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Abstract 

Biodiesel production and utilization has been increasing rapidly worldwide in recent 

years. A main challenge in the commercialization and public acceptance of biodiesel is its 

quality control. This work reports the use of infrared spectroscopy to monitor biodiesel quality 

through the development of models to predict (1) the blending level of biodiesel in biodiesel-

diesel mixtures, (2) the fatty acid profile of biodiesel fuels derived from various lipids, and (3) 

the concentration of most common impurities present in biodiesel including water, glycerol, 

methanol and triglycerides.  

Regressions based on near-infrared (NIR) spectroscopy were developed for relatively 

inexpensive and rapid on-line measurement of the concentration and specific gravity of 

biodiesel-diesel blends. Methyl esters of five different oils—soybean oil, canola oil, palm oil, 

waste cooking oil, and coconut oil—and two different brands of commercial-grade No. 2 on-

highway diesel and one brand of off-road No. 2 diesel were used in the calibration and validation 

processes. The predicted concentration and specific gravity of the biodiesel-diesel blends were 

compared with the actual values. The maximum and average root-mean-square errors of 

prediction (RMSEP) of biodiesel concentration were 5.2% and 2.9%, respectively, from the 

biodiesel type-specific regression. For the general regression, the RMSEP were 3.2% and 0.002 

for biodiesel concentration and specific gravity predictions, respectively. 

Five different models were developed to determine the concentration of methyl palmitate 

(C16:0), methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl 

linolenate (18:3) present in biodiesel. Using the NIR range a set of models based on four 

different types of biodiesel was developed. The maximum RMSEP was 0.553% when the models 

were validated with biodiesel samples that were used in the calibration, however, prediction 

accuracy of the model under external samples was poor, therefore, a new set of models was 

proposed. For this case, six different types of biodiesel were used. The models developed for 

C18:1, C18:2 and C18:3 presented good accuracy on prediction. However, for C16:0 and C18:0, 

additional work was necessary to reach reasonable accuracy in prediction. Three sub models for 

specific ranges of concentration (low, medium, and high) were developed. The RMSEP was 



  

reduced from 2.98% to 1.51% for the C16:0 and from 2.33% to 0.56% for C18:0, when the sub-

models were validated under internal and external samples. Similar procedures were followed to 

develop regression models based on mid infrared (MIR) spectra. The RMSEP for C16:0, C18:0, 

C18:1, C18:2, and C18:3 were 0.83%, 0.37%, 1.45%, 1.59%, and 0.84%, respectively. 

Predictions using MIR spectroscopy models were better than those obtained with NIR 

spectroscopy models for the C16:0 and C18:0 models.  

The most common impurities present in biodiesel from production processes, including 

methanol, free glycerol, triglycerides, and water,  were determined by infrared methods using 

NIR and MIR spectra and partial least square regression (PLSR) methods. The models were 

developed in two different approaches, one was when a single impurity was present and the other 

was when all impurities were present. In the single impurity models, the maximum RMSEP 

obtained in the NIR and MIR models were 647 mg kg-1 and 206 mg kg-1, respectively. The 

models for methanol, glycerol, and water performed better using the NIR data. For the 

triglycerides model, MIR worked better. Only NIR data were used to develop the models for 

samples with all impurities. Data pre-treatment (Savitzky-Golay second derivative) was 

necessary to achieve reasonable accuracy in the predictions in this type of models. The 

maximum RMSEP was 932 mg kg-1 presented in the model for triglycerides. The best 

performance was obtained in the model developed to predict methanol concentration in biodiesel 

with RMSEP of 177 mg kg-1when all listed impurities were presented. 

The feasibility of using NIR and MIR spectroscopy to monitor biodiesel quality was 

demonstrated in this work.  The developed method was accurate, rapid, convenient, yet 

inexpensive to determine some important characteristics of biodiesel, such as biodiesel blending 

level in biodiesel-diesel mixtures, the fatty acid profile of biodiesel, and impurities present in the 

fuel. 
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Abstract 

Biodiesel production and utilization has been increasing rapidly worldwide in recent 

years. A main challenge in the commercialization and public acceptance of biodiesel is its 

quality control. This work reports the use of infrared spectroscopy to monitor biodiesel quality 

through the development of models to predict (1) the blending level of biodiesel in biodiesel-

diesel mixtures, (2) the fatty acid profile of biodiesel fuels derived from various lipids, and (3) 

the concentration of most common impurities present in biodiesel including water, glycerol, 

methanol and triglycerides.  

Regressions based on near-infrared (NIR) spectroscopy were developed for relatively 

inexpensive and rapid on-line measurement of the concentration and specific gravity of 

biodiesel-diesel blends. Methyl esters of five different oils—soybean oil, canola oil, palm oil, 

waste cooking oil, and coconut oil—and two different brands of commercial-grade No. 2 on-

highway diesel and one brand of off-road No. 2 diesel were used in the calibration and validation 

processes. The predicted concentration and specific gravity of the biodiesel-diesel blends were 

compared with the actual values. The maximum and average root-mean-square errors of 

prediction (RMSEP) of biodiesel concentration were 5.2% and 2.9%, respectively, from the 

biodiesel type-specific regression. For the general regression, the RMSEP were 3.2% and 0.002 

for biodiesel concentration and specific gravity predictions, respectively. 

Five different models were developed to determine the concentration of methyl palmitate 

(C16:0), methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl 

linolenate (18:3) present in biodiesel. Using the NIR range a set of models based on four 

different types of biodiesel was developed. The maximum RMSEP was 0.553% when the models 

were validated with biodiesel samples that were used in the calibration, however, prediction 

accuracy of the model under external samples was poor, therefore, a new set of models was 

proposed. For this case, six different types of biodiesel were used. The models developed for 

C18:1, C18:2 and C18:3 presented good accuracy on prediction. However, for C16:0 and C18:0, 

additional work was necessary to reach reasonable accuracy in prediction. Three sub models for 

specific ranges of concentration (low, medium, and high) were developed. The RMSEP was 

reduced from 2.98% to 1.51% for the C16:0 and from 2.33% to 0.56% for C18:0, when the sub-



  

models were validated under internal and external samples. Similar procedures were followed to 

develop regression models based on mid infrared (MIR) spectra. The RMSEP for C16:0, C18:0, 

C18:1, C18:2, and C18:3 were 0.83%, 0.37%, 1.45%, 1.59%, and 0.84%, respectively. 

Predictions using MIR spectroscopy models were better than those obtained with NIR 

spectroscopy models for the C16:0 and C18:0 models.  

The most common impurities present in biodiesel from production processes, including 

methanol, free glycerol, triglycerides, and water,  were determined by infrared methods using 

NIR and MIR spectra and partial least square regression (PLSR) methods. The models were 

developed in two different approaches, one was when a single impurity was present and the other 

was when all impurities were present. In the single impurity models, the maximum RMSEP 

obtained in the NIR and MIR models were 647 mg kg-1 and 206 mg kg-1, respectively. The 

models for methanol, glycerol, and water performed better using the NIR data. For the 

triglycerides model, MIR worked better. Only NIR data were used to develop the models for 

samples with all impurities. Data pre-treatment (Savitzky-Golay second derivative) was 

necessary to achieve reasonable accuracy in the predictions in this type of models. The 

maximum RMSEP was 932 mg kg-1 presented in the model for triglycerides. The best 

performance was obtained in the model developed to predict methanol concentration in biodiesel 

with RMSEP of 177 mg kg-1when all listed impurities were presented. 

The feasibility of using NIR and MIR spectroscopy to monitor biodiesel quality was 

demonstrated in this work.  The developed method was accurate, rapid, convenient, yet 

inexpensive to determine some important characteristics of biodiesel, such as biodiesel blending 

level in biodiesel-diesel mixtures, the fatty acid profile of biodiesel, and impurities present in the 

fuel. 
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Chapter 1 - Introduction 

 1.1 Problem Statement 

Biodiesel is mainly produced from vegetable oils such as waste vegetable oil (WVO), 

soybean, and canola/rapeseed. New sources of oils or fats in algae, Jatropha, palm, greases, etc., 

have been used to implement the second generation of biofuel. Biofuels from nonfood crops 

circumvent the competition between food production and biofuel expansion.  The large variety of 

raw materials for biodiesel production makes biodiesel quality control an immense challenge. 

However, the fatty acid profile of feed stocks/fuel has been mentioned in literature as the most 

important factor to determine biodiesel properties. Consequently, determination of the fatty acid 

profile in biodiesel is an important task in the processes of monitoring and controlling quality of 

the fuel. In addition, various concentrations of biodiesel are commonly used as blends with 

petroleum-based diesel fuels, which makes biodiesel monitoring and engine performance 

optimization even more difficult. Additionally, biodiesel is mainly produced through a 

transesterification process, using a low molecular weight alcohol and a catalyst. Due to this 

production method, the final products often contain impurities such as unreacted triglycerides, 

free glycerol, catalyst, and residual alcohol. These contaminants undermine engine performance 

and can cause severe engine problems.  Most analytical methods currently used in biodiesel are 

based on chromatographic analysis. Even though this method is suitable and accurate, it is a 

time-consuming process that requires well-trained personnel and expensive reagents. Therefore, 

a simple, fast, and accurate method to determine blending level in biodiesel-diesel blend, fatty 

acid profile, and the most common impurities present in biodiesel is extremely desired. 

 1.2 Background 

Biodiesel is an alternative biofuel produced by chemical reaction, transesterification, in 

which vegetable oils or animal fat react with a short-chain alcohol in the presence of a catalyst 

Van Gerpen (2005).  Related to the production method biodiesel usually contains residual 

alcohol, catalyst, and free glycerol therefore a final washing process is necessary to minimize or 

eliminate these components, considered impurities, in the final product. In order to ensure proper 

performance of engines and avoid engine problems, biodiesel has to meet all requirements 

included in ASTM D6751-11B the nationally accepted fuel standard in the United States, or EN 
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14214 applied in Europe. Table 1-1 summarizes the requirements for biodiesel (B100) according 

to the ASTM standard.  

 

Table 1-1 Detailed Requirements for Biodiesel (B100) (All Sulfur Levels) 

Property 
Test 

Method 

Grade S15 

Limits 

Grade S500 

Limits 
Units 

Calcium and Magnesium, combined EN 14538 5 max 5 max ppm (µg/g) 

Flash point (closed cup) D93 93 min 93 min ºC 

Alcohol control, One of the following 

must be met: 1- Methanol content 

          2-Flash point 

 

EN14110 

D93 

 

0.2 max 

130 min 

 

0.2 max 

130 min 

 

mass % 

ºC 

Water and sediment D2709 0.050 max 0.050 max % volume 

Kinematic  viscosity, 40 ºC D445 1.9 – 6.0 1.9 – 6.0 mm²/s 

Sulfated ash D874 0.020 max 0.020 max % mass 

Sulfur D5453 0.0015 max 

(15) 

0.05 max 

 (500) 

% mass 

(ppm) 

Copper strip corrosion D130 No. 3 max No 3 max  

Cetane number D613 47 min 47 min  

Cloud point D2500 Report Report ºC 

Carbon residue D4530 0.050 max 0.050 max % mass 

Acid number D664 0.50 max 0.50 max mg  KOH/g 

Cold soak filterability D7501 360 max 360 max Seconds 

Free glycerin D6584 0.020 max 0.020 max % mass 

Total glycerin D6584 0.240 max 0.240 max % mass 

Phosphorus content D4951 0.001 max 0.001 max % mass 

Distillation temperature, Atmospheric 

equivalent temperature 90% recovered 

D1160 360 max 360 max ºC 

Sodium and potassium, combined EN 14538 5 max 5 max ppm (µg/g) 

Oxidation stability EN 15751 3 minimum 3 minimum Hours 

From: Standard ASTM 6751-11B 
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Biodiesel is commonly used as a blend of biodiesel and diesel fuel. Biodiesel blend 

indicated as BXX refers to blend of XX % (v) of biodiesel and 100-XX % (v) of diesel fuel. It is 

important to note that the current methods to test the quality of biodiesel are referring to 

biodiesel blended until 20% (v) ASTM D7467-10.  Little work has been done to monitor 

important properties of biodiesel after it is blended with diesel fuel in quantities greater than 

20%(v). Contaminants in biodiesel such as methanol, residual glycerol, triglycerides (unreacted 

oil), and water even in very small amounts can damage diesel engines. Triglycerides in biodiesel 

can generate emissions of noxious pollutants from the combustion and injector coking. Methanol 

content in biodiesel promotes lacquer deposit formation on the injectors. Furthermore, methanol 

content in biodiesel can adversely affect some important fuel properties, for instance, heating 

value and flash point, decreasing performance of the fuel. Glycerol content in biodiesel has been 

reported as a cause of injection system corrosion and deposit formation in the injector, and also 

emission problems, which increase aldehydes emission. Finally, water presence in biodiesel can 

cause corrosion problems in the engine and can also react with triglycerides producing an 

undesirable compound.   

The obtained information from the study of biodiesel blending levels can be used to 

develop a simple model or device to detect the blending levels of biodiesel in diesel, helping to 

adjust the combustion timing to reduce the NOx emissions in engines from biodiesel-diesel 

combustion. Additionally, some properties of biodiesel-diesel blends can be indirectly measured 

when the blending level is known. With models to determine the fatty acid profile of biodiesel, 

important information will be available; specifically, information related to fatty acids with 

double bonds to determine if the biodiesel meets the standard requirements (European), 

information related to the oil sources, which can be used to improve the biodiesel production, 

and important information about properties of biodiesel such as viscosity, oxidative stability, and 

iodine value that can be indirectly determined knowing the fatty acid profile. The models to 

quantify the impurities found in biodiesel can replace the gas chromatograph analysis throughout 

all the biodiesel stages, from production until retail sales. Finally these models constitute the 

necessary tools to determine the quality of biodiesel in accurate and fast ways, with the added 

advantage of direct applicability because of its online measurement characteristics. 
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 1.2.1 Vibrational spectroscopy 

The term vibrational spectroscopy is applied to any technique used to obtain vibrational 

data from samples which have been specifically developed to study the vibrations of molecules 

based on the interaction between electromagnetic radiations and matter. The theory of infrared 

spectroscopy is based on the fact that all atoms in molecules are in continuous vibration. When 

the frequency of a specific vibration is equal to the frequency of the infrared radiation of the 

molecule, the molecule absorbs the radiation. It is important to note that the functional groups in 

molecule samples only absorb infrared radiation at selected frequencies. This radiation 

corresponds to the different vibration modes of the bonds in the molecules. There are two general 

types of vibration, bending and stretching as shown in Figure 1-1. Bending is defined as the 

change in the bond angle; it can be rocking or deformation depending on whether the movement 

is in the same or opposite directions. Stretching can be symmetrical when it is on the plane or 

asymmetrical when it is out of the plane. 

 

 

 

 

 

 

Figure 1-1 Vibration modes of atoms when they are IR radiated. 
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Infrared spectroscopy is divided into three regions, the far infrared (400 to 10 cm-1), mid 

infrared (MIR, 4,000 to 400 cm-1), and near infrared (NIR, 12,820 to 4,000 cm-1).  Mid and near 

infrared spectroscopy have been commonly used to analyze a large variety of compounds; in the 

mid infrared, the fundamental molecular vibration occurs and its combination bands and 

overtones are presented in the near infrared range. To go from fundamental to the first overtone, 

the intensity of an absorption band is reduced by a factor from 10 to 100; consequently, the 

sensitivity of near infrared spectroscopy is lower than the sensitivity of mid infrared 

spectroscopy.  

 The vibrational degree of freedom represents the number of fundamental vibrational 

frequencies of the molecula or normal modes with atoms moving in phase with the same 

frequency to reach its position of maximun displacement and passing through its equilibrium 

position at the same time.  In the molecula certain vibrational modes are localized as a bond 

vibration.  The recognition of charecteristic local bond or local group frequencies which is 

associated with absortion spectra represents the success of infrarred spectroscopy as an analitical 

tool. When a molecula containing two equivalent bond with a common frequency oscillates, one 

of them will be resonantly excited by vibrations and energy will flow between them at another 

frequency governed by the strength of interbond coupling .  The two frequencies are independent 

of energy, however this normal mode depends on the harmonic approximation.  In a more 

anharmonic model the individual bond frequencies will vary with energy, typically decreasing, 

for stretching vibrations, as the energy increases.  Overtone bands in an infrared spectrum are 

analogous and are multiples of the fundamental absorption frequency. Due to the fact that the 

energy is proportional to the frequency absorbed and this is proportional to the wavenumber the 

first overtone requires twice the energy of the fundamental. 

Two general types of infrared spectroscopy have been used to obtain the spectra; 

dispersive IR spectroscopy and the Fourier transform infrared (FTIR) spectroscopy. In dispersive 

spectroscopy, the source of energy travels through samples and the reference path, then it goes to 

the chopper to adjust the energy level that will reach the detector; finally, the source of energy is 

sent to the diffraction grating (monochromator), which splits the wavelengths of spectral range 

and sends each wavelength individually to the detector, one at a time. FTIR spectrophotometer 

use halogen bulb, the energy for the source is directed into an interferometer where the energy is 
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transformed by the computer into its actual electromagnetic frequency.  This  interferometer  

uses a  beam splitter to divide the beam radiation from the source  into  two parts, one part is sent  

to the  stationary mirror  and the other part  is sent to  a moving mirror. When the beams are 

reflected to the beam splitter, it generates an interference pattern called interferogram, this 

interferogram travels from the beam splitter to the sample, where some energy is absorbed and 

the rest transmitted to the detector. In this case the detector reads the information of every 

wavelength simultaneously.  After that, the signal is sent to the computer where an algorithm 

denominated Fourier transform is used to transform the interferogram into a single beam 

spectrum. 

1.2.2 Infrared spectra of biodiesel 

Biodiesel is a mix of fatty acid methyl ester, with different lengths and degrees of 

saturation of the chains. Although spectra of biodiesels appear to be similar, they differ in the 

intensity of their band as well as in the exact frequency at which the maximum absorbance is 

produced in each type of biodiesel, caused by different nature and composition of oils used to 

produce the biodiesel.  These differences are used to discriminate among biodiesel. 

Table 1-2 describes the frequencies of most prominent bands and shoulders which are 

characteristic of biodiesels on the MIR range.  

 

Table 1-2 The frequencies of band and shoulders of biodiesel in the MIR range. 

Frequency (cm-1) Functional Group Mode of vibration Intensity 

3009 =C-H  Stretching Medium 

2924 -CH Stretching (Asymmetric) Very strong 

2854 -CH Stretching (symmetric) Very strong 

1740 -C=O Stretching Very strong 

1654 -C=C Stretching  Very weak 

1460 -CH Bending (scissoring) Medium 

1240 -CH2 Stretching (bending) Medium 

1165 -CH2 Stretching (bending) Strong 

720 -(CH2)n Bending (rocking) Medium 

Yaakob (2010 ) and Sablinskas (2003 ). 
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Typical infrared spectra of biodiesel are presented in Figure 1-2. Characteristic peaks of –

CH stretching asymmetric/symmetric are observed around 2900 cm-1 in MIR range.  

 

 

Figure 1-2 Typical spectra in the infrared range: MIR (top) and NIR (bottom) 

 

In the NIR range the bands are a composite of many bands containing information on 

more than one type of vibration, the most prominent band and shoulder present in the biodiesel 

spectra are presented in Table 1-3. The first overtones of –CH stretching are observed in the NIR 

range around 1700 nm. 
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Table 1-3 The frequencies of band and shoulders of biodiesel in the NIR range. 

 

Frequency  

(nm) 
Functional Group Mode of vibration Intensity 

1160 -C=O Stretching fourth overtone Very weak 

1190 -CH3 Stretching second overtone Weak 

1215 -CH2 Stretching second overtone Weak 

1395 -CH Combination Weak 

1415 -CH Combination Weak 

1705 -CH3 Stretching first overtone Medium 

1725 -CH2 Stretching first overtone Very strong 

1765 -CH Stretching first overtone Strong 

2140 -CH/C=O Stretching, combination or Sym. Def. Medium 

2170 -CH Stretching, combination or Asym. Def. Medium 

Shenk (2008 ) and Sablinskas (2003 ). 

 

 1.3 Research Objectives 

 

The overall goal of this work was to apply infrared spectroscopy and statistical methods 

to monitor biodiesel quality. The biodiesel level in biodiesel-diesel blends, specific gravity, fatty 

acid profile, and impurities commonly present in biodiesel such as methanol, free glycerol, 

triglycerides, and water were determined. Specific objectives were as follows: 

1) To develop a regression model to determine the concentration of biodiesel in 

biodiesel-diesel blends using near infrared spectroscopy spectra. The specific gravities of 

biodiesel-diesel blends were also predicted using the same spectra and multiple linear regression 

(MLR) method. 

2) To develop a prediction model for fatty acid profiles of biodiesel using near and mid 

infrared spectroscopy. Concentrations of five main fatty acids that are present in most biodiesel, 



9 

 

including palmitic, stearic, oleic, linoleic, and linolenic acids, were determined using the raw 

spectra in near and mid infrared range. 

3) To develop a prediction model to quantify impurities commonly present in biodiesel 

such as methanol, free glycerol, triglycerides, and water, using mid and near infrared 

spectroscopy data. Models to predict above listed impurities were developed using raw spectra in 

near and mid infrared range and partial least square regression method. 

4) To evaluate the performance of derivative technique as pre-treatment of the data for 

biodiesel analysis using infrared spectroscopy. Based on near-infrared spectra data  and 

derivative technique as pre-treatment,  the  fatty acid profile and impurities present in biodiesel 

such as methanol, triglycerides, water, and glycerol were determined.  

 1.4 Organization of Dissertation 

This dissertation has seven chapters. The first chapter presents the problem, objectives, 

and summarizes the importance of the research.  Chapter 2 reviews the literature related to 

biodiesel quality monitoring. In Chapter 3 a method to predict the concentration and specific 

gravity of biodiesel-diesel blend is proposed and developed. In Chapter 4 methods to 

determining the fatty acid profile of biodiesel using Fourier-transformed near and mid infrared 

spectroscopy were developed. Chapter 5 presents models to quantify trace biodiesel impurities 

based in Fourier-transformed near and mid infrared spectroscopy. In Chapter 6 a model to 

determine fatty acid composition in biodiesel focusing on derivative technique as pre-treatment 

was developed. Chapter 7 provides conclusions and future work discussion.  
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Chapter 2 - Related Current and Previous Work 

 2.1 Biodiesel-diesel Blend Level Detection 

   Many researchers have reported studies related to detecting concentrations of biodiesel 

in diesel blends. Knothe (2001) determined the blend level of mixtures of biodiesel with 

conventional diesel fuel using fiber-optic near infrared spectroscopy. He reported that the peaks 

at 6005 cm−1 and 4600 - 4800 cm−1 in the near infrared range could be used to identify the 

concentration of biodiesel in diesel blends. These studies were conducted using only soybean 

methyl esters, and may not be applied for biodiesel detection from other sources. 

Pimentel et al. (2006) developed models using partial least square regression using near 

and mid infrared spectra. The models were able to predict biodiesel concentration in biodiesel-

diesel blend, with the presence of 0 to 5% raw oil in the sample, based on good correlation 

coefficient. The region of the near infrared spectra used in this study was between 2200 – 2280 

nm. The RMSEP was 0.18 % (v/v) and the relative average error was 6.7 %. For the mid infrared 

case the range used was between 1700 -1800 cm-1. The root means square error of prediction 

(RMSEP) was 0.25 % (v/v) and the relative average error was 10.2 %. Pretreatment of the data 

was necessary to get good results. First derivative and smoothing by a Savitzky-Golay filter were 

used. Even with these promising results, calibration with a wider range of biodiesel in biodiesel-

diesel blend is necessary. Because the models were developed for blending levels from 0 to 2% 

of biodiesel, it is not applicable in wider ranges of blend. The standard method to determine 

biodiesel content in biodiesel-diesel blend is the ASTM D 7371-07. This standard is based on 

FTIR-ATR-PLS method, which has a few limitations. The method was developed for blending 

levels between 1 and 20%. The effectiveness of the method has not been demonstrated above this 

range. The method can be applied for fatty acid methyl ester (FAME), but not for fatty acid ethyl 

ester (FAEE). This method was developed using only soybean methyl ester, and may not be 

applied for biodiesel detection from other sources. For this reason, further studies are necessary 

for the use on wider ranges of blends and larger variety of biodiesel. 

Zawadzki and Shrestha (2009) developed a sensing model for biodiesel feedstock and 

blending level using visible light spectra and neural network. The obtained model showed low 

standard error values (1.85%) at 95% confidence interval in the range from 470 to 490 nm with 

known feedstock. In their model for an unknown biodiesel source, the range between 380 to 530 
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nm was used with the neural network approach. This model recognized the biodiesel feedstock; 

however, it only gave a rough estimation of biodiesel blend. 

   Considering the results and methods used in previous works related to biodiesel levels 

in biodiesel-diesel blend, additional study is necessary to obtain a method with demonstrated 

applicability on different sources of biodiesel as well as diesel fuel types. 

 2.2 Determining Fatty Acid Profile of Biodiesel Samples 

Several studies were found to determine fatty acid profile in a few products using near 

and mid infrared spectroscopy including the subcutaneous fat of Iberian breed swine by Gonzles 

et al. (2003), and cow milk by Soyeurt et al. (2006)  But only the study developed by Batista et 

al. (2008) made references to analyzing fatty acid composition in biodiesel.  

Gonzales et al. (2003) published a successful determination of fatty acid in fat of swine 

using NIR spectroscopy.  Two different types of samples were used to develop the study, one 

applying the fiber-optic probe directly on intact subcutaneous fat and the other using the lipid 

extracted from subcutaneous fat. When the samples from extracted lipid (model I) were used the 

best standard error of calibration (SEC) was presented in the model for C14:0. It was 0.09 % and 

the worst was found in the model for C18:1, which was 0.74 %.  When the fiber-optic probe was 

applied directly over the subcutaneous fat (model II) the best and worst SEC were 0.09% and 

0.97 % for the C14:0 and C18:1 models, respectively. The best and worst standard error of 

prediction (SEP) for the models of type I was 0.13 % and 0.97 %, presented in the models for 

C14:0 and C18:1 respectively. For the cases of the models of type II the best and worst SEP were 

0.11 % and  1.20 %  presented again in the models  for C14:0 and C18:1 , respectively.  The 

authors conclude, in both types of models, results are comparable to the reference method used. 

This study suggests that NIR could be applied to determine the fatty acid profile in biodiesel. 

The study of Soyeurt et al. (2006) showed relatively successful estimation of fatty acid 

content in cow milk using MIR spectroscopy. The regions from 1736 to 1805 cm-1 and from 

2823 to 3016 cm-1 were used in this study.  Models for  C4:0, C6:0, C8:0, C10:0, C10:1 cis-9, 

C12:0, C14:0, C14:1, C15:0, C16:0, C16;1, C18:0, C18:1cis-9, C18:2cis-9, cis-12, C18:3cis-9, 

cis-12, cis-15, and  C18:2cis-9, trans-11 were developed. The performance of the method was 

evaluated only by standard error of cross validation (SECV). The SECV were ranged from 0.01 

to 0.18 g/dL of milk. The authors conclude that MIR can be used to predict the concentration of 
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fatty acid in cow milk, even though low performance was observed in the models with low 

concentration of fatty acid. Considering the results and the fact that cow milk is a very complex 

chemical structure compared to biodiesel, MIR method could be a promising method to 

determine the fatty acid profile in biodiesel.  

Batista et al. (2008) developed multivariate calibration to determine ester content (total 

amount) in biodiesel samples using the near-infrared range between 9000 – 4500 cm-1, and 

between 6102 – 5880 cm-1 in two different models. The correlation coefficients (R2) for 

calibration were 0.913 and 0.924 for the first and second model. The RMSEP were 0.9 % and 1.0 

% for each model, respectively. The spectra were pretreated applying a first order Savitsky-

Golay derivative and the models were developed using PLS methods. Additionally, the authors 

presented models to predict linolenic acid (C18:3) methyl esters content (%) using the near-

infrared range between 9000 – 4500 cm-1. In these cases the correlation coefficients (R2) was 

0.995, using first order Savitsky-Golay derivative as pre-treatment. Models to predict the content 

of myristic acid   (C14:0),  palmitic acid  (C16:0), stearic acid  (C18:0), oleic (C18:1),  and 

linoleic acid  (C18;2) were presented . The RMSEP were 0.18%, 0.02%, 0.79%, 0.22%, 1.79%, 

and 2.5 % respectively. The validation process was developed using the same types of biodiesel 

used in the calibration, the use of external samples (biodiesel not used in the calibration) is 

recommended for this study to verify the robustness of the model under any type of biodiesel.  

Biodiesel from soybean, palm, and rapeseed were used in this study. Wide biodiesel type is 

recommended to perform this study, considering the sources of biodiesel are increasing with the 

passage of the time.  The use of mid infrared range for this application is recommended because 

of its higher sensitivity when compared to the near infrared range.  The developed models were 

selected based on the best statistical performance of few used pre-treatments. Calibration based 

on identification of compounds using their absorption bands is the  recommended method.  In 

addition, the use of the first derivative of the spectrum is not recommended for the interpretation 

or calibration because the pattern of peaks and valleys of the first derivative spectra does not 

correspond to the pattern of the original spectra, Shenk et al. (2007) Finally, the most common 

method to determine fatty acid profile in biodiesel is gas chromatography. As already discussed, 

this method is suitable and accurate, but it is time-consuming, and requires well-trained 

personnel to perform the analysis, and a few expensive reagents. Additionally, it is not an online 

measure that could be used for real-time monitoring processes.   
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 2. 3 Quantification of Impurities in Biodiesel Samples 

   The attention for this kind of analysis has focused on the impurities that came from the 

production method. Several methods to detect methanol content, water content, free glycerol, and 

triglycerides have been proposed. Bondioli and Bella (2005) proposed a method to determine 

free glycerol in biodiesel using a spectrophotometric measurement at 410 nm. This procedure is 

based on periodate oxidation of glycerol, following the preparation of formaldehyde that later 

will react with acetylacetone.  Even when this method showed good results to predict a free 

glycerol, detailed process and sample preparation are required. 

Felizardo et al. (2007) developed a method using near infrared spectroscopy, PCA and 

PLS to determine water and methanol content at the same time in industrial and laboratory scale 

biodiesel samples. The researcher chose the region between 9000 – 4500 cm-1 of the spectra to 

perform the water content method and the results showed good performance, for calibration 

process R2 was 0.990 and the best RMSEP was 87 mg/kg. In the case of methanol detection 

method, the region used was from 4800 to 5050 cm-1. Again the result showed good 

performance, for calibration process R2 was 0.997 and the best RMSEP was 70 mg/kg.  First 

order Savitsky-Golay derivative with filter width of fifteen or thirty-three data points and the 

third-order polynomial was used as data pretreatment. Biodiesel from soybean, palm, and 

rapeseed were used as calibration samples. The results present excellent agreement between 

measured and predicted values. However, free glycerol or triglycerides analysis was not 

performed in this study.  

Oliveira et al. (2007) presented a study to predict the concentration of triglycerides in a 

blend of diesel-biodiesel-triglycerides using FT-NIR spectroscopy and FT-Raman spectroscopy. 

The performance of PLS, PCR, and artificial neural network (ANN) methods were evaluated. 

When FT-NIR and FT-Raman were compared using PLS and PCR, the best value for RMSEP 

was 0.238 % (w/w) for the model based in FT-NIR and PLS method.  The authors also 

mentioned that the PLS and PCR / FT-Raman models are not able to detect concentration of 

triglycerides in diesel-biodiesel-triglycerides blend. However, when FT-NIR and FT- Raman 

were compared using ANN, the best RMSEP was 0.092 % (w/w) for the model based in FT-

Raman spectroscopy.  Additionally, a comparison between PCR, PLS, and ANN was presented. 

No significant difference was found between the listed methods when FT-NIR spectra were used. 
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But, for the case of FT-Raman the model based in ANN presented the better accuracy in 

prediction. The authors concluded that FT-NIR as well FT-Raman spectroscopy combined to 

PCR, PLS, and ANN can be used to predict concentration of triglycerides accurately, in diesel-

biodiesel-triglycerides blend, when the concentration of triglycerides ranged from 0 to 5 % 

(w/w). Even though these model present accurate results, the effectiveness of the model 

predicting triglycerides over the range required by the ASTM 6751 11b standard, had not been 

demonstrated.  

The study of Soares et al. (2008) was developed to predict the triglyceride content in 

biodiesel using FT-MIR spectroscopy and PLS method. The level of triglycerides in biodiesel 

was ranged from 1 to 40 % (v/v).  The spectra region chosen to develop the models was from 

2760 to 1800 cm-1. RMSEP of developed models ranged from 0.65 to 1.39 % (v/v) when the 

models were tested using one type of biodiesel.  Results of the models when the three different 

types of biodiesel were used showed the RMSEP of 2.09 % (V/V).  The authors concluded that 

FT-MIR method using PLS is able to predict the triglyceride concentration in biodiesel with 

good accuracy, when the range of the triglyceride content is ranged from 0 to 40 % (v/v). This 

study presents the same limitation of the Oliveira et al. study; the range of impurities is a lot 

larger than the requirement of ASTM standard. 

 Pisarello et al. (2010) presented a volumetric method to determine free and total glycerin 

in biodiesel. This method used the standard glycerin titration based on its oxidation by sodium 

periodate.  Good results were shown, but the main drawback of this method is its manual 

execution and no information that can be used for live monitoring or control in production 

processes. 

Dorado et al. (2011) determined methanol and glycerol traces in biodiesel using visible 

and NIR ranges and modified partial least square (MPLS) method. First derivative of (log (1/R), 

where R is reflectance) was used as pre-treatment of the data. The samples for this study ranged 

with methanol from 0.0003% to 0.433% (w/w) and with glycerol from 0.005% to 0.050 % (w/w) 

in two separate sets to meet the requirement of the EN 14214 standard. The accuracy of 

calibration was determined by the ratio of performance to deviation (RPD). If the RPD is > 3, the 

calibration model results are considered acceptable for analytical purposes, according to the 

authors.  The RPD was 10 for the methanol model and 2.5 for the glycerol model, respectively. 

The authors concluded that NIR and visible ranges are able to detect methanol and glycerol 
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traces in biodiesel, but recommended additional work to improve the performance of the model 

to detect glycerol in biodiesel samples.  The main limitation found in this study was that 

interaction of two impurities (methanol and glycerol) in the models was not evaluated.  Work 

including more than one impurity is highly recommended.  

Gaydou et al. (2011) reported the prediction of concentration of triglycerides in a blend 

of diesel-biodiesel- triglycerides. In the study biodiesel ranged from 0 to 10 % (w/w), vegetable 

oil from 0 to 30 % (w/w), and petroleum diesel from 60 to 100 % (w/w). The models were 

developed using serial-PLS and hierarchical-PLS, both of them a particular variation of the 

regular PLS method. Several pre-treatments of the data were evaluated including; base line 

correction, standard normal deviation, derivative, and mean normalization. For NIR range the 

best regression was obtained in the model without pre-treatment, RMSEP was 0.363% (w/w).  

For the model using MIR range the best performance was observed in the models where mean-

normalization was used as pre-treatment; RMSEP was 1.939 % (w/w). The authors concluded 

that the developed models predicted triglycerides concentration with good accuracy when the 

concentration of triglycerides ranged from 0 to 30 % (w/w) in a blend of diesel-biodiesel-

triglycerides. Again, therange of triglycerides concentration observed in the developed models is 

a lot greater than the requirement of ASTM standard. 

No study was found predicting more than two impurities in biodiesel at the same time. 

Considering more than two impurities could be present in the biodiesel sample at the same time, 

they can affect the model performance. A practical model to evaluate specific impurities from 

production or distribution processes should include the effects of other possible impurities 

(methanol, water, triglycerides, and glycerol). 

 2.4 Derivative Spectroscopy Technique 

Derivative spectra, using first or higher order, are frequently used to correct the baseline, 

, reduce the scattering effect, and perform band separation.  Several studies over the year were 

found related to this technique.  

Morrey (1968) developed a method to determine spectral peak position from composite 

spectra. The theoretical section of the study was presented based on spectrum of several 

overlapping constituent absorption band using information from Gaussian, Student T, and 

Lorentzian shape for each case separately. But, experimental section of the analysis was 
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developed using a spectrum of several overlapping (15) constituent absorption bands, each being 

of Lorentzian shape but of different widths, strengths, and degree of overlap.   Derivatives of the 

spectra from the first to the fourth were calculated with respect to wavenumber. The objective 

was to find where the derivative is zero for all wavelengths of the all basic constituents of the 

spectra. This condition was matched at the third derivative. Using the results of the experiments 

most of the peaks from the basic constituent were clearly assigned, but a few of them were not 

specifically identified. The author concluded that when peaks are very close the separation of the 

peak is not possible. Huguenin and Jones (1986) presented an algorithm to perform the band 

separation from a combination band in reflectance spectra using derivative analysis. This 

analysis used a spectrum of six overlapping constituent absorption band, using Gaussian shape 

with different widths, strengths, and degree of overlap. 

The experiment developed by Huguenin and Jones (1986) is graphically presented in 

Figure 2-1.  

 

      

Figure 2-1 Synthetic spectrum composed of six Gaussian constituents (left), from the first to the 

sixth derivative spectra of the composed spectrum (right). 

 

Derivatives of the spectra were calculated from the coefficient of a sixth-order 

polynomial with respect to wavenumber. Similar to the experiment of Morrey (1968), the 

Huguenin and Jones (1986) analysis was based on finding where a derivative is zero for all 
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wavelengths of the six basic constituents of the spectra.  For this case the condition was matched 

for the fifth derivative. In both cases (Morrey and Huguenin), the authors released similar 

conclusions related to the error caused by an adjacent peak.  Additional work is recommended to 

achieve a separation peak when they are too close. 

Tsai, F. & Philpot, W. (1998) made a replication of the study of Huguenin and Jones 

(1986) and found similar conclusions related to the adjacent peak. The Tsai experiments also 

confirmed that performance of this tool has a strong influence on the selected parameter of the 

derivative method. The authors also recommend that parameters of the derivative must be 

selected considering each particular set of spectra and purpose of the analysis. 

 An estimation method for fatty acid composition in oil using NIR was also developed by 

Sato (2002). In this study spectra of pure fatty acid were obtained, second derivative was 

calculated to identify the corresponding peak for C16:0, C18:0, C18:1, C18:2, C18:3, and C22:1. 

An iterative process was developed examining the moving average (MA), the size of the 

derivative segments (SEG,) and the gap between derivative segments (GAP). The band  for 

C18:3, C18;2, C18:1, C18:0, C16:0, and C22:1 was listed in the second derivative. The 

absorption bands were identified at 1708, 1712, 1724, 1730, 1728, and 1726 nm, respectively, 

when the MA= 4 nm, the SEG=12nm, and Gap=12 nm. The method was validated using the fatty 

acid profile of a known sample of rapeseed oil. Sato concludes that with this method it is 

possible to estimate the fatty acid profile roughly, simply, and rapidly.  

Derivative spectra can be expressed by considering the derivative order, gaps between 

points to calculate the difference, and the number of data points used to pretreat the data.  A first 

derivative of a spectrum is a curve that contains a peak and a valley, which correspond to the 

inflection point of the original spectra. It is not frequently used because the peak and the valley 

of the first derivative do not follow the pattern of the raw spectra Shenk et al. (2007). Second 

order derivative spectra are commonly used because the band intensity and peak location are 

maintained as in the original spectra. The third order derivative of a spectrum is not frequently 

used because it presents the same limitations of the first derivative, complicating the situation 

due to the fact that more peaks are present. The fourth order derivative is promising in spectra 

interpretation because with the correct set of the gap and number of data points, several peaks 

can be observed which display similar characteristics to the second order derivative. 
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The revised work of derivative technique suggests this method could be useful for 

extracting information from combination bands on the NIR spectra of biodiesel.   
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Chapter 3 - Predicting the Concentration and Specific Gravity of 

Biodiesel-Diesel Blends Using Near-Infrared Spectroscopy 

 

 3.1 Abstract 

Biodiesel made from different source materials usually has different physical and 

chemical properties and the concentration of biodiesel in biodiesel-diesel blends varies from 

pump to pump and from user to user; all these factors have significant effects on performance 

and efficiency of engines fueled with biodiesel. To address these challenges, regressions based 

on near-infrared spectroscopy were developed for relatively inexpensive and rapid on-line 

measurement of the concentration and specific gravity of biodiesel-diesel blends. Methyl esters 

of five different oils—soybean oil, canola oil, palm oil, waste cooking oil, and coconut oil—and 

two different brands of commercial-grade No. 2 on-highway diesel and one brand of off-road 

No. 2 diesel were used in the calibration and validation processes. The predicted concentration 

and specific gravity of the biodiesel-diesel blends were compared with the actual values. The 

maximum and average root-mean-square errors of prediction (RMSEP) of biodiesel 

concentration were 5.2% and 2.9%, respectively, from the biodiesel type-specific regression. For 

the general regression, the RMSEP were 3.2% and 0.2% for biodiesel concentration and specific 

gravity predictions, respectively. 

 3.2 Introduction 

Biodiesel is a fuel composed of mono-alkyl esters of long-chain fatty acids derived from 

vegetable oils or animal fats. It is renewable, oxygenated, essentially sulfur-free, and 

biodegradable. Biodiesel is also the only alternative fuel that has passed the U.S. EPA required 

Tier I and Tier II health effects testing requirements of the Clean Air Act amendments of 1990 

(Tyson, 2004). In the United States, biodiesel has been used mainly as 2% to 20% blends with 

petroleum diesel. 

Elevated NOx emissions have been considered as one of the major problems of biodiesel 

and biodiesel blends as compared to petroleum diesel in diesel engines (Choi and Reitz, 1999; 

Sharp et al., 2000; McCormick et al., 2001; Grimaldi et al., 2002; Hansen et al., 2006). Earlier 
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combustion that causes more rapid cylinder pressure rise and higher combustion temperature was 

believed to be one of the main causes (Tat and Van Gerpen, 2003; Yuan et al., 2005; Yuan et al., 

2007). This suggests that NOx emissions could be reduced by retarding the combustion timing of 

the fuel in diesel engines, which can be achieved by adjusting injection timing according to the 

concentration of biodiesel in petroleum diesel. Therefore, a means to detect the concentration of 

biodiesel in its diesel blends will be necessary. 

Another problem of biodiesel is that biodiesel fuels made from different source oils 

usually have different physical and chemical properties (e.g., specific gravity and cetane 

number), which makes it difficult for engine manufacturers to optimize engine performance 

when biodiesel is used. Therefore, it is important that the means is able to determine the 

properties of any type of biodiesel fuel. Near-infrared (NIR) spectroscopy meets this requirement 

and also is suitable for relatively inexpensive and rapid on-line measurement. Although 

successful applications of NIR spectroscopy on predicting the oil fraction and some operating 

properties of diesel fuel (Sikora and Salacki, 1996) and on determining the concentration of a 

specific type of biodiesel in diesel fuel (Knothe, 2001; Pacheco et al., 2006) have been reported, 

at present, efforts to determine both the concentration and properties at the same time of various 

types of biodiesel fuels using NIR spectroscopy are limited. The objectives of this study were to 

develop (1) a regression for determining the concentration of biodiesel in biodiesel-diesel blends 

and (2) a regression for estimating the specific gravity of biodiesel-diesel blends. 

 3.3 Materials and Methods 

 3.3.1 Fuel samples 

Biodiesel derived from five different oils were used in this study - soybean oil methyl 

ester (SME), canola oil methyl ester (CME), coconut oil methyl ester (CCME), waste cooking oil 

methyl ester (WCME), and palm oil methyl ester (PME). The food-grade soybean oil and canola 

oil were purchased from local grocery stores. The virgin coconut oil and palm oil were obtained 

from Tropical Traditions, Inc. (Springville, Calif.). The waste cooking oil was collected from a 

local restaurant. All biodiesel samples were freshly made through a standard base-catalyzed 

transesterification process followed by repeated water-wash and drying. The fatty acid profiles of 

the biodiesel fuels are shown in Table 3-1. The five biodiesel fuels chosen cover a wide range of 

fatty acids; CCME is rich in short-chain saturated fatty acids (C8:0 to C14:0), and PME is 
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abundant in C16:0, whereas SME, CME, and WCME are rich in long-chain unsaturated fatty 

acids such as C18:1 and C18:2 and even some C18:3. These are the major fatty acids present in 

natural oils. Therefore, the biodiesel samples we chose can represent a general type of biodiesel. 

 

Table 3-1  Relative weight composition of fatty acid methyl ester of the biodiesel samples. 

 

 SME[a] CCME[b] PME[b] CME[b] WCME[a] 

        C8:0 0.0002 0.092 0 0 0 

C10:0 0 0.064 0 0 0 

C12:0 0 0.487 0 0 0 

C14:0 0.0008 0.170 0 0 0.008 

C16:0 0.1049 0.077 0.406 0.042 0.222 

C16:1 0.0012 0 0 0 0.004 

C18:0 0.0427 0.022 0.051 0.017 0.042 

C18:1 0.2420 0.054 0.428 0.568 0.542 

C18:2 0.5136 0.022 0.110 0.217 0.133 

C18:3 0.0748 0 0.005 0.157 0.008 

C20:0 0.0036 0 0 0 0.012 

C20:1 0.0028 0 0 0 0 

C22:0 0.0040 0 0 0 0 

C22:1 0.0007 0 0 0 0 

C24:0 0.0014 0 0 0 0 
[a] Analyzed by the Kansas Lipidomics Research Center at Kansas State University 

(Manhattan, Kans.). 
[b] Analyzed by American Analytical Chemistry Laboratories (Champaign, Ill.). 

 

Three commercial-grade No. 2 diesel fuels, a highway Phillips diesel (D2HWP), a 

highway Cenex diesel (D2HWC), and an off-road Cenex diesel (D2ORC), were used to blend 

with each biodiesel fuel to prepare the 90 calibration samples. The volume-based concentration 

of biodiesel in these blends ranged from 0% up to 100% at steps of 20%. 
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The validation set consisted of 15 randomly coupled biodiesel-diesel blends from the 

same three diesel and five biodiesel fuels used in the calibration process. These samples covered 

5% up to 95% at steps of 5% in the blends without replications of 20%, 40%, 60%, and 80% 

blends used in the calibration. The validation samples are shown in Table 3-2. 

 

Table 3-2  Validation samples. 

 

Biodiesel Diesel 

Biodiesel Concentration 

(%) 

CME D2ORC 5 

PME D2HWP 10 

WCME D2HWC 15 

CCME D2HWC 25 

SME D2ORC 30 

CME D2HWP 35 

WCME D2ORC 45 

WCME D2HWC 50 

CCME D2HWC 55 

SME D2HWC 65 

SME D2HWP 70 

CME D2HWC 75 

CCME D2ORC 85 

SME D2HWP 90 

SME D2ORC 95 

 

 3.3.2 Specific gravity measurement 

The specific gravities of the samples were measured at room temperature (22C to 24C) 

using a Fisherbrand hydrometer (size 0.795-0.910, accuracy 0.001, Thermo Fisher Scientific, 

Waltham, Mass.). The measurement was performed three times for each sample. The hydrometer 

was calibrated at the reference temperature of 60F (15.56C) by the manufacturer. Following 
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ASTM D1298-99e2 standard (2003), the observed hydrometer readings at temperatures other 

than the reference temperature were corrected to the reference temperature of 60°F (15.56C)  

and converted to specific gravity by using the ASTM-IP D1250 petroleum measurement tables 

(1953). 

 3.3.3 NIR spectra collection 

All the samples were scanned at room temperature (22°C to 24°C) on an NIR 

QualitySpec Pro spectrometer (ASD Inc., Boulder, Colo.). The spectrometer measures 

absorbance from 350 to 2500 nm using silicon and indium-gallium-arsenide sensors. A 

Micropack HL-2000 halogen light source (Micropack, Ostfildern, Germany) was used for 

illumination. The spectrometer was optimized, and a baseline was collected using RS3 software 

(Version 3.1, ASD Inc., Boulder, Colo.). The samples were placed in a Fisherbrand Suprasil 300 

quartz cuvette (10-mm path length, Thermo Fisher Scientific, Waltham, Mass.), which was 

connected to the spectrometer through a multi-use fiberoptic fixture (ASD Inc., Boulder, Colo.). 

The spectrometer and the cuvette used in these experiments are shown in Figure 3-1. A fiber-

optic probe was used to illuminate the cuvette and carry the transmitted energy to the 

spectrometer. Twenty spectra were collected for each sample, and the average spectrum was 

converted to ASCII format using ASD ViewSpecPro (ASD Inc., Boulder, CO). 

 

Figure 3-1  A-QualitySpec Pro spectrometer  ASD,  B-  Quartz cuvette used in the experiments 
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 3.3.4 Prediction method 

The multi-linear regression (MLR) as shown by equation 1 was used for the prediction: 

 

)()()( 3322110  AbAbAbby       (1) 

 

 Where y is biodiesel concentration or specific gravity; A1, A2, and A3 are absorbance 

values at wavelengths 1, 2, and 3, respectively. The coefficients b0, b1, b2, and b3 and the three 

best wavelengths 1, 2, and 3 were determined by the multiple linear regression method 

through the Sesame software version 3.1 using the calibration spectra. The fitness of the 

calibration scores to the regression line is represented by standard error of estimate (SEE) as 

shown in equation 2: 
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Where yi and yest are the actual and projected value of each calibration sample and nc is 

size of the calibration samples. The three wavelengths were selected in the range of 2080 to 2200 

nm by minimizing SEE through the Sesame software version 3.1.Using more than three 

wavelengths slightly improved the estimation (smaller SEE), however, computational times were 

significantly increased, and thus three wavelengths were used in this study. The regression was 

used to predict biodiesel concentration and specific gravity of biodiesel-diesel blends when the 

absorbance values of the fuel at three designated wavelengths (1, 2, and 3) are known. The 

accuracy of predictions was measured by the root-mean-square error of predictions (RMSEP): 
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Where ypred is the predicted value of each validation sample from the regression equation, 

yi is the actual value of the validation object, and nv is the size of the validation samples. RPD 

value was also used to test the calibration models. RPD value is the ratio of the standard 

deviation (SD) of the reference data divided by standard error of estimate (SEE). 

 

SEE

SD
RPD 

       (4) 

 

 

 

 3.4 Results and Discussion 

Figure 3-2 shows the absorbance curves of SME and its blends with D2HWP in the 

wavelength range of 2080 to 2200 nm. At around 2145-nm wavelength, the 100% SME has the 

highest absorbance value, the D2HWP has the lowest, and the blends are intermediate. When the 

spectra for the other biodiesels and their blends with various diesel fuels in the range of 2080 to 

2200 nm were plotted, the patterns of the curves were similar, although small variations in peak 

absorption intensity and related wavelength were observed. It is well known that the range of 

2100 to 2200 nm is assigned to straight carbon chains and cis double bonds that reflect fatty acid 

moieties in fat molecules (Sato, 1994). Information about fatty acid compositions is 

demonstrated in this range through the in-saturation degree of the carbon chains. Therefore, the 

range of 2080 to 2200 nm was chosen as the range from which Sesame software would select the 

three best wavelengths. This range is also close to or in the middle of the NIR ranges used by 

some other researchers for similar purposes (Knothe 2001; Welch et al., 2006). 
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Figure 3-2 Spectra of soybean oil methyl ester and its blends with highway Philips diesel fuel. 

 

 3.4.1 Regressions for type-specific biodiesel 

A calibration was developed for each type of biodiesel and its blends with the three types 

of diesel fuels. When the source oil of biodiesel is known, a biodiesel type-specific regression 

can be used to predict the concentration of biodiesel in the blends. The coefficients b0, b1, b2, and 

b3 and the three best wavelengths λ1, λ2, and λ3 for each type of biodiesel are shown in Table 3-3.  

The negative coefficient indicates inverse proportional relation between the contributor and the 

predicted value. For the prediction of all five types of biodiesel, the multiple correlation 

coefficients (R2) were greater than 0.999, and SEE were smaller than 1.2%. The concentrations 

of biodiesel in the validation samples were determined by using the regressions developed. The 

RMSEP and RPD values are shown in Table 3-4. The maximum RMSEP was 5.2% for BCA, the 

average RMSEP was 2.9%, and the minimum RPD value was 13.34, indicating that the 

regression was reasonably accurate in predicting biodiesel concentration. Williams (2001) 

suggested that  RPD  from 5 to 6.4  is suitable for quality control application, while  a RPD of  8  

or higher is excellent and the calibration  can be used  for any application. 
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Table 3-3 Regression for a specific type of biodiesel and its blends with the three diesel fuels. 

Type of Biodiesel b0, b1, b2, and b3 λ1, λ2, and λ3 R2 RPD SEE RMSEP 

CCME -0.08985, -2.616130, 3.674808, -0.800008 2120, 2129, 2150 0.999 20.95 0.008 0.015 

CME 0.01967, -0.586301, 2.953473, -2.272920 2103, 2141, 2150 0.999 13.34 0.012 0.052 

SME -0.09132, -5.282706, 6.249927, -0.729645 2115, 2123, 2145 0.999 31.42 0.006 0.026 

WCME 0.10454, -1.926984, 2.859055, -0.939792 2105, 2129, 2147 0.999 41.90 0.009 0.037 

PME -0.11840, -2.962160, 3.997019, -0.739531 2115, 2127, 2150 0.999 27.93 0.006 0.017 

     Average 0.029 

 

 3.4.2 Regression for a general type of biodiesel 

When the biodiesel type is unknown, the type-specific regression cannot be used to 

predict blending levels; a general regression is needed. All 90 calibration samples were used to 

determine the regression coefficients using the MLR method. The regression coefficients b0, b1, 

b2, and b3 and the three best wavelengths 1, 2, and 3 are shown in Table 3.4. The R2 and SEE 

of the regression were 0.997% and 2.2%, respectively. 

 

Table 3-4 Regression coefficients for predicting the concentration of a general type of biodiesel 

in its diesel blends. 

b0, b1,b2, and b3 1,  2, and  3 

-0.01303, -2.340221, 2.929997, -0.482668 2100, 2122, 2146 

 

The 15 validation samples were used to test the general regression. The RMSEP and RPD 

value were 3.2% and 11.42, respectively, which indicates an accurate prediction. Figure 3-3 

shows the predicted biodiesel concentrations compared with the actual values. The maximum 

absolute prediction error (the difference between predicted and actual biodiesel concentration) 

was 7.5%, which was found on the sample of 75% CME blended with D2HWC. The average 

absolute prediction error of concentration was 2.6%. Figure 3-3 seems to indicate that the 

regression is tending to underestimate biodiesel concentration at higher concentration levels. 

This is not true but because CME and SME were randomly selected as the validation samples at 

the higher concentration levels (75%, 90%, and 95%). CME and SME happened to have the 

highest absorbance values among all the biodiesel fuels at the three selected wavelengths, 
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therefore, when the absorbance values were "averaged" in the regression, they were most under-

predicted as shown in Figure 3-3. 
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Figure 3-3 Predicted vs. actual biodiesel concentrations in biodiesel-diesel blends using the 

general regression. 

 3.4.3 Specific gravity prediction regression 

Using the same spectra as in the study of biodiesel concentration, the specific gravities of 

biodiesel-diesel blends were predicted using the MLR method. The regression coefficients b0, 

b1, b2, and b3 and the three best wavelengths 1, 1, and 3 are shown in Table 3-5. The R2 and 

SEE of the regression were 0.992 and 0.016, respectively. 

 

Table 3-5 Regression coefficients for predicting the specific gravity of general type of biodiesel-

diesel blends. 

b0, b1,b2, and b3 1,  2, and  3 
0.82294, -0.049188, -0.073550, 0.128086 2100, 2121, 2130 

 

The same set of validation samples were used to test the regression, and the RMSEP was 

0.002. Figure 3-4 shows the predicted specific gravities compared with the actual values. The 

maximum absolute prediction error (the difference between predicted and actual specific gravity 

of the blends) was 0.005, and the average absolute prediction error of specific gravity was 0.002. 
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The over-predicted points in Figure 3-4 are not important enough to indicate that the regression 

over-predicts specific gravity, considering that all prediction errors were very small (<0.6%). 
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Figure 3-4 Predicted vs. actual specific gravities of biodiesel-diesel blends using the general 

regression. 

 

Using the same calibration set but coupled with the partial least square regression (PLSR) 

method, regressions for predicting biodiesel concentration and specific gravity were also 

developed. The RMSEP was 0.026 and 0.002 for biodiesel concentration and specific gravity 

regressions, respectively. Compared with the RMSEP of 0.032 and 0.002 using the MLR method 

for concentration and specific gravity, respectively, the improvement in predictions was slight, 

and the computation time was significantly longer. 

Although only five biodiesel and three diesel fuels were used in development and 

validation of the regressions, we expect that the regressions could be applied to other types of 

biodiesel and diesel fuels because the biodiesel and diesel fuels used are representative of a 

general biodiesel and diesel fuel. By using the regressions developed from this study, users may 

use this method for other different biodiesel-diesel blends. They can simply scan the samples at 

the designated wavelengths to obtain the absorbance values and use the coefficients provided to 

calculate the biodiesel concentration and specific gravity of the blends. Such method can be 

utilized by biodiesel retailers/distributors to measure biodiesel concentration in the blends, and 
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by engine manufacturers to detect biodiesel concentration in the fuel tank to adjust fuel injection 

timing. 

 3.5 Conclusions 

Regressions based on NIR spectroscopy were developed for relatively inexpensive and 

rapid on-line measurement of the concentration and specific gravity of biodiesel-diesel blends. 

The NIR range of 2080 to 2200 nm was found suitable for the predictions regardless of biodiesel 

or diesel fuel type. The maximum and average RMSEP of biodiesel concentration in the blends 

were 5.2% and 2.9%, respectively, for the biodiesel type-specific regression. For the general 

regression, the RMSEP was 3.2%. The specific gravity prediction regression had an RMSEP of 

0.002. The PLSR method was also used to develop the regressions; with this method, the 

improvement in predictions was slight and the computation time was significantly longer. The 

regressions developed can be used to predict the biodiesel concentration and specific gravity of 

biodiesel-diesel blends when the absorbance values at three designated wavelengths are known. 
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Chapter 4 - Determining the Fatty Acid Profile of Biodiesel Fuels 

Using Fourier-Transformed Near- and Mid-infrared spectroscopy 

 4.1 Abstract  

Biodiesel is an oxygenated, sulfur-free, biodegradable, non-toxic renewable fuel that can 

be derived from vegetable oils or animal fats. The quality and properties of biodiesel are directly 

related to their fatty acid compositions. The standard method of measuring fatty acid 

composition of biodiesel is gas chromatography. Even though this method is suitable and 

accurate, it requires a time-consuming procedure, well-trained personnel, and expensive 

reagents. Because of these reasons,  near infrared (NIR)  and mid  infrared (MIR) spectroscopy 

were used for relatively inexpensive and rapid on-line measurement of the concentration of main 

fatty acid methyl esters present in biodiesel fuels, such as palmitic (C16:0), stearic (C18:0), oleic 

(C18:1), linoleic (C18:2), and linolenic (C18:3). Models were developed using four different 

biodiesels (MOD-4N/M) from palm, corn, canola, and flaxseed oil. After checking the accuracy 

of prediction of these models, using external samples, a second set of models were proposed and 

developed. In this case six biodiesel samples were used (MOD-6N/M), with biodiesel from 

animal fat and coconut being added to the previous set. The samples were scanned on a FTIR 

NIR/MIR Perkin Elmer spectrophotometer using transmittance for the NIR range and for the 

MIR range an ATR accessory was used. The partial least squares regression (PLSR) method was 

used to develop prediction models for each fatty acid methyl ester. Predicted concentrations of 

each methyl were compared with the actual values for each set in the model. The maximum root-

mean-square error of prediction (RMSEP) was 1.59 % mass for the MIR range on the model for 

C18:2. Because of low performance of general models (MOD-6N/M) set for C16:0 and C18:0, 

additional work was developed to improve these results. Both NIR and MIR were found suitable 

for the prediction of concentration of C16:0, C18:0, C18:1, C18:2, and C18:3 in biodiesel 

samples. 

 

 4.2 Introduction 

Biodiesel is a renewable alternative that can be used to replace significant amounts of 

diesel made from petroleum. It can be derived from vegetable oil or animal fat. In recent years 

new sources of oil or fats have been used to produce biodiesel. This large variety of raw 
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materials makes quality control of the fuel a challenging task.  However, the fatty acid profile of 

fuel is the most important factor in the biodiesel properties evaluation. Consequently, a facility to 

determine the fatty acid profile in biodiesel will be an important tool in the quality control 

monitoring process. Although biodiesel has gained acceptance as a clean fuel, some technical 

problems have been reported with its use, such as an increase in the concentration of NOx 

exhaust emission and oxidative stability. The NOx level is mentioned in the literature as related 

to the cetane number and the cetane number is related to the fatty acid profile of the fuel, Knothe 

(2008). The oxidative stability of biodiesel has been related to the double bond present in the 

fatty acids, Falk, (2004). The five main fatty acids present in the biodiesel are palmitic (C16:0), 

stearic (C18:0), oleic (C18:1), linoleic (C18;2), and linolenic (C18:3). ASTM standard D 6751 

has no direct regulations about the fatty acid profile of the fuel, but the European standard 

(EN14214) limits the concentration of linolenic acid methyl ester for biodiesel to 12 % (m/m). 

The most common method to determine a fatty acid profile in a substance is the gas-liquid 

chromatography. Even though it is reliable, this method presents some limitations. It requires 

well trained personnel to interpret the results, expensive reagents, and a time consuming 

procedure. 

Infrared spectroscopy (IR) is successful when applied to determine the fatty acid profile 

of substances using both near infrared (NIR) and the mid infrared (MIR) regions, as can be seen 

in the following studies. I. Gonzales et al. (2003) and  H. Soyeurt et al. (2006) Only one work 

that reported the use of NIR to predict methyl ester content in biodiesel was found, P. Baptista 

(2008). 

Using NIR, Gonzales et al. (2003) presented a successful determination of the fatty acid 

profile in the fat of swine. Two different approaches were presented, one using extracted samples 

of sub-cutaneous fat and the other using the spectra obtained by direct application of a fiber-optic 

probe on samples of fat.  The result showed standard error of calibration (SEC) from 0.09 % to 

0.74% using extracted samples and from 0.09 % to 0.97% using direct application of fiber-optic 

probe case. The models were developed for C14:0, C16:0, C18:0, C18:1, C18:2, C18:3, and 

C20:1 fatty acid. The validation showed values of standard error of prediction (SEP) from 0.11% 

to 1.1 % in both cases concluding that the method presented comparable results to the reference 

method used. H. Soyeurt et al. (2006) developed a relatively successful estimation of fatty acid 

content in cow milk using MIR spectroscopy. The used regions were from 1736 to 1805 cm-1 and 
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between 2823 and 3016cm-1 the estimation of the efficiency of calibration was evaluated using 

the standard error of cross validation (SECV). The obtained SECV were from 0.01 to 0.18 g/dL 

of milk. The authors concluded that fatty acids profile in cow milk can be predicted using MIR 

spectroscopy when they are present in high concentrations; however the models presented poor 

performance when concentrations of fatty acids were low.  P. Batista et al. (2008) developed a 

multivariate calibration to determine ester content in biodiesel samples using the near-infrared 

range between 9000 – 4500 cm-1, and between 6102 – 5880 cm-1 in two different models. The 

root mean square errors of prediction (RMSEP) were 0.9 % (m/m) and 1.0 % (m/m), 

respectively. Additionally, the content of C18:3, C14:0, C16:0, C18:0, C18:1, and C18:2 were 

determined using the range between 9000 – 4500 cm-1. The RMSEP were 0.18 % (m/m), 0.02 % 

(m/m), 0.79 % (m/m), 0.22 % (m/m), 1.79 % (m/m), and 2.5 % (m/m) respectively. The spectra 

were pretreated using the first order Savitsky-Golay derivative, and the models were developed 

using PLS methods.  For this work, the validation was developed using samples from the same 

types of biodiesel used in the calibration (internal samples). Previous works show feasibility of 

NIR and MIR to predict a fatty acid profile in some substances and the viability of NIR to predict 

a fatty acid profile in biodiesel when internal samples were used. Considering that no report can 

be found on predicting fatty acid composition of biodiesel using MIR spectroscopy methods, and 

that the effectiveness of the NIR method has not been demonstrated when predicting the fatty 

acid profile on biodiesel, using external samples for validation, the objectives of this study were 

to develop predicting models for fatty acid composition of biodiesel using FTIR – NIR/MIR 

spectroscopy. 

 4.3 Materials and Methods 

 4.3.1 Samples preparation 

The biodiesels used in this study were prepared from food grade canola oil, corn oil, 

flaxseed oil, animal fat, coconut oil, peanut oil, olive oil, and a mix of peanut, olive and soybean 

oil purchased from local grocery store, and palm oil purchased from Country Soap Shack 

(Missouri, USA). All biodiesel samples were freshly produced using a standard base-catalyzed 

transterification process followed by recurrent water washing and drying.  The fatty acid profiles 

of the nine biodiesel fuels are shown in Table 4-1, which shows that the chosen biodiesel 

samples include  a broad range of fatty acids. The palm methyl ester (PAME), and animal fat 
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methyl ester (AFME) present high content of C16:0, coconut methyl ester (CCME) is abundant 

in C12:0, canola methyl ester (CAME,) peanut methyl ester (PEME,) and olive methyl ester 

(OLME) are rich in C18:1, corn methyl ester (COME,) and flaxseed methyl ester (FXME) were 

selected for their high content of C18:2, and C18:3 respectively. To increase the variety of fatty 

acid content a mix of olive, peanut, and soybean oil was used to prepare mixed methyl ester 

(MXME).   

 

Table 4-1 Fatty acid profile (% mass) of biodiesel samples prepared for this work. 

FAME(m.%) C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3

COME 0.02 0.00 0.00 0.07 10.88 2.27 27.63 53.95 2.36

FXME 0.00 0.00 0.08 0.07 5.61 3.09 14.79 15.48 57.67

PAME 0.02 0.03 0.34 1.23 44.57 4.39 40.96 8.56 0.17

CAME 0.00 0.01 0.01 0.08 4.14 1.84 66.99 17.59 6.56

PEME 0.01 0.01 0.12 0.09 9.82 2.75 55.97 21.77 0.21

OLME 0.00 0.00 0.10 0.05 14.07 2.82 65.07 12.31 0.61

MXME 0.01 0.00 0.08 0.20 14.90 3.23 49.04 15.65 13.26

CCME 7.91 6.34 46.11 17.58 8.85 2.60 6.61 1.75 0.03

AFME  0.01 0.10 0.10 1.52 24.50 17.42 36.34 15.41 0.67

 

 

For the initial calibration set, combinations of four biodiesels were used (COME, CAME, 

FXME, and PAME.) The concentration (mass %) of methyl palmitate (C16:0), methyl stearate 

(C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate (18:3) in the 

samples  ranged from: 5.35 to 44.57, 1.92 to 4.39, 14.80 to 66.21, 8.56 to 52.21, and 0.18 to 

57.67, respectively.  The fatty acid profile of each sample was calculated using the fatty acid 

profile of four original biodiesel samples, obtained from gas chromatography (GC) analysis. A 

total of eighty samples were prepared. 
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Two sets of validation samples were prepared. The first set of eight samples were from 

the combination of the biodiesel used in the calibration (COME, CAME, FXME, PAME,) and 

the second set of eight samples were from the combination of biodiesel not used in the 

calibration (PEME, OLME, MXME, CCME, and AFME). The reason to use these two different 

sets was to verify the robustness of the models to predict the fatty acid profile of unknown 

biodiesel samples.  

After analyzing the preliminary results, two additional biodiesels were used to increase 

the variability present in the calibration. In this case, combinations of six biodiesels were used, 

the four previously used plus AFME and CCME. These biodiesels were selected for their very 

different fatty acid profile when compared to the other four. AFME is rich in C18:0 and CCME 

is abundant in C12:0 and C14:0.  The concentrations (% mass) of (C16:0), (C18:0), 

(C18:1),(C18:2), and (C18:3) in the samples were maintained in the same range as  the previous 

experiments, but a significant increment in the sample numbers was obtained.   Similarly to the 

previous case, the fatty acid profile of each sample was calculated using the fatty acid profile of 

six original biodiesel samples, obtained from gas chromatography (GC) analysis. A total of one 

hundred and thirty-seven samples were prepared. From this set, one hundred and twenty-six were 

used in the calibration and eleven samples were randomly selected to be used in the validation. 

To verify the robustness of the models under unknown biodiesel samples, the model was 

validated with a set of eight samples prepared from biodiesel not used in the calibration (PEME, 

OLME, MXME). The range of samples was kept within the calibration limit for each model. 

 

 4.3.2 Fatty acid profile measurement 

All biodiesel samples were analyzed using gas chromatography in accordance with the 

following procedure: approximately 25 mg of biodiesel was dissolved in 4ml of benzene 

containing methyl-C13 internal standard.    Samples were analyzed for fatty acid methyl esters 

using a HP 5890 GC with a FID detector and a SP-2560 capillary column (100m x .25mm x .2μ 

film, Supelco, Inc., Bellefonte, PA).   Injection port and detector temperatures were 250oC with a 

flow rate of 1 ml/min helium and a split ratio of 100:1.  Injection volume was 1µl.  Oven 

temperature began at 140oC and increased at 2oC/min to 200oC then at 4oC/min to 245oC and 

held for seventeen minutes.  All samples were scanned in The Ruminant Nutrition Lab, 

Department of Animal Science and Industry of Kansas State University. 
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 4.3.3 FTIR- NIR/ATR spectroscopy scan 

All the samples were scanned at a room temperature of 22-24oC on a FT-IR/FT-NIR 

spectrometer (Perkin Elmer spectrum 400, Shelton, CT) for NIR and MIR ranges. The samples 

were placed for NIR (780 to 2500 nm) scan, in a quartz cuvette cell (Labomed Inc. Culver City, 

CA) of 5 mm pathlength for spectrophotometers. NIR spectra data were recorded as the 

absorbance in the wavelength range from 900 to 2500 nm at 1 cm-1 interval. The spectrometer 

and the cuvette used in these experiments are shown in Figure 4-1.  For the case MIR (4000 to 

400 cm-1) scan, universal ATR accessory with Germanium (Ge) as crystal material (Perkin 

Elmer, Shelton, CT) was used. MIR spectra were recorded as the absorbance in the wavelength 

range from 4000 to 600 cm-1 at 1 cm-1 interval.  All spectrums were recorded once for each 

sample, and were obtained as an average of thirty-two scans.   

 

 

 

Figure 4-1  A- Perkin Elmer spectrometer, B- Quartz cuvette used in this experiments.   

 

 4.3.4 Calibration models 

The regions on the NIR range used to estimate the concentration of C18:1, C18:2, and 

C18:3 in the biodiesel samples were located between 1600 and 1700 nm and between 2000 and 

2200 nm. For the cases of C16:0, and C18:0 the used region was between 900 and 1400 nm. The 
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regions on the MIR range used to estimate the concentration of C18:1, C18:2, and C18:3 on 

biodiesel sample were located between 3028 and 2812 cm-1 and between 1598 and 793 cm-1. For 

the cases of C16:0 and C18:0 models, the used region was between 2965 and 2807 cm-1 and 

between 1205 and 801 cm-1. These regions  were chosen based mainly on the  absorbance band  

related  to  length of carbon chain,  CH2 and CH3 ratio, and  number of double bond  ( C=C ) 

present in the sample,  and optimized by Gram software  version 6 using PLSR method.  The 

performance of the models was assessed by the correlation coefficient (R2), standard error of 

cross validation (SECV), the root mean square error of prediction (RMSEP), the absolute error of 

prediction (AEP),  the average relative error (ARE), and RPD value.  

 

 4.4 Results and Discussion 

 

 4.4.1 Predicting using NIR spectroscopy 

 4.4.1.1 Near infrared spectra 

 

It is well known that bands in the near infrared region are difficult to assign to specific 

compounds. This is because a single band in this region is the result of several possible 

combinations of fundamental bands and overtones. Nowadays, current advances in spectroscopy 

instruments conjugated with new chemometric software have made it possible to identify some 

chemical structures based on some characteristics of combination bands and overtones. 

Figure 4-2 shows the ranges of NIR spectrum of biodiesel used in this study. The 

principal regions on the NIR range used to estimate the concentration of methyl oleate (C18:1), 

methyl linoleate (C18:2), and methyl linolenate (C18:3) in biodiesel samples were located 

between 1600 and 1700 nm and between 2000 and 2200 nm. Specifically, the band of 1620 nm 

is associated with C-H stretch first overtone with the =CH2 structure. Additionally, the band of 

2170 nm is assigned to the C-H stretch and C-H deformation combination with the HC=CH 

structure. J. Shenk et al. (2008) For the cases of methyl palmitate (C16:0) and methyl stearate 

(C18:0) the used region was between 900 and 1400 nm. This region is assigned to the C-H (CH3, 

CH2) stretching 2nd overtone, combination stretching band, and bending vibration. V. Sablinskas 

et al. (2003). 
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Figure 4-2 Typical spectra of biodiesel used in this study in the NIR range. 

 

 4.4.1.2 Predicting fatty acid composition, models using 4 types of biodiesel (MOD-4N). 

The NIR spectroscopy data and Partial least squares regression (PLSR) methods were 

used for the development of a calibration model for each fatty acid methyl ester (FAME). PLSR 

is the technique most widely used in chemometric analysis. It is an extension of multiple 

regression analysis used to represent on a response variable the effects of linear combination of 

several predictors. PLSR is recommended when the number of predictor variables is higher than 

the numbers of observations and also when the predictors are highly correlated. L. Carrascal, 

(2009) Both situations are strongly present in our data. 

The calibration results for MOD-4N are shown in Table 4-2.  It is worth emphasizing that pre-

treatment data was not used, nor were outliers detected. 
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Table 4-2 General results of calibration (MOD-4N) for the prediction of C16:0, C18:0, C18:1, 

C18:2, and C18:3 using PLSR method and NIR Spectra. 

Type of Methyl 
Ester 
Models I 

Multiple Correlation 
Coefficient  (R2 ) 
Calibration 

Standard Error Cross 
Validation  
(SECV) % mass 

Number  
of  
Factors 

RPD  
Values 

Palmitate 0.996 0.751 4 15.97 

Stearate 0.995 0.041 4 14.52 

Oleate 0.998 0.653 5 26.41 

Linoleate 0.997 0.656 5 20.06 

Linolenate 0.999 0.511 4 35.45 

 

The maximum SECV was 0.656 % mass for methyl linoleate and the minimum 

SECV was 0.041 % mass for the methyl stearate model, all R2 values were over 0.99.  The 

minimum RPD value was 14.52 presented in the model for methyl stearate. Figure 4-3 

presents the relationship between predicted and measured values for each fatty acid.  The 

maximum absolute error was 1.73 % mass with an average relative error of 2.53% presented 

in the model for C18:2. The maximum RMSEP was 0.81 % mass presented in the same 

model for C18:2. The accuracy of these models is similar to those reported by P. Batista. 

(2008)  Validation results, using samples from the combination of biodiesel used in 

calibration (internal samples), show there is an excellent agreement  between  fatty acid 

concentration  of the samples  analyzed by  GC chromatography  and  the ones predicted  

using the data from NIR spectroscopy.  
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Figure 4-3 Results of validation set for each type of Methyl, using NIR spectroscopy models and 

internal samples MOD-4N. 

The results presented above clearly indicate the calibration models developed to quantify 

concentration of the main fatty acid present in biodiesel from NIR spectra perform very well 

when the validation set is from the same type of biodiesel used in the calibration model; thus 

suggesting the fatty acid profile of biodiesel may be easily determined by utilizing NIR 

spectroscopy methods when the source of the biodiesel is known.  This tool can be used as a fast 

and accurate method for monitoring biodiesel quality in specific production plants. 

Regression coefficient for the calibration models are shown in Figure 4-4.  Beta 

coefficients (Bc’s) indicate that the calibration models are based on absorption bands related to 

biodiesel. 
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Figure 4-4 Regression coefficients for the (MOD-4N) models  

 

 The models for C16:0 and C18:0 show large positive and negative coefficients near 1190 

nm, which are related to -CH3 stretching 2nd overtone and near 1395 nm, which are related to the 

-CH combination band. The models for C18:1, C18:2, and C18:3 show positive and negative 

bands near 1695, which are related to the –CH  stretch first overtone, near 2140 nm, which are 

related to the -CH/C=O stretching, combination or symmetric deformation and near 2170 nm, 

which are related to the –CH stretching combination or asymmetric deformation. The bands 

listed above all correspond to biodiesel absorption bands.  

 

 

 

C18‐2‐NIR  (MOD‐4N)  

C16:0‐NIR‐(MOD‐4N) 
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Figure 4-5 Results of validation set for each type of Methyl, using NIR spectroscopy models and 

external samples MOD-4N. 

Figure 4-5 shows results when the validation set of external samples was used. The 

minimum absolute error was 0.04 % mass with an average relative error of 12.19 % presented in 

the model for C18:1. The minimum RMSEP was 4.64 % mass presented in the same model for 

C18:1. The validation results of the models, using the samples from combination of biodiesels 

not used in the calibration (external samples), were very disappointing.   

Increasing the variability of the types of biodiesel present in the calibration could 

improve the performance of the models for any type of biodiesel. To prove this hypothesis, 

models using two additional biodiesels (AFME, and CCME) were proposed.   
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 4.4.1.3 Predicting fatty acid composition, models using 6 types of biodiesel (MOD-6N). 

Using the NIR spectroscopy data, models using combinations of six different biodiesels 

were developed to predict C16:0, C18:0, C18:1, C18:2, and C18:3 fatty acid.  Table 4-3 shows 

the results for MOD-6N. In this case pre-treatment data was not used, but some outliers were 

detected in the model for methyl palmitate and methyl stearate. The samples used in the 

validation were from the combination of six biodiesels used for the calibration, plus some types 

of biodiesel that were not present in the calibration to  evaluate the robustness of the model over 

any type of biodiesel. 

 

Table 4-3 General results of  calibration  (MOD-6N)  for the prediction of  C16:0, C18:0, C18:1, 

C18:2, and C18:3 using PLSR method and NIR Spectra. 

 

Type of Methyl 
Ester 

MOD-6N 

Multiple Correlation 
Coefficient  (R2 ) 

Calibration 

Standard Error 
Cross Validation  
(SECV) % mass 

Number of 
Factors for 
Calibration 

RPD  
Values 

Palmitate 0.901 3.22 5 3.18 

Stearate 0.788 1.82 5 2.26 

Oleate 0.996 0.965 5 16.71 

Linoleate 0.994 0.713 5 17.54 

Linolenate 0.998 0.611 5 27.34 

 

The higher SECV were 3.22 % mass for methyl palmitate model, and the minimum 

correlation coefficient (R2) was 0.79 detected in the model for methyl stearate. The RPD values 

for methyl palmitate and methyl stearate were 3.18 and 2.26, respectively. Williams (2001), 

suggest that RPD value from 0.0 to 2.3 is poor and it is not recommended for any application,  a 

value from 3.1 to 4.9 is fair and it can be used for screening application, and a value of 8.1 or 

higher is excellent  and it can be used for any application. According with these results the 

calibration models for C18:1, C18:2, and C18:3 can be used, but the models for C16:0 and C18:0 

require additional work. The results for the validation set of internal sample are shown in Figure 

4-6.  The maximum absolute error was 5.48 % mass with an average relative error of 16.15 % 
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presented in the model for C16:0. The maximum RMSEP was 2.62 presented in the same model 

for C16:0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 4-6 Results of validation set for each type of Methyl, using NIR spectroscopy model and 

internal samples MOD-6N. 

 

Regression coefficients for the calibration models (MOD-6N) are shown in Figure 4-7. 

Similar behavior was found related to the regression coefficient between models MOD-4N and 

RMSEP= 1.19 % mass 

Max AEP=2.77 % mass 

ARE = 27.33 % 

RMSEP= 0.81 % mass 

Max AEP=1.64 % mass 

ARE = 1.50 % 

RMSEP= 0.70 % mass 

Max AEP= 1.19 % mass 

ARE = 2.45 % 

RMSEP= 0.57 % mass 

Max AEP= 0.95 5 mass 

ARE = 4.44 % 

RMSEP=2.62 % mass 

Max AEP=5.48 % mass 

ARE = 16.15 % 
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MOD-6N, indicating that the calibration models are based on fatty acid methyl ester absorption 

bands. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 4-7 Regression coefficients for the MOD-6N models. 

C18‐2‐NIR ‐ (MOD‐6N) 

C16:0‐NIR‐(MOD‐6N) 
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To compare the performance of the models MOD-6N and MOD-4N over the same 

condition, Figure 4-8 shows the results for validation set using external samples. The maximum 

absolute error was 8.52 % mass with an average relative error of 13.67 % presented in the model 

for C16:0. The maximum RMSEP was 3.41 presented in the same model for C16:0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8  Results of validation set for each type of Methyl, using NIR spectroscopy model and 

external samples MOD-6N. 

 

Considering that errors of the validation set using internal and external samples are 

comparable for the MOD-6N model, all statistical parameters used to verify the robustness of the 

RMSEP= 2.39 % mass 

Max AEP=4.22 % mass 

ARE = 43.20 % 

RMSEP= 1.43 % mass 

Max AEP=3.19 % mass 

ARE =2.40 % 

RMSEP= 0.71 % mass 

Max AEP=1.29 % mass 

ARE = 3.20 % 

RMSEP= 0.82 % mass 

Max AEP= 1.78 % mass 

ARE = 20.25 % 

RMSEP= 3.41 % mass 

Max AEP=8.52 % mass 

ARE = 13.67 % 
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model were  re-calculated using  all validation samples available. Figure 4-9 shows the 

comparison between predicted and measured fatty acid concentration for each model, when a 

combination of internal and external sample sets were used. The maximum absolute error was 

8.52 % mass with an average relative error of 14.97% presented in the model for C16:0. The 

maximum RMSEP was 2.22 % mass presented in the same model for C16:0. Validation results  

show there  is good  agreement  between  fatty acid concentration  of the samples  analyzed by  

GC  chromatography  and the ones predicted  using the  data from NIR spectroscopy , with 

respect to cases of methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate 

(C18:3); however,  not for cases of methyl palmitate (C16:0), and methyl stearate(C18:0) 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9 Results of validation set for each type of Methyl, using NIR spectroscopy model and 

all validation samples (internal and external) MOD-6N. 

 

The results presented above indicate that the calibration models developed to quantify the 

concentration of methyl oleate, methyl linoleate, and methyl linolenate present in biodiesel from 

RMSEP=2.98 % mass 
Max AEP=8.52 % 
mass 
ARE 14 97 %

RMSEP=2.330 % mass 
Max AEP=4.22 % mass 
ARE=42.31 % 

RMSEP=1.12 % mass 
Max AEP=3.19 % 
mass 
A 1 89 %

RMSEP=0.70 % mass 
Max AEP=1.29 % mass 
ARE=2.73 % 

RMSEP=0.69 % mass 
Max AEP=1.78 % mass 
ARE=6.97 % 
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NIR spectra perform well. However, models developed for methyl palmitate, and methyl stearate 

presented some deficiencies related to accuracy of predictions. These results suggested the fatty 

acid concentration of C18:1, C18:2, and C18:3 in biodiesel can be determined using the NIR 

spectroscopy method, with reasonable accuracy, even when the source of the biodiesel is 

unknown.  Contrarily, models developed to predict C16:0 and C18:0 cannot be used to predict 

these fatty acids when the source of biodiesel is unknown. These models should be optimized to 

improve the accuracy of prediction.  After analyzing the results of the models for C16:0 and 

C18:0, their behavior suggests that developing models for specific ranges, which are shown in 

Table 4-4, could improve their performance. In order to demonstrate this hypothesis three sub-

models for specific ranges of concentration (low, medium, and high) were developed to predict 

the concentration of C16:0 and C18:0.  

 

Table 4-4 Defined ranges for the sub-models low, medium, and high to determine C16:0, C18:0 

Model 
For: 

Low  range of 
Concentration 

% mass 

Medium  range  of 
concentration 

% mass 

High  range  of 
concentration 

% mass 
C16:0 0  -  12.99 13.00  - 24.99 25.00 – 45.00 
C18:0 0 – 3.99 4.00 – 9.99 10.00 – 16.00 

 

To select the correct sub-model, the general model is first used to predict the 

concentration of C16:0 and C18:0, and then the adequate model was chosen using this result. 

Figure 4-10 shows the results using the sub models.   

  

 

 

 

 

 

 

Figure 4-10 Results of validation set for methyl palmitate (16:0), and methyl stearate (18:0) 

using sub-models (lower, medium, and high) over NIR range. 

RMSEP=1.51 % mass 

Max AEP=2.25 % mass 

ARE=6 56 %

RMSEP=0.56 % mass 

Max AEP=1.34 % mass 

ARE=9.75 % 
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The obtained results using the sub-models (low, medium, and high) improved the 

prediction accuracy of the models (MOD-6N) for methyl palmitate and methyl stearate. The 

maximum absolute error was 1.34 % mass with an average absolute error of 9.75 % mass 

presented in the model for C18:0. The RMSEP is reduced from 2.22 % mass to 1.51% mass for 

the case of C16:0 and from 2.30 % mass to 0.57 % mass for the case of C18:0.  Considering the 

results of two step models to predict C16:0 and C18:0, these models can be used to predict the 

fatty acid present in biodiesel with reasonable accuracy, although the type of biodiesel is 

unknown. 

 4.4.2 Predicting using MIR spectroscopy 

  4.4.2.1 MID infrared spectra 

It contrast with the near infrared (NIR) spectra, the mid infrared (MIR) spectra show a 

high degree of spectral resolution; consequently, a peak can be assigned to specific compounds 

except in the called fingerprint region (1400 – 900 cm-1), where many chemical groups have 

frequencies. In other words, particular bands in this region can hardly be assigned to specific 

bonds. However, it is also well known that bands caused by specific complex compounds in this 

region are unique. Considering the previous advanced instruments and the new chemometric 

software it is now possible to identify complex chemical structures of our study. 

Figure 4-11 shows the ranges of MIR spectrum of biodiesel used in this study. The main 

region on the MIR range used to estimate the concentration of C18:1, C18:2, and C18:3 in the 

biodiesel samples were located between 3028 and 2812 cm-1 and between 1598 and 793 cm-1. 

Specifically, the band of  3025 cm-1 is associated with  C-H  stretching vibration  with the  =CH 

structure, and  the band of  1418 cm-1 is assigned to the  C-H  bending vibration  with the  =CH 

structure; additionally,   the bands of  914 and 968 cm-1  have been associated with  -HC=CH-  

structure. B. Yaakob et al. (2010) For the cases of C16:0, C18:0 models the used region was 

between 2965 and 2807 cm-1 and between 1205 and 801 cm-1. In these regions, the band 2953 

cm-1 is assigned to the C-H asymmetric stretching, and the band 2853 cm-1 is assigned to the C-H 

symmetric stretching. Additionally, stretching and bending vibrations of CH2 were noticed at 

1163 cm-1 . B. Yaakob et al. (2010) 
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Figure 4-11  MIR spectra of biodiesel shown the used ranges in calibration 

  

 4.4.2.2 Predicting fatty acid composition, models using four types of biodiesel (MOD-4M). 

The same eighty samples, from the combination of four biodiesels (COME, CAME, 

FXME, and PAME.) used in the MOD-4N for the NIR study, were used for the development of a 

calibration model for each fatty acid methyl ester in the MIR range (MOD-4M).  

Table 4-5 shows the results for the models MOD-4M. In these models, pre-treatment data was 

not used, nor were outliers detected. Similarly to the NIR study, two set of samples were used in 

the validation, one set was from the combination of four biodiesels used on the calibration 

(internal samples,) and the other one was from combinations of biodiesels not used in the 

calibration (external samples). The following results are from the internal validation set. 
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Table 4-5 General results of calibration of MOD-4M for the prediction of C16:0, C18:0, C18:1, 

C18:2, and C18:3 using PLSR method and MIR Spectra. 

 

Type of Methyl 

Ester 

Models I 

Multiple Correlation 

Coefficient  (R2 ) 

Calibration 

Standard Error 

Cross Validation  

(SECV) % mass 

Number of  

Factor 

RPD 
Values 

Palmitate 0.996 0.729 4 16.45 

Stearate 0.994 0.043 4 
13.84 

Oleate 0.997 0.921 5 18.72 

Linoleate 0.998 0.544 5 
24.20 

Linolenate 0.998 0.773 5 
23.44 

 

 

The maximum SECV was 0.921 % mass for methyl oleate, and the minimum SECV was 

0.043 % mass for the methyl stearate model, all R2 values were over 0.99. The minimum RPD 

value was 13.84 in the models for methyl stearate. The maximum absolute error was 2.09 % 

mass with an average relative error of 2.94 % presented in the model for C18:3. The maximum 

RMSEP was 0.434 % mass presented in the model for C18:1. All errors were considered 

acceptable. 

Regression coefficients for the calibration model (MOD-4M) are shown in Figure 4-12.  

The models for C16:0, C18:0, C18:1, C18:2, and C18:3 show positive and negative coefficients 

near 2854 cm-1  which are related  to –CH symmetric stretching, near 2924 cm-1 , related to –CH  

asymmetric stretching, and  near 1165 cm-1, related to stretching and bending vibration.  All 

bands listed above are related to fatty acid methyl ester absorption bands. 
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Figure 4-12 Regression coefficients for model MOD-4M 

 

Figure 4-13 presents the relationship between predicted and measured values for each 

fatty acid when validation set of internal sample was used.  The results when the validation set of 

external samples was used are shown in Figure 4-14. The minimum absolute error was 0.28 mass 

% with an average relative error of 20.96 % presented in the model for C18:1. The minimum 

RMSEP was 6.23 % mass presented in the model for C18:0. Validation results showed similar 

promising results with the NIR spectroscopy method when the internal validation set is used, and 

very disappointing results are given when the external validation set is used. 

C18‐2‐MIR  (MOD‐4M)  

C16:0‐MIR‐(MOD‐4M)
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Figure 4-13  Results of validation set for each type of methyl, using MIR spectroscopy and 

internal samples  MOD-4M. 

 

Results obtained from the MIR methods (MOD-4M) indicate the calibration models 

developed to quantify concentration of the main fatty acids present in biodiesel, from the MIR 

spectra, performed accurately when a set of internal samples was used for validation, this means 

that the fatty acids profile of biodiesel can be determined using the MIR spectroscopy method, 

when the source of the biodiesel is known.   

RMSEP=0.43 % mass 

Max AEP=1.7 % mass 

ARE=1.65 % 

RMSEP=0.42 % mass 

Max AEP=2.09 % 

mass 

ARE=2.94 % 
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Figure 4-14 Results of validation set for each type of Methyl, using MIR spectroscopy and 

external samples MOD-4M. 

 

Similarly to the approach presented for NIR method, two additional biodiesels (AFME, 

and CCME) were included to develop a new calibration. 

 4.4.2.3 Predicting fatty acid composition, models using six types of biodiesel (MOD-6M). 

The same one hundred and twenty-six samples used for the MOD-6N in the NIR study 

were used to develop the MOD-6M in the MIR range to predict the main fatty acid methyl ester 

(FAME) present in biodiesel. Table 4-6 shows the results for MOD-6M in the MIR range. 

RMSEP = 15.04 % mass 

Max AEP= 31.56 % mass 

ARE= 266.42 % 

RMSEP= 24.48 % mass 

Max AEP=52.67 % mass 

ARE = 81.16 % 

RMSEP=10.58 % mass 

Max AEP = 10.58 % mass 

ARE = 20.96 % 

RMSEP= 6.23 % mass 

Max AEP= 13.37 %mass 

ARE = 75.96 % 

RMSEP= 14.29 % mass 

Max AEP= 29.58 % 

mass 

ARE = 59.40 % 
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Similar to the NIR models, pre-treatment data was not used, but some outliers were detected in 

the model for methyl palmitate and methyl stearate. The samples used in the validation were 

from the combination of six biodiesels used on the calibration, plus some types of biodiesel that 

were not present in the calibration.  

 

Table 4-6 General results of MOD-6M calibration, for the prediction of C16:0, C18:0, C18:1, 

C18:2, C18:3, using the PLSR method and the MIR Spectra. 

 

Type of 

Methyl 

Ester 

Models II 

Multiple Correlation 

Coefficient  (R2 ) 

Calibration 

Standard Error Cross 

Validation  

(SECV) % mass 

Number of  

Factors 

RPD 

Values 

Palmitate 0.936 2.11 7 4.86 

Stearate 0.944 0.709 8 5.82 

Oleate 0.993 1.19 7 13.55 

Linoleate 0.996 0.65 7 19.19 

Linolenate 0.998 0.74 7 22.57 

 

 

The higher SECV was 2.11 % mass for methyl palmitate model, and the minimum 

correlation coefficient (R2) was 0.944, detected in the model for methyl stearate.  Validation 

results using the internal set of samples are shown in Figure 4-15. The maximum absolute error 

was 4.31 % mass with an average relative error of 2.49 % presented in the model for C18:1. The 

maximum RMSEP was 1.53 % mass, which was presented in the same model for C18:1. 
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Figure 4-15 Results of validation set for each type of methyl, using MIR spectroscopy and 

internal samples MOD-6M model. 

 

Regression coefficients for the calibration models (MOD-6M) are presented in Figure 4-

16.  Similar to the models of four biodiesel, the calibration models are based on absorption bands 

related to the fatty acid methyl esters. 
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Figure 4-16 Regression coefficients for the models  MOD-6M. 

 

Similarly to the procedure developed for NIR method, to compare the performance of the models 

MOD-6N and MOD-4N over the same condition, the models were tested with a set of external 

samples. Figure 4-17 shows the results for the validation set using these external samples. The 

maximum absolute error was 6.27 % mass with an average relative error of 11.80 % presented in 

C18‐2‐MIR ‐ (MOD‐6M)  

C16:0‐MIR‐(MOD‐6M) 
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the model for C16:0. The maximum RMSEP was 2.73 % mass presented in the same model for 

C16:0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-17  Results of validation set for each type of Methyl, using MIR spectroscopy and 

external samples MOD-6M model. 

 

Similar results to the NIR method were found with the model of six different types of 

biodiesel. Considering the errors of the validation set using internal and external samples are 

RMSEP= 2.73 % mass 
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similar for the MOD-6N model, all statistic parameters used to verify the model were re-

calculated using all validation samples as a one set. Figure 4-18 shows the comparison between 

predicted and measured fatty acid concentration for each model using the internal and external 

samples for validation. The maximum absolute error was 4.14 % mass with an average relative 

error of 4.93 % presented in the model for C18:2. The maximum RMSEP was 1.93 % mass, 

which was presented in the model for C16:0. These are very similar results to the ones from the 

NIR study.  Validation results show accurate results for cases of methyl oleate, methyl linoleate, 

and methyl linolenate, but not for cases of methyl palmitate, and methyl stearate models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-18 Results of validation set for each type of methyl, using MIR spectroscopy MOD-6M 

model. 
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RMSEP=0.84 % mass 

Max AEP=2.06 % mass 

ARE=7.58 % 
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The obtained results from the MIR method were very similar to the NIR study. 

Consequently, these results showed that the fatty acid concentration of 18:1, 18:2, and 18:3 in 

biodiesel can be determined using the MIR spectroscopy method, with reasonable accuracy, even 

when the source of the biodiesel is unknown.  The models developed to predict 16:0 and 18:0, 

with the MIR methods present slightly better results than the models developed with NIR 

spectra.  To complete the comparative study between the NIR and MIR methods, the three sub-

models developed for the NIR method for the same specific range were developed for this case. 

Figure 4-19 shows the comparison of predicted and actual concentration of the validation set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-19 Results of validation set for methyl palmitate (C16:0), and methyl stearate (C18:0) 

using the sub-models (lower, medium, and high) over MIR range. 

 

Similar to the NIR method, the obtained results using the sub-models (low, medium, and 

high) improved the prediction accuracy of the original models for methyl palmitate, and methyl 

stearate. The maximum absolute error was 1.62 % mass with an average relative error of 4.48 % 

presented in the model for C16:0. The maximum absolute error for C18:0 model was 0.98 % 

mass with an average relative error of 6.86 %. The RMSEP is reduced from 1.93 to 0.83 % mass 

RMSEP=0.83 % mass 
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for the case of C16:0 and from 1.10 to 0.37 % mass for the case of C18:0.  Considering results of 

the two step models to predict 16:0 and 18:0, the MIR method can be used to predict the fatty 

acid present in biodiesel with reasonable accuracy when the source of biodiesel is unknown. 

Performance factor of the PLSR models that were developed for fatty acid prediction 

using NIR and MIR spectra are summarized in Table 4-7. The MIR spectrum models were 

slightly better than NIR at predicting C16:0 and C18:0, Contrarily, NIR present slightly better 

results when predicting C18:1, C18:2, and C18:3. Although, both methods were found 

reasonably accurate when predicting the concentrations of C16:0, C18:0, C18:1, C18:2, and 

C18:3 in biodiesel samples. 

 

Table 4-7 Validation results for prediction of the main fatty acid present in biodiesel 

 

 NIR  Models MIR models 

 C16:0* C18:0* C18:1 C18:2 C18:3 C16:0* C18:0* C18:1 C18:2 C18:3 

R2 0.92 0.98 0.99 0.99 0.99 0.96 0.98 0.99 0.99 0.99 

SECV 0.53 0.05 0.96 0.76 0.66 0.48 0.04 1.49 0.71 0.79 

RMSEP 1.51 0.56 1.12 0.70 0.69 0.83 0.37 1.45 1.59 0.84 

Max 

AEP 
2.25 1.34 3.19 1.29 1.78 1.62 0.98 2.95 4.14 2.06 

ARE 6.56 9.75 1.89 2.73 6.97 4.48 6.85 2.51 4.93 7.58 

* Data from model used in the validation (low, medium or high concentration) MOD- 6N/M 

 
 

 4.5 Conclusions 

The selected ranges of NIR and MIR spectra allowed building reliable models to predict 

the concentration of C16:0, C18:0, C18:1, C18:2 and C18:3 fatty acids present in biodiesel 

samples, when the source of biodiesel is known (MOD-4N/M.) 

The models developed using heterogonous types of biodiesel (MOD-6N/M) presented 

accurate predictions for C18:1, C18:2, and C18:3. The average relative error of prediction (ARE) 

was smaller than 6.97 % and 7.98 % for NIR and MIR spectroscopy methods respectively. For 
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these types of models   additional work was necessary to obtain a reasonable accurate prediction 

for the cases of C16:0 and C18:0 fatty acid.  

The results obtained using the MIR spectroscopy data were slightly better than those 

obtained with the NIR spectroscopy data for the C16:0 and C18:0 models. For the case of 16:0, 

the average relative errors of prediction were 4.48% and 6.56% for MIR and NIR spectroscopy 

methods respectively. However, the validation results also showed that both NIR and MIR 

spectroscopy methods can be used to predict the fatty acid profile in biodiesel, although the 

biodiesel type is unknown. NIR and MIR spectroscopy methods can be considered as a 

promising tool to effectively monitor the biodiesel quality over the production and distribution 

chain. 
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Chapter 5 - Quantifying Trace Biodiesel Impurities Using Fourier-

Transformed Mid- and Near-Infrared Spectroscopy 

 5.1 Abstract  

 

This work reports the use of mid- and near-infrared (MIR and NIR) spectroscopy to 

determine the content of free glycerin, triglycerides, water, and methanol in biodiesel.  Partial 

least square regression (PLSR)  modeling method was used for calibration based on six different 

types of biodiesel (methyl esters of palm oil, soybean oil, corn oil, peanut oil, olive oil,  and 

canola oil) containing the four impurities above mentioned in certain ranges. All samples were 

scanned on an FT-IR spectrometer, and specific prediction models for methanol, water, free 

glycerin, and triglycerides were developed in two different approaches:  when a single impurity 

was present and when all impurities were present. The results showed that the mid- and near-

infrared spectroscopy were able to accurately and rapidly predict the amount of four impurities in 

the biodiesel when only a single impurity was present in the biodiesel sample. The root mean 

square error of prediction (RMSEP) for methanol, water, triglycerides, and glycerol models were 

206, 68, 69, and 56 mg kg-1, respectively in the MIR range. For the NIR range, the RMSEP were 

125 mg kg-1 for methanol model, 49 mg kg-1 for water model, 647 mg kg-1 for triglycerides 

model, and 17 mg kg-1 for glycerol model. When all impurities were present in biodiesel, only 

the NIR method demonstrated certain capacities to predict these impurities. Pre-treatment of the 

data by Savitzky-Golay’s second derivative was necessary to achieve reasonable accuracy. The 

root mean square error of prediction (RMSEP) for methanol, water, triglycerides, and glycerol 

models were 170, 90, 900, and 50 mg kg-1, respectively. 

 5.2 Introduction 

Biodiesel is mainly produced by a catalytic transterification reaction of vegetable oils or 

animal fat with an alcohol, such as methanol.  It is considered an important alternative fuel for 

diesel engines, because it reduces greenhouse gases, sulphur emissions, and particle matter, Van 

Gerpen (2004). 
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Additionally, it is biodegradable and renewable. At the end of the reaction, crude glycerol 

is produced as a byproduct, and a water-washing process is usually necessary to reduce impurity 

levels in the biodiesel. However, some of the raw materials such as triglycerides and methanol, 

or products such as glycerol and water, could remain in the final product compromising the 

biodiesel quality, Banga & Varshney (2010). To guarantee the quality of biodiesel, some 

standards have been established. The best known are ASTM D6751 used in the United States and 

EN 14214 used in Europe. The maximum levels of methanol, water, triglycerides, and glycerol 

have been clearly established in these standards. With the rapid increase in biodiesel production 

and use worldwide, it is necessary to develop a fast, simple and precise method for monitoring 

biodiesel quality.  The presence of contaminants in biodiesel which as methanol, residual 

glycerol, triglycerides (unreacted oil), and water can severely damage diesel engines. High 

methanol content in biodiesel promotes the deposits formation on the injectors. Furthermore, 

methanol content in large quantities can adversely affect some fuel properties, which as heating 

value and flash point, decreasing the overall performance of the fuel. Glycerol content in 

biodiesel has been reported as a cause of deposit in the injector tip as well as in the combustion 

chamber. Some emission problems have also been attributed to the presence of glycerol in the 

fuel. The water presence in biodiesel can cause corrosion problems in the engine, and can also 

react with triglycerides producing an undesirable compound.  Finally, triglycerides in biodiesel 

can generate emissions of noxious pollutants from the combustion, Mittelbach et al. (2010).  

The use of infrared spectroscopy in the analysis of biodiesel has been reported in literature in 

combination with multivariate techniques. Many authors have already developed reliable 

predictions of some biodiesel properties and have also published the use of these tools in quality 

control tasks.  P. Felizardo et al. (2007) determined water and methanol content using NIR 

spectroscopy in biodiesel samples from soybean, palm oil, and waste frying oils. The best mean 

square error of prediction (RMSEP) achieved was 70 mg/kg in the region 4800-5050 cm-1 for 

methanol concentration model and 87 mg/kg in the region 9000 – 4500 cm-1 for water 

concentration model. Water content used in calibration ranged from 218 to 1859 mg/kg, and 

methanol content ranged from 2 to 1859 mg/kg. The authors concluded that results present 

excellent agreement between measured and predicted values, and also concluded that water 

content does not affect the calibration of methanol or vice versa.  Using NIR/MIR spectroscopy 

V. Gaydou et al. (2011) reported the prediction of concentration of triglycerides in a blend of 
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diesel-biodiesel- triglycerides. The RMSEP was 2.11% (w/w) for the model using MIR range 

and   0.363 % (w/w) for the model for NIR range. The authors concluded that the developed 

models predicted triglycerides concentration with good accuracy when the concentration is 

ranged from 0 to 40 % (w/w) in a blend of diesel-biodiesel-triglycerides.  F. Oliveira et al. (2007) 

presented similar studies to predict the concentration of triglycerides in a blend of diesel-

biodiesel-triglycerides using FT-NIR spectroscopy and FT-Raman spectroscopy. The best values 

for RMSEP were 0.238 % (w/w) using FT-NIR and PLS method and 0.604 % (w/w) using FT-

Raman and PCR method.  The authors concluded that the developed method predicted 

concentration of triglycerides accurately, when the concentration of triglycerides ranged from 0 

to 5 % (w/w).   M.P.Dorado et al. (2011) determined methanol and glycerol traces in biodiesel 

using visible and NIR ranges. The accuracy of calibration was determined by RPD. The RPD 

was 10 for the methanol model and 2.5 for the glycerol model, respectively. The samples for this 

study were ranged with methanol from 0.0003% to 0.433% (w/w) and with glycerol from 

0.005% to 0.050 % (w/w) in two separate sets. The authors concluded that NIR and visible 

ranges are able to detect methanol and glycerol traces in biodiesel, but recommend additional 

work to improve the method’s accuracy to detect glycerol in biodiesel samples. I. P.Soares et al. 

(2008) presented a study to predict the triglyceride content in biodiesel using FT-IR. The  range 

for RMSEP of  developed models  was from 0.65 to 2.09  % (v/v ),  concluding that FT-IR 

method using PLS  is able to predict the triglyceride concentration in biodiesel with good 

accuracy, when the range of the triglyceride content is ranged from  0 to 40 % (v/v ). The revised 

previous work showed the ability to predict methanol, glycerol, triglycerides, and water in 

biodiesel when a single impurity is present. The study of P. Felizardo was the only one that 

presented two impurities at the same time (methanol and water). Considering that the four listed 

impurities could be present in the biodiesel at the same time and no report can be found on 

predicting the concentration of these impurities under this condition, the objective of this work 

was to predict the concentration of methanol, triglycerides, glycerol, and water when all of these 

impurities are present in biodiesel, using both MIR and NIR spectroscopy. The PLSR method 

was used to develop calibration models for the listed impurities in biodiesel. The second 

derivative of Savitzky-Golay was used as pre-treatment of the data for NIR models. 
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 5.3 Materials and Methods 

 5.3.1 Sample preparation 

 

The biodiesels used in this work were prepared from food grade canola oil, corn oil, 

peanut oil, olive oil, and soybean oil, purchased from local grocery stores, and palm oil 

purchased from Country Soap Shack (Missouri, USA). All biodiesel samples were produced 

using a standard transterification process described elsewhere, Sagar et al. (2006). After 

separation, washing and drying processes were developed over the entire biodiesel to minimize 

the level of impurity.  Later, all the biodiesel was analyzed to obtain the fatty acid profile by gas 

chromatograph (GC) to verify purity. 

Table 5-1, shows the list of fatty acid methyl ester (FAME) used in this study, palm 

methyl ester (PAME), canola methyl ester (CAME), peanut methyl ester (PEME),  olive methyl 

ester (OLME), corn methyl ester (COME), and soybean methyl ester (SOME).   

 

Table 5-1 Fatty acids profile (mass %) of biodiesel samples prepared for this work. 

FAME(mass%) C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3

COME 0.02 0.00 0.00 0.07 10.88 2.27 27.63 53.95 2.36 

SOME 0.00 0.00 0.08 0.10 10.40 4.01 20.92 50.24 7.31 

PAME 0.02 0.03 0.34 1.23 44.57 4.39 40.96 8.56 0.17 

CAME 0.00 0.01 0.01 0.08 4.14 1.84 66.99 17.59 6.56 

PEME 0.01 0.01 0.12 0.09 9.82 2.75 55.97 21.77 0.21 

OLME 0.00 0.00 0.10 0.05 14.07 2.82 65.07 12.31 0.61 

 

 5.3.2 Impurities level  

Materials used in preparing samples for the infrared scan were deionized water, glycerol 

(99.5%, G33-1, Fisher Scientific), methanol (99.8%, A412-1, Fisher Scientific), and corn oil as 

triglycerides. Using the biodiesel listed above, this study was developed in two steps. First, a set 
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of samples was prepared using a single impurity to verify the ability of the NIR and MIR 

spectroscopy to identify very small amounts of methanol, triglycerides, glycerol, and water in 

biodiesel. Next, a new set of samples was prepared for each impurity. However, at this time, the 

other three impurities were present at different amounts.  Four different sets of fifty biodiesel 

samples, were each polluted with a single impurity for the first step:  as well as glycerol, in a 

range from 10 to 470 mg kg-1, methanol in a range from 110 to 5000 mg kg-1 triglycerides, in a 

range from 110 to 4770 mg kg-1, and water in a range from 20 to 940 mg kg-1. Forty four samples 

were used in the calibration, and six samples were reserved for validation in this first step.  For 

the second step, four other sets, each containing thirty biodiesel samples, were contaminated with 

methanol, glycerol, triglycerides, and water in the same ranges as previous ones. However, in 

this experiment the other three impurities had been present at the same time in different 

concentrations in each sample, as shown in Table 5-2. To develop the calibration, the first set of 

samples (44) and the second set of samples (23) were combined to be used in the models with all 

impurities.  Sixty seven samples were used in the calibration, and thirteen samples were 

randomly selected from the entire set for the validation. 

 

Table 5-2 Ranges of the concentration used for the impurities models (one impurity/all 

impurities) 

Impurities 
Model 
For: 

Max. Conc. 
%(w/w) 
ASTM 
D6751 
 Or EN 
14214 

Range for calibrations 
mg kg-1 

(one impurity) 
(all impurities) 

Concentration  mg kg-1, Other impurities 
(All Impurities Models) 

 
Methanol 

 
Water 

 
Triglycerides 

 
Glycerol 

 
Methanol 

0.25 110 to 5000  
---- 

200 
500 
700 

500 
700 
200 

700 
200 
500 

 
Water 

0.05 %(v/v) 20 to 940 200 
500 
700 

 
---- 

500 
700 
200 

700 
200 
500 

 
Triglycerides 

0.25 110 to 4770 200 
500 
700 

500 
700 
200 

 
---- 

700 
200 
500 

 
Glycerol 

0.02 10 to 470 200 
500 
700 

500 
700 
200 

700 
200 
500 

 
---- 
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To obtain the desired levels of impurity, every sample was prepared by weight using 

previously prepared biodiesel samples with each impurity. A dilution process was necessary to 

achieve the final level.  

 5.3.3  NIR and MIR spectra acquisition 

To develop an impurities prediction model, the samples were scanned at a room 

temperature of 22-24oC on a FT-IR/FT-NIR spectrometer (Perkin-Elmer spectrum 400, 

PerkinElmer, Inc., Shelton, CT). For the NIR scan, the samples were placed in a quartz standard 

cell of 1mm pathlength for spectrophotometers (Labomed Inc. Culver City, CA). The data was 

recorded as the absorbance in the wavelength range from 900 to 2500 nm with a resolution of 4 

cm-1 at 1 cm-1 interval.  For the MIR infrared scan, universal ATR accessory of Germanium (Ge) 

crystal with refractive index of 4.0 (PerkinElmer, Inc., Shelton, CT) was used. The spectra were 

recorded as the absorbance in the wavelength range from 4000 to 600 cm-1 with a resolution of 4 

cm-1 at 1 cm-1 interval. All spectrums were recorded once for each sample and were obtained as 

an average of 32 scans. 

 5.3.4 Calibration models 

 5.3.4.1 Model with single impurity (S-IMP) 

In the NIR range, the selected region to estimate the concentration of methanol, glycerol, 

and triglycerides in a biodiesel sample were located between 1100 and 2300 nm. For the case of 

water the used regions were between 1300 and 1500 nm and between 1800 and 2000 nm. The 

regions on the MIR range used to estimate the concentration of glycerol in biodiesel samples 

were located between 3925 and 840 cm-1. For the cases of methanol, triglycerides, and water, the 

used regions were between 3650 and 600 cm-1. These regions were chosen based on the 

absorbance band of the pure impurity in the NIR and MIR region.  

 5.3.4.2 Model with all impurities (A-IMP) 

In the case of models for all impurities, the regions were chosen based on derivative 

technique analysis. The regions from 1100 to 1650 nm and from 1800 to 2150 nm were selected 

to develop the calibration model for methanol. The glycerol model was developed over the 

ranges from 1400 to 1650 nm and from 1800 to 2100 nm. The regions from 900 to 1250 nm and 
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from 1300 to 1500 nm were used to develop the calibration model for triglycerides.  For the case 

of water, three regions were used, from 950 to 1150 nm, from 1400 to 1650 nm, and from 1800 

to 2050 nm.  Grams software version 6, using a PLSR method, was used to develop the models 

for both cases (single and all impurities). The performance of the models was evaluated by the 

correlation coefficient (R2), standard error of cross validation (SECV), the root mean square 

error of prediction (RMSEP), the average relative error (AVRE), the absolute error of prediction 

(ABEP), and the RPD value. These values were calculated using the following equations: 
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Where  PTX  is the predicted value of  each sample in the training  set, PVX  is the 

predicted value of  each sample in the validation set,  ATX  is the  measured or actual value of the 

sample in the training set, AVX  is the  measured or actual value of the sample in the validation 

set,  X  is the mean, n is the  number of samples in the training set, N is the  number of samples 

in the validation set, and SD is the standard deviation. 
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 5.4 Results and Discussion 

 5.4.1 Models with single impurity (S-IMP) 

 5.4.1.1 Prediction using MIR spectroscopy 

 5.4.1.1.1 MIR spectra 

Raw spectra of methanol, triglycerides, glycerol, and water in the MIR range are shown 

in Figure 5-1. The most prominent bands around 3350, 1640, and 675 cm-1 are characteristics for 

water, J. B. Brubach et al. (2005).  Methanol shows its distinctive absorption bands near to 3340, 

2945, 2833, 1456, 1030, and 655 cm-1, National Institute of Advanced Industrial Science and 

Technology, (2012).  For glycerol, the absorption bands were identified around 3300, 2930, 

1040, and 650 cm-1, National Institute of Advanced Industrial Science and Technology, (2012). 

The spectra of triglycerides presents its absorption band around 2932, 2880, 1740, 1416, 1043, 

924, and 854 cm-1, among others, Y. Che Man et al. (2010).  The selected calibration ranges in 

the MIR range were based on the region spectra where the impurity has a strong absorption band. 

In the MIR region, models with only a single impurity were developed. 

 

 

 

 

Figure 5-1 The mid infrared spectra of pure glycerol, methanol, triglycerides, and water 
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 5.4.1.1.2 Methanol content prediction 

The MIR spectral region from 3600 to 802 cm-1 was selected to develop the calibration 

model for methanol.  This region includes almost all predominant bands for methanol, listed 

above.  The PLSR model was tested with the validation set. The correlation coefficient R2 = 

0.977, and SECV = 210 mg kg-1 were obtained.  The spectral region of 3600 to 802 cm-1 shows 

at 3340 cm-1 indications of O-H stretching, at 2945 cm-1 indications of C-H asymmetric 

stretching, at 2833 cm-1 indications of C-H symmetric stretching, at 1456 indications of 

asymmetric deformation with –CH3 structure, and at 1030 cm-1 indications of C-O Stretching, V. 

Sablinskas et al. (2003). Figure 5-2 shows the comparison between predicted and measured 

methanol concentration on biodiesel.   RMSEP = 206 mg kg-1, maximum ABEP = 318 mg kg-1, 

and AVRE = 9.63 % were obtained.  The RPD value was 5.96, which is low but can be used for 

quality control application (Williams, 2001). The result showed reasonable accuracy and clearly 

demonstrated that the MIR spectra can be used to identify small concentrations of methanol in 

the biodiesel. 

 

 

 

Figure 5-2  Predicted vs.  measured methanol concentration in biodiesel, model by MIR 
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 5.4.1.1.3 Water content prediction 

 

The MIR spectral region from 3600 to 600 cm-1 was selected to develop the calibration 

model for water.  The selected region includes all principal bands for water, listed above.  The 

PLSR model was developed using the raw spectra. The correlation coefficient R2 was 0.968, and 

the obtained value for SECV was 40 mg kg-1.  Spectral region of 3600  to 600 cm-1  shows at 

3350 cm-1 information related to O-H stretching, at 1640 information about  bending  of   H-O-H 

structure,  and  at 675 cm-1 information related to -OH  out-of-plane bending, R. Silverstein et al. 

(2005).  Figure 5-3 shows the relationship between predicted and measured water concentration 

in biodiesel.   RMSEP = 68 mg kg-1, maximum ABEP = 92 mg kg-1, and AVRE = 12.08 % were 

obtained when the model was tested with the validation set. The RPD value was 6.69, which is 

sufficient  for process control (Williams, 2001). The results demonstrated that MIR spectra can 

be used to identify small concentrations of water in the biodiesel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3 Predicted vs.  measured water concentration in biodiesel, model by MIR. 

 

 5.4.1.1.4 Triglycerides content prediction 

The entire MIR spectral region from 3900 to 650 cm-1 was used to develop the calibration 

model for triglycerides content in biodiesel. Since a triglycerides spectrum presents small 

RMSEP= 68 mg kg
‐1
 

MAX ABEP = 92 mg kg
‐1
 

AVRE = 12.08 % 
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differences when it is compared with its respective methyl ester spectra, the PLSR model was 

used to develop the calibration. The correlation coefficient R2 = 0.994, and SECV = 100 mg kg-1 

were obtained.  Spectral region of 3900  to 650 cm-1  shows at 2932 cm-1 information related to 

C-H  asymmetric stretching with –CH2 structure, at 2880 cm-1 information about  C-H  

symmetric stretching with –CH3 structure, at 1740 cm-1 information about  C=O  stretching,  at 

1416 information about bending  vibration  with =CH structure,  and  at 1043 cm-1 information 

related to -C-O Stretching, Yaakob et al. (2010).  Figure 5-4 shows the comparison between 

predicted and measured triglycerides concentration in biodiesel.  RMSEP = 69 mg kg-1, 

maximum ABEP = 122 mg kg-1, and AVRE = 2.93 % were obtained. The RPD value was 6.55 

and the model can be used in process control (Williams, 2001). The result shows very good 

accuracy and clearly demonstrates that the MIR spectra can be used to identify small 

concentrations of triglycerides in biodiesel when only one impurity is present. 

 

   

 

Figure 5-4 Predicted vs.  measured triglycerides concentration in biodiesel, model by MIR 

 

 5.4.1.1.5 Glycerol content prediction 

 

 Considering that glycerol has absorbance bands in the same region as methanol, similar 

MIR regions from 3600 to 802 cm-1 were used to develop the calibration model to predict 

glycerol concentration in biodiesel, using a PLSR method. The correlation coefficient R2 = 0.865, 
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and SECV = 56 mg kg-1 were obtained.  Figure 5-5 shows the comparison between predicted and 

measured glycerol concentrations in the biodiesel.   RMSEP = 56 mg kg-1, maximum ABEP = 

106 mg kg-1, and AVRE = 25.66 % were obtained.  The RPD value was 2.46, which is poor and 

the calibration only can be used for very rough screening (Williams, 2001).  The result showed 

poor accuracy, thus demonstrating that the MIR spectra may not be used to identify small 

concentrations of glycerol in the biodiesel. When methanol and glycerol spectra were compared, 

glycerol spectra had many more absorption bands than the methanol spectra in the MIR range, 

especially in the fingerprint   area (1400 to 900 cm-1). In other words, too much information in a 

narrow region may represent a difficulty when collecting information about specific compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 Predicted vs. measured glycerol concentration in biodiesel, model by MIR. 

 

 

Regression coefficients for the calibration models are shown in Figure 5-6. Even though 

the plots look noisy, a few bands were clearly identified and assigned to the impurities. The 

RMSEP = 56 mg kg
‐1

 

Max ABEP = 106 mg kg
‐1

 
AVRE = 25.66 % 
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model for methanol shows coefficients near 2945 cm-1 and 1030 cm-1, which are methanol 

absorption bands. The model for water shows coefficients near 1640 cm-1, which are water 

absorption band. The model for triglycerides shows coefficients near 1740 cm-1 and 2932 cm-1, 

which are triglycerides absorption bands. Finally the model for glycerol shows coefficients near 

2930 cm-1, which are glycerol absorption band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 Regression coefficients for the models (S-IMP) 

 

 

Triglycerides‐MIR  (S‐IMP) 
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 5.4.1.2 Prediction using NIR spectroscopy 

 5.4.1.2.1 Raw NIR spectra 

Raw spectra of listed impurities are shown in Figure 5-7.  Very distinctive peaks were 

observed around 1450 and 1940 nm which is characteristic of water bands.  The typical 

absorption bands for methanol are shown near to 1582, 1698, 2068, and 2275 nm.  Glycerol 

shows absorption bands around 1582, 1708, 2090, and 2280 nm.  Triglycerides spectra shows 

absorption bands around 1209, 1724, 1762, and 2144 nm; in this particular case, small 

differences were observed between the triglycerides spectra and its correspondent methyl ester 

spectra. The selected calibration ranges were chosen based in spectra sections where the impurity 

has absorption bands with low or no absorption for biodiesel.  The triglyceride model was the 

exception case. 

 

 

Figure 5-7 The near infrared spectra of pure glycerol, methanol, triglycerides, and water 

 

 5.4.1.2.2  Methanol content prediction 

 

The NIR spectral region from 1100 to 2200 nm was selected to develop the calibration 

model for methanol.  This region includes all predominant bands for methanol, listed above, with 

the exception of band at 2275 nm; due to the fact that biodiesel also has strong absorbance in this 

area. The PLSR model was developed using Grams software. The correlation coefficient R2 = 

0.960, and SECV = 250 mg kg-1 were obtained.  No outliers were detected and no pre-treatment 
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data was necessary to obtain accurate results. Spectral region 1100 to 2200 nm shows at 1582 

indications of O-H stretch first overtone, at 1698 nm indications of C-H  stretch first overtone  

with –CH3 structure, and  at 2068 nm indications of O-H combination band, J. Shenk et al. 

(2008).   Figure 5-8 shows the comparison between predicted and measured methanol 

concentration in biodiesel.   RMSEP = 125 mg kg-1, maximum ABEP = 233 mg kg-1, and AVRE 

= 5.84% were obtained.  The RPD value was 5.01, which is good and the calibration can be used 

in quality control application (Williams, 2001).  The results obtained are comparable to those 

reported on the review studies. The NIR model performs slightly better than similar models 

developed using the MIR spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8 Predicted vs.  measured methanol concentration in biodiesel, model by NIR 

 

RMSEP= 125 mg kg
‐1
 

Max ABEP= 233 mg kg
‐1
 

AVRE= 5.84 % 
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 5.4.1.2.3 Water content prediction. 

 

Spectral regions from 1300 to 1500 nm and from 1800 to 2000nm were selected to 

develop the calibration model for water in the NIR range.  These regions include the 

predominant bands for water in the NIR range. The PLSR model was developed using the raw 

spectra. The correlation coefficient R2 = 0.972, and SECV = 40 mg kg-1 were obtained. Between 

the mentioned spectral regions bands at 1450 gave indications of -OH stretching vibration (first 

overtone), and at 1940 nm indications of -OH second overtone of bending vibration, J. Shenk et 

al. (2008).  Figure 5-9 shows the comparison between predicted and measured water 

concentration in biodiesel.   RMSEP = 49 mg kg-1, maximum ABEP = 98 mg kg-1, and AVRE = 

8.63 % were obtained. The RPD value was 6.69, which is reasonable and the calibration can be 

used in process control (Williams, 2001).  The results obtained present good accuracy. The NIR 

model performs slightly better than similar models developed using the MIR spectra for water 

concentration in biodiesel. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9 Predicted vs.  measured water concentration in biodiesel, model by NIR 

 

RMSEP= 49 mg kg
‐1
 

Max ABEP=98 mg kg
‐1
 

AVRE = 8.63 % 
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 5.4.1.2.4 Triglycerides content prediction 

 

Using the NIR spectral region from 1100 to 2200 nm, the calibration model for 

triglycerides was developed.  This region includes all predominant bands for methanol, listed 

above, except the band at 2275 nm; due to the fact that biodiesel also has strong absorbance in 

this area. The PLSR model was developed using Grams software. The correlation coefficient R2 

= 0.960, and SECV = 200 mg kg-1   were obtained.  Spectral region of 1100 to 2200 nm shows at 

1209  indications of  -CH stretch second overtone with –CH2 structure, at 1724 nm indications of  

-CH stretch first overtone with –CH3 structure, at 1762 nm indications of  -CH stretch first 

overtone with –CH2 structure, and at 2144 nm information could be related to -CH stretch/ C=O 

combination band, Silverstein et al. (2005).  Figure 5-10 shows the comparison between 

predicted and measured Triglycerides concentration in biodiesel.   RMSEP = 647 mg kg-1, 

maximum ABEP = 1442 mg kg-1, and AVRE = 27.32% were obtained.  The results obtained 

show poor accuracy. However, considering the sample with the higher absolute error as an 

outlier, the RMSEP, ABEP, and AVRE can be reduced to 269 mg kg-1, 441 mg kg-1, and 

12.71%, respectively. The RPD value was 6.55. .  Then, results present reasonable accuracy on 

the prediction.  For the triglycerides case, the MIR model performs better than the similar model 

developed using NIR spectra. 

 

 

 

 

 

 

 

 

 

Figure 5-10 Predicted vs.  measured triglycerides concentration in biodiesel, model by NIR 

RMSEP= 647 mg kg
‐1

Max ABEP= 1442 mg kg
‐1

 
AVRE= 27.32 % 
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5.4.1.2.5 Glycerol content prediction 

 

Similar to the other cases, the NIR spectral region from 1100 to 2200 nm was selected to 

develop the calibration model for glycerol.  This region includes almost all predominant bands 

for glycerol, listed above. The PLSR model was developed using Grams software and the raw 

spectra. The correlation coefficient R2 = 0.988, and SECV = 10 mg kg-1 were obtained. The RPD 

value was 11.40, which is excellent and the calibration can be used in quantification. The 

spectral region from 1100 to 2200 nm shows at 1582 indications of  -OH stretch first overtone, at 

1708 nm indications of  C-H  stretch first overtone  with –CH3 structure, and  at 2090 nm 

indications of  -OH combination band , Shenk et al (2008).  Figure 5-11 shows the results 

obtained, which present good accuracy in prediction and are comparable to the results reported 

on the related review studies. Again, the NIR model performs better than similar models 

developed using MIR spectra. 

 

 

Figure 5-11 Predicted vs.  measured triglycerides concentration in biodiesel, model by NIR 
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Regression coefficients for the models of S-IMP using NIR spectra are shown in Figure 

5-12. Regression coefficients presented in the graphic indicated that the calibrations are based in 

absorption bands related to the impurity under study. For instance, band was observed near  2040 

nm, which are related to methanol. Band observed near  1950 nm corresponded to water 

absorption band. Band observed near  1705nm can be assigned to the triglycerides absorption 

band, and the band observed near 1690 nm is related to the glycerol absorption band.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 5-12  Regression coefficients for calibration of the S-IMP models using NIR spectra. 

 

Triglyceride‐NIR‐S‐IMP 
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Performance factors of the developed model using MIR and NIR for impurities detection 

are summarized in Table 5-3.  The only model that presented poor RPD value  (2.46) was the 

model for glycerol using MIR spectra, the other models presented  better RPD in both NIR and 

MIR ranges.  NIR spectra yielded better results for methanol, water, and glycerol models, but 

MIR showed better results for the triglycerides model. However, both ranges NIR and MIR were 

found reasonably accurate for predicting a single impurity in biodiesel.  

 
Table 5-3 Validation results for impurities prediction using models with a single impurity in the 

NIR and MIR ranges 

 
 MIR NIR 

 Methanol Water Triglycerides Glycerol Methanol Water 
Triglycerides 

 
Glycerol 

R2 0.977 0.968 0.994 0.865 0.960 0.972 0.960 0.988 

SECV 

mg kg-1 
210 40 100 50 250 40 200 10 

RMSEP 

mg kg-1 
206 68 69 56 125 49 647 17 

Max 

ABEP 

mg kg-1 

318 92 122 106 233 98 1442 24 

AVRE 

% 
9.63 12.08 2.93 25.66 5.84 8.63 27.32 7.73 

RPD  5.96  6.69  13.22  2.46  5.01  6.69  6.55  11.40 

 

 5.4.2 Model with all impurities (A-IMP) 

When all impurities were present and the raw spectra were used, the developed analysis 

for quantifying impurities in biodiesel showed poor accuracy in prediction for both NIR and MIR 

ranges. These results were expected considering that similar ranges in NIR and MIR spectra 
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were used to identify different impurities when a single impurity was present in biodiesel. For 

these reasons, narrow ranges for calibration and derivative techniques were pre-evaluated as a 

possible option to develop all the impurity models. Based on the fact that biodiesel spectra will 

be mainly constituted of combination bands when all impurities are present, the derivative 

technique using NIR spectra could be a better option to seek information about the major 

constituents. MIR spectra were not included in the model that was used to test for all impurities 

because the distinctive bands from methanol, glycerol, and water are very close in the raw MIR 

spectra, making it difficult to see the band separation using the derivative technique.   

 

 5.4.2.1 Prediction using NIR spectroscopy and second derivative approach 

 5.4.2.1.1 Second derivative spectra 

Derivative spectra techniques can be used to perform the band separation, Huguenin et al. 

(1986).  This can be first or higher order. The second order derivative spectra are commonly 

used, because the band intensity and peak location are maintained as in the original spectra. This 

characteristic could be very useful when identifying the needed original compounds in 

combination bands. To determine the appropriate range for calibration for each model derivative 

technique was developed, a raw spectrum of biodiesel containing all impurities and raw spectra 

of methanol, triglycerides, water, and glycerol in the NIR range are shown in Figure 5-13. The 

spectrum of biodiesel with all impurities was taken as a result of the overlapping of impurities 

and biodiesel (without impurities) absorption bands. Figure 5-13 shows the second derivative 

through the fourth derivative of the spectrum of biodiesel with all impurities. The spectra were 

calculated using Savitzky-Golay’s second derivative with thirty-one point.   Based on the results 

of the derivative analysis, the possible absorption bands for each impurity in the second 

derivative spectra were identified. The bands around 1200, 1410, and 1910 nm in the second 

derivative were related to methanol presence. For water, the selected bands were 1145, 1450, and 

1975 nm.  The bands selected for glycerol were around 1590 and 2090 nm, and for triglycerides 

the used bands were 1165, 1210, and 1400 nm. Using the information above, described ranges 

for calibration were specified for each model.  Near infrared data, pre-treatment by Savitzky- 

Golay’s second derivative, and partial least square regression (PLSR) method were used for the 

calibration model of each impurity. 
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Figure 5-13 Raw spectra of (a) biodiesel with all impurities, and (b) methanol, water, 

triglycerides and glycerol. 

 

The zero crossing in the 3rd derivative spectra detects the band center position in the 

transmittance spectrum of the original component of the band, Morrey (1968). The analysis to 

specify the calibration range for each impurity was developed over the entire NIR range. 

(a) 

(b) 
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However, in Figures 5-13 and 5-14 only, the range from 1400 to 1800 nm was presented to 

clarify information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-14 The second (top) through fourth (bottom) derivative spectra of biodiesel with all 

impurities. The vertical lines represent the absorption band central position of impurities. 
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 5.4.2.1.2 Methanol content prediction. 

 

  Using the information from the derivative analysis the regions from 1100 to 1650 nm and 

from 1800 to 2150 nm were chosen to develop the calibration models using the PLSR method 

with second derivative of Savitzky-Golay with 31 point as pre-treatment. The correlation 

coefficient R2 = 0.934, and SECV = 330 mg kg-1  were obtained with a number factor of = 5.  

Figure 5-15 shows the comparison between predicted and measured methanol concentration on 

biodiesel using A-IMP type model.   RMSEP = 177 mg kg-1, maximum ABEP = 410 mg kg-1, 

and AVRE = 6.86 % were obtained. The results obtained present reasonable accuracy when they 

are compared with the results of models developed for a single impurity. 

 

 

Figure 5-15 Predicted vs.  measured methanol concentration in biodiesel, A-IMP model by NIR 

 

5.4.2.1.3 Water content prediction. 

 

Using the same procedure that was used to select the calibration ranges in the previous 

model; the regions from 950 to 1150 nm, from 1400 to 1650 nm, and 1800 - 2050 nm were 

chosen to develop the calibration models based in the PLSR method with a second derivative 

approach by Savitzky-Golay with 31 points as pre-treatment. The results of calibration showed 

the following values for number of factor, correlation coefficient (R2 ) and SECV, 6,  0.918 and 

100 mg kg-1 respectively.  Figure 5-16 shows the comparison between predicted and measured 

water concentration in biodiesel using A-IMP type model.   RMSEP = 93 mg kg-1, maximum 

ABEP = 201 mg kg-1, and AVRE = 12.06 % were obtained. The results obtained present 
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reasonable accuracy in prediction, when the model is compared with the model developed to 

detect water in biodiesel for a single impurity. Little influence from the other impurities could be 

implied. 

 

    

 

Figure 5-16 Predicted vs.  measured water concentration in biodiesel, A-IMP model by NIR 

 

 5.4.2.1.4 Triglycerides content prediction 

 

The regions from 900 to 1250 nm and from 1300 to1500 nm were chosen to develop the 

calibration models based on the PLSR method with second derivative approach by Savitzky-

Golay with 31 points. Calibration results showed values for correlation coefficient R2 = 0.869, 

SECV= 470 mg kg-1, and for number of factors = 5.  Figure 5-17 shows the comparison between 

predicted and measured triglycerides concentration in biodiesel using A-IMP type model.   

RMSEP = 932 mg kg-1, maximum ABEP = 1680 mg kg-1, and AVRE = 35.03 % were obtained. 

The poor accuracy in prediction presented for this model suggested that triglycerides may not be 

detected by the NIR and second derivative method when many impurities are present in the 

sample of biodiesel. When the second derivative spectra were analyzed in detail, strong 

influences from the other impurities were detected close to the bands used to detect triglycerides. 
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Figure 5-17 Predicted vs.  measured triglycerides concentration in biodiesel, A-IMP model 

 

 5.4.2.1.5 Glycerol content prediction 

 

Finally, the regions from 1400 to 1650 nm and from 1800 to 2100 nm were chosen to 

develop the calibration models for glycerol concentration in biodiesel using NIR spectra and the 

second derivative approach. The results for calibration were: number of factors = 6, correlation 

coefficient R2 = 0.845, and SECV = 50 mg kg-1.  Figure 5-18 shows the comparison between 

predicted and measured water concentration in biodiesel using A-IMP type model.   RMSEP = 

54 mg kg-1, maximum ABEP = 123 mg kg-1, and AVRE = 20.04  % were obtained.   

 

 

 

 

 

 

 

 

 

Figure 5-18 Predicted vs.  measured glycerol concentration in biodiesel, A-IMP model.  
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 Regression coefficients for the models of A-IMP using NIR spectra and 2nd derivative 

are shown in Figure 5-19. Regression coefficients presented in the graphic indicated that the 

calibrations are based in absorption bands related to the impurity under study. For instance, 

bands were observed near 1390 nm and 2025 nm, these bands can be assigned to methanol. 

Bands observed near 1430 nm and 1885 nm corresponded to water absorption bands. Bands 

observed near 1355 nm and 1393 nm can be assigned to the triglycerides absorption bands, and 

the band observed near 1650 nm is related to the glycerol absorption band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-19 Regression coefficients for the model (A-IMP) 

 

Triglycerides‐NIR  (A‐
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Results for all impurity models using the second derivative approach and NIR 

spectroscopy are presented in Table 5-4. The model for methanol presents reasonable 

performance to predict its impurity. 

Independently, all impurities were present in the biodiesel sample. The model for water 

also presented reasonable accuracy in prediction. However, the models for triglycerides and 

glycerol did not perform very well. The RPD values for methanol, water, triglycerides, and 

glycerol models were 3.49, 3.25, 2.52,, and 2.28, respectively. According to Williams (2001),  

RPD value from 0 to 2.3  is very poor and the calibration use is not recommended,  from 2.4 to 

3.0 is poor and the calibration only can be used in very rough screening, and from 3.1 to 4.9 is 

fair and the calibration can be used for screening,  Additional studies are necessary to improve 

these models, especially for triglycerides and glycerol. 

 

Table 5-4 Validation results for impurities prediction using models with all impurities (A-

IMP) 

 

 

 

 5.5 Conclusion 

 

Models to predict impurities such as methanol, water, triglycerides, and glycerol, in 

biodiesel using MIR and NIR spectroscopy methods and the PLSR were developed. When only 

Models A-IMP, 
NIR 

R2 
SECV 

mg kg-1 
RMSEP 
mg kg-1 

Max Absolute 
error of 

prediction 
ABEP  mg kg-1 

Average 
relative 

error 
AVRE (%) 

RPD 
(SD/SECV) 

Methanol 0.934 330 177 410 6.86 3.49 

Water 0.918 100 93 201 12.06 
3.25 

Triglycerides 0.869 470 932 1680 35.03 2.52 

Glycerol 0.845 50 54 123 20.04 
2.28 
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one impurity was present in the samples, the models developed using NIR methods for methanol, 

water, and glycerol performed better than MIR models. They showed an average relative error 

(AVRE) of 5.84, 8.63, and 7.73% respectively. The model developed for triglycerides using MIR 

shows better performance than NIR model showing an AVRE of 2.91 %.   For all impurities 

models developed using NIR range and second derivative as pre-treatment, only the models 

developed for methanol and water presented reasonable accuracy in prediction with an AVRE of 

5.11 and 8.75 % mg kg-1 respectively.  Validation results indicated that both NIR and MIR can 

be used to predict the concentration of impurities in biodiesel, when only one impurity is present. 

NIR demonstrated to be able to predict impurities such as methanol, water, triglycerides, and 

glycerol when more than one impurity is present. However, further work is necessary to improve 

the results of the models for triglycerides and glycerol. 
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Chapter 6 - Determining the Fatty Acid Composition of Biodiesel 

Using FTIR-NIR Spectroscopy with Derivative Technique 

 
 

 6.1 Abstract 

This work reports the use of near-infrared (NIR) spectroscopy to predict the fatty acid 

composition of  biodiesel. The spectra were pre-treated with Savitzky-Golay second derivative. 

A partial least square regression (PLSR) method was employed to develop a calibration model 

based on information from five pure fatty acids methyl palmitate C16:0, methyl stearate C18:0, 

methyl olate C18:1, methyl linolate C18:2, and methyl linolenate C18:3 and six different types of 

biodiesel. The ranges from 1625 to 1785 nm and from 2100 to 2200 nm were chosen to develop 

the models. The root mean square error of prediction (RMSEP) for C16:0, C18:0, C18:1, C18:2, 

and C18:3 were  1.62, 1.37, 1.03, 0.85 and 0.69  %(w/w), respectively, based  on the validation 

set of 20 samples, eleven from combinations of biodiesel used in the calibration and nine from 

combinations of biodiesel that were not used in the calibration. The effect of impurities in 

biodiesel on fatty acid prediction was also evaluated. When biodiesel samples contaminated with 

trace amounts of methanol, triglycerides, water, and glycerol were tested, the RMSEP for C16:0, 

C18:0, C18:1, C18:2, and C18:3 were 2.43, 1.40, 1.73, 1.58, and 0.63  %(w/w), respectively,  

indicating  impurities did not have a significant effect on the accuracy of the models. The results 

showed NIR and derivative techniques can be used to accurately predict the concentration of the 

five fatty acid methyl esters in biodiesel, although the models for C16:0 and C18:0 were less 

accurate. 

 6.2 Introduction 

Biodiesel is chemically known as a mix of mono-alkaly ester of long chains of fatty 

acids.  Biodiesel can be derived from vegetable oil or animal fat (triglycerides). The most 

common fatty esters present in biodiesel are palmitic acid, stearic acid, oleic acid, linoleic acid, 

and linolenic acid. When triglycerides have been transesterified with methanol, the biodiesel is 

usually referred to as fatty acid methyl ester (FAME). The fatty acid profile of the fuel is 

mentioned as an important factor in the determination of biodiesel properties and characteristics. 
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Because of its significance, the determination of fatty acids concentration in biodiesel is an 

important activity, when the quality of the fuel is monitored. Extensive work related to the 

effects of the fatty acids profile on the performance of the fuel, has been found, G. Knothe 

(2008), Falk, (2004). ASTM standard D 6751 presents the characteristics that the fuel has to 

meet in order to be used, with no direct regulations about fatty acid profile.  The European 

standard (EN14214) limits the concentration of linolenic acid methyl ester for biodiesel to 12 % 

(m/m).  

Successful applications of infrared spectroscopy have been reported to determine the 

fatty acid profile of substances and biodiesel using near infrared (NIR), as can be seen in the 

following studies. I. Gonzales et al. (2003), H. Azizian, et al (2010),  N. Prieto, et al. (2012), P. 

Baptista (2008). However, this work was focused on the use of derivative spectra techniques to 

obtain the needed information from combination bands. Few works have been found related to 

the derivative technique, most of them are based on a theoretical approach, Huguenin, R. & 

Jones, J. (1986), Morrey, J. R. (1968), Tsai, F. & Philpot, W. (1998), Sato, T. (2002). 

Using derivative analysis, Huguenin and Jones (1986) presented an algorithm that 

performs band separation from a combination band in reflectance spectra. This analysis used a 

spectrum of six overlapping constituent absorption bands, each being of Gaussian shape but of 

different widths, strengths, and degrees of overlap. This analysis was based on finding the 

combination where a derivative is zero for all wavelengths of the six basic constituents of the 

spectra. This condition was reached at the fifth derivative. The authors mentioned that the 

highest derivative order was necessary due to the effect of few factors that usually affect the 

reflectance spectra.  Morrey (1968) previously developed a similar analysis using transmittance 

spectra. The convolution to zero was obtained in the third order derivative.   In both cases, the 

authors match conclusions related to the error caused by an adjacent peak. They concluded that 

additional work must be done to develop a separation peak when they are too close. Tsai & 

Philpot (1998,) made a replication of the study of Huguenin and Jones (1986)  and found similar 

conclusions related to the adjacent peak, and then developed a hypothesis that when the spectra 

feature of interest is larger than the band separation, it should be detected by the derivative 

methods. To prove his hypothesis, Tsai presented a new experiment using another five different 

synthetic spectra to apply the Huguenin and Jones methods. This experiment confirmed the 

hypothesis previously presented and concluded that the performance of this tool has a strong 
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influence on the selected parameter of the derivative method. The author also indicated that these 

must be selected for each particular set of spectra and purpose of the analysis. An estimation 

method for fatty acid composition in oil using NIR was also developed by Sato, T.  (2002). The 

study presented a second derivative analysis to identify the corresponding peak for C16:0, C18:0, 

C18:1, C18:2, C18:3, and C22:1 fatty acids. Using IDAS software, an iterative study was 

developed examining the moving average (MA), the size of the derivative segments (SEG,) and 

the gap between derivative segments (GAP) on the second derivative. Sato tested the proposed 

method using the spectra of rapeseed oil as an example of mixtures of ester. The band for each 

fatty acid  in the second derivative, for C18:3, C18;2, C18:1, C18:0, C16:0, and C22:1 were 

listed. The absorption bands were identified at 1708, 1712, 1724, 1730, 1728, and 1726 nm, 

respectively, when the MA= 4 nm, the SEG=12nm, and Gap=12 nm. Sato concludes that with 

this method it is possible to estimate the fatty acid profile roughly, simply, and rapidly.  

The listed work shows the possibility of derivative technique methods to extract 

information from combination bands on the NIR spectra. Since no report was found on 

predicting fatty acid composition of biodiesel using NIR spectroscopy and developing band 

separation, the objectives of this study were to develop predicting models for fatty acid 

composition of biodiesel using FTIR – NIR spectroscopy and derivative techniques. 

 

 6.3 Materials and Methods 

 6.3.1 Samples preparation 

For this study, pure fatty acid and biodiesel samples were used. Pure methyl palmitate 

(C16:0), methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl 

linolenate (C18:3) were purchased from NU-Chek-Prep Inc. Elysian, MN. The used biodiesels 

were prepared from food grade soybean oil, corn oil, canola oil, flaxseed oil, animal fat, olive oil, 

peanut oil, coconut oil, and a mix of peanut, olive, and soybean oil; purchased from local grocery 

store, and palm oil purchased from Country Soap Shack (Missouri, USA). All biodiesel samples 

were freshly produced in the author’s laboratory using a standard base-catalyzed transterification 

process followed by recurrent water washing and a final drying process.  The fatty acid profiles 

of the ten biodiesel fuels are shown in Table 6-1, which shows that the selected biodiesel 

samples include a broad range of fatty acids. The animal fat methyl ester (AFME) presents 
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abundant  C16:0 and C18:1;  palm methyl ester (PAME) presents high content of C16:0 and 

C18:1, canola methyl ester (CAME), peanut methyl ester (PEME), and olive methyl ester 

(OLME) are rich in C18:1, corn methyl ester (COME) and soybean methyl ester (SOME) were 

selected for their high content of C18:2, and flaxseed methyl ester (FXME) was included for its 

high content of C18:3. To increase the variability of fatty acid content a mix of olive, peanut, and 

soybean oil was used to prepare a mixed methyl ester (MXME.) This methyl ester presents high 

content of   C18:1 and medium amounts of C16:0, C18:2, and C18:3. Coconut methyl ester 

(CCME) was used because it presents high content of C12:0 and C14:0 and low amounts of 

studied fatty acid.  

 

Table 6-1 Fatty acid profile (mass %) of biodiesel samples prepared for this work. 

 

FAME(mass%) C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3 

COME 0.02 0.00 0.00 0.07 10.88 2.27 27.63 53.95 2.36 

FXME 0.00 0.00 0.08 0.07 5.61 3.09 14.79 15.48 57.67 

PAME 0.02 0.03 0.34 1.23 44.57 4.39 40.96 8.56 0.17 

CAME 0.00 0.01 0.01 0.08 4.14 1.84 66.99 17.59 6.56 

PEME 0.01 0.01 0.12 0.09 9.82 2.75 55.97 21.77 0.21 

OLME 0.00 0.00 0.10 0.05 14.07 2.82 65.07 12.31 0.61 

MXME 0.01 0.00 0.08 0.20 14.90 3.23 49.04 15.65 13.26 

CCME 7.91 6.34 46.11 17.58 8.85 2.60 6.61 1.75 0.03 

AFME  0.01 0.10 0.10 1.52 24.50 17.42 36.34 15.41 0.67 

SOME 0.00 0.00 0.08 0.10 10.40 4.01 20.92 50.24 7.31 

 

The calibration set was prepared with combinations of six biodiesels (COME, CAME, 

FXME, CCME, AFME and PAME). The concentration ( % w/w) of methyl palmitate (C16:0), 

methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate 

(18:3) in the samples were ranged from: 5.35 to 44.57 % w/w, 1.92 to 4.39 % w/w , 14.80 to 

66.21 % w/w, 8.56 to 52.21% w/w, and 0.18 to 57.67% w/w, respectively.  The fatty acid profile 
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of each sample was calculated using the fatty acid profile of six original biodiesel samples with 

its corresponding mass percentage present in the sample.  A total of one hundred and thirty-seven 

samples were prepared. From this set one hundred and twenty-six were used in the calibration 

and eleven samples were randomly selected to be used in the validation. To verify the robustness 

of the models under unknown biodiesel samples, the model was validated with a set of nine  

additional samples, consisting of pure biodiesel and samples prepared from biodiesel not used in 

the calibration (PEME, OLME, MXME, SOME). The range of fatty acids for each sample was 

kept within the calibration limits for each model. Additional experiments were developed to 

determine the effect of impurities in biodiesel over the fatty acid models.  A set of samples of 

biodiesel from canola and corn oil, contaminated with methanol, triglycerides, water, and 

glycerol from other experiments were used to test the fatty acid models 

 6.3.2 Fatty acid profile measurement 

The fatty acid profiles of nine biodiesels were obtained using gas chromatography. 

According to standard procedures detailed below, approximately 25 mg of biodiesel were 

dissolved in 4ml of benzene containing methyl-C13 internal standard.    Samples were analyzed 

for fatty acid methyl esters using a HP 5890 GC with a FID detector and a SP-2560 capillary 

column (100m x .25mm x .2μ film, Supelco, Inc., Bellefonte, PA).   Injection port and detector 

temperatures were 250oC with a flow rate of 1 ml/min helium and a split ratio of 100:1.  

Injection volume was 1µl.  Oven temperature began at 140oC and increased at 2oC/min to 200oC 

then at 4oC/min to 245oC and held for 17 minutes.   

 6.3.3 FTIR-NIR spectroscopy scan 

All biodiesel samples and pure C16:0, C18:1, C18:2, and C18:3 were scanned at a room 

temperature of 22-24oC on a FT-IR/FT-NIR spectrometer (Perkin Elmer spectrum 400, Shelton, 

CT) for NIR range. The calibration and validation samples were placed in a quartz cuvette cell 

(Labomed Inc. Culver City, CA) of 5 mm pathlength and a transmittance scan was obtained. NIR 

spectra data were recorded as the absorbance in the wavelength range from 900 to 2500 nm at 1 

cm-1 interval. All spectrums were recorded once for each sample and were obtained as an 

average of thirty-two scans.  When the pure C18:0 was scanned, a near infrared reflectance 

accessory (NIRA) was used (Perkin Elmer, Liantrisant, UK). The spectrum was obtained in the 

range from1000 to 2500 nm at 1 cm-1 interval. 



106 

 

 6.3.4 Calibration models 

The regions between 1625 and 1785 nm and between 2100 and 2200 nm, in the NIR 

range were used to estimate the concentrations of C16:0, C18:0, C18:1, C18:2, and C18:3 in 

biodiesel samples. These regions were chosen considering the results of the derivative analysis 

and based on the criterion for detecting band center positions for each fatty acid. Grams/AI 

software version 9.1 (Thermo Fisher Scientific Inc.) and the PLSR method were used to develop 

the models. The performance of the models was assessed by the following statistical parameter: 

the correlation coefficient (R2), standard error of cross validation (SECV), the root mean square 

error of prediction (RMSEP), the absolute error of prediction (AEP), the average relative error of 

prediction (AREP), and RPD value.  

 6.3.5 Second derivative technique 

The bands in the near infrared region are difficult to assign to specific compounds 

because a single band in this region is the result of combinations of fundamental bands and 

overtones.  Derivative techniques have been mentioned over the years as a possible solution to 

extract the information contained in these bands. This technique is used to correct the baseline, 

reduce the broad band, reduce the scattering effect, and perform the band separation, Huguenin 

et al. This can be first or higher order, the second order derivative spectra is commonly used 

because the band intensity and peak location are maintained as in the original spectra, Shenk et 

al. This characteristic could be very useful for the identification of the FAME present in 

biodiesel samples.  To determine which derivative is appropriate to resolve the overlapping 

bands,   raw transmittance spectra of a biodiesel sample (CAME) and the raw transmittance 

spectra of C16:0, C18:1, C18:2, and C18:3 in NIR range were used, which are shown in Figure 

6-1. The spectrum of C18:0 is not shown because, it was obtained with a reflectance accessory 

using different range and absorbance scale. Considering the most common biodiesel contains the 

above listed fatty acids in more than 95%, for this analysis, the spectra of biodiesel was taken as 

the result of the five overlapping fatty acids absorption band.  Figure 6-2 shows the second 

through fourth derivative of the spectra of CAME. The derivatives were calculated using 

Savitzky-Golay second derivative with third order polynomial and fifty-one points.   According 

to Morrey (1968) and considering y (ν) as the raw spectra, detecting band center positions in 

transmittance spectra is reached when the following conditions are met. 
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Figure 6-1 Raw spectra in specific range of NIR of (a) biodiesel from canola (CAME), and (b) 

pure C16:0, pure C18:1, pure C18:2, and pure C18:3. 

 

y’’(ν) < 0        y’’’(ν)  = 0     y’’’’(ν)  > 0                 (1) 

 

The third derivative zero crossing was used to verify the band center positions, where the 

band identification criterion was satisfied.  The presented analysis was developed over the range 

between 1625 to 1785 nm, where different bands for each pure fatty acid were observed. 

Additionally, this is the range recommended by Sato (2008) in his analysis about identification 

of fatty acids in oil. 

(a) 

(b) 
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Figure 6-2 The second (top) through fourth (bottom) derivative spectra of the CAME. The four 

vertical lines represent the fatty acid absorption bands central position in this range. 
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 6.4 Results and Discussion 

 

 6.4.1 Second derivative analysis 

 

Considering the results of the derivative analysis, the absorption band for each fatty acid 

in the biodiesel samples was defined. Models to identify the concentration of methyl palmitate 

(C16:0), methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl 

linolenate (C18:3) in biodiesel samples were developed over the range from 1625 to 1785 nm 

and from 2100 to 2200 nm. Specific peak in the second derivative spectra was identified for 

C18:3 at 1710nm.  For C18:2, the peak was found at 1714 nm. And for the case of C18:1, its 

peak was observed at 1720nm. The distinctive peaks for C18:0 were located at 1730 nm using 

the raw spectra. For methyl palmitate (C16:0) the peak was located at 1728 nm, because the 

peaks for C16:0 and C18:0 are close to the second derivative spectra they present only one peak 

around 1729 nm. The region from 2100 to 2200 also presents different peaks for C16:0 and 

C18:0 in the raw spectra. But again, when the derivative technique was applied, only one peak 

was observed in the second derivative spectra. However, some information was extracted when 

both ranges were used in the calibration.   Near infrared spectroscopy data, pre-treated by 

Savitzky-Golay’s second derivative, and partial least squares regression (PLSR) methods were 

used for the development of a calibration model for each fatty acid methyl ester (FAME).  

 

 6.4.2 Model to predict methyl palmitate (C16:0) 

The calibration result for the model to predict methyl palmitate, represented by R2, 

SECV, and number of factor were 0.92, 2.77 %( w/w) and 6, respectively.  The RPD value was 

3.69. When the validation set was used in the model to predict the fatty acid concentration in 

biodiesel, the results showed for RMSEP, Max Absolute Error, and Average Relative Error of 

Prediction the following values: 2.64 % (w/w), 7.01 % (w/w), and 12.45%, which are considered 

acceptable.  Figure 6-3 shows the comparison of predicted and measured methyl palmitate from 

the validation set. 
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Figure 6-3 Predicted vs. measured of methyl palmitate for validation set using the NIR spectra 

and Savitzky-Golay second derivative. 

 6.4.3 Model to predict methyl stearate (C18:0) 

The model to predict methyl stearate presented the following results R2= 0.86, SECV= 

1.90 % (w/w), and the number of factors was 7. The RPD value was 1.84,  which 3 is very poor 

and the use of this calibration is not recommended.  When the validation set was applied to the 

model for predicting  the fatty acid concentration in biodiesel, the results shown for 

RMSEP=1.37 % (w/w), Max Absolute Error was 3.79 %(w/w), and the Average Relative error 

of Prediction was 25.31 %, which are considered acceptable.  Figure 6-4 shows the comparison 

of predicted and measured methyl stearate from the validation set. 

 

 

 

 

 

 

 

 

Figure 6-4 Predicted vs. measured of methyl stearate for validation set using the NIR spectra and 

Savitzky-Golay second derivative. 

RMESP= 2.64 % mass 
Max AEP= 7.01 % mass 
AREP=12.45 % 

RMSEP= 1.37 % mass 
Max AEP= 3.79 % mass 
AREP= 25.31 % 
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 6.4.4 Model to predict methyl oleate  (C18:1) 

 

The R2, SECV, and number of factors were 0.98, 1.74 %( w/w), and 6, respectively for 

the calibration model to predict methyl oleate. The RPD value was 10.90. The results of the 

validation process showed the following values RMSEP=1.03 % (w/w),   Max AEP=2.65 % 

(w/w),   and AREP = 1.76 %, which are considered very accurate.  Figure 6-5 shows the 

comparison of predicted and measured methyl oleate from the validation set. 

 

 

 

 

 

 

 

 

 

Figure 6-5 Predicted vs. measured of methyl oleate for validation set using the NIR spectra and 

Savitzky-Golay second derivative. 

 

 6.4.5  Model to predict methyl linoleate (C18:2) 

The calibration result for the model to predict methyl linoleate, represented by R2, SECV, 

and number of factors were 0.97, 2.15 %( w/w) and 6, respectively. The RPD value was 7.09,  

good enough for  process control (Williams, 2001). When the validation set was used in the 

model to predict the fatty acid concentration in biodiesel, the results for RMSEP, Max Absolute 

Error, and Average Relative Error of Prediction showed the following values: 0.85 % (w/w), 

2.34 % (w/w), and 2.84 %, which are considered very accurate.  Figure 6-6 shows the 

comparison of predicted and measured methyl linoleate from the validation set. 

 

 

RMSEP= 1.03 % mass 
Max AEP=2.65 % mass 
AREP= 1.76 % 
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Figure 6-6 Predicted vs. measured of methyl linoleate for validation set using the NIR spectra 

and Savitzky-Golay second derivative. 

 

 6.4.6  Model to predict methyl linolenate (C18:3) 

The calibration result for the model to predict methyl linolenate, represented by R2, 

SECV, and number of factor were 0.99, 1.18 %( w/w) and 6, respectively. The RPD value was 

9.66. When the validation set was used in the model to predict the fatty acid concentration in 

biodiesel, the results shown for RMSEP, Max Absolute Error, and Average Relative Error of 

Prediction were the following values: 0.69 % (w/w), 2.04 % (w/w) and 6.24 %, which are 

considered very accurate.  Figure 6-7 shows the comparison of predicted and measured methyl 

linolenate from the validation set. 

 

 

 

 

 

 

Figure 6-7 Predicted vs. measured of methyl linolenate for validation set using the NIR spectra 

and Savitzky-Golay second derivative. 

 

 

Regression coefficients for the calibration models of fatty acid using the second 

derivative are shown in Figure 6-8. The models for C16:0, C18:0, C18:1, C18:2, and C18:3 show 

coefficients near 1730 nm  which are related to pure  methyl palmitate absorption band, near 

RMSEP= 0.85 % mass 
Max AEP= 2.34 % mass 
AREP= 2.84 % 

RMSEP= 0.69 % mass 
Max AEP=2.04 % mass 
AREP= 6.24 %  
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1728 nm , related to methyl stearate, near 1714 nm  which is related to pure  methyl oleate 

absorption band, near 1722 nm , related to methyl linoleate, and  near 1710 nm, related to methyl 

linolenate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8 Regression coefficients for the fatty acid model using 2nd derivative 

 6.4.7 Effect of impurities on the fatty acid models. 

To determine the effect of impurities over the fatty acid model a set of samples 

contaminated with impurities, from other experiments were used to test the models. A mix of 

biodiesels from canola oil and from corn oil contaminated with methanol, triglycerides, water, 

C18‐2‐NIR  2nd‐

C16:0‐NIR‐(2nd‐



114 

 

and glycerol were used. The concentration of impurities were ranged: from 1470 to 4280 mg kg-1 

for methanol, from 1300 to 4290  mg kg-1 for triglycerides, from 450 to 1290 mg kg-1 for water, 

and from 170  to 430  mg kg-1 for glycerol.  When the described validation set was used in the 

model to predict the fatty acid concentration in biodiesel, the RMSEP for C16:0, C18:0, C18:1, 

C18:2, and C18:3 models were: 2.30, 1.40, 1.73, 1.58, and 0.63 % (w/w), respectively. No major 

affectations from the impurities were observed in the results, considering that RMSEP were very 

similar to the previous validated set (biodiesel without impurities).  Figure 6-9 shows the 

comparison of predicted and measured methyls from the validation set. 

 

 

 

 

 

 

 

 

 

 

Figure 6-9 Predicted vs. measured of C16:0, C18:0, C18:1, C18:2, and C18:3 for validation set 

containing impurities, using the NIR spectra and Savitzky-Golay second derivative. 

 

The characteristics of the performance of the models that were developed using NIR and 

derivative techniques for concentration of C16:0, C18:0, C18:1, C18:2, and C18:3 in biodiesel 

are summarized in Table 6-2. The lower performance was observed in the model for C18:0, it 

can be attributable to the fact that biodiesel presents a short range in the concentration levels for 

this fatty acid. 

 

RMSEP= 2.43 RMSEP= 1.40 RMSEP= 1.73

RMSEP= 1.58
RMSEP= 0.63 
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Table 6-2 Performance factor of the models to predict fatty acid composition of biodiesel 

 

  Model 

For: 

Correlation 

coefficient 

(R2) 

Number 

of 

factors 

(SECV) 

%(w/w) 

(RMSEP) 

%(w/w) 

Max.  

(AEP)  

%(w/w) 

 

(AREP) % 

Validation 

samples 

(without 

impurities) 

C16:0  0.925  6  2.77  2.64  7.01  12.45 

C18:0  0.860  7  1.90  1.37  3.79  25.35 

C18:1  0.988  6  1.74  1.03  2.65  1.76 

C18:2  0.970  6  2.15  0.85  2.34  2.84 

C18:3  0.994  6  1.18  0.69  2.04  6.24 

Validation 

samples 

(with 

impurities) 

C16:0  0.925  6  2.77  2.43  4.01  23.67 

C18:0  0.860  7  1.90  1.40  3.37  47.68 

C18:1  0.988  6  1.74  1.73  3.22  3.43 

C18:2  0.970  6  2.15  1.58  2.92  2.65 

C18:3  0.994  6  1.18  0.63  1.46  15.00 

 

 6.5 Conclusion 

 

Models to predict the concentration of fatty acids (C16:0, C18:0, C18:1, C18:2 and 

C18:3) present in biodiesel samples were developed using NIR spectra, PLSR method, and 

derivative technique. The regions between 1625 and 1785 nm and between 2100 and 2200 nm 

were chosen to develop the models. The RMSEP of the models for C16:0, C18:0, C18:1, C18:2, 

and C18:3 were 2.64, 1.37, 1.03, 0.85, and 0.69 % (w/w), respectively, they were slightly better 

that the RMSEP obtained from the previous experiments when the raw spectra were used to 

predict the fatty acid concentration in biodiesel. However, when the RPD values were compared, 

models developed with raw spectra showed higher RPD values.  Derivative techniques were 

useful for extracting the information from combination bands in the spectra. The models 

developed with this technique presented accurate results in predicting C18:1, C18:2, and C18:3. 

Less accurate results were found in the models for C16:0 and C18:0, but the model can be 

considered as a promising option to predict this fatty acid.   
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Chapter 7 - Conclusions and Future Work 

 7.1 Conclusion 

Blending level of biodiesel-diesel mixtures can be determined by NIR spectroscopy and 

multiple linear regression methods (MLR).  Developed models showed accurate prediction in the 

selected ranges, even when biodiesel source was unknown in the validation process (RMSEP 

=3.2 %, v/v). Type of diesel fuel did not show significant effect in the performance of the 

models. Specific gravity of biodiesel-diesel blend was also determined by NIR and MLR 

method. Similarly to the model developed for blending level, no effects were observed related to 

the types of biodiesel or diesel used in this study. 

Models to determine the fatty acid concentration in biodiesel using NIR, MIR, and PLSR 

method were developed. Accurate results were obtained from the models developed and 

validated with specific types of biodiesels.  Less accurate results were observed in the models 

developed with heterogeneous types of biodiesel and validated with unknown biodiesel samples, 

indicating the adverse effects of biodiesel source in predicting its fatty acid profile. Such effects 

were minimized by developing models in narrower concentration ranges.  For instance, RMSEP 

was reduced from 1.29 to 0.66%mass for the model of C16:0 and from 0.76 to 0.27%mass for 

the model of C18:0. MIR spectroscopy showed slightly better prediction accuracy than NIR. 

Nevertheless, both MIR and NIR spectroscopy methods can be used to predict the concentration 

of fatty acid methyl esters in biodiesel, even if the source of biodiesel is unknown.  

Two different types of models to predict impurities including methanol, water, 

triglycerides, and glycerol in biodiesel were successfully developed using both MIR and NIR 

spectroscopy ranges and the PLSR method. NIR method showed better performance than MIR 

when methanol, water and glycerol were predicted in models with only one impurity. Model for 

triglycerides performed better when MIR method was used. To develop models with all 

impurities, only NIR spectroscopy with derivative techniques was feasible. The obtained 

RMSEP of the model for methanol, water, triglycerides, and glycerol were 177 mg kg-1, 93 mg 

kg-1, 932 mg kg-1, and 54 mg kg-1, respectively. Although the models for methanol and water 

showed better accuracy in prediction than the models for triglycerides and glycerol, all models 

can be used to predict impurities in biodiesel with reasonable accuracy when all impurities listed 

above are present. 
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Derivative technique was used to improve prediction of the concentration of fatty acids 

(C16:0, C18:0, C18:1, C18:2 and C18:3) present in biodiesel samples using NIR spectra.  

Accurate results were obtained with the models to predict methyl oleate, methyl linoleate, and 

methyl linolenate. The RMSEP for the model to predict C18:1, C18:2, and C18:3 were 

1.03%(w/w), 0.85%(w/w), and 0.69%(w/w), respectively. Even though, less accuracy was 

obtained in the models to predict methyl palmitate and methyl stearate, the technique showed 

great potential to be used in biodiesel spectra analysis. 

 

 7.2 Future Work 

 

The recommended next step in detecting biodiesel blending level is to develop an 

inexpensive portable device based on the finding from this research. This device could use 

infrared light emitted diode (L.E.D) of identified wavelength from this research with a sensor to 

detect the received energy, the difference between emitted and received energy will be 

considered as the absorbed energy in the sample.  The absorbed energy is related to the biodiesel 

level present in the sample.  

The models to determine of methyl palmitate (C16:0) and methyl stearate (C18:0) require 

additional work to improve their accuracy. The improvement achieved developing sub-model to 

predict the concentration of C16:0 and C18:0 suggests the way forward. A narrow range for 

calibration models is recommended. Additionally, several options can be analyzed such as 

different statistic methods (MLR and PCA), artificial neural network, and derivative technique 

using superior order in the polynomial to improve the results. 

To develop future models to detect impurities in biodiesel when all impurities are present, the 

following are recommended:  

 To measure the impurity concentration in each sample, using the reference methods. 

 Derivative technique method is also recommended with variation on the principal 

characteristic (order of polynomial and number of point for the derivative). 

 Considering that biodiesel with four impurities is a complex chemical structure, powerful 

tools to develop models such as artificial neural network (ANN) could help to improve 

the model.  


