicer.  

One difficulty in splicing hollow-core PBGF is avoiding the collapse of the microstructures, 

because temperatures that are high enough to form a strong splice also allows the glass to flow.  

Splicing PBGF is particularly difficult using an electric arc splicer because the fibers are heated 
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very rapidly during the arc.  Thus, we have developed a multi-step splice procedure involving a 

short, high current arc followed by a long, low current arc.  In general, the amount of current 

used in this process is less than that of a conventional splicing procedure. 

The geometry of the fusion splicer is illustrated in Fig. 5.1.  There are two parameters that 

define the distance of the fibers from the electric arc and from each other.  The first parameter 

called “gap” measures the distance between the two fibers.  Zero gap, which occurs at a position 

called the “touch point” indicates that the fibers are butt-coupled.  Negative gaps, here called 

“overlap”, indicate that the fibers are pushed further together than they were when butt-coupled.  

The second parameter called “offset” indicates the displacement of the touch point from the 

electrode axis.  In all splices, the fibers are prepared by mechanically stripping the coating away 

from the last ~2.5 cm of fiber, and cleaved using a Fujikura CT-04B cleaver.   

 

Figure 5.1. The fusion splicer geometry.  Two variable parameters, gap/overlap and offset, 

determine the position of the fibers with respect to the electrode axis. 

 

The optimum procedure for splicing PBGF to SMF was developed by attempting more 

than twenty splices with a wide range of splice parameters.  The resulting optimized program for 

splicing SMF-28e® to the 10.9 μm PBGF HC-1550-02 is as follows.  The splicing program first 

aligns the fibers and produces a short burst of current (pre-fuse) to remove any contamination 

present in the fiber end.  This pre-fuse also removes any moisture in the microstructures that will 

cause the splice to be fragile.  Next, the fibers are briefly butt-coupled at the touch point, and a 

gap of +10 μm is made.  The offset is set to 260, placing the electrodes roughly 5 μm closer to 

the SMF than the PBGF (as determined using Ref. [132]).  The butt-coupled loss from the SMF 
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to the 10.9 μm PBGF is typically 1.0 dB.  The nonzero offset is a critical parameter in the 

splicing since it ensures that the SMF is heated more strongly than the PBGF, to prevent the 

collapse of the air holes [136].  Fusion current 1 is set to 10 mA and applied for 0.2 s, which 

softens both fiber ends and prepares the fibers to be overlapped and fused together upon physical 

contact in the next process.  Care must be taken while choosing this current level because a low 

arc current leads to a mechanical deformation during the overlapping stage, while a high current 

causes a change in the glass geometry resulting in a poor quality splice.  If fusion current 1 is 

reduced from the optimum splicing condition of 10 mA to 9 mA for the same duration (0.2 s), 

the resulting splice loss is approximately the same in both cases, but the mechanical strength of 

the splice is greatly reduced.  If for a constant fusion current 1 (10 mA) the time is increased 

beyond 0.2 s, the PBGF end deforms or collapses completely under surface tension, forming a 

spherical end.   

Fusion current 2 starts when the fiber ends actually touch and press together in order to 

overlap and to fuse.  During this phase, the current is reduced to 7 mA for 12 s while the fibers 

are pushed together to a negative gap, or overlap, of 10 μm.  A larger overlap at optimum arc 

current would give a better mechanical strength but leads to a higher splice loss while a smaller 

overlap leads to lower strength but lower loss.  To complete the procedure the fusion current 3 is 

set to 6.5 mA for 3 s, while the splice anneals.  Figure 5.2 illustrates the loss with respect to the 

butt-coupled transmission measured during the splicing procedure.    

The splice routine was altered for splicing the SMF-28e® to the 20 μm PBGF 

HC19-1550-01.  The only significant change in the program was the increase in the overlap from 

10 μm to 15 μm in order to compensate for the larger hole diameter. 
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Figure 5.2.  The relative loss with respect to the butt-coupled transmission from the SMF to 

the 10.9 μm PBGF during the fusion procedure.  The gap curve is estimated from the splice 

parameters, the Ericsson FSU-995-FA fusion splicer manual, and the relative loss curve. 

 

5.1.2. Splice loss between SMF and PBGF 

The splice loss is determined directly by measuring the transmission of a 1534 nm laser source 

through the splice, in both directions, using the following procedure.  To measure the loss from 

SMF to PBG, first the CW laser light is injected into the SMF fiber and the output power is 

measured.  Then the SMF is spliced to the PBGF and the output power from the PBGF is 

measured.  To measure the splice loss from the PBGF to SMF, the other end of the PBGF is 

subsequently spliced to another SMF and the output power is again measured.   

The measured loss for splices of SMF to both the 20 μm and the 10.9 μm PBGFs are 

listed in Table 5.2.  For both splices, the most unique feature is the non-reciprocity of the splice 

loss: the splice loss as measured from the SMF to PBGF is different from that measured in the 

opposite direction from the PBGF to SMF.  In the 20 μm HC19-1550-01 fiber, splice loss from 

SMF to PBGF varies from 0.3 dB to 0.5 dB whereas splice loss from PBGF to SMF is more than 

2 dB.  The splice loss non-reciprocity is less prominent in 10.9 μm PBGF. 
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Table 5.2. Measured Non-Reciprocal Splice Loss between PBGF to SMF 

Fiber Name Core 
diameter 

Mode-field 
diameter† 

Numerical  
Aperture† 

Hole 
Separation Λ 

HC-1550-02 10.9 μm 7.5 μm† 0.12† 3.8 
HC19-1550-01 20 μm 13 μm‡ 0.13‡ 3.9 
SMF-28e 8.2 μm 10.4 μm† 0.14 -- 

            †Value was determined indirectly from the transmission through 20 µm PBGF cells. 

 

Unfortunately, the splice loss depends on the orientation of the PBGF.  To see this effect, 

fiber cells of both 10.9 and 20 μm fiber were made and the splices were fixed to a table.  For 

example when one 20 μm PBGF cell was moved randomly, the loss varied erratically from 2.2 to 

6.0 dB through the entire cell.  For a 10.9 μm fiber cell a smaller change from 4.2 to 5.3 dB was 

observed.  

A physical explanation of the observed splice loss is difficult due in part to the 

complicated mode structure of the PBGF.  This measured splice loss can be explained rigorously 

by computing the overlap integral between the PBGF and SMF modes.  Unfortunately the 

determination of this integral is impossible since the amount of energy in each guided mode is 

typically unknown [127].  Also, it is difficult to compute the number of modes of the PBGF 

without resorting to a numerical method for computing the modes.   

Qualitative arguments based on the theory of step-index fibers [137] can be used to 

explain the observed loss and the non-reciprocal loss.  An estimate of the minimum loss can be 

computed from the mode overlap of two Gaussian profiles with mode field radii r1 and r2.  This 

overlap integral (assuming no axial mismatch) can be evaluated to give the minimum splice loss 

in dB as [138] 

( )( )22 2 2 2
10 1 2 1 210 4Log r r r r

−
+         (5.1)

 Using this equation the minimum loss for the 10 μm PBGF to SMF splice is 0.45 dB 

while the minimum splice loss for the 20 μm PBGF to SMF splice is 0.21 dB.  Interestingly, this 

approximation predicts that the 20 μm PBGF will have a lower minimum splice loss than the 

10.9 μm PBGF, which is indeed observed.  

The crude splice loss approximation given in Eq. 5.1 based on mode-field radii does not 

predict the non-reciprocal loss.  However, this non-reciprocal loss can be explained in terms of 
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mode mismatching between multimode waveguides [139].  The problem here is similar to the 

coupling between a SMF and a multimode fiber (MMF) at a given optical wavelength.  For this 

scenario, there is a general rule that the loss from a small core fiber to a large core fiber be 

smaller than the loss in the other direction.  In the case of coupling from SMF to MMF the loss is 

expected to be small [127].  The mode field radius of the SMF is smaller than that of the MMF 

so it can easily couple to the lowest order modes of the MMF.  The opposite behavior occurs 

when coupling from the MMF to SMF.  Here, higher order modes will be excited in the MMF 

that will not couple well to the SMF.  From these arguments, it is expected that a larger 

asymmetry in splice loss will occur with a larger number of modes in the PBGF.  Due to its 

larger diameter, the 20 μm PBGF supports more modes (~ 10 modes) than the 10.9 μm fiber (~ 

1-3 modes).  Thus the HC19-1550-01/SMF-28e splice should exhibit a more prominent non-

reciprocal splice loss than the 10 μm PBGF.   As described above, the 20 μm PBGF to SMF loss 

was much more susceptible to fiber positioning than the 10.9 μm PBGF to SMF loss.  The 

observation is consistent with the 20 μm PBGF containing more modes than the 10.9 μm PBGF. 

Figure 3 shows a micrograph of the HC-1550-02/SMF-28e splice.  In general the splices are 

mechanically strong and can be bent to a ~1.5 cm circular radius before breaking.   

 
PBGF

SMF
 

Figure 5.3.  A micrograph showing the splice between the SMF and 10.9 µm PBGF.  

Picture courtesy of the GaN Group in the Kansas State University Physics Department. 
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5.2. PBGF-SMF splice for a gas-filled PBGF cell 

One important application of PBGF-SMF splices is in the creation of gas-filled PBGF cells.  

Saturated absorption spectroscopy on such cells is a promising technology for portable optical 

frequency references, but sensitive to the splice quality.  This sensitivity arises because light 

reflected from both splices can form a standing wave as in a Fabry-Perot cavity, and thus the 

fiber cell transmission depends periodically on optical frequency.  This frequency-dependent 

“background” creates a shift in the apparent line center of the absorption feature of the reference 

gas, such as acetylene, and thus degrades the performance of the frequency reference.     

 

5.2.1. Absorption spectroscopy 

The splices will be useful in a PBGF cell, as demonstrated using saturation spectroscopy on 

acetylene inside PBGF that is spliced to SMF fiber.  Several different fibers and splices are then 

compared.  The experimental setup is shown in Fig. 5.4, and is similar to that of Ref. [124].  

Here, a PBGF spliced to SMF is evacuated by pumping with a mechanical roughing pump on the 

PBGF’s open end in a vacuum chamber.  The fiber is evacuated to ~15 mtorr over 12 hours.  

Then the vacuum chamber and PBGF are filled with acetylene gas to a pressure of 0.9 torr.  

Absorption spectroscopy on the gas in the PBGF reveals a strong absorption feature.  Light from 

a ~1531 nm tunable diode laser is amplified by an erbium-doped fiber amplifier and split to 

produce a probe (~1 mW) and pump (~30 mW).  The probe beam passes through a double-

passed acousto-optic modulator, an isolator, and a polarization controller, and then counter-

propagates the pump beam through the PBGF.  The transmitted probe beam power is detected by 

a photodetector as the diode laser frequency scans across the absorption feature.  The laser is 

swept eight times across the signal, and the eight traces are averaged on an oscilloscope. 
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Figure 5.4.  Chamber used to evacuate and fill the PBGF with acetylene gas for saturated 

absorption spectroscopy.   

 

Saturated absorption spectra are shown in Fig. 5; here the spectra between different 

10.9 μm and 20 μm fibers are compared.  Figure 5.5(a) compares three 10.9 μm PBGFs: Fiber 1 

is spliced to SMF with an arc splicer as described above; Fiber 2 (purchased from Crystal Fibre) 

is spliced to SMF with a commercial filament fusion splicer [131]; and Fiber 3 is unspliced.  

Figure 5.5(b) compares two 20 μm PBGFs: Fiber 4 is spliced to SMF with an arc splicer as 

described above, and Fiber 5 is unspliced.  Two vacuum chambers where used to perform the 

saturation spectroscopy on the unspliced PBGFs [124].  The 10.9 μm fibers exhibit some 

dependence of transmission with frequency, with similar interference fringe contrast ratios of 

~5%-10%.  In contrast, the 20 μm fiber splices exhibit much smaller interference fringe contrast 

ratios of less than 0.5%.  Thus these fringes are not thought to arise from the splice, but rather to 

be intrinsic to the fiber, due for example to mode beating associated with the excitation of 

surface modes.  In both cases the splice does not significantly impact the quality of the saturated 

absorption feature.  Of course, a fiber cell requires two splices, one of which can be made by the 

above method.  Further investigations will be required to characterize and minimize the impact 

of reflections from a second splice on the signal quality of the cell. 

PBG fiber

Gas
Inlet 

C2H2 molecules

SMF

Splice

Vacuum
chamber

Vacuum
gauge

Vacuum
pump

Probe
laser 

Pump
laser 



 97

 

Figure 5.5.  Saturated absorption spectra in (a) 10.9 μm and b) 20 μm diameter PBGFs.  

Fiber 1 is 0.78 m long, spliced to SMF using a conventional arc splicer using the technique 

described in this paper.  The P(11) spectrum was taken at 29 mW and 0.9 torr.  Fiber 2 is 

2.0 m long, spliced to SMF by Crystal Fibre A/S using a filament heating splicer, and its 

spectrum is taken of the weaker P(12) transition at 17 mW and 0.8 torr.  Fiber 3 is the 

unspliced 10.9 μm fiber of 0.9 m long, the P(11) spectrum was taken at 30 mW of pump 

power at 0.6 torr.  Fiber 4 is 40 cm long, spliced with an arc splicer to SMF, the P(11) 

spectrum was taken at 34 mW and 0.9 torr.  Fiber 5 is unspliced fiber 78 cm long, and the 

P(11) spectrum was taken at 29 mW of pump power at 0.7 torr.   

 

     5.2.2. Reflected pump spectroscopy 
It was long been realized that saturation spectroscopy can be performed where the probe beam is 

created by retro-reflecting the pump beam back through the cavity using a mirror external to the 

cavity [116, 140].  We have implemented a similar setup to exploit reflection of the pump beam 

from the spliced interface as a probe light to perform saturation spectroscopy inside a hollow 

core photonic band gap fiber. To the best of our knowledge this is first of its kind to realize 

reflected pump inside a hollow core fiber. We called this reflected pump spectroscopy. This 

method simplifies setup for pump-probe spectroscopy significantly since we do not require any 

optics on the probe side. This also eliminates some extra sources of noise due to the presence of 

more optics which can create some interference noise and spurious signal. After investigating 

signal quality from reflected pump spectroscopy, we figured out this method is suitable for 
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saturation spectroscopy, frequency modulation spectroscopy [116] and maybe many others. We 

splice hollow core photonic band gap fiber (PBGF) with single mode fiber (SMF) and fill the 

spliced fiber with acetylene gas to probe P-branch of the ν1 + ν3 overtone transition of 12C2H2. 

Additionally, we used frequency modulation spectroscopy to lock the diode laser to these narrow 

saturation features to realize an all fiber frequency reference in the near-infrared spectral region.  

 
Figure 5.6. Schematic of the reflected pump technique, where the probe beam is created at 

the splice interface between the PBGF and SMF.  Solid lines indicate laser beams contained 

within fibers, whereas short blue dashed lines indicate beams in free-space. Beam dump 

(BD), beamsplitter (BS), Isolator (Iso.), Polarization Controller (PC), Photodetector (PD), 

Vacuum Chamber (VC).   

 

In two beam conventional technique, it is required to optimize careful polarization 

management and frequency shifting to minimize interference and spurious noise. As we 

discussed previously in the conventional method (Fig. 4.4), we double pass the AOM and shift 

the frequency of the probe by ~ 100 MHz so that interference between pump and probe is too 

fast to detect. Moreover, hollow core PBG fiber acts as a waveplate and creates random 

polarization to the beam propagating through the fiber, so we arrange wave plates in such a way 

that the exiting probe beam and any reflected pump light are orthogonally polarized. In contrast 
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to this, in reflected pump technique, we simply use a non polarizing beam splitter to detect the 

saturated absorption signal once the probe beam exits the fiber.  

 

  
Figure 5.7 (a) Absorption spectra of the C2H2 ν1+ν3 P(11) ro-vibrational line at an optical 

wavelength of ~1.53 μm for 20 μm core PBGF at a pressure of 0.50 Torr for the listed 

pump powers.  The length of the fiber was 40 cm and splice loss as seen from SMF to PBG 

was 0.3 to 0.5 dB. Each trace is an average of 8 scans while sweeping the frequency at ~4 

GHz/s.  The inset picture is zoomed-in on the narrow features of the main graph. (b) 

Comparison of absorption spectra between reflected pump (black) and conventional 2 

beam technique (red) under identical conditions (20 μm PBGF, 40 cm long fiber, pressure = 

0.93 Torr) 

In reflected two beam technique, we characterize and compare these sub-Doppler features 

with respect to pressure, power with the conventional method in which both the pump and probe 

beam from same laser sources entered the fiber at opposite end. We expect the amplitude of the 

Doppler broadened profile to be a factor of 2 larger whereas the amplitude of the narrow feature 

should be a factor of 2 smaller in the limit of low pump power. This is due to the fact that the 

probe arises after the pump traverses the length of the fiber, so at low power the probe is 

absorbed twice as much as in the two beam technique since probe travels twice the length of the 

fiber in reflected pump setup as compare to 2 beam techniques. But this will not hold in the case 

when pump power reached the saturation limit. The width of the reflected pump technique for 
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identical condition is found to be slightly broader than that of two beam technique by 

approximately 5 to 10 MHz for 20 μm core PBGF. 

The unique feature of the reflected pump is its power dependence of the absorption 

signal. As power increases to more than saturation power, absorption of two beam techniques 

approaches identical to reflected pump technique. Since width of the narrow feature is similar in 

both the techniques and discrimination is preserved, reflected pump spectroscopy is as good or 

better than two beam technique for saturation spectroscopy. The only drawback of the reflected 

pump technique is the lack of independent control of pump and probe power which may be 

useful in some circumstances. 
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CHAPTER 6 - Diode laser locking using frequency modulation 

spectroscopy 

The technique, called Frequency Modulation Spectroscopy or FM spectroscopy, 

developed by Pound-Drever-Hall [141-143] is very useful for frequency stabilization of CW 

lasers locked to a molecular transition. This is one of the most popular techniques to achieve 

sensitive and rapid detection of narrow spectral features such as Doppler free spectra. This 

method is easy to implement with common RF components and is insensitive to intensity noise 

to first order. FM spectroscopy can be performed with relatively large band width laser sources.  

 

6.1. Introduction 
We use RF modulation techniques to peak-lock a CW laser to the sub-Doppler feature of 

a P-branch ro-vibrational transition in acetylene. Three different lasers are used for this 

experiment; the first is a Santec TSL-210 tunable diode laser, which gives up to 5 mW of power, 

tunable from 1530 nm to 1550 nm; the other two are CW fiber lasers  with  narrow linewidth 

(~500 Hz at 100 ms) and higher power (25 mW) purchased from Orbits Lightwave, Inc.  We can 

scan the entire P-branch of the acetylene overtone transition using the diode laser. But this diode 

laser is a much noisier system as compared to fiber lasers. These fiber lasers are extremely robust 

and stable CW laser sources but they have little tunability. They can only probe the P(13) line of 

acetylene line unlike the diode laser. We also have two identical CW laser locking systems. Both 

of the systems are similar and represented by a single diagram as shown in Fig. 6.1 below. The 

most notable difference between the two systems is the implementation of polarization 

maintaining (PM) fiber.  The second system uses a PM fiber laser, a PM EDFA, a PM EOM, and 

all PM optical patch cords. This choice was made to increase polarization control in the second 

system, and to note any differences between systems due to polarization instabilities. One of the 

fiber lasers is dedicated to work only for the PM setup and locked to the molecular line of the 

acetylene.  So one of our fiber lasers was locked to a 1.4 m kagome fiber using the non-PM fiber 

system, while the other laser was locked using the PM fiber system.  The setup for the first 

system is identical to that of Fig. 6.1 except that a fiber laser replaces the diode laser as the 

source. 
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6.2. Experimental setup 
Figure 6.1 below shows the schematic of the experimental setup. The setup for the 

saturated absorption technique remains the same as that discussed in Chapter 4, except in this 

case the probe beam passes through the fiber EOM, which is driven with a digital synthesizer at a 

frequency of 20 MHz. The EOM distributes the power to monochromatic light into sidebands 

spaced by the modulation frequency around the original frequency of light. This way we can get 

almost half of the power into the sidebands. This signal is then passed through a sample 

containing the spectral feature of interest. In our case, we use 12C2H2 acetylene gas inside 

Kagome fiber. We then use a high-speed photo detector (PD) to detect the signal.  

 
Figure 6.1. Schematic of CW laser locking using FM spectroscopy. This particular setup is 

for the non-PM setup which is been used to lock either the fiber laser or diode laser 

separately. This is nearly identical to the PM setup except that we implement polarization 

maintaining (PM) fiber in most of the place. In the PM setup, we use a PM EDFA, a PM 

EOM and all optical patch cord are PM.  

Next, a Bias-T is used to separate the DC signal, which is the saturated absorption 

monitor signal, and the RF signal.  This RF signal is filtered at 20 MHz and amplified before it is 

mixed with a second synthesizer modulating at fmod, the phase of which can be adjusted directly 

on the instrument to reveal the absorption or the dispersion of the acetylene fiber system.  One of 
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the synthesizers shares an internal time base with the other synthesizer so that all modulation 

shares a common clock. The output from the mixer is then passed through a low-pass filter (< 10 

MHz), to get the error signal as shown in Fig. 6.2 below. Sometimes we may need to carefully 

fine tune the phase of the second synthesizer by observing the error signal to get the flat 

background.  This error signal is then sent to a zero-crossing side-locking servo circuit (Precision 

Photonics servo box), which in turn is used to feedback to the current in the diode laser or 

electric transducer (PZT) in the external cavity of the fiber laser. Both the diode laser and fiber 

laser have a response frequency bandwidth of ~10 kHz. The frequency applied to the EOM can 

be optimized by monitoring this error signal. We have figured out that the largest error signals 

occur when the drive frequency is on the order of the FWHM of the sub-Doppler feature.  

 
Figure 6.2. The graph shows the derivative signal, error signal and absorption feature as 

seen in the oscilloscope generated with the FM spectroscopy setup. The length of the fiber 

was 1.4 m and pressure was ~ 150 mT. We can see that the ratio of the derivative signal to 

error signal (also called SNR) of our locked signal is almost ~100. We can also roughly 

estimate the short term stability of our lock from this ratio. If the narrow feature is 10 

MHz wide then our lock is stable within 10 MHz/100 = 100 kHz. (Note: the narrow 

absorption feature and the rest of the signals are taken at two different times and plotted 

together.) 
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In fact, a second system has been built to test the short-term stability of these fibers lasers 

by making direct beat note measurements between them. The second system also enables us to 

beat the fiber laser and diode laser together so that we can characterize noise in these different 

laser systems by looking at the width and noise of the beat notes. 

6.3. Data analysis 
We locked both fiber lasers and counted the beat frequency between them. To compare the noise 

in these CW laser systems, we compared the heterodyne beat between the non-PM fiber laser 

system and the PM fiber laser system with that between diode laser system and the PM fiber 

laser system. The first system is locked to P(13) -  ½ fAOM,1 and the second is locked to P(13) +  

½ fAOM,2, where fAOM,i is the drive frequency of the AOM in both systems, and the plus and minus 

signs are due to the choice of sideband from each AOM.  The beat note between the lasers 

should occur at ½(fAOM,1 + fAOM,2), so the sum of the AOM drive frequencies is counted alongside 

the beat note.  The difference between the beat note and ½(fAOM,1 + fAOM,2), gives the frequency 

deviations from the expected value, as shown in the black trace of Fig. 6.3a and Fig 6.3b.  

         
Figure 6.3. Time series measurements of the beat note at 100 ms gate time. (a) This is the 

count data of the beat note between the diode laser and the PM fiber laser system. Both the 

systems were locked. We can clearly see the 200 kHz of deviation during 35 minute of count 

data. (b) This is the count data of the beat note between the Non-PM and PM fiber laser 

systems. The PM system is in fact more robust and stable in the long run. The red trace is 

the temperature (ºF) measured near the air conditioning unit in our lab. The laser has been 

locked to better than 200 kHz pk-pk as measured in-loop. 
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The error signal as well as the saturated absorption feature is shown in Fig. 6.4a and 

Fig.6.4b. These are real time snap shot of the data as seen on the oscilloscope.  We can clearly 

see that the derivative signal of the diode laser as shown in Fig. 6.4a is not as clean as that of the 

fiber laser. This must be noise associated with the diode laser.  
 

       
Figure 6.4. Spectra taken at the following parameters: pressure = 175 mT, pump power 

(exiting fiber) = 150 mW, fm = 20 MHz. The graph shows real time trace of error signal as 

seen in the oscilloscope generated with the FM spectroscopy setup. (a) Error signal (sky- 

color) as well as typical transmission spectrum in saturation spectroscopy (yellow) for the 

diode laser system. We can also see some high frequency noise in the diode laser. (b)Error 

signal (green) and transmission spectrum (red) in PM fiber laser locking system.  

 

Noise in the diode laser system can also be clearly seen in the beat note between the diode laser 

and fiber laser as compared to beat note in between fiber lasers. Figure 6.5 below shows the RF 

spectrum of the beat note frequency when both the CW laser locking systems are locked. The 

beat note between the diode laser and fiber laser, shown in the black curve, is much wider, 

FWHM~1.3 MHz, than that of the beat note between the fiber lasers, FWHM~200 kHz. We can 

also see considerable high-frequency noise in the beat note between the diode laser and the fiber 

laser.  

(c) (d)
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Figure 6.5. RF spectrum of beat note signal with AOM subtracted. Black trace is the beat 

note between the diode laser locking system and the PM fiber laser locking system. The 

blue trace is the beat note between the non-PM fiber laser locking systems and the PM 

fiber laser locking system. The width of the beat note in the former case is much wider, 

showing the overall noise in the diode laser system. We can also see considerable high-

frequency noise in the beat note between the diode laser and fiber laser. 

 

Fractional stabilities are calculated by dividing the Allan deviation of the beat note 

frequency by the optical frequency of the transition, and the best (average) value obtained for 

100 ms gate time is 6.1×10-12 (2.3×10-11). There are various factors which cause the beat note to 

drift and become unstable. We have observed changes in beat note frequency due to temperature, 

vibration, and polarization and several other environmental perturbation factors. Vibration of the 

kagome fiber as well as vacuum chamber can have huge effects and may bring the systems out of 

locking. Our next plan is to make the out-of- loop measurement of the stability of the beat note 

by making the heterodyne beat between these locked CW fiber lasers with the phase stabilized 

frequency comb. These are discussed in the next Chapter. 
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CHAPTER 7 - Absolute frequency measurement: beating comb with 

CW laser 

The simplification, high degree of reliability and precision of frequency combs from mode-

locked lasers greatly facilitates optical frequency measurements [2, 144-148]. These combs have 

become extremely powerful tools for optical frequency metrology [68]. Ti:sapphire lasers 

broadened in microstructured fiber have been employed to get such precision and reliability. The 

measured frequencies have been predominantly in the range of 500 nm-1000 nm although this 

range has been extended to the near infrared spectral region to cover acetylene lines at 1.5 µm 

using fiber lasers as well as a chirped mirror based Cr:forsterite laser [90]. Here we used a prism-

based Cr:forsterite comb as a reference “ruler” to make absolute frequency measurements of 

molecular lines of acetylene. We measure and characterize the absolute frequency of molecular 

lines of acetylene inside a hollow core optical fiber to develop a portable frequency reference in 

the telecommunication band.  

 

7.1. Introduciton 
In order to use a frequency comb in metrology, it must be locked to a stable frequency reference. 

There are several standard references available in RF domain, in microwave domain and in 

optical domain. Atomic oscillator such as Cesium and Rubidium are the reference standard in RF 

domain. The cesium transition at 9,192,631,770 Hz serves as the definition of the second and is 

realized by the US primary standard (NIST-F1).  Hydrogen masers use the 1,420,405,752 Hz 

transition in hydrogen as a reference in microwave domain. Similarly, there are some ions and 

elements which can serve as a frequency references in the optical domain. Optical atomic 

standards offer an improvement over their RF counterparts by six orders of magnitude. This is 

due to much higher optical oscillation frequencies ( 610optical rfν ν ≈ ).  For example, the neutral 

calcium standard with an optical transition at 455,986,240,494,158 Hz has demonstrated 

fractional frequency stability of 1 part in 1016 in 1 s. Optical standards based on trapped ions and 

cold atoms are a promising medium to get better stability [1, 3, 67, 79] . Most of these tests were 

performed using microwave optical standards with very low phase noise which were 

subsequently compared in the optical domain. Referencing the femtosecond laser frequency 
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comb to an optical standard can provide improved stability by allowing shorter averaging time. 

Recently Long-Sheng Ma et al use an optical standard to reference two femtosecond laser 

frequency combs; the relative uncertainty was measured to be ~8x10-20 [149]. 

These microwave and optical standards are not readily available and they are limited to 

very few laboratories. Moreover, our goal is to develop fiber-based portable frequency reference 

devices that are better than what is available right now in the telecommunications band and not 

to measure the highest precision. We use a GPS disciplined rubidium oscillator as our reference 

frequency for the  our comb [149]. Rubidium oscillators are less expensive, widely available and 

offer good shot term frequency stability of 5x10-11 in 1s.  For measurements beyond 10s these 

Rubidium oscillators are better than quartz oscillators found in most of the frequency 

synthesizers or counters.  However, improved stability is realized when GPS receivers are used 

to steer the Rb local oscillator with accuracy derived from satellite-based Cs clocks. Basically we 

bought what is called GPS timing receiver which is a commercial unit with a low phase-noise Rb 

local oscillator.  These commercial GPS timing receivers can achieve a typical frequency 

stability of 10-13 when averaged over a week. But these GPS oscillators vary day by day if we 

count frequency for less than a day due to various factors such as number of satellites in view, 

GPS signal strength, the time of the day, atmospheric fluctuation, solar activity etc. Others have 

achieved stability as precise as 10-15, by using a common-view technique [150]. In this common 

view technique, two GPS receivers are kept some distance apart to observe the same satellite at 

the same time. All the measurement are similar as a single GPS timing receiver except they make 

some additional steps to subtract the data point by point after each observation is finished. 

Near-IR frequency standards are quite important from a metrological point of view since 

this region lies somewhere intermediate between the mid-IR and the visible and bridges the gap 

between them. The near-IR wavelength region is most preferable in telecommunication due to 

extremely low dispersion and low loss in silica fibers at those wavelengths. Most of the 

components and a variety of laser sources are available in this region at relatively low cost. It is 

anticipated that this spectral region will play a continuing important role in optical technology 

and science. But the 1.5 µm wavelength region corresponds to energies that are below most of 

the electronic transitions in atoms and molecules and above the fundamental vibration of the 

molecules. So we need to explore wavelength references based on overtone transitions. 

Acetylene provides a series of overtone transitions in this range from 1510 nm to 1540 nm which 
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are also relatively immune to external perturbations and have a comparatively large absorption 

strength. Therefore acetylene is recognized as a standard reference for the near-IR region [151, 

152]. 

Acetylene has been used as a frequency reference with increasingly precise measurement. 

After the first demonstration of saturated absorption spectra in acetylene, reported by de 

Labachelerie et al in 1994 [100], quite a number of research group throughout the world used 

Fabry-Perot cavites for power and effective path length enhancement, and observed the saturated 

absorption resonance in acetylene [101, 102, 153, 154]. After the invention of femtosecond 

frequency comb metrology, direct measurement of these transition frequencies were possible 

with uncertainties of the order of kHz level and instabilities of 10-12 at 1s averaging time 

extending below to 10-13 for longer wavelengths [105, 155-161]. Many of these measurement are 

done using a Ti:sapphire frequency comb and frequency doubled radiation at ~770 nm.  But the 

use of a frequency-doubled source poses a problem due to high power requirement and 

availability of bandwidth requirement on the doubling crystal to cover the entire C2H2 spectrum 

from 1510 to 1540 nm. Recently, mode-locked erbium doped fiber lasers have attracted 

significant attention in frequency metrology of acetylene lines [158, 162, 163]. Fiber combs are a 

highly robust and compact laser light source and their comb spans far enough to measure the 

entire near-IR spectrum. But these fibers laser are much noisier as compare to solid state lasers. 

There are currently limitations on the repetition rates they have achieved so far because of the 

need to exactly manage the fiber lengths necessary for mode-locked operation. Madej et al in 

2006 used a Cr:YAG laser frequency comb to measure absolute frequencies from 1511 nm to 

1545 nm of the v1+v3 band of acetylene with uncertainties as low as 2 kHz (~10-11) [156].  

Another promising material that offers the appropriate spectral coverage is the gain medium 

Cr:forsterite (Cr+4:Mg2SiO4) which readily covers the 1150-1350 nm region and is capable of 

producing 14 fs pulses [17] at relatively high output powers. In this Chapter, I would like to talk 

about the absolute frequency measurement of Doppler free acetylene lines using a Cr:forsterite 

laser inside the hollow core fiber. This is the first measurement to develop and characterize the 

portable frequency standard inside a hollow core fiber using a femtosecond frequency comb.  

This measurement has lot of practical and commercial implication due to extremely low loss and 

portability of photonic band gap hollow core fibers.  
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7.2. Principle and experimental setup 
A frequency comb has two free parameters: laser repetition frequency (fr) and the carrier 

envelope offset frequency (f0). Any tooth of the comb can be expressed in terms of these two 

parameters with the simple mathematical expression, 

0n rf Nf f= ±           (7.1) 

Here N refers to the integer mode index which connects the RF-domain to the optical 

domain. In general, we control fr by locking the repetition rate of the mode-locked comb laser to 

a low phase noise laboratory synthesizer by controlling the laser cavity length with a 

piezoelectric crystal. The synthesizer is referenced by a 10 MHz signal supplied by the GPS 

timing receiver. To control f0, we phase lock the frequency f0 to a known frequency from a 

laboratory synthesizer by using the pump power to servo f0. Controlling these two parameters in 

the RF-domain is sufficient to precisely know every tooth of the comb. 

The output from the stabilized comb is then filtered using a ~1532 nm bandpass filter 

(FWHM ~ 10 nm). The band pass filter is made for 1550 nm of central wavelength but we angle 

tune it to reach to 1532 nm which can further increase loss by ~3 dB. We also use a combination 

of a half wave plate and a quarter wave plate to optimize the polarization of the supercontinuum 

source at ~1532 nm as shown in Fig. 7.1 below. This gives us a heterodyne beat note fb which is 

then bandpass filtered, and amplified approximately to -15 dBm before it is monitored by the 

counter.   
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Figure 7.1. Absolute frequency measurement system diagram. Both the f0 and fr are 

referenced to the GPS disciplined Rb clock. 

 

All of the counters and synthesizers shown in the Figure 7.1 are referenced to the GPS 

disciplined Rb clock.  Our heterodyne beat note, fb, has 25 dB of SNR centered at a frequency of 

~30 MHz with a FWHM of 400 kHz.   

 
Figure 7.2. Beat note, fb, in between Cr:f frequency comb and CW fiber laser locked to the 

molecular transition of acetylene.  
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The frequency of the acetylene stabilized laser can then be written as, 

0n r bf Nf f f= ± ±          (7.2) 

Where the sign of the beat note gives the idea about which side of the nth comb line our unknown 

frequency lies. The positive sign of the fb indicated that the C2H2-stabilized laser has the 

frequency higher than the frequency of the comb mode that is involved.  The correct sign for the 

frequencies can also be figured out by slightly changing the respective synthesizer frequencies 

for fr and for f0 and noting the change in fb. The only quantity not directly measured in this series 

of measurements is N, which can be deduced in two different approaches: with prior knowledge 

of the unknown frequency with an uncertainty less than fr or without prior knowledge of the 

frequency to be measured as mentioned in reference[164] which will be discussed later in this 

Chapter. 

 

7.3. Frequency measurements 
In Chapter 6, we talked about characterization of the accuracy of the gas-filled PBGF cells by 

locking a CW fiber laser to the acetylene absorption feature. Now we would like to measure the 

absolute value of that locked CW laser with the help of our Cr:forsterite laser frequency comb.  

These measurements are made on acetylene inside the 70 μm core kagome fiber. 

After ensuring that the Cr:forsterite laser was running in its optimum condition by 

looking at the count data of both f0 and fr, we then count the heterodyne beat between the 

Cr:forsterite laser and the acetylene-stabilized CW fiber laser. A number of times during each 

data run, one of the phase lock loops of the Cr:forsterite laser typically comes out of the lock and 

we need to manually relock it. This unlock is due to various factors such as thermal drift, pump 

power fluctuation, temperature of the lab, etc. Most of these data were recorded and removed 

from the raw data. The time series measurement of the data of f0, fr, and fb is shown in the Fig. 

7.3 below. Each of these data sets has been recorded for different gate time of the counter to 

characterize the stability of the comb and the heterodyne beat note by calculating the Allan 

deviation. As I mentioned in Chapter 6, we use an AOM in the saturated absorption setup which 

may drift during the counting of the heterodyne beat and therefore cause the heterodyne beat to 

drift. To ensure that we are not limited by the AOM drift, we also count the dc offset of the RF 

signal driving the AOM. We have found that the AOM drift is negligible as compare to the drift 
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of the heterodyne beat. So we can simply ignore the effect of the AOM drift on the stability of 

the heterodyne beat. We also monitor the temperature using a temperature sensor just below the 

vacuum chamber where gas filled fiber is kept. The temperature sensor continuously monitors 

the temperature every 15 s and records it. The temperature of the lab throughout the 

measurement of the count data was fairly constant at 22.9 0C.  

 
Figure 7.3. Counter frequency measurement of fr and f0 with 1-s gate time. Both data sets 

are plotted by subtracting off a particular frequency value, as indicated in the Y-axis label. 

 
Figure 7.4. Counter frequency measurement of fb at 1s gate time. We can clearly see the 

periodic fluctuation of the beat note over a ~15 minute time period. This may be due to 

temperature fluctuations in a nearby air-conditioning unit, which has a cycling time of ~ 10 

minutes; heterodyne beat count exhibits fluctuations between the comb and CW-laser 

locked to P(13) line of 12C2H2 on the scale of 10 min also. (However, a temperature sensor 

near by the hollow core fiber did not record a change in temperature during this data set 

within the resolution of 0.10C.) 
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Each of the measurements of fr, f0 and fb consists of count data from three different counters that 

were monitored and recorded in a computer. We repetitively gate the counter using a different 

gate time of 10 ms, 100 ms, 500 ms, 1000 ms and 10000 ms in each run to measure long term 

and short term stability of fr, f0 and fb. The repetition rate data were limited by noise in the 

counters to approximately ∆f/f ൎ 5ൈ10-11 or 50 mHz at 1-s gate time. We then calculate the Allan 

deviation to measure the stability of fr, f0 and fb. Figure 7.5 below shows the fractional Allan 

deviation of the time series measurement of fr, f0 and fb weighted by their respective 

contributions to stability in optical domain. To calculate the Fractional stability of fr in optical 

domain, we multiply uncertainty of fr by N and then divide by fx (~195 THz). For f0 we simply 

divide the uncertainty of f0 by N and then divide by fx (~195 THz).  

  
Figure 7.5. Fractional stability of f0 (star) and fr (circle) for different gate times in the 

optical domain. Here fr is counter- limited. Fractional stability of the beat note (triangle) 

between the comb and the acetylene stabilized CW laser clearly shows that the short term 

stability of the locked CW laser is limited by stability of the GPS reference.  The GPS/Rb 

frequency stability (square) is expected to be ~ 2x10-11@ 10-s gate time. 
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 Extensive tests have been done to show the stability of the femtosecond comb to 

measure the optical frequencies to the ~ 5ൈ10-11 level at 1-s gate time when referencing our 

comb to the GPS disciplined rubidium clock. But this measurement of comb stability is limited 

by the noise of the counter. The data for fb averages down to an uncertainty very close or better 

than GPS limit at 1-s gate time. The value of GPS stability of ~ 2ൈ10-11 levels at 1-s gate time is 

provided by the manufacture specification sheet and is worst case scenario. To measure fb 

stability better than ~ 10-11 level, measurement duration must be significantly longer, more than 

12 hours at larger than 100 s gate time. This seems to be impossible in our current Cr:forsterite 

laser system providing its inherent complexities in operation with 4 different servo systems, 

material properties, temperature fluctuation, coupling between f0  and fr servo etc. Beat note 

between comb and CW laser locked to the molecular transition clearly reflects the short term 

stability of the P13 acetylene line is within 10’s of kHz at 1.531µm wavelength. In the long run, 

lock points of the CW laser locked to the P13 line changes and makes beat note to drift.  

 

7.4. Absolute mode number, N and frequency measurement 
There are two different ways to determine the absolute mode number in order to measure the 

unknown frequency [164]. First is with prior knowledge of the frequency to be determined and 

second is without prior knowledge of the frequency. In the first case, we need to know the 

frequency to be measured within an uncertainty that is small relative to the frequency spacing 

between comb components. For a system of low repetition rate, this can corresponds to a relative 

accuracy of a few parts in 108.  However in a large range of applications using diode lasers, solid 

state lasers and other type of lasers it may be difficult to know the frequency to be determined to 

that precision. This is not a problem in the case of power build up cavities since acetylene lines 

have been measured within ~2 kHz. However, to be extra careful and in case the fiber 

spectroscopy technique caused a large shift (~100 MHz), we employed alternate techniques that 

did not assume any prior knowledge of the frequency to be measured.  

An alternative way of determining the absolute mode number was proposed by Long-

Sheng Ma et al in 2003[164]. This method does not require the prior knowledge of the unknown 

frequency. The main idea behind this measurement is to beat the unknown radiation successively 

using different repetition rates of the femtosecond laser with two or more comb components of 
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the known difference in mode order.  As we discussed, the unknown frequency, fx to be 

measured using the frequency comb can be written as, 

0x r bf Nf f f= ± ±          (7.3) 

and the sign of the values for of f0 and fb are deduced as described later. Let us now change the 

repetition rate of the laser by a small number, m by carefully counting the comb components. 

The measured frequency can then be expressed as, 
' ' '

0( )x r bf N m f f f= ± ± ±          (7.4) 

where all frequencies are now referred as (Nേm)th components of the comb. Here N and m are 

both integers. By smoothly changing the repetition rate by changing the voltage on the PZT 

attached to the end mirror, the change in mode order, m can be controlled and known. The value 

of m can then be chosen while the repetition rate of the comb is phase locked to the RF 

synthesizer. Thus, very precise values of the '
bf  and fb are obtained by counting these beats over 

an appropriate integration time. Experimentally, we change the synthesizer frequency which is 

phase locked to the repetition rate of the laser while monitoring and counting the beat note, fb on 

the screen of an RF spectrum analyzer. As the mode order is changed by m, the repetition rate is 

roughly changed by mൈ65 Hz. Figure 7.6 below shows one such measurement where we change 

the synthesizer frequency by ~600 Hz to change N by 10 in order to count m=10; we paused 

each time fb came back to the same value. As we changed fr, we watched fb increase until fr/2, 

then decrease to zero, then increase to starting value. At this point we paused, so the number of 

steps shown in Fig. 7.6 indicate m, the change in the number of comb teeth. 
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Figure 7.6. Counted repetition frequency while changing the synthesizer frequency to 

decrease or increase comb tooth by 10. Every step in ladder corresponds to change in m by 

1 and total number of steps equals m. We can see change in N by 10. But we cannot change 

m by more than 10 steps before the laser goes out of lock. 

As I mentioned in section 7.2, the correct sign of the beat note term gives the idea if the 

frequency of the acetylene stabilized laser is higher or lower than the frequency of the comb 

mode involved. We can figure out the sign by slightly changing the respective synthesizer 

frequencies and note the change in beat note. Figure 7.7 below shows such a measurement, in 

which we can clearly see that fb follows fr in the same direction whereas fb follows f0 in opposite 

direction. Since fx is constant, we can easily figure out the correct sign of both the f0 and fb. For 

example, in the case shown in Fig. 7.7 below 

0 0 0where, and x r b b bf Nf f f f f f f= − − = − = −  
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Figure 7.7. Determination of correct sign for f0 and fb.  fb follows change in fr in the same 

direction whereas fb follows change in f0 in opposite direction. 

Combining Eq. 7.3 and 7.4, we can easily get N, 
' ' '

0 0
'

r b b

r r

mf f f f fN
f f

+ − + −
=

−
        (7.5) 

Here we have taken all positive sign in Eq. 7.3 and 7.4. Sign of the fr, f0 and fb could be positive 

or negative depending upon the behavior of fr vs. fb and f0 vs. fb as discussed above. Equation 7.5 

gives the experimental value of the integer N. But N can be determined to a limited precision due 

to the instability of the laser frequency; the statistical fluctuation of the frequency measurement 

can be reduced by using a longer measurement time. Since there is uncertainty in the 

measurement of fr, f0 and fb, the error propagates to the integer N. One of the easiest ways to 

figure out a rough estimate of error in N is by considering error in fr, f0 and fb as independent of 

each other. In such case, we can use the expression for error propagation as, 
' ' ' 2 ' 22

0 0
2 ' ' ' 2 ' 2

0 0

[ ( )] [ ( )]( )
( ) ( )

r b b r r

r b b r r

mf f f f f f fN
N mf f f f f f f

δ δδ + − + − −
= +

+ − + − −
    (7.6) 

Where, Nδ is uncertainty in measurement of N. Equation 7.6 can be simplified for Nδ , 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 2 22 2 22 ' ' ' '
0 0

' ' ' 2 ' 2
0 0

' ' '
0 0

'

( ) ( )
r b b r r

r b b r r

r b b

r r

m f f f f f f f
N

mf f f f f f f

mf f f f f
f f

δ δ δ δ δ δ δ
δ

+ + + + +
= +

+ − + − −

+ − + −
×

−

  (7.7) 

We can, in fact, approximate Eq. 7.7 in a very simple form as, 
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2 b

r

fN N
mf
δδ =          (7.8) 

Where, we have considered 2 '
0 0, , ( ) 1,  andr b r b rmf f f f f f fδ δ δ> ≈  

For the absolute frequency measurement to be useful, 1Nδ ≤ .To fulfill this criterion beat 

note, fb should be less than or equal to
2

rmf
N

, 

1
2

r
b

mff kHz
N

δ⇒ ≤ ≈  

This shows that we should be able to count fb within kHz or alternatively, we need to increase 

step size m up to 2000 without losing the phase locking. Both of these conditions seem to be 

impossible to fulfill in our system since our fb changes by more than 40 kHz and we cannot count 

m by more than 10. Even in the case when frequency comb is very stable, if acetylene stabilized 

laser drifts in time, we cannot fulfill the criteria 1Nδ ≤ . So in the case of measuring N for less 

stable laser such as ours, single step in m does not provide an unambiguous identification of N.  

The method needs to be repeated for additional m’s by choosing a significantly different 

repetition rate of the cavity. To change the laser cavity length by significant amount, we use the 

micrometer attached to the end mirror inside the cavity. For each different cavity length, we 

count m by using the synthesizer frequency phase locked to fr. For each m, there exists only one 

closest reappearing mode order that can be accepted as a possible candidate for absolute mode 

number. This is also illustrated in Table 7.1. The Table below shows that, for each m, there exists 

only one reappearing mode order, with small values of δ. The first two columns of measurements 

shown in Table 7.1 were taken 10 days before the measurement shown in last two columns in the 

same table. 
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Table 7.1. Compilation of experimentally determined absolute frequency measurement for 

different mode number N. Calculation gives a unique number in either column, listed in 

bold type, with minimum frequency difference in each of the first two column or last two 

column separated by double line. The mode number presented in the table corresponds to 

the absolute frequency measurement shown in bold type. The fr frequency  shown is the 

upper value in the step counting. The first two columns of measurement and the last two 

columns of measurement are taken in ~ 10 days of difference in time 

fr (in MHz) = 

113.2467594997 

m = 10 

ܰ ൌ 1727034 

fr (in MHz) = 

113.0296957997  

m = 10 

ܰ ൌ 1730350 

 fr (in MHz) = 

113.0375351998 

m = 7 

ܰ ൌ 1730237 

fr (in MHz) = 

113.1922849996 

m = 7 

ܰ ൌ 1727871 

fx (P13 of 12C2H2) 

(Hz) 

fx (P13 of 12C2H2) 

(Hz) 

 fx (P13 of 12C2H2) 

(Hz) 

fx (P13 of 12C2H2) 

(Hz) 

……… 

195580486541263 

195580599788023   

195580713034782 

195580826281542 

195580939528301 

195581052775061 

195581166021820 

195581279268580 

195581392515339 

195581505762099 

195581619008858 

……… 

……… 

195580374395285 

195580487424981 

195580600454676 

195580713484372 

195580826514068 

195580939543764 

195581052573460 

195581165603155 

195581278632851 

195581391662547 

195581504692243 

……… 

 ……… 

195580035030485 

195580148067563 

195580261104641 

195580374141719   

195580487178797 

195580600215874 

195580713252952 

195580826290030 

195580939327108 

195581052364186 

195581165401263 

……… 

……… 

195580599800239 

195580712992065 

195580826183892 

195580939375718 

195581052567544 

195581165759371 

1 95581278951197 

195581392143024 

195581505334850 

195581618526676 

195581731718503 

……… 

 

 We use an AOM to shift the frequency of the probe by ½ of the AOM frequency to 

minimize the interference between the pump and probe. Fig. 7.8 below shows our AOM 

frequency which is at ~80 MHz. Therefore, we need to add ½ of the AOM frequency 

(39,999,427 Hz) to the frequency of the P13 line as shown in Table 7.1 to get the absolute 
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frequency measurement.  The drift of the AOM is negligible as compared to the uncertainty of 

our beat frequency measurement.  

 

 
                       Figure 7.8. AOM frequency measurement 

Besides the small drift due to the AOM, there are several other factors such as pressure 

and power shift which cause the shift of the molecular lines of the acetylene. We have yet to 

perform these measurements inside the hollow optical fiber. But there are some groups who have 

already measured these shifts inside the power build up cavity and inside the gas cell for 

different molecular lines of acetylene [6, 99, 109]. Some of these measurements of pressure and 

power shifts are tabulated below. 

Table 7.2. Pressure and Power shift measuremets 

Molecule lines Line Center Wavelength 

(nm) 

Pressure Shift 

(kHz/Torr) 

Power Shift 

(Hz/mW) 

Reference

12C2H2 

(In Glass Cell) 

P13 1532.83 -270 (േ30)  [99] 

13C2H2 

(In Fabry-Perot 

Cavity) 

P16 1542.38 -230 (േ20) -11.4 (0.6)  [109] 
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AOM frequency = 79,998,853.7±0.4 Hz
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The measurements shown in Table 7.2 show that pressure and power shift are not major 

contributing factors to the uncertainty of our measurements inside the hollow core fiber, where 

the pressure is less than 150 mT, which corresponds to a pressure shift of 40 kHz and power is 

~100 mW, which corresponds to a power shift of ~1 kHz.  

After we added ½ of the AOM frequency to the measured frequency, we took the mean 

and standard deviation of these four different measurements. These measurements have resulted 

in absolute frequency of CW laser locked to the P13 line of acetylene inside 68 µm hollow core 

Kagome fiber to be 195.580,979,427 THz. Two measurements differed by ~10 kHz in Aug 8 

measurement and ~30 kHz in Sept 8 measurement which may indicate a different drift rate of the 

C2H2 stabilization on the two days. Each of these measurements lasts for 30 minute or so. 

However if we take the standard deviation of these 4 data shown in bold face letter as shown in 

Table 7.1, the uncertainty of the measurement is found to be ~110 kHz. But for these small data 

sets, the standard deviation is not a completely reliable way to calculate uncertainty. We can 

clearly see a difference of ~200 kHz in two different measurements taken at two different times 

as shown in Table. 7.1 above. So, reproducibility of the measurement was the biggest concern 

for us since we have seen day to day drift in the absolute frequency measurement.   

To understand the source of this drift, we beat the non-PM fiber laser locking system to 

the PM fiber laser locking system and measured the counted beat note vs. time. At the same time, 

we also made a heterodyne beat note between the PM-fiber laser locking system and the 

Cr:forsterite comb and counted the beat note between them. These measurements are shown in 

Fig. 7.9a below. If we subtract these time series measurements of the two beat notes we can get a 

very flat signal as shown in Fig. 7.9b. The remaining small fluctuations we see seem to be due to 

temperature fluctuations inside the lab as shown in the red line in Fig. 7.9b. 
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Figure 7.9. (a) Time series measurement data of the beat note between the non-PM and PM 

fiber laser locking setup (black) and the heterodyne beat between the PM-fiber laser 

locking system and the Cr:forsterite comb (blue). (b) Difference between blue and black 

plot shown in (a). Red line is the temperature fluctuation as measured near the PM fiber 

locking setup. (Note: time axis is same for both the graph a and b 

We have recently figured out that there is a large drift caused by the EOM in our “PM 

fiber laser locking system” that may have led to this difference. (Note: Difference between PM 

and Non-PM locking system is explained in detail in Chapter 6.). The EOM distributes the power 

to CW laser light to create sidebands spaced by the modulation frequency around the original 

frequency of light. Due to the poor quality of the EOM in our PM system, it distributes power in 

the sidebands unevenly and randomly and gives rise to the imbalance in the wings of the 

derivative signal and hence contributes a large error in our measurement. This imbalance and 

drift most likely led to the large frequency offset of our measurement. 
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A signature of the drift already appeared in the error signal before we carefully made this 

beat note measurement between the two different systems, so while counting the measurement 

we were able to change the probe polarization to minimize the effects. Therefore the actual 

uncertainty of the measurement is difficult to assess without taking additional measurements. 

Because that drift was not well controlled at the time of measurement, we make a conservative 

estimate of the error bar to be between 100 kHz and 1 MHz. Our recent measurement of the 

absolute frequency of the acetylene line in the non-PM setup shows a very promising result in 

terms of the reproducibility of the measurement. 

In fact, several groups have measured the acetylene lines inside a glass cell and power 

build up cavity [6, 99, 155, 156, 165]. One of the accurate and precise measurements of the P13 

line of 12C2H2 was made by Mandej et al inside a power build up cavity using a Cr:YAG laser 

based frequency comb [156]. We compare our measured value of 195580979370േ2 kHz for P13 

line measured in Ref.  [156].  

 
Figure 7.10. Absolute frequency measurement of P13 line of 12C2H2 performed inside 

hollow core Kagome fiber in Aug 28 and Sept 8. Frequency offset in Y-axis is difference in 

frequency between our measured frequency and frequency of 195,580,979,370 kHz 

measured by Mandej et al for P13 line of 12C2H2 inside power build up cavity as mentioned 

in Ref [156]. 

To conclude our result, we have measured the absolute frequency of the P13 line of 

acetylene inside the 68 µm hollow core Kagome fiber to be 195,580,939,400 kHz with the 
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estimated uncertainty somewhere in between 100 kHz and 1 MHz. The uncertainty is derived 

from the standard deviation of the 4 different measurements taken in two different days which is 

~ 100 kHz and estimated uncertainty due to the EOM drifts of ~ 1MHz. We are hoping that 

within very short period of time, we can track down uncertainty below 10 kHz. 
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CHAPTER 8 - Conclusion and future direction 

While the science of frequency metrology has been transformed, optical fiber technology 

has simultaneously been revolutionized; we have demonstrated potential to use gas-filled hollow 

core fibers as an extremely portable frequency reference device in the near-IR region. We are the 

first group to investigate saturation spectroscopy of acetylene inside photonic band gap fibers. 

We have recently used larger core kagome fiber to demonstrate much narrower sub-Doppler 

features of around 10-15 MHz (FWHM). We have characterized saturated absorption features 

inside these hollow core fibers in terms of pressure, power and fiber geometry. Larger core 

kagome fiber also gives much higher signal slope of ~5-10/GHz of these narrow sub-Doppler 

features which is a factor of 3 to 5 larger than in PBG fibers. Higher signal slopes are better since 

they give higher signal-to-noise ratios to lock the CW laser to these narrow features. 

To develop a portable frequency reference we need to get rid of the vacuum chamber to 

perform pump-probe spectroscopy inside these hollow optical fibers. This is possible if we can 

seal these hollow fibers. Many applications of PBGF require the fabrication of a PBGF cell, in 

which a length of PGBF is filled with a gas or liquid and spliced to solid-core single-mode fiber 

(SMF) on each end. We have developed a repeatable, robust, low-loss and innovative splicing 

technique to splice a hollow-core PBGF to SMF using a commercial electric-arc splicer. The 

most unique feature is the non-reciprocity of the splice loss: the splice loss as measured from the 

SMF to PBGF is different from that measured in the opposite direction from the PBGF to SMF.  

In the 20 μm HC19-1550-01 fiber, splice loss from SMF to PBGF varies from 0.3 dB to 0.5 dB 

whereas splice loss from PBGF to SMF is more than 2 dB.  The splice loss non-reciprocity is 

less prominent in 10.9 μm PBGF, because there are fewer modes present. 

We have utilized a technique called frequency modulation (FM) spectroscopy for 

frequency stabilization of a CW laser locked to a molecular transition. We used this technique to 

peak-lock both the extended cavity diode laser and fiber laser to the narrow sub-Doppler 

features. The signal to noise of the lock signal in the diode laser is found to be a factor of 3 

smaller than that of the fiber laser. We also beat two of the CW fiber laser locked to the narrow 

sub-Doppler feature in two identical setups and figure out the short term stability of 4േ2ൈ10-11 

at 100 ms gate time at a beat note frequency of 68 MHz.  
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Since the frequencies of these molecular transitions lie in the near-IR region, we have 

developed and phase stabilized a prism-based Cr:forsterite laser frequency comb to make an 

absolute frequency measurement of the molecular lines of acetylene. The stabilized Cr:forsterite 

frequency comb provides a dense grid of reference frequencies which spans a substantial part of 

the near-IR region from 1000 nm to 2200 nm. We used a GPS-disciplined rubidium oscillator as 

our frequency reference to our comb. Rubidium oscillators are less expensive, widely available 

and also offer good short term fractional frequency stability of 5x10-11. These commercial GPS 

timing receivers can achieve a typical frequency stability of 10-13 when averaged over a week 

and a stability of 2x10-11 at 1s. We used 4 different servos, including a prism servo inside the 

cavity to stabilize the Cr:forsterite laser and successfully managed to stabilize the comb for 2-3 

hours to measure the optical frequencies to the ~ 5ൈ10-11 level at a 1-s gate time. But this 

measurement of comb stability is limited by the noise of the counter at 50 mHz since our fr 

measurement is counter-limited.  

Finally, our goal is to measure the absolute frequency of the CW laser locked to the 

molecular transition. After ensuring the Cr:forsterite laser was running in its optimum condition 

by looking at count data of both f0 and fr, we then counted the heterodyne beat between the 

Cr:forsterite laser and acetylene stabilized CW fiber laser. The beat note between the comb and 

CW laser locked to the molecular transition clearly shows that the short term stability of the P13 

acetylene line is within 10’s of kHz at 1.531 µm of wavelength; the correspondingly frequency 

stability of the beat note is better than ~ 10-11 level. The value of the GPS stability of ~ 2ൈ10-11 

levels at 1-s gate time is provide by the manufacture specification sheet and is the worst case 

scenario. To measure the fb stability to better than the ~ 10-11 level, the measurement duration 

must be significantly longer. This seems to be impossible in our current Cr:forsterite laser system 

providing its inherent complexities in operation with 4 different servo systems and some 

drawback of the Cr:forsterite crystal itself such as poor thermal conductivity, and thermal lensing 

effects. In long run, the lock point of the CW laser locked to the P(13) line changes and makes 

the beat note to drift. This drift may be due to various factors such as temperature change inside 

the lab, polarization drift, power change inside the fiber, pressure shift due to leakage in the 

vacuum chamber, etc.  

To summarize the conclusion, the first stage of development of innovative portable 

frequency references clearly shows at least one or two order of magnitude improvement in short 
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term stability over the measurement capabilities of commercially available devices. This 

measurement can have a significant impact on existing technology due to implication of 

extremely low loss and portability of photonic band gap hollow core fibers.  

The future of these frequency references is very promising, even though there are some 

subtle challenges. We now have phase-stabilized a very compact and highly stable erbium-doped 

fiber laser to characterize the long term stability of the frequency reference. Significant progress 

is going on to characterize the shift in the center frequency of the CW laser locked to the 

molecular transition due to temperature, gas pressures, power, fiber length, laser polarization, 

and other parameters that may drift during the operation of such a reference. We will further 

pursue techniques for narrowing the sub-Doppler line, as necessary, once we have exhausted the 

approach of trying larger fiber core sizes. Furthermore, we have also started investigating the 

behavior of the Cr:forsterite laser under a variety of perturbations in order to better understand 

how to effectively phase-stabilize it for longer time. We are also in the process of characterizing 

noise in different teeth of the comb by beating the Cr:forsterite laser with the fiber laser. This 

helps us to minimize noise which may give use some idea of how to minimize the width of the 

carrier envelope offset frequency. Narrower comb teeth are better for frequency metrology since 

they can give more precision in a measurement. As described earlier, we have the capability of 

splicing solid core fiber to PBG fiber using an electric arc splicer, and are developing the 

capability of sealing two fibers together while they are inside the chamber. One more subtle 

challenge would be to splice larger-core kagome fibers; this is challenging in part because the 

microstructured cross-sectional area of the large-core kagome fibers is larger than the entire 

cross-section of standard solid-core SMF fiber. 
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